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Abstract. We discuss synchronous and asynchronous iterations of the form

xk+1 = xk + γ(k)(h(xk) + wk),

where h is a suitable map and {wk} is a deterministic or stochastic sequence satisfying suitable
conditions. In particular, in the stochastic case, these are stochastic approximation iterations that can
be analyzed using the ODE approach based either on Kushner and Clark’s lemma for the synchronous
case or on Borkar’s theorem for the asynchronous case. However, the analysis requires that the
iterates {xk} be bounded, a fact which is usually hard to prove. We develop a novel framework for
proving boundedness in the deterministic framework, which is also applicable to the stochastic case
when the deterministic hypotheses can be verified in the almost sure sense. This is based on scaling
ideas and on the properties of Lyapunov functions. We then combine the boundedness property
with Borkar’s stability analysis of ODEs involving nonexpansive mappings to prove convergence
(with probability 1 in the stochastic case). We also apply our convergence analysis to Q-learning
algorithms for stochastic shortest path problems and are able to relax some of the assumptions of
the currently available results.
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1. Introduction. The motivation for this paper has been the analysis of Q-
learning algorithms, which have emerged as a powerful simulation tool for solving
dynamic programming problems when a model is not known and/or the problem
must be solved on-line as the data become available. Q-learning algorithms were first
formulated by Watkins (1989), who gave a partial convergence analysis that was later
amplified by Watkins and Dayan (1992). A more comprehensive analysis was given by
Tsitsiklis (1994) (also reproduced in Bertsekas and Tsitsiklis (1996)), which made the
connection between Q-learning and stochastic approximation. (A related treatment
of a class of algorithms that include Q-learning and TD(λ) also appeared around the
same time in Jaakola, Jordan, and Singh (1994). It may be recalled here that TD(λ)
is a learning scheme for estimating the value function of a policy based on an expo-
nentially weighted average (with weights λn for some λ ∈ (0, 1)) of the so-called n-step
truncated returns—see Bertsekas and Tsitsiklis (1996) for a detailed description.) In
particular, Q-learning algorithms for discounted cost problems or stochastic shortest
path (SSP) problems were viewed as asynchronous stochastic approximation versions
of well-known value iteration algorithms in dynamic programming. This connection
paved the way for a general analysis based on classic stochastic approximation tech-
niques and dynamic programming-related contraction and monotonicity properties.
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A weakness of the methodology developed so far is that it deals in an ad hoc way
with the question of boundedness of the Q-learning iterates. In particular, the analy-
sis of Tsitsiklis required a special argument for proving boundedness with probability
1 (w.p.1), and for the case of SSP problems it also required that the cost per stage
be nonnegative, unless boundedness is imposed as an assumption (see Bertsekas and
Tsitsiklis (1996), Prop. 5.6).

Our purpose in this paper is to provide a new and powerful general framework for
establishing boundedness and proving convergence in synchronous and asynchronous
stochastic approximation methods involving nonexpansive maps, including as a spe-
cial case Q-learning algorithms. Our framework relies strongly on nonexpansiveness
and combines ideas from several fields, including asynchronous stochastic approxima-
tion analysis via the limiting ODE technique and nonlinear analysis of ODEs. Our
method for dealing with boundedness bears a similarity to an idea from the paper by
Jaakola, Jordan, and Singh (1994), which addressed the convergence of TD(λ) using
stochastic approximation methods (see section 2). Also see Csibi (1975) and Gerencser
(1992) for work in a similar spirit. As a special case of our analysis, we improve on
Tsitsiklis’ convergence result by dispensing with the boundedness assumption for the
iterates of SSP Q-learning, in the case where the cost per stage may be negative.
The methodology developed in this paper also provides an essential foundation for a
convergence analysis of Q-learning algorithms for average cost dynamic programming
problems given in a companion paper (Abounadi, Bertsekas, and Borkar (2001)).

Our results, in fact, can be cast as a powerful deterministic principle, because
the conditions on the noise required to ensure its applicability can be cast in simple
deterministic terms. These can, in turn, be verified in the almost sure sense for the
stochastic approximation algorithms of interest here. The deterministic formulation
also requires weaker conditions on the stepsizes. Thus we shall initially state our
results in a deterministic framework, enlarging their scope beyond the applications to
stochastic approximation.

The general framework that we propose applies to synchronous and asynchronous
variants of algorithms of the form

xk+1 = xk + γ(k)
(
h(xk) + wk

)
.(1)

Here xk is a sequence in �n, wk is a deterministic noise sequence, h is Lipschitz, γ(k) is
a positive stepsize sequence, and the aim is to find a solution of the equation h(x) = 0.
This is the synchronous implementation in which all components are updated together
at each time with full information about past iterates. The asynchronous model that
we use is based on the formulation of Borkar (1998) and is of the form

xk+1
i = xki + γ

(
ν(k, i)

)(
hi(x

k) + wki
)
I(i ∈ Y k)(2)

for i = 1, . . . , n, where Y k is the subset of {1, 2, . . . , n} denoting components being
updated at time k, I(·) is the indicator function, and ν(k, i) is the number of times
the component xi of the vector x has been updated by time k.

For the synchronous algorithm (1), a powerful analysis technique is the ODE
method introduced by Ljung (1977), formally treated by Kushner and Clark (1978),
and Benveniste, Metivier, and Priouret (1990). For the asynchronous algorithm (2),
a similar technique has been developed by Borkar (1998). (See also Kushner and Yin
(1997) and references therein for related work.) The major idea behind these two
techniques is to find a limiting deterministic continuous-time ODE for the stochastic
discrete-time processes, using interpolation with the appropriate time scaling. The
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main result is that if the ODE has an asymptotically stable equilibrium point, then
under appropriate assumptions, which include boundedness of the generated iterates,
the discrete-time iteration converges to this point w.p.1. Thus, in ODE techniques,
boundedness must be independently verified.

This paper’s methodology for dealing with the boundedness issue involves three
steps:

1. obtaining a related scaled iteration and establishing its convergence,
2. showing that the sequence {xk} generated by the original iteration is bounded

as a consequence of the convergence of the scaled iteration,
3. showing that the boundedness of {xk} implies convergence by invoking a

standard ODE limiting argument.
For each of the steps above, we will impose appropriate sufficient conditions on the

mapping h, the stepsize, and the noise. A central assumption in our later applications
is that the mapping h is of the form h(x) = T (x)−x, where the map T is nonexpansive
with respect to some norm ‖ · ‖p with p ∈ (1,∞] for the synchronous case, and with
respect to the sup-norm ‖ · ‖∞ for the asynchronous case. To our knowledge, ours is
the first general method for dealing with the boundedness issues in the ODE approach
where the underlying mapping T is not a contraction. (See, however, the recent work
by Borkar and Meyn (2000), which is discussed later in this section.) Note that the
class of fixed-point problems which involve nonexpansive mappings arises in a number
of different applications (see the book by Bertsekas and Tsitsiklis (1989) and the
papers by Tseng, Bertsekas, and Tsitsiklis (1990), Borkar and Soumyanath (1997), and
Soumyanath and Borkar (1999)). In particular, it includes value iteration algorithms
for various dynamic programming formulations, including Q-learning algorithms.

Step 1 of the scheme described above is carried out by choosing the scaling based
on a Lyapunov function of an appropriate ODE. The scaling works like a projection
on an appropriate bounded set when the iterates lie outside a certain level set of the
Lyapunov function. Note that we do not need to know the Lyapunov function; all we
need to know is that such a function exists. For this we will use a general converse
Lyapunov theorem that guarantees the existence of a smooth Lyapunov function if the
ODE has a globally asymptotically stable equilibrium point (Wilson (1969)). Given
this scaling scheme, we will be able to show that the scaled iteration has the same
deterministic limiting ODE and hence converges. The argument is similar to the
standard limiting ODE argument of Kushner and Clark (1978). We need to consider
the Skorohod topology instead of the “uniform convergence on compacts” topology
on C([0,∞);�n). Step 2 involves the idea of comparing the original iteration and its
scaled counterpart and showing that the difference between the two is bounded due
to the nonexpansiveness of the mapping F. The idea of comparing the two iterations
appeared first in Jaakola, Jordan, and Singh (1994) in a more limited setting. Step 3
is an application of standard ODE limiting arguments since boundedness is already
established.

It is instructive to compare this approach with that of Borkar and Meyn (2000).
While both are motivated by the same class of algorithms, viz., Q-learning, they
exploit different features of the latter. While our approach is solely based on the
nonexpansivity of an associated map, Borkar and Meyn use a scaling limit of this map,
in the spirit of fluid models in queueing theory. To underscore the difference, note
that the stochastic gradient scheme can be viewed as a fixed-point seeking iteration
of an L2-nonexpansive map when the associated Hessian is uniformly bounded—see
section III.B of Soumyanath and Borkar (1999). Thus it comes under the purview of
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the present scheme, but not under that of Borkar and Meyn (2000) in the absence
of any specification of how the gradient in question behaves near infinity. On the
other hand, the requirement that a convenient scaling limit hold in their sense can
be met without the map being nonexpansive: the former concerns only the behavior
near infinity, but the latter is a global requirement. Thus the approach of Borkar
and Meyn and that of the present paper are quite distinct, and given the paucity of
general purpose criteria for the stability of stochastic recursions of this type, both are
of interest, despite the fact that currently they are aimed at broadly the same class of
problems. More generally, our scheme will work (under mild technical assumptions)
for the recursions wherein the distance between iterates for two instantiations of the
algorithm with the same random inputs, but with two different initial conditions,
remains bounded by a function of the initial conditions.

Finally, we note that for recursive algorithms the idea of using projection as a
way of forcing boundedness is not new. The difference in our approach is that the use
of scaling is only a method of proof, and the objective is to establish the boundedness
of the original iteration without altering the iterates by forcing them to be bounded.

2. Boundedness lemmas. The results in this paper will be divided into two
parts: the boundedness lemmas and the convergence analysis of appropriately scaled
synchronous and asynchronous iterations. The boundedness lemmas are given in the
present section, and rely on the nonexpansiveness property of the concerned map with
respect to some norm ‖ · ‖p, p ∈ (1,∞], for the synchronous case, and the sup-norm
for the asynchronous case. The convergence of the scaled iteration is analyzed in the
next section.

For a set A of �n, we denote by ∂A and Ā the boundary and closure of A,
respectively (i.e., Ā = A ∪ ∂A). We introduce via scaling a map that “projects” any
point onto a bounded and open set B that contains the origin. This is done each time
the point leaves a given set C that contains B. The map is defined as follows.

Definition 2.1. Let B be an open and bounded subset of �n containing the origin,
and let C be a subset of �n that contains B. We define the mapping ΠB,C : �n → B̄
by

ΠB,C(x) = γB,C(x) · x,
where γB,C : R

n → (0, 1] is given by

γB,C(x) =
{
1 if x ∈ C,
max{β > 0 : βx ∈ B̄} if x /∈ C.

Since B̄ is compact, it can be seen that ΠB,C is well defined as a real-valued
function. If B is an open ball with respect to the Euclidean norm centered at the
origin, the map ΠB,C is like a projection on B, but the decision to project depends on
whether the point is outside the larger set C.

Our first result is inspired by a lemma of Jaakola, Jordan, and Singh (1994),
which guarantees convergence of an iteration as long as a scaled version converges.
Their lemma uses a strong homogeneity assumption, which is unnecessary for our
purposes.

Lemma 2.1. Let B be an open and bounded subset of �n containing the origin,
and let C be a subset of �n that contains B. Consider the algorithm

xk+1 = Gk(xk, ξk),(3)

where we assume the following:
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1. {ξk} is a sequence in a measurable space (Ω,F).
2. Gk is nonexpansive in x with respect to some norm ‖ · ‖ for every ξ ∈ Ω:

‖Gk(x, ξ)−Gk(y, ξ)‖ ≤ ‖x− y‖ ∀ x, y, ξ.
3. The sequence {x̃k} generated by the scaled iteration

x̃k+1 = Gk
(
ΠB,C(x̃k), ξk

)
, x̃0 = x0,

converges to some vector x∗ ∈ B.
Then {xk} is bounded.

Proof. Since B is open, there exists a large enough k such that x̃k ∈ B for k ≥ k.
In other words, there exists a large enough k such that

γB,C(x̃k) = 1 ∀ k ≥ k,(4)

and hence

x̃k+1 = Gk(x̃k, ξk) ∀ k ≥ k.(5)

Therefore, for k ≥ k,

‖xk+1 − x̃k+1‖ = ‖Gk(xk, ξk)−Gk(x̃k, ξk)‖ ≤ ‖xk − x̃k‖ ≤ · · · ≤ ‖xk − x̃k‖.
Since {x̃k} is bounded, it follows that {xk} is bounded.

3. Analysis of the scaled iteration. Our objective is to apply Lemma 2.1
to the synchronous and asynchronous algorithms given by (1) and (2). To this end,
we will first establish the convergence of scaled versions of iterations (1) and (2)
by using ODE-type arguments and conclude boundedness of the unscaled versions.
However, the scaling (i.e., the sets B and C in Lemma 2.1) must be chosen so that we
can find a limiting ODE that is easily analyzed. In particular, if the scaling is not
done appropriately, the scaled iteration might not converge. The iterates could, for
example, keep hitting the boundary of B infinitely often and thus never converge, or
the scaling could generate additional fixed points at the boundary that the iterates
might converge to.

Given an ODE ẋ = h(x) in �n with a global asymptotically stable equilibrium
point x∗, a smooth Lyapunov function V : �n → � is a continuously differentiable
function satisfying V (x∗) = 0, V (x) > 0 for all x �= x∗, and such that the inner
product of its gradient ∇V (x) and h(x) is negative for all x �= x∗. A necessary and
sufficient condition for x∗ to be a global asymptotically stable equilibrium point is the
existence of a corresponding Lyapunov function (see Yoshizawa (1966)). Using some
smoothing techniques, Wilson showed that the Lyapunov function can be taken to
be smooth (in fact, infinitely differentiable; see Theorem 3.2 in Wilson (1969)). The
following lemma will be useful to us.

Lemma 3.1. Let ẋ = h(x) be an ODE with a global asymptotically stable equilib-
rium point x∗. Let V be a smooth Lyapunov function for the ODE. For any R > 0,
there is a C > 0 such that the closed ball B̄(x∗, R) of radius R centered at x∗ is in
the interior of the level set L = {x ∈ �n : V (x) ≤ C}.

Proof. Consider the closure B̄(x∗, R) of B(x∗, R). Since V is continuous and
B̄(x∗, R) is compact, the maximum of V over B̄(x∗, R) is attained. Let C =
maxx∈B̄(x∗,R) V (x). Any level set of the form L = {x ∈ �n : V (x) ≤ C}, where
C > C, contains B̄(x∗, R) in its interior.
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3.1. Analysis of the scaled iteration-synchronous case. The scaled version
of the synchronous algorithm of (1) is given by

x̃k+1 = xk + γ(k)
(
h(xk) + wk

)
,

xk+1 = ΠB,C(x̃k+1).
(6)

We first show, under appropriate conditions, that this iteration converges w.p.1 to
the unique equilibrium point of an appropriate ODE. The scaled iteration (6) can be
written as

xk+1 = xk + γ(k)
(
h(xk) + wk

)
+ gk,(7)

where

gk = ΠB,C
[
xk + γ(k)

(
h(xk) + wk

)]− [xk + γ(k)(h(xk) + wk)].(8)

We formally state our assumptions, which for completeness include some of our earlier
assertions on the existence of a global asymptotically stable equilibrium x∗, the choice
of the sets B and C, etc., as follows.

Assumption 3.1. The stepsizes γ(k) satisfy

0 < γ(k)→ 0,

∞∑
k=0

γ(k) =∞.

Assumption 3.2.
1. There exists D such that ‖wk‖ ≤ D for all k.

2. limk→∞
∑mT (k)
m=k γ(m)wm = 0 for all T, where

mT (k) = min

{
m ≥ k :

m∑
l=k

γ(l) ≥ T
}
.

3. h is Lipschitz continuous; i.e., for some L > 0,

‖h(x)− h(y)‖ ≤ L‖x− y‖.
4. The ODE ẋ = h(x) has a globally asymptotically stable equilibrium point x∗.
Remark 3.1. Note that the boundedness condition in Assumption 3.2 is for the

rescaled iterations, not for the original iterations. For the applications we have in
mind, ||wk|| will be bounded by an affine function of ||xk|| and therefore will be
bounded whenever the latter is. But the latter is bounded, by construction, for the
rescaled iterations, and thus Assumption 3.2.1 is satisfied. It is being neither assumed
nor implied a priori that the noise sequence {wk} in the original iterations is bounded;
this will, in fact, be a consequence of our stability result. More generally, it will suffice
to have ||wk|| bounded by a continuous function of xk.

Remark 3.2. This remark concerns Assumption 3.2. The important thing to note
here is that we are imposing this assumption on the projected algorithm, for which
the boundedness of iterates is true by construction, not for the original scheme, whose
stability we intend to prove.

In our analysis, we will use Lemma 2.1 with B = B(0, R) and C = {x ∈ �n :
V (x) < C}, where R > ‖x∗‖, V is a smooth Lyapunov function for the ODE ẋ = h(x),
and the constant C is large enough so that C contains B(0, R̄) for some R̄ > R. Note
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that the vector field of the ODE is transversal to the level sets of V , implying that
if x ∈ ∂C, then (x + ∆h(x)) ∈ C for small enough ∆ > 0. This motivates the choice
of the scaling sets B and C above. Intuitively, if the stepsize is small enough, we can
think of the algorithm as starting at the boundary of B and moving around initially
in C. As it approaches the boundary of C, it gets pushed back to the interior of C,
thanks to the fact that the vector field of the ODE on the boundary points inward
and in spite of the noise term.

In order to proceed with our convergence analysis, we need to define piecewise
linear or piecewise constant interpolated processes based on the iterates {xk}. Let

tk =

k−1∑
m=0

γ(m), k ≥ 1,

with t0 = 0. Let

x̃k+1 = xk + γ(k)
(
h(xk) + wk

)
, k ≥ 0,

Xl(t) =

{
xk for t = tk,(
1− t−tk

γ(k)

)
xk + t−tk

γ(k) x̃
k+1 for t ∈ [tk, tk+1),

Xc(t) = x
k, k ≥ 0, for t ∈ [tk, tk+1),

Gc(t) =

k−1∑
m=0

gm for t ∈ [tk, tk+1),

Wl(t) =

{∑k−1
m=0 γ(m)wm for t = tk,(

1− t−tk
γ(k)

)
Wl(tk) +

t−tk
γ(k)Wl(tk+1) for t ∈ [tk, tk+1).

Thus Xl(·) is right-continuous with left limits (r.c.l.l., for short); that is, Xl(t
+) =

limδ↓0Xl(t+ δ) and Xl(t−) = limδ↓0Xl(t− δ) are well defined, with Xl(t) = Xl(t
+).

In fact, Xl(·) is piecewise linear and continuous everywhere, except at times tk for
which gk �= 0, where it has a jump discontinuity. Define the left-shifted versions of
these processes as follows, for t ≥ 0:

Xkl (t) = Xl(t+ tk),

W k
l (t) =Wl(t+ tk)−Wl(tk),

Xkc (t) = Xc(t+ tk),

Gkc (t) = Gc(t+ tk)−Gc(tk).
Then it is easy to see that for t ≥ −tk

Xkl (t) = X
k
l (0) +

∫ t

0

h
(
Xkc (τ)

)
dτ +W k

l (t) +G
k
c (t)

= Xkl (0) +

∫ t

0

h
(
Xkl (τ)

)
dτ +W k

l (t) +G
k
c (t) + e

k(t),
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where

ek(t) =

∫ t

0

h
(
Xkc (τ)

)
dτ −

∫ t

0

h
(
Xkl (τ)

)
dτ.

By Assumption 3.2, {W k
l (·)} converges to zero uniformly on finite intervals as k →∞.

We show next that {ek(·)} and {Gkc (·)} behave analogously.
Lemma 3.2. For any T > 0, supt∈[0,T ] ‖ek(t)‖ → 0 as k →∞.
Proof. By Assumptions 3.2,

‖ek(t)‖ ≤
∫ t

0

∥∥h(Xkc (τ))− h(Xkl (τ))∥∥dτ ≤ L
∫ t

0

∥∥Xkc (τ)−Xkl (τ)∥∥dτ.
Letting

mT (k) = min

{
m ≥ k :

m∑
l=k

γ(m) ≥ T
}
,

we have

sup
t∈[0,T ]

‖ek(t)‖ ≤ L
∫ T

0

∥∥Xkc (τ)−Xkl (τ)∥∥dτ
≤
mT (k)∑
m=k

γ(m)L sup
τ∈[tm,tm+1)

∥∥Xkc (τ)−Xkl (τ)∥∥

≤
mT (k)∑
m=k

γ(m)L(tm+1 − tm)
∥∥h(xm) + wm∥∥

≤
mT (k)∑
m=k

γ2(m)LD′,

where

D′ = D + sup
x∈C
‖h(x)‖,

and the second inequality is a consequence of the definitions of Xkl (·) and Xkc (·). By
Assumption 3.1, we have

∑mT (k)
m=k γ2(m)→ 0 as k →∞, implying the result.

To analyze the r.c.l.l. processes Xkl (·), Gkc (·), we recall from Billingsley (1968) the
space D([0, T ];�n) of r.c.l.l. functions from [0, T ] to �n (where T > 0), equipped with
the Skorohod topology. This topology is defined so that fk(·)→ f(·) in D([0, T ];�n)
if and only if there exist continuous, nondecreasing, onto functions λk : [0, T ] →
[0, T ] such that fk(λk(t)) → f(t) and λk(t) → t, uniformly on [0, T ]. We denote
by D([0,∞);�n) the space of r.c.l.l. functions from [0,∞) to �n, defined such that
fk(·) → f(·) in D([0,∞);�n) if and only if their respective restrictions to [0, T ]
converge in D([0, T ];�n) for every T > 0. Both D([0, T ];�n) and D([0,∞);�n) are
separable and metrizable with a complete metric.

We recall from Billingsley (1968, p. 118) the following characterization of relative
compactness in D([0, T ];�n): a set A ⊂ D([0, T ];�n) is relatively compact if and only
if

sup
x(·)∈A

sup
t∈[0,T ]

‖x(t)‖ <∞(9)
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and

lim
δ→0

sup
x(·)∈A

sup
t1≤t≤t2, t2−t1≤δ

min
{‖x(t)− x(t1)‖, ‖x(t2)− x(t)‖} = 0,(10a)

lim
δ→0

sup
x(·)∈A

sup
t1,t2∈[0,δ)

‖x(t2)− x(t1)‖ = 0,(10b)

lim
δ→0

sup
x(·)∈A

sup
t1,t2∈[T−δ,T )

‖x(t2)− x(t1)‖ = 0.(10c)

This generalizes the well-known Arzelà–Ascoli theorem for C([0, T ];�n), the space of
continuous functions from [0, T ] to �n with the sup-norm.

Lemma 3.3. The sequences {Xkl (·)} and {Gkc (·)} are relatively compact in
D([0,∞);�n).

Proof. It suffices to check the relative compactness of their restrictions to [0, T ] in
D([0, T ];�n) for arbitrary T > 0. Let us fix T > 0. Since {xk} and {gk} are bounded,
so are the sequences {Xkl (·)} and {Gkc (·)}. Thus (9) above holds. It is easy to see
that (10a)–(10c) will follow if any two discontinuity points of x(·) ∈ A are separated
by at least some ∆ > 0. For the processes under consideration, discontinuities occur
at some of the tk’s. Let there be a discontinuity at tk for some k. Then gk−1 �= 0 and
xk ∈ ∂B. Let

d = min
x∈∂B, y∈∂C

‖x− y‖ > 0,

and define

m(k) = max

{
j :

j∑
i=0

γ(k + i) ≤ d

D′

}
,

where D′ is as before. We claim that xk+1, xk+2, . . . , xk+m(k) are in the interior of C.
To see this, notice that if

γ(k) <
d

D′ ,

then

‖x̃k+1 − xk‖ < d,
implying that x̃k+1 is in the interior of C and thus xk+1 = x̃k+1. Therefore, gk = 0,
implying no discontinuity at tk+1. Similarly, if

j−1∑
i=0

γ(k + i) <
d

D′ ,

then xk+i is in the interior of C for i = 1, . . . , j. This implies the claim that there are
no discontinuities in the interval [tk, tk + d/D

′). Let ∆ = d/2D′.
Let K = {k : gk = 0}. Let {Xkl (·)} and {Gkc (·)} converge in D([0, T ];�n) to

some X(·) and G(·), respectively, along a subsequence of K. (From the above proof,
it is easy to see that K will be infinite: once k is large enough so that γ(k) < d

D′ ,
each k with gk �= 0 will lead to gk+1 = 0.) Then the limits must satisfy

X(t) = X(0) +

∫ t

0

h
(
X(τ)

)
dτ +G(t).
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Furthermore, from the nature of our notion of convergence in D([0, T ];�n), it is clear
that G(·) is piecewise constant r.c.l.l. with G(0) = 0 and that any two discontinuities
of G(·) (hence of X(·)) are separated by at least ∆ on the time axis. Recall that for
x(·) ∈ D([0, T ];�n), x(t+) = limt<s→t x(s) and x(t−) = limt>s→t x(s).

Lemma 3.4. We have G(·) ≡ 0, implying Ẋ(t) = h(X(t)).
Proof. Let

τ = inf
{
t > 0 : X(t+) �= X(t−)

}
.

By the right continuity at 0 and the fact that any two discontinuity points are sepa-
rated by at least ∆ > 0, it follows that τ > 0. Let ‖X(τ+)−X(τ−)‖ = δ > 0. Then,
by our notion of convergence, we can find τk < τ

′
k, k ≥ 0, such that τ ′k − τk → 0 and∥∥Xn(k)l (τ ′k)−X(τ+)
∥∥→ 0,(11)

∥∥Xn(k)l (τk)−X(τ−)
∥∥→ 0.(12)

Recall that ‖h(·)‖ is bounded on C and that ek(·) and W k
l (·) converge to 0 uniformly

on compact sets. Also, any two discontinuities of Xnl (·) must be at least ∆ apart.
Thus, for sufficiently large k, there must exist a τ̂k ∈ [τk, τ

′
k] such that

∥∥Xn(k)l (τ̂k)−Xn(k)l (τ̂−k )
∥∥ ≥ δ

2
.

But then X
n(k)
l (τ̂+

k ) ∈ ∂B, and Xn(k)l (τ̂−k ) is not in the interior of C. Once again,
using (11) and (12) and the fact that two discontinuities of Xnl (·) must be at least
∆ apart, we conclude that X(τ+) ∈ ∂B and X(τ−) ∈ ∂C. But then X(·) satisfies
Ẋ(t) = h(X(t)) on [0, τ) (since G(·) ≡ 0 on [0, τ)), and therefore an interior trajectory
of this ODE in C hits ∂C, a contradiction of our choice of C. (Since C is a level set
of the Lyapunov function V (·), h(·) is transversal to ∂C everywhere and is directed
towards the interior.) This contradiction proves that G(·) ≡ 0.

The preceding lemma allows us to prove the following proposition, the proof of
which proceeds along standard lines; see, e.g., Kushner and Clark (1978), Benveniste,
Metivier, and Priouret (1990).

Proposition 3.1. Let Assumptions 3.1 and 3.2 hold. The scaled synchronous
algorithm (6) converges to x∗.

3.2. Analysis of the scaled iteration-asynchronous case. The scaled ver-
sion of the asynchronous algorithm of (2) is given by

x̃k+1
i = xki + γ

(
ν(k, i)

) (
hi(x

k) + wki
)
I(i ∈ Y k),

xk+1 = ΠB,C(x̃k+1).
(13)

We confine ourselves to nonexpansive mappings with respect to the sup-norm. We also
impose a further assumption on the stepsize. In particular, we will use the following
assumptions in place of Assumption 3.1. We use [a] to denote the integer part of a
real number a.

Assumption 3.3. The stepsizes γ(k) are eventually nonincreasing and satisfy

0 < γ(k)→ 0,

∞∑
k=0

γ(k) =∞.
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In addition, for all β ∈ (0, 1),

sup
k

γ([kβ])

γ(k)
<∞

and

lim
k→∞

∑[kβ]
m=0 γ(m)∑k
m=0 γ(m)

= 1, uniformly in β ∈ [β, 1].

Assumption 3.4. There exists a Γ > 0 such that for all i

lim inf
k→∞

1

k + 1
ν(k, i) ≥ Γ.

Furthermore, for all T > 0, the limit

lim
n→∞

∑ν(mT (n),i)
k=ν(n,i) γ(k)∑ν(mT (n),j)
k=ν(n,j) γ(k)

exists for all i, j.
Theorem 3.2 of Borkar (1998) implies that the above limit will in fact be 1, a fact

we use later. In addition, we change Assumption 3.2 to the following.
ASSUMPTION 3.2′. For T,mT (k) as before,

lim
k→∞

mT (k)∑
m=k

γ(m)wl(m) = 0,

where {l(m)} is any increasing sequence of nonnegative integers satisfying l(m) ≥ m
for all m.

Examples of stepsizes that satisfy Assumption 3.3 include γ(k) = 1/k, γ(k) =
1/(k log k), etc., for k ≥ 2, with suitable modifications for k = 0, 1. The essential
meaning of Assumption 3.4 is that all components are updated comparably often.

Under Assumptions 3.2′, 3.3, and 3.4, the analysis closely mimics that of the syn-
chronous case, except that the ODE-based convergence analysis of Kushner and Clark
(1978) and Benveniste, Metivier, and Priouret (1990) is replaced by the corresponding
analysis of Borkar (1998). In order to avoid undue repetition, we shall provide only a
brief sketch. The key result of Borkar (1998) that is used here is briefly described in
the appendix.

The first simplifying assumption that we make is that Y k is a singleton for all k;
i.e., only one component is updated at a time. This is justified as in Borkar (1998), the
idea being that one unfolds a single iteration that updates d components, d ≥ 2, into
d iterations, in which each iteration updates a single component. There is, however,
a complication in that this artificially introduces bounded delays; that is, the update
of the ith component at time k + 1 may use the value of the jth component updated
not at time k, but at time k−m for some m ≤ n. These delays can be handled as in
Borkar (1998). For simplicity of exposition, we ignore the delays here.

Thus we have Y k = {φk}, where φk is the index of the component updated at
time k, and the iteration (13) is written as

xk+1 = xk +Dk(h(xk) + wk) + gk,
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where

Dk = diag
[
γ(ν(k, 1))I(φk = 1), . . . , γ(ν(k, n))I(φk = n)

]
and

gk = ΠB,C
[
xk +Dk(h(xk) + wk)

]− [xk +Dk(h(xk) + wk)].
Let us denote

µ̄k =
[
I(φk = 1), . . . , I(φk = n)

]
and set γ̄(m, j) = γ(ν(m, j)), γ̂(m) = γ̄(m,φm), t0 = 0, and tk =

∑k−1
m=0 γ̂(m), k ≥ 1.

Let us define piecewise linear and piecewise constant processes as follows:

µ(t) = µ̄k for t ∈ [tk, tk+1),

Xc(t) = x
k for t ∈ [tk, tk+1),

Gc(t) =

k−1∑
m=0

gm for t ∈ [tk, tk+1),

Xl(t) =

{
xk for t = tk,(
1− t−tk

γ(k)

)
xk + t−tk

γ(k) x̃
k+1 for t ∈ [tk, tk+1),

where

x̃k+1 = xk +Dk
(
h(xk) + wk

)
,

Wl(t) =

{∑k−1
m=0D

mwm for t = tk,(
1− t−tk

γ(ν(k,φk))

)
Wl(tk) +

t−tk
γ(ν(k,φk))

Wl(tk+1) for t ∈ [tk, tk+1).

Define the corresponding left-shifted processes as follows, for t ≥ 0:

Xkl (t) = Xl(t+ tk),

Xkc (t) = X
k
c (t+ tk),

W k
l (t) =Wl(t+ tk)−Wl(tk),

Gkc (t) = Gc(t+ tk)−Gc(tk),

µk(t) = µ(t+ tk).

For an n-dimensional probability vector p = [p1, . . . , pn], let diag(p) denote the
diagonal matrix whose ith diagonal entry is pi. Then, letting µ∗ denote the uniform
probability vector [1/n, . . . , 1/n], we have, for t ≥ 0,

Xkl (t) = X
k
l (0) +

∫ t

0

diag(µ∗)h
(
Xkl (τ)

)
dτ +W k

l (t) +G
k
c (t) + e

k(t) + ηk(t),
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ηk(t) =

∫ t

0

(
diag(µk(τ))− diag(µ∗)

)
h
(
Xkl (τ)

)
dτ,

ek(t) =

∫ t

0

diag
(
µk(τ)

)(
h
(
Xkc (τ)

)− h(Xkl (τ)))dτ.
The convergence of {W k

l (·)} to 0 follows from Assumption 3.2′. Convergence of
{ek(·)} to 0 follows along the lines of the preceding subsection. The proof of Lemma
3.3 now goes through as before, with D′ = supz∈C maxi |hi(z)|+D. We also have the
following.

Lemma 3.5. For each T > 0,

lim
k→∞

supt∈[0,T ]||ηk(t)|| = 0.

Proof. As before, one verifies that the set {{Xkl (t), t ∈ [0, T ]}, k ≥ 1} is relatively
compact in D([0, T ];�n). Thus one may drop to a subsequence of {k}, denoted by
{k} again by abuse of notation, such that Xkl (·)→ Z(·) for some Z(·) ∈ D([0, T ];�n).
Since the map x(·) ∈ D([0, T ];�n) → x(t) ∈ �n for any t ∈ [0, T ] is continuous at
z(·) if z(·) is continuous at t (see Billingsley (1968, p. 121)), and also any x(·) ∈
D([0, T ];�n) has at most countably many points of discontinuity (see Borkar (1998,
p. 119)), it follows that Xkl (t) → Z(t) for almost every t ∈ [0, T ]. By the dominated
convergence theorem, one then has

lim
k→∞

∫ t

0

(
diag(µk(τ))− diag(µ∗)

)(
h(Xkl (τ))− h(Z(τ))

)
dτ = 0.

Since the left-hand side (L.H.S.) has a bounded derivative in t, it is equicontinuous. It
is clearly bounded for each fixed t. Thus a straightforward application of the Arzelà–
Ascoli theorem shows that the above convergence is uniform in t ∈ [0, T ]. Therefore
the claim would follow if we show that

lim
k→∞

∫ t

0

(
diag(µk(τ))− diag(µ∗)

)
h(Z(τ))dτ = 0,

uniformly in [0, T ]. The uniformity of convergence over [0, T ] will follow as before
from the Arzelà–Ascoli theorem if we prove pointwise convergence on [0, T ]. In turn,
the latter follows if we show that for each t

lim
k→∞

∫ t

0

(
diag(µk(τ))− diag(µ∗)

)
f(τ)dτ = 0

for any f ∈ L2([0, T ];�n). Consider µk(·), k ≥ 1, as elements of the space U of
measurable maps from [0,∞) to the space of probability vectors in �n, with the

coarsest topology that renders continuous the maps µ(·) ∈ U → ∫ t
0
〈µ(s), f(s)〉ds for

all t > 0 and f as above. It is easy to deduce from the Banach–Alaoglu theorem that
U is compact metrizable. Let µ̄(·) be any limit point of {µk(·)} in U as k → ∞. It
follows from Theorem 3.2 of Borkar (1998) that µ̄ = µ∗. The claim follows.

The proof of Lemma 3.4 now goes through as before. Thus the asynchronous
iterates, suitably interpolated, track the ODE ẋ(t) = (1/n)h(x(t)), which has the
same qualitative behavior as ẋ(t) = h(x(t))—the difference is a mere time scaling. As
in Borkar (1998), we then obtain the following proposition.
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Proposition 3.2. Let Assumptions 3.2′, 3.3, and 3.4 hold. The scaled asyn-
chronous algorithm (6) converges to x∗.

The only difference with Borkar (1998) will be that we are dealing with the
projected algorithm here; therefore we have to allow for discontinuous trajectories.
But this can be dealt with exactly as in the synchronous case.

4. Convergence theorems for stochastic approximation. Now we consider
the situation in which {wk} is a random noise sequence. Specifically, we assume that
it is adapted to a family of increasing σ-fields {Fk+1} to which {xk+1} is also adapted
and satisfies

E[wk/Fk] = 0

for k ≥ 1. We strengthen Assumption 3.1 to include

∞∑
0

γ(k)2 <∞,

which is a standard assumption in stochastic approximation theory. We further as-
sume, in place of Assumptions 3.1 and 3.2′, that

E[||wk||2/Fk] ≤ H(xk)

for some continuous H(·). Assumptions 3.3, 3.4 remain as before. We shall refer to
the modified Assumptions 3.1, 3.2 as Assumptions 3.1(m), 3.2(m), respectively.

Note that the only use of Assumption 3.2 has been to ensure that there exists a
∆ > 0 such that consecutive jump times of Xl(·) are at least ∆ apart. However, this
∆ can depend on sample path in the present case without affecting the proof in any
way. Since we are seeking almost sure convergence, it suffices to show the following.

Lemma 4.1. There exists w.p.1 a (possibly sample path dependent) ∆ with the
above property.

Proof. Suppose that the claim is not true for some sample path. Let {tm(k)}
denote the successive jump times, with +∞ being a possible value for these. (In
particular, tm(k) = ∞ for k > k0 if there are only k0 jumps.) Then for the sample
path under consideration, these are all finite, and moreover, there exist consecutive
jump times tm(k(l)+1) > tm(k(l)) such that tm(k(l)+1) − tm(k(l)) → 0 as l → ∞. Let
K = supx∈C ||h(x)||. Since the iterates move from ∂B to ∂C between (tm(k(l)))+ and
(tm(k(l)+1))−, we must have∥∥∥∥∥∥

m(k(l)+1)−1∑
i=m(k(l))

γ(i)wi

∥∥∥∥∥∥ ≥ d−
(
tm(k(l)+1) − tm(k(l))

)
K ≥ d

2

for l sufficiently large. Letting Ψl denote the L.H.S. above, it then follows that Ψl ≥ d
2

infinitely often (i.o.). We shall prove that

P

(
Ψl ≥ d

2
, i.o.

)
= 0,

which will imply the desired claim. By the Chebyshev inequality, we have

∑
k

P

(
ψk ≥ d

2

)
≤
∑
k

4E[||∑m(k+1)−1
i=m(k) γ(i)wi||2I(tm(k) <∞)]

d2
.
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Summing over k, the R.H.S. sums to a quantity bounded by

4
∑
i γ(i)

2E[||wi||2]
d2

≤ 4(
∑
i γ(i)

2)supx∈C |H(x)|
d2

<∞,

in view of our hypotheses on {wk}. The claim follows from the Borel–Cantelli
lemma.

Our hypotheses also ensure that Assumption 3.2 holds a.s. To see this, let Mk =∑k
i=0 γ(i)w

i for i ≥ 0. Then (Mk,Fk+1) is a square-integrable martingale. Its
quadratic variation process is

k∑
i=0

γ(i)2

(
E

[ ||wi||2
F i−1

]
−
∥∥∥∥E
[
wi

F i−1

]∥∥∥∥
2
)
,

which is bounded by the finite quantity 2supx∈C |H(x)|∑i γ(i)
2. By Theorem 3.3.4,

p. 53, of Borkar (1995), {Mk} converges a.s. It then follows that Assumption 3.2
holds a.s. Hence we have the following counterpart of Proposition 3.1.

Lemma 4.2. Under the above hypotheses, the scaled synchronous algorithm (5)
converges to x∗ a.s.

For the asynchronous case, note that (
∑k
m=0 γ(ν(m, i))w

m
i ,Fk) is a (square-

integrable) martingale for each i. Considerations similar to those above then lead
to the following stochastic counterpart of Proposition 3.2.

Lemma 4.3. Under the above hypotheses, the scaled asynchronous algorithm
converges to x∗ a.s.

We now specialize to algorithms of the form

xk+1 = xk + γ(k)(F (xk, ξk)− xk)
in synchronous form and

xk+1
i = xki + γ(ν(k, i))(Fi(x

k, ξk)− xki )I(i ∈ Y k)
in asynchronous form, where {ξk} is an independently and identically distributed
(i.i.d.) stochastic noise sequence taking values in some measurable space, and the
function F (·, ·) is assumed to satisfy the nonexpansivity property:

||F (x, u)− F (y, u)||p ≤ ||x− y||p
for some p ∈ (0,∞] and all x, y, u. Let T (x) = E[F (x, ξk)]. Then

||T (x)− T (y)||p ≤ ||x− y||p.
The aim is to find a fixed point x∗ of T (·), i.e., a point x∗ satisfying x∗ = T (x∗), which
we assume to exist uniquely. Define h(x) = T (x) − x and wk = F (xk, ξk) − T (xk),
which casts this algorithm into the form analyzed above. Note, in particular, that
in view of our hypotheses on F , E[||wk||2/Fk] ≤ c(||xk||2 + 1) for some c > 0. The
foregoing then leads to the following.

Proposition 4.1. Let {xk} be generated by the synchronous stochastic approx-
imation algorithm (1). Let Assumptions 3.1(m) and 3.2(m) hold. Then the sequence
{xk} converges to x∗ w.p.1.

Proof. The theorem is an application of Lemmas 2.1 and 4.2, the global asymp-
totic stability of the equilibrium x∗ for the ODE ẋ(t) = T (x(t)) − x(t) being proved
in Borkar and Soumyanath (1997).
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Proposition 4.2. Let {xk} be generated by the asynchronous version of the above
algorithm. Let Assumptions 3.1(m), 3.2(m), 3.3, and 3.4 hold with the modifications
stated above. Then the sequence {xk} converges to x∗ w.p.1.

Proof. The theorem is an application of Lemmas 2.1 and 4.3, the global asymp-
totic stability of the ODE ẋ(t) = (1/n)(T (x(t)) − x(t)) being ensured as before by
observing that the scalar 1/n on its R.H.S. represents a mere time scaling.

5. Analysis of Q-learning algorithms. The convergence theorems above are
directly applicable to the analysis of Q-learning algorithms for discounted and SSP
dynamic programming problems. As discussed in Bertsekas (2001, Vol. 1), discounted
cost problems can be formulated as SSP problems. We will therefore restrict ourselves
to SSP problems. Here we have a controlled discrete-time dynamic system where at
state i the use of a control u specifies the transition probability pij(u) to the next
state j. There are a finite number of states. At state i, the control u is constrained
to take values from a given finite control set U(i). The cost of using u at state i and
moving to state j is denoted by g(i, u, j). We assume that there is a special cost-free
termination state 0. Once the system reaches that state, it remains there at no further
cost; that is, p00(u) = 1 for all u. We denote by 1, . . . , n the states other than the
termination state 0.

The total expected cost associated with an initial state i and a policy π =
{µ0, µ1, . . .}, where each µk maps states i into controls µk(i) ∈ U(i), is

Jπ(i) = lim
N→∞

E

{
N∑
k=0

g
(
xk, µk(xk), xk+1

) ∣∣∣ x0 = i

}
.

Note that the discounted cost problem with discount factor α ∈ (0, 1) and states
i = 1, . . . , n is obtained as the special case of an SSP problem, where pi0(u) = 1− α
and g(i, u, 0) = 0 for all i = 1, . . . , n and u ∈ U(i).

A stationary policy is a policy of the form π = {µ, µ, . . .}, and its corresponding
cost function is denoted by Jµ(i). We call a stationary policy π proper if there exists
an integer m such that

max
i=1,...,n

P{xm �= 0 | x0 = i, π} < 1,

and call π improper otherwise. We assume the following.
Assumption 5.1. There exists at least one proper policy.
Assumption 5.2. Every improper policy results in infinite expected cost from at

least one initial state.
These assumptions, introduced by Bertsekas and Tsitsiklis (1991), have become

standard in the analysis of SSP problems and are sufficient to show the validity of
the major types of dynamic programming results. For example, the value iteration
method converges to the optimal cost function J∗, which is the unique solution of
Bellman’s equation

J∗(i) = min
u∈U(i)

n∑
j=0

pij(u)
(
g(i, u, j) + J∗(j)

)
, i = 1, . . . , n,

J∗(0) = 0.
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Q-learning algorithms update estimates of the Q-factors, defined for all pairs (i, u)
by

Q∗(i, u) =
n∑
j=0

pij(u)
(
g(i, u, j) + J∗(j)

)
.

From this definition and Bellman’s equation, we see that the Q-factors are the unique
solution of the following system of equations:

Q(i, u) =

n∑
j=0

pij(u)

(
g(i, u, j) + min

v∈U(j)
Q(j, v)

)
, i = 1, . . . , n, u ∈ U(i),

Q(0, u) = 0,

which may be viewed as Bellman’s equation for Q-factors.
Let us generically denote by Q the vector of Q-factors. The synchronous version

of Q-learning is given by

Qk+1 = Qk + γ(k)
(
F (Qk, ξk)−Qk),(14)

where {ξk} is a sequence of independent vector-valued random variables taking the
values 0, 1, . . . , n, with probabilities Prob (ξkiu = j) = pij(u) for all k,

F (Q, ξ)(i, u) = g(i, u, ξiu) + min
v∈U(ξiu)

Q(ξiu, v).

The initial condition is assumed to satisfy Q0(0, u) = 0, which ensures that Qk(0, u) =
0 for all k. Also, for i = 0, ξiu = 0 w.p.1. Thus g(i, u, ξiu) = g(0, u, 0) = 0 (because 0
is a cost-free state) and Q(ξiu, u) = Q(0, u) = 0 for all u. Thus F (Q, ξ)(0, u) = 0 for
all u. In fact, this permits us to consider the iteration of Qk(i, u) for 1 ≤ i ≤ n alone,
which we denote again by Qk by abuse of notation. Define

T (Q)(i, u) =
n∑
j=1

pij(u)F (Q, j)

and

wk = F (Qk, ξk)− T (Qk).
Assumption 3.2 applies to the stepsize γ(k) and the noise wk for the rescaled iterates.

The following two properties of the mapping T are significant for our purposes:
1. T is nonexpansive with respect to the sup-norm.
2. The unique fixed point Q∗ of the mapping T is a global asymptotically stable

equilibrium of the ODE Q̇ = T (Q)−Q.
Property 1 follows from the nonexpansiveness of F , which can be verified by

noting that for all Q1, Q2 ∈ R
n+m we have

F (Q1, ξ)(i, u)− F (Q2, ξ)(i, u) = min
u′
Q1(ξiu, u

′)−min
u′
Q2(ξiu, u

′)

≤ Q1(ξiu, u2)−Q2(ξiu, u2)

≤ max
(i,u)
|Q1(i, u)−Q2(i, u)|

≤ ‖Q1 −Q2‖∞,
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where u2 achieves the minimum in minu′ Q2(ξiu, u
′). A symmetric argument shows

that

F (Q2, ξ)(i, u)− F (Q1, ξ)(i, u) ≤ ‖Q1 −Q2‖∞.
Property 2 follows from the analysis of Bellman’s equation for SSP problems

(see e.g., Bertsekas (2001, Vol. 2)), and from the analysis of ODE maps involving
nonexpansive mappings in Borkar and Soumyanath (1997). Using the facts that Q∗

is the unique fixed point of T and that T is nonexpansive, it follows that any solution
trajectory Q(t) converges to Q∗. Moreover, the analysis in Borkar and Soumyanath
(1997) implies that ‖Q(t) − Q∗‖∞ is nonincreasing, establishing that Q∗ is a global
asymptotically stable equilibrium point for the ODE.

The mapping F , in addition to being nonexpansive, satisfies

E
[
F (Qk, ξk) | Fk] = T (Qk),

where

Fk = σ(xk, . . . , x0, ξk−1, . . . , ξ0).

The properties above are sufficient to show that all of the assumptions of Propo-
sition 4.1 are satisfied, thus implying the following convergence result.

Proposition 5.1. The sequence {Qk} generated by the synchronous Q-learning
iteration (14) converges to Q∗ w.p.1.

5.1. Analysis of the SSP asynchronous Q-learning. The asynchronous ver-
sion of (14) is what is usually referred to as the Q-learning algorithm. It is written
as

Qk+1(i, u) = Qk(i, u) + γ
(
ν(k, φk)

)(
F (Qk, ξk)(i, u)−Qk(i, u))I((i, u) = φk),(15)

where {ξk} is as defined above and {φk} is a random process. Again we impose
Assumption 3.2′ on the stepsize, and we assume in addition that

1.

lim inf
k→∞

1

k + 1
ν(k, i, a) ≥ ∆ for some ∆ > 0.

Furthermore, for all T > 0, the limit

lim
n→∞

∑ν(mT (n),i,a)
k=ν(n,i,a) γ(k)∑ν(mT (n),j,b)
k=ν(n,j,b) γ(k)

exists w.p.1 for all i, j, a, b.
2. {γ(k)} is as in Assumption 3.3.

Again the mapping F satisfies

E
[
F (Qk, ξk) | Fk] = T (Qk),

with

Fk = σ(xk, . . . , x0, ξk−1, . . . , ξ0, φk, . . . , φ0).

Similarly, the assumptions of Proposition 4.2 are satisfied, and we have the following.
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Proposition 5.2. The sequence {Qk} generated by the asynchronous Q-learning
iteration (15) converges to Q∗ w.p.1.

As already mentioned, the case in which more than one component is updated
at a time can be reduced to the one above, modulo bounded delays, which can be
separately taken care of as in Borkar (1998).

Remark 5.1. The usual formalism for Q-learning algorithms (see, e.g., Bertsekas
and Tsitsiklis (1996)) presupposes the availability of a simulation device that generates
independent random variables {ξk} as above. Alternatively, one may consider it as
an on-line scheme where the samples are generated by a single simulation or actual
run {Xk} of the controlled Markov chain with the control process {Zk}. Then it is
asynchronous, with φk = (Xk, Zk). The above framework still applies if we use the
representation Xk+1 = f(Xk, Zk, ξk), where {ξk} are i.i.d. and f is a suitable map.
Such a representation is always possible (albeit on a possibly augmented probability
space) by the stochastic realization theoretic results of Borkar (1993). See Kifer (1986)
for the uncontrolled case.

6. Some extensions. This section points out some important extensions of the
preceding analysis. The first is an extension of Lemma 2.1. It is possible to replace
the assumption of nonexpansivity with respect to a norm there by nonexpansivity
with respect to the span seminorm || · ||s, defined by

||x||s = max
i=1,...,n

xi − min
i=1,...,n

xi,

where x1, . . . , xn are the components of x. In this case, however, a weaker boundedness
result is obtained, which is the subject of the following lemma. This lemma is used
crucially in our companion paper on Q-learning in average cost control (Abounadi,
Bertsekas, and Borkar (2001)).

Lemma 6.1. Let B be an open and bounded subset of �n containing the origin,
and let C be a subset of �n that contains B. Consider the algorithm

xk+1 = Gk(xk, ξk),

where we assume the following:
1. {ξk} is a sequence in a measurable space (Ω,F).
2. Gk is nonexpansive in x with respect to the span seminorm; i.e., for every
ξ ∈ Ω,

||Gk(x, ξ)−Gk(y, ξ)||s ≤ ||x− y||s ∀ x, y, ξ.

3. The sequence {x̃k} generated by the scaled iteration

x̃k+1 = Gk(ΠB,C(x̃k), ξk), x̃0 = x0,

converges to some vector x∗ ∈ B.
Then {||xk||s} remain bounded.

Proof. The proof is identical to that of Lemma 2.1.
The second extension relates to the Q-learning schemes described above. One

can also allow for random costs under mild technical conditions. Thus, let a real or
simulated transition from i to j under control u at time k lead to a random cost ζk+1

iuj .

We suppose that E[ζk+1
iuj | Fk+1] = g(i, u, j) and E[(ζk+1

iuj )2 | Fk+1] ≤ M w.p.1 for
some constant M < ∞. (Compare with Remark 3.2.) Then the foregoing analysis
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goes through exactly as before with one modification: the “martingale difference”
sequence wk gets replaced by ŵk, defined as follows: its (iu)th component is ŵkiu =
wkiu + ζ

k+1
iuξk

iu

− g(i, u, ξkiu), where wkiu is the (iu)th component of wk. Note that {ŵk}
is also a martingale difference sequence. An example is the case in which ζk+1

iuj =

g(i, u, j)+ψk+1
iuj , where {ψniuj} are i.i.d. zero mean, bounded variance random variables

representing additive noise.

7. Conclusions. In this paper we have studied the convergence of synchronous
and asynchronous algorithms involving nonexpansive maps and additive deterministic
or stochastic noise. We have used the ODE approach, but we have dispensed with
the restrictive boundedness assumption on the generated iterates that this approach
requires. The nonexpansiveness property ensures that the distance between the it-
erates of two instantiations of the algorithm, driven by the same noise sequence and
differing only in the initial conditions, remains bounded. In fact, our arguments will
work for any algorithm for which this is true, and the associated ODE has a glob-
ally asymptotically stable equilibrium, under mild technical conditions on noise as
above. As a special case of our analysis, we have discussed Q-learning algorithms
for SSP problems, and we have refined the assumptions under which convergence can
be proved. Our results used Lemma 2.1 for the boundedness argument. We can
likewise use Lemma 6.1 to prove boundedness for certain Q-learning algorithms for
the average cost dynamic programming problem. The analysis of these algorithms
requires considerable additional machinery and is given separately in a companion
paper (Abounadi, Bertsekas, and Borkar (2001)).

Appendix. Here we briefly recall the main results of Borkar (1998) that are used
in the paper. Let F (·, ·) = [F1(·, ·), . . . , Fd(·, ·)]T : Rd × Rm → Rd be Lipschitz in
its first argument uniformly w.r.t. the second. Consider the stochastic approximation
algorithm of the form

xk+1 = xk + γ(k)F (xk, ξk), k ≥ 0,

for xk = [xk1 , . . . , x
k
d]. Let h(x) = E[F (x, ξ1)]. We assume that the ODE ẋ(t) =

h(x(t)) has a globally asymptotically stable equilibrium x∗. The asynchronous version
of this algorithm is given by

xk+1
i = xki + γ

(
ν(k, i)

)
I(i ∈ Y k)Fi(xk−τ1i(k)1 , . . . , x

k−τdi(k)
d , ξk), 1 ≤ i ≤ d,

for k ≥ 0, where
(1) {Y k} is a set-valued random process taking values in the subsets of the set
{1, . . . , d}, representing the components that do get updated at time k.

(2) {τij(k), 1 ≤ i, j ≤ d, k ≥ 0} are bounded random delays. One usually takes
τii(k) = 0 for all i, though this is not necessary. (Borkar (1998) also relaxes
the boundedness condition on delays to a conditional moment bound.)

(3) ν(k, i) =
∑k
m=0 I(i ∈ Y m) denotes the number of times component i gets

updated until time k.
Let Assumptions 3.1–3.4 hold. The main result of Borkar (1998) is the following.

THEOREM A.1. If {xk} remain w.p.1 bounded, they converge to x∗ w.p.1.
We shall briefly describe what the proof entails, using the notation of section 3.2

above. The intuition behind why the bounded delays don’t affect the asymptotics
is simple. Recall that the passage from the discrete iteration to an interpolated
“approximation to ODE” involves the time scaling k → tk. This scaling shrinks the
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time axis more and more as k increases, because tk+1− tk → 0. If K denotes a bound
on the delays, the intervals [k, k+1, . . . , k+K] map to [tk, tk+

∑k+K−1
m=k γ(m)], which

become smaller and smaller as k increases, because of which the delays as seen by
the ODE approximation on the rescaled time become smaller and smaller, becoming
asymptotically negligible. This intuition can be made precise quite easily. In fact,
it simply contributes one additional asymptotically negligible error term to the usual
ODE analysis of stochastic approximations. See Lemma 3.3 of Borkar (1998) for
details.

The harder problem is to deal with the Y k’s, i.e., with the fact that not all
components are getting updated at each step. As in section 3.2 above, one hasXkl (t) =

Xkl (0) +
∫ t
0
diag(µk(τ))h(Xkl (τ))dτ + error terms, the latter going to zero w.p.1 as

k → ∞. View µk(·) as elements of the space of measurable maps [0,∞) → {d-
dimensional probability vectors}, with the coarsest topology that renders continuous

the maps µ(·) → ∫ T
0
〈µ(t), g(t)〉dt for any T > 0 and any g : [0, T ] → Rd that

satisfies
∫ T
0
||g(t)||2dt <∞. (Recall Lemma 3.5 above.) This is a compact metrizable

topology. Let µk(·) converge along a subsequence to some µ̂(·) in this topology. Then
the limiting trajectory of Xkl (·) along this subsequence will satisfy the nonautonomous
ODE

ẋ(t) = diag(µ̂(t))h(x(t)).

The additional conditions on γ(k) stipulated in Assumptions 3.3 and 3.4 are required
to further ensure that µ̂(t) in fact equals µ∗ for almost every t. See Borkar (1998) for
details.

One can, in fact, work with the nonautonomous ODE itself to draw the same
conclusions by using Lemma 2.4 of Borkar (1998), the only requirement being that
the components of µ̂(t) remain uniformly bounded away from zero from below for
almost every t. This is a weaker version of the statement “all components get updated
comparably often.” Unfortunately, no simple transparent sufficient condition to ensure
this (short of Assumptions 3.3, 3.4) seems available.

Acknowledgment. Thanks are due to John Tsitsiklis, whose suggestions re-
sulted in important simplifications of the lemmas in section 2.
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H. J. Kushner and D. S. Clark (1978), Stochastic Approximation Methods for Constrained and

Unconstrained Systems, Springer-Verlag, New York.
H. J. Kushner and G. Yin (1997), Stochastic Approximation Algorithms and Applications, Springer-

Verlag, New York.
L. Ljung (1977), Analysis of recursive stochastic algorithms, IEEE Trans. Automat. Control, 22,

pp. 551–575.
K. Soumyanath and V. S. Borkar (1999), An analog scheme for fixed point computation—Part

II: Applications, IEEE Trans. Circuits Systems I Fund. Theory Appl., 46, pp. 442–451.
P. Tseng, D. P. Bertsekas, and J. N. Tsitsiklis (1990), Partially asynchronous parallel algorithms

for network flow and other problems, SIAM J. Control Optim., 28, pp. 678–710.
J. N. Tsitsiklis (1994), Asynchronous stochastic approximation and Q-learning, Machine Learning,

16, pp. 185–202.
C. J. C. H. Watkins (1989), Learning from delayed rewards, Ph.D. thesis, Cambridge University,

Cambridge, England.
C. J. C. H. Watkins and P. Dayan (1992), Q-learning, Machine Learning, 8, pp. 279–292.
F. W. Wilson (1969), Smoothing derivatives of functions and applications, Trans. Amer. Math.

Soc., 139, pp. 413–428.
T. Yoshizawa (1966). Stability Theory by Lyapunov’s Second Method, Mathematical Society of

Japan, Tokyo.
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Abstract. In this paper, we study the well-posedness of the problems of determining shaping
filters from combinations of finite windows of cepstral coefficients, covariance lags, or Markov param-
eters. For example, we determine whether there exists a shaping filter with a prescribed window of
Markov parameters and a prescribed window of covariance lags. We show that several such problems
are well-posed in the sense of Hadamard; that is, one can prove existence, uniqueness (identifia-
bility), and continuous dependence of the model on the measurements. Our starting point is the
global analysis of linear systems, where one studies an entire class of systems or models as a whole,
and where one views measurements, such as covariance lags and cepstral coefficients or Markov pa-
rameters, from data as functions on the entire class. This enables one to pose such problems in a
way that tools from calculus, optimization, geometry, and modern nonlinear analysis can be used to
give a rigorous answer to such problems in an algorithm-independent fashion. In this language, we
prove that a window of cepstral coefficients and a window of covariance coefficients yield a bona fide
coordinate system on the space of shaping filters, thereby establishing existence, uniqueness, and
smooth dependence of the model parameters on the measurements from data.

Key words. identifiability, parameterization, well-posedness, foliations, Carathéodory exten-
sion, spectral estimation, cepstrum
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1. Introduction. It is common to model a (real, zero-mean) stationary process
{y(t) | t ∈ Z} as a convolution

y(t) =

t∑
k=−∞

wt−kuk

of an excitation signal {u(t) | t ∈ Z}, which is a white noise, i.e., E{u(t)u(s)} = δts,
where δts is one if t = s and zero otherwise. In the language of systems and control,
under suitable finiteness conditions this amounts to passing the white noise u through
a linear filter with the transfer function w(z) having the Laurent expansion

w(z) =

∞∑
k=0

wkz
−k(1.1)

for all z ≥ 1, thus obtaining the process y as the output, as depicted in Figure 1.
In addition, we assume that w0 �= 0 and that w(z) is a rational function, the latter
assumption being the finiteness condition required in systems and control theory.
Such a filter will be called a shaping filter , and the coefficients w0, w1, w2, . . . will be
called the Markov parameters.
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W(z)
u y

Fig. 1. Representing a signal as the output of a black box.

Clearly, any shaping filter must be stable in the sense that w(z) has all of its poles
in the open unit disc. To begin, we also assume that all zeros are located in the open
unit disc. Such a shaping filter will be called a minimum-phase shaping filter.

Then the stationary stochastic process y has a rational spectral density

Φ(eiθ) = |w(eiθ)|2,
which is positive for all θ. It is well known that the spectral density has a Fourier
expansion

Φ(eiθ) = r0 + 2

∞∑
k=1

rk cos kθ,

where the Fourier coefficients

rk =
1

2π

∫ π

−π
eikθΦ(eiθ)dθ(1.2)

are the covariance lags rk = E{y(t+ k)y(t)}.
The spectral density Φ(z) is analytic in an annulus containing the unit circle and

has there the representation

Φ(z) = f(z) + f(z−1),

where f is a rational function with all of its poles and zeros in the open unit disc.
Hence, in particular, f is analytic outside the unit disc, and

f(z) =
1

2
r0 + r1z

−1 + r2z
−2 + r3z

−3 + · · · .(1.3)

Moreover,

Φ(eiθ) = 2Re{f(eiθ)} > 0

for all θ, and, therefore, f is a real function which maps {|z| ≥ 0} into the right
half-plane {Re z > 0}; such a function is called positive real. For this to hold, the
Toeplitz matrices

Tk =




r0 r1 · · · rk
r1 r0 · · · rk−1

...
...

. . .
...

rk rk−1 · · · r0


(1.4)

must be positive definite for k = 0, 1, 2, . . . .
Another way of representing the distribution of the stationary process is via the

so-called cepstrum

log Φ(eiθ) = c0 + 2

∞∑
k=1

ck cos kθ.(1.5)
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Fig. 2. A frame of speech for the voiced nasal phoneme [ng].

The Fourier coefficients

ck =
1

2π

∫ π

−π
eikθ log Φ(eiθ)dθ(1.6)

are known as the cepstral coefficients.
Finite windows of covariance lags and cepstral coefficients can be estimated from

an observed data record

y0, y1, y2, . . . , yN

of the process {y(t) | t ∈ Z}. In fact, a limited number of covariance lags can be
estimated via some ergodic estimate

rk =
1

N + 1− n

N−n∑
t=0

yt+kyk.(1.7)

However, we can only estimate

r0, r1, . . . , rn,(1.8)

where n << N , with some precision. A complementary set of observables are given
by the window

c0, c1, . . . , cn(1.9)

of cepstral coefficients. One topic considered in this paper is to investigate the con-
ditions under which these estimated coefficients can be used to determine minimum-
phase shaping filters, i.e., to determine the identifiability of such shaping filters from
covariance and cepstral windows.

As an example, to which we shall return several times in this paper, let us consider
a 30 ms frame of speech from the voiced nasal phoneme [ng], depicted in Figure 2.
Here N = 250, a typical sample length for a mobile telephone.

Figure 3 depicts a periodogram of this signal, i.e., a spectral estimate obtained by
fast Fourier transform. This spectral estimate can be modeled as a smooth spectral
envelope perturbed by contributions from an excitation signal. The spectral envelope
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Fig. 3. Periodogram for the voiced nasal phoneme [ng].
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Fig. 4. Cepstrum of voice speech signal.

corresponds to the shaping of the vocal tract, which is described by the minimum-
phase shaping filter.

As the Fourier transform of a convolution, the contributions of the shaping filter
and the excitation signal to the spectral estimate are multiplicative. If we consider the
logarithm of the spectral density Φ, the cepstrum, instead of Φ itself, the contribution
of the excitation signal is additively superimposed on the that of the shaping filter.

Figure 4 shows the estimated cepstral coefficients of a frame of voiced speech. A
contribution of the excitation signal is seen as spikes at multiples of the pitch period,
corresponding to approximately n0 = 57 in Figure 4. The spectral envelope can be
estimated from a finite window

c0, c1, . . . , cn(1.10)

of cepstral coefficients, where n < n0.

For minimum-phase shaping filters, the cepstral coefficients used in signal process-
ing are closely related to the Markov parameters w0, w1, w2, . . . defined by (1.1). In
more general systems problems, the minimum-phase requirement is relaxed to allow
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σ to be an arbitrary (monic) polynomial. In this case, a record

w0, w1, . . . , wn(1.11)

of Markov parameters are typically determined from the impulse response of an un-
derlying system and not from data such as a finite time series, and for this reason
Markov parameters can be quite useful in model reduction problems, starting from
an underlying system. Nonetheless, for minimum-phase shaping filters, the cepstral
coefficients used in signal processing are closely related to the Markov parameters
of the shaping filter w(z). Indeed, in section 6, we shall see that there is a one-to-
one correspondence between windows of cepstral and Markov parameters of the same
length.

In this paper, we are interested in the mathematical nature of the transformation
of measurements, such as covariance lags and cepstral coefficients or Markov parame-
ters, from data into the parameters of systems which produce such data. Our starting
point will be the global analysis of linear systems, where one studies an entire class of
systems or models as a whole and where one views measurements from data or model
parameters as functions on the entire class. This point of view has been pioneered in
[2, 4, 27, 16, 24]; see [5] for a survey. The central issue is whether the transformation
from a set of measurements, viewed as functions, to a set of model parameters is well-
posed, for example, in the sense of Hadamard. To be more precise, suppose the class
of models is the class of (minimum-phase) shaping filters of bounded degree. This
class can be viewed as a smooth manifold, for which any such shaping filter may be
viewed as a point, and on which the coefficients of the numerator and denominator
polynomials are a bona fide system of smooth coordinates on the global geometriza-
tion of this class of shaping filters. Matters being so, one can now ask, for example,
whether a window of cepstral coefficients and a window of covariance coefficients also
yield a bona fide coordinate system, so that, for example, the change of coordinates is
a transformation which is smooth, one-to-one, onto, and with a smooth inverse. That
is, the problem of passing from such data to models is indeed well-posed. Global
analysis enables one to pose such problems in a way that tools from calculus, opti-
mization, geometry, and modern nonlinear analysis can be used to give a rigorous
answer to such problems.

In the next section, we shall review some of the basic spaces of systems we will use
in our global analysis of certain transformations from data to models. In section 3,
we will state our principal results, which we then prove in the following sections.
These results focus on the identifiability of the models from collections of partial
windows of covariance lags, cepstral coefficients, and Markov parameters and the
questions of whether these parameters can be used to smoothly coordinatize spaces
of shaping filters. For example, in section 4, a partial window of covariance lags and
a partial window of cepstral coefficients are shown to jointly provide a system of local
coordinates for shaping filters in the context of the geometry of certain foliations on
the space of positive real functions.

In section 5, we prove that these are global coordinates, using methods from
convex optimization theory. These schemes begin with an extension of the maximum
entropy method, from the classical case of maximizing the zeroth cepstral gain to the
problem of maximizing a “positive” linear combination of the entire partial cepstral
window. This gives a new primal problem whose dual solves the rational covariance
extension problem. In section 6, we provide a fairly complete local and global analysis
of the use of a partial window of covariance lags and a partial window of cepstral
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coefficients. In lieu of a convex optimization argument, we used an extension of the
solution to the rational covariance extension problem and the Lefschetz fixed point
theorem as a generalization of the Brower fixed point theorem for the spaces of Schur
polynomials. We conclude the paper in section 7 with a discussion and illustrations
of the applications of some of these constructions to speech synthesis.

2. Some geometric representations of classes of models. Suppose the
positive real function f is given by

f(z) =
1

2

a(z)

b(z)
,(2.1)

where

a(z) = a0z
n + a1z

n−1 + · · ·+ an,

b(z) = b0z
n + b1z

n−1 + · · ·+ bn

are (real) polynomials of degree n. Clearly, a0 and b0 must have the same sign. We
assume that they are both positive. Then, since

f(z) + f(z−1) = w(z)w(z−1),

we must have

w(z) =
σ(z)

a(z)
,(2.2)

where

σ(z) = σ0z
n + σ1z

n−1 + · · ·+ σn

is the unique polynomial with all roots in the open unit disc satisfying

σ(z)σ(z−1) =
1

2
[a(z)b(z−1) + a(z−1)b(z)](2.3)

and σ0 > 0. We shall denote the class of such polynomials by Ŝn, and we shall denote
the n-dimensional submanifold of monic (Schur) polynomials in Ŝn by Sn. Now, in
order for f to be positive real, the pseudopolynomial

a(z)b(z−1) + a(z−1)b(z)

must be positive on the unit circle, and a(z) must belong to Ŝn. Then b(z) also must

belong to Ŝn.
Clearly, it is no restriction to take a ∈ Sn in (2.3). For each such a(z), let

S(a)v = a(z)v(z−1) + a(z−1)v(z)

define an operator S(a) : Vn → Zn from the vector space Vn of polynomials having
degree less than or equal to n into the vector space Zn of pseudopolynomials of degree
at most n. Then (2.3) may be written as

S(a)b = 2σσ∗,(2.4)
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where σ∗(z) := σ(z−1). Now it is well known that S(a) is bijective when a ∈ Sn (see,
e.g., [8, p. 760]), and hence (2.4) establishes a one-to-one correspondence between f
and w. We may normalize this relation by taking either b(z) or σ(z), but not both,
in Sn.

The normalization b0 = 1 corresponds to taking r0 = 1 in (1.3). We denote by
Pn the set of all (a, b) ∈ Sn × Sn such that (2.1) is positive real. We know [13] that
Pn is a smooth, connected, real manifold of dimension 2n and that it is diffeomorphic
to R

2n.

Choosing instead the normalization σ ∈ Sn, corresponding to setting w0 = 1 in
(2.2) and c0 = 0 in (1.5), we obtain an alternative coordinatization of Pn in terms
of (a, σ). In fact, for each (a, σ) ∈ Sn × Sn, we obtain the corresponding (a, b) ∈ Pn
by dividing b = 2S(a)−1(σσ∗) by b0, thus normalizing it to form a monic b. This
is a diffeomorphism, establishing that Pn is diffeomorphic to Sn × Sn. In fact, the
inverse of this coordinate transformation is the stable spectral factorization of 1

2S(a)b
followed by the normalization of σ(z). Since Sn is diffeomorphic to R

n (see Appendix
A), spectral factorization gives an alternative method of exhibiting a diffeomorphism
between Pn and R

2n.

We shall generally use (a, σ)-coordinates to describe the geometry of Pn. This
normalizes the cepstral window (1.10) and the Markov window (1.11), fixing c0 at zero
and w0 at one. However, a covariance window which is normalized in (a, b)-coordinates
will not be normalized in (a, σ)-coordinates, and hence, to avoid increasing the di-
mension of the problem, we shall need to consider instead the normalized covariance
lags

rk =

∫ π
−π eikθΦ(eiθ)dθ∫ π

−π Φ(e
iθ)dθ

, k = 1, 2, . . . , n,(2.5)

when working in (a, σ)-coordinates. In fact, in all of these descriptions, the polyno-
mials a(z), b(z), and σ(z) are monic. Working with unnormalized covariance lags
(1.2), as we shall occasionally do, requires an extra parameter, bringing the number
of coordinates to 2n+ 1.

There are several other spaces of models which we will need in this analysis.
We denote by P∗

n the (dense) open subspace of Pn consisting of those pairs (a, σ) of
polynomials which are coprime. Following the arguments in Appendix A, we see that
Pn is diffeomorphic to the space of coprime pairs of real monic polynomials of degree
n with poles and zeros in C, first studied in [4] using the notation Rat(n). The space
Rat(n) is a 2n-dimensional manifold with n+1 path-connected components, some of
which have a rather complicated topology (see [4, 34, 37, 6]).

We shall also need to study the space Πn of real, monic, degree n-polynomials,
which is, of course, diffeomorphic to R

n. Our interest in this space comes from the
Markov expansion (1.11), where we take σ to be in Πn and a to be in Sn. Consequently,
we allow (a, σ) to vary over the larger space

Qn := Sn ×Πn.

We shall also need to consider the space Q∗
n, the (dense) open subspace of Qn consisting

of those pairs (a, σ) of polynomials which are coprime.

3. Main results. Our first results show that it is possible to parameterize
minimum-phase shaping filters in terms of a window of cepstral coefficients and a
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window of covariance lags, both of which can be estimated from data. It is tempt-
ing, of course, to argue the plausibility of this result by counting parameters. This
method typically works only when there is a rigorous way to compute the dimension
of some geometric object—in this case, the smooth 2n-dimensional manifold Pn. In
this setting, the implicit function theorem enables one to compute dimensions by com-
puting the rank of certain Jacobian matrices or, equivalently, the linear independence
of differentials. The following theorem is proved in section 4 (see Remark 4.7).

Theorem 3.1. The normalized covariance lags r1, r2, . . . , rn and the cepstral
coefficients c1, c2, . . . , cn form a bona fide smooth coordinate system on the open subset
P∗
n of Pn; i.e., the map from P∗

n to R
2n with components (r1, r2, . . . , rn, c1, c2, . . . , cn)

has an everywhere invertible Jacobian matrix.
Accordingly, when viewed as functions on P∗

n, (r1, r2, . . . , rn, c1, c2, . . . , cn) form
local coordinates for the space P∗

n of pole-zero filters of degree n. At this point, one
might hope to be able to use a global inverse function theorem, such as Hadamard’s
theorem, to show that these data define a global coordinate system. In part because
of the complicated topology of P∗

n, this is not possible, and instead we use a convex
optimization scheme to conclude one of the important features of a global inverse
function theorem. Indeed, the very nontrivial consequence of our next observation,
to be proved in section 5, is that there is a one-to-one correspondence between the
2n coefficients r1, r2, . . . , rn, c1, c2, . . . , cn of the minimum-phase shaping filter (2.2)
and the 2n coefficients a1, a2, . . . , an, σ1, σ2, . . . , σn of the denominator and numerator
polynomials of (2.2), provided the degree of w is exactly n.

Theorem 3.2. Each shaping filter in P∗
n determines and is uniquely determined

by its window r1, r2, . . . , rn of normalized covariance lags and its window c1, c2, . . . , cn
of cepstral coefficients.

As we have indicated, uniqueness follows from the remarkable fact that such a
modeling filter arises as the minimum of a (strictly) convex optimization problem (see
section 5). This optimization problem has, of course, antecedents in the literature, be-
ginning with maximum entropy methods. Recall that linear predictive coding (LPC)
is the most common method for determining shaping filters in signal processing. Given
the window of (unnormalized) covariance data

r0, r1, . . . , rn(3.1)

with a positive definite Toeplitz matrix Tn, find the (unnormalized) shaping filter
w(z) and the corresponding spectral density

Φ(eiθ) = |w(eiθ)|2,
which maximizes the entropy gain

1

2π

∫ π

−π
log Φ(eiθ)dθ,(3.2)

subject to the covariance-matching condition

1

2π

∫ π

−π
eikθΦ(eiθ)dθ = rk, k = 0, 1, . . . , n.(3.3)

For this reason, the LPC filter is often called the maximum entropy filter.
Now observe that the entropy gain (3.2) is precisely the zeroth cepstral coefficient

c0 =
1

2π

∫ π

−π
log Φ(eiθ)dθ.
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However, in cepstral analysis, one is interested not only in c0 but in a finite window

c0, c1, . . . , cn(3.4)

of cepstral coefficients. It is natural, therefore, to maximize instead some (positive)
linear combination

p0c0 + p1c1 + · · ·+ pncn(3.5)

of the cepstral coefficients in the window (3.4). In view of (1.6), this may be written
as a generalized entropy gain

IP (f) =
1

2π

∫ π

−π
P (eiθ) log Φ(eiθ)dθ,(3.6)

where P is the symmetric pseudopolynomial

P (z) = p0 +
1

2
p1(z + z−1) + · · ·+ 1

2
pn(z

n + z−n),(3.7)

and f is the positive real part (1.3) of Φ. We shall say that P ∈ D if P is nonnegative
on the unit circle and P ∈ D+ if it is positive there. We note that the covariance
matching condition (3.3) becomes

1

2π

∫ π

−π
eikθΦ(eiθ)dθ = rk, k = 0, 1, . . . , n,(3.8)

in terms of Φ(eiθ) = |w(eiθ)|2.
Indeed, in section 5, we show that the problem of maximizing (3.5) subject to

(3.8) has a finite solution only if the pseudopolynomial (3.7) belongs to D. Indeed, if
P ∈ D+, there is a unique solution Φ, and this solution has the form

Φ(z) =
P (z)

Q(z)
,

where

Q(z) = q0 + 1
2q1(z + z−1) + · · ·+ 1

2qn(z
n + z−n)

belongs to D+.
In particular, we see that if we take P to be

P (z) = σ(z)σ(z−1)

and let a(z) be the unique stable polynomial satisfying

Q(z) = a(z)a(z−1),

then we have also determined the unique shaping filter (2.2) that matches the co-
variance data (3.1). Hence we have an alternative proof of the following result, first
appearing in [11].

Theorem 3.3. Let r0, r1, . . . , rn be a partial covariance sequence, i.e., real num-
bers such that the Toeplitz matrix (1.4) is positive definite. Then, to any stable poly-
nomial

σ(z) = zn + σ1z
n−1 + · · ·+ σn−1z + σn
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of degree n, there corresponds a unique real stable polynomial

a(z) = a0z
n + a1z

n−1 + · · ·+ an−1z + an

of degree n such that

1

2π

∫ π

−π
eikθ

∣∣∣∣σ(eiθ)a(eiθ)

∣∣∣∣
2

dθ = rk, k = 0, 1, . . . , n.(3.9)

Theorem 3.3 was conjectured by Georgiou [21] as a solution to the partial covari-
ance extension problem posed by Kalman [25]. Georgiou had already established the
existence part, but a complete proof of the conjecture was given much later in [11].
Similarly, in [11], we also showed the following theorem.

Theorem 3.4. The normalized covariance lags r1, r2, . . . , rn and the zero coeffi-
cients σ1, σ2, . . . , σn form a bona fide smooth coordinate system on the open manifold
Pn; i.e., the map from Pn to R

2n with components (r1, r2, . . . , rn, σ1, σ2, . . . , σn) has
an everywhere invertible Jacobian matrix.

In section 6, we derive the following results for coordinatization by covariance
data and Markov parameters.

Theorem 3.5. The normalized covariance lags r1, r2, . . . , rn and the normalized
Markov parameters w1, w2, · · · , wn form a bona fide smooth coordinate system on Q∗

n;
i.e., the map from Q∗

n to R
2n with components (r1, r2, . . . , rn, w1, w2, . . . , wn) has an

everywhere invertible Jacobian matrix. For each choice of a covariance window and
a Markov window, there exists exactly one shaping filter matching these windows.

The last statement of this theorem is related to a class of results found in the
literature on Q-Markov covers (see, e.g., [31, 29, 1]). Allowing windows of Markov
parameters for which w0 = 0, as in the literature cited above, would only add filters
w(z), which can be recovered from those of Theorem 3.5 by multiplying w(z) by some
power of z−1.

4. Global analysis on Pn. We choose to represent minimum-phase shaping
filters (2.2) by a pair (a, σ) ∈ Sn × Sn. This imposes the normalization discussed
in section 2. There is a geometric manifestation of the fact that (a, σ) are smooth
coordinates on Pn, which we will use to show that the cepstral and covariance windows
also form bona fide coordinate systems. First note that tangent vectors to Pn at (a, σ)
may be represented as a perturbation (a+ εu, σ + εv), where u, v are polynomials of
degree less than or equal to n − 1. If, as before, we denote the real vector space of
polynomials of degree less than or equal to d by Vd, then the tangent space to Pn at
a point (a, σ) is canonically isomorphic to Vn−1 × Vn−1.

Now, for a ∈ Sn, define Pn(a) to be the space of all points in Pn with the
polynomial a fixed. If we define Pn(σ) analogously, then Pn(a) and Pn(σ) are real,
smooth, connected n-manifolds. In fact, both are clearly diffeomorphic to Sn and
hence to R

n [7] (see also Appendix A). The tangent space to the submanifold Pn(a)
at a point (a, σ) is, therefore,

T(a,σ)Pn(a) = {(u, v) ∈ Vn−1 × Vn−1 | u = 0}.
Similarly, the tangent space to Pn(σ) is given by

T(a,σ)Pn(σ) = {(u, v) ∈ Vn−1 × Vn−1 | v = 0}.
Now the n-manifolds {Pn(a) | a ∈ Sn} form the leaves of a foliation of Pn, as do the
n-manifolds {Pn(σ) | σ ∈ Sn}. Moreover, these two foliations are complementary in
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the sense that if a leaf of one intersects a leaf of the other, the tangent spaces intersect
in just (0, 0). This transversality property is equivalent to the fact that the functions
(a, σ) form a local system of coordinates.

We now turn to the cepstral functions and the covariance functions. Let g : Pn →
R
n be the map which sends (a, σ) to the vector c ∈ R

n with components

ck =
1

2π

∫ π

−π
eikθ log |w(eiθ)|2dθ, k = 1, 2, . . . , n,(4.1)

and let Cn := g(Pn). Moreover, for each c ∈ Cn, define the subset

Pn(c) = g−1(c).

We wish to show that Pn(c) is a smooth submanifold of dimension n. To this end,
we will need to compute the Jacobian matrix of g, evaluated at tangent vectors to a
point (a, σ) ∈ Pn.

Thus, for each component

gk(a, σ) =
1

2π

∫ π

−π
eikθ log

∣∣∣∣σ(eiθ)a(eiθ)

∣∣∣∣
2

dθ

of g, we form the directional derivative

D(u,v)gk(a, σ) = lim
ε→0

1

ε
[gk(a+ εu, σ + εv)− gk(a, σ)]

in the direction (u, v) ∈ Vn−1 × Vn−1. A straightforward calculation yields

D(u,v)gk(a, σ) =
1

2π

∫ π

−π
2Re

{
v(eiθ)

σ(eiθ)
− u(eiθ)

a(eiθ)

}
eikθdθ(4.2)

=
1

2π

∫ π

−π

[
S(σ)v

σσ∗ −
S(a)u

aa∗

]
eikθdθ.(4.3)

Now, for any ϕ ∈ Sn, define the linear map Gϕ : Vn−1 → R
n by

Gϕu =
1

2π

∫ π

−π

S(ϕ)u

ϕϕ∗




eiθ

ei2θ

...
einθ


 dθ.

Then the kernel of the Jacobian of g at (a, σ) is given by

ker Jac(g)|(a,σ) = {(u, v) | Gσv = Gau}.(4.4)

Lemma 4.1. The linear map Gϕ is a bijection.
Proof. Suppose that Gϕu = 0. Then

1

2π

∫ π

−π

S(ϕ)u

ϕϕ∗ eikθdθ = 0(4.5)

for k = 1, 2, . . . , n. By symmetry this also holds for k = −1,−2, . . . ,−n. Moreover,
since

S(ϕ)u

ϕϕ∗ (z) =
u(z)

ϕ(z)
+

u(z−1)

ϕ(z−1)
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and u(z)
ϕ(z) is strictly proper and analytic for |z| ≥ 1, (4.5) holds for k = 0 also so that

integration against S(ϕ)u
ϕϕ∗ annihilates all trigonometric pseudopolynomials of degree

at most n. In particular, we obtain

1

2π

∫ π

−π

∣∣∣∣S(ϕ)uϕ

∣∣∣∣
2

dθ = 0,

which in turn yields S(ϕ)u = 0. But S(ϕ) is nonsingular, and hence u = 0, estab-
lishing injectivity of Gϕ. However, since the range and domain of Gϕ are the same
dimension, namely n, the map is also surjective.

Proposition 4.2. For each c ∈ Cn, the space Pn(c) is a smooth n-manifold. The
tangent space T(a,σ)Pn(c) at (a, σ) consists of precisely all (u, v) ∈ Vn−1 × Vn−1 such
that

1

2π

∫ π

−π

S(σ)v

σσ∗ eikθdθ =
1

2π

∫ π

−π

S(a)u

aa∗
eikθdθ(4.6)

for k = 0, 1, . . . , n.
Proof. The tangent vectors of Pn(c) at (a, σ) are precisely the vectors in the

null space of the Jacobian of g at (a, σ), as computed above. Consequently, by (4.4),
(4.6) holds for k = 1, 2, . . . , n. However, as pointed out in the proof of Lemma 4.1,
(4.5) holds for k = 0, and hence (4.6) holds for k = 0 also. Moreover, by (4.4) and
Lemma 4.1, the tangent space has dimension n. Therefore, the rank of Jac(g)|(a,σ) is
full, and the rest of the claim follows from the implicit function theorem.

Because the rank of Jac(g)|(a,σ) is everywhere n, the connected components of
the submanifolds Pn(c) form the leaves of a foliation of Pn. However, according to
Lemma C.1, the submanifolds Pn(c) are themselves connected.

Proposition 4.3. The n-manifolds {Pn(c) | c ∈ Cn} are connected and hence
form the leaves of a foliation of Pn.

As an example of the more involved calculation we shall next undertake with the
covariance window, we note a simple consequence of the results proven so far.

Corollary 4.4. The foliations {Pn(a) | a ∈ Sn} and {Pn(c) | c ∈ Cn} are
complementary; i.e., any intersecting pair of leaves, with one leaf from each foliation,
intersects transversely. Moreover, any intersecting pair of leaves intersects in at most
one point.

Proof. Setting u = 0 in (4.4), we obtain Gσv = 0. Hence, by Lemma 4.1, v = 0
so that the foliations are transverse. If a leaf Pn(a) intersects a leaf Pn(c) at a point
(a, σ), then the a-coordinates, and hence the roots of a, are known. According to
Appendix B, the value of the cepstral coefficients coincides with the difference of
the Newton sums of the powers of the roots of a and the roots of σ. Therefore, the
Newton sums of the powers of the roots of σ are known, and, therefore, by the Newton
identities, so is σ.

A similar statement for the foliation {Pn(σ) | σ ∈ Sn} can be proved by the mirror
image of this proof and will be omitted.

Next, let f : Pn → R
n be the map which sends (a, σ) to the vector r ∈ R

n of
normalized covariance lags with components

rk =

∫ π
−π eikθ

∣∣w(eiθ)∣∣2 dθ∫ π
−π |w(eiθ)|

2
dθ

, k = 1, 2, . . . , n,(4.7)
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and let Rn := f(Pn). Of course, any r ∈ Rn satisfies the positivity condition

Tn =




1 r1 · · · rn
r1 1 · · · rn−1

...
...

. . .
...

rn rn−1 · · · 1


 > 0.

Now, for each r ∈ Rn, we want to show that

Pn(r) = f−1(r)

is a smooth manifold of dimension n. To this end, note that the function f : Pn → R
n

has the components

fk(a, σ) =
hk(a, σ)

h0(a, σ)
,

where

hk(a, σ) =
1

2π

∫ π

−π
eikθ

∣∣∣∣σ(eiθ)a(eiθ)

∣∣∣∣
2

dθ, k = 0, 1, 2, . . . , n.

Clearly, h0(a, σ) > 0 for all (a, σ) ∈ Pn.
A straightforward calculation shows that the directional derivative of f at (a, σ) ∈

Pn in the direction (u, v) ∈ Vn−1 × Vn−1 is

D(u,v)fk(a, σ) =
1

h0(a, σ)
D(u,v)hk(a, σ)− hk(a, σ)

h0(a, σ)2
D(u,v)h0(a, σ),(4.8)

where

D(u,v)hk(a, σ) =
1

2π

∫ π

−π

[
S(σ)v

aa∗
− S(a)u

aa∗
σσ∗

aa∗

]
eikθdθ.(4.9)

Therefore, defining

ϕ(a, σ;u, v) := D(u,v) log h0(a, σ) =
D(u,v)h0(a, σ)

h0(a, σ)
,

the kernel of the Jacobian of f at (a, σ) consists of those (u, v) ∈ Vn−1 × Vn−1 for
which

1

2π

∫ π

−π

S(σ)v

aa∗
eikθdθ =

1

2π

∫ π

−π

S(a)u

aa∗
σσ∗

aa∗
eikθdθ + ϕ(a, σ;u, v)

1

2π

∫ π

−π

σσ∗

aa∗
eikθdθ

for k = 0, 1, . . . , n. In fact, this equation holds trivially for k = 0, and so, to simplify
the notation in what follows, we add this equation.

Proposition 4.5. The space Pn(r) is a smooth, connected, n-manifold, and its
tangent space T(a,σ)Pn(r) consists of those (u, v) ∈ Vn−1 × Vn−1 for which

1

2π

∫ π

−π

S(σ)v

aa∗
eikθdθ =

1

2π

∫ π

−π

S(a)u

aa∗
σσ∗

aa∗
eikθdθ +

ϕ

2π

∫ π

−π

σσ∗

aa∗
eikθdθ(4.10)
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for k = 0, 1, . . . , n, where

ϕ =
1

h0(a, σ)

1

2π

∫ π

−π

[
S(σ)v

aa∗
− S(a)u

aa∗
σσ∗

aa∗

]
dθ.(4.11)

The n-manifolds {Pn(r) | r ∈ Rn} form the leaves of a foliation of Pn.
Proof. The tangent space T(a,σ)Pn(r) is the kernel of the Jacobian of f and is

hence given by (4.10). Defining p ∈ Vn as

p(z) := u(z) +
1

2
ϕa(z),

these tangent equations may also be written as

Fp = Hv,

where F : Vn → R
n+1 and H : Vn−1 → R

n+1 are the linear operators

Fp =
1

2π

∫ π

−π

S(a)p

aa∗
σσ∗

aa∗




1
eiθ

...
einθ


 dθ, Hv =

1

2π

∫ π

−π

S(σ)v

aa∗




1
eiθ

...
einθ


 dθ.(4.12)

To see this, note that

1

2

S(a)a

aa∗
= 1.

Now the linear map F is nonsingular. In fact, supposing that Fp = 0 and, as in the
proof of Lemma 4.1, taking the appropriate linear combination, we obtain

1

2π

∫ π

−π

|S(a)p|2
aa∗

σσ∗

aa∗
dθ = 0,

which holds if and only if S(a)p = 0. But since a is a Schur polynomial, S(a) is
nonsingular, and hence Fp = 0 if and only if p = 0. Since the range and the domain
of F have the same dimension, F is nonsingular, as claimed. Then, since the leading
term of the n-polynomial

p = F−1Hu

is precisely 1
2ϕ, ϕ is a linear function of u. This defines a linear map L : Vn−1 → Vn−1,

which sends v to u := p − 1
2ϕa so that T(a,σ)Pn(r) consists of those (u, v) such that

u = Lv. This establishes that T(a,σ)Pn(r) is n-dimensional and that Pn(r) is an n-
manifold. Since the rank of Jac(f)|(a,σ) is full, smoothness follows from the implicit
function theorem. The connectedness of Pn(r) was proven in [7]. Since the rank of
Jac(f)|(a,σ) is everywhere n, the connected submanifolds Pn(r) form the leaves of a
foliation of Pn.

The relation between the foliations {Pn(r) | r ∈ Rn} and {Pn(c) | c ∈ Cn} is
indeed interesting.

Theorem 4.6. For each (a, σ) ∈ Pn(r) ∩ Pn(c), the dimension of

Θ := T(a,σ)Pn(r) ∩ T(a,σ)Pn(c)
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equals the degree of the greatest common divisor of the polynomials a(z) and σ(z).
Proof. Any (u, v) ∈ Θ satisfies both (4.6) and (4.10). Taking the linear combina-

tions of these equations corresponding to the coefficients of σσ∗ and aa∗, respectively,
we obtain

1

2π

∫ π

−π
S(σ)vdθ =

1

2π

∫ π

−π
S(a)u

σσ∗

aa∗
dθ,

1

2π

∫ π

−π
S(σ)vdθ =

1

2π

∫ π

−π
S(a)u

σσ∗

aa∗
dθ + ϕ‖σ‖2,

demonstrating that ϕ must be equal to zero. With ϕ = 0, (4.6) and (4.10) become

1

2π

∫ π

−π

S(σ)v

σσ∗ eikθdθ =
1

2π

∫ π

−π

S(a)u

aa∗
eikθdθ, k = 0, 1, . . . , n,(4.13)

1

2π

∫ π

−π

S(σ)v

aa∗
eikθdθ =

1

2π

∫ π

−π

S(a)u

aa∗
σσ∗

aa∗
eikθdθ, k = 0, 1, . . . , n.(4.14)

Taking the appropriate linear combinations of (4.13) and (4.14), respectively, we ob-
tain

1

2π

∫ π

−π

|S(σ)v|2
σσ∗ dθ =

1

2π

∫ π

−π

[S(a)u][S(σ)v]

aa∗
dθ,

1

2π

∫ π

−π

[S(σ)v][S(a)u]

aa∗
dθ =

1

2π

∫ π

−π

|S(a)u|2
aa∗

σσ∗

aa∗
dθ.

Now, setting

f1 :=
S(σ)v

σ∗ and f2 :=
σS(a)u

aa∗
,

these equations can be written as

‖f1‖2 = 〈f1, f2〉 and 〈f1, f2〉 = ‖f2‖2

in the inner product and norm of L2[−π, π]. Using the parallelogram law yields

‖f1 − f2‖2 = ‖f1‖2 + ‖f2‖2 − 2〈f1, f2〉 = 0,

which in turn implies that f1 = f2. Therefore,

S(σ)v

σσ∗ =
S(a)u

aa∗

on the unit circle or, equivalently,

Re
{ v

σ

}
= Re

{u

a

}
.(4.15)

However, since these are harmonic functions, (4.15) must hold in the whole complex
plane. In particular, as a(z) and σ(z) are real polynomials, this becomes

v

σ
=

u

a
(4.16)
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Fig. 5. Cepstral (dotted line) and covariance (solid line) matching foliations of P1.

on the real line. However, these functions are analytic outside the unit disc, and so,
by the identity theorem, (4.16) is valid in the whole complex plane. Clearly, u = v = 0
satisfy (4.16), but let us see if there are nontrivial u(z) and v(z) of degree n − 1. If
so, (4.16) can also be written as

v

u
=

σ

a
,

which, of course, has no solution if a(z) and σ(z) are coprime. If a(z) and σ(z) have
a greatest common factor of degree d, u(z) and v(z) could be polynomials of degree
less than or equal to n−1 and have an arbitrary common factor of degree d−1, hence
defining a vector space of dimension d, as claimed.

Remark 4.7. It follows from Theorem 4.6 that the foliations {Pn(r) | r ∈ Rn}
and {Pn(c) | c ∈ Cn} are complementary at any point (a, σ) ∈ Pn, where a and
σ are coprime, as illustrated in Figure 5 for n = 1. From this it follows that the
kernels of Jac(g)|(a,σ) and Jac(f)|(a,σ) are complementary at any point (a, σ) in P∗

n.
In particular, the Jacobian of the joint map (a, σ)→ (r1, r2, . . . , rn, c1, c2, . . . , cn) has
full rank, and, by the inverse function theorem, the joint map forms a smooth local
coordinate system on P∗

n. This proves Theorem 3.1.

5. Identifiability of shaping filters from cepstral and covariance win-
dows. In this section, we shall show that the window of n cepstral coefficients and
the window of n normalized covariance lags do indeed determine the (normalized)
shaping filter which generates these data, provided the filter has degree n, thus prov-
ing Theorem 3.2. As a preliminary to this argument, however, we want to return
to the generalization of the maximum entropy integral in terms of “positive” linear
combinations of the entire cepstral window. Not only is this an appealing idea, but it
also turns out to give a novel derivation of a result which is of independent interest
in itself, a solution of the rational covariance extension problem. We now formalize
our analysis of this generalized maximum entropy problem.

Theorem 5.1. If the pseudopolynomial (3.7) belongs to D+, the problem to
maximize (3.5) subject to (3.8) has a unique solution Φ, and this solution has the
form

Φ(z) =
P (z)

Q(z)
,(5.1)
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where

Q(z) = q0 +
1

2
q1(z + z−1) + · · ·+ 1

2
qn(z

n + z−n)(5.2)

also belongs to D+.
It turns out that the algorithm needed to determine Q is precisely the convex

optimization algorithm presented in [12]. In fact, the algorithm is based on the dual
problem, in the sense of mathematical programming, of the problem to maximize (3.6)
subject to (3.8). More precisely, let F+ be the set of bounded positive real functions

f(z) =
1

2
f0 + f1z

−1 + f2z
−2 + · · ·

such that Φ(eiθ) := 2Re{f(eiθ)} is bounded away from zero, and consider the (primal)
problem to maximize the generalized entropy (3.6) over F+, i.e.,

max
f∈F+

IP (f),

subject to (3.8). Then duality theory amounts to forming the Lagrangian

L(f, q) = IP (f) +

n∑
k=0

qk

[
rk − 1

2π

∫ π

−π
eikθΦ(eiθ)dθ

]

=
1

2π

∫ π

−π
P (eiθ) log Φ(eiθ)dθ + r′q − 1

2π

∫ π

−π
Q(eiθ)Φ(eiθ)dθ(5.3)

and determining the Lagrange multipliers q ∈ R
n+1 by minimizing the dual functional

ψ(q) := sup
f∈F+

L(f, q).

Clearly, ψ(q) <∞ only if both P and Q belong to D. If the function f �→ L(f, q) has
a maximum in the open region F+, then

∂L

∂fk
= 0, k = 0, 1, 2, . . . ,

in the maximizing point. This stationarity condition becomes

1

2π

∫ π

−π
eikθ

[
P (eiθ)Φ(eiθ)−1 −Q(eiθ)

]
dθ = 0, k = 0, 1, 2, . . . ,

which is satisfied if and only if (5.1) or, equivalently,

fk =
1

2π

∫ π

−π
eikθ

P (eiθ)

Q(eiθ)
dθ(5.4)

holds. Inserting this into (5.3) yields the dual functional

ψ(q) = JP (q) +
1

2π

∫ π

−π
P (eiθ)[logP (eiθ)− 1]dθ(5.5)

for all P,Q ∈ D, where

JP (q) = r0q0 + r1q1 + · · ·+ rnqn − 1

2π

∫ π

−π
P (eiθ) logQ(eiθ)dθ.(5.6)
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Since the last term in (5.5) does not depend on q, we shall call the optimization
problem

min
Q∈D

JP (Q)(5.7)

the dual problem. The functional (5.6) is strictly convex, and, therefore, the minimum
is unique, provided one exists. This is precisely the optimization problem considered
in [12], where the following theorem was proven.

Theorem 5.2. The dual problem has a unique solution, and it belongs to D+.
Since thus JP takes its minimum in an interior point,

∂JP

∂qk
= rk − 1

2π

∫ π

−π
eikθ

P (eiθ)

Q(eiθ)
dθ(5.8)

equals zero there for k = 0, 1, . . . , n. This stationarity condition is precisely the
covariance matching condition. The dual problem is easily solved by Newton’s method
[12, 14]. The statement of Theorem 5.2 is nontrivial. In fact, the proof [12] relies on
the fact that the gradient (5.8) tends to infinity as Q tends to the boundary of D.

Proof of Theorem 5.1. Let Q̂ ∈ D+ be the unique solution to the dual problem
(5.7), let q̂ ∈ R

n+1 be the corresponding vector of coefficients, and let

f̂k =
1

2π

∫ π

−π
eikθ

P (eiθ)

Q̂(eiθ)
dθ.

Clearly, f̂ ∈ F+. Since the gradient (5.8) is zero for Q = Q̂, the covariance matching

condition (3.8) is fulfilled for f = f̂ , and, therefore, IP (f̂) = L(f̂ , q̂). But, by the
construction above,

L(f̂ , q̂) = sup
f∈F+

L(f, q̂) ≥ L(f, q̂)

for all f ∈ F+. Then, for any f ∈ F+ which satisfies the covariance matching condition
(3.8),

IP (f) = L(f, q̂) ≤ IP (f̂),

which establishes the optimality of f̂ .
This analysis motivates the construction of a functional which will be the key in

establishing uniqueness of minimum-phase shaping filters having prescribed windows
r0, r1, . . . , rn and c1, c2, . . . , cn of covariance lags and cepstral coefficients, respectively.
More precisely, consider the (primal) problem of finding a spectral density

Φ(eiθ) = f0 + 2

∞∑
k=1

fk cos kθ,

which minimizes

I(f) =
n∑
k=1

∣∣∣∣ 12π
∫ π

−π
eikθ log Φ(eiθ)dθ − ck

∣∣∣∣− 1

2π

∫ π

−π
log Φ(eiθ)dθ(5.9)

subject to the covariance-lag matching condition

1

2π

∫ π

−π
eikθΦ(eiθ)dθ = rk, k = 0, 1, . . . , n.(5.10)
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The objective function (5.9) is the (,1) “cepstral error” minus the entropy gain. As
discussed in section 3, the entropy gain is precisely what is maximized in the LPC
solution, and it is identical to the zeroth cepstral coefficient corresponding to Φ. This
term compensates for the absence of a zeroth term in the cepstral error.

To obtain a suitable dual problem, we reformulate the primal problem to minimize

n∑
k=0

εk − 1

2π

∫ π

−π
log Φ(eiθ)dθ

subject to the covariance matching condition (5.10) and

1

2π

∫ π

−π
eikθ log Φ(eiθ)dθ − ck − εk ≤ 0, k = 1, 2, . . . , n,(5.11)

− 1

2π

∫ π

−π
eikθ log Φ(eiθ)dθ + ck − εk ≤ 0, k = 1, 2, . . . , n.(5.12)

Taking q0, q1, . . . , qn to be the Lagrange multipliers for the constraints (5.10) and
λ1, λ2, . . . , λn and µ1, µ2, . . . , µn to be nonnegative Lagrange multipliers for the sets
of constraints (5.11) and (5.12), respectively, we obtain the Lagrangian

L(f, ε, q, λ, µ) =

n∑
k=1

εk − 1

2π

∫ π

−π
log Φ(eiθ)dθ

+

n∑
k=0

qk

[
1

2π

∫ π

−π
eikθΦ(eiθ)dθ − rk

]

+

n∑
k=1

λk

[
1

2π

∫ π

−π
eikθ log Φ(eiθ)dθ − ck − εk

]

−
n∑
k=1

µk

[
1

2π

∫ π

−π
eikθ log Φ(eiθ)dθ − ck + εk

]
.

Now, setting

p0 = 1, pk := µk − λk, k = 1, 2, . . . , n,(5.13)

we can write this in the more compact form

L(f, ε, q, λ, µ) =

n∑
k=1

(1− λk − µk)εk

+c1p1 + c2p2 + · · ·+ cnpn − r0q0 − r1q1 − · · · − rnqn

+
1

2π

∫ π

−π
Q(eiθ)Φ(eiθ)dθ − 1

2π

∫ π

−π
P (eiθ) log Φ(eiθ)dθ,

which clearly can have a finite minimum only for those values of the Lagrange mul-
tipliers for which both P and Q belong to D and λk + µk ≤ 1 for k = 1, 2, . . . , n.
For such Lagrange multipliers, if the function (f, ε)→ L(f, ε, q, λ, µ) has a minimum,
then

∂L

∂fk
= 0, k = 0, 1, 2, . . . ,(5.14)
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and

(1− λk − µk)εk = 0, k = 1, 2, . . . , n,(5.15)

in the minimizing point. The stationarity condition (5.14) becomes

1

2π

∫ π

−π
eikθ

[
P (eiθ)Φ(eiθ)−1 −Q(eiθ)

]
dθ = 0, k = 0, 1, 2, . . . ,

or, equivalently,

Φ(z) =
P (z)

Q(z)
,

which, inserted together with (5.15) into the Lagrangian with P given by (5.13), yields
the dual functional

inf
(f,ε)∈F+×R+

L(f, ε, q, λ, µ) = J(P,Q) + 1,

where the functional

J(P,Q) = c1p1 + c2p2 + · · ·+ cnpn − r0q0 − r1q1 − · · · − rnqn

− 1

2π

∫ π

−π
P (eiθ) log

P (eiθ)

Q(eiθ)
dθ(5.16)

is concave but not necessarily strictly concave.
Theorem 5.3. The dual problem to maximize J(P,Q) over all (P,Q) ∈ D ×D

such that p0 = 1 has a solution (P̂ , Q̂), and, for any such solution, Q̂ ∈ D+, and

Φ(z) =
P̂ (z)

Q̂(z)
(5.17)

satisfies the covariance matching condition (5.10). If, in addition, P̂ ∈ D+, then
(5.17) is a solution of the primal problem with ε1 = ε2 = · · · = εn = 0, i.e., there is both
covariance matching and cepstral matching. A maximizing point (P̂ , Q̂) ∈ D+ ×D+

is unique if and only if P̂ and Q̂ are coprime.
Proof. It can be shown along the same lines as in [12] that the functional J has

compact sublevel sets in D × D. Hence J has a maximal point (P̂ , Q̂) there. The
boundary of D ×D consists of those points where either P̂ or Q̂ or both have zeros
on the unit circle. Now a straightforward calculation shows that

∂J

∂qk
=

1

2π

∫ π

−π
eikθ

P (eiθ)

Q(eiθ)
dθ − rk, k = 0, 1, . . . , n,(5.18)

∂J

∂pk
= ck − 1

2π

∫ π

−π
eikθ log

P (eiθ)

Q(eiθ)
dθ, k = 1, 2, . . . , n.(5.19)

From this and the argument in [12], it can be shown that the gradient (5.18) becomes
infinite when Q lies on the boundary and hence that Q̂ ∈ D+. Therefore, since the
functional J is concave, (5.18) must be zero at (P̂ , Q̂), and hence (5.17) satisfies the
covariance matching condition (5.10).
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Next suppose that P̂ ∈ D+. Then (5.19) must also be zero at (P̂ , Q̂), and hence
there is also cepstral matching. For any f ∈ F+ satisfying (5.10) and ε > 0,

I(f) ≥ L(f, ε, q̂, λ̂, µ̂) ≥ J(P̂ , Q̂) + 1,

where q̂, λ̂, and µ̂ are Lagrange multipliers corresponding to (P̂ , Q̂). On the other

hand, if f̂ is the positive-real part of (5.17), then

I(f̂) = L(f̂ , 0, q̂, λ̂, µ̂) = J(P̂ , Q̂) + 1,

and hence f̂ minimizes I, and ε̂ = 0, as claimed.
Clearly, the maximizing solution (P̂ , Q̂) cannot be unique if P̂ and Q̂ are not

coprime. Therefore, the last statement of the theorem would follow if we could show
that J is strictly concave over some neighborhood of D+×D+ if P̂ and Q̂ are coprime.
To this end, we consider the Hessian. Let

δJ(P,Q; δP, δQ) = lim
ε→0

J(P + δP,Q+ εδQ)− J(P,Q)

ε

denote the directional derivative in the direction (δP, δQ). The admissible directions
(δP, δQ) are symmetric pseudopolynomials such that (P+εδP,Q+εδQ) ∈ D+×D+ for
sufficiently small ε > 0. Since p0 = 1, we must also have δp0 = 0. It is straightforward
to see that

δJ(P,Q; δP, δQ) = c1δp1 + c2δp2 + · · ·+ cnδpn − r0δq0 − r1δq1 − · · · − rnδqn

+
1

2π

∫ π

−π
δQ(eiθ)

P (eiθ)

Q(eiθ)
dθ − 1

2π

∫ π

−π
δP (eiθ) log

P (eiθ)

Q(eiθ)
dθ,

and hence second differentiation yields

δ2
J(P,Q; δP, δQ) = −

〈
(PδQ−QδP )2,

1

PQ2

〉
≤ 0,

where equality holds if and only if PδQ−QδP = 0, i.e., if and only if

δP

δQ
=

P

Q
.

However, this is impossible if P̂ and Q̂ are to be coprime, since p0 = 1 and δp0 = 0.
Consequently, J is strictly concave at (P̂ , Q̂), as claimed.

Now, given the minimizing pair of pseudopolynomials (P̂ , Q̂) of Theorem 5.3, let
a(z) and σ(z) be the normalized, polynomial spectral factors of Q̂ and P̂ , respectively,
i.e., the Schur polynomials satisfying

a(z)a(z−1) =
1

a2
0

Q̂(z), σ(z)σ(z−1) =
1

σ2
0

P̂ (z),

where a2
0 and σ2

0 are the appropriate normalizing factors. Then Theorem 5.3 provides
a procedure for determining, from a combined window (r0, r1, . . . , rn, c1, . . . , cn) of
covariance lags and cepstral coefficients, a pair (a, σ), which is unique if and only
if a(z) and σ(z) are coprime, i.e., (a, σ) ∈ P∗

n, and a corresponding (unnormalized)
shaping filter

w(z) =
σ0

a0

σ(z)

a(z)
.
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Therefore, in particular, we have proved Theorem 3.2. In fact, given any (a, σ) ∈
P∗
n, a window (r1, . . . , rn, c1, . . . , cn) is uniquely determined from (4.7) and (4.1).

Conversely, given (r1, . . . , rn, c1, . . . , cn), the optimization problem of Theorem 5.3
yields an (a, σ) ∈ Pn, which matches this window and is unique if and only if (a, σ) ∈
P∗
n.

6. The simultaneous partial realization problem. While the stochastic re-
alization problem [25, 21, 26, 10, 30] amounts to determining shaping filters w having
a fixed window of covariance lags r0, r1, . . . , rn, the object of the deterministic re-
alization problem (see, e.g., [3, 23]) is to find shaping filters w with a fixed window
w0, w1, . . . , wn of Markov parameters (1.11). An important question is whether the
two problems can be solved simultaneously so that both interpolation conditions are
satisfied at the same time. This problem has been studied in the literature as the Q-
Markov cover problem (see [31, 29, 1], where it has been used as a tool for performing
model reduction).

This basic question will also be addressed in this section using geometric methods.
Thus we would ask whether the two problems can be solved simultaneously and, if so,
whether this solution is unique. We find a positive answer to the existence question in
Qn using fixed point methods. We also determine where these windows provide a bona
fide set of smooth coordinates. Finally, we give a geometric proof of the uniqueness
of the corresponding shaping filter, i.e., of identifiability of the shaping filter from
covariance and Markov windows, providing an independent proof of a result which is
basic to the existing theory of the Q-Markov cover problem. These results prove the
assertions in Theorem 3.5. We also provide an independent proof of Theorem 3.4.

To address these issues, let ψ : Qn → R
n be the map which sends (a, σ) to

w :=



w1

w2

...
wn


 ,

and let Wn := ψ(Qn). Given any w ∈Wn, define

Qn(w) := ψ−1(w).

Now, multiplying (2.2) by a(z) and identifying coefficients of nonnegative powers in
z, we have 


σ1

σ2

...
σn


 =



w1

w2

...
wn


+




1
w1 1
...

...
. . .

wn−1 wn−2 · · · 1





a1

a2

...
an


 .(6.1)

Identifying coefficients in negative powers of z yields the appropriate Hankel system.
From (6.1) we see first that Wn = R

n. Second, given w, a can be chosen arbitrarily in
Sn. Hence, Qn(w) is completely parameterized by a ∈ Sn, and hence it is a connected
n-manifold, diffeomorphic to R

n. Its boundary is characterized by a having a root
on the unit circle. Clearly, the closure Qn(w) is the graph of a continuous function
γ : Sn → Πn, defined by (6.1). Although the manifold Qn is not bounded, Qn(w)
is. Moreover, Qn(w) is homeomorphic to Sn, which is compact with a contractible
interior (see Appendix A).
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Theorem 6.1. Any continuous map T : Sn → Sn has a fixed point.
Proof. We first note that Sn is contained in the (Euclidean) space of real monic

polynomials with roots in the open disc of radius 1 + ε for any positive ε. As in
Appendices A and C, the continuous retraction r : D1+ε → D, defined by

r(x) =

{
x if ‖x‖ ≤ 1,
x

‖x‖ if ‖x‖ ≥ 1,

induces a continuous retraction of PD1+ε(n) → Sn. In particular, Sn is a Euclidean
neighborhood retract, and, therefore, the Lefschetz fixed point theorem applies to
continuous maps of Sn to itself [18, p. 209]. The Lefschetz fixed point theorem asserts
that a continuous map f from a space X to itself has a fixed point provided its Lef-
schetz number is nonzero. More precisely, to define the Lefschetz number, we need to
introduce the homology (real) vector spaces Hi(X;R), defined for each i = 0, 1, 2, . . . .
If X is a compact Euclidean neighborhood retract in R

N , then each Hi(X;R) is finite-
dimensional and vanishes for i > N . In this case, the Lefschetz number of f , Lef(f),
is defined as

Lef(f) =

n∑
i=0

tr(f∗i),

where (f∗i) is the linear transformation

f∗i : Hi(X;R)→ Hi(X;R)

introduced by f . For X = Sn, we have

Hi(Sn,R) = {0} for i ≥ 1

since Sn is contractable. Moreover, since Sn is therefore connected,

H0(Sn,R) ∼ R,

and the map f∗i is the identity. In summary, Lef(f) = 1, and the Lefschetz fixed
point theorem therefore implies that f has a fixed point.

Remark 6.2. One might hope that the Brower fixed point theorem would apply
directly to Sn. Even in the case when n = 2, this does not work. In fact, the space S2

is represented by a triangle in the plane, and its interior is a manifold with corners and
not a disc. While in this simple case the closure of the Schur region is homeomorphic
to a disc, a proof in arbitrary dimensions has not yet been formulated, but the current
standard methods of the Lefschetz fixed point theorem apply readily.

The tangent space of Qn(w) at (a, σ) is given by the following proposition.
Proposition 6.3. For each w ∈ Wn, the space Qn(w) is a smooth, connected

n-manifold with the tangent space

T(a,σ)Qn(w) = {(u, v) ∈ Vn−1 × Vn−1 | av − σu = ρ; deg ρ ≤ n− 1}(6.2)

at (a, σ) ∈ Qn(w). The n-manifolds {Qn(w) | w ∈Wn} form the leaves of a foliation
of Qn.

Proof. We have already established that Qn(w) is a connected n-manifold, dif-
feomorphic to R

n. To prove that T(a,σ)Qn(w) is given by (6.2), observe that the
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directional derivative

D(u,v)ψ(a, σ) =
1

2π

∫ π

−π
eikθ

[v
a
− σu

a2

]
dθ

=
1

2π

∫ π

−π
eikθ

av − σu

a2
dθ

is zero for k = 0, 1, . . . , n if and only if the polynomial ρ = av−σu has degree at most
n − 1. In fact, zkρ(z)/a(z)2 is analytic for z ≥ 1 and strictly proper precisely when
deg ρ < 2n − k. Since the tangent space has dimension n, the rank of Jac(ψ)|(a,σ)

is everywhere n, and hence the connected submanifolds Qn(w) form the leaves of a
foliation of Qn.

As pointed out in the introduction, for minimum-phase shaping filters, there is
a close relation between the cepstral coefficients and the Markov parameters of the
corresponding shaping filter w. To establish these relations, make a Laurent expansion
of

log Φ(z) = logw(z) + logw(z−1)(6.3)

on a subset Ω of the complex plane, where Ω is the intersection between an annulus
containing the unit circle but none of the zeros of w(z) or w(z−1) and a sector con-
taining the positive-real axis. The purpose of the sector is to avoid circling the origin.
Then the Laurent expansion obtained from the series expansions on the corresponding
segment of the real line of logw(z) and logw(z−1) extends to all of Ω and hence, in
particular, to the arc on the unit circle contained in Ω. Then, however, the uniqueness
of the Fourier transform ensures that the Laurent expansion also holds there. From
this we see

c0 = 2 logw0,

c1 =
w1

w0
,

c2 =
w2

w0
− 1

2

(
w1

w0

)2

,

c3 =
w3

w0
− 1

2

(
2
w1

w0

w2

w0

)
+

1

3

(
w1

w0

)3

.

...

Indeed, these equations form a triangular system, and hence the Markov parameters
can also be obtained from the cepstral coefficients, and vice versa. Setting w0 = 1, we
obtain the usual normalization with c0 = 0. Therefore, the nonempty submanifolds
Qn(w) ∩ Pn are precisely the leaves of the foliation {Pn(c) | c ∈ Cn}. In fact, let
φ : Pn → R

n be the restriction of ψ to Pn, and define Pn(w) := φ−1(w) for each
w ∈Mn := φ(Pn). Then we have the following corollary.

Corollary 6.4. The n-manifolds {Pn(w) | w ∈ Mn} form the leaves of a
foliation of Pn, which is identical to {Pn(c) | c ∈ Cn}.

In the present setting, however, we also consider nonminimum phase shaping
filters, allowing σ to be an arbitrary real monic polynomial. Whereas in Pn there
is a one-to-one correspondence between windows of cepstral coefficients and Markov
parameters, this is no longer the case in Qn. The tangent vectors of Pn(w) at (a, σ)
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do satisfy (4.6) of Proposition 4.2, but this does not extend to the situation where
σ(z) is no longer a Schur polynomial. Indeed, the first integral in (4.6) is not even
defined when σ(z) has a root on the unit circle. Nevertheless, we have the following
lemma, which is all we need below.

Lemma 6.5. Any (u, v) ∈ T(a,σ)Qn(w) satisfies the equation

1

2π

∫ π

−π
S(σ)vdθ =

1

2π

∫ π

−π
S(a)u

σσ∗

aa∗
dθ.(6.4)

Proof. By Proposition 6.3, the tangent space T(a,σ)Qn(w) consists of those (u, v)
for which the polynomial ρ := av − σu has degree at most n− 1. Since

v =
σu

a
+

ρ

a
,

we have

S(σ)v = S(a)u
σσ∗

aa∗
+ σ∗ ρ

a
+ σ

(ρ
a

)∗
.(6.5)

However, ρ/a is strictly proper and analytic for |z| ≥ 1, and hence it has a Laurent
expansion

ρ

a
= α1z

−1 + α2z
−2 + · · · ,

which is valid on the unit circle. Therefore,

1

2π

∫ π

−π

[
σ∗ ρ

a
+ σ

(ρ
a

)∗]
dθ = 0,(6.6)

and hence (6.4) follows.
Next let φ : Qn → R

n be the map that sends (a, σ) to the vector r ∈ R
n of

normalized covariance lags (4.7). Clearly, φ(Qn) = Rn := f(Pn). Given any r ∈ Rn,
define

Qn(r) := φ−1(r).

The following proposition is a Qn-version of Proposition 4.5, and the proof is the same
mutatis mutandis.

Proposition 6.6. For each r ∈ Rn, Qn(r) is a smooth, connected manifold of
dimension n. The tangent space T(a,σ)Qn(r) consists of those (u, v) ∈ Vn−1 × Vn−1

for which

1

2π

∫ π

−π

S(σ)v

aa∗
eikθdθ =

1

2π

∫ π

−π

S(a)u

aa∗
σσ∗

aa∗
eikθdθ +

ϕ

2π

∫ π

−π

σσ∗

aa∗
eikθdθ(6.7)

for k = 0, 1, . . . , n, where

ϕ =
1

h0(a, σ)

1

2π

∫ π

−π

[
S(σ)v

aa∗
− S(a)u

aa∗
σσ∗

aa∗

]
dθ.(6.8)

The n-manifolds {Qn(r) | r ∈ Rn} form the leaves of a foliation of Qn.
In the case in which a(z) and σ(z) are coprime, we can now show that if the

tangent spaces T(a,σ)Qn(w) and T(a,σ)Qn(r) do intersect, they intersect transversely.
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Proposition 6.7. Suppose that the polynomials a(z) and σ(z) are coprime. Then

T(a,σ)Qn(w) ∩ T(a,σ)Qn(r) = 0(6.9)

for any (a, σ) ∈ Qn(w) ∩ Qn(r).
Proof. Suppose that (u, v) ∈ T(a,σ)Qn(w)∩T(a,σ)Qn(r). Then (u, v) satisfies (6.7)

for k = 0, 1, . . . , n and, by symmetry, also for k = −1,−2, . . . ,−n. Taking the linear
combination corresponding to the coefficients of aa∗, we obtain

1

2π

∫ π

−π
S(σ)vdθ =

1

2π

∫ π

−π
S(a)u

σσ∗

aa∗
dθ + ϕ‖σ‖2.

However, by Lemma 6.5, (u, v) also satisfies (6.4), and hence, since ‖σ‖ > 0, we must
have ϕ = 0.

Consequently, T(a,σ)Qn(w) ∩ T(a,σ)Qn(r) consists of those (u, v) ∈ Vn−1 × Vn−1

which satisfy both

1

2π

∫ π

−π

S(σ)v

aa∗
eikθdθ =

1

2π

∫ π

−π

S(a)u

aa∗
σσ∗

aa∗
eikθdθ, k = 0, 1, . . . , n,(6.10)

and

av − σu = ρ, deg ρ ≤ n− 1.(6.11)

In view of (6.5), we have

S(σ)v

aa∗
=

S(a)u

aa∗
σσ∗

aa∗
+

S(aσ)ρ

(aa∗)2
,

which, inserted into (6.10), yields

1

2π

∫ π

−π

S(aσ)ρ

(aa∗)2
eikθdθ = 0, k = 0, 1, . . . , n.(6.12)

Clearly, there is a decomposition

S(aσ)ρ

(aa∗)2
=

d

a2
+

d∗

(a∗)2
=

S(a2)d

(aa∗)2
,(6.13)

where d(z) is a real polynomial of degree at most 2n. Since a(z) has all of its roots
in the open unit disc, there is also a Laurent expansion

d(z)

a(z)2
=

1

2
β0 +

∞∑
j=1

βjz
−j

valid on the unit circle, having real coefficients β0, β1, β2, . . . , in terms of which

S(aσ)ρ

(aa∗)2
=

∞∑
j=−∞

βje
−ijθ,

where β−j = βj for all j. Inserting this into (6.12), we see that β0, β1, . . . , βn = 0,
and hence the polynomial d(z) has degree at most n− 1, precisely as ρ(z) has.
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Now from (6.13) we also have

S(aσ)ρ = S(a2)d

or, equivalently,

a(σ∗ρ− a∗d)∗ + a∗(σ∗ρ− a∗d) = 0.

Introducing the reversed polynomials a∗(z) := zna(z−1) and σ∗(z) := znσ(z−1), we
may write this as

S(zna)(σ∗ρ− a∗d) = 0,

which is well defined since deg(σ∗ρ − a∗d) = 2n − 1 < deg(zna). Then, since the
polynomial zna has all of its roots in the open unit disc, kerS(zna) = 0, and hence

σ∗ρ = a∗d.(6.14)

Now, if ρ �= 0,

d∗
ρ∗

=
σ

a
,

where ρ∗(z) := zn−1ρ(z−1) and d∗(z) := zn−1d(z−1). But this is impossible when
a(z) and σ(z) are coprime because the left member is a proper rational function of
degree at most n − 1, while the right member has degree n. Hence only ρ = d = 0
satisfies (6.14). However, for ρ = 0, (6.11) has only the solution u = v = 0, as claimed.
In fact, if v �= 0,

v

u
=

σ

a
,

which has no solution if a(z) and σ(z) are coprime.
Just as in Remark 4.7, this establishes that the Jacobian of the joint map (a, σ)→

(r1, r2, . . . , rn, w1, w2, . . . , wn) has full rank, and, by the inverse function theorem,
the joint map forms a smooth local coordinate system on Q∗

n. This proves the first
statement of Theorem 3.5.

Figure 6 illustrates the fact that the covariance foliation and the Markov foliation
are everywhere transverse. Also note that the shaded region in Figure 6 is identical
to Figure 5, thus illustrating Corollary 6.4.

Figure 6 also suggests that each leaf of the Markov foliation meets each leaf of
the covariance matching foliation, a fact that we shall now establish in a slightly
generalized form. As above, Qn(r) and Qn(w) denote the closures of the submanifolds
Qn(r) and Qn(w), respectively.

Theorem 6.8. The closure of every leaf of the Markov foliation intersects the
closure of any leaf of the covariance matching foliation. Moreover, either the leaves
themselves intersect, or every point of intersection is of the form (a, σ), where a has
some roots on the unit circle and σ vanishes at each of these roots, while the ratio has
the prescribed covariance and Markov windows.

Proof. The basic space we work on is the product Sn×Πn. We have already seen
that Qn(w) is the graph of a continuous function γ : Sn → Πn. We wish to exhibit
Qn(r) as the graph of a continuous function δ : Πn → Sn. Assuming this for the
moment, we deduce from Theorem 6.1 that the continuous map

δ ◦ γ : Sn → Sn
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Fig. 6. Markov (dotted line) and covariance (solid line) matching foliations of Q1.

has a fixed point ā; i.e., (δ ◦ γ)(ā) = ā. If σ̄ = γ(ā), then (ā, σ̄) is a point lying on
both Qn(w) and Qn(r). To see this, note that (ā, σ̄) = (ā, γ(ā)) by definition and that
(ā, σ̄) = (δ ◦ γ(ā), γ(ā)) by construction.

Therefore, it remains to construct δ. If σ is a Schur polynomial, then, according
to Theorem 3.3, there exists a unique Schur polynomial a such that (a, σ) lies in
Pn(r) ⊂ Qn(r). We shall write δ(σ) = a. According to Theorem 3.4, δ is a smooth
function on Sn. Since this is crucial for what follows, we give an independent proof
of Theorem 3.4, using the global analysis developed in section 4.

First, we note that the foliations {Pn(r) | r ∈ Rn} and {Pn(σ) | σ ∈ Sn} are
complementary. To see this, we ask whether a tangent vector (u, 0) to Pn(σ) at a
point (a, σ) could also be tangent to the leaf Pn(r) through (a, σ). To this end, just
as in the proof of Proposition 4.5, we first observe that (6.7) may be written as

Fp = Hv,

where p(z) := u(z) + 1
2ϕa(z) and F,H are the linear maps (4.12). Then, substituting

(u, 0) into (6.7), we obtain Fp = 0. However, we also established in the proof of
Proposition 4.5 that F is nonsingular, and hence p = 0, which, in turn, implies that
ϕ = 0 and thus that u = 0.

Now consider the map η : Pn → Sn defined via η(a, σ) = σ. The kernel of the
Jacobian of η at any point is the tangent space to Pn(σ) at that point. In particular,
the kernel of the Jacobian of the map ηr : Pn(r) → Sn defined via ηr(a, σ) = σ is
zero at every point of Pn(r). According to Theorem 3.3, the map ηr has an inverse
δ. Moreover, by the inverse function theorem, δ is smooth and hence continuous.

In [22], Georgiou proves that δ has a continuous extension to Sn with a very
interesting property. If σ has roots on the unit circle, a = δ(σ) may have roots on
the unit circle, but σ must vanish at each of these roots, yielding a lower degree
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ratio having the prescribed covariance window. Of course, Theorem 3.3 and the
constructions in [11, 22] start with the pseudopolynomial

d(z, z−1) = σ(z)σ(z−1)

rather than σ itself. Since d is taken to be an arbitrary pseudopolynomial of degree
less than or equal to zero and nonnegative on the unit circle, the continuity of δ on
Sn is equivalent to the continuity of δ on the larger space Πn. This enables us to
form the continuous function δ ◦γ on Sn and apply the Lefschetz fixed point theorem,
yielding the statement of the theorem.

Since, according to Theorem 6.8, any intersection between Qn(r) and Qn(w) on
the boundary of Qn defines a pair (a, σ) of polynomials whose roots on the unit circle
are common, after cancellation, w(z) = σ(z)/a(z) has all of its poles in open unit
disc and is thus a bona fide shaping filter. Consequently, Theorem 6.8 establishes the
existence part of the last statement of Theorem 3.5. The uniqueness part follows from
the following proposition.

Proposition 6.9. There is at most one shaping filter w(z) having given windows
(1, w1, . . . , wn) and (1, r1, . . . , rn) of normalized Markov parameters and normalized
covariance lags, respectively.

Proof. Let w1(z) and w2(z) be two shaping filters having the same window
(1, w1, . . . , wn) of normalized Markov parameters. Then, if

w1(z) =
σ1(z)

a1(z)
, w2(z) =

σ2(z)

a2(z)
,

where (a1, σ1) and (a2, σ2) are coprime pairs of monic polynomials, the degree of the
polynomial

ρ := σ1a2 − σ2a1

is at most n− 1. In fact, the first n Markov parameters of

σ1

a1
− σ2

a2
=

ρ

a1a2

are zero.

Without restriction, we may order the shaping filters so that λ1 ≥ λ2, where

λ1 :=

(
1

2π

∫ π

−π

∣∣∣∣σ1

a1

∣∣∣∣
2

dθ

)−1

, λ2 :=

(
1

2π

∫ π

−π

∣∣∣∣σ2

a2

∣∣∣∣
2

dθ

)−1

.

Then, assuming that w1(z) and w2(z) also have the same normalized covariance lags
(1, r1, . . . , rn), we have

1

2π

∫ π

−π
eikθΨ(eiθ)dθ = 0, 0, 1, . . . , n,

where

Ψ := λ1

∣∣∣∣σ1

a1

∣∣∣∣
2

− λ2

∣∣∣∣σ2

a2

∣∣∣∣
2

.
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Fig. 7. Spectral envelope of 10th order LPC filter.

We want to show that ρ = 0. To this end, note that, in particular,

1

2π

∫ π

−π
|a2(e

iθ)|2Ψ(eiθ)dθ = 0,(6.15)

where

|a2|2Ψ = λ1
|ρ|2
|a1|2 + λ1

σ2ρ
∗

a∗1
+ λ1

σ∗
2ρ

a1
+ (λ1 − λ2)|σ2|2.

However, for the same reason as in (6.6),

1

2π

∫ π

−π

[
σ2

(
ρ

a1

)∗
+ σ∗

2

(
ρ

a1

)]
dθ = 0,

and hence (6.15) can be written as∥∥∥∥ ρ

a1

∥∥∥∥
2

+

(
1− λ2

λ1

)
‖σ2‖2 = 0.

Since ‖σ2‖ > 0 and 1 − λ2/λ1 > 0, this implies that λ1 = λ2 and ρ = 0. Hence
w1 = w2, as claimed.

7. Zero assignability vs. cepstral assignability. The theory derived in this
paper was developed for dealing with problems encountered in applying Theorem 3.3
to the identification of speech segments. The maximum entropy solution described
in section 3, often called the LPC method in the speech processing community, is
a standard tool for representing the spectral envelope of speech signals [17]. Its
popularity is mainly due to its low computation costs and nice matching of spectral
peaks. The latter property is illustrated in Figure 7, which shows the periodogram of
Figure 3 together with the spectral envelope determined by a tenth order LPC filter,
based on ergodic estimates of r0, r1, . . . , r10 from the data in Figure 2.

However, it is well known that this estimate of the spectral envelope may not
reproduce the notches of the spectrum very well, especially for nasal sounds, where
the spectra have a deep valley because of the dead end formed by the mouth. This
“flatness” of the spectral envelope, illustrated by Figure 7, is one of the shortcomings
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of LPC filtering. It is due to the fact that the zeros of the modeling filter, being at
the origin, are maximally removed from the unit circle, where the spectral density is
evaluated. There is thus a need for introducing nontrivial zeros in the shaping filter.

By Theorem 3.3, to any Schur polynomial σ(z), there is a unique shaping fil-
ter having σ(z) as its numerator polynomial and matching the covariance window
r0, r1, . . . , rn in the same way as the LPC filter. In fact, there is even a convex op-
timization procedure, based on (5.7), to determine this shaping filter. However, this
does leave us with the problem of how to choose the zeros.

It is generally agreed that a finite window (1.9) of cepstral coefficients contains
more information about the zeros than does a finite window (1.8) of covariance lags.
In fact, differentiate the expansion

log
σ(z)

a(z)
=

c0
2
+

∞∑
k=1

ckz
−k,

obtained from (6.3), with respect to z to obtain

σ′(z)a(z)− σ(z)a′(z)
σ(z)a(z)

= −
∞∑
k=1

kckz
−k−1.(7.1)

Consequently, {−kck} are the Markov parameters of a filter whose poles are the
original poles and zeros. Therefore, modulo deciding which are which, both the poles
and the zeros can be determined from a finite number of exact cepstral coefficients
by solving a Hankel system. In so-called homomorphic prediction, e.g., the method
of Shanks [35], the zeros are estimated according to these principles once the poles
have been determined using LPC analysis. Indeed, it is well known [32] that the LPC
envelope has a nonuniform spectral weighting and that it matches the peaks much
more accurately than the valleys, i.e., giving much better estimates of poles than zeros.
While, in theory, these methods provide estimates of a shaping filter, and hence of a
spectral envelope, they do not achieve covariance matching and may produce shaping
filters that are neither stable nor minimum-phase. Therefore, these ad hoc methods
do not as such provide an alternative to an algorithm based on Theorem 3.3, but they
could provide the required zero estimates.

In this context, we suggest an alternative method for estimating the zeros: Given
estimates of spectral values of a periodogram at equidistant points on the unit circle,

Φ(eiθk), k = 1, 2, . . . , N,(7.2)

find, by linear programming, pseudopolynomials P and Q which minimize

max
k
|Q(eiθk)Φ̂(eiθk)− P (eiθk)|(7.3)

subject to the constraints that |P (eiθk | ≥ ε and |Q(eiθk | ≥ ε for some ε > 0. Again,
the shaping filter P/Q obtained in this way would have the same undesirable proper-
ties describe above, but we can use P as the pseudopolynomial required in the dual
problem (5.7) to determine a new Q such that P/Q satisfies the covariance matching
condition. In this procedure, the Q obtained via (7.3) can be used as an initial condi-
tion when applying Newton’s method to solve the dual problem. For all the reasons
described above, it is better to use a cepstrally smoothed periodogram in determining
(7.2). Explicitly, the cepstral parameters are calculated from the data (1.9) using an
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Fig. 8. Spectral envelope of a 6th order LLN filter.
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Fig. 9. Spectral envelope of 10th order LLN filter.

inverse discrete Fourier transform on the logarithm of the periodogram, after which
the cepstral coefficients are windowed and inversely transformed [33, pp. 494–495]. As
we have seen, the logarithm evens out the difference of energy in the valleys and the
peaks and then treats valleys and peaks the same. In Figure 8, we show the spectral
envelope of the signal in Figure 2 obtained from a sixth order shaping filter computed
by this method. This spectral envelope should be compared with that of the tenth
order LPC filter in Figure 7. Instead using a tenth order filter, we obtain the spectral
envelope in Figure 9.

However, instead of matching covariance lags and zeros, we may match covariance
lags and cepstral coefficients, thus applying an algorithm based on the dual problem to
maximize (5.16) described in Theorem 5.3. The covariance and cepstrum interpolation
problem is very appealing since both the covariances and the cepstral parameters can
be estimated directly from data using ergodicity. Estimation of covariances is well
analyzed (see e.g., the books [28, 36]), whereas the estimation of the cepstrum is a
less studied problem. One method based on taking the discrete Fourier transform
of the periodogram has been analyzed in, e.g., [20]. Using estimated covariance and
cepstrum parameters, the filter depicted in Figure 10 was determined.
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Fig. 10. Spectral envelope of 10th order cepstral match filter.

More specifically, Figure 10 shows the periodogram of a frame of speech for the
phoneme [s] together with a tenth order spectral envelope produced by this method.
In this case, P ∈ D+, so there is both covariance and cepstral matching. In general,
however, this is not the case, as Theorem 5.3 states. This can be seen already in the
case when n = 1. In Figure 5, the covariance matching foliation (straight lines) is
depicted together with the cepstral matching foliation (curved). Clearly, a leaf in one
foliation in general does not intersect all leaves in the other. Therefore, methods for
determining approximate solutions in the interior D+ have been developed [19].

The problem that P may tend to the boundary of D led us to relax the stability
constraint of the numerator polynomial σ and hence, in view of the bijection between
cepstral and Markov parameters, prompted us to consider the simultaneous partial
realization problem of section 7.

Appendix A. Divisors and polynomials. In global analysis, we shall also
need to recognize spaces of real polynomials which are diffeomorphic to R

n as well
as certain subsets of polynomials having certain properties, e.g., connectivity, in the
relative topology. For this reason, we will adapt the standard treatment of divisors
and elementary symmetric functions to the real case.

Let Ω be a self-conjugate, open subset of C, which we take to be path-connected.
For such an Ω we denote by PΩ(n) the space of real monic polynomials p(z), of degree
n, with all roots lying in Ω. Now the roots of any p ∈ PΩ(n) determine a self-
conjugate, unordered n-tuple (λ1, . . . , λn) of points λi ∈ C, not necessarily distinct,
known as a real divisor of degree n on Ω. We denote this divisor by Dp and refer to
the space of such divisors as the real symmetric product Ω(n) of Ω.

Alternatively, it is standard to construct the symmetric product Ω(n) by letting
the permutation group Sn on n-letters act on the ordinary Cartesian product Ωn

by permuting the coordinates of n-vectors with entries in Ω. The set of equivalence
classes, or orbits of Sn, in the Cartesian product form the points in the symmetric
product. In general, the real symmetric product Ω(n) is always a smooth n-manifold;
in fact, Ω(n) is diffeomorphic to PΩ(n) using the identification

(λ1, . . . , λn)→ (p1, . . . , pn),

where p(z) = zn + p1z
n−1 + · · ·+ pn :=

∏n
k=1(z − λk). For example, we see that the

real symmetric product Ω(n) for Ω = C is diffeomorphic to R
n. For the unit disc,
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D, the real symmetric product is diffeomorphic to the space of real Schur polynomi-
als, i.e., those real polynomials satisfying the Schur–Cohn conditions, while for the
open left half-plane the real symmetric product is diffeomorphic to the space of those
real monic polynomials satisfying the Routh–Hurwitz conditions. Each of these real
symmetric products is in turn diffeomorphic with R

n, although not via the standard
correspondence given above. Indeed, if Ω ⊂ C is a self-conjugate open subset of the
Riemann sphere, with a simple, closed, rectifiable, orientable curve as boundary, then
PΩ(\) is diffeomorphic to R

n. As noted in [7], this follows from the Riemann mapping
theorem and the corresponding result for the open unit disc D. For Ω = D this may
be explicitly represented using the real diffeomorphism T of D to C, defined in polar
coordinates via

T (r, θ) =
(
tan

rπ

2
, θ
)
.

In general, the projection Pn : Ωn → Ω(n) is smooth, and any diffeomorphism

T : Ω
(n)
1 → Ω

(n)
2 is induced by a unique Sn-invariant diffeomorphism T̃ : Ωn1 → Ωn2 . In

particular, if T : Ω1 → Ω2 is a diffeomorphism, then the induced map T̄ : Ω
(n)
1 → Ω

(n)
2

defined on divisors of degree n via

T̄ (λ1, . . . , λn) = (T (λ1), . . . , T (λn))

is a diffeomorphism. In particular, PD(n) is diffeomorphic with PC(n), which is dif-
feomorphic to R

n.

Appendix B. Calculation of cepstral coefficients. Suppose

Φ(eiθ) = ρ2

∣∣∣∣σ(eiθ)a(eiθ)

∣∣∣∣
2

,

where

a(z) = zn + a1z
n−1 + · · ·+ an

and

σ(z) = zn + σ1z
n−1 + · · ·+ σn

are Schur polynomials, i.e., have all of their roots in the open unit disc, and ρ is a real
number. Then the cepstral coefficients, i.e., the Fourier coefficients in the expansion
(1.5), are given by

c0 = 2 log ρ,

ck =
1

k
{sk(a)− sk(σ)}, k = 1, 2, 3, . . . ,

where

sk(a) = pk1 + pk1 + · · ·+ pkn,

sk(σ) = zk1 + zk1 + · · ·+ zkn,

in which p1, p2, . . . , pn are the roots of a(z) and z1, z2, . . . , zn are the roots of σ(z).
For the case of maximal entropy (or LPC) filters, we have zi = 0, and the above

formula is well known. For pole-zero models, this formula is, to the best of our
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knowledge, new but straightforward to derive using the basic algebraic properties of
the logarithm.

Moreover, using Newton’s identities [15, p. 5], one derives the following recursions:

sk(a) = −kak −
k−1∑
j=1

ak−jsj(a),

sk(σ) = −kσk −
k−1∑
j=1

σk−jsj(σ).

These equations also hold for k > n provided we set ak = 0 and σk = 0 whenever
k > n.

Appendix C. Connectivity of Pn(c). We also need to know about various
coordinates on PΩ(n) and hence about C∞ functions. If f : Ω(n) → R is C∞, then f
lifts to a C∞ function on Ωn which is Sn-invariant, and, conversely, any C∞ function
on Ωn which is Sn-invariant descends to a C∞ function defined on Ω(n). We denote
the algebra of C∞ functions on Ω(n) by C∞[Ω(n)] and the algebra of Sn-invariant
C∞ functions on Ωn by C∞[Ωn]Sn . In light of the remarks made above, C∞[Ω(n)] is
canonically isomorphic to C∞[Ωn]Sn .

Whenever a real diffeomorphism M maps such a domain Ω1 onto such a domain
Ω2, M commutes with the actions of Sn on Ωn1 and on Ωn2 , so that composition with
M induces an isomorphism between C∞[Ωn2 ]

Sn and C∞[Ωn1 ]
Sn and hence between

C∞[Ω
(n)
2 ] and C∞[Ω

(n)
1 ]. Therefore, composition with M−1 will map generators of

C∞[Ωn1 ]
Sn to generators of C∞[Ω

(n)
2 ].

As an example, consider Ω = C. Then the algebra of Sn-invariant real polynomials
is generated by the coefficients pi of the polynomials p(z), treated as the points of the
real symmetric product. We denote this by writing

C∞[C(n)] = C∞[p1, . . . , pn].

Any diffeomorphism of R
n with itself will give another set of n generators, and,

conversely, any other choice of n generators will define a diffeomorphism. Indeed,
consider the self-conjugate polynomials in λ,

sk(λ) = λk1 + · · ·+ λkn,

which are invariant under the action of Sn on the n-fold Cartesian product of C. Each
sk(λ) lies in C∞[C(n)] and is in fact a real polynomial in (λ1, . . . , λn), as described by
the Newton identities [15, p. 5]

sk(λ) = −kλk −
k−1∑
j=1

λk−jsj(λ),

where we set ak = 0 and σk = 0 whenever k > n.
Conversely, the Newton identities also show that the λi are real polynomials in

the sk, and so we may write

C∞[C(n)] = C∞[λ1, . . . , λn].

To put this another way, the functions sk form a system of smooth coordinates on the
real Euclidean n-space, C

(n).
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If

c̃k(T̃ (a), T̃ (σ)) = ck(σ, a),

then the functions c̃k form a set of generators for C∞[C(n)]. In particular, in these
coordinates, the sets are affine planes and are hence connected.

Lemma C.1. The submanifolds Pn(c) are connected.
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Abstract. A computationally inexpensive model predictive control strategy for constrained
linear systems is presented. We describe an efficiently computed suboptimal control law which is
exponentially stabilizing in the presence of constraints and which converges asymptotically to the
conditions for constrained optimality with respect to the receding horizon optimization. The free
parameters in input predictions are adapted online on the basis of the gradient of the predicted
performance index and the boundary of the admissible set for an autonomous prediction system. A
differential description of the admissible set boundary enables efficient detection of active constraints.
The approach is illustrated via simulation examples.

Key words. receding horizon control, constrained control, optimality conditions, asymptotic
convergence
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1. Introduction. Model predictive control (MPC) is a feedback strategy in
which a control law is computed by repeatedly minimizing a predicted performance
index online. MPC algorithms have proved effective in a wide range of commercial
applications [19] primarily because they enable constraints on inputs and states to be
handled systematically. For the case of linear dynamics and quadratic cost considered
in this paper, the online optimization subject to linear input/state constraints is a
quadratic programming (QP) problem, which can be solved efficiently and reliably
using commercially available software. However, the computational burden of QP
can be prohibitive, particularly for high-dimensional systems or rapid sampling ap-
plications, and considerable research effort has recently been devoted to reducing this
burden [20, 7, 8, 3, 22, 2]. The objective of this paper is to develop an efficient MPC
strategy suitable for millisecond sample intervals and small or medium-scale problems
(up to, say, 10 states/inputs).

The computational burden of MPC can be reduced significantly if the receding
horizon optimization is replaced by an approximate problem of reduced complexity.
In [3, 22, 13], the feasible sets for the optimization variables are approximated via
ellipsoids, thus reducing the online optimization to a 2-norm minimization subject to
a single quadratic constraint which can be solved extremely efficiently. However, [3]
and [22] are necessarily suboptimal, and although suboptimality can be reduced to
insignificant levels through scaling [13], the use of ellipsoidal constraint set approxi-
mations can lead to conservative stabilizable initial condition sets. Larger stabilizable
sets are obtained with low-complexity polytopic sets in place of ellipsoids [16] but
only at the expense of increased online computation, which then becomes a linear
programming (LP) problem.

∗Received by the editors June 25, 1999; accepted for publication (in revised form) October 18,
2001; published electronically March 27, 2002. This work was supported by the Engineering and
Physical Sciences Research Council.

http://www.siam.org/journals/sicon/41-1/35837.html
†Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK

(mark.cannon@eng.ox.ac.uk, basil.kouvaritakis@eng.ox.ac.uk).

60



EFFICIENT MPC WITH ASYMPTOTIC OPTIMALITY 61

An alternative approach computes the optimal solution of the MPC cost min-
imization using algorithms tailored to specific applications, thus obtaining compu-
tational savings over generic solvers. For example, [7] describes a customized MPC
algorithm for paper machine cross-directional control which uses physical insights into
the problem of controlling web-forming processes to initialize the solution of the re-
ceding horizon optimization. In the same application area, [20] derives an efficient QP
solver by exploiting the banded structure and sparsity of data matrices, which results
from retaining predicted states as well as inputs as variables in the receding horizon
optimization problem. However, like [7], this approach is highly specialized since it
introduces additional variables into the online QP, and, as a result, its computational
advantages are limited to large-scale problems (100 decision variables or more).

Efficient MPC algorithms with wider applicability can be derived by customizing
the online optimization using parametric programming methods. Parametric pro-
gramming is concerned with finding the solution of an optimization problem which is
a perturbation of another problem for which a solution is known. The technique is
particularly useful in MPC because of the similarity between the receding horizon op-
timizations solved at successive sampling instants [8]; in fact, “warm starting” (where
a previous solution is used to initialize the current optimization) is employed in many
commercial MPC algorithms. In [2], parametric programming is used to compute
offline the solution of the online MPC optimization as a piecewise linear state feed-
back law, the parameters of which are state-dependent. Although this approach
provides an explicit expression for the state feedback law associated with MPC, its
applicability is likely to be limited by the large computational burden concurrent with
identifying the regions of state-space on which each of the possible combinations of
constraints are active at the solution of the MPC optimization.

In this paper, we use a parametric programming technique based on a differential
description of the boundary of the feasible set for the plant state and the free pa-
rameters in predicted inputs. This enables efficient online computation of the active
constraints corresponding to the current plant state and prediction parameters and
hence simplifies the problem of determining a feasible control trajectory and feasible
update direction for prediction parameters. The characterization of the feasible set
is obtained by expressing input predictions as the sum of a stabilizing unconstrained
state feedback law and a linear expansion over a set of exponential basis functions.
Predicted input trajectories are governed by an autonomous system with initial state
given by the plant state augmented by prediction parameters, and the feasible set is
therefore given by the maximal admissible set (as defined in [10]) for the autonomous
prediction system state.

Starting from a feasible but suboptimal point computed offline, the proposed al-
gorithm successively updates the prediction parameters on the basis of the gradient of
the predicted cost subject to input/state constraints. The approach is similar to the
strategy of “early termination” of an optimization routine at a feasible but subopti-
mal point, which is used extensively in commercial MPC algorithms to reduce online
computational burden [19]. The stability properties of MPC algorithms employing
early termination are well known: closed-loop stability is unaffected by the subopti-
mality of predicted input trajectories provided that future feasibility is ensured and
the predicted cost decreases sufficiently rapidly along closed-loop trajectories [18, 21].
However, in this paper, we make further use of the analysis of the closed-loop conver-
gence of the predicted cost in order to derive update laws for prediction parameters
which steer the closed-loop system asymptotically to a point satisfying the conditions
for constrained optimality.
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The current paper extends the algorithm proposed in [4] in respect of both the
detection of active constraints and the prediction parameter update law. Here we
make explicit use of the convexity of the feasible set to derive a simpler algorithm
for constraint detection based on the intersections of the boundary of this set with a
sequence of linear subspaces. Furthermore, we characterize the prediction parameter
update law in terms of a simplified subproblem and describe an efficient method for
its solution.

The paper is organized as follows. Section 2 defines the control problem and gives
the autonomous formulation of prediction dynamics. Sections 3 and 4 describe the
feasible set and the method of online constraint detection. The prediction parameter
update law and its closed-loop optimality properties are described in section 5, and
simulation examples are presented in section 6.

2. Prediction dynamics. Consider the linear plant dynamics described by the
model

ẋ(t) = Amx(t) +Bmu(t) ∀t ≥ 0,(1)

where x ∈ R
nx and u ∈ R

nu is the input. This paper is concerned with optimal
regulation of (1) subject to input constraints of the form

u ∈ U , U =
{
u; U ≤ u(t) ≤ U, U ′ ≤ u̇(t) ≤ U ′ ∀t ≥ 0

}
.(2)

Note that the approach described below is also applicable to systems with polytopic
state constraints and that tracking problems can be handled analogously. The control
law is developed with the objective of approximating the solutions of the optimization
problem

ût

minimize J(t), J(t) =

∫ ∞

0

(
x̂Tt (τ)Qx̂t(τ) + ûTt (τ)Rût(τ)

)
dτ, Q ≥ 0, R > 0,

subject to ˙̂xt(τ) = Amx̂t(τ) +Bmût(τ) ∀τ ≥ 0, x̂t(0) = x(t),
ût ∈ U .

(3)

Here x̂t and ût are predictions at time t of the plant state and input on the interval
[t,∞), and to ensure the existence of a stabilizing solution to (3) for some nontrivial set
of initial plant states, we assume that (Am, Bm, Q

1/2) is controllable and observable.
We define a continuous-time receding horizon control law by setting u(t) = ût(0),
where ût is determined continuously in t on the basis of a gradient descent algorithm.

To make the constrained optimization (3) tractable, we restrict the predicted
input ût to a finite-dimensional class. In order to avoid numerical sensitivity in pre-
dictions, this class is chosen to include a control law, which stabilizes the plant in
the absence of constraints. Furthermore, it is often desirable to include the optimal
control for the unconstrained dynamics (1) in the prediction class since this necessar-
ily becomes feasible with respect to (3) at some future time under any control law
which asymptotically stabilizes the constrained plant. Input predictions are therefore
specified as

ût(τ) = Kx̂t(τ) + Φ(τ)c(t) ∀τ ≥ 0,(4)

where ût = Kx̂t is the solution of the following linear-quadratic problem: minimizeût
J(t)

subject to ˙̂xt(τ) = Amx̂t(τ) + Bmût(τ) for all τ ≥ 0, x̂t(0) = x(t). Also, c ∈ R
nc
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is a vector of prediction parameters, and Φ : R → R
nu×nc is a matrix of fixed basis

functions.
The stability of the receding horizon control law proposed in this paper is based

on a guarantee of the feasibility of (3) given past feasibility. This in turn is ensured if
the input prediction class employed at each instant t contains the extension to time t
of the prediction associated with the input implemented at a previous instant t − δ,
δ > 0 since this satisfies constraints by assumption. Appendix A shows that this
condition, applied in the limit as δ → 0 to avoid conflict with the rate constraints
of (2), is satisfied by the linear expansion of (4) if and only if the basis functions Φ
have the exponential form

Φ(τ) = Φ(0)eAφτ ∀τ ≥ 0,(5)

for some Aφ ∈ R
nc×nc .

The predictions implied by (4) and (5) are governed by an autonomous system of
order n = nx + nc and are given by

ût(τ) = GeAτz(t), G =
[
Φ(0) K

]
,

z(t) =

[
c(t)
x(t)

]
, A =

[
Aφ 0

BmΦ(0) Am +BmK

]
.

(6)

The choice of Aφ affects both the limits on achievable performance and the set of
stabilizable plant states under a receding horizon control law based on the predictions
of (6). Here we simply note that Aφ must be strictly Hurwitz in order that the
prediction dynamics are stable, and the eigenvalues of Aφ should be chosen so that
the maximum distance between the feedback law Kx̂t for any initial plant state x and
the function space spanned by the elements of Φ is in some sense minimized.

3. Admissible set. The (maximal) admissible set for the prediction system (6)
under the constraint ût ∈ U is defined by

Ω =
{
z; U ≤ GeAτz ≤ U, U ′ ≤ GAeAτz ≤ U ′ ∀τ ≥ 0

}
.(7)

This set is central to the receding horizon control problem since it consists of all
prediction system initial states for which the constraint ût ∈ U is satisfied. The
constrained optimization of predicted performance at time t, therefore, corresponds
to the minimization of J(t) over the prediction parameters c in the intersection of
Ω with the subspace

{
z ∈ R

n; [0 Inx ]z = x(t)
}

(where Inx denotes the identity in
R
nx×nx). This section gives a parametric description of the admissible set boundary,

denoted by ∂Ω, in terms of the prediction times τ at which ût(τ) reaches constraints.
Clearly, (7) is the intersection of the admissible sets associated with each of the

individual constraints u ≥ U , u ≤ U , u̇ ≥ U ′, u̇ ≤ U ′
. For simplicity we consider

only a single constraint on the ith element of u in this section and in section 4 and
accordingly redefine Ω as

Ω =
{
z; geAτz ≤ u ∀τ ≥ 0

}
,

where g is the ith row of G and u is the ith element of U . In addition, we assume that
(g,A) is observable; this assumption involves no loss of generality since the following
arguments apply to the observable subspace alone in the case that (g,A) contains
unobservable modes.
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Noting that Ω can be equivalently expressed in terms of the intersection

Ω =
⋂

τ∈[0,∞)

{
z; geAτz ≤ u},

the following properties are immediately obvious:
(P1) Ω is convex.
(P2) z ∈ ∂Ω only if geAτz = u for some τ ≥ 0.
(P3) (geAτ )T is normal to ∂Ω at a point z ∈ ∂Ω such that geAτz = u.

Property (P3) is the basis of the method described in section 5 of adapting the
prediction parameters c(t) so that the prediction system (6) converges asymptotically
to the conditions for optimality with respect to (3). While constraints are inactive (i.e.,
while the initial prediction system state z(t) lies in the interior of Ω), this approach
adapts c(t) via ċ(t) in the direction of the gradient of J(t). Alternatively, whenever
z(t) lies in the boundary of Ω, satisfaction of the constraint ût ∈ U is ensured by
specifying ċ(t) as a function of the gradient of J(t) projected into the subspace of
R
n which is tangent to ∂Ω at z(t). The required projection is determined from (P3)

and the prediction times τ corresponding to active constraints, namely the values of
τ such that geAτz(t) = u.

Active constraints can be detected by tracking points ξ(t) lying in the boundary
of Ω and the corresponding values of τ(t) satisfying geAτ(t)ξ(t) = u, where ξ(t) is
such that z(t) ∈ ∂Ω if and only if z(t) = ξ(t). This approach, which is described in
section 4, is based on (P2) and the additional property that Ω is positively invariant
for the prediction dynamics (6). Specifically, the positive invariance of Ω implies that
a point z ∈ ∂Ω such that geAτz = u for some τ > 0 must also satisfy gAeAτz = 0, and
z, therefore, lies on a trajectory of (6) which is tangent to the hyperplane

{
z; gz = u

}
.

Defining G1 as the set of trajectories of (6) that are tangent to
{
z; gz = u

}
so that

G1 =
{
z; geAτz = u, gAeAτz = 0, τ ≥ 0

}
,

we therefore have the following additional property:
(P4) ∂Ω ⊂ {z; gz = u

} ∪ G1.
Property (P4) allows the active constraints associated with a given prediction system
state z(t) to be determined by checking whether gz(t) = u or z(t) ∈ G1.

4. Constraint detection. This section describes a mechanism for determining
the set of active constraints as the prediction parameters are adapted in continuous
time. As in section 2, for simplicity we consider here a single constraint in the form
of an upper bound u on an element of u. The approach is based on tracking points
in the state-space of the prediction system (6) lying in the set G1 or the hyperplane{
z; gz = u

}
. Before giving the details of the method, we first determine the smooth-

ness properties of G1.
From the total derivatives of geAτz and gAeAτz, the tangent vector (dz, dτ) to

G1 (considered as a hypersurface in R
n × R

+) at (z, τ) ∈ G1 satisfies

geAτ dz + gAeAτz dτ = geAτ dz = 0,
gAeAτ dz + gA2eAτz dτ = 0.

For any dz ∈ R
n, it is possible to find dτ satisfying the second equation whenever

gA2eAτz = 0. The first equation, therefore, implies that the normal vector to G1

(considered as a hypersurface in R
n) is given by (geAτ )T at any point z ∈ G1 such
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Fig. 1. Example of the intersection of the admissible set Ω with the z1, z2-plane for a prediction
system of order n = 3 with constraint u = 1. The boundary ∂Ω consists of points lying in G1 (solid
line) and the hyperplane {z; gz = u} (dashed line). Also shown are the following: A is an initial
prediction system state z ∈ G1 such that gz = u and gAz = 0; B is a state z ∈ G1 satisfying
geAτ1z = geAτ4z = u and gAeAτ1z = gAeAτ4z = 0 for some τ1, τ4 > 0; C is a state z ∈ G2
satisfying geAτ2z = u and gAeAτ2z = gA2eAτ2z = 0 for some τ2 > 0; D is a state z ∈ G1 satisfying
gz = geAτ3z = u and gAeAτ3z = 0 for some τ3 > 0; where 0 < τ1 < τ2 < τ3 < τ4.

that gA2eAτz = 0, which is in agreement with properties (P3) and (P4). From the
second equation, we have

∂τ

∂z
= − gAeAτ

gA2eAτz
,

and by the implicit function theorem, we have a value of τ such that (z, τ) ∈ G1 is,
therefore, a smooth (C∞) function of z provided that gA2eAτz = 0. Denoting G2 as
the set

G2 =
{
z; geAτz = u, gAeAτz = 0, gA2eAτz = 0, τ ≥ 0

}
,

it follows that (geAτ )T is a smooth function of z for all z ∈ G1−G2, and G1 is, therefore,
a smooth (n−1)-dimensional hypersurface in R

n at every point z ∈ G1−G2. A similar
argument shows that G2 has dimension less than or equal to n− 2, and G2, therefore,
corresponds to a cusp in G1 in R

n. This situation is illustrated graphically in Figure 1.
More generally, define Gk by

Gk =
{
z; geAτz = u, gAeAτz = 0, . . . , gAkeAτz = 0, τ ≥ 0

}
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for k = 1, 2, . . . , n− 1. Then it is clear that

G1 ⊃ G2 ⊃ · · · ⊃ Gn−1,

and Appendix B shows that Gk is locally a smooth (n− k)-dimensional hypersurface
in R

n at every point z ∈ Gk −Gk+1 for k = 1, 2, . . . , n− 2. Furthermore, Gn−1, which
consists of a single trajectory of (6), is everywhere smooth and of dimension 1.

The method of detecting active constraints is based on tracking the points of
intersection with ∂Ω of a linear subspace L1, containing z, defined by

L1 =
{
ξ; V1(ξ − z) = 0

}
.

Here V1 ∈ R
n−1×n can be chosen arbitrarily subject to the requirement that rank(V1) =

n− 1. The convexity of Ω ensures that a point z ∈ Ω lies in the boundary ∂Ω if and
only if z coincides with the point of intersection of L1 with ∂Ω. From property (P4),
it follows that the active constraints can be determined from the intersection points
L1 ∩ G1 and L1 ∩

{
z; gz = u

}
. Using convexity arguments, we show below that the

intersection points L1 ∩ {G1 − G2} are continuous functions of z and can therefore
be tracked in continuous time as z varies in Ω − ∂Ω. However, it is clear from the
preceding discussion that L1 ∩ G1 can be discontinuous whenever L1 ∩ G1 ∈ G2, and
for this reason it is also necessary to detect nonempty intersections of L1 with G2.
The existence of points of intersection L1 ∩ G2 can in turn be determined from the
intersections of G2 with a linear subspace L2, where

L2 =
{
ξ; V2(ξ − z) = 0

}
and V2 consists of (say) the first n− 2 rows of V1; and it can likewise be shown that
L2∩G2 is continuous if L2∩G2 /∈ G3. The remainder of this section, therefore, derives
an algorithm for stable tracking of the intersections Lk ∩ Gk, k = 1, . . . , n − 1, as z
varies in Ω, where Lk is defined as

Lk =
{
ξ; Vk(ξ − z) = 0

}
and Vk ∈ R

n−k×n consists of the first n− k rows of Vk−1 for k = 2, . . . , n− 1.
To determine the points of intersection of L1 with G1, let W1 lie in the kernel of

V1. Then a point ξ ∈ L1 is a member of G1 if and only if

ξ = z +W1α

{
geAτW1α = u− geAτz,
gAeAτ (z +W1α) = 0

for some τ ≥ 0 and α ∈ R. If z lies in the interior of Ω, then geAτz < u by definition,
and it follows that geAτW1 = 0 for any τ corresponding to an intersection point
L1 ∩ G1. Therefore, ξ ∈ L1 ∩ G1 if and only if ξ = z +W1(u− geAτz)/geAτW1, where
τ is a nonnegative solution of

gAeAτ
[
z +W1(u− geAτz)/geAτW1

]
= 0.

The following theorem generalizes this argument for the case of k = 2, . . . , n− 1.
Theorem 4.1. Let the columns of Wk form a basis for the kernel of Vk, and, for

given τ ∈ R, define Mk by

Mk =




g
gA
...

gAk−1


 eAτ .
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Then, for any z ∈ Ω− ∂Ω, ξ ∈ Lk ∩ Gk if and only if ξ = z +Wkα, where

α = (MkWk)−1(ue1 −Mkz), e1 =
[
1 0 · · · 0

]T ∈ R
k,(8)

and τ is a nonnegative solution of

gAkeAτ
[
z +Wk(MkWk)−1(ue1 −Mkz)

]
= 0.(9)

Proof. At ξ ∈ Lk ∩ Gk−1 we have ξ = z +Wkα, and MkWkα = ue1 −Mkz for
some τ ≥ 0. Since an intersection point Lk ∩Gk necessarily lies in Gk−1, a solution for
α must exist. Furthermore, the assumption that z ∈ Ω− ∂Ω implies that Mkz = ue1,
and it follows that rank(MkWk) = k. Therefore, every intersection point Lk ∩ Gk is
given by z +Wkα, where α is defined by (8) and τ ≥ 0 satisfies (9).

We next determine the continuity properties of the intersections Lk ∩ Gk by con-
sidering the derivatives with respect to z of α in (8) and τ satisfying (9).

Theorem 4.2. For all z ∈ Ω−∂Ω, an intersection point Lk ∩Gk is a continuous
function of z if and only if Lk ∩ Gk /∈ Gk+1 for k = 1, . . . , n− 2; and the intersection
Ln−1 ∩ Gn−1 is a continuous function of z.

Proof. The derivatives with respect to z of α satisfying (8) and solutions τ to (9)
are given by

∂α

∂z
= −(MkWk)−1Mk,(10a)

∂τ

∂z
= − gAkeAτ

gAk+1eAτ (z +Wkα)

[
I−Wk(MkWk)−1Mk

]
.(10b)

From Theorem 4.1, MkWk in (10a) and (10b) has full rank if z lies in the interior of
Ω. It follows that α and τ are continuous functions of z provided that gAk+1eAτ (z +
Wkα) = 0, which is equivalent to Lk ∩ Gk /∈ Gk+1. In the special case of k = n − 1,
α and τ are continuous functions of z for all z ∈ Ω − ∂Ω since gAneAτ (z +Wkα) is
necessarily nonzero due to the observability of (g,A).

Remark 4.3. Theorem 4.2 shows that, for k = 1, . . . , n − 2, the intersection
of Lk with Gk as z varies continuously in the interior of Ω can be discontinuous if
and only if Lk ∩ Gk ∈ Gk+1. In fact, a nonempty intersection of Lk with Gk+1 is
precisely the condition under which new intersection points Gk ∩ Lk are created or
existing intersections Gk∩Lk disappear since Gk+1 constitutes a cusp in Gk. However,
a consequence of Theorem 4.2 is that changes in the number of intersections Lk ∩ Gk
can be detected given a knowledge of the intersection points Lk+1 ∩ Gk+1: from the
definition of Lk+1, a point z+Wk+1α ∈ Lk+1∩Gk+1 is coincident with Lk if and only
if eTk+1α = 0 (where ek = [0 0 · · · 1]T ∈ R

k).
In order to track an intersection point Lk ∩ Gk, it is sufficient to determine the

corresponding prediction time τ satisfying (9) since ξ ∈ Lk∩Gk can then be computed
using ξ = z + Wkα and (8). In the absence of disturbances, this could be done
by solving (9) for z = z(0) offline and integrating τ̇ = (∂τ/∂z)ż online. However,
this approach is likely to be numerically unstable, and we propose instead a stable
adaptation law of the form

τ̇ = −gA
keAτ (

[
I−Wk(MkWk)−1Mk

]
ż + γτ (z +Wkα))

gAkeAτ
[
I−Wk(MkWk)−1Mk

]
A(z +Wkα)

,(11)

where α is given by (8) and γτ > 0 is an adaptive gain.
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Theorem 4.4. Under the adaptation law (11), gAkeAτ
[
z+Wk(MkWk)−1(ue1−

Mkz)
]→ 0 exponentially in t.
Proof. Let ξ = z +Wkα, where α is defined for given τ by (8). Then

gAkeAτ
[
z +Wk(MkWk)−1(ue1 −Mkz)

]
= gAkeAτξ,

and it suffices to show that gAkeAτξ → 0 exponentially in t to prove the theorem.
The derivative of ξ with respect to t is given by ξ̇ = ż+Wkα̇, and, differentiating (8),

α̇ = −(MkWk)−1Mkż − (MkWk)−1MkA
[
z +Wk(MkWk)−1(ue1 −Mkz)

]
τ̇

= −(MkWk)−1Mk(ż +Aξτ̇),

we therefore have ξ̇ =
[
I−Wk(MkWk)−1Mk

]
ż −Wk(MkWk)−1MkAξτ̇ . Hence

d

dt
(gAkeAτξ) = gAkeAτ ξ̇ + gAk+1eAτξτ̇

= gAkeAτ
[
I−Wk(MkWk)−1Mk

]
ż

+ gAkeAτ
[
I−Wk(MkWk)−1Mk

]
Aξτ̇ ,

and since τ̇ as defined in (11) can be expressed as

τ̇ = −gA
keAτ [I−Wk(MkWk)−1Mk]ż + γτgA

keAτξ

gAkeAτ [I−Wk(MkWk)−1Mk]Aξ
,

it follows that d(gAkeAτξ)/dt = −γτgAkeAτξ for all t ≥ 0.
Remark 4.5. A finite constraint horizon Tcon such that, for any z ∈ Ω, geAτz = u

only if τ ≤ Tcon can be determined using the admissible set approximation approach
described in [10]. Consequently, the active constraint set can be determined from a
finite number of intersection points Lk ∩ Gk corresponding to prediction times τ ∈
[0, Tcon].

Theorem 4.4 is the basis of an algorithm for stable tracking of every intersection
point Lk ∩ Gk, k = 1, . . . , n− 1, corresponding to τ ∈ [0, Tcon] as z(t) varies continu-
ously in Ω. The approach (which is summarized in Algorithm 4.6) involves finding all
solutions to (9) for k = 1, . . . , n− 1 on the interval [0, Tcon] offline and then adapting
these solutions online via (11) in response to the prediction state derivative ż(t). The
appearance of new solutions and the disappearance of existing solutions are handled
via Theorem 4.2 and Remark 4.3.

In particular, let τi be a solution to (9) for z = z(t) and k = ki, and define
αi as the corresponding value of α in (8). Denote the set of all solutions to (9) for
k = 1, . . . , n − 1 such that τi ∈ [0, Tcon] as {(τi)i∈I}. Then Theorem 4.4 shows
that (11) is an asymptotically stable estimator for each τi, i ∈ I, such that τ̇i is well
defined at time t. Alternatively, if τi is discontinuous at time t, then Theorem 4.2
shows that Lki ∩Gki ∈ Gki+1, and, therefore, gAki+1eAτi(z+Wkiαi) = 0 is necessarily
satisfied; in this case, i is removed from the index set I, indicating that the prediction
time τi is no longer to be tracked. On the other hand, from Remark 4.3 and the
continuity of Ln−1 ∩ Gn−1, a new solution on the interval (0, Tcon) to (9) can appear
at time t only if Lki ∩ Gki ∈ Lki−1 (which implies eTkiαi = 0) for some i ∈ I at time
t, and, in this case, a new solution is given by τ = τi for k = ki − 1. Accordingly,
we introduce new indices {i1, i2} into the set I whenever eTkiαi = 0 for some i ∈ I
and set ki1 = ki2 = ki − 1, τi1 = τi − ε, τi2 = τi + ε for some suitably small ε.
Furthermore, to ensure that τi ∈ [0, Tcon] for each i ∈ I, we remove i from I whenever
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τi = 0 and τ̇i < 0 or τi = Tcon and τ̇i > 0. Finally, new intersection points Lk ∩ Gk
corresponding to τ = 0 and τ = Tcon are detected and introduced to the scheme by
continuously monitoring the values of the left-hand side of (9) for τ = 0, τ = Tcon,
and k = 1, . . . , n− 1.

Algorithm 4.6. Offline: Determine the solutions {(τi)i∈I} to (9) for k =
1, . . . , n− 1 satisfying τi ∈ [0, Tcon]. Online at times t ≥ 0:

1. For each i ∈ I:
(a) Compute αi using (8) and τ̇i using (11).
(b) If gAki+1eAτi(z +Wkiαi) = 0, remove i from I.
(c) If eTkiαi = 0, add {i1, i2} to I and define τi1 = τi + ε, τi2 = τi − ε,

ki1 = ki2 = ki − 1.
(d) If τi = 0 and τ̇i < 0, remove i from I.
(e) If τi = Tcon and τ̇i > 0, remove i from I.

2. For τ = 0, and k = 1, . . . , n− 1:
Compute α using (8). If gAk(z +Wkα) = 0 and (∂τ/∂z)ż > 0, add i to I
and define τi = 0, ki = k.

3. For τ = Tcon and k = 1, . . . , n− 1:
Compute α using (8). If gAkeATcon(z +Wkα) = 0 and (∂τ/∂z)ż < 0, add i
to I and define τi = Tcon, ki = k.

Remark 4.7. From property (P4) and Remark 4.5, Algorithm 4.6 enables
z(t) ∈ ∂Ω to be detected by checking the following simple conditions:

(i) αi = 0 for some i ∈ I such that ki = 1.
(ii) gz(t) = u.

Furthermore, the prediction times associated with active constraints are given by τi
if (i) is satisfied or by 0 if (ii) is satisfied.

5. Prediction parameter adaptation. From the definition of Ω, the predic-
tion parameters c∗(t) that minimize J(t) over the prediction class (4) are the solution
of the following problem:

c
minimize J(t)

subject to

[
c
x(t)

]
∈ Ω.

(12)

Below we describe a method of incrementally optimizing performance by adapting the
prediction parameters c(t) online via ċ(t) and specifying the control law as

ċ(t) = Aφc(t) + θ(t),(13a)

u(t) = −kx(t) + φ(0)T c(t),(13b)

where the direction θ(t) of adaptation is chosen according to the gradient of J(t)
subject to the constraint that z(t) remains in Ω. This approach ensures that the
rate of decrease of J(t) is greater than along the prediction system trajectory passing
through z(t) while maintaining the feasibility of the receding horizon optimization
problem. As a result, (13) exponentially stabilizes the plant from any initial condition
x(0) for which a predicted control law of the form (4) is stabilizing (i.e., from any
x(0) for which there exists some c(0) such that z(0) ∈ Ω).

We also show below that this approach guarantees asymptotic convergence of

z(t) to a point z∗(t) =
[
c∗T (t) xT (t)

]T
, which is optimal with respect to (12) for

the given value of x(t), provided the direction θ(t) in which c(t) is adapted satisfies
an optimality criterion. This direction is determined simply by the gradient of J(t)
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if z(t) lies in the interior of Ω and by a projection of the cost gradient into the
subspace tangent to the surface of Ω if z(t) lies in the boundary of Ω. We describe
an efficient method of computing a suitable projection based on a knowledge of the
normal subspace to ∂Ω at z(t). Noting that the normal subspace to ∂Ω at a point
z(t) ∈ ∂Ω can be determined using Algorithm 4.6 and property (P3), the adaptation
law (13a) can be implemented online and, in conjunction with (13b), results in a
receding horizon control law with guaranteed stability and asymptotic convergence to
a solution of (12).

The predicted performance index evaluated along trajectories of (6) is given by
the quadratic form J(t) = zT (t)Pz(t), where P is defined by

PA+ATP = −Q, Q =

[
0 0
0 Q

]
+GTRG.

In the following, we assume that (Q1/2, A) is observable so that P is positive definite;
given that (Am, Bm, Q

1/2) is controllable and observable, this is ensured if (Φ(0), Aφ)
is observable. From (13) we have

ż(t) = Az(t) +

[
θ(t)
0

]
(14)

along closed-loop trajectories, and the derivative of J(t) can therefore be expressed
as

J̇(t) = −zT (t)Qz(t) + [∇cJ(t)]T θ(t),(15)

where ∇cJ(t) denotes the gradient of J with respect to c evaluated at z(t). The
following theorem uses standard monotonicity arguments (see, e.g., [17]) to show
that (13b) asymptotically stabilizes the plant (1) when combined with any adaptation
law of the form (13a) with the property that ∇cJT θ is nonpositive and which ensures
that z(t) remains in Ω at all times t.

Theorem 5.1. If θ(t) in (13a) satisfies [∇cJ(t)]
T
θ(t) ≤ 0 and z(t) ∈ Ω for all

t ≥ 0, then x = 0 is an asymptotically stable equilibrium of the closed-loop system
of (1) under (13b).

Proof. If θ(t) satisfies [∇cJ(t)]
T
θ(t) ≤ 0 and z(t) ∈ Ω, then from (15), J̇(t) ≤

−zT (t)Qz(t) for all t ≥ 0, and it follows that z = 0 is a stable equilibrium of the
closed-loop dynamics (14). The integral of this bound over t ≥ 0 gives∫ ∞

0

zT (t′)Qz(t′) dt′ ≤ J(0)− lim
t→∞J(t),

and since θ(t) is finite for all t by assumption, it follows from Barbalat’s lemma [14]
that limt→∞ zT (t)Qz(t) = 0, which implies that limt→∞ z(t) = 0 due to the observ-
ability of (Q1/2, A).

We define the unconstrained adaptation law by setting

θ(t) = −γc∇cJ(t)(16)

in (13a), where γc > 0 is an adaptation gain. It is easy to show that (16) forces c(t) to
converge exponentially to the unconstrained optimal prediction parameters c = 0, and
provided that γc is sufficiently large, (16) will therefore drive z(t) to the admissible
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set boundary if the unconstrained optimal control u(t) = −kx(t) is initially infeasible.
In order to ensure that z(t) remains in Ω whenever z(t) ∈ ∂Ω and that z(t) converges
to a constrained optimal point z∗(t), a modified adaptation law for c(t) based on a
projection of ∇cJ(t) into ∂Ω is needed.

Before describing the constrained adaptation law, we first give conditions for an
optimal point z∗(t). In the following, we denote the set of (outward) normal vectors
to ∂Ω at a point z ∈ ∂Ω as {(ni)i∈Ia} and define ni,c = [Inc

0]ni for all i ∈ Ia.
Thus in the case of the single input constraint u(t) ≤ u, for example, every i ∈ Ia
corresponds to a prediction time τi ≥ 0 for which geAτiz = u, and ni = (geAτi)T for
all i ∈ Ia.

Lemma 5.2. z(t) = z∗(t) if and only if there exist multipliers λi, i ∈ Ia, satisfying∑
i∈Ia

λini,c = −∇cJ(t),

λi ≥ 0 ∀i ∈ Ia.
(17)

Proof. These are the Kuhn–Tucker (KT) conditions for constrained optimality
applied to problem (12). The necessity of (17) can be shown by considering the effect
on J of a perturbation c = c∗ + δc. If ∇cJ does not lie in the span of {(ni)i∈Ia} or
if λi < 0 for some i ∈ Ia, then there exists a direction s such that nTi,cs ≤ 0 for all

i ∈ Ia and ∇cJT s < 0. A reduction in J can therefore be achieved without violating
constraints by choosing δc = εs for sufficiently small ε > 0, and, in this case, c∗ cannot
be a minimizer of (12). The sufficiency of (17) follows from the convexity of J and of
Ω.

From (15) it can be seen that an adaptation law for c should minimize ∇cJT θ in
order to maximize the rate of convergence of J(t). At a point z(t) ∈ ∂Ω, we require,
in addition, that nTi ż be negative for all i ∈ Ia in order that z(t) remains in Ω.
These criteria are conveniently expressed as a linear program: minimize ∇cJT θ over
θ subject to nTi,cθ ≤ −nTi Az for all i ∈ Ia. However, as a consequence of Lemma 5.2,
the solution of this problem is unbounded for any z = z∗. In order to define a
meaningful optimization on which to base the design of the constrained adaptation
law, we therefore include the additional constraint θTSθ ≤ r2 for some symmetric
positive definite S and r > 0 and consider the following convex subproblem:

θ
minimize ∇cJT θ

subject to nTi,cθ ≤ −nTi Az ∀i ∈ Ia,
θTSθ ≤ r2.

(18)

Introducing Lagrange multipliers λi, i ∈ Ia, and λ0 and defining the Lagrangian
function

L(θ, (λi)i∈Ia , λ
0) = ∇cJT θ +

∑
i∈Ia

λi(n
T
i,cθ + nTi Az) +

1

2
λ0(θTSθ − r2),

the solution θ∗ of (18) is characterized by the conditions

∇θL = ∇cJ +
∑
i∈Ia

λini,c + λ0Sθ = 0,(19a)

λi > 0, nTi,cθ
∗ = −nTi Az ∀i ∈ A∗,(19b)

λi = 0, nTi,cθ
∗ ≤ −nTi Az ∀i ∈ Ia −A∗,(19c)

λ0 ≥ 0, λ0(θ∗TSθ∗ − r2) = 0,(19d)
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where A∗ ⊆ Ia is the set of active constraints at the solution. The following theorem
shows that the solution of the subproblem (18) ensures asymptotic convergence to a
point z∗ satisfying the KT conditions of Lemma 5.2, subject to mild conditions on S
and r.

Theorem 5.3. If S and r > 0 are continuous functions of z and θ(t) = θ∗(t)
in (13a), then z(t) converges asymptotically to z∗(t).

Proof. The solution θ∗ of (18) is also the solution of the QP problem

θ
minimize ∇cJT θ +

1

2
λ0θTSθ

subject to nTi,cθ ≤ −nTi Az ∀i ∈ Ia,
(20)

where λ0 is defined by the optimality conditions (19). From the definition of the
admissible set boundary, we have nTi Az ≤ 0 for all i ∈ Ia, and it follows that θ = 0
satisfies the constraints of (20), which implies that ∇cJT θ∗ + 1

2λ
0θ∗TSθ∗ ≤ 0. Noting

that θ∗TSθ∗ = r2 whenever z = z∗ since the constraint θTSθ ≤ r2 is then necessarily
active, we have

∇cJT θ ≤ −1

2
r2λ0.

The integral of (15) with θ(t) = θ∗(t) therefore gives

1

2

∫ t

0

r2λ0(t′) dt′ ≤ J(0)− J(t).

The right-hand side of this expression is finite, and since λ0 is nonnegative and con-
tinuous (due to the continuous dependence of the constraints and objective of (18)
on z), Barbalat’s lemma shows that λ0 → 0 as t → ∞. Furthermore, from (19a), we
have ∑

i∈Ia

λini,c + λ0Sθ∗ = −∇cJ, λi ≥ 0 ∀i ∈ Ia,

for all t ≥ 0, and λ0 → 0 therefore implies that the conditions of Lemma 5.2 are
satisfied asymptotically.

The solution of (18) is easily computed if {(ni)i∈Ia} consists of a single normal
vector. In practice, this is often the case since the argument of Appendix B shows
that the set of points in ∂Ω at which span{(ni)i∈Ia

} has dimension greater than 1
has zero measure on ∂Ω. However, the computation of θ∗ is nontrivial if {(ni)i∈Ia}
contains several elements and may require a number of iterative steps. To overcome
this difficulty, we make use of the freedom in choice of S to derive an efficiently
computed suboptimal solution which nevertheless ensures convergence to z∗.

The approach is based on decoupling the Lagrange multipliers for the linear con-
straints in (18). Define λ ∈ R

na as the vector of multipliers λi i ∈ Ia and N ∈ R
n×na

as the matrix with columns ni i ∈ Ia, and let Nc = [Inc 0]N ; then (19a) can be
expressed as

NT
c S

−1Ncλ = −NT
c S

−1∇cJ − λ0NT
c θ.

Provided the normal vectors {(ni,c)i∈Ia} are linearly independent, the factorNT
c S

−1Nc
can be diagonalized by defining S−1 in terms of a generalized left inverse of Nc. This
is conveniently done via a QR factorization of Nc:

Nc = Q

[
R
0

]
=
[
Q1 Q2

] [R
0

]
= Q1R,
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where Q ∈ R
nc×nc is orthogonal, R ∈ R

na×na is upper triangular, and Q1 ∈ R
nc×na ,

Q2 ∈ R
nc×nc−na . Then the definition

S−1 = Q1R
−TR−1QT1 +Q2Q

T
2 ⇔ S = Q1RR

TQT1 +Q2Q
T
2

yields λ = −R−1QT1∇cJ −λ0NT θ, and the active set A∗ (defined as the set of indices
of constraints which are active at the solution θ∗) is given simply by

A∗ =
{
i; −eTi (R−1QT1∇cJ − λ0NTAz) > 0

}
(where ei denotes the ith column of the identity Ina).

Computation of λ0 requires a knowledge of λ at the solution, however, and to
avoid this complication we choose a suboptimal active set A ⊇ A∗ as

A = {i; −eTi R−1QT1∇cJ > 0}.(21)

Setting λi = 0 for all i ∈ Ia −A, the corresponding solution for θ is given by

θ = − 1

λ0
Π∇cJ −Q1R

−TEAETAN
TAz,

λ0 =
‖∇cJ‖Π

[r2 − ‖ETANTAz‖2]1/2
,

Π = Q1R
−T (Ina − EAETA)R−1QT1 +Q2Q

T
2 ,

where EA = [(ei)i∈A] and ‖∇cJ‖2Π = ∇cJTΠ∇cJ .
Remark 5.4. The requirement that the normal vectors {(ni,c)i∈Ia

} are linearly
independent can be enforced by removing index i from Ia if the absolute value of the
ith diagonal element of R falls below a threshold.

Defining r2 = γ2
c + ‖ETANTAz‖2 for some adaptation gain γc, the corresponding

constrained adaptation law is given by (13a) with

θ(t) = −γc Π∇cJ(t)

‖∇cJ(t)‖Π −Q1R
−TEAETAN

TAz(t).(22)

This suboptimal choice for θ(t) is shown below to satisfy the conditions for closed-loop
stability of Theorem 5.1 and to ensure asymptotic convergence of z(t) to z∗(t).

Lemma 5.5. The constrained adaptation law defined by (13a) and (22) ensures

that z(t) remains in Ω and that [∇cJ(t)]
T
θ(t) ≤ 0 for all t ≥ 0.

Proof. From the definition of A, we have eTi R
−1QT1∇cJ < 0 if i ∈ A and

eTi R
−1QT1∇cJ ≥ 0 if i ∈ Ia −A. Hence

nTi,cθ =

{ −nTi Az if i ∈ A,
− 1
λ0 e

T
i R

−1QT1∇cJ ≤ 0 ≤ −nTi Az if i ∈ Ia −A,

which implies that nTi ż ≤ 0 whenever z ∈ ∂Ω. Also,

∇cJT θ = −γc‖∇cJ‖Π −∇cJTQ1R
−TEAETAN

TAz ≤ −γc‖∇cJ‖Π(23)

(where nTi Az ≤ 0 for all i ∈ Ia has been used).
Theorem 5.6. Under the constrained adaptation law of (13a) with (22), z(t) is

asymptotically convergent to z∗(t).
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Proof. The integral of (15) with the bound (23) gives

γc

∫ t

0

‖∇cJ(t′)‖Π dt′ ≤ J(0)− J(t),

and since ∇cJ and Π are continuous in z, it follows from Barbalat’s lemma that
Π∇cJ → 0 as t→∞. This implies that −∇cJ →

∑
i∈Ia

λini,c and λ0 → 0. Further-

more, λi = 0 if i ∈ Ia−A and λi−λ0NTAz > 0 if i ∈ A, so conditions of Lemma 5.2
are satisfied asymptotically.

Remark 5.7. As well as providing a feasible gradient descent direction, (22) has
the property that ∇cJT θ = 0 only if θ = 0. From (15), this implies that it is always
possible to construct an exponentially convergent upper bound for J(t). For example,

if θ(t0) = 0, then there must exist t1 > t0 such that J(t) ≤ zT (t0)eA
T (t−t0)P eA(t−t0)z(t0)

for all t ∈ [t0, t1]. On the other hand, this bound clearly holds with equality if θ(t) = 0
for t ∈ [t0, t1]. It follows that (13) ensures exponential convergence z(t) → 0 along
closed-loop trajectories.

The following algorithm summarizes the receding horizon control law, which by
Theorem 5.1 and Remark 5.7 is exponentially stable and from Theorem 5.6 is asymp-
totically optimal with respect to (12).

Algorithm 5.8. At t = 0: Perform the offline calculations of Algorithm 4.6 and
find c(0) such that z(0) ∈ Ω. At times t ≥ 0:

1. Update I via Algorithm 4.6 and determine Ia using Remark 4.7.
2. Update c(t) using (13a) and (16) if Ia = ∅ or (22) otherwise.
3. Implement u(t) = Kx(t) + Φ(0)T c(t).

Remark 5.9. The solution (22) for θ resembles part of a single iteration of a
primal active set method for QP (see, e.g., [11]). This observation emphasizes the
computational advantages of Algorithm 5.8; online computational load is reduced sig-
nificantly by exploiting prior knowledge of the dependence of the active constraint set
on the plant state. The approach proposed in [2] is similar in that the optimal active
constraint sets corresponding to different regions of state-space are computed offline
so that the online computation reduces to checking in which region the plant state
lies. However, Algorithm 5.8 has the further advantage of an explicit characterization
of the state-space in terms of active constraints, and this results in lower online com-
putational burden than the approach of [2], which can require checking large numbers
of linear inequalities online. This reduction in computational load is gained at the
expense of suboptimality since Algorithm 5.8 can only ensure asymptotic convergence
to a solution of the receding horizon optimization.

Remark 5.10. The closed-loop cost, J(t), is defined as the objective of (3) evalu-
ated along closed-loop trajectories under Algorithm 5.8 as follows:

J(t) =

∫ ∞

t

(xT (t′)Qx(t′) + uT (t′)Ru(t′)) dt′ =

∫ ∞

t

zT (t′)Qz(t′) dt′(24)

and can be expressed using (15) as

J(t) = J(t) +

∫ ∞

t

[∇cJ(t′)]T θ(t′) dt′.

Although Algorithm 5.8 is based on the MPC strategy of minimizing the predicted
cost J(t), the policy of minimizing ∇cJT θ also turns out to be optimal with respect to
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the constrained minimization of J(t) under certain conditions which we now discuss.
Substituting for ∇cJT θ using (15), the minimization of (18) is equivalent to

min
θ

{∇JT ż + zTQz subject to (14) and nTi ż ≤ 0, i ∈ Ia
}

= ∇cJT θ∗.(25)

This is an HJB equation which shows that ∇J is the gradient of the optimal closed-
loop cost for the dynamics of (14) subject to z ∈ Ω and that θ∗ is the corresponding
optimal value of θ [1] whenever ∇cJT θ∗ = 0. This condition requires that z = z∗ and
nTi Az = 0 for all i ∈ A∗ (i.e., all active constraints correspond to predicted trajectories
that are tangent at future points in time to their constraint boundaries).

6. Simulation examples. This section describes example simulations which
compare the performance and computational load of Algorithm 5.8 with QP-based
MPC strategies. Given the plant state-space realization (Am, Bm, Cm), the predicted
performance cost is defined by (3), with

Q = CTmCm, R = 1.

The matrix Aφ is chosen in both examples as

Aφ = diag{−σ1, . . . ,−σnc
}, σi > 0,

with σ1, . . . , σnc logarithmically spaced on the interval [ω3dB/
√
nc,
√
ncω3dB], where

ω3dB is the 3dB bandwidth of the closed-loop system under u = Kx; and Φ(0) =
[ 1 . . . 1 ] is employed. The initial point z(0) ∈ Ω is determined in each simulation
by choosing c(0) as the center of an ellipsoidal bound (derived from a small number of
discrete samples of the continuous-time constraints) on the set {c; [ cT xT (0) ]T ∈
Ω}.

Example 1. Consider the third order plant

Am =


−0.50356 2.4417 −1.8849

8 0 0
0 2 0


 , Bm =


2

0
0


 , Cm =


−0.79081

0.10112
0.94243



T

subject to input constraints

−1 ≤ u ≤ 1

for which the unconstrained LQ-optimal feedback gain is k = [ 5.0662 3.4678 0.3297 ].
The unconstrained closed-loop system under u = −kx has poles at {−5.3073,−2.7261±
0.7773i}, and we choose a prediction class of dimension nc = 3 and set Aφ =
diag{−1.6207,−2.8072,−4.8622}.

The performance of Algorithm 5.8 is compared with a QP-based MPC law de-
scribed in [5] in Figures 2 and 3 and in Table 1. The QP-based controller uses the
same parameterization of predicted inputs as Algorithm 5.8 (i.e., the exponential basis
functions of (4)–(5), with nc = 3 and Aφ as defined above) but solves the correspond-
ing receding horizon optimization (12) periodically with period T = 0.1. In order
to formulate (12) as a QP problem, this algorithm approximates the continuous-time
constraints (2) by a set of discrete-time constraints which are artificially tightened to
ensure the satisfaction of (2) at all prediction times.

The input and output responses of Figure 2 show that Algorithm 5.8 with γc = 1
gives poorer performance than the QP-based algorithm. This is due to the use of a
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Fig. 2. Input and output responses for Example 1. Solid line: γc = 100. Dashed-dotted:
γc = 1. Dashed: Exponential basis functions and optimization via QP.

very suboptimal value for z(0), as can be seen from the difference in initial prediction
costs J(0) (Figure 3(a)). In fact, z(t) remains in the interior of Ω for all t ≥ 0 if
γc = 1 in this example since ‖∇cJ‖Π = ‖∇cJ‖ at all times (Figure 3(c)). However,
the use of γc = 100 results in faster convergence of J(t) than is achieved by the QP-
based algorithm (Figure 3(a)) and, moreover, forces z(t) to converge to a point in the
boundary of Ω satisfying the KT conditions for constrained optimality for 0.15 � t �
0.3 (Figure 3(c)), at which point the unconstrained optimal control becomes feasible.

Closed-loop performance is measured in Table 1 by the value of the closed-loop
cost

J =

∫ ∞

0

[xT (t)Qx(t) + uT (t)Ru(t)] dt.

The computation times refer to average CPU times required by the parameter update
law in Algorithm 5.8 and the QP solver (initialized using “warm starts”) in the QP-
based algorithm, with both controllers implemented in Matlab on a 440MHz Sun
Ultra workstation. The computational load of Algorithm 5.8 per iteration is clearly
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Fig. 3. Prediction costs (a), and evolution of ∇cJT θ (b) and ‖∇cJ‖Π/‖∇cJ‖ (c) for Exam-
ple 1. Solid line: γc = 100. Dashed-dotted: γc = 1. Dashed: Exponential basis functions and
optimization via QP.

Table 1
Closed-loop costs and computation times for Example 1.

Cost J CPU time (ms)

γc = 1 1.3558 0.92
Alg. 5.8 γc = 10 0.4496 0.76

γc = 100 0.4169 1.14
QP – exponential BF 0.6959 240

much lower than that of the QP-based algorithm.
Example 2. Consider the fifth order plant

Am =



−8.06 73.10 9.82 9.48 29.59
−122.6 40.50 −41.54 −40.11 −125.2
−2.03 3.22 −12.16 4.76 −7.06
1.46 −2.32 −5.34 −8.18 5.08
4.06 −6.44 4.69 4.53 5.69


 , Bm =




0.34
−1.43
−0.08
0.06
0.16


 , Cm =




0.0028
−0.0008
−113.30
99.09
−92.92



T
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Fig. 4. Inputs and outputs for Example 2. Solid line: Algorithm 5.8 with γc = 100. Dashed:
Exponential basis functions and QP optimization. Dashed-dotted: Discrete-time inputs and QP
optimization.

subject to input constraints

−2 ≤ u ≤ 2.

The unconstrained LQ gain is k = [ 25.19 −39.93 29.06 28.07 87.58 ], and the
corresponding closed-loop poles are located at {−8.43,−9.81±7.03i,−16.57±86.58i}.
For a prediction class of dimension nc = 4, we choose Aφ = diag{−1.89,−3.78,−5.66,
−7.55}.

Figures 4 and 5 and Table 2 compare the performance of Algorithm 5.8 with
the QP-based receding horizon control law described in Example 1 and also with
a discrete-time MPC law employing piecewise-constant predicted input trajectories
centered on the unconstrained discrete-time LQ-optimal controller. Both QP-based
algorithms use “warm starts” determined from the solution to the previous optimiza-
tion problem. This control problem is considerably more challenging than Example 1
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Fig. 5. The evolution of closed-loop costs J(t) for Example 2. Solid line: Algorithm 5.8 with
γc = 100. Dashed: Exponential basis functions and QP optimization. Dashed-dotted: Discrete-time
inputs and QP optimization.

Table 2
Closed-loop costs and computation times for Example 2.

Cost J CPU time (ms)

Alg. 5.8, nc = 4 1.0270 1.37
QP – exponential BF, nc = 4 1.0532 380
QP – piecewise constant BF, nc = 10 3.2175 232

since the plant has an almost uncontrollable unstable mode. For a sample period of
T = 0.05, the discrete-time algorithm needs at least 10 degrees of freedom to stabilize
the plant, and its closed-loop performance is considerably worse than the two other
algorithms, which are centered on a continuous-time LQ-optimal control law. The
long prediction horizon required in this example makes the QP-based algorithm em-
ploying exponential basis functions computationally expensive. On the other hand,
Algorithm 5.8 combines good performance with low computational burden.

Appendix A. Conditions on predictions for feasibility given past fea-
sibility. This section determines conditions on the structure of the class of input
predictions given by (4) in order that the optimization problem (3) remains feasi-
ble at all times t > 0 given feasibility at t = 0. The receding horizon control law
u(t) = ût(0) is implemented for all t ≥ 0, where ût has the form (4). If the input to
the plant on the interval [t− δ, t) for some δ > 0 is u(t+ τ) = ût−δ(τ + δ), τ ∈ [−δ, 0),
then feasibility at t is guaranteed if the prediction defined by ût(τ) = ût−δ(τ + δ),
τ ≥ 0, is realizable by the prediction class of (4) since ût−δ ∈ U by assumption.
The following theorem determines an equivalent condition on Φ, the matrix of basis
functions in the linear expansion of (4).

Theorem A.1. If u(t + τ) = ût−δ(τ + δ) is implemented for all τ ∈ [−δ, 0) for
some δ > 0, then at time t the prediction class (4) contains the signal {ût−δ(τ+δ), τ ≥
0} if and only if M : R→ R

nc×nc exists satisfying

Φ(τ + δ) = Φ(τ)M(δ) ∀τ ≥ 0.(26)
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Proof. In the absence of disturbances, we have x(t) = x̂t−δ(δ), so ût−δ can be
expressed using (4) as

ût−δ(τ + δ) = Kx̂t(τ) + Φ(τ + δ)c(t− δ) ∀τ ≥ 0.

The prediction class of (4), therefore, contains {ût−δ(τ + δ), τ ≥ 0} if and only if c(t)
exists satisfying

Φ(τ)c(t) = Φ(τ + δ)c(t− δ) ∀τ ≥ 0.(27)

If Φ satisfies (26), then (27) holds for any c(t − δ) ∈ R
nc with the choice c(t) =

M(δ)c(t− δ). To show the necessity of (26), suppose that Φ satisfies

Φ(τ + δ) = Φ(τ)M(δ) + Ψ ∀τ ≥ 0,(28)

for some Ψ ∈ R
nu×nc and that (27) holds for some c(t) ∈ R

nc . Assuming, without loss
of generality, that Φ is full rank and solving (27) for c(t) for the case when nu < nc,
we have

c(t) = M(δ)c(t− δ) + ΦT (τ)
(
Φ(τ)ΦT (τ)

)−1
Ψc(t− δ) + Φ⊥(τ)γ,

where Φ⊥(τ)γ is a matrix representation of the kernel of Φ(τ). On the other hand, if
nu < nc, then Φ̃T⊥(τ)Ψc(t− δ) = 0 must hold in order that (27) has a solution for c(t)

(where the columns of Φ̃⊥(τ) form a basis for the kernel of ΦT (τ)), and the solution
is then given by

c(t) = M(δ)c(t− δ) +
(
ΦT (τ)Φ(τ)

)−1
ΦT (τ)Ψc(t− δ).

However, c(t) is independent of τ , and it follows that either γ = 0 and Ψc(t− δ) = 0
or Φ(τ) is constant. For nonconstant Φ and arbitrary c(t − δ), (27) therefore holds
for some c(t) only if Ψ = 0 in (28).

Applying (26) in the limit as δ → 0, with the additional condition Φ ∈ C1 (which is
necessary due to the rate constraints of (2)), we have M(0) = I and Φ̇(τ) = Φ(τ)Ṁ(0)
for all τ ≥ 0. It follows that

Φ(τ) = Φ(0)eAφτ ∀τ ≥ 0,

where Aφ = Ṁ(0).

Appendix B. Dimension of Gk. This section determines the dimension and
smoothness of the hypersurface defined by

Gk = {z ∈ R
n; geAτz = u, gAieAτz = 0, i = 1, . . . , k, τ ≥ 0}

for k = 1, . . . , n− 1.
Theorem B.1. At every point z ∈ Gk−Gk+1, Gk is locally a smooth hypersurface

in R
n of dimension n− k for k = 1, . . . , n− 2.
Proof. For any z ∈ Gk, there exists τ ≥ 0 such that fi(z, τ) = 0 for i = 0, . . . , k,

where

fi(z, τ) =

{
geAτz − u, i = 0,
gAieAτz, i = 1, . . . , k.
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Let F denote the Jacobian matrix

∂f0/∂z ∂f0/∂τ

...
...

∂fk/∂z ∂fk/∂τ


 ;

then, for all (z, τ) ∈ Gk × R such that fi(z, τ) = 0, i = 0, . . . , k, F is given by

F (z, τ) =




geAτ 0
...

...
gAk−1eAτ 0
gAkeAτ gAk+1eAτz


 .

The observability of (g,A), therefore, implies that rank(F (z, τ)) = k+1 for all (z, τ) ∈
Gk×R such that fi(z, τ) = 0, i = 0, . . . , k, and gAk+1eAτz = 0. Since fi, i = 0, . . . , k,
are C∞ functions (i.e., infinitely continuously differentiable with respect to z and τ),
it follows from the implicit function theorem that Gk−Gk+1 is a smooth hypersurface
in R

n of dimension n − k. Specifically, let zT = [zT1 zT2 ], where z2 ∈ R
k. Then it is

clear that the Jacobian matrix 

∂f0/∂z2 ∂f0/∂τ

...
...

∂fk/∂z2 ∂fk/∂τ




is nonsingular for all (z, τ) ∈ Gk × R such that fi(z, τ) = 0, i = 0, . . . , k, and
gAk+1eAτz = 0; and z2, τ , therefore, are C∞ functions of z1 by the implicit function
theorem. This implies that Gk is a smooth hypersurface parameterized by the n − k
coordinates of z1 in a neighborhood of every point z ∈ Gk − Gk+1.

Corollary B.2. Gn−1 is a smooth 1-dimensional hypersurface in R
n.

Proof. For k = n − 1, the argument of Theorem B.1 shows that Gn−1 is smooth
and one-dimensional for all (z, τ) ∈ Gn−1 ×R such that fi(z, τ) = 0, i = 0, . . . , n− 1,
and gAneAτz = 0. However, for any z ∈ R

n, there is no value of τ ∈ R such that
fi(z, τ) = 0, i = 0, . . . , n− 1, and gAneAτz = 0, due to the observability of (g,A). It
follows that Gn−1 is everywhere smooth and of dimension one.
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Abstract. The purpose of this paper is to state sufficient conditions for the stabilizability
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Introduction. The stabilization of deterministic nonlinear control systems has
been widely studied in past years by many authors. Among all of the results proved in
this area of research, we wish to outline that of Jurdjevic–Quinn [3], giving stabilizing
state feedback laws for deterministic systems affine in the control provided the control
Lie algebra of the system has full rank. This result has been the starting point for
different works on this topic since it appears that many engineering systems are of
“Jurdjevic–Quinn type” (see [6], [8], or [7], for example). Note that the result exposed
in [3] has been revisited in [7], where a more easily computable rank condition for
stabilizability is stated.

A stochastic version of Jurdjevic–Quinn’s theorem has been established by
Florchinger [2] for stochastic differential systems, the drift of which is affine in the
control. In fact, it is proved in [2] that the stabilizer given in [3] for the deterministic
part of the system remains valid in the stochastic context provided the system coef-
ficients satisfy a rank condition, which can easily be deduced from that stated in [7].
An extension of this result has been obtained by Chabour and Oumoun in [1], where
it is proved that under the stabilizability condition provided in [2] one can compute
stabilizing state feedback laws for stochastic differential systems in the form

xt = x0 +

∫ t

0

(b(xs) + uf(xs)) ds+

∫ t

0

σ(xs)dws +

∫ t

0

ug(xs)dw̃s,

where (wt)t≥0 and (w̃t)t≥0 are two independent Wiener processes.
The technique used in the last two cited papers is based on the stochastic Lya-

punov analysis developed by Khasminskii [4] and the stochastic version of La Salle’s
invariance principle proved by Kushner [5]. However, in the proofs of the main results
in [2] and [1], all of the information given by applying Itô’s formula, when using the
stochastic La Salle theorem, has not been used. The aim of this paper is to take this
fact into account to improve the stabilizability conditions stated in [2] and [1] in order
to be able to design stabilizers for a wider class of stochastic differential systems than
that considered in [2] and [1].

∗Received by the editors April 6, 2000; accepted for publication (in revised form) November 1,
2001; published electronically March 27, 2002.
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†23 Allée des Oeillets, F 57160 Moulins les Metz, France (patrick.florchinger@wanadoo.fr).
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This paper is divided into four sections and is organized as follows. In section one,
we recall some basic facts on the asymptotic stability in probability for the equilibrium
solution of a stochastic differential equation. In section two, we introduce the class
of control stochastic differential systems we are dealing with in this paper. In section
three, we prove the main result of the paper. In section four, we apply the result
proved in section three to a working example which cannot be stabilized by using the
results proved in [2] and [1].

1. Asymptotic stability in probability. The purpose of this section is to
recall some basic facts concerning the Lyapunov analysis for the asymptotic stability
in probability of the equilibrium solution of a stochastic differential system that we
need in what follows.

For a complete exposition on the subject, we refer to the book of Khasminskii [4].
Let (Ω,F , P ) be a complete probability space, and denote by (wt)t≥0 a standard

R
m-valued Wiener process defined on this space.

Consider the stochastic process solution xt ∈ R
n of the stochastic differential

equation written in the sense of Itô,

xt = x0 +

∫ t

0

f(xs)ds+

m∑
i=1

∫ t

0

gi(xs)dw
i
s,(1)

where the following hold:
1. x0 is given in R

n.
2. f and gi, 1 ≤ i ≤ m, are functions mapping R

n into R
n, vanishing in the

origin, and such that there exists a nonnegative constant K such that

|f(x)|2 +
m∑
i=1

|gi(x)|2 ≤ K(1 + |x|2) ∀x ∈ R
n,

|f(x)− f(y)|+
m∑
i=1

|gi(x)− gi(y)| ≤ K|x− y| ∀x, y ∈ R
n.

For any s ≥ 0 and x ∈ R
n, denote by xs,xt , s ≤ t, the solution at time t of the

stochastic differential equation (1) starting from the state x at time s.
Then one can introduce the notion of asymptotic stability in probability for the

equilibrium solution of the stochastic differential equation (1) as follows.
Definition 1.1. (1) The equilibrium solution xt ≡ 0 of the stochastic differential

equation (1) is stable in probability if, for any s ≥ 0 and ε > 0,

lim
x→0

P

(
sup
s≤t
|xs,xt | > ε

)
= 0.

(2) The equilibrium solution xt ≡ 0 of the stochastic differential equation (1) is
asymptotically stable in probability if it is stable in probability and, for any s ≥ 0 and
x ∈ R

n,

P

(
lim

t→+∞ |x
s,x
t | = 0

)
= 1.

Denoting by L the infinitesimal generator of the stochastic process solution of the
stochastic differential equation (1), one can prove the following criterion, which gives
sufficient conditions in terms of the Lyapunov function for the asymptotic stability in
probability of the equilibrium solution of the stochastic differential equation (1).
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Theorem 1.2 (see Khasminskii [4]). Assume that there exists a Lyapunov func-
tion V defined on R

n (i.e., a proper C2 function V mapping R
n into R such that

V (0) = 0 and V (x) > 0 for any x ∈ R
n, x 	= 0) such that

LV (x) ≤ 0 (respectively, LV (x) < 0)

for any x ∈ R
n, x 	= 0. Then the equilibrium solution xt ≡ 0 of the stochastic

differential equation (1) is stable (respectively, asymptotically stable) in probability.
To conclude this section, recall the stochastic version of La Salle’s invariance

principle, which gives the ω-limit set of a stochastic process stable in probability.
Theorem 1.3 (see Kushner [5]). Assume that there exists a Lyapunov function

V defined on R
n such that

LV (x) ≤ 0

for any x ∈ R
n. Then the stochastic process solution xt of the stochastic differential

equation (1) tends to the largest invariant set whose support is contained in the locus
LV (xt) = 0 for any t ≥ 0 with probability 1.

2. Problem setting. The purpose of this section is to introduce the class of
control stochastic differential systems we are dealing with in the rest of the paper.

Consider the stochastic process solution xt ∈ R
n of the multi-input stochastic

differential system written in the sense of Itô,

xt = x0 +

∫ t

0

(
f0(xs) +

p∑
k=1

ukfk(xs)

)
ds

+

m∑
i=1

∫ t

0

(
gi,0(xs) +

p∑
k=1

ukgi,k(xs)

)
dwis,(2)

where the following hold:
1. x0 is given in R

n.
2. uk, 1 ≤ k ≤ p, are real-valued measurable control laws.
3. fk, 0 ≤ k ≤ p, and gi,k, 1 ≤ i ≤ m, 0 ≤ k ≤ p, are smooth Lipschitz functions

mapping R
n into R

n, vanishing in the origin, and such that there exists a
nonnegative constant K such that

p∑
k=0

(
|fk(x)|2 +

m∑
i=1

|gi,k(x)|2
)
≤ K(1 + |x|2) ∀x ∈ R

n.

The aim of this paper is to design a state feedback law u such that the equilibrium
solution of the closed-loop system deduced from the stochastic differential system
(2) is asymptotically stable in probability. Note that this problem has already been
solved in [2] when the diffusion term in (2) does not depend on the control, i.e., when
gi,k ≡ 0 for every i ∈ {1, . . . ,m} and k ∈ {1, . . . , p}.

3. The main result. Before stating the main result of the paper, which extends
to the stochastic differential system (2) the well-known theorem of Jurdjevic–Quinn
established in [3], we introduce the following notation.

Denote by L0 the infinitesimal generator of the stochastic process solution of the
unforced stochastic differential system deduced from (2); that is, L0 is the second
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order differential operator defined for any function φ in C2(Rn;R) by

L0φ(x) =

n∑
i=1

f i0(x)
∂φ(x)

∂xi
+

1

2

n∑
k,r=1

m∑
j=1

gkj,0(x)g
r
j,0(x)

∂2φ(x)

∂xk∂xr
.

For any i ∈ {1, . . . , p}, denote by Li the second order differential operator defined for
any function φ in C2(Rn;R) by

Liφ(x) =

n∑
k=1

fki (x)
∂φ(x)

∂xk
+

n∑
k,r=1

m∑
j=1

gkj,0(x)g
r
j,i(x)

∂2φ(x)

∂xk∂xr
,

and, for any i, j ∈ {1, . . . , p}, denote by Lij the second order differential operator
defined for any function φ in C2(Rn;R) by

Lijφ(x) =
1

2

n∑
k,r=1

m∑
ν=1

gkν,i(x)g
r
ν,j(x)

∂2φ(x)

∂xk∂xr
.

Moreover, for any i ∈ {1, . . . ,m}, denote by Gi the first order differential operator
defined for any function φ in C1(Rn;R) by

Giφ(x) =

n∑
k=1

gki,0(x)
∂φ(x)

∂xk
.

Then the following result, which gives sufficient conditions for asymptotic stabilizabil-
ity in probability of the stochastic differential system (2), holds.

Theorem 3.1. Assume that there exists a smooth Lyapunov function V defined
on R

n such that the following hold:
(1) L0V (x) ≤ 0 for every x ∈ R

n.
(2) The set

K =

{
x ∈ R

n / Gα0
i0
Lβ0

0 · · ·Gαk
ik
Lβk

0 LjV (x) = 0

and Gα0
i0
Lβ0

0 · · ·Gαk
ik
Lβk+1

0 V (x) = 0

∀j ∈ {1, . . . , p},∀k ∈ N,∀i0, . . . , ik ∈ {1, . . . ,m},
∀α0, β0, . . . , αk, βk ∈ {0, . . . , k},

such that

k∑
i=0

(αi + βi) = k

}

is reduced to {0}.
Then the control law u, defined on R

n by

uj(x) = −LjV (x)

β(x)
1 ≤ j ≤ p,(3)

where β(x) = 1+(sup1≤i,j≤p LijV (x))2, renders the stochastic differential system (2)
asymptotically stable in probability.

Remark 3.2. (1) Hypothesis (1) implies, according to the stochastic Lyapunov
theorem (Theorem 1.2), that the equilibrium solution of the unforced stochastic differ-
ential system deduced from (2) is stable in probability.
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(2) In the definition of the control law u given in (3), one can choose, instead of
the one given above, any positive function β mapping R

n into R such that

LijV (x) < β(x)

for any x ∈ R
n and i, j ∈ {1, . . . , p}.

(3) The existence of a unique solution for the closed-loop system deduced from (2)
is ensured by the application of Theorem 4.1 from Khasminskii [4].

Proof of Theorem 3.1. Denoting by L the infinitesimal generator of the stochastic
process solution of the closed-loop system deduced from (2) with the state feedback
law u given by (3), one gets, for every x ∈ R

n,

LV (x) = L0V (x)− 1

β(x)

p∑
i=1

(LiV (x))2(4)

+
1

β(x)2

p∑
i,j=1

LiV (x)LjV (x)LijV (x).

Then, taking hypothesis (1) and the definition of β(x) into account, one has

LV (x) ≤ 0

for every x ∈ R
n, and, according to the stochastic Lyapunov theorem (Theorem 1.2),

the equilibrium solution xt ≡ 0 of the closed-loop system deduced from (2) is stable
in probability.

Furthermore, the stochastic version of La Salle’s invariance theorem (Theorem
1.3) asserts that the stochastic process solution of the closed-loop system tends to the
largest invariant set whose support is contained in the locus LV (xt) ≡ 0 for every
t ≥ 0 with probability 1.

However, one can deduce easily from (4) that LV (xt) ≡ 0 for every t ≥ 0 if and
only if LiV (xt) ≡ 0, 0 ≤ i ≤ p, for every t ≥ 0.

Moreover, applying Itô’s formula to the stochastic processes LiV (xt), 0 ≤ i ≤ p,
yields that if LiV (xt) ≡ 0, 0 ≤ i ≤ p, for every t ≥ 0, one has L2

0V (xt) ≡ 0,
GiL0V (xt) ≡ 0, 1 ≤ i ≤ m, L0LiV (xt) ≡ 0, 1 ≤ i ≤ p, and Gi(LjV )(xt) ≡ 0,
1 ≤ i ≤ m, 1 ≤ j ≤ p, for every t ≥ 0.

Therefore, by inductive applications of Itô’s formula, one can prove that if LV (xt)
≡ 0 for every t ≥ 0, one has xt ∈ K for every t ≥ 0 and, consequently, according to
hypothesis (2), xt ≡ 0 for every t ≥ 0.

Hence, according to Theorem 1.3, the stochastic process solution of the closed-
loop system deduced from (2) tends to 0 with probability 1 and thus is asymptotically
stable in probability.

Remark 3.3. As in [2], by not fully using all of the information obtained after
applying Itô’s formula to the stochastic processes LiV (xt) ≡ 0, 0 ≤ i ≤ p, one does
not take into account the fact that GjLiV (xt) ≡ 0, 1 ≤ j ≤ m, 0 ≤ i ≤ p, for
every t ≥ 0. As a consequence, the stabilizability condition obtained in [2] is simpler
than that stated in hypothesis (2) but does not allow us to compute stabilizing state
feedback laws in many applications. In particular, if the Lyapunov function V is such
that L0V (x) ≡ 0 for every x ∈ R

n, then the result proved in [2] does not permit us
to make a conclusion about the asymptotic stabilizability in probability of the system,
whereas the result of the above theorem still applies.
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4. A working example. Let x0 be given in R
2, and denote by xt ∈ R

2 the
solution of the stochastic differential system

dxt =


 − 1

2x1,t

− 1
2x2,t


 dt+ u


 x2,t

0


 dt+


 x2,t

x1,t


 dwt,(5)

where (wt)t≥0 is a standard real-valued Wiener process and u is a real-valued mea-
surable control law.

Note that the equilibrium solution of the stochastic differential system (5) is stable
in probability but not asymptotically stable in probability.

Then, taking the Lyapunov function V defined on R
2 by

V (x) =
1

2

(
x2

1 + x2
2

)
,

one has

L0V (x) = 0, L1V (x) = x1x2, and L0L1V (x) = 0

for every x ∈ R
2, and the stabilizability conditions stated in Theorem 3.2 in [2] are

not satisfied.
However, for any x ∈ R

2, one has

G1L1V (x) = x2
1 + x2

2,

and hence it is obvious that the set K defined in hypothesis (2) of Theorem 3.1 is
reduced to {0}.

Therefore, by application of the result of Theorem 3.1, one gets that the state
feedback law u defined on R

2 by

u(x) = −x1x2

renders the stochastic differential system (5) asymptotically stable in probability.
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STABILITY OF PLANAR SWITCHED SYSTEMS: THE LINEAR
SINGLE INPUT CASE∗
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Abstract. We study the stability of the origin for the dynamical system ẋ(t) = u(t)Ax(t)+(1−
u(t))Bx(t), where A and B are two 2× 2 real matrices with eigenvalues having strictly negative real
part, x ∈ R2, and u(.) : [0,∞[→ [0, 1] is a completely random measurable function. More precisely,
we find a (coordinates invariant) necessary and sufficient condition on A and B for the origin to be
asymptotically stable for each function u(.).

The result is obtained without looking for a common Lyapunov function but studying the locus
in which the two vector fields Ax and Bx are collinear. There are only three relevant parameters:
the first depends only on the eigenvalues of A, the second depends only on the eigenvalues of B,
and the third contains the interrelation among the two systems, and it is the cross ratio of the four
eigenvectors of A and B in the projective line CP 1. In the space of these parameters, the shape and
the convexity of the region in which there is stability are studied.

This bidimensional problem assumes particular interest since linear systems of higher dimensions
can be reduced to our situation.

Key words. stability, planar, random switching function, switched systems

AMS subject classifications. 93D20, 37N35

PII. S0363012900382837

1. Introduction. By a switched system we mean a family of continuous-time
dynamical systems and a rule that determines at any time which dynamical system
is responsible for the time evolution. More precisely, let {fu : u ∈ U} be a (finite
or infinite) set of sufficiently regular vector fields on a manifold M , and consider the
family of dynamical systems:

ẋ = fu(x), x ∈M.(1)

The rule is given assigning the so-called switching function u(.) : [0,∞[→ U . Here we
consider the situation in which the switching function cannot be predicted a priori; it
is given from outside and represents some phenomena (e.g., a disturbance) that it is
not possible to control or include in the dynamical system model.

In the following, we use the notation u ∈ U to label a fixed individual system and
u(.) to indicate the switching function.

Suppose now that all of the fu have a given property for every u ∈ U . A typical
problem is to study under which conditions this property holds for the system (1) for
arbitrary switching functions. For a discussion of various issues related to switched
systems, we refer the reader to [8].

In [1, 7] the case of switched linear systems was considered:

ẋ = Aux, x ∈ Rn, Au ∈ Rn×n, u ∈ U,(2)

and the problem of the asymptotic stability of the origin for arbitrary switching
functions was investigated. Clearly we need the asymptotic stability of each single
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subsystem ẋ = Aux, u ∈ U , in order to have the asymptotic stability of (2) for each
switching function (i.e., the eigenvalues of each matrix Au must have strictly negative
real part). This will be assumed to be the case throughout the paper.

Notice the important point that in the case of linear systems, the asymptotic sta-
bility for arbitrary switching functions is equivalent to the more often quoted property
of global exponential stability, uniform with respect to switching (GUES); see, for ex-
ample, [2] and references therein.

In [1, 7], it is shown that the structure of the Lie algebra generated by the matrices
Au,

g = {Au : u ∈ U}L.A.,
is crucial for the stability of the system (2) (i.e., the interrelation among the systems).
The main result of [7] is the following theorem.

Theorem 1.1 (Hespanha, Morse, Liberzon). If g is a solvable Lie algebra, then
the switched system (2) is asymptotically stable for each switching function u(.) :
[0,∞[→ U .

In [1] a generalization was given. Let g = r ⊃+ s be the Levi decomposition of
g in its radical (i.e., the maximal solvable ideal of g) and a semisimple subalgebra,
where the symbol ⊃+ indicates the semidirect sum.

Theorem 1.2 (Agrachev, Liberzon). If s is a compact Lie algebra, then the
system (2) is asymptotically stable for every switching function u(.) : [0,∞[→ U .

Theorem 1.2 contains Theorem 1.1 as a special case. Anyway, the converse of
Theorem 1.2 is not true in general: if s is noncompact, the system can be stable or
unstable. This case was also investigated. In particular, if s is noncompact, then it
contains as a subalgebra sl(2,R). Due to that, in the case in which g has dimension at
most 4 as Lie algebra, the authors were able to reduce the problem of the asymptotic
stability of the system (2) to the problem of the asymptotic stability of an auxiliary
bidimensional system. We refer the reader to [1] for details. For this reason, the
bidimensional problem assumes particular interest, and in this paper we give the
complete description of that case for a single input system.

More precisely, we study the stability of the origin for the switched system

ẋ(t) = u(t)Ax(t) + (1− u(t))Bx(t),(3)

where A and B are two 2× 2 real matrices with eigenvalues having strictly negative
real part, x ∈ R2, and u(.) : [0,∞[→ [0, 1] is an arbitrary measurable switching
function.

It is well known that asymptotic stability for linear switching systems is equivalent
to the existence of a common Lyapunov function. In [11] necessary and sufficient
conditions were obtained for linear bidimensional systems to share a common quadratic
Lyapunov function, but there are linear bidimensional systems for which this function
may fail to be quadratic (see [6]) so that the problem of finding necessary and sufficient
conditions on A and B for the asymptotic stability of the system (3) was open in
general.

In this paper, we give the solution to this problem. Our result is obtained with
a direct method without looking for a common Lyapunov function but analyzing the
locus in which the two vector fields are collinear, to build the “worst trajectory,”
similarly to what people do in optimal synthesis problems on the plane (see [4, 5, 9,
10]). We also use the concept of feedback. The idea of building the worst trajectory
was used also in [6] for analyzing an example.
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Three cases are analyzed separately. In the first case, both matrices have complex
eigenvalues (in the following (CC) case). In the second case, one of the two matrices
has real and the other has complex eigenvalues (in the following (RC) case). In the
third case, both the matrices have real eigenvalues (in the following (RR) case).

There are only three relevant parameters: one depends on the eigenvalues of A,
one on the eigenvalues of B (we call them, respectively, ρA and ρB), and the last
contains the interrelation among the two systems, and it is the cross ratio of the four
eigenvectors of A and B in the projective line CP 1.

The result can be obtained quite easily except in one case in which the integration
of the vector fields has to be done. In this case, the computations are not difficult but
long, and they are collected in Appendices A and B. In the (CC) and (RR) cases,
we are even able to write the final result in a relatively compact way (see formulas
(5) and (7)).

Fixing the value of the cross ratio, we study the region R in which the system is
asymptotically stable for arbitrary switching functions in the space of the parameters
ρA and ρB . In the (CC) and (RR) cases it is constituted by one or two open
unbounded convex regions, while in the (RC) case it is an open unbounded region
but not always convex.

In section 2 we give the basic definitions, we study the properties of the parameters
describing the problem, and we state the stability theorem giving the main ideas of
the proof. In section 3 we prove the stability theorem separately for the three cases
(CC), (RC), (RR), and we give some examples. In section 4 we study the shape
and the convexity of the region R for fixed values of the cross ratio. In section 5 we
make some final remarks.

2. Basic definitions and statement of the main results. Let A and B be
two diagonalizable 2 × 2 real matrices with eigenvalues having strictly negative real
part. Consider the following property:

(P) The dynamical system in R2: ẋ(t) = u(t)Ax(t) + (1− u(t))Bx(t) is asymptot-
ically stable at the origin for each measurable function u(.) : [0,∞[→ [0, 1].

In this section we state the necessary and sufficient conditions on A and B under which
(P) holds. Moreover, we state under which conditions we have at least stability (not
asymptotic) for each function u(.).

Set M(u) := uA + (1 − u)B, u ∈ [0, 1]. In the class of constant functions the
asymptotic stability of the origin of the system (3) occurs iff the matrix M(u) has
eigenvalues with strictly negative real part for each u ∈ [0, 1]. So this is a necessary
condition. On the other hand, it is known that if [A,B] = 0, then the system (3) is
asymptotically stable for each function u(.). So in the following we will always assume
the following conditions:

H1. Let λ1, λ2 (resp., λ3, λ4) be the eigenvalues of A (resp., B). Then Re(λ1),
Re(λ2), Re(λ3), Re(λ4) < 0.

H2. [A,B] �= 0. (That implies that neither A nor B are proportional to the
identity.)

For simplicity we will also assume the following.

H3. A and B are diagonalizable. (Notice that if H2 and H3 hold, then λ1 �= λ2,
λ3 �= λ4.)

H4. Let V1,V2 ∈ CP 1 (resp., V3,V4 ∈ CP 1) be the eigenvectors of A (resp.,
B). From H2 and H3 we know that they are uniquely defined, and V1 �= V2

and V3 �= V4. We assume Vi �= Vj for i ∈ {1, 2}, j ∈ {3, 4}.
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The degenerate cases, in which H1 and H2 hold and H3 or H4 or both do not, are
the following:

• A or B is not diagonalizable. This case (in which (P) can be true or false)
can be treated with techniques entirely similar to the ones of this paper.
• A or B is diagonalizable, but one eigenvector of A coincides with one eigen-

vector of B. In this case, using arguments similar to the ones of the next
section, it is possible to conclude that (P) is true.

Remark 1. One can easily prove that (under the hypotheses H2 and H3), H4
can be violated only in the (RR) case (see also subsection 3.3). Moreover, hypotheses
H2, H3, and H4 imply that Vi �= Vj for i, j ∈ {1, 2, 3, 4}, i �= j. This fact permits
us to define the cross ratio without additional hypotheses (see the definition of cross
ratio below).

Theorem 2.3 gives necessary and sufficient conditions for the stability of the sys-
tem (3) in terms of three (coordinates invariant) parameters defined in Definition
2.1. The first (ρA) depends on the eigenvalues of A, the second (ρB) depends on the
eigenvalues of B, and the third (K) depends on Tr(AB), which is a standard scalar
product in the space of 2× 2 matrices. Proposition 2.2 gives some properties of these
parameters. Finally, Proposition 2.4 shows the geometrical meaning of K. It is in
one-to-one correspondence with the cross ratio of the four points in the projective line
CP 1 that corresponds to the four eigenvectors of A and B. This parameter contains
the interrelation among the two systems.

Definition 2.1. Let A and B be two 2× 2 real matrices, and suppose that H1,
H2, H3, and H4 hold. Moreover, choose the labels (1) and (2) (resp., (3) and (4)) in
such a way that |λ2| > |λ1| (resp., |λ3| > |λ4|) if they are real or Im(λ2) < 0 (resp.,
Im(λ4) < 0) if they are complex. Define

ρA := −iλ1 + λ2

λ1 − λ2
; ρB := −iλ3 + λ4

λ3 − λ4
; K := 2

Tr(AB)− 1
2Tr(A)Tr(B)

(λ1 − λ2)(λ3 − λ4)
.

Moreover, define the following function of ρA, ρB ,K:

D := K2 + 2ρAρBK − (1 + ρ2A + ρ2B).(4)

Notice that ρA ∈ R, ρA > 0, iff A has complex eigenvalues and ρA ∈ iR, ρA/i > 1,
iff A has real eigenvalues. The same holds for B. Moreover, D ∈ R. The parameter K
contains important information about the matrices A and B. They are stated in the
following proposition, which can be easily proved using the systems of coordinates of
the next section (see also [3]).

Proposition 2.2. Let A and B be as in Definition 2.1. We have the following:

• if A and B have both complex eigenvalues, then K ∈ R and |K| > 1;
• if A and B have both real eigenvalues, then K ∈ R \ {±1};
• A and B have one complex and the other real eigenvalues iff K ∈ iR.

Theorem 2.3. Let A and B be two real matrices such that H1, H2, H3, and
H4 hold, and define ρA, ρB ,K,D as in Definition 2.1. We have the following stability
conditions:

Case (CC) If A and B have both complex eigenvalues, then:
Case (CC.1) if D < 0, then (P) is true;
Case (CC.2) if D > 0, then:

Case (CC.2.1) if K < −1, then (P) is false;



STABILITY OF SWITCHED SYSTEMS 93

Case (CC.2.2) if K > 1, then (P) is true iff the following condition
holds:

ρCC := exp

[
−ρA arctan

(−ρAK + ρB√D

)
(5)

− ρB arctan

(
ρA − ρBK√D

)
− π

2
(ρA + ρB)

]

×
√

(ρAρB +K) +
√D

(ρAρB +K)−√D < 1.

Case (CC.3) If D = 0, then (P) is true or false according, respectively, to
the fact that K > 1 or K < −1.

Case (RC) If A and B have one complex and the other real eigenvalues, define χ :=
ρAK−ρB, where ρA and ρB are chosen in such a way that ρA ∈ iR, ρB ∈ R.
Then:
Case (RC.1) if D > 0, then (P) is true;
Case (RC.2) if D < 0, then χ �= 0, and we have:

Case (RC.2.1) if χ > 0, then (P) is false. Moreover, in this case
K/i < 0;

Case (RC.2.2) if χ < 0, then:
Case (RC2.2.A) if K/i ≤ 0, then (P) is true;
Case (RC2.2.B) if K/i > 0, then (P) is true iff the following

condition holds:

ρRC := e−ρB(ξ+−ξ−)

√
cos2 ξ+ + E2 sin2 ξ+

cos2 ξ− + E2 sin2 ξ−
(6)

×
√(

m+

m−

) 1
2 (−ρA/i+1)

cos2 θ+ +

(
m+

m−

) 1
2 (−ρA/i−1)

sin2 θ+ < 1,

where: E := K/i+
√
−K2 + 1,

m± :=
−χ±√−D

(−ρA/i− 1)K/i ,

θ+ := arctanm+,

ξ± := arctan

(
m± − 1

E(m± + 1)

)
, ξ+ ∈]ξ−, ξ− + π[.

Case (RC.3) If D = 0, then (P) is true or false according, respectively, to the fact
that χ < 0 or χ > 0.

Case (RR) If A and B have both real eigenvalues, then:
Case (RR.1) if D < 0, then (P) is true. Moreover, we have |K| > 1;
Case (RR.2) if D > 0, then K �= −ρAρB (notice that −ρAρB > 1) and:

Case (RR.2.1) if K > −ρAρB, then (P) is false
Case (RR.2.2) if K < −ρAρB, then:

Case (RR.2.2.A) if K > −1, then (P) is true;
Case (RR.2.2.B) if K < −1, then (P) is true iff the following

condition holds:

ρRR := −fsym(ρA, ρB ,K)fasym(ρA, ρB ,K)(7)

× fasym(ρB , ρA,K) < 1,
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where:

fsym(ρA, ρB ,K) :=
1 + ρA/i+ ρB/i+K −√D
1 + ρA/i+ ρB/i+K +

√D ;

faym(ρA, ρB ,K) :=

(
ρB/i−KρA/i−

√D
ρB/i−KρA/i+

√D

) 1
2 (ρA/i−1)

.

Case (RR.3) If D = 0, then (P) is true or false according, respectively, to
the fact that K < −ρAρB or K > −ρAρB.

Finally, if (P) is false, then in case (CC.2.2) with ρCC = 1, case (RC.2.2.B)
with ρRC = 1, case (RR.2.2.B) with ρRR = 1, case (CC.3) with K < −1, case
(RC.3) with χ > 0, and case (RR.3) with K > −ρAρB, for every C > 0, there
exists C ′ ≤ C such that if |γ(0)| < C ′, then |γ(t)| < C for every t ∈ [0,∞[ (i.e., we
have stability of the origin). In the other cases, there exists a trajectory γ(t) such that
limt→∞ |γ(t)| =∞.

Notice that the expressions (5) and (7) are invariant if we exchange ρA with ρB .
The last statement says when we have at least stability (not asymptotic) for every
switching function.

Let us study the geometric meaning of K. Let V1,V2,V3,V4 belong to the
complex projective line CP 1. Suppose V1 �= V2 �= V3, and let (v1, v

′
1), (v2, v

′
2),

(v3, v
′
3), (v4, v

′
4) be the corresponding homogeneous coordinates. The cross ratio

β(V1,V2,V3,V4) is defined in the following way. Make a Moebius transformation
such that V1,V2 become the fundamental points (i.e., of homogeneous coordinates,
respectively, (0, 1) and (1, 0)) and V3 the unity point (i.e., of homogeneous coordinates
(1, 1)), and let (v̄4, v̄

′
4) be the new homogeneous coordinates of V4. By definition we

have

β(V1,V2,V3,V4) := v̄′4/v̄4 =

∣∣∣∣ v1 v4
v′1 v′4

∣∣∣∣
∣∣∣∣ v2 v3
v′2 v′3

∣∣∣∣∣∣∣∣ v2 v4
v′2 v′4

∣∣∣∣
∣∣∣∣ v1 v3
v′1 v′3

∣∣∣∣
.(8)

Now the four eigenvectors of A and B are exactly four directions in C2; i.e., they can
be regarded as four points of CP 1, and under the conditions H2, H3, H4, it makes
sense to compute their cross ratio (cf. Remark 1).

One can immediately obtain (suggestion: use the systems of coordinates of the
next section) the following proposition.

Proposition 2.4. Let A and B be two 2 × 2 real matrices such that H1,
H2, H3, and H4 hold, and let V1,V2,V3,V4 be the four points in the space CP 1

corresponding, respectively, to the four eigenvectors of A and B chosen in such a
way that they correspond, respectively, to λ1, λ2, λ3, λ4 (see Definition 2.1). Let
β(V1,V2,V3,V4) be their cross ratio and K the quantity defined in Definition 2.1.
Then β(V1,V2,V3,V4) and K are in the one-to-one relation from C ∪ {∞} to
C ∪ {∞}:

K =
β(V1,V2,V3,V4) + 1

β(V1,V2,V3,V4)− 1
, β(V1,V2,V3,V4) =

K + 1

K − 1
.
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Notice that K �= ∞ so that β �= 1. From Proposition 2.4 and Definition 2.1 we
have the following expression for the cross ratio of the eigenvectors of A and B:

β =
Tr(AB)− (λ1λ4 + λ2λ3)

Tr(AB)− (λ1λ3 + λ2λ4)
.

Theorem 2.3 is proved in the next section. Here we describe the main idea of the
proof.

We build the “worst trajectory,” i.e., the trajectory that at each point has the
velocity forming the angle, with the (exiting) radial direction, having the smallest
absolute value, without taking care of the module of the velocity.

.
γ

γ
The main idea is that the system (3) is asymptotically stable iff this trajectory tends
to the origin. The worst trajectory is constructed in the following way. We study the
locus Q−1(0) (the notation is clarified later) in which the two vector fields Ax and
Bx are collinear. We have several cases:

• If Q−1(0) contains only the origin, then, in the (CC) and (RC) cases, one
vector field always points on the same side of the other, and the worst tra-
jectory is a trajectory of the vector field Ax or Bx. In this case, the system
is asymptotically stable (cases (CC.1) and (RC.1) of Theorem 2.3).

The situation is similar in case (RR.1). (The worst trajectory tends to the
origin.)
• If Q−1(0) does not contain only the origin, then it is a couple of straight lines

passing from the origin (see the next section). If at each point of Q−1(0) the
two vector fields have opposite versus, then there exists a trajectory going
to infinity corresponding to a constant switching function (see the following
figure).

γ

 Q  (0)
-1

This corresponds to cases (CC.2.1), (RC.2.1), and (RR.2.1) of Theorem
2.3, and it is the situation in which there exists u ∈ [0, 1] such that the matrix
M(u) admits an eigenvalue with positive real part. If at each point of Q the
two vector fields have the same versus, then the system is asymptotically
stable iff the worst trajectory turns around the origin and after one turn the
distance from the origin is increasing.
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This corresponds to cases (CC.2.2), (RC.2.2), and (RR.2.2) of Theorem
2.3.
• Finally, (CC.3), (RC.3), and (RR.3) are the degenerate cases in which the

two straight lines coincide.
More details are given later.

3. Proof of the stability theorem. In the following, we prove Theorem 2.3
separately for the three cases in which A and B have both complex, one complex and
the other real, and both real eigenvalues.

3.1. The case in which A and B have both complex eigenvalues. Let
−δA ± iωA (δA, ωA > 0) be the eigenvalues of A and −δB ± iωB (δB , ωB > 0) be
the eigenvalues of B. We have ρA = δA/ωA, ρB = δB/ωB . Choose a system of
coordinates in which

A =

( −δA −ωA/E
ωAE −δA

)
, B =

( −δB −ωB
ωB −δB

)
,

where E ∈ R\{0}. This corresponds to put B in the normal form in which its integral
curves are “circular spirals” and then, using the invariance of B under rotation, to
rotate the coordinates in such a way that the integral curves of A are elliptical spirals
with axes corresponding to the x1 and x2 directions (see, for example, Figure 3.1).
We have

[A,B] = ωAωB(E − 1/E)

(
1 0
0 −1

)
,

so we assume E �= ±1; otherwise, [A,B] = 0. In this case we have K = 1
2 (E + 1

E ),
and without loss of generality we may assume |E| > 1.

The locus in which Ax and Bx are collinear is Q−1(0), where

Q = det(Ax,Bx) = x2
1(−δAωB + δBωAE)

+ x1x2(ωAωB(E − 1/E)) + x2
2(−δAωB + δBωA/E)

and x = (x1, x2). Now let DCC be the discriminant of the quadratic form Q. We
have

DCC = ω2
Aω

2
B(E − 1/E)2 − 4(−δAωB + δBωAE)(−δAωB + δBωA/E)(9)

= 4ω2
Aω

2
BD,

where D is defined in Definition 2.1.
Case 1. If D < 0, then the quadratic form Q has strictly defined sign and Q−1(0) =

{0}. In this case, one vector field always points on the same side of the other.
Making a suitable change of coordinates and possibly exchanging the labels
(A) and (B), we can realize the situation in which Ax always points on the
left of Bx for every x ∈ R2 \ {0}. We have two cases.
• Suppose first that E > 1. In this case, Ax always points in the grey

region of the following picture.



STABILITY OF SWITCHED SYSTEMS 97

Fix an arbitrary measurable switching function u(.) : [0,∞[→ [0, 1],
and let (x1(t), x2(t)) (resp., (ρ(t), θ(t))) be the Cartesian (resp., polar)
coordinates of the solution of ẋ(t) = u(t)Ax(t) + (1−u(t))Bx(t), x(0) =
x0 ∈ R2\{0}. In this case, we have ρ̇(t) < 0 for almost every t ∈ [0,+∞[
and (P) is true.
• Suppose now that E < −1. Fix x0 ∈ R2 \ {0}, and let γ be a trajectory

of the switched system (3) such that γ(0) = x0. Let γA : [0, tA] → R2

(resp., γB : [0, tB ] → R2) be a trajectory of the vector field Ax (resp.,
Bx) such that γA(0) = x0 (resp., γB(0) = x0), and define tA and tB in
such a way that γA(tA) = γB(tB) =: x̄ is the first intersection point of
γA and γB after x0.

x

x

0γB
Aγ

Let Ω be the simply connected closed set whose border is

∂Ω = Supp(γA|[0,tA] ∪ γB |[0,tB ]).

For every x ∈ ∂Ω we have the following. Define Vu = uAx+ (1− u)Bx.
For each u ∈]0, 1[, Vu points inside Ω. Moreover, if x /∈ {x0, x̄}, V1

(resp., V0) points inside Ω or it is tangent to ∂Ω. Fix t̄ > max{tA, tB}.
We clearly have x̄ := γ(t̄) ∈ int(Ω). Using homothety invariance of the
system (3), we may easily conclude that limt→∞ γ(t) = 0 and (P) is
true. This proves case (CC.1) of Theorem 2.3 (see Example 1 below).

Case 2. If D > 0, then Q has no definite sign and Q−1(0) is a couple of noncoinciding
straight lines passing from the origin and forming the following angles with
the x1 axis:

θ± = arctan(m±), where(10)

m± =
−ωAωB(E − 1/E)±√DCC

2(−δAωB + δBωA/E)
(11)

=
−(E − 1/E)± 2

√D
2(−ρA + ρB/E)

if − ρA + ρB/E �= 0,

m− =∞, m+ =
δAωB − δBωAE
ωAωB(E − 1/E)

(12)

=
ρA − ρBE
E − 1/E

if − ρA + ρB/E = 0,
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where we assume that θ− ∈ [−π2 , π2 [ and θ+ ∈]θ−, θ− + π[. Notice that if
E < −1, then 4(−δAωB + δBωAE)(−δAωB + δBωA/E) > 0, which implies
that θ± ∈ [−π2 , 0[.
Case 2.1. If E < −1 (K < −1), then at each point of Q−1(0) \ {0} the

two vector fields have opposite versus. Consider the four connected
components of R2 \Q−1(0). In this case, for each point x0 belonging to
two of these regions (see the figure below), it is possible to find u0 ∈ [0, 1]
such that u0Ax0 + (1− u0)Bx0 has the exiting radial direction. So the
system is not stable for arbitrary switching functions. This situation
corresponds to the case in which there exists u ∈ [0, 1] such thatM(u) :=
uA + (1 − u)B admits an eigenvalue with positive real part; i.e., there
exist trajectories γ corresponding to constant switching functions such
that limt→∞ |γ(t)| = ∞. Case (CC.2.1) of Theorem 2.3 is proved (see
Example 4 below).

 Q  (0)
-1

Case 2.2. If E > 1 (K > 1), then at each point of Q−1(0) \ {0} the two vector fields
have the same versus (counterclockwise). Fix x0 ∈ R2 \ {0}, and let γM :
[0,∞[→ R2, γM (0) = x0 be the trajectory corresponding to the feedback

uM (x) =

{
0 if θ ∈ [θ−, θ+[ or θ ∈ [θ− + π, θ+ + π[,
+1 if θ ∈ [θ+, θ− + π[ or θ ∈ [θ+ + π, θ− + 2π[,

(13)

where θ ∈ [θ−, θ− + 2π[ is defined by x1 = ρ cos(θ), x2 = ρ sin(θ).

θ −
u=+1

u=+1

u=0

u=0

θ
+

Let (ρM (t), θM (t)) be the polar coordinates of γM and a the time defined by
θM (a) = θM (0) + 2π. If ρM (a) < ρM (0), then let l be the segment joining
the points (ρM (0), θM (0)) with (ρM (a), θM (a)) and Ω the simply connected
region whose border is ∂Ω := Supp(γM |[0,a] ∪ l).
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Fig. 3.1. Examples in the (CC) case.

For every x ∈ ∂Ω, we have the following. Define Vu as in Case 1, E < −1.
For each u ∈]0, 1[, Vu points inside Ω. Moreover, if x /∈ {γM (0), γM (a)}, V1

(resp., V0) points inside Ω or is tangent to ∂Ω. Similarly to Case 1 (E < 1),
we can conclude that (P) is true (see Example 3 below). On the other hand if
ρM (a) ≥ ρM (0), then γM (t) does not tend to the origin and (P) is false (see
Example 2 below). The condition ρM (a) < ρM (0) is satisfied iff condition (5)
holds. Formula (5) is obtained in Appendix A . The condition ρM (a) = ρM (0)
(i.e., ρCC = 1) is the case in which we have at least stability (not asymptotic)
for every switching function. This concludes the proof of case (CC.2.2).

Case 3. If D = 0, then the two straight lines coincide. If E > 1, it is easy to
understand that we are in the same situation as that of Case 1. If E < −1,
then to every x ∈ Q there exists u ∈ [0, 1] such that uAx+ (1−u)Bx = 0. In
this case, (P) is false, but we have at least stability (not asymptotic). This
proves case (CC.3) of Theorem 2.3.

Examples. In the following, we give some examples of the various situations in
the (CC) case. We refer to Figure 3.1.

Example 1. ρA = 0.05, ρB = 0.06, K = −1.005. In this case, D ∼ −0.002,
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and (P) is true. In Figure 3.1, two integral curves of the vector fields Ax and Bx
are shown. A similar situation but with the two trajectories rotating with the same
versus can be obtained with the same values of ρA and ρB but with K = +1.00001.
In this case, D ∼ −0.00008 and (P) is true (see case (CC.1)).

Example 2. ρA = 0.0375, ρB = 0.05, K = 1.67. In this case, D ∼ 1.79, ρCC ∼
2.62 and (P) is false. In Figure 3.1, two integral curves of the vector fields Ax and
Bx, D that are the two straight lines (one almost coincides with the x2 axis) and a
trajectory γ such that limt→∞ |γ(t)| =∞ (cf. case (CC.2.2)) are shown.

Example 3. ρA = 0.0375, ρB = 0.0425, K = 1.00455. In this case, D ∼
0.0091, ρCC ∼ 0.96, and (P) is true (cf. case (CC.1)).

Example 4. Suppose ρA = 0.0375, ρB = 0.05, K = −1.67. In this case, D ∼ 1.77
and (P) is false (cf. case (CC.2.1)).

3.2. The case in which A and B have one complex and the other real
eigenvalues. Suppose that A has real eigenvalues λ1, λ2 (λ1, λ2 < 0, |λ2| > |λ1|)
and B complex eigenvalues λ3 = −δ + iω, λ4 = −δ − iω (δ, ω > 0). We have
ρA = −i(λ1 + λ2)/(λ1 − λ2) and ρB = δ/ω. We recall that ρA/i > 1, ρB > 0. Define

R(ϕ) :=

(
cos(ϕ) sin(ϕ)
−sin(ϕ) cos(ϕ)

)
∈ SO(2),(14)

and choose a system of coordinates in which

A =

(
λ1 0
0 λ2

)
,(15)

B =

(
a b
c d

)
:= R−1(ϕ)

( −δ −ω/E
ωE −δ

)
R(ϕ)(16)

=

( −δ − ω(E − 1/E)sin(ϕ) cos(ϕ) −ω(E sin2(ϕ) + 1/E cos2(ϕ))
ω(E cos2(ϕ) + 1/E sin2(ϕ)) −δ + ω(E − 1/E)sin(ϕ) cos(ϕ)

)
.

We have K = i(E − 1/E) cos(ϕ) sin(ϕ) ∈ iR, and without loss of generality we may
assume that ϕ ∈ [0, π/2[, |E| ≥ 1. Notice that in this case

[A,B] = (λ1 − λ2)

(
0 b
−c 0

)
�= 0 for each K ∈ iR.

Similarly to the previous subsection, the locus in which Ax and Bx are collinear is
Q−1(0), where

Q = det(Ax,Bx) = x2
1(λ1c) + x1x2χ̄+ x2

2(−λ2b),

and by definition χ̄ := λ1d−λ2a = (λ1 +λ2)ωK/i− (λ1−λ2)δ = (λ1−λ2)ωχ, where
χ := ρAK − ρB (see Theorem 2.3). In this case, the discriminant of the quadratic
form Q is

DRC = χ̄2 + 4λ1λ2bc = χ̄2 − 4λ1λ2ω
2(−K2 + 1) = −ω2(λ1 − λ2)2D.(17)

Notice that χ = 0 implies χ̄ = 0, which implies DRC < 0, i.e., D > 0. Moreover,
χ > 0 implies K/i < 0, which implies E < −1. Similarly to the previous subsection,
we have the following cases.
Case 1. If DRC < 0 (D > 0), then (P) is true (see Example 1 below).
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Case 2. If DRC > 0 (D < 0), then Q−1(0) is a couple of noncoinciding straight lines
passing from the origin and forming the following angles with the x1 axis:

θ± = arctan(m±),(18)

m± :=
−χ̄±√DRC

2(−λ2b)
=

−χ±√−D
2 λ2

λ1−λ2
(E sin2(ϕ) + 1/E cos2(ϕ))

.

From (17) it follows that DRC < χ̄
2 (i.e., −D < χ2) so that in this case we

have χ �= 0 and we may assume{
θ−, θ+ ∈]0, π/2[ if χ and E have the same sign,
θ−, θ+ ∈]− π/2, 0[ if χ and E have opposite sign.

Case 2.1 If χ > 0, then K/i < 0, which implies E < −1, and we have
θ−θ+ ∈] − π/2, 0[. In this case, at each point of Q−1(0) \ {0} the two
vector fields have opposite versus. The same argument of Case 2.1 of
section 3.1 shows that (P) is false (see Example 4 below).

Case 2.2 If χ < 0, then in both cases where E ≥ 1, E ≤ −1 at each point
of Q−1(0) \ {0} the two vector fields have the same versus.
Case 2.2.A If E ≤ −1 (which implies K/i ≤ 0), then (P) is true be-

cause of the following argument.
From χ = ρAK − ρB < 0 we have

−K/i
ρB

<
1

ρA/i
< 1.(19)

Now let γ be an integral of the vector field Bx and (ρ(t), θ(t)) its
polar coordinates. We have

γ(t) = R(ϕ)

(
ρ0e

−δt cos(ωt+ ϕ0)
ρ0Ee

−δt sin(ωt+ ϕ0),

)

and ρ(t) = ρ0e
−δt
√

cos2(ωt+ ϕ0) + E2 sin2(ωt+ ϕ0). Now we prove

that the condition (19) implies ρ̇(t) ≤ 0 for every t ∈ Dom(γ), which
clearly implies that (P) is true. We have

ρ̇(t) = ρ0e
−δt
(

(E2 − 1)ω sin(ωt+ ϕ0) cos(ωt+ ϕ0)√
cos2(ωt+ ϕ0) + E2 sin2(ωt+ ϕ0)

− δ
√

cos2(ωt+ ϕ0) + E2 sin2(ωt+ ϕ0)

)
.

Therefore, ρ̇(t) < 0 iff

(E2 − 1)ω sin(ωt+ ϕ0) cos(ωt+ ϕ0)√
cos2(ωt+ ϕ0) + E2 sin2(ωt+ ϕ0)

− δ
√

cos2(ωt+ ϕ0) + E2 sin2(ωt+ ϕ0) < 0

or, equivalently, iff

cos2(ωt+ ϕ0) + E2 sin2(ωt+ ϕ0)(20)

− (E2 − 1)
ω

δ
sin(ωt+ ϕ0) cos(ωt+ ϕ0) > 0.
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Now if (E2 − 1)ω/δ ≤ −2E (that choosing a system of coordinates
in which ϕ = π/4 is equivalent to −K/(iρB) ≤ 1; see Appendix B),
then the condition (20) is satisfied. Hence from (19) we can conclude
that ρ̇(t) < 0 for each t ∈ Dom(γ) and (P) is true (see Example 5
below).

Case 2.2.B If E ≥ 1 (which implies K/i ≥ 0), then (P) is true iff
condition (6) is satisfied (see Appendix B). Notice that in the case
where K = 0 we clearly have that ρRC < 1 and (P) is true (see
Examples 2 and 3 below). The case in which ρRC = 1 is the case
in which we have at least stability (but not asymptotic) for every
switching function.

Case 3. If D = 0, then the two straight lines coincide. If χ < 0, it is easy to
understand that we are in the same situation as that of Case 1. If χ > 0,
then to every x ∈ Q−1(0) there exists u ∈ [0, 1] such that uAx+(1−u)Bx = 0.
In this case, (P) is false, but we have at least stability (not asymptotic). This
proves case (RC.3) of Theorem 2.3.

This concludes the proof of cases (RC).
Examples. In the following, we give some examples of the various situations in

the (RC) case. We refer to Figure 3.2.
Example 1. ρA/i = 1.11, ρB = 0.045, K/i = 0.095. In this case, χ ∼ −0.15, D ∼

0.2, and (P) is true (cf. case (RC.1)).
Example 2. ρA/i = 1.11, ρB = 0.02, K/i = 1.33. In this case, χ ∼ −1.49, D ∼

−1.62, ρRC ∼ 1.4, and (P) is false (cf. case (RC.2.2.B)).
Example 3. ρA/i = 1.11, ρB = 0.03, K/i = 0.75. In this case, χ ∼ −0.85, D ∼

−0.37, ρRC ∼ 0.98, and (P) is true (cf. case (RC.2.2.B)).
Example 4. ρA/i = 1.11, ρB = 0.045, K/i = −2.4. In this case, χ ∼ 2.6, D ∼

−5.3, and (P) is false (cf. case (RC.2.1)).
Example 5. ρA/i = 1.14, ρB = 1.67, K/i = −0.42. In this case, χ ∼ −1.19, D ∼

−1.06, and (P) is true (cf. case (RC.2.2.A)).

3.3. The case in which A and B have both real eigenvalues. Let λ1, λ2

(λ1, λ2 < 0, |λ2| > |λ1|) be the eigenvalues of A and λ3, λ4 (λ3, λ4 < 0, |λ4| > |λ3|)
be the eigenvalues of B. Choose a system of coordinates such that

A =

(
λ1 0
0 λ2

)
,(21)

B =

(
a b
c d

)
:= R−1(π/4)

(
λ3 α(λ4 − λ3)
0 λ4

)
R(π/4)(22)

=
1

2

(
(λ3 + λ4)− α(λ4 − λ3) (λ3 − λ4) + α(λ4 − λ3)
(λ3 − λ4)− α(λ4 − λ3) (λ3 + λ4) + α(λ4 − λ3)

)
,

where R(ϕ) is defined as in formula (14) and α ∈ R \ {±1}. In this system of
coordinates the eigenvectors of A are proportional to V1 = (1, 0), V2 = (0, 1) and the
eigenvectors of B to V3 = (1, 1), V4 = ((α − 1)/(α + 1), 1). The geometric meaning
of α is the following. Arctan(α) is the angle between the vector (−1, 1) and V4,
measured clockwise. We have K = α. Notice that

[A,B] = −1

2
(λ1 − λ2)(λ3 − λ4)

(
0 (α− 1)

(α+ 1) 0

)
,

so [A,B] �= 0 for every value of α. The case α = ±1 is excluded (otherwise V4 is
parallel to V2 or to V1, respectively, and (H4) fails).
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Fig. 3.2. Examples in the (RC) case.

The locus in which Ax and Bx are collinear is Q−1(0), where

Q = det(Ax,Bx) = x2
1(λ1c) + x1x2χ̄+ x2

2(−λ2b),

and by definition χ̄ := λ1d − λ2a = 1
2 ((λ1 − λ2)(λ3 + λ4) − K(λ1 + λ2)(λ3 − λ4)) =

− 1
2 i(λ1 − λ2)(λ3 − λ4)χ, where χ := ρAK − ρB ∈ iR. In this case, the discriminant
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of the quadratic form Q is

DRR = χ̄2 + 4λ1λ2bc = χ̄2 + λ1λ2(λ3 − λ4)2(−K2 + 1)(23)

=
1

4
(λ1 − λ2)2(λ3 − λ4)2D.

Notice that if K < 1, then D > 0. The following lemma states that in the case where
|K| < 1 (P) is true.

Lemma 3.1. Let A,B be two 2 × 2 real matrices satisfying H1, H2, H3, and
H4 and such that their eigenvalues are real. Fix an arbitrary measurable switching
function u(.) : [0,∞[→ [0, 1], and let (x1(t), x2(t)) (resp., (ρ(t), θ(t))) be the Cartesian
(resp., polar) coordinates of the solution of ẋ(t) = u(t)Ax(t)+(1−u(t))Bx(t), x(0) =
x0 ∈ R2 \ {0}. If K ∈]− 1, 1[, we have that ρ̇(t) < 0 for almost every t ∈ [0,+∞[.

Proof. In this case, it is possible to choose a system of coordinates such that

A =

(
λ1 0
0 λ2

)
,

B = R−1(ϕ)

(
λ3 0
0 λ4

)
R(ϕ)

=

(
cos2(ϕ)λ3 + sin2(ϕ)λ4 (λ3 − λ4)sin(ϕ) cos(ϕ)

(λ3 − λ4)sin(ϕ) cos(ϕ)(λ3 − λ4) sin2(ϕ)λ3 + cos2(ϕ)λ4

)
,

where we assume ϕ ∈]0, π/2[. Notice that ϕ = 0 is excluded (otherwise [A,B] = 0).
We have

ρ̇(t) = ẋ1(t) cos θ(t) + ẋ2(t) sin θ(t)

= ρ(t)
(
u(t)(λ1 cos2 θ(t) + λ2 sin2 θ(t))

+ (1− u(t))(λ3 cos2(θ(t)− ϕ) + λ4 sin2(θ(t)− ϕ)
)
.

This means that ρ(t) has the expression

ρ(t) = ρ(0) exp

(∫ t

0

(u(t)f1(t) + (1− u(t))f2(t)) dt

)
,

where f1 and f2 are analytic functions satisfying f1 < λ1, f2 < λ3.
If |K| > 1 we have the following cases.

Case 1. If D < 0, then (P) is true.
Case 2. If D > 0, then Q−1(0) is a couple of noncoinciding straight lines passing

from the origin and forming the following angles with the x1 axis:

θ± = arctan(m±), m± :=
−χ̄±√DRR

2(−λ2b)
=

−χ/i±√D
(ρA/i+ 1)(1−K)

.(24)

From (23) it follows that DRR < χ̄
2 so that in this case we have χ �= 0 and

we may assume{
θ−, θ+ ∈]0, π/2[ if χ/i and K have the same sign,
θ−, θ+ ∈]− π/2, 0[ if χ/i and K have opposite sign.

We have the following lemma.
Lemma 3.2. Let D > 0; then
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(a) K > −ρAρB;
(b) at each point of Q−1(0)\{0}, Ax and Bx have the same (resp., opposite)

sign iff K < −ρAρB (resp., K > −ρAρB).
Proof. (a) can be checked directly. Let us prove (b). Define Λ± := K±√D−
ρAρB . By direct computation it follows that

• Λ± > 0 iff K > −ρAρB ;

• ( Ax
‖Ax‖ ) = ( Bx

‖Bx‖ ) for every x = (h,m±h), h ∈ R \ {0}, iff Λ± < 0;

• ( Ax
‖Ax‖ ) = −( Bx

‖Bx‖ ) for every x = (h,m±h), h ∈ R \ {0}, iff Λ± > 0.

This concludes the proof.
From Lemma (3.2) we have the following cases (notice that −ρAρB > 1).
Case 2.1 If K > −ρAρB , then (P) is false.
Case 2.2 If K < −ρAρB , then:

Case 2.2.A If K > 1, one can easily check that the worst trajectory
cannot rotate around the origin and (P) is true.

Case 2.2.B If K < −1, then the worst trajectory rotates around the
origin and (P) is true iff condition (7) is satisfied. Condition (7) can
be obtained with arguments entirely similar to the ones of Appen-
dices A and B. The case in which ρRC = 1 is the case in which we
have at least stability (not asymptotic) for every switching function.

Case 3. If D = 0, then the two straight lines coincide. Similarly to the (CC) and
(RC) cases, if K < −ρAρB , then (P) is true. Vice versa, if K > −ρAρB , then
(P) is false but we have stability (not asymptotic).

4. Asymptotic stability in the space of parameters. Fix a value of the cross
ratio, and let R (resp., R̄) be the region in the (ρA, ρB) plane in which the system
is asymptotically stable (resp., asymptotically stable or only stable) for arbitrary
switching functions. In this section, we study the shape and the convexity of R and
R̄.

4.1. The complex-complex case. In Figure 4.1 we show R for a fixed value
of K in the case in which both A and B have complex eigenvalues.

In the case K < −1, R is determined by the condition D < 0. The set of
values of ρA and ρB such that D = 0 is the two curved lines of equations ρB =
ρAK ±

√
(ρ2A + 1)(K2 − 1) of Figure 4.1 (case K < −1). The points of intersection

with the two axes are

(ρA, ρB) = (
√
K2 − 1, 0),(25)

(ρA, ρB) = (0,
√
K2 − 1).(26)

In this case, R is constituted by two connected open convex unbounded regions, while
to get R̄ we have to add the points in which D = 0.

In the case where K > 1, R is determined by the condition ρCC < 1. In Figure
4.1 (case K > 1) the locus D = 0 is drawn with dotted lines, while the locus ρCC = 1
is drawn with a solid line. The points in which the two loci intersect each other and
intersect the two axes are given again by formulas (25) and (26). In this case, to study
the convexity of R, we have to check if, expressing the locus ρCC = 0 as ρB = fK(ρA),
we find a convex function. In the following, the label (K) is a parameter, and it will be
dropped. Let us indicate the derivative of ρCC with respect to the first and second
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Fig. 4.1. R (the grey region) for a fixed value of K, in the complex–complex case.

variable as
(
ρCC

)
1

and
(
ρCC

)
2
. We have that

f ′(ρA) = F (ρA, f(ρA)) , where F (ρA, ρB) := −
(
ρCC

)
1(

ρCC
)
2

= −
arctan(ρB−ρA K√D ) + π

2

arctan(ρA−ρB K√D ) + π
2

,

f ′′(ρA) = G (ρA, f(ρA)) , where

G(ρA, ρB) =
∂F (ρA, ρB)

∂ρA
+
∂F (ρA, ρB)

∂ρB
F (ρA, ρB)

=
2

(1 + ρ2A) (1 + ρ2B)
√D

(
π + 2 arctan(ρA−ρB K√D )

)3

×
([
ρ3A ρB + ρA ρ

3
B + 2(1 + ρ2A + ρ2B + ρAρB + ρ2Aρ

2
B) +K(2 + ρ2A + ρ2B)

]
π2

+ 4
(
1 + ρ2B

) (
1 + ρ2A + ρA ρB +K) π arctan

(
ρA − ρB K√D

)

+ 4
(
1 + ρ2A

) (
1 + ρ2B + ρB ρA +K) π arctan

(
ρB − ρAK√D

)

+ 4
(
1 + ρ2A

)
(ρA ρB +K) arctan

(
ρB − ρAK√D

)2

+ 4
(
1 + ρ2B

)
(ρA ρB +K) arctan

(
ρA − ρB K√D

)2

+ 8
(
1 + ρ2A

) (
1 + ρ2B

)
arctan

(
ρB − ρAK√D

)
arctan

(
ρA − ρB K√D

))
.

Now the only terms that can be negative are the ones in the third and fourth rows,
but it is easy to check numerically that the sum of these two terms with the one in
the second row is always bigger than zero. The convexity follows. In this case, R is a
convex open unbounded region, while R̄ is a convex not-open unbounded region (we
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Fig. 4.2. R (the grey region) for a fixed value of K, in the (RC) case.

have to add the points such that ρCC = 1).

4.2. The real-complex case. In the case in which A and B have one complex
and the other real eigenvalues, R is drawn in Figure 4.2. We recall that ρA/i > 1,
ρB > 0, K/i ∈ R.

In the case where χ > 0 (which implies K/i < 0 and ρB < (−K/i)(ρA/i)), R is
determined by the condition D > 0. The locus D = 0 is the set of points such that
ρB = −(ρA/i)(K/i)±

√
(−(ρA/i)2 + 1)(−(K/i)2 − 1). The intersection point with the

ρA axis is

(ρA/i, ρB) = (
√

(K/i)2 + 1, 0),(27)

and the intersection with the ρA/i = 1 set is

(ρA/i, ρB) = (1,−(K/i)).

In the case when χ < 0 and K/i ≤ 0, we have asymptotic stability. We conclude that
in the case when K/i ≤ 0, R is a convex open unbounded region (see Figure 4.2 (case
K/i ≤ 0)), while to get R̄, we have to add the points in which D = 0.

In the case when χ < 0 and K/i > 0, R is determined by the condition ρRC < 1.
In Figure 4.2 (case K/i > 0), the locus D = 0 is drawn with a dotted line, while the
locus ρCC = 1 is drawn with a solid line. The points in which the two loci intersect
each other are given by formula (27). In this case, R is a nonconvex open unbounded
region. Again the points in which we have at least stability are the points in which
we have asymptotic stability plus the points such that ρRC = 1.

4.3. The real-real case. In the case in which A and B have both real eigen-
values, R is drawn in Figure 4.3. We recall that ρA/i, ρB/i > 1, K ∈ R\{±1}. If
K < −1, R is determined by ρRR > 0, while, if K > 1, R is determined by D > 0.
Similarly to the (CC) case, we can conclude that R is a convex open unbounded
region, while R̄ is a convex not-open unbounded region. (We have to add the points
such that ρCC = 1 and D = 0.)
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5. Final remarks. Using the results of [1, 7] and by Theorem 2.3, we have a
complete algorithm to study the asymptotic stability of a switched linear system in
any dimension at least in the case in which

Au = uA1x+ (1− u)A2x, u ∈ [0, 1], A1, A2 ∈ Rn×n,

where A and B are diagonalizable and dim{A1, A2}L.A. ≤ 4. The case in which A or
B is not diagonalizable can be treated with similar techniques.

Generalization can be done for more complex sets U . One is the followingm-input
system:

ẋ =
m∑
i=1

uiA
ix,

m∑
i=1

ui = 1, ui ≥ 0 (i = 1, . . . ,m), x ∈ Rn, A1, . . . , Am ∈ Rn×n.

With exactly the same techniques used in this paper, one can find a coordinates
invariant necessary and sufficient condition for the stabilizability of a control system
of the kind (2), where all the matrices have eigenvalues with strictly positive real
part. This problem was also studied in [12] but not in terms of a minimum number
of coordinate-free parameters. We refer to [12] for details.

Some results can be obtained for the nonlinear version of the problem treated in
this paper,

ẋ = uF (x) + (1− u)G(x),(28)

where x ∈ R2, F (.), G(.) are C∞ generic functions from R2 to R2 such that F (0) = 0,
G(0) = 0, and the two dynamical systems ẋ = F (x), ẋ = G(x) are globally asymptot-
ically stable at the origin. We are interested in studying under which conditions on
F (.) and G(.) the origin of the system (28) is globally asymptotically stable for every
measurable function u(.) : [0,∞[→ [0, 1].

Appendix A: Proof of formula (5). We refer to the following figure.
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θ+

θ−

u=1

u=0

ρ=1

ρ=1

Let ρ(t), θ(t) (resp., x(t), y(t)) be the polar coordinates (resp., Cartesian) of γM (t),
where we fix the initial condition by setting ρ(0) = 1, θ(0) = θ+. We have to
check if at the time a such that θ(a) = θ(0) + 2π we have ρ(a) < 1. Due to the
symmetries of the system, this happens iff at the time t̄ such that θ(t̄) = θ+ + π we
have ρRC := ρ(t̄) < 1. Notice that t̄ = a/2. The trajectory γM (t) corresponds to the
constant switching function u = +1 up to the time t′ in which θ(t′) = θ− + π. This
time is defined by the equations

x(t′) = ρ0e
−δAt′ cos(ωAt

′ + θ+E),

y(t′) = ρ0Ee
−δAt′ sin(ωAt

′ + θ+E),

θ+E = arctan

(
m+

E

)
∈
{

[−π/2, π/2[ if θ+ ∈ [−π/2, π/2[,
]π/2, 3π/4[ if θ+ ∈]π/2, 3π/4[,

ρ0 = (cos2(θ+E) + E2 sin2(θ+E))−1/2,

y(t′) = m−x(t′).

It follows that tan(ωAt
′ + θ+E) = m−/E. If we set θ−E = arctan(m−/E) ∈]θ+E , θ

+
E + π[,

we have t′ = (θ−E − θ+E)/ωA.
After time t′, γM (t) corresponds to the constant switching function u = 0 up to

the first time t̄ in which θ(t̄) = θ+ + π. This time is defined by the equations

x(t̄) = ρ(t′)e−δB(t̄−t′) cos(ωB(t̄− t′) + θ− + π),

y(t̄) = ρ(t′)e−δB(t̄−t′) sin(ωB(t̄− t′) + θ− + π),

ρ(t′) = ρ0e
− δA

ωA
(θ−

E
−θ+

E
)
√

cos2(θ−E) + E2 sin2(θ−E),

y(t̄) = m+x(t̄).

It follows that tan(ωB(t̄− t′) + θ− + π) = tan(ωB(t̄− t′) + θ−) = m+ = tan(θ+), and
we have t̄ = (θ+ − θ−)/ωB + t′. Finally,

ρ̄ = ρ(t̄) = ρ(t′)e−
δB
ωB

(t̄−t′)
= e

− δA
ωA

(θ−
E
−θ+

E
)− δB

ωB
(θ+−θ−)

√
cos2 θ−E + E2 sin2(θ−E)

cos2 θ+E + E2 sin2(θ+E)
.

This formula is not in a good form because it is not explicitly invariant for the exchange
of δA, ωA with δB , ωB and because the quantity E does not appear only in the form
E + 1/E. Recalling the definition of ρA, ρB ,K (see Definition 2.1) and using the
equality

arctan a− arctan b = arctan

(
ab+ 1

b− a + π/2

)
,
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which holds for a > b, it is possible to obtain the relations

− δA
ωA

(θ−E − θ+E) = −ρA
(

arctan

(−ρAK + ρB√D

)
+ π/2

)
,

− δB
ωB

(θ+ − θ−) = −ρB
(

arctan

(
ρA − ρBK√D

)
+ π/2

)
.

Moreover, with elementary computation we can show that√
cos2 θ−E + E2 sin2(θ−E)

cos2 θ+E + E2 sin2(θ+E)
=

√
ρAρB +

√D
ρAρB −

√D .

Formula (5) is obtained.

Appendix B: Proof of formula (6). To obtain a result that explicitly does
not depend on the choice of the system of coordinates, we need to write the formulas
of section 3.2 in a more invariant way. Set

ψ =

√
E cos2 ϕ+ 1/E sin2 ϕ

E sin2 ϕ+ 1/E cos2 ϕ
,

and make the coordinates transformation

x→ Ψ(ψ)x, where Ψ(ψ) :=

(
1 0
0 ψ

)
.

In this case (E ≥ 1), the new coordinates A, B, and θ± have the expressions

A = Ψ−1(ψ)

(
λ1 0
0 λ2

)
Ψ(ψ) =

(
λ1 0
0 λ2

)
,

B = Ψ−1(ψ)

(
a b
c d

)
Ψ(ψ) =

( −δ − ωK/i −ω√−K2 + 1

+ω
√−K2 + 1 −δ + ωK/i

)
,

θ± = arctanm±, m± =
−χ±√−D

2 λ2

λ1−λ2

√−K2 + 1
=

−χ±√−D
(−ρA/i− 1)

√−K2 + 1
.

Equivalently, we can use the expressions (15), (16), (18) for A,B, θ± with E ≥ 1 and
ϕ = π/4.

A =

(
λ1 0
0 λ2

)
,

B = R−1(π/4)

( −δ −ω/E
ωE −δ

)
R(π/4),

θ± = arctanm±, m± :=
−χ±√−D
λ2

λ1−λ2
(E + 1/E)

= 2
−χ±√−D

(−ρA/i− 1)(E + 1/E)
.(29)

The relation between K and E is

K = i
1

2
(E − 1/E), E = K/i+

√
−K2 + 1.

Moreover, we are considering the case χ < 0 so that θ+, θ− ∈]− π/2, 0[. From (29) it
follows that θ+ < θ−.
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In this case, γM (.) corresponds to the feedback (see the following figure):

u(x) =

{
1 if θ ∈]θ+, θ−[ or θ ∈]θ+ + π, θ− + π[,
0 if θ ∈]θ−, θ+ + π[ or θ ∈]θ− + π, θ+ + 2π[.

u=+1

u=0
u=+1θ
θ

u=0

+
−

Make the following coordinates transformation: x→ x̄ = R(π/4)x. We have

A→ Ā = R(π/4)

(
λ1 0
0 λ2

)
R−1(π/4),

B → B̄ =

( −δ −ω/E
ωE −δ

)
,

θ± → θ̄± = θ± − π/4 = arctan m̄± ∈ [3/4π, π/4[, m̄± :=
m± − 1

m± + 1
.

Similarly to Appendix A, we compute γM in polar coordinates with the initial con-
dition ρ(0) = 1, θ(0) = θ̄−. Let t′ be the first time such that θ(t′) = θ̄+ + π. We
have

t′ = (ξ+ − ξ−)/ω,

ρ(t′) = e−
δ
ω (ξ+−ξ−)

√
cos2 ξ+ + E2 sin2 ξ+

cos2 ξ− + E2 sin2 ξ−
,

where ξ± := arctan(m̄±/E), ξ+ ∈]ξ−, ξ− + π[.
Now we come back to the old coordinates (x̄→ x = R−1(π/4)x̄), and we integrate

Bx up to the first time t̄ such that θ(t̄) = θ− + π. We have

x(t̄) = ρ(t′) cos(θ+ + π)eλ1(t̄−t′),

y(t̄) = ρ(t′) sin(θ+ + π)eλ2(t̄−t′),
y(t̄) = m−x(t̄).

It follows that

m+e((λ2−λ1)(t̄−t′)) = n− =⇒ t̄− t′ =
1

λ2 − λ1
ln

(
m−

m+

)
.

Finally,

ρRC := ρ(t̄) = ρ(t′)

√
cos2 θ+e

λ1
λ2−λ1

ln(m−/m+) + sin2 θ+e
λ2

λ2−λ1
ln(m−/m+)

= e−
δ
ω (ξ+−ξ−)

√
cos2 ξ+ + E2 sin2 ξ+

cos2 ξ− + E2 sin2 ξ−
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×

√√√√
cos2 θ+

(
m−

m+

) λ1
λ2−λ1

+ sin2 θ+
(
m−

m+

) λ2
λ2−λ1

= e−ρB(ξ+−ξ−)

√
cos2 ξ+ + E2 sin2 ξ+

cos2 ξ− + E2 sin2 ξ−

×
√

cos2 θ+
(
m+

m−

) 1
2 (−ρA/i+1)

+ sin2 θ+
(
m+

m−

) 1
2 (−ρA/i−1)

,

which is formula (6). This formula is complicated but acceptable because there are
no further symmetries.

Acknowledgment. The author is grateful to Andrei Agrachev for suggesting the
problem and for helpful discussions that contributed to finding the right invariant.
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Abstract. We introduce a general class of causal dynamic discrete-time nonlinearities which
have certain monotonicity and Lipschitz continuity properties. In particular, the discretizations of
a large class of continuous-time hysteresis operators obtained by applying the standard sampling
and hold operations belong to this class. It is shown that closing the loop around a power-stable,
linear, infinite-dimensional, discrete-time, single-input, single-output system, subject to an input
nonlinearity from the class under consideration and compensated by a discrete-time integral con-
troller, guarantees asymptotic tracking of constant reference signals, provided that (a) the positive
integrator gain is sufficiently small and (b) the reference value is feasible in a very natural sense.
We apply this result in the development of sampled-data low-gain integral control for exponentially
stable, regular, linear, infinite-dimensional, continuous-time systems subject to input hysteresis.

Key words. continuous-time regular infinite-dimensional systems, discrete-time infinite-dimen-
sional systems, hysteresis nonlinearities, integral control, robust tracking, sampled-data control

AMS subject classifications. 47H30, 47J40, 93C10, 93C20, 93C25, 93C55, 93C57, 93D10

PII. S0363012901385770

1. Introduction. The present paper extends the line of work on low-gain inte-
gral control of infinite-dimensional linear systems subject to input nonlinearities initi-
ated by the recent papers [9], [11], [14], [15]. Underpinning these contributions are gen-
eralizations of the well-known principle (see, for example, [4], [17], [18], and [22]) that
closing the loop around a stable, linear, continuous-time, single-input, single-output
plant, with transfer function Gc(s) compensated by a pure integral controller k/s, will
result in a stable closed-loop system that achieves asymptotic tracking of arbitrary
constant reference signals, provided that |k| is sufficiently small and Gc(0)k > 0.1 In
particular, Logemann and Mawby [11] have shown that the above principle remains
true for exponentially stable, regular, linear, infinite-dimensional, continuous-time,
single-input, single-output systems subject to input hysteresis belonging to a certain
class C(λ) of hysteresis operators, provided the reference value r is feasible in a natural
sense. The class C(λ) consists of hysteresis operators which, among other conditions,
satisfy a certain Lipschitz condition with Lipschitz constant λ > 0. We emphasize
that C(λ) encompasses a large number of hysteresis nonlinearities important in appli-
cations such as relay, backlash, elastic-plastic, and Prandtl hysteresis.

In this paper, we provide discrete-time and sampled-data analogues of the contin-
uous-time results in [11]. More precisely, the contribution of the present work is
twofold.

∗Received by the editors March 2, 2001; accepted for publication (in revised form) October 8,
2001; published electronically April 2, 2002. This work was supported in part by the UK EPSRC
Council (grant GR/L78086).

http://www.siam.org/journals/sicon/41-1/38577.html
†Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK (hl@maths.

bath.ac.uk).
‡Current address: Systems Engineering and Assessment, P.O. Box 800, Bath BA3 6TB, UK

(adm@sea.co.uk).
1Therefore, under the above assumptions on the plant, the problem of tracking constant reference

signals reduces to that of tuning the gain parameter k. This so-called tuning regulator theory [4] has
been successfully applied in process control (see [3], [19]).
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Fig. 1. Low-gain control with input nonlinearity.
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Fig. 2. Sampled-data low-gain control.

(i) We introduce a class D(λ) of causal dynamic discrete-time nonlinearities which
have a number of properties, one of them being that a functional Lipschitz condition
with Lipschitz constant λ > 0 is satisfied. The class D(λ) contains a large number
of discrete-time hysteresis operators, in particular discretizations of continuous-time
hysteresis operators in C(λ) obtained by sampling/hold. We derive a discrete-time
version of the continuous-time tuning regulator result in [11] by showing that for
a power-stable, linear, infinite-dimensional, discrete-time, single-input, single-output
plant with transfer function G(z), subject to a dynamic input nonlinearity Φ ∈ D(λ),
the output y(n) of the closed-loop system, shown in Figure 1, converges to the refer-
ence value r as n → ∞, provided that G(1) > 0, r is feasible in some natural sense,
and k ∈ (0,K/λ), where K is the supremum of the set of all numbers k > 0 such that

1 + kRe
G(z)

z − 1
≥ 0 ∀ |z| > 1 .

(ii) We apply the discrete-time theory in the development of a sampled-data coun-
terpart to the continuous-time low-gain control result in [11]—see Figure 2—where
HO denotes a standard hold operation and SA denotes a sampling operation. In the
case of unbounded observation, the latter involves an averaging operation. Specifi-
cally, we show that for an exponentially stable, regular, linear, infinite-dimensional,
continuous-time, single-input, single-output plant with transfer function Gc(s), sub-
ject to a continuous-time dynamic input nonlinearity Φc ∈ C(λ), the output yc(t)
of the closed-loop system, shown in Figure 2, converges to the reference value r as
t → ∞, provided that Gc(0) > 0, r is feasible in some natural sense, and k > 0
is sufficiently small. The class of regular, linear, infinite-dimensional, continuous-
time systems, introduced by Weiss [25], [26], [27], [28], is rather general. It includes
most distributed parameter systems and all time-delay systems (retarded and neutral)
which are of interest in applications. With respect to (i), while the structure of the
discrete-time analysis parallels that of the continuous-time analysis in [11], there are
several points where these analyses differ in an essential manner. With reference to
(ii), the sampled-data results constitute the main contribution of the paper. In the
derivation of these results, the discrete-time theory plays a central role.
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We mention that there exists a substantial literature on the mathematical theory
of hysteresis phenomena; see, for example, Brokate [1], Brokate and Sprekels [2],
and Krasnosel’skĭı and Pokrovskĭı [8]. Of particular importance in a systems and
control context is the pioneering work [8]. Our treatment of continuous-time hysteresis
operators in section 4 has been strongly influenced by chapter 2 in [2].

The paper is organized as follows. In section 2, we introduce the class D(λ)
of dynamic discrete-time nonlinearities, while section 3 contains the low-gain tuning
regulator result for discrete-time systems subject to input nonlinearities belonging to
D(λ). In section 4, we introduce the class C(λ) of dynamic continuous-time nonlin-
earities and establish several important properties enjoyed by nonlinearities in this
class. At the end of this section, we discretize continuous-time hysteresis operators
and show that the resultant discrete-time operators are contained in the class D(λ).
In section 5, the low-gain tracking problem for exponentially stable, regular, linear,
infinite-dimensional, continuous-time, single-input, single-output systems with input
nonlinearity in C(λ) is solved using sampled-data integral control. In section 6, we
illustrate our results in the context of a simple linear diffusion process subject to in-
put hysteresis: relay as well as backlash nonlinearities are considered. Finally, several
technical details relating to the infinite-dimensional discrete-time positive-real lemma
have been relegated to the appendix.

Notation. We define

R+ := {x ∈ R |x ≥ 0} , Z+ = {x ∈ Z |x ≥ 0} .
For setsM and N , we denote the set of all functions f :M → N by F (M,N). If I ⊂ R

is a compact interval, then AC(I,R) denotes the space of absolutely continuous real-
valued functions defined on I; AC(R+,R) denotes the space of real-valued functions
defined on R+ which are absolutely continuous on any compact interval I ⊂ R+,
i.e., a function f ∈ F (R+,R) is in AC(R+,R) if and only if there exists a function
g ∈ L1

loc(R+,R) such that

f(t) = f(0) +

∫ t

0

g(τ) dτ ∀ t ≥ 0.

We say that a function f ∈ F (R+,R) is piecewise monotone if there exists a sequence
0 = t0 < t1 < t2 < · · · such that limi→∞ ti = ∞ and f is monotone on each of the
intervals (ti, ti+1). A function f ∈ F (R+,R) is called piecewise continuous if there
exists a sequence 0 = t0 < t1 < t2 < · · · such that limi→∞ ti =∞, f is continuous on
each of the intervals (ti, ti+1), and the right and left limits of f exist and are finite
at each ti. We denote the space of all piecewise continuous functions f : R+ → R by
PC(R+,R). As usual, for f ∈ PC(R+,R), we define

f(t+) := lim
τ↓t

f(τ) (for t ≥ 0) and f(t−) := lim
τ↑t

f(τ) (for t > 0).

Let T = R+,Z+; a function f ∈ F (T,R) is called ultimately constant if there exists
T ∈ T such that f is constant on [T,∞) ∩ T. L(X,Y ) denotes the space of bounded
linear operators from a Banach space X to a Banach space Y , and we set L(X) :=
L(X,X). The Laplace transform is denoted by L.

2. A class of discrete-time nonlinear operators. For each n ∈ Z+, we define
a projection operator Qn : F (Z+,R)→ F (Z+,R) by

(Qnu)(m) =

{
u(m) for m ∈ [0, n] ∩ Z+,
u(n) for m ∈ Z+ \ [0, n].
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Recall that an operator Φ : F (Z+,R) → F (Z+,R) is called causal if for all u, v ∈
F (Z+,R) and all n ∈ Z+ with u(m) = v(m) for all m ∈ [0, n] ∩ Z+ it follows that
(Φ(u))(m) = (Φ(v))(m) for all m ∈ [0, n] ∩ Z+.

Let u ∈ F (Z+,R). The function u is called ultimately nondecreasing if there exists
m ∈ Z+ such that u is nondecreasing on Z+ \ [0,m].

The numerical value set NVSΦ of an operator Φ : F (Z+,R) → F (Z+,R) is
defined by

NVSΦ := {(Φ(u))(n) |u ∈ F (Z+,R), n ∈ Z+}.
We introduce the following five assumptions on the operator Φ : F (Z+,R) →

F (Z+,R):
(D1) Φ is causal;
(D2) for all u ∈ F (Z+,R) and all n ∈ Z+

(Φ(Qnu))(k) = (Φ(Qnu))(n) ∀ k ∈ Z+ \ [0, n];
(D3) there exists λ > 0 such that for all u ∈ F (Z+,R) and all n ∈ Z+

u(n) �= u(n+ 1) =⇒ (Φ(u))(n+ 1)− (Φ(u))(n)

u(n+ 1)− u(n) ∈ [0, λ];

(D4) if u ∈ F (Z+,R) is ultimately nondecreasing and limn→∞ u(n) = ∞, then
(Φ(u))(n) and (Φ(−u))(n) converge to supNVSΦ and inf NVSΦ, respec-
tively, as n→∞;

(D5) if, for u ∈ F (Z+,R), L := limn→∞(Φ(u))(n) exists with L ∈ int (clos (NVSΦ)),
then u is bounded.

Remark 2.1. (1) We note that if (D1) and (D2) hold, then (D3) is implied by
the monotonicity condition

[(Φ(u))(n+ 1)− (Φ(u))(n)][u(n+ 1)− u(n)] ≥ 0 ∀u ∈ F (Z+,R) , ∀n ∈ Z+,

together with the Lipschitz continuity condition

sup
n∈Z+

|(Φ(u))(n)− (Φ(v))(n)| ≤ λ sup
n∈Z+

|u(n)− v(n)| ∀u, v ∈ F (Z+,R).

(2) Assumption (D2) says that if the input u of the nonlinearity Φ is constant on
Z+\[0, n−1], then the output Φ(u) is constant and equal to (Φ(u))(n) on Z+\[0, n−1].

(3) If (D1)–(D3) hold, then

|(Φ(u))(n+ 1)− (Φ(u))(n)| ≤ λ |u(n+ 1)− u(n)| ∀u ∈ F (Z+,R), ∀n ∈ Z+.

Thus if (D4) also holds, clos (NVSΦ) is an interval. However, it can be shown that
NVSΦ is not necessarily an interval; see Mawby [21] for a counterexample.

(4) If (D1)–(D3) hold, then for all u ∈ F (Z+,R) there exists d : Z+ → [0, λ] such
that (Φ(u))(n+ 1)− (Φ(u))(n) = d(n)(u(n+ 1)− u(n)) for all n ∈ Z+.

If Φ : F (Z+,R) → F (Z+,R) satisfies (D3), then any number l > 0 such that
(D3) holds for λ = l is called a Lipschitz constant of Φ. We are now in a position
to define the class of nonlinear operators we will be considering in the context of the
discrete-time integral control problem in section 3.

Definition 2.2. Let λ > 0. The set of all operators Φ : F (Z+,R) → F (Z+,R)
satisfying (D1)–(D5) and having Lipschitz constant λ is denoted by D (λ).
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Fig. 3. Backlash hysteresis.

We now consider two examples of nonlinearities which satisfy (D1)–(D5).

Static nonlinearities. For a function f : R → R, define the corresponding static
nonlinearity by

Sf : F (Z+,R)→ F (Z+,R) , u �→ f ◦ u.

It is clear that if f : R → R is nondecreasing and globally Lipschitz with Lipschitz
constant λ > 0, then Sf ∈ D(λ).

Backlash hysteresis. Let h ∈ R+ be arbitrary. Define the function bh : R
2 → R

by

bh(v, w) = max{v − h,min{v + h,w}}.(2.1)

We note that

bh(v, w) ∈ [v − h, v + h] ∀ v, w ∈ R,(2.2)

bh(v, w) = w ∀ (v, w) ∈ {(z1, z2) | z1 ∈ R, z2 ∈ [z1 − h, z1 + h]},(2.3)

(bh(v1, w)− bh(v2, w))(v1 − v2) ≥ 0 ∀ v1, v2, w ∈ R.(2.4)

For each ξ ∈ R, we introduce the discrete-time backlash operator Bd
h, ξ : F (Z+,R)→

F (Z+,R) by defining recursively

(Bd
h, ξ(u))(n) =

{
bh(u(0), ξ) for n = 0,
bh(u(n), (B

d
h, ξ(u))(n− 1)) for n ∈ Z+ \ {0}.

We remark that ξ plays the role of an “initial state.” The discrete-time backlash
operator Bd

h, ξ is illustrated in Figure 3.
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We show that Bd
h, ξ ∈ D (1). It is immediately clear from the definition that Bd

h, ξ

satisfies (D1). Using (2.2) and (2.3), we see that (D2) holds. Combining (2.1)–(2.4)
leads to

[(Bd
h, ξ(u))(n+ 1)− (Bd

h, ξ(u))(n)][u(n+ 1)− u(n)] ≥ 0 ∀u ∈ F (Z+,R) , ∀n ∈ Z+.

(2.5)

It is not difficult to show (see [2, p. 42]) that

|bh(v1, w1)− bh(v2, w2)| ≤ max(|v1 − v2|, |w1 − w2|) ∀ v1, v2, w1, w2 ∈ R.

Thus

|(Bd
h, ξ(u))(n+ 1)− (Bd

h, ξ(u))(n)| ≤ |u(n+ 1)− u(n)| ∀u ∈ F (Z+,R) , ∀n ∈ Z+,

which, combined with (2.5), implies that (D3) holds for λ = 1. Note that NVSBd
h, ξ =

R. By (2.2), for all u ∈ F (Z+,R) and all n ∈ Z+, (B
d
h, ξ(u))(n) ∈ [u(n)− h, u(n)+ h],

showing that (D4) holds. Finally, it is clear that

v ∈ [bh(v, w)− h, bh(v, w) + h] ∀ v, w ∈ R,

and so

u(n) ∈ [(Bd
h, ξ(u))(n)− h, (Bd

h, ξ(u))(n) + h] ∀u ∈ F (Z+,R) , ∀n ∈ Z+,

showing that (D5) is satisfied. We have shown that (D1)–(D5) hold for Bd
h, ξ (with

λ = 1), and hence Bd
h, ξ ∈ D(1). We direct the reader to section 4 for a discussion of

the backlash operator in a continuous-time setting.

3. Discrete-time integral control. Consider a single-input, single-output, dis-
crete-time system

x(n+ 1) = Ax(n) +Bu(n), x(0) = x0 ∈ X,(3.1a)

y(n) = Cx(n) +Du(n),(3.1b)

evolving on a real Hilbert space X. Here A ∈ L(X), B ∈ L(R, X), C ∈ L(X,R), and
D ∈ R. A system of the form (3.1) is called power-stable if A is power-stable, i.e.,
there exist M ≥ 1 and θ ∈ (0, 1) such that

‖An‖ ≤Mθn ∀n ∈ Z+.

The transfer function G of (3.1) is given by

G(z) = C(zI −A)−1B +D.

Suppose that system (3.1) is subject to a causal input nonlinearity Φ : F (Z+,R) →
F (Z+,R), yielding the nonlinear system

x(n+ 1) = Ax(n) +B(Φ(u))(n), x(0) = x0 ∈ X,(3.2a)

y(n) = Cx(n) +D(Φ(u))(n).(3.2b)

Denoting the reference value by r, the control law

u(n+ 1) = u(n) + k(r − y(n)),
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where k is a real parameter, then leads to the following nonlinear system of difference
equations:

x(n+ 1) = Ax(n) +B(Φ(u))(n), x(0) = x0 ∈ X,(3.3a)

u(n+ 1) = u(n) + k(r − Cx(n)−D(Φ(u))(n)), u(0) = u0 ∈ R.(3.3b)

If G is holomorphic and bounded on {z ∈ C | |z| > α} for some α < 1 (which is
the case if (3.1) is power-stable) and G(1) > 0, then it can be shown that

1 + kRe
G(z)

z − 1
≥ 0 ∀ |z| > 1,(3.4)

for all sufficiently small k > 0; see [16]. We define

K := sup{k > 0 | (3.4) holds}.(3.5)

We can now state the main result of this section.
Theorem 3.1. Let λ > 0. Assume that Φ ∈ D (λ), (3.1) is power-stable, G(1) >

0, k ∈ (0,K/λ), and r ∈ R is such that r̃ := r/G(1) ∈ clos (NVSΦ). Then for all
(x0, u0) ∈ X × R, the solution (x, u) of (3.3) satisfies the following:

(1) limn→∞(Φ(u))(n) = r̃;
(2) limn→∞ x(n) = (I −A)−1Br̃;
(3) limn→∞ y(n) = r , where y(n) = Cx(n) +D(Φ(u))(n);
(4) if r̃ ∈ int (clos (NVSΦ)), then u is bounded.
Proof. Denote the solution of (3.3) by (x, u), and introduce new variables by

defining

z(n) := x(n)− (I −A)−1B(Φ(u))(n), v(n) := (Φ(u))(n)− r̃ ∀n ∈ Z+.

By Remark 2.1, part (4), there exists d : Z+ → [0, λ] such that (Φ(u))(n + 1) −
(Φ(u))(n) = d(n)(u(n + 1) − u(n)) for all n ∈ Z+. Using the identity A(I − A)−1 =
(I −A)−1 − I, a straightforward calculation yields

z(n+ 1) = Az(n)− (I −A)−1Bw(n), z(0) = z0,(3.6a)

v(n+ 1) = v(n) + w(n), v(0) = v0,(3.6b)

where

w(n) = −kd(n)(Cz(n) + G(1)v(n)),

and

z0 := x0 − (I −A)−1B(Φ(u))(0), v0 := (Φ(u))(0)− r̃.

Choose c ∈ (kλ,K), and define

H(z) = −C(zI −A)−1(I −A)−1B + J,

where J := 1/c−G(1)/2. Then

H(z) =
1

z − 1
(G(z)−G(1)) + J.
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Since c < K, there exists ε > 0 such that

1

c
+Re

G(z)

z − 1
≥ ε ∀ |z| > 1,

and hence, using the identity

Re

(
1

eiθ − 1

)
= −1

2
∀ θ ∈ (0, 2π),

we may conclude that

ReH(eiθ) ≥ ε ∀ θ ∈ [0, 2π).

An application of the discrete-time positive-real lemma (see the appendix) shows that
there exist P ∈ L(X), P = P ∗ ≥ 0, L ∈ L(R, X), and W ∈ R such that

A∗PA− P = −LL∗,(3.7a)

A∗P (I −A)−1B = LW − C∗,(3.7b)

W 2 = 2J −B∗(I −A∗)−1P (I −A)−1B.(3.7c)

For n ∈ Z+, define

V (n) = 〈z(n), P z(n)〉+ G(1)v(n)2.

Using (3.6) and (3.7), we obtain for all n ∈ Z+

V (n+ 1)− V (n) = 〈z(n+ 1), P z(n+ 1)〉 − 〈z(n), P z(n)〉+ G(1)(v(n+ 1)2 − v(n)2)
= −(L∗z(n))2 − 2(L∗z(n))Ww(n) + 2(Cz(n))w(n)

+ w(n)(2J −W 2)w(n) + G(1)(w(n)2 + 2w(n)v(n))

= −(L∗z(n))2 − (Ww(n))2 − 2(L∗z(n))Ww(n)

+ 2(Cz(n))w(n) +
2

c
w(n)2 + 2G(1)w(n)v(n)

= −(L∗z(n) +Ww(n))2 + 2(Cz(n))w(n)

+
2

c
w(n)2 − 2G(1)kd(n)[G(1)v(n)2 + (Cz(n))v(n)]

= −(L∗z(n) +Ww(n))2 +
2

c
w(n)2 − 2kd(n)(G(1)v(n) + Cz(n))2

= −(L∗z(n) +Ww(n))2 − 2

(
kd(n)− k2d(n)2

c

)
(G(1)v(n) + Cz(n))2.

Summing from n = 0 to n =∞ then gives

2
∞∑
n=0

(
kd(n)− k2d(n)2

c

)
(G(1)v(n) + Cz(n))2 ≤ V (0) <∞.(3.8)

Now, since c > kλ and d(n) ∈ [0, λ], we have

kd(n)− k2d(n)2

c
= kd(n)

(
1− kd(n)

c

)
≥ kd(n)

(
1− kλ

c

)
≥ k

δ

λ
d(n)2 ∀n ∈ Z+,
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where δ := 1− kλ/c > 0. Therefore, (3.8) implies that

d(Cz + G(1)v) ∈ l2(Z+),(3.9)

and hence

w ∈ l2(Z+).(3.10)

Appealing to the fact that A is power-stable, we may conclude from (3.6a) and (3.10)
that

z ∈ l2(Z+).(3.11)

Consequently, Cz ∈ l2(Z+), and hence, by (3.9) and the boundedness of d,

dv ∈ l2(Z+).(3.12)

From (3.11) and (3.12) we obtain that

(Cz)dv ∈ l1(Z+).(3.13)

Using (3.8), (3.11)–(3.13), and the boundedness of d it follows that

dv2 ∈ l1(Z+).(3.14)

It follows from (3.6b) that, for all m ∈ Z+,

v(m+ 1)2 = v(0)2 +

m∑
n=0

w(n)2 + 2

m∑
n=0

v(n)w(n).(3.15)

Combining (3.15) with (3.10), (3.13), and (3.14) and recalling that w = −kd(Cz +
G(1)v), we see that there exists a number ν ∈ R+ such that

lim
n→∞ v(n)2 = ν.(3.16)

In order to prove statement (1), it is sufficient to show that ν = 0. Seeking a contra-
diction, suppose that ν > 0. By (3.10), limn→∞ w(n) = 0, and thus we may conclude
from (3.6b) that

lim
n→∞(v(n+ 1)− v(n)) = 0.(3.17)

Since ν > 0, (3.16) and (3.17) yield that v(n) does not change sign for sufficiently
large n, and so

lim
n→∞ v(n) =

√
ν or lim

n→∞ v(n) = −√ν.

Assuming that limn→∞ v(n) = −√ν (the case limn→∞ v(n) =
√
ν can be dealt with

in an entirely analogous fashion), we obtain that

Φ∞ := lim
n→∞(Φ(u))(n) < r̃,(3.18)

and thus

lim
n→∞x(n) = (I −A)−1BΦ∞.(3.19)
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It then follows from (3.3b), (3.18), and (3.19) that

lim
n→∞(u(n+ 1)− u(n)) = k(r − C(I −A)−1BΦ∞ −DΦ∞) = kG(1)(r̃ − Φ∞) > 0.

(3.20)

Therefore, limn→∞ u(n) =∞, and u is ultimately nondecreasing, so by (D4) and the
assumption that r̃ ∈ clos (NVSΦ) we obtain

Φ∞ = lim
n→∞(Φ(u))(n) = sup(NVSΦ) ≥ r̃,

contradicting (3.18). Therefore, limn→∞ v(n) = 0, and, consequently, limn→∞(Φ(u))(n)
= r̃, which is statement (1).

Statement (2) follows immediately from statement (1). Statement (3) is an
easy consequence of statements (1) and (2). Finally, to prove statement (4), let
r̃ ∈ int (clos (NVSΦ)). Then the boundedness of u follows immediately from state-
ment (1) and (D5).

We see from the proof of Theorem 3.1 that (D5) is needed only for statement (4).
One of the conditions imposed in Theorem 3.1 is that r/G(1) ∈ clos (NVSΦ).

The following proposition shows that this condition is close to being necessary for
tracking insofar as, if tracking of r is achievable while maintaining the boundedness
of Φ(u), then r/G(1) ∈ clos (NVSΦ).

Proposition 3.2. Let λ > 0 and r ∈ R. Suppose that Φ ∈ D (λ), A is power-
stable, and G(1) > 0. If there exist an initial condition x0 ∈ X and a function
u ∈ F (Z+,R) such that Φ(u) is bounded and

lim
n→∞[Cx(n) +D(Φ(u))(n)] = r ,

where x ∈ F (Z+, X) is given by (3.2a), then r/G(1) ∈ clos (NVSΦ).
Proof. Since Φ(u) is bounded and A is power-stable, x is bounded. Let n ∈ Z+,

and define y : Z+ → R by (3.2b); then

y(n) = C(x(n)− (I −A)−1B(Φ(u))(n)) + G(1)(Φ(u))(n),

and therefore

C(A− I)−1(x(n+ 1)− x(n)) = y(n)−G(1)(Φ(u))(n).

For p,m ∈ Z+ with p > m, summing the above from m to p− 1 gives

C(A− I)−1(x(p)− x(m)) =

p−1∑
k=m

(y(k)−G(1)(Φ(u))(k)).(3.21)

Seeking a contradiction, let us suppose that r/G(1) /∈ clos (NVSΦ). Since limn→∞ y(n)
= r and clos (NVSΦ) is an interval (see Remark 2.1, part (3)), there exist ε > 0,
β ∈ {−1, 1}, and m ∈ Z+ such that

β(y(n)−G(1)(Φ(u))(n)) ≥ ε ∀n ≥ m.

Combining the above with (3.21), it follows that

βC(A− I)−1(x(n)− x(m)) =

n−1∑
k=m

β(y(k)−G(1)(Φ(u))(k)) ≥ ε(n−m) ∀n > m.

Therefore, limn→∞ βC(A−I)−1x(n) =∞, contradicting the boundedness of x.
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4. A class of continuous-time hysteresis operators and their discretiza-
tions. We call a function f : R+ → R+ a time transformation if f is continuous
and nondecreasing and satisfies f(0) = 0 and limt→∞ f(t) = ∞, i.e., f is contin-
uous, nondecreasing, and surjective. We denote the set of all time transformations
f : R+ → R+ by T. For all τ ∈ R+, we define a (continuous-time) projection operator
Qc
τ : F (R+,R)→ F (R+,R) by

(Qc
τv)(t) =

{
v(t) for 0 ≤ t ≤ τ ,
v(τ) for t > τ .

In the following, let F ⊂ F (R+,R), F �= ∅. We introduce the following two
assumptions on F:

(F1) v ◦ f ∈ F for all v ∈ F and all f ∈ T;
(F2) Qc

t(F) ⊂ F for all t ∈ R+.
We call an operator Φ : F → F (R+,R) causal if for all v, w ∈ F and all τ ∈ R+

with v(t) = w(t) for all t ∈ [0, τ ] it follows that (Φ(v))(t) = (Φ(w))(t) for all t ∈ [0, τ ].
An operator Φ : F → F (R+,R) is called rate independent if F satisfies (F1) and

(Φ(v ◦ f))(t) = (Φ(v))(f(t)) ∀ v ∈ F, ∀ f ∈ T, ∀ t ∈ R+.

A functional ϕ : F → R is called rate independent if F satisfies (F1) and

ϕ(u ◦ f) = ϕ(u) ∀u ∈ F, ∀ f ∈ T.

Definition 4.1. Let F ⊂ F (R+,R), F �= ∅. An operator Φ : F → F (R+,R) is
called a hysteresis operator if F satisfies (F1) and Φ is causal and rate independent.

For F ⊂ F (R+,R), F �= ∅, let Fuc denote the set of all ultimately constant u ∈ F,
i.e.,

Fuc = {u ∈ F |u is ultimately constant}.
Clearly, if F satisfies (F2), then Fuc �= ∅. Moreover, if F satisfies (F1), then so does
Fuc. The proof of the following proposition can be found in [10].

Proposition 4.2. Let F ⊂ F (R+,R), F �= ∅, and assume that (F1) and (F2) are
satisfied. If Φ : F → F (R+,R) is a hysteresis operator, then the following statements
hold:

(1) for all v ∈ F and all τ ∈ R+

(Φ(Qc
τ v))(t) = (Φ(v))(τ) ∀ t ≥ τ ;

(2) the functional

ϕ : Fuc → R, v �→ lim
t→∞(Φ(v))(t)(4.1)

is rate independent and satisfies

(Φ(v))(t) = ϕ(Qc
t v) ∀ v ∈ F, ∀ t ∈ R+.(4.2)

Conversely, if ϕ : Fuc → R is a rate independent functional, then Φ : F → F (R+,R)
given by (4.2) is a hysteresis operator and satisfies

lim
t→∞(Φ(v))(t) = ϕ(v) ∀ v ∈ Fuc.(4.3)
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For a hysteresis operator Φ : F → F (R+,R), we call the rate independent func-
tional ϕ defined by (4.1) the representing functional of Φ.

For any v ∈ F (R+,R) and any t ∈ R+, we define

M(v, t) := {τ ∈ (t,∞) | v is monotone on (t, τ)}.
If v is piecewise monotone, then M(v, t) �= ∅ for all t ∈ R+ and the standard mono-
tonicity partition t0 < t1 < t2 < · · · of v is defined recursively by setting t0 = 0 and
ti+1 = supM(v, ti) for all i ∈ Z+ such that M(v, ti) is bounded. If v is piecewise
monotone and ultimately constant, then the standard monotonicity partition of v is
finite.

The space of all piecewise monotone v ∈ C(R+,R) is denoted by Cpm(R+,R).
We define Cuc

pm(R+,R) to be the space of all ultimately constant v ∈ Cpm(R+,R).
Let F uc(Z+,R) denote the space of ultimately constant v : Z+ → R. We define the
restriction operator R : Cuc

pm(R+,R)→ F uc(Z+,R) by

(R(v))(k) =

{
v(tk) for k ∈ [0,m] ∩ Z+,
limt→∞ v(t) for k ∈ Z+ \ [0,m],

where 0 = t0 < t1 < · · · < tm is the standard monotonicity partition of v.
In the following, we want to extend hysteresis operators defined on Cpm(R+,R) to

spaces of piecewise continuous functions. This requires some preparation. For τ > 0,
we define the prolongation operator Pτ : F (Z+,R) → Cpm(R+,R) by letting Pτu be
the linear interpolate for the values (Pτu)(iτ) = u(i). Let NPC(R+,R) ⊂ PC(R+,R)
denote the space of all normalized piecewise continuous functions v : R+ → R; that
is, v is piecewise continuous and is right-continuous or left-continuous at each point
t ∈ R+. The space of all piecewise monotone functions v ∈ NPC(R+,R) is denoted
by NPCpm(R+,R), while NPCuc

pm(R+,R) denotes the space of ultimately constant
v ∈ NPCpm(R+,R). We note that NPCpm(R+,R) and NPCuc

pm(R+,R) both satisfy
(F1) and (F2). For v ∈ NPCuc

pm(R+,R), we define v(∞) := limτ→∞ v(τ).
Let v ∈ NPCuc

pm(R+,R), and let 0 = t0 < t1 < · · · < tm be the standard
monotonicity partition of v. We define the operator ρ : NPCuc

pm(R+,R)→ F uc(Z+,R)
by

ρ(v) = (v(t0), v(t1−), v(t1+), v(t2−), v(t2+), . . . , v(tm−), v(tm+), v(∞), v(∞), . . . ).

For τ > 0, define

Re : NPC
uc
pm(R+,R)→ F uc(Z+,R) , v �→ R((Pτ ◦ ρ)(v)).

The operator Re is an extension of R, and the definition of Re is independent of τ (see
[10]). The function v, shown in Figure 4, is a normalized piecewise continuous function
which is piecewise monotone and ultimately constant, so v ∈ NPCuc

pm(R+,R). It has
standard monotonicity partition 0 = t0 < t1 < t2 < t3 < t4,

ρ(v) = (v0, v7, v6, v4, v4, v5, v3, v7, v2, v1, v1, v1, . . . ),

and

Re(v) = (v0, v7, v4, v5, v3, v7, v1, v1, v1, . . . ).

For any rate independent ϕ : Cuc
pm(R+,R)→ R, we define

ϕe : NPC
uc
pm(R+,R)→ R , v �→ ϕ((Pτ ◦Re)(v)),(4.4)
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Fig. 4. Example of a function in NPCucpm(R+,R).

where τ > 0. From [10] we know that ϕe does not depend on τ and that ϕe is a rate
independent extension of ϕ.

Let Φ : Cpm(R+,R)→ C(R+,R) be a hysteresis operator, and let ϕ : Cuc
pm(R+,R)→

R be the representing functional of Φ. Define

Φe : NPCpm(R+,R)→ F (R+,R)

by setting

(Φe(v))(t) = ϕe(Q
c
t v) ∀ t ∈ R+,(4.5)

where ϕe is the extension of ϕ to NPCuc
pm(R+,R) given by (4.4).

Define Sτ to be the set of all right-continuous step functions v : R+ → R of step
length τ > 0. The following result was proved in [10].

Proposition 4.3. Let Φ : Cpm(R+,R) → C(R+,R) be a hysteresis operator.
Then

(1) Φe is an extension of Φ;
(2) Φe is a hysteresis operator with representing functional ϕe;
(3) for v, w ∈ NPCpm(R+,R) and t ∈ R+

Re(Q
c
t v) = Re(Q

c
t w) =⇒ (Φe(v))(t) = (Φe(w))(t);

(4) Φe(NPCpm(R+,R)) ⊂ NPC(R+,R);
(5) Φe(Sτ ) ⊂ Sτ .
For given v ∈ Sτ we introduce continuous piecewise monotone “approximations”

vk ∈ Cpm(R+,R) (k = 1, 2, . . . ) as follows: let εk ∈ (0, τ) with limk→∞ εk = 0, and
define the following:

(i) if t ∈ [(i+ 1)τ − εk, (i+ 1)τ), i ∈ Z+,

vk(t) = v(iτ) +
v((i+ 1)τ)− v(iτ)

εk
(t− (i+ 1)τ + εk);

(ii) vk(t) = v(t) otherwise.
(See Figure 5 for an illustration.)

The following result shows that, for a given v ∈ Sτ , the functions Φ(vk) approxi-
mate Φe(v) pointwise.
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Fig. 5. Example of v ∈ Sτ and its approximation vk.

Proposition 4.4. Let Φ : Cpm(R+,R) → C(R+,R) be a hysteresis operator.
Then

(Φe(v))(t) = lim
k→∞

(Φ(vk))(t) ∀ v ∈ Sτ , ∀ t ∈ R+.

Proof. Let t ∈ R+, and let m ∈ Z+ and s ∈ [0, τ) be such that t = mτ + s.
Choose k sufficiently large so that

t−mτ = s < (1− εk)τ.(4.6)

Then, using Proposition 4.3, part (5), we have

(Φe(v))(t) = (Φe(v))(mτ) = ϕe(Q
c
mτ v) = ϕ((Pτ ◦Re)(Qc

mτ v)).(4.7)

Now Re(Q
c
mτ v) = R(Qc

mτ vk) = Re(Q
c
mτ vk), and hence, using (4.6), (4.7), Proposi-

tion 4.2, part (1), and Proposition 4.3, we obtain for all sufficiently large k

(Φe(v))(t) = ϕ((Pτ ◦Re)(Qc
mτ vk)) = ϕe(Q

c
mτ vk) = (Φe(vk))(mτ)

= (Φ(vk))(mτ) = (Φ(vk))(t).

A function v ∈ F (R+,R) is called ultimately nondecreasing if there exists T ∈ R+

such that v is nondecreasing on [T,∞). Let F ⊂ F (R+,R), F �= ∅. The numerical
value set NVSΦ of an operator Φ : F → F (R+,R) is defined by

NVSΦ := {(Φ(v))(t) | v ∈ F, t ∈ R+}.

For α ≥ 0, u ∈ Cpm([0, α],R), and δ1, δ2 > 0, we define Cpm(u; δ1, δ2) to be the set of
all v ∈ Cpm(R+,R) such that

v(t) = u(t) ∀ t ∈ [0, α] and |v(t)− u(α)| ≤ δ1 ∀ t ∈ [α, α+ δ2].

We introduce the following seven assumptions on the operator Φ : Cpm(R+,R)→
C(R+,R):

(C1) Φ is causal;
(C2) Φ is rate independent;
(C3) Φ(AC(R+,R) ∩ Cpm(R+,R)) ⊂ AC(R+,R);
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(C4) Φ is monotone in the sense that, for all v ∈ AC(R+,R) ∩ Cpm(R+,R) with
Φ(v) ∈ AC(R+,R),

d

dt
(Φ(v))(t) v̇(t) ≥ 0, a.e. t ∈ R+;

(C5) there exists λ > 0 such that for all α ∈ R+, u ∈ Cpm([0, α],R), there exist
numbers δ1, δ2 > 0 such that for all v, w ∈ Cpm(u; δ1, δ2)

sup
t∈[α,α+δ2]

|(Φ(v))(t)− (Φ(w))(t)| ≤ λ sup
t∈[α,α+δ2]

|v(t)− w(t)|;

(C6) if v ∈ Cpm(R+,R) is ultimately nondecreasing and limt→∞ v(t) = ∞, then
Φ(v)(t) and Φ(−v)(t) converge to supNVSΦ and inf NVSΦ, respectively, as
t→∞;

(C7) if, for v ∈ Cpm(R+,R), L := limt→∞(Φ(v))(t) exists with L ∈ intNVSΦ,
then v is bounded.

Remark 4.5. We note that if Φ satisfies (C1) and (C6), then NVSΦ is an
interval.

If Φ : Cpm(R+,R) → C(R+,R) satisfies (C5), then any number l > 0 such that
(C5) holds for λ = l is called a Lipschitz constant of Φ.

Definition 4.6. Let λ > 0. The set of all operators Φ : Cpm(R+,R)→ C(R+,R)
satisfying (C1)–(C7) and having Lipschitz constant λ is denoted by C (λ).

We consider four examples of hysteresis operators which satisfy (C1)–(C7).
Static nonlinearities. For f ∈ F (R,R), the corresponding static nonlinearity

F (R+,R)→ F (R+,R), u �→ f ◦ u

is in C(λ), provided that f is nondecreasing and globally Lipschitz with Lipschitz
constant λ.

Relay. Relay (also called passive or positive) hysteresis, has been discussed in
a mathematically rigorous context in a number of references; see, for example, [11]
and [20]. To give a formal definition of relay, let a1, a2 ∈ R with a1 < a2, and let
ρ1 : [a1,∞)→ R and ρ2 : (−∞, a2]→ R be nondecreasing and globally Lipschitz (both
with Lipschitz constant λ > 0) and such that ρ1(a1) = ρ2(a1) and ρ1(a2) = ρ2(a2).
For v ∈ Cpm(R+,R) and t ≥ 0 define

S(v, t) := v−1({a1, a2}) ∩ [0, t] , τ(v, t) :=

{
maxS(v, t) if S(v, t) �= ∅ ,
−1 if S(v, t) = ∅ .

Following Macki, Nistri, and Zecca [20], for each ξ ∈ R, we define an operator Rξ :
Cpm(R+,R)→ C(R+,R) by

(Rξ(v))(t) =




ρ2(v(t)) if v(t) ≤ a1,
ρ1(v(t)) if v(t) ≥ a2,
ρ2(v(t)) if v(t) ∈ (a1, a2), τ(v, t) �= −1, and v(τ(v, t)) = a1,
ρ1(v(t)) if v(t) ∈ (a1, a2), τ(v, t) �= −1, and v(τ(v, t)) = a2,
ρ1(v(t)) if v(t) ∈ (a1, a2), τ(v, t) = −1, and ξ > 0,
ρ2(v(t)) if v(t) ∈ (a1, a2), τ(v, t) = −1, and ξ ≤ 0.

The number ξ plays the role of an “initial state” which determines the output value
(Rξ(v))(t) if v(s) ∈ (a1, a2) for all s ∈ [0, t]. The relay hysteresis operator Rξ is
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Fig. 6. Relay hysteresis.

illustrated in Figure 6. It is trivial that Rξ is causal and rate independent (i.e., (C1)
and (C2) hold). From [11] we know that Rξ satisfies (C3)–(C7) and that λ is a
Lipschitz constant of Rξ. It follows that Rξ ∈ C(λ).

Backlash. A discussion of the continuous-time backlash operator (also called the
play operator) can be found in a number of references; see, for example, [1], [2], [8],
and [11]. For all h ∈ R+ and all ξ ∈ R, we define the continuous-time backlash
operator Bh, ξ : Cpm(R+,R)→ C(R+,R) by

(Bh, ξ(v))(t) =

{
bh(v(0), ξ) for t = 0 ,
bh(v(t), (Bh, ξ(v))(ti)) for ti < t ≤ ti+1, i ∈ Z+,

where the function bh : R
2 → R is given by (2.1) and 0 = t0 < t1 < t2 < · · · is such

that limn→∞ tn = ∞ and v is monotone on each interval (ti, ti+1). We remark that
ξ plays the role of an “initial state.” It is not difficult to show that the definition is
independent of the choice of the partition (ti); see [11]. The diagram illustrating how
Bh, ξ acts is the same as in the discrete-time case; see Figure 3. It is trivial that Bh, ξ

is causal (i.e., Bh, ξ satisfies (C1)). Furthermore, it is well known and easy to check
that Bh, ξ is rate independent (i.e., Bh, ξ satisfies (C2)). From [11] we know that Bh, ξ

satisfies (C3)–(C7) and that λ = 1 is a Lipschitz constant of Bh, ξ. Therefore, we may
conclude that Bh, ξ ∈ C (1).

Elastic-plastic. The elastic-plastic operator (also called the stop operator) has
been discussed in a mathematically rigorous context in a number of references; see,
for example, [1], [2], [8], and [11]. To give a formal definition of the elastic-plastic
operator, define for each h ∈ R+ the function eh : R→ R by

eh(w) = min{h,max{−h,w}}.

For all h ∈ R+ and all ξ ∈ R, we define an operator Eh, ξ : Cpm(R+,R) → C(R+,R)
by

(Eh, ξ(v))(t) =

{
eh(v(0)− ξ) for t = 0,
eh(v(t)− v(ti) + (Eh, ξ(v))(ti)) for ti < t ≤ ti+1, i ∈ Z+,

where 0 = t0 < t1 < t2 < · · · is such that limn→∞ tn = ∞ and v is monotone on
each interval (ti, ti+1). Again, ξ plays the role of an “initial state.” The backlash and
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Fig. 7. Elastic-plastic hysteresis.

elastic-plastic operators are closely related:

Eh, ξ(v) + Bh, ξ(v) = v ∀ v ∈ Cpm(R+,R);(4.8)

see [2, p. 44]. The elastic-plastic operator Eh, ξ is illustrated in Figure 7. Since
Bh, ξ is causal and rate independent, it follows from (4.8) that Eh, ξ is causal and
rate independent; i.e., (C1) and (C2) hold. From [11] we know that Eh, ξ satisfies
(C3)–(C7) and that λ = 2 is a Lipschitz constant of Eh, ξ. Therefore, Eh, ξ ∈ C (2).

We remark that a large class of Prandtl and Preisach hysteresis operators satisfy
(C1)–(C7); see [11] for details.

The following lemma will be needed later in this section.
Lemma 4.7. Let Φ ∈ C (λ); then for every v ∈ Cpm(R+,R) ∩ AC(R+,R) and

t2 > t1 ≥ 0, there exists a constant η ∈ [0, λ] such that

v affine linear on [t1, t2] =⇒ (Φ(v))(t2)− (Φ(v))(t1) = η(v(t2)− v(t1)).
Proof. Let Φ ∈ C (λ), v ∈ Cpm(R+,R)∩AC(R+,R), and t2 > t1 ≥ 0, and assume

that v is affine linear on [t1, t2]. By Proposition 4.2, part (1) and [11, Lemma 3.2,
part (c)] there exists a measurable function d : R+ → [0, λ] such that

(Φ(v))(t2)− (Φ(v))(t1) =

∫ t2

t1

d(t)v̇(t) dt.(4.9)

Since v is affine linear on [t1, t2], v̇ ≡ (v(t2)− v(t1))/(t2 − t1) on (t1, t2). Combining
this with (4.9) gives

(Φ(v))(t2)− (Φ(v))(t1) =
v(t2)− v(t1)

t2 − t1

∫ t2

t1

d(t) dt = η(v(t2)− v(t1)),

where η = 1/(t2 − t1)
∫ t2
t1
d(t) dt ∈ [0, λ].

In the following section, we want to apply the discrete-time result of section 3 to
the sampled-data low-gain integral control problem. Therefore, we need to investigate
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the properties of the discretization of a given Φc ∈ C (λ) obtained by standard hold
and sampling operations. To this end, define the hold operator H : F (Z+,R) → Sτ
by

(Hu)(nτ + t) = u(n) ∀u ∈ F (Z+,R), ∀n ∈ Z+, ∀ t ∈ [0, τ),(4.10)

and the sampling operator S : PC(R+,R)→ F (Z+,R) by

(Sv)(n) = v(nτ) ∀ v ∈ PC(R+,R), ∀n ∈ Z+,(4.11)

where τ > 0 denotes the sampling period.
Let Φc : Cpm(R+,R) → C(R+,R) be a continuous-time hysteresis operator. We

define a discrete-time operator Φ : F (Z+,R)→ F (Z+,R) by

Φ := S ΦceH,(4.12)

where Φce denotes the extension of Φc to NPCpm(R+,R) given by (4.5). We remark
that as a simple consequence of the rate independence of Φce (cf. Proposition 4.3) the
definition of Φ is independent of the choice of the sampling period τ . For v ∈ Sτ , we
have HSv = v, and so, by Proposition 4.3, part (5),

ΦceH = H Φ.(4.13)

The proof of the following result can be found in [10].
Lemma 4.8. Let Φc : Cpm(R+,R) → C(R+,R) be a hysteresis operator, and

define the operator Φ : F (Z+,R)→ F (Z+,R) by (4.12). Then

(Φ(u))(n) = (Φc(Pτu))(nτ) ∀u ∈ F (Z+,R), ∀n ∈ Z+,(4.14)

and NVSΦ = NVSΦc.
The following proposition is the main result of this section.
Proposition 4.9. Let Φc ∈ C (λ), and define Φ : F (Z+,R) → F (Z+,R) by

(4.12). Then Φ ∈ D (λ).
Proof. Note that (D1) (causality) follows from (4.14) and the causality of Φc, while

(D2) follows from Proposition 4.2, part (1) and (4.14). Furthermore, let u ∈ F (Z+,R),
n ∈ Z+, and suppose that u(n + 1) �= u(n). Then by (4.14) and Lemma 4.7 there
exists a constant η ∈ [0, λ] such that

(Φ(u))(n+ 1)− (Φ(u))(n) = (Φc(Pτ u))((n+ 1)τ)− (Φc(Pτ u))(nτ)
= η[(Pτ u)((n+ 1)τ)− (Pτ u)(nτ)]
= η[u(n+ 1)− u(n)],

and thus (D3) holds. Since NVSΦ = NVSΦc (by Lemma 4.8) and Φc satisfies (C6),
(D4) follows from an application of (4.14). Finally, to show that (D5) is satisfied, let
u ∈ F (Z+,R) be such that limn→∞(Φ(u))(n) exists and

L := lim
n→∞(Φ(u))(n) ∈ int (clos (NVSΦ)).(4.15)

By (4.14),

lim
n→∞(Φc(Pτ u))(nτ) = L.(4.16)
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Clearly Pτ u is monotone on [nτ, (n + 1)τ ] for each n ∈ Z+, and therefore, by the
fact that Φc satisfies (C4), Φc(Pτ u) is monotone on [nτ, (n + 1)τ ] for each n ∈ Z+.
Combining this with (4.16) shows that

lim
t→∞(Φc(Pτ u))(t) = L.

By Remark 4.5, NVSΦc is an interval; since, by Lemma 4.8, NVSΦ = NVSΦc, it
follows from (4.15) that L ∈ int (NVSΦc). Now Φc satisfies (C7), and so we may
conclude that Pτ u and thus u are bounded.

5. Sampled-data integral control in the presence of input hysteresis.
In the following, the underlying linear system is assumed to be a single-input, single-
output, continuous-time, regular system Σ (for details on regular systems see Weiss
[25], [26], [27], [28]) with state-space X (a real Hilbert space) and with generating
operators (Ac, Bc, Cc, Dc). This means, in particular, that Ac generates a strongly
continuous semigroup T = (Tt)t≥0, C

c ∈ L(X1,R) is an admissible observation
operator for T, and Bc ∈ L(R, X−1) is an admissible control operator for T. Here
X1 denotes the domain of Ac endowed with the graph norm, and X−1 denotes the
completion of X with respect to the norm ‖x‖−1 = ‖(s0I −Ac)−1x‖, where s0 is any
fixed element in the resolvent set of Ac. The norm on X is denoted by ‖·‖, while ‖·‖1
and ‖ · ‖−1 denote the norms on X1 and X−1, respectively. Then X1 ↪→ X ↪→ X−1,
and T restricts (respectively, extends) to a strongly continuous semigroup on X1

(respectively, X−1). The exponential growth constant

ω(T) := lim
t→∞

1

t
ln ‖Tt‖

is the same on all three spaces. The generator of T on X−1 is an extension of Ac

to X (which is bounded as an operator from X to X−1). We shall use the same
symbol T (respectively, Ac) for the original semigroup (respectively, its generator)
and the associated restrictions and extensions. With this convention, we may write
Ac ∈ L(X,X−1). Considered as a generator on X−1, the domain of Ac is X.

We regard a regular system Σ as synonymous with its generating operators and
simply write Σ = (Ac, Bc, Cc, Dc). The regular system is said to be exponentially
stable if the semigroup T is exponentially stable, that is, ω(T) < 0. The control
operator Bc (respectively, observation operator Cc) is said to be bounded if Bc ∈
L(R, X) (respectively, Cc ∈ L(X,R)); otherwise, Bc (respectively, Cc) is said to
be unbounded. In terms of the generating operators (Ac, Bc, Cc, Dc), the transfer
function Gc(s) can be expressed as

Gc(s) = CcL(sI −Ac)−1Bc +Dc,

where CcL denotes the so-called Lebesgue extension of Cc. The transfer function Gc(s)
is bounded and holomorphic in any half-plane Re s > α with α > ω(T). Moreover,

lim
s→∞, s∈R

Gc(s) = Dc.

For any x0 ∈ X and uc ∈ L2
loc(R+,R), the state and output functions xc(·) and yc(·),

respectively, satisfy the equations

ẋc(t) = Acxc(t) +Bcuc(t), xc(0) = x0,(5.1a)

yc(t) = CcLx
c(t) +Dcuc(t)(5.1b)
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for almost all t ≥ 0. The derivative on the left-hand side of (5.1a), of course, has
to be understood in X−1. In other words, if we consider the initial-value problem
(5.1a) in the space X−1, then for any x0 ∈ X and uc ∈ L2

loc(R+,R), (5.1a) has unique
strong solution (in the sense of Pazy [24, p. 109]) given by the variation of parameters
formula

xc(t) = Ttx0 +

∫ t

0

Tt−τBcuc(τ) dτ.(5.2)

For future reference we state the following lemma, the proof of which can be found
in [15].

Lemma 5.1. Assume that T is exponentially stable and that Bc ∈ L(R, X−1) is an
admissible control operator for T. If uc ∈ L∞(R+,R) is such that limt→∞ uc(t) = u∞
exists, then for all x0 ∈ X the state trajectory xc given by (5.2) satisfies

lim
t→∞ ‖x

c(t) + (Ac)−1Bcu∞‖ = 0.

The aim in this section is to show that for an exponentially stable, regular, linear,
infinite-dimensional, continuous-time, single-input, single-output plant with transfer
function Gc(s), subject to a continuous-time dynamic input nonlinearity Φc ∈ C(λ),
the output yc(t) of the sampled-data closed-loop system, shown in Figure 2, converges
to the reference value r as t → ∞, provided that Gc(0) > 0, r is feasible in some
natural sense, and k > 0 is sufficiently small.

Let u ∈ F (Z+,R), and apply the continuous-time signal

uc = Hu(5.3)

(where H is the standard hold operator defined in (4.10)) to the continuous-time
system given by (5.1). Then the state xc(nτ + t) satisfies

xc(nτ + t) = Ttx
c(nτ) + (Tt − I)(Ac)−1Bcu(n) ∀n ∈ Z+, ∀ t ∈ [0, τ).(5.4)

Accordingly, we define x : Z+ → X by

x(n) = xc(nτ).(5.5)

Clearly, Tτ ∈ L(X) and (Tτ − I)(Ac)−1Bc ∈ L(R, X) define appropriate state-space
operators for the state evolution of the discretization of (5.1a). However, in general,
regularity guarantees only that yc ∈ L2

loc(R+,R) so that, even with piecewise constant
input functions, standard sampling of the output is not defined. Moreover, even if the
output function is continuous (in which case standard sampling is defined), in general
the resulting discrete-time system will not have a bounded observation operator. We
therefore distinguish two cases: bounded and unbounded continuous-time observation.

Bounded observation. Assume that Cc = CcL ∈ L(X,R). If x0 ∈ X and uc

is given by (5.3), then the output yc given by (5.1b) is piecewise continuous, the
discontinuities being at nτ . It is clear that yc is right-continuous at nτ for all n ∈ Z+.
We define

y := Syc(5.6)

(where S is the standard sampling operator defined in (4.11)) and(
A B
C D

)
:=

(
Tτ (Tτ − I)(Ac)−1Bc

Cc Dc

)
.(5.7)
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The proof of the following proposition is an immediate consequence of Proposition
4.1 in [16].

Proposition 5.2. Suppose that Tt is exponentially stable and that the ob-
servation operator Cc is bounded. Let τ > 0 and u ∈ F (Z+,R). If uc given by
(5.3) is applied to (5.1), then x and y given by (5.5) and (5.6), respectively, satisfy
(3.1), where (A,B,C,D) is given by (5.7). Moreover, A is power-stable, and, setting
G(z) = C(zI −A)−1B +D, we have that

G(1) = C(I −A)−1B +D = Gc(0).(5.8)

Let Φc ∈ C (λ), and let Φce denote the extension of Φc to NPCpm(R+,R) given
by (4.5). Consider the continuous-time system (5.1) with continuous-time input non-
linearity Φce,

ẋc = Acxc +BcΦce(u
c), xc(0) = x0 ∈ X,(5.9a)

yc = CcLx
c +DcΦce(u

c),(5.9b)

controlled by the sampled-data integrator

uc(t) = u(n) for t ∈ [nτ, (n+ 1)τ), n ∈ Z+,(5.10a)

y(n) = yc(nτ), n ∈ Z+,(5.10b)

u(n+ 1) = u(n) + k(r − y(n)), u(0) = u0 ∈ R, n ∈ Z+.(5.10c)

Theorem 5.3. Let λ > 0. Assume that Φc ∈ C (λ), Cc is bounded, Tt is expo-
nentially stable, Gc(0) > 0, and r ∈ R is such that r̃c := r/Gc(0) ∈ clos (NVSΦc).
Let K > 0 be defined by (3.5), where G(z) = C(zI − A)−1B +D, with (A,B,C,D)
given by (5.7). Then, for all k ∈ (0,K/λ) and all (x0, u0) ∈ X×R, the unique solution
(xc(·), uc(·)) of the closed-loop system given by (5.9) and (5.10) satisfies the following:

(1) limt→∞(Φce(u
c))(t) = r̃c;

(2) limt→∞ ‖xc(t) + (Ac)−1Bcr̃c‖ = 0;
(3) limt→∞ yc(t) = r;
(4) if r̃c ∈ int (NVSΦc), then uc is bounded.
Proof. Let (xc(·), uc(·)) be the unique solution of the closed-loop system given by

(5.9) and (5.10). Define Φ ∈ D (λ) by (4.12), and so

(Φce(u
c))(nτ) = (Φce(Hu))(nτ) = (Φ(u))(n) ∀n ∈ Z+.

Note that by Lemma 4.8

NVSΦ = NVSΦc.(5.11)

Defining x ∈ F (Z+,R) by (5.5), it follows from Proposition 5.2 that (x, u) satisfies
the closed-loop discrete-time equations (3.3), where (A,B,C,D) is given by (5.7).
Therefore, using Theorem 3.1, Propositions 4.9 and 5.2, and (5.11), we see that for
all k ∈ (0,K/λ)

lim
n→∞(Φ(u))(n) = r̃c.(5.12)

This implies that for all k ∈ (0,K/λ), limt→∞(H(Φ(u)))(t) = r̃c, and so by (4.13),
limt→∞(Φce(u

c))(t) = r̃c, which is statement (1). Statement (2) is a consequence
of statement (1) and Lemma 5.1. Statement (3) follows easily from statements (1)
and (2) and the boundedness of Cc. Finally, to prove statement (4), assume that
r̃c ∈ intNVSΦc. Then, by (5.11), r̃c ∈ intNVSΦ. Boundedness of u and thus
boundedness of uc now follow immediately from (5.12) and the fact that (D5) holds
for Φ (by Proposition 4.9).
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Unbounded observation. As mentioned earlier, in this case, we cannot define
a sampled output via (5.6). Instead, we introduce a generalized sampling operation.
In the following, let w ∈ L2([0, τ ],R) be a function satisfying the conditions

(i)

∫ τ

0

w(t) dt = 1 and (ii)

∫ τ

0

w(t)Tt x dt ∈ X1 ∀x ∈ X.(5.13)

While condition (5.13) (ii) is difficult to check for general w, it is easy to show (using
integration by parts) that (5.13) (ii) holds if there exists a partition 0 = t0 < t1 <
· · · < tm = τ such that w|(ti−1,ti) ∈W 1,1((ti−1, ti),R) for i = 1, 2, . . . ,m.

We define a generalized sampling operation by

y(n) =

∫ τ

0

w(t)yc(nτ + t) dt ∀n ∈ Z+.(5.14)

Introducing the linear operator

L : X → X1, x �→
∫ τ

0

w(t)Tt x dt,

we define (
A B
C D

)
:=

(
Tτ (Tτ − I)(Ac)−1Bc

CcL CcL(Ac)−1Bc + Gc(0)

)
.(5.15)

The following result is an immediate consequence of Proposition 3.4 in [12].
Proposition 5.4. Suppose that Tt is exponentially stable. Let τ > 0 and u ∈

F (Z+,R). If uc given by (5.3) is applied to (5.1), then x and y given by (5.5) and
(5.14), respectively, satisfy (3.1), where (A,B,C,D) is given by (5.15). Moreover,
A is power-stable, C ∈ L(X,R), and, setting G(z) = C(zI − A)−1B + D, (5.8) is
satisfied.

Consider the following sampled-data low-gain controller for (5.9):

uc(t) = u(n) for t ∈ [nτ, (n+ 1)τ), n ∈ Z+,(5.16a)

y(n) =

∫ τ

0

w(t)yc(nτ + t) dt, n ∈ Z+,(5.16b)

u(n+ 1) = u(n) + k(r − y(n)), u(0) = u0 ∈ R, n ∈ Z+.(5.16c)

Theorem 5.5. Let λ > 0. Assume that Φc ∈ C (λ), L−1(Gc) is a finite signed
Borel measure on R+, Tt is exponentially stable, Gc(0) > 0, and r ∈ R is such
that r̃c := r/Gc(0) ∈ clos (NVSΦc). Let K > 0 be defined by (3.5), where G(z) =
C(zI −A)−1B+D, with (A,B,C,D) given by (5.15). Then, for all k ∈ (0,K/λ) and
all (x0, u0) ∈ X ×R, the unique solution (xc(·), uc(·)) of the closed-loop system given
by (5.9) and (5.16) satisfies the following:

(1) limt→∞(Φce(u
c))(t) = r̃c;

(2) limt→∞ ‖xc(t) + (Ac)−1Bcr̃c‖ = 0;
(3) limt→∞[r − yc(t) + CcLTtx0] = 0;
(4) if r̃c ∈ int (NVSΦc), then uc is bounded.
Remark 5.6. (1) Since CcLTtx0 converges exponentially to 0 as t → ∞ for all

x0 ∈ X1, it follows from statement (3) that the error ec(t) = r − yc(t) converges to 0
for all x0 ∈ X1. If C

c is bounded, then this statement is true for all x0 ∈ X. If Cc
is unbounded and x0 �∈ X1, then e

c(t) does not necessarily converge to 0 as t → ∞.
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However, it follows from the proof below that ec(t) is small for large t in the sense
that ec(t) = ec1(t)+ ec2(t), where the function e

c
1 is bounded with limt→∞ ec1(t) = 0 and

the function t �→ ec2(t) exp(αt) is in L
2(R+,R) for some α > 0.

(2) The assumption that L−1(Gc) is a finite signed Borel measure on R+ is not
very restrictive and seems to be satisfied in all practical examples of exponentially
stable regular systems. In particular, this assumption is satisfied if Bc or Cc is bounded
(see [13, Lemma 2.3]).

Proof of Theorem 5.5. By using Proposition 5.4 instead of Proposition 5.2, all
statements with the exception of (3) follow exactly as in the proof of Theorem 5.3.
Due to the unboundedness of Cc, we cannot use statement (2) in order to show that
yc(t) converges to r as t→∞. However, we have

yc(t) = CcLTtx0 + (L−1(Gc) A Φce(u
c))(t).(5.17)

By assumption, L−1(Gc) is a finite signed Borel measure, and since limt→∞(Φce(u
c))(t)

= r̃c (by statement (1)), it follows from [5, Theorem 6.1, part (ii), p. 96] that

lim
t→∞[L−1(Gc) A Φce(u

c)](t) = Gc(0)r̃c = r.

Combining this with (5.17) shows that statement (3) holds.

6. Example: Sampled-data control of a diffusion process with output
delay subject to input hysteresis. Consider a diffusion process (with diffusion
coefficient κ > 0 and with Dirichlet boundary conditions) on the one-dimensional
spatial domain [0, 1], with scalar nonlinear pointwise control action (applied at point
x1 ∈ (0, 1), via an operator Φc ∈ C (λ)) and delayed (delay T ≥ 0) scalar observation
generated by a spatial averaging of the delayed state over an ε-neighborhood of a
point x2 ∈ (0, 1) with x2 > x1.

We formally write this single-input, single-output system as

zt(t, x) = κzxx(t, x) + δ(x− x1)(Φ
c
e(u

c))(t) ,

yc(t) =
1

2ε

∫ x2+ε

x2−ε
z(t− T, x) dx,

with boundary conditions

z(t, 0) = 0 = z(t, 1) ∀ t > 0.

For simplicity, we assume zero initial conditions

z(t, x) = 0 ∀ (t, x) ∈ [−T, 0]× [0, 1].

With input (Φce(u
c))(·) and output yc(·), this example qualifies as a regular linear

system with bounded observation and with transfer function given by

Gc(s) =
e−sT sinh

(
x1

√
s/κ

) [
cosh

(
(1− x2 + ε)

√
s/κ

)
− cosh

(
(1− x2 − ε)

√
s/κ

)]
2εs sinh

√
s/κ

.

Since the observation is bounded, we may sample the output using the standard sam-
pling operation given by (5.6). Further analysis (invoking application of the maximum
principle for the heat equation, which, for brevity, we omit here) confirms the physi-
cal intuition that the impulse response L−1(Gc) is nonnegative-valued. Consequently,
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Fig. 8. Controlled output.

Fig. 9. Control input.

Fig. 10. Input of relay hysteresis nonlinearity.

the corresponding step-response is nondecreasing, and therefore we may apply a result
by Özdemir and Townley [23] (see Remark 3.7 in [23]) to obtain the following lower
bound for K:

K ≥ 1

|(Gc)′(0)|/τ + 3Gc(0)/2
=: KL.(6.1)

A simple calculation yields that

Gc(0) =
x1(1− x2)

κ
, (Gc)′(0) = −x1(1− x2)(6Tκ+ 1− ε2 − x2

1 − (1− x2)
2)

6κ2
,
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Fig. 11. Controlled output.

Fig. 12. Control input.

Fig. 13. Input of backlash hysteresis nonlinearity.

and therefore, using (6.1),

K ≥ KL =
6κ2τ

x1(1− x2)(6Tκ+ 1− ε2 − x2
1 − (1− x2)2 + 9κτ)

.

By Theorem 5.3, for all k ∈ (0,KL/λ) ⊂ (0,K/λ), the sampled-data control (5.10)
guarantees asymptotic tracking of all reference values r which are feasible in the sense
that r/Gc(0) ∈ clos (NVSΦc). For purposes of illustration, we adopt the following
values:

κ = 0.1, x1 =
1

3
, x2 =

2

3
, T = 1, τ = 0.5, ε = 0.01.

For these specific values we obtain KL ≈ 0.147.
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We consider relay and backlash hysteresis operators:
(a) Let Φc = R0 be a relay hysteresis operator, where a1 = −1, a2 = 1, ρ1(v) =√

v + 1.1, and ρ2(v) =
√
0.1 +

√
2.1 − √1.1− v (see section 4 for the definition and

[11] for more details). Then Φc ∈ C (1.6), and NVSΦc = im ρ1 ∪ im ρ2 = R. For
reference value r = 1.54

r̃c =
r

Gc(0)
=

rκ

x1(1− x2)
= 1.386 ∈ int (NVSΦc).

In each of the following three cases of admissible controller gain,

(i) k = 0.08, (ii) k = 0.06, (iii) k = 0.04,

Figure 8 depicts the output behavior of the system under integral control, Figure 9
depicts the corresponding control input, and Figure 10 shows the input uc of the relay
nonlinearity. We see from Figure 10 that for (i), limt→∞ uc(t) = ρ−1

1 (Φcr), and for (ii)
and (iii), limt→∞ uc(t) = ρ−1

2 (Φcr).
(b) Let Φc = B0.5, 0 be a backlash hysteresis operator (see section 4 for the

definition and [11] for more details). Then Φc ∈ C (1), and NVSΦc = R. For reference
value r = 1

r̃c =
r

Gc(0)
=

rκ

x1(1− x2)
= 0.9 ∈ int (NVSΦc).

In each of the following three cases of admissible controller gain,

(i) k = 0.145 (solid line), (ii) k = 0.11 (dashdot line), (iii) k = 0.08 (dotted line),

Figure 11 depicts the output behavior of the system under sampled-data control,
Figure 12 depicts the corresponding control input, and Figure 13 shows the input uc

of the backlash nonlinearity. We remark that the convergence of uc(t) as t → ∞ is
not guaranteed by Theorem 5.5, and in fact it seems that uc does not converge in all
three cases.

Figures 8–13 were generated using SIMULINK Simulation Software within MAT-
LAB, wherein a truncated eigenfunction expansion, of order 10, was adopted to model
the diffusion process.

Appendix. The infinite-dimensional discrete-time positive-real lemma.
The following result is a version of the discrete-time infinite-dimensional positive-real
lemma.

Lemma A.1. For a real Hilbert space X, let A ∈ L(X), B ∈ L(R, X), C ∈
L(X,R), and D ∈ R, and set G(z) := C(zI −A)−1B +D. Assume that A is power-
stable and

ReG(eiθ) > 0 ∀ θ ∈ [0, 2π).

Then there exist P ∈ L(X), P = P ∗ ≥ 0, L ∈ L(R, X), and W ∈ R such that

A∗PA− P = −LL∗,
A∗PB = C∗ −WL,

W 2 = 2D −B∗PB.

Although Lemma A.1 should be well known, we were not able to locate it in the
literature. Lemma A.1 can be obtained from Lemma A.2 (an infinite-dimensional



LOW-GAIN CONTROL IN PRESENCE OF INPUT HYSTERESIS 139

version of the continuous-time positive-real lemma stated below) combined with stan-
dard fractional transformation techniques (as used in [6] for the finite-dimensional
case). For the sake of brevity, we omit the lengthy but straightforward details, which
can be found in [21].

Lemma A.2. For a real Hilbert space X, let Ac ∈ L(X), Bc ∈ L(R, X), Cc ∈
L(X,R), and Dc ∈ R; let σ(Ac) denote the spectrum of Ac, and set Gc(s) := Cc(sI−
Ac)−1Bc +Dc. Assume that σ(Ac) ⊂ {s ∈ C |Re s < 0} and

ReGc(iω) > 0 ∀ω ∈ R ∪ {±∞}.(A.1)

Then there exist P c ∈ L(X), P c = (P c)∗ ≥ 0, Lc ∈ L(R, X), and W c > 0 such that

P cAc + (Ac)∗P c = −Lc(Lc)∗,(A.2a)

P cBc = (Cc)∗ −W cLc,(A.2b)

2Dc = (W c)2.(A.2c)

In a different form, Lemma A.2 is due to Yakubovich [30] (see also Wexler [29]).
For completeness, we include a proof which is based on the positive-real Riccati equa-
tion theory developed in van Keulen [7].

Proof of Lemma A.2. By (A.1) we have that Dc > 0; defining W c :=
√
2Dc

gives (A.2c). Furthermore, again by (A.1), it follows from [7] (see Theorem 3.10 and
Remark 3.14 in [7]) that there exists Qc ∈ L(X), Qc = (Qc)∗, such that

QcAc + (Ac)∗Qc = (1/W c)2((Bc)∗Qc + Cc)∗ ((Bc)∗Qc + Cc).

Setting

P c := −Qc, Lc := (1/W c)(Cc − (Bc)∗P c)∗

yields (A.2a) and (A.2b). Since σ(Ac) ⊂ {s ∈ C |Re s < 0}, it follows from (A.2a) by
a routine argument that P c ≥ 0.
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Abstract. In this paper, we study the problem of the asymptotic property of the norm of input-
output operators related to a class of singularly perturbed stochastic linear systems. The system
is under perturbation of multiplicative white noise. By using reduction order and boundary layer
techniques, it is shown that the norm of the operator of the perturbed system is less than a given
number γ when the small perturbation ε tends to zero if both the related norms of the reduced
subsystem and the boundary layer subsystem are less than γ. Furthermore, a stabilizing robust
controller is designed, which is independent of perturbation ε.
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1. Introduction. Singularly perturbed control systems (SPCS) evolving in dis-
crete time scale arise in many applications as well as in the construction of the differ-
ence approximations of SPCS evolving in continuous time. A great amount of effort
has been made on SPCS in the past three decades; see, e.g., [34] and the references
therein. A popular approach adopted to deal with these systems is based on the
so-called reduced technique [41]. The composite design based on separate designs
for slow and fast subsystems has been systematically reviewed in [47]. Moreover, a
number of averaging-type methods allowing us to treat general SPCS in continuous
time were developed recently (see [1, 2, 16, 17, 18, 19, 24, 26, 52]). These methods are
much more adaptable to the discrete time scale. For example, a full analogy between
the averaging procedures in problems of optimal control of SPCS evolving in contin-
uous and discrete times was established in [25]. The research on singularly perturbed
systems in the H∞ sense is of great practical importance and has attracted a lot of
interest in the last few years; see, e.g., [28, 48, 51]. The state-space solution of the H∞
control problem [3] was used to approximate the solution of singularly perturbed H∞
control using slow and fast subproblems [48]; see also [51]. A sequential procedure
was described in [28] to decompose the problem into slow and fast subproblems, and
a composite compensator was provided. Recently, the H∞-optimal control of singu-
larly perturbed linear systems, under either perfect state measurements or imperfect
state measurements, for both finite and infinite horizons, has been investigated in
[42, 43] via a differential game theoretic approach. In the meantime, [4] studied the
asymptotic expansions for game theoretic Riccati equations and showed how they
may be used in singularly perturbed H∞ control. More recently, [13, 14] considered
a construction of high-order approximations to a controller that guarantees a desired
performance level on the basis of the exact decomposition of the full-order Riccati
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equations to the reduced-order slow and fast equations. The problems of H∞-norms
and disturbance attenuation for systems with fast transients have been tackled by [5],
and it has been shown that, for a singularly perturbed system, the H∞ of the transfer
function tends to the largest of the H∞-norms for the boundary layer system and
for the reduced slow model. More recently, a singularly perturbed zero-sum dynamic
game with full information has been considered in [21], and it has been demonstrated
that, when the singular perturbations parameter tends to zero, similar to singularly
perturbed differential games [20], the upper (lower) value function of the dynamic
game has a limit which coincides with a viscosity solution of a Hamilton–Jacobi–
Isaacs-type equation. A composite linear controller has been designed in [49] based
on the slow and fast problems such that both robust stability and a prescribed H∞
performance for the full-order system are achieved, irrespective of the uncertainties.
The problem of H∞ control for singularly perturbed linear continuous-time systems
with Markovian jump parameters has been studied in [12], in which the asymptotic
structure of the composite mode-dependent controller is characterized.

It is worthwhile to mention that an important issue in the theory of SPCS is a
justification of a so-called reduction technique approach (RTA). According to this ap-
proach, the fast variables are replaced by their steady states obtained with “frozen”
slow variables and controls, and the slow dynamics is approximated by the corre-
sponding reduced-order system. Although the RTA may fail to provide a proper
approximation for the SPCS in a general case [17, 18, 19], its application was very
successful in many important special cases (see [23, 35, 31, 32, 44, 45] and the ref-
erences therein). In the differential game context, the efficiency of the RTA was
established for singularly perturbed linear quadratic games in [22, 29] and for the
singularly perturbed H∞ problem with linear dynamics in [42, 43].

On the other hand, the control of stochastic systems with multiplicative white
noise has received much attention in the past half century. For the results concerning
the stability for stochastic systems with state-dependent noise, we refer readers to,
for example, [7, 10, 36, 37] and the references therein. The linear quadratic problem
associated to a linear stochastic system with multiplicative white noise was investi-
gated; see, for example, [53, 54]. Robust stabilization for the above class of stochastic
system was intensively studied in [9, 8] and the references therein.

In this paper, we investigate the asymptotic behavior of the input-output operator
norm of the singularly perturbed linear continuous-time systems with multiplicative
white noise. We consider the norms of both the slow/reduced subsystem and the
fast/boundary layer subsystem. We demonstrate that when the perturbation ε goes
to zero, then the input-output norm of the original system is less than the maximum
of the norms corresponding to the both subsystems. A robust controller, which is
free of perturbation ε, is designed to stabilizing the singularly perturbed stochastic
systems.

2. Problem formulation. Let us consider the linear controlled system de-
scribed by its differential equations

dx1(t) = [A11x1(t) +A12x2(t) +B1u(t)]dt+

N∑
j=1

[Aj11x1(t) +Aj12x2(t)]dwj(t),

(2.1)

εdx2(t) = [A21x1(t) +A22x2(t) +B2u(t)]dt+ εν
N∑
j=1

[Aj21x1(t) +Aj22x2(t)]dwj(t)
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and the output

y(t) = C1x1(t) + C2x2(t) +Du(t),(2.2)

where xi ∈ Rni , i = 1, 2, are state vectors, u ∈ Rm is the input vector, Alk, A
j
lk, Bl, Ck,

l, k = 1, 2, j = 1, 2, . . . , N,D are real matrices with corresponding dimensions, ε > 0
is a small parameter, and ν > 1

2 . w(t) = (w1(t), w2(t), . . . , wN (t)), t ≥ 0, is a standard
Wiener process on a given probability space (Ω,F ,P).

We also consider the uncontrolled system associated to (2.1):

dx1(t) = [A11x1(t) +A12x2(t)]dt+

N∑
j=1

[Aj11x1(t) +Aj12x2(t)]dwj(t),

(2.3)

εdx2(t) = [A21x1(t) +A22x2(t)]dt+ εν
N∑
j=1

[Aj21x1(t) +Aj22x2(t)]dwj(t).

For each t0 ≥ 0, we denote X (t0) the set of n-dimensional random vectors (n =
n1 + n2), which are Ft0-measurable, and

E[|x0|2] <∞.

Obviously, Rn ⊂ X (t0). Let ε > 0 be fixed. Then, for each t0 ≥ 0 and x0 =
(x10

x20
) ∈ X (t0), system (2.3) has a unique solution

x(t, t0, x0, ε) =

(
x1(t, t0, x0, ε)
x2(t, t0, x0, ε)

)
,

which verifies the initial condition

x(t0, t0, x0, ε) = x0

(see, e.g., [15, 40, 54]). Moreover, the dependence x0 → x(·, t0, x0, ε) is linear.
Let Φ(t, t0, ε) = (Φ1(t, t0, ε) Φ2(t, t0, ε) . . .Φn(t, t0, ε)) be the n× n matrix hav-

ing the columns Φj(t, t0, ε) = x(t, t0, ej , ε), t ≥ t0 > 0, ε > 0, j = 1, 2, . . . , n. ej =
(0, . . . , 0, 1, 0, . . . , 0)∗ is a vector of the canonic basis of Rn. Hence t→ Φ(t, t0, ε) is a
matrix solution of system (2.3) which verifies

Φ(t0, t0, ε) = In.

From the uniqueness of the solution, it follows that

x(t, t0, x0, ε) = Φ(t, t0, ε)x0, (∀)t ≥ t0 > 0, ε > 0, x0 ∈ X (t0).

Throughout this paper, the matrix Φ(t, t0, ε) will be termed as the fundamental matrix
solution of system (2.3).

We recall the following definition, which will be referred to throughout the paper.
Definition 2.1. We say that the zero solution (that is, x(t) = 0 for all t ∈ [0,∞))

of system (2.3) is exponentially stable in mean square (ESMS) (alternatively, system
(2.3) generates a mean square stable evolution) if there exist constants α > 0 and
β ≥ 1 such that E|Φ(t, t0, ε)xo|2 ≤ βe−α(t−t0)|x0|2 for all t ≥ t0 ≥ 0, xo ∈ Rn1+n2 .
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For each t ≥ 0, we denote Ft ⊂ F the smallest σ-algebra containing all sets S ∈ F
with P(S) = 0 and with respect to which all functions wj(s), 0 ≤ s ≤ t, 1 ≤ j ≤ N
are measurable.

Let L2
w{[0,∞) × Ω,Rd} be the set of all functions u ∈ L2{[0,∞) × Ω,Rd} with

the additional property that u(t) are Ft-measurable for all t ≥ 0.

Since Ft contains all sets S ∈ F with P(S) = 0, it can be easily proved that
L2
w{[0,∞)×Ω,Rd} is closed in L2{[0,∞)×Ω,Rd}, and hence it is itself a real Hilbert

space with the inner product

〈u, v〉L2
w

= E

∫ ∞

0

u∗(t)v(t)dt.

Let us suppose that the zero solution of system (2.3) is ESMS.

If u ∈ L2
w{[0,∞)× Ω,Rm}, we denote by

x(t, ε, u) =

(
x1(t, ε, u)
x2(t, ε, u)

)

the solution of system (2.1) with initial zero condition (i.e., x1(0, ε, u) = 0, x2(0, ε, u) =
0).

Applying Proposition 1 in [38], we deduce that x(t, ε, u) ∈ L2
w{[0,∞)×Ω,Rn1+n2}

and limt→∞E|x(t, ε, u)|2 = 0.

Moreover, there exists a γ > 0 such that

||x(·, ε, u)||2 = E

∫ ∞

0

|x(t, ε, u)|2dt ≤ γ2E

∫ ∞

0

|u(t)|2dt = γ2||u||2.(2.4)

Thus the linear operator Tε is well defined. Tε : L2
w([0,∞)×Ω,Rm)→ L2

w([0,∞)×
Ω,Rp) by

(Tεu)(t) = (C1 C2)x(t, ε, u) +Du(t) ∀t ≥ 0.(2.5)

From (2.4), we have that Tε is a linear bounded operator and it will be called an
input-output operator associated to system (2.1)–(2.2), and system (2.1)–(2.2) will
be termed the “state-space realization” of the operator Tε.

Remark 2.1. When system (2.1) is a deterministic one (i.e., Ajlk = 0, l, k =
1, 2, j = 1, 2, . . . , N), the transfer matrix function G is the frequency domain version
of the input-output operator.

However, in stochastic framework, we are not able to define, in a standard way, a
transfer matrix function associated to system (2.1)–(2.2), and, therefore, we consider
input-output operators instead of transfer matrices even if the coefficients of the given
system are time invariant.

Our aim in this paper is to investigate the asymptotic behavior of the norm of
operator Tε when ε approaches zero.

We shall extend the results in [5, 50] to the case of controlled systems described
by Ito differential equations of type (2.1)–(2.2).

To this end, we associate to system (2.1)–(2.2) two systems with lower dimensions
not depending upon the small parameter ε, namely the reduced subsystem and the
boundary layer subsystem.
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Setting ε = 0 and assuming that A22 is an invertible matrix, we can associate the
following reduced subsystem to system (2.1)–(2.2):

dx1(t) = [Arx1(t) +Bru(t)]dt+

N∑
j=1

Ajrx1(t)dwj(t),

(2.6)

yr(t) = Crx1(t) +Dru(t),

where

Ar = A11 −A12A
−1
22 A21, A

j
r = Aj11 −Aj12A−1

22 A21,

Br = B1 −A12A
−1
22 A21, Cr = C1 − C2A

−1
22 A21,

Dr = D − C2A
−1
22 B2.

The unforced reduced subsystem is as follows:

dx1(t) = Arx1(t)dt+

N∑
j=1

Ajrx1(t)dwj(t).(2.7)

If the zero solution of system (2.7) is ESMS, then we can associate to system (2.6)
the corresponding input-output operator

Tr : L2
w[(0,∞)× Ω,Rm]→ L2

w[(0,∞)× Ω,Rp]

by

(Tru)(t) = Crx1(t, u) +Dru(t),

where x1(t, u) is a solution of the system (2.6) with initial condition x1(0, u) = 0.
For the given system (2.1), we associate the so-called boundary layer system,

described by

x′(τ) = A22x2(τ) +B2u(τ),

(2.8)

y(τ) = C2x2(τ) +Du(τ),

with τ = t
ε , which is a deterministic system.

The transfer matrix function corresponding to system (2.8) is

Gf (s) = C2(sIn2 −A22)−1B2 +D.

Again, our objective in this paper is to prove that ||Tε|| tends to max{||Tr||, ||Gf ||∞}.
3. Some preliminary results.

3.1. A Klimusev–Krasovski-type result. In this subsection, we extend the
results of Klimusev–Krakovski [30] to the singularly perturbed systems of Ito differ-
ential equations of type (2.3).

Theorem 3.1. Assume that all eigenvalues of matrix A22 are located in the half
plane of Re(s) < 0 and the zero solution of the reduced subsystem (2.7) is ESMS.
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Then there exists an ε0 > 0 such that, for any arbitrary ε ∈ (0, ε0], the zero solution
of the full system (2.3) is ESMS.

Moreover, if (
Φ11(t, t0, ε) Φ12(t, t0, ε)
Φ21(t, t0, ε) Φ22(t, t0, ε)

)

is the partition of the fundamental matrix solution Φ(t, t0, ε) of system (2.3), then the
following estimates hold:

E|Φ11(t, t0, ε)|2 ≤ β1e
−α1(t−t0),

E|Φ12(t, t0, ε)|2 ≤ β1εe
−α1(t−t0),

E|Φ21(t, t0, ε)|2 ≤ β2e
−α1(t−t0),

E|Φ22(t, t0, ε)|2 ≤ β2(e
−α2(t−t0)

ε + εe−α1(t−t0))

for all t ≥ t0 ≥ 0, ε ∈ (0, ε0], where αi > 0 and βi ≥ 1, i = 1, 2, are independent of
ε, t, t0.

Proof. Let us consider the nonlinear algebraic equation

A21 +A22S21 = εS21(A11 +A12S21)(3.1)

with unknown S21 ∈ Rn2×n1 .
By an implicit function argument (see, for example, [6]), we deduce that there

exist an ε1 > 0 and an analytic function S21 : (−ε1, ε1)→ Rn2×n1 having the asymp-
totic structure S21(ε) = −A−1

22 A21 +O(ε), which solves (3.1).
Also, we consider the linear algebraic equation

S12(A22 − εS21(ε)A12)− ε(A11 +A12S21(ε)) = A12(3.2)

with unknown S12 ∈ Rn1×n2 . By an implicit function argument again, we conclude
that there exist an ε2 ∈ (o, ε1] and an analytic function S12 : (−ε2, ε2) → Rn1×n2

having the asymptotic structure S12(ε) = A12A
−1
22 +O(ε), which solves (3.2).

If (x1(t,ε)
x2(t,ε)

) is a solution of system (2.3), we define

(
ξ1(t, ε)
ξ2(t, ε)

)
=

(
In1 −εS12(ε)
0 In2

)(
In1 0

−S21(ε) In2

)(
x1(t, ε)
x2(t, ε)

)
,

t ≥ 0, ε ∈ (0, ε2].

It is easy to see that the process ( ξ1(t,ε)
ξ2(t,ε)

), t ≥ 0, is a solution of the following system

of Ito differential equations:

dξ1(t) = Â11(ε)ξ1(t)dt+

N∑
j=1

[Âj11(ε)ξ1(t) + Âj12(ε)ξ2(t)]dwj(t),

(3.3)

εdξ2(t) = Â22(ε)ξ2(t)dt+ εν1
N∑
j=1

[Âj21(ε)ξ1(t) + Âj22(ε)ξ2(t)]dwj(t),
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where

Â1(ε) = Ar +O(ε), Âj11(ε) = Ajr +O(ε),

Âj12(ε) = Aj12 +O(ε), Â22(ε) = A22 +O(ε),

Âj21(ε) = Aj21 −Aj22A−1
22 A21 +O(ε),

Âj22(ε) = Aj22 +O(ε), ν1 = min{ν, 1}.
Applying Lemma A.1 (in the appendix) for

f0(t) = 0, fj(t) = Âj12(ε)ξ2(t, ε), j = 1, 2, . . . , N,

we obtain from the first equation of system (3.3) that

E|ξ1(t, ε)|2 ≤ β̂1


e−α̂1(t−t0)E|ξ1(t0)|2 +

N∑
j=1

∫ t

t0

e−α̂1(t−s)E|ξ2(s, ε)|2ds

(3.4)

for all t ≥ t0 > 0, where α̂1 > 0 and β̂1 ≥ 1.
Using Lemma A.2 (in the appendix) for

g0(t) = 0, gi(t) = Âj21(ε)ξ1(t, ε), j = 1, 2, . . . , N,

one obtains

E|ξ2(t, ε)|2 ≤ β̂2


e−α2

(t−t0)

ε E|ξ2(t0, ε)|2 + ε2ν1−2
N∑
j=1

∫ t

t0

e−α2
t−s
ε E|ξ1(s, ε)|2ds


 .

(3.5)

Replacing (3.5) with (3.4) and changing the order of integration we deduce

E|ξ1(t, ε)|2 ≤ β̂1e
−α̂1(t−t0)E|ξ1(t0, ε)|2 + β̂1β̂2

∫ t

t0

e−α̂1(t−s)e−α2
s−to

ε ds

·E|ξ2(t0, ε)|2 + ε2ν1−2β̂1β̂2

N∑
j=1

∫ t

t0

∫ t

s

e−α̂1(t−σ)e−α2
σ−s
ε dσE|ξ1(s, ε)|2ds.

Hence

E|ξ1(t, ε)|2 ≤ β̂3e
−α̂1(t−t0)[E|ξ1(t0, ε)|2 + εE|ξ2(t0, ε)|2]

+ β̂4ε
2ν1−1

N∑
j=1

∫ t

t0

e−α̂1(t−s)E|ξ1(s, ε)|2ds

with β̂3 > 0 and β̂4 > 0. By using the Gronwall lemma [6], we obtain from the above
inequality

E|ξ1(t, ε)|2 ≤ β̂3e
−(α̂1−ε2ν1Nβ̂4)(t−t0)[E|ξ1(t0, ε)|2 + εE|ξ2(t0, ε)|2] ∀t ≥ t0 ≥ 0.
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Thus, for all ε ∈ (0,
α̂1
N −α1

β̂4
), we conclude that

E|ξ1(t, ε)|2 ≤ β̂3e
−Nα1(t−t0)[E|ξ1(t0, ε)|2 + εE|ξ2(t0, ε)|2] ∀t ≥ t0 ≥ 0.(3.6)

Now, taking into account (3.6), we deduce from (3.5) that

E|ξ2(t, ε)|2 ≤ β̂5e
−α2

(t−t0)

ε E|ξ2(t0, ε)|2(3.7)

+ β̂6ε
2ν1−1e−α1(t−t0)[E|ξ1(t0, ε)|2 + εE|ξ2(t0, ε)|2].

Since x1(t, ε) = ξ1(t, ε) + εS12(ε)ξ2(t, ε), one has

E|x1(t, ε)|2 ≤ β1e
−α1(t−t0)[E|x1(t0, ε)|2 + εE|x2(t0, ε)|2](3.8)

for some β1 ≥ 1 not depending upon ε.
On the other hand, since x2(t, ε) = ξ2(t, ε)+S21(ε)x1(t, ε), and taking into account

(3.7) and (3.8), we have

E|x2(t, ε)|2 ≤ β2[e−α2(t−t0)E|ξ2(t0, ε)|2 + e−α1(t−t0)(E|x1(t0, ε)|2 + εE|x2(t0, ε)|2)]

(3.9)

for all t ≥ t0 ≥ 0, for some β2 ≥ 1 not depending upon ε.
The inequalities (3.8) and (3.9) ensure the exponential stability of the zero solution

of the full system (2.3). The estimates for the block components Φij(t, t0, ε) of the
fundamental matrix Φ(t, t0, ε) are directly obtained from (3.8) and (3.9). Thus the
proof is finished.

It should be noted that Theorem 3.1 can be used to design a stabilizing state
feedback controller for the full system of type (2.1) based on separately designing the
stabilizing feedback gain for two subsystems of lower dimension which do not depend
on the small parameter ε. To be more precise, let us consider the controlled system

dx1(t) = [A11x1(t) +A12x2(t) +B1u(t)]dt+

N∑
j=1

[Aj11x1(t) +Aj12x2(t)]dwj(t),

(3.10)

εdx2(t) = [A21x1(t) +A22x2(t) +B2u(t)]dt+ εν
N∑
j=1

[Aj21x1(t) +Aj22x2(t)]dwj(t),

where ε > 0, ν > 1
2 , u ∈ Rm are the vectors of the control parameters. If we take

u(t) = F1x1(t) + F2x2(t), the resulting closed loop system is

dx1(t) = [(A11 +B1F1)x1(t) + (A12 +B1F2)x2(t)]dt(3.11)

+
N∑
j=1

[Aj11x1(t) +Aj12x2(t)]dwj(t),

εdx2(t) = [(A21 +B2F1)x1(t) + (A22 +B2F2)x2(t)]dt

+ εν
N∑
j=1

[Aj21x1(t) +Aj22x2(t)]dwj(t).

Applying Theorem 3.1 to system (3.11), we may construct a stabilizing control

u(t) = F1x1(t) + F2x2(t)
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for system (3.10). This is done in the following corollary.
Corollary 3.2. Assume that A22 is invertible and F̃ ∈ Rm×n1 is chosen such

that the zero solution of the closed loop system

dx1(t) = [Ar +BrF̃ ]x1(t)dt+

N∑
j=1

[Ajr +Bjr F̃ ]x1(t)dwj(t)(3.12)

is ESMS and F2 ∈ Rm×n2 is chosen such that A22+B2F2 is a Hurwitz matrix (Ar, Br
being defined as in the case of system (2.6)). Set F1 = (Im+F2A

−1
22 B2)F̃ +F2A

−1
22 A21;

then the control

u(t) = F1x1(t) + F2x2(t)(3.13)

stabilizes system (3.10) for arbitrary ε > 0 small enough. (It means that there exists
an ε0 > 0 such that the zero solution of the corresponding closed loop system (3.11)
is ESMS for any arbitrary ε ∈ (0, ε0).)

Proof. The closed loop system obtained by coupling the control (3.13) to system
(3.10) is

dx1(t) = [(A11 +B1F1)x1(t) + (A12 +B1F2)x2(t)]dt(3.14)

+
N∑
j=1

[Aj11x1(t) +Aj12x2(t)]dwj(t),

εdx2(t) = [(A21 +B2F1)x1(t) + (A22 +B2F2)x2(t)]dt

+ εν

N∑
j=1

[Aj21x1(t) +Aj22x2(t)]dwj(t).

Setting ε = 0 in (3.14), we obtain the reduced subsystem

dx1(t) = [A11 +B1F1 − (A12 +B1F2)(A22 +B2F2)−1(A21 +B2F1)]x1(t)dt

+
N∑
j=1

[Aj11 −Aj12(A22 +B2F2)−1(A21 +B2F1)]x1(t)dwj(t).(3.15)

After some algebraic computation, similar to that in the deterministic framework
(e.g., [33, 6]), we can show that (3.15) is just (3.12). Now the conclusion is immediate
from Theorem 3.1.

Remark 3.1. The designing of the matrix gain F̃ in order to guarantee the ESMS
of the zero solution of the system (3.12) may be done by using, for instance, the result
of Theorem 1 in [46], and the designing of the matrix gain F2 may be done by using
any known methods for the stabilization of a linear time invariant finite dimensional
system in the deterministic framework.

3.2. Representation formula for the stabilizing solution of a class of
algebraic Riccati equations. Let us consider the controlled system described by
the differential Ito equation

dx(t) = [Ax(t) +Bu(t)]dt+
N∑
i=1

Aix(t)dwi(t)(3.16)
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and the output

y = Cx(t) +Du(t).(3.17)

If the uncontrolled system

dx(t) = Ax(t)dt+

N∑
i=1

Aix(t)dwi(t)(3.18)

associated to (3.16) generates an exponentially stable evolution, then system (3.16)–
(3.17) defines an input-output operator T : L2

w{(0,∞) × Ω,Rm} →: L2
w{(0,∞) ×

Ω,Rp} by (Tu)(t) = Cxu(t) +Du(t), t ≥ 0, where xu(·) ∈ L2
w{(0,∞)×Ω,Rn} is the

solution of (3.14) with initial condition xu(0) = 0.
The result of the following theorem gives a stochastic version of the well-known

bounded real lemma.
Theorem 3.3 (see [38, 39]). Under the considered assumptions, the following

statements are equivalent:
(i) the uncontrolled system (3.18) defines a mean square exponentially stable evo-

lution, and the input-output operator T associated to (3.16)–(3.17) verifies

||T|| < γ;

(ii) D∗D < γ2Im, and the algebraic Riccati-type equation

A∗X +XA+

N∑
i=1

(Ai)∗XAi(3.19)

+ (XB + C∗D)(γ2Im −D∗D)−1(B∗X +D∗C) + C∗C = 0

has a unique stabilizing solution X̃ = X̃∗ ≥ 0.
Recall that X̃ is a “stabilizing solution” of (3.19) if the system

dx(t) = (A+BF̃ )x(t)dt+

N∑
i=1

Aix(t)dwi(t)

defines a mean square exponentially stable evolution with

F̃ = (γ2Im −D∗D)−1(B∗X̃ +D∗C).

Combining the results in Proposition 3 and Theorem 1 in Morozan [38, 39], we
obtain a useful representation formula of the stabilizing solution X̃ of the Riccati-type
equation (3.19).

Theorem 3.4. Suppose that the statement (i) in Theorem 3.3 holds. Then the
stabilizing solution of (3.19) has the representation formula

X̃ = P0 − PR−1
γ P∗(3.20)

with P0 : Rn → Rn,P : L2
w((0,∞) × Ω,Rm) → Rn,Rγ : L2

w((0,∞) × Ω,Rm) →
L2
w((o,∞)× Ω,Rm) by

P0 = E

∫ ∞

0

Φ∗(t, 0)C∗CΦ(t, 0)dt,
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Pu = E

∫ ∞

0

Φ∗(t, 0)C∗
[
C

∫ t

0

Φ(t, s)Bu(s)ds+Du(t)

]
dt

= E

∫ ∞

0

Φ∗(t, 0)C∗(Tu)(t)dt ∀u ∈ L2
w((0,∞)× Ω,Rm),

Rγ = T ∗T − γ2I,

where Φ(t, 0) is the fundamental random matrix associated to the uncontrolled system
(3.18).

Proof. Consider the quadratic cost function

Jγ(x0, u) = E

∫ ∞

0

[|yu(t)|2 − γ2|u(t)|2]dt.

Since ||T|| < γ, applying Proposition 3 in [38], we deduce that u→ Jγ(x0, u) is a
continuous and a concave function.

Setting yu(t) = CΦ(t, 0)x0 + [Tu](t), we can easily show that

max{Jγ(x0, u)|u ∈ L2
w((0,∞)× Ω,Rm)} = x∗0(P0 − PR−1

γ P∗)x0.(3.21)

On the other hand, applying Theorem 1 in [38], we get

Jγ(x0, u) = x∗0X̃x0 − E
∫ ∞

0

(u(t)− F̃ x(t))∗(γ2Im −D∗D)(u(t)− F̃ x(t))dt

∀u ∈ L2
w((0,∞)× Ω,Rm).

Hence one has

max{Jγ(x0, u)|u ∈ L2
w((0,∞)× Ω,Rm)} = x∗0X̃x0.(3.22)

Thus, from (3.21) and (3.22), (3.20) follows, and the proof is complete.

4. Main results. We make the following assumptions throughout this section
and thereafter:

H1. The linear unforced system (2.7) defines an exponentially stable evolu-
tion in mean square.
H2. All eigenvalues of matrix A22 are located in the half plane of Re(s) < 0.

Proposition 4.1. Under assumptions H1–H2, if there exists a sequence {εk}k∈N

such that limk→∞ εk = 0 and ||Tεk || < γ for all k ∈ N, then γ ≥ max{||Tr||, ||Gf ||∞}.
Proof. Let γ′ < γ be fixed. Then ||Tεk || < γ′ for all k ∈ N. Set

A(εk) =

(
A11 A12

ε−1A21 ε−1A22

)
, Ai(εk) =

(
Ai11 Ai12

εν−1
k Ai21 εν−1

k Ai22

)
,

B(εk) =

(
B1

ε−1
k B2

)
.

Applying Theorem 3.1, we have that for all k large enough, the system

dx(t) = A(εk)x(t)dt+

N∑
j=1

Aj(εk)x(t)dwj(t)
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defines an exponentially stable evolution. Using statements (i) and (ii) in Theorem
3.3, we conclude that the algebraic Riccati-type equation

A∗(εk)X +XA(εk) +

N∑
j=1

Aj∗(εk)XAj(εk) + (XB(εk) + C∗D)(γ2Im −D∗D)−1

· (B∗(εk)X +D∗C) + C∗C = 0(4.1)

has a stabilizing solution X(εk) = X∗(εk) ≥ 0.
From Theorem 3.4, we deduce that the stabilizing solution X(εk, γ) of (4.1) has

the representation formula

X(εk, γ
′) = P0(εk)− P(εk)R−1

γ′ (εk)P∗(εk).

Let (
X11(εk, γ

′) X12(εk, γ
′)

X∗
12(εk, γ

′) X22(εk, γ
′)

)

be the partition of the solution X(εk, γ
′) compatible with the partition of the coeffi-

cient matrix of system (2.1).
Taking into account the estimations in Theorem 3.1, we shall deduce estimations

for Xij(εk, γ
′).

First, notice that

−Rγ′(εk) = (γ′2 − γ2)I −Rγ(εk) ≥ (γ′2 − γ2)I.

SinceRγ′(εk) = R∗
γ′(εk), whereR∗

γ′(εk) stands for the adjoint operator ofRγ′(εk),

we obtain that Rγ′(εk) is invertible on L2
w((0,∞) × Ω,Rm) with bounded inverse.

Moreover, we have

||R−1
γ′ (εk)|| ≤ (γ′2 − γ2)−1/2

for all k ∈ N large enough. On the other hand, we may write

P(εk) =

( P1(εk)
P2(εk)

)
, Pj(εk) : L2

w((0,∞)× Ω; Rm)→ Rnj , j = 1, 2,

Pj(εk)u = E

∫ ∞

0

[Φ∗
1j(t, 0, εk)C∗

1 + Φ∗
2j(t, 0, εk)C∗

2 ]y(t, εk)dt,

where

y(t, εk) = (C1 C2)

∫ t

0

Φ(t, 0, εk)B(εk)u(s)ds+Du(t).

Using the estimates in Theorem 3.1, we obtain that there exist constants c1 > 0 and
c2 > 0 not depending on k but possibly depending on γ′, such that

‖P1(εk)‖ ≤ c1, ‖P2(εk)‖ ≤ c2εk, (∀) k ≥ 1.

With these inequalities, we may conclude that the stabilizing solution X(εk) of (4.1)
has the following asymptotic structure:

X(εk) =

(
X11(εk) εkX12(εk)
εkX

∗
12(εk) εkX22(εk)

)
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with |Xij(εk)| ≤ c3(γ′), where c3(γ′) > 0 does not depend on k.
We define

F (εk) = (F1(εk) F2(εk))

= (γ′2Im −D∗D)−1

[(
B∗

1

1

εk
B∗

2

)
X(εk) +D∗(C1 C2)

]
.

With this notation, we have that (4.1) is equivalent to a system with unknowns
X11(εk), X12(εk), X22(εk), F1(εk), F2(εk), and thus the rest of the proof can be carried
out along the same lines as that in the deterministic framework [4].

Based on the result in Proposition 4.1, we can easily show the following theorem.
Theorem 4.2. Under assumptions H1–H2, the norm of the input-output opera-

tor defined by system (2.1)–(2.2) verifies

lim inf
ε↘0

‖Tε‖ ≥ max{‖Tr‖, ‖Gf‖∞}.

In the remainder of this section, we will consider a controlled system described
by

dx1(t) = [A11x1(t) +A12x2(t) +B1u(t)]dt(4.2)

+
N∑
i=1

[Ai11x1(t) + εµAi12x2(t)]dwi(t),

εdx2(t) = [A21x1(t) +A22x2(t) +B2u(t)]dt

+εν
N∑
i=1

[Ai21x1(t) +Ai22x2(t)]dwi(t)

and the output

y(t) = C1x1(t) + C2x2(t) +Du(t),(4.3)

where xi, Aij , Bi, Cj , D, ν, and ε are as in system (2.1)–(2.2) and µ > 0 is independent
of ε.

When µ = 0, system (4.2)–(4.3) is just the system (2.1)–(2.2).
In this case (when µ > 0), the reduced subsystem obtained by setting ε = 0 in

(4.2)–(4.3) is (2.6), where Ajr = Aj11, j = 1, 2, . . . , N . The corresponding boundary
layer subsystem is (2.8).

It is easy to see that the result of Theorem 4.2 also holds for the input-output
operator corresponding to system (4.2)–(4.3). In the case of system (4.2)–(4.3), we
may derive a result concerning the superior limit of the norm of operator Tε defined
by this system.

First, we present the following result.
Proposition 4.3. Assume that H1–H2 hold for system (4.2)–(4.3). Then, for

all

γ > max{‖Tr‖, ‖Gf‖∞},(4.4)

there exists an ε0(γ) > 0 such that for arbitrary ε ∈ (0, ε0(γ)) we have ‖Tε‖ < γ.
Remark 4.1. In Proposition 4.3, that assumption H1 holds for system (4.2)–(4.3)

means that the assumption is true when the control input u(t) is zero (i.e., unforced
situation).
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Proof. We show that, under the considered assumptions, there exists an ε0(γ) > 0
such that for arbitrary ε ∈ (0, ε0(γ)) the algebraic Riccati equation

A∗(ε)X +XA(ε) +

N∑
i=1

(Ai)∗(ε)XAi(ε)

+ (XB(ε) + C∗D)(γ2Im −D∗D)−1(B∗(ε)X +D∗C) + C∗C = 0(4.5)

has a stabilizing solution X̃(ε) = X̃∗(ε) ≥ 0. Then, applying the results in [38, 39],
we may conclude that ‖Tε‖ < γ, ε ∈ (0, ε0(γ)).

If (4.4) holds, then ‖Gf‖∞ < γ, and we get D∗D < γ2Im, and thus (4.5) is well
defined.

Set

F = (F1 F2) = (γ2Im −D∗D)−1(B∗(ε)X +D∗C), X =

(
X11 εX12

εX∗
12 εX22

)
.

We obtain that (4.5) is equivalent to the following system:

B∗
1X11 +B∗

2X
∗
12 +D∗C1 = (γ2Im −D∗D)F1,

εB∗
1X12 +B∗

2X22 +D∗C2 = (γ2Im −D∗D)F2,

A∗
11X11 +A∗

21X
∗
12 +X11A11 +X12A21 +

N∑
i=1

[(Ai11)∗X11A
i
11

+ εν(Ai21)∗X∗
12A

i
11 + εν(Ai11)∗X12A

i
21 + ε2ν−1(Ai21)∗X22A

i
21]

+ F ∗
1 (γ2Im −D∗D)F1 + C∗

1C1 = 0,(4.6)

εA∗
11X12 +A∗

21X22 +X11A12 +X12A22 +

N∑
i=1

[εµ(Ai11)∗X11A
i
12

+ εµ+ν(Ai21)∗X∗
12A

i
12 + εν(Ai11)∗X12A

i
22 + ε2ν−1(Ai21)∗X22A

i
22]

+ F ∗
1 (γ2Im −D∗D)F2 + C∗

1C2 = 0,

εA∗
12X12 +A∗

22X22 + εX∗
12A12 +X22A22 +

N∑
i=1

[ε2µ(Ai12)∗X11A
i
12 + εµ+ν(Ai22)∗X∗

12A
i
12

+ εµ+ν(Ai12)∗X12A
i
22 + ε2ν−1(Ai22)∗X22A

i
22]

+ F ∗
2 (γ2Im −D∗D)F2 + C∗

2C2 = 0

with unknowns Fj ∈ Rm×nj , Xij ∈ Rni×nj , Xii = X∗
ii, i, j = 1, 2. We associate the

following implicit function problem:

B∗
1X11 +B∗

2X
∗
12 +D∗C1 = (γ2Im −D∗D)F1,

η1B
∗
1X12 +B∗

2X22 +D∗C2 = (γ2Im −D∗D)F2,

A∗
11X11 +A∗

21X
∗
12 +X11A11 +X12A21 +

N∑
i=1

[(Ai11)∗X11A
i
11 + η2(Ai21)∗X∗

12A
i
11

+ η2(Ai11)∗X12A
i
21 + η3(Ai21)∗X22A

i
21]

+ F ∗
1 (γ2Im −D∗D)F1 + C∗

1C1 = 0,(4.7)

η1A
∗
11X12 +A∗

21X22 +X11A12 +X12A22 +

N∑
i=1

[η4(Ai11)∗X11A
i
12 + η2η4(Ai21)∗X∗

12A
i
12
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+ η2(Ai11)∗X12A
i
22 + η3(Ai21)∗X22A

i
22]

+ F ∗
1 (γ2Im −D∗D)F2 + C∗

1C2 = 0,

η1A
∗
12X12 +A∗

22X22 + η1X
∗
12A12 +X22A22 +

N∑
i=1

[η2
4(Ai12)∗X11A

i
12

+ η2η4(Ai22)∗X∗
12A

i
12 + η2η4(Ai12)∗X12A

i
22 + η3(Ai22)∗X22A

i
22]

+ F ∗
2 (γ2Im −D∗D)F2 + C∗

2C2 = 0

with unknowns Fj , Xij , i, j = 1, 2 and the free parameters η1, η2, η3, η4.
The rest of the proof follows in the same way as in the deterministic case

[4].
From Proposition 4.3, we get the following theorem.
Theorem 4.4. Under H1–H2, the norm of the input-output operator defined by

system (4.2)–(4.3) verifies

lim sup
ε↘0

‖Tε‖ ≤ max{‖Tr‖, ‖Gf‖∞}.

Combining the results of Theorem 4.2 and Theorem 4.4, we have the following
result.

Theorem 4.5. Under assumptions H1–H2, the norm of the input-output opera-
tor defined by system (4.2)–(4.3) verifies

lim
ε↘0
‖Tε‖ = max{‖Tr‖, ‖Gf‖∞}.

5. Robust stabilization via an ε-independent controller for a class of
singularly perturbed linear stochastic systems. In Corollary 3.2, it has been
shown how the Klimusev–Krasovski-type result of Theorem 3.1 could be used to design
a composite stabilizing control for a singularly perturbed linear stochastic system.

In this section, we will show how the results of Theorems 3.1 and 4.5 can be used
to analyze the robustness properties of an ε-independent stabilizing controller for a
linear stochastic system with two time scales.

Consider the system

dx1(t) = [A11x1(t) +A12x2(t) +B1
1v(t) +B1

2u(t)]dt

+

N∑
k=1

[Ak11x1(t) + εµAk12x2(t)]dwk(t),

εdx2(t) = [A21x1(t) +A22x2(t) +B2
1v(t) +B2

2u(t)]

+ εν
N∑
k=1

[Ak21x1(t) +Ak22x2(t)]dwk(t),(5.1)

y1(t) = C11x1(t) + C12x2(t) +D11v(t) +D12u(t),

dy2(t) = [C21x1(t) + C22x2(t) +D21v(t)]dt+

N∑
k=1

[Ck21x1(t) + ελCk22x2(t)]dwk(t),

having control inputs u ∈ Rm2 , exogenous disturbances v ∈ Rm1 (which are supposed
to be adapted stochastic processes), controlled outputs y1 ∈ Rp1 , and measured
outputs y2 ∈ Rp2 . µ > 0, λ > 0, and ν and ε are as in (2.1)–(2.2).
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If Akij = 0, i, j = 1, 2, k = 1, 2, . . . , N , then (5.1) is a deterministic system having
the measured output subjected to some random disturbances modeled by multiplica-
tive white noise. In this section, we investigate the problem of designing of a robust
stabilizing controller with a single time scale. We shall use both strict proper con-
trollers of the form

dxc(t) = Acxc(t)dt+Bcdy2(t),

(5.2)

u2(t) = Ccxc(t)

and proper controllers of the form

dxc(t) = Acxc(t)dt+Bcdy2(t),

(5.3)

du2 = Ccxc(t)dt+Dcdy2(t).

The closed loop system by coupling the controller (5.2) to system (5.1) is

dx1(t) = [A11x1(t) +B1
2Ccxc(t) +A12x2(t) +B1

1v(t)]dt

+
N∑
k=1

[Ak11x1(t) + εµAk12x2(t)]dwk(t),

dxc(t) = [BcC21x1(t) +Acxc(t) +BcC22x2(t) +BcD21v(t)]dt

+
N∑
k=1

[BcC
k
21x1(t) + ελBcC

k
22x2(t)]dwk(t),(5.4)

εdx2(t) = [A21x1(t) +B22Ccxc(t) +A22x2(t) +B2
1v(t)]dt

+εν
N∑
k=1

[Ak21x1(t) +Ak22x2(t)]dwk(t),

y1(t) = C11x1(t) +D12Ccxc(t) + C12x2(t) +D11v(t).

This system may be rewritten in the following form:

dξ(t) = [Â11ξ(t) + Â12x2(t) + B̂1v(t)]dt+

N∑
k=1

[Âk11ξ(t) + Âk12x2(t)]dwk(t),

εdx2(t) = [Â21ξ(t) + Â22x2(t) + B̂2v(t)]dt+ εν
N∑
k=1

[Âk21ξ(t) + Âk22x2(t)]dwk(t),

(5.5)

y1(t) = Ĉ1ξ(t) + Ĉ2x2(t) + D̂11v(t),

where ξ(t) = (x1(t)
xc(t)

) is the slow component of the state and

Â11 =

(
A11 B1

2Cc
BcC

1
2 Ac

)
, Â12 =

(
A12

BcC22

)
, Â21 =

(
A21 B2

2Cc
)
, Â22 = A22,

Âk11 =

(
Ak11 0
BcC

k
21 0

)
, Âk12 =

(
ενAk12
ελBcC

k
22

)
, B̂1 =

(
B1

1

BcD21

)
, B̂2 = B2

1 ,
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Ĉ1 = (C11 D12Cc), Ĉ2 = C12, D̂11 = D11.

In the same way, the closed loop system obtained by coupling the controller (5.3) to
system (5.1) may be written as

dξ(t) = [Ǎ11ξ(t) + Ǎ12x2(t) + B̌1v(t)]dt+

N∑
k=1

[Ǎk11ξ(t) + Ǎk12x2(t)]dwk(t),

εdx2(t) = [Ǎ21ξ(t) + Ǎ22x2(t) + B̌2v(t)]dt+

N∑
k=1

[Ǎk21ξ(t) + Ǎ22x2(t)]dwk(t),

(5.6)

y1(t) = Č1ξ(t) + Č2x2(t) + Ď11v(t),

where ξ = (x1

xc
) is the slow state, x2 is the fast state, and the coefficient matrices are

Ǎ11 =

(
A11 +B1

2DcC21 B1
2

BcC12 Ac

)
, Ǎ12 =

(
A12 +B1

2DcC22)
BcC22

)
,

Ǎ21 =
(
A21 +B2

2DcC21 B2
2Cc

)
, Ǎ22 = A22 +B2

2DcC22,

Ǎk11 =

(
Ak11 +B1

2DcC
k
21 0

BcC
k
21 0

)
, Ǎk12 =

(
ενAk12 + ελB1

2DcC
k
22

ελBcC
k
22

)
,

Ǎk21 =
(
ενAk21 +B2

2DcC
k
21 0

)
, Ǎk22 = ενAk22 + ελB2

2DcC
k
22,

B̌1 =

(
B1

1 +B1
2DcD21

BcD21

)
, B̌2 = B2

1 +B2
2DcD21,

Č1 = (C11 +D12DcC21 D12Cc), Č2 = C12 +D12DcC22,

Čk1j = D12DcČ
k
2 , j = 1, 2, k = 1, 2, . . . N, Ď11 = D11 +D12DcD21.

Remark 5.1. The output of the closed loop system (5.6) is directly affected by
the white noises which are presented in the measured output of the plant (5.1). The
stochastic systems of type (5.6) exceed the class of stochastic systems investigated in
this paper. Hence, when a proper controller of type (5.3) is used to stabilize a stochastic
system of type (5.1), we shall assume that Ck2j = 0, j = 1, 2, k = 1, . . . , N . However,
since systems of type (5.6) appear in a natural way, an investigation of this type of
system would be of interest.

Assuming that A22 is invertible, we associate two subsystems of lower dimensions
and independent of the small parameter ε:

dxr(t) = [Arxr(t) +Br1vr(t) +Br2ur(t)]dt+

N∑
k=1

Akrxr(t)dwk(t),

yr1(t) = Cr1xr(t) +D11
r vr(t) +D12

r ur(t),(5.7)

dyr2(t) = [Cr2xr(t) +D21
r vr(t) +D22

r ur(t)]dt+

N∑
k=1

Ckr2xr(t)dwk(t),

which will be termed as “reduced subsystem” or “slow subsystem” associated with
(5.1), where

Ar = A11 −A12A
−1
22 A21, Akr = Ak11, k = 1, 2, . . . , N,

Brj = B1
j −A12A

−1
22 B

2
j , j = 1, 2, Cri = Ci1 − Ci2A−1

22 A21, i = 1, 2,

Ckr = Ck21, k = 1, 2, . . . , N, Dij
r = Dij − Ci2A−1

22 B
2
j , i, j = 1, 2.
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We also associate the subsystem

x′f (τ) = A22xf (τ) +B2
1vf (τ) +B2

2uf (τ),

yf1(τ) = C12xf (τ) +D11vf (τ) +D12uf (τ),(5.8)

yf2(τ) = C22xf (τ) +D21vf (τ),

where τ = t
ε , which is the “boundary layer subsystem” or “fast subsystem” corre-

sponding to system (5.1).
The closed loop system obtained by coupling a strict proper controller of type

(5.2) to the reduced subsystem (5.7) is described by

dxr(t) = [Arxr(t) +Br2Ccxc(t) +Br1vr(t)]dt+

N∑
k=1

Akrxr(t)dwk(t),

dxc(t) = [BcCr2xr + (Ac +BcD
22
r Cc)xc +BcD

21
r vr]dt+

N∑
k=1

BcC
k
22xr(t)dwk(t),

(5.9)

yr1(t) = Cr1xr(t) +D12
r Ccxc(t) +D11

r vr(t).

We denote by Tcl
r : L̃2([0,∞),Rm1) → L̃2([0,∞); Rp1) the input-output operator

defined by system (5.8).
The first result in this section is presented by the following theorem.
Theorem 5.1. Assume: (a) All eigenvalues of matrix A22 are located in the half

plane of Re(s) < 0; and (b) A strict proper controller of type (5.2) was designed in
order to stabilize the reduced subsystem (5.7). Under these assumptions, there exists
an ε̂ > 0, such that the same strict proper controller stabilizes the full system (5.1) for
any arbitrary ε ∈ (0, ε̂). Moreover, the input-output operator Tcl

ε of the corresponding
closed loop system (5.5) has the asymptotic behavior

lim
ε→0
‖Tcl

ε ‖ = max{‖Tcl
r ‖; ‖C12(sIn2

−A22)−1B2
1 +D11‖∞}.(5.10)

Proof. To show that the designed controller stabilizes system (5.1), we shall apply
Theorem 3.1 to system (5.5).

To this end, we remark that the coefficient matrix of the boundary layer subsystem
is just A22, which is stable.

On the other hand, by direct calculation, we obtain that the reduced subsystem
associated to the closed loop system (5.5) is just (5.9).

By assumption (b), the zero state equilibrium of system (5.9) (with vr = 0) is
ESMS.

Finally, the asymptotic behavior of the norm of the input-output operator asso-
ciated to the closed loop system can be obtained by applying Theorem 4.5.

Remark 5.2. Based on the stochastic version of the small gain theorem (see,
e.g., [7]), it follows that the level of robustness achieved by a stabilizing controller
is measured by the norm of the input-output operator associated to the closed loop
system.

From Theorem 5.1, it follows that, if a strict proper controller of type (5.2) was
designed to stabilize the reduced subsystem (5.7) and to achieve ‖Tcl

r ‖ < γ for a
prefixed tolerance γ > 0, then the same controller will achieve a level of attenuation
less than γ +O(ε) for the full system (5.1) only if

‖C12(sIn2 −A22)−1B2
1 +D11‖∞ < ‖Tcl

r ‖.
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Hence equality (5.10) gives a measure of loss-level of robustness when a robustly
stabilizing controller (5.2) designed to stabilize the subsystem (5.7) is used in the full
system (5.1) with stable fast dynamics.

Remark 5.3. From the expressions of the coefficient matrices of the closed loop
system (5.6), it follows that the coefficient matrix of the boundary layer subsystem
may be unstable even if A22 is stable.

Then, under a proper controller, the fast dynamics may become unstable. We
recall that, if A22 is stable, then A22 +B2

2DcC22 is also stable if and only if

‖Dc‖ < [‖C22(sIn2 −A22)−1B2
2‖∞]−1.

For details, see [27].
Theorem 5.2. Assume that (a) The matrix A22 is stable and Ck2j = 0, j =

1, 2, k = 1, . . . , N , and (b) a controller of the form

ẋc(t) = Ãcxc(t) + B̃cy2(t),

(5.11)

u̇2(t) = C̃cxc(t) + D̃cy2(t)

was designed in order to stabilize the system obtained from (5.7) taking D22
r = 0. In

addition, the following conditions are satisfied:

(i) A22 −B22D̃cC22 is invertible, and(5.12)

(ii) ‖D̃c(Ip2 − C22A
−1
22 B

2
2D̃c)

−1‖ < (‖C22(sIn2
−A22)−1B2

2‖∞)−1.

Set

Ac = Ãc + B̃c(Ip2 − C22A
−1
22 B

2
2D̃c)

−1C22A
−1
22 B

2
2C̃c,

Bc = B̃c(Ip2 − C22A
−1
22 B

2
2D̃c)

−1,(5.13)

Cc = C̃c + D̃c(Ip2 − C22A
−1
22 B

2
2D̃c)

−1C22A
−1
22 B

2
2C̃c,

Dc = D̃c(Ip2 − C22A
−1
22 B

2
2D̃c)

−1.

Under these conditions there exists an ε̃ > 0 such that the controller of type (5.3)
having the coefficient matrix defined in (5.13) stabilizes system (5.1) for any arbitrary
ε ∈ (0, ε̃).

Moreover, the norm of the input-output operator defined by the corresponding
closed loop system verifies

lim
ε→∞ ‖T

cl
ε ‖ = max{‖T̃cl

r ‖, ‖G̃f‖∞},(5.14)

where T̃cl
r is the input-output operator obtained by coupling the controller (5.11) to

the reduced system (5.7) with D22
r = 0 and

G̃f (s) = (C12 +D12DcC22)(sIn2 −A22 −B2
2DcC22)−1(B2

1 −B2
2DcD21)

+ D11 +D12DcD21.(5.15)

Proof. If A22−B2
2D̃cC22 is invertible, then, by direct calculation, it can be checked

that Ip2 −C22A
−1
22 B

2
2D̃c is an invertible matrix, and therefore the formulae (5.13) are

well defined. Now, the conclusion of the theorem follows in the same way as in the
case of Theorem 5.1 by applying Theorems 3.1 and 4.5.
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Remark 5.4. From Theorem 5.2, we may conclude that if we design a controller
(5.11) in order to stabilize the slow subsystem associated to the given system (5.1)
and to achieve a prescribed level of disturbance attenuation for that slow subsystem,
then such a controller may deteriorate the properties concerning the stabilization and
the level of disturbance attenuation of the fast subsystem, and, as a consequence, it
may deteriorate properties concerning the disturbances attenuation of the closed loop
system defined by (5.1) and (5.13).

An alternative algorithm of designing of an ε-independent stabilizing controller
for singularly perturbed systems of type (5.1) could be as follows.

Step 1. Choose a matrix Dc such that the control uf = Dcxf stabilizes the fast

subsystem (5.8) and ‖G̃f (s)‖∞ < γ, G̃f (s) being defined in (5.15).

Step 2. Make the change u(t) = Dcy2 + ũ2 in the space of controls of system (5.1).

Thus we obtain the modified system

dx1(t) = [(A11 +B1
2DcC21)x1(t) + (A12 +B2

2DcC22)x2(t)

+(B1
1 +B1

2DcD21)v(t) +B1
2 ũ2(t)]dt+

N∑
k=1

[Ak11x1(t) + εµAk12x2(t)]dwk(t),

εdx2(t) = [(A21 +B2
2DcC21)x1(t) + (A22 +B2

2DcC22)x2(t) + (B2
1 +B2

2DcD21)v(t)

+B2
2 ũ2(t)]dt+ εnu

N∑
k=1

[Ak21x1(t) +Ak22x2(t)]dwk(t),(5.16)

y1(t) = (C11 +D12DcC21)x1(t) + (C12 +D12DcC22)x2(t)

+(D11 +D12DcD21)v(t) +D12ũ2(t),

y2(t) = C21x1(t) + C22x2(t) +D21v(t).

Step 3. Design (if possible) a strict proper controller of type (5.2) which stabilizes
the reduced subsystem associated to system (5.16) obtained by setting ε = 0. Again
using Theorem 3.1, we obtain that the controller

u2(t) = Dcy2(t) + ũ2(t),

ũ2(t) = Ccxc(t),(5.17)

ẋc = Acxc(t) +Bcy2(t)

stabilizes system (5.1) for arbitrary ε > 0 small enough. By applying Theorem 4.5,
we may obtain information concerning the level of disturbance attenuation provided
by the controller (5.17) in system (5.1).

Remark 5.5. In general, the reduced subsystem associated to system (5.16) is
proper and not strict proper, and, in this case, a strict proper controller cannot pro-
vide a good level of disturbance attenuation for the slow closed loop system. Hence the
controllers of type (5.17) designed to improve the level of disturbance attenuation for
the fast subsystem of system (5.1) may deteriorate the properties of disturbance at-
tenuation of the slow close loop system. The main conclusion of this section is that a
stabilizing controller achieving a satisfactory level of disturbance attenuation for both
the slow part and the fast part of the closed loop system must be a controller with two
time scales.
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Appendix.
Lemma A.1. Consider the affine system

dx(t) = [A0x(t) + F0(t)]dt+

N∑
i=1

[Aix(t) + Fi(t)]dwi(t),(A.1)

where Fi ∈ L2
w((0,∞) × Ω,Rn), i = 0, 1, 2, . . . , N . If the zero solution of the linear

system

dx(t) = A0x(t)dt+

N∑
i=1

Aix(t)dwi(t)

is ESMS, then there exist positive constants c and α such that all the solutions of
system (A.1) verify

E|x(t)2 ≤ c
[
e−α(t−t0)E|x(t0)|2 +

N∑
i=0

∫ t

t0

e−α(t−s)E|Fi(s)|2ds
]
∀t ≥ t0 ≥ 0.

Proof. The proof can be carried out by the same approach as that used in Propo-
sition 1 in [10] or as in Theorem 5.1 in [11], which is based on a Lyapunov functional
technique.

It should be mentioned that the proof of this inequality cannot be conducted
by direct estimation from the constant variation formula, as in the deterministic
framework.

Lemma A.2. Consider the affine system with singular perturbation

εdx(t) = [A0x(t) + g0(t)]dt+ εν
N∑
i=1

[Aix(t) + gi(t)]dwi(t),(A.2)

where ν > 1
2 , gi ∈ L2

w((0,∞)×Ω,Rn), i = 0, 1, 2, . . . , N . If A0 is Hurwitz, then there
exist positive constants c and α such that all solutions of system (A.2) verify

E|x(t, ε)|2 ≤ c
[
e

−α(t−t0)

ε E|x(t0, ε)|2 +

N∑
i=0

∫ t

t0

e
−α(t−s)

ε E|gi(s)|2ds
]
∀t ≥ t0 ≥ 0,

where ε > 0 is small enough.
Proof. The desired result can be carried out by using Lemma A.1.
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with state dependent noise, Dynam. Contin., Discrete Impuls. Systems, 3 (1997), pp. 317–
333.

[11] V. Dragan and T. Morozan, Stability and robust stabilization to linear stochastic systems
described by differential equations with Markovian jumping and multiplicative white noise,
Stochastic Anal. Appl., 35 (2002), to appear.

[12] V. Dragan, P. Shi, and E. K. Boukas, Control of singularly perturbed systems with Marko-
vian jump parameters: An H∞ approach, Automatica J. IFAC, 35 (1999), pp. 1369–1378.

[13] E. Fridman, Exact decomposition of linear singularly perturbed H∞-optimal control problem,
Kybernetika (Prague), 31 (1995), pp. 589–597.

[14] E. Fridman, Near-optimal H∞ control of linear singularly perturbed systems, IEEE Trans.
Automat. Control, 41 (1996), pp. 236–240.

[15] A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York,
1975.

[16] V. Gaitsgory, Use of the averaging method in control problems, Differential Equations, 22
(1986), pp. 1290–1299.

[17] V. Gaitsgory, Suboptimization of singularly perturbed control systems, SIAM J. Control Op-
tim., 30 (1992), pp. 1228–1249.

[18] V. Gaitsgory, Control of Systems with Slow and Fast Motions, Nauka, Moscow, 1993 (in
Russian).

[19] V. Gaitsgory, Suboptimal control of singularly perturbed systems and periodic optimization,
IEEE Trans. Automat. Control, 38 (1993), pp. 888–903.

[20] V. Gaitsgory, Limit Hamilton-Jacobi-Isaacs equations for singularly perturbed zero-sum dif-
ferential games, J. Math. Anal. Appl., 202 (1996), pp. 862–899.

[21] V. Gaitsgory and P. Shi, Limit Hamilton-Jacobi-Isaacs equations for singularly perturbed
zero-sum dynamic (discrete time) games, in Proceedings of the 7th International Sympo-
sium on Dynamic Games and Applications, Kanagawa, Japan, 1996, pp. 168–174.

[22] B. F. Gardner and J. B. Cruz, Well-posedness of singular perturbed Nash games, J. Franklin
Inst., 30 (1978), pp. 355–374.

[23] F. Garofalo and G. Leitmann, Nonlinear composite control of a class of nominally linear
singularly perturbed uncertain systems, in Deterministic Control of Uncertain Systems, A.
S. I. Zinober, ed., IEE Press, London, 1990, pp. 269–288.

[24] G. Grammel, Controllability of differential inclusions, J. Dynam. Control Systems, 1 (1995),
pp. 581–595.

[25] G. Grammel, Singularly perturbed control systems: Recent progress, in Proceedings of the 35th
IEEE Conference on Decision and Control, Kobe, Japan, 1996, pp. 505– 510.

[26] G. Grammel, Singularly perturbed differential inclusions: An averaging approach, Set-Valued
Anal., 4 (1996), pp. 361–374.

[27] D. Hinrichsen and A. J. Pritchard, Stability radii of linear systems, Systems Control Lett.,
7 (1986), pp. 1–10.

[28] H. K. Khalil and F. C. Chen, H∞ control of two-time-scale systems, Systems Control Lett.,
19 (1992), pp. 35–42.
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Abstract. In this paper, we present a model for the controlled flow of a fluid through a network of
canals using a coupled system of St. Venant equations. We then generalize in a variety of ways recent
results of Coron, d’Ándréa-Novel, and Bastin concerning the stabilizability around equilibrium of the
flow through a single channel. This work is based on the theory of quasilinear hyperbolic systems
and, in particular, on a delicate result of Li Ta-tsien concerning the existence and decay of global
classical solutions.
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1. Introduction. The St. Venant equations are a nonlinear hyperbolic system
first introduced in [10] to model the flow of fluid through a canal (or channel). They
have, in particular, become a standard tool for hydraulic engineers used in the mod-
elling of the dynamics of canals and rivers.

The book [4] provides a useful engineering reference to this topic. A recent paper
[2] has considered the flow along a canal between two large bodies of water controlled
by sluice gates at the ends of the canal. The settings of these gates determine the fluid
velocity at the two ends, and the main result shows that suitable feedback boundary
conditions can be used to exponentially stabilize a given operational state of the canal.
This result depends on a subtle theorem of Greenberg and Li [5], which guarantees the
exponential decay of solutions to certain hyperbolic systems in two variables subject
to boundary conditions which impose damping. See also the monograph by Li [8] and
[1], [3].

Our main contributions in this paper are

• to derive a model for the flow of fluid through a network of canals;
• to prove the feedback stabilizability of certain equilibrium operating states

in a system of canals meeting at one “multiple node” for a broad class of
feedback controls acting at the “simple nodes”; and
• to prove feedback null controllability using an absorbing feedback law.

Furthermore, we shall generalize the result of [2], allowing canals of nonrectangular
cross section and using a broad class of boundary conditions. In order to prove
stabilizability for a system of canals, we shall use a generalization of the “boundary
damping” result in [5] to be found in [8] which applied to hyperbolic systems with
arbitrarily many variables. As was the case for the previously cited papers, our
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methods are entirely nonlinear but do remain within the realm of classical, shock-free
solutions.

We end this introduction with some comments on notation. We shall denote
derivatives of functions of a single scalar variable by D or sometimes by Ds, where s is
the variable. In the presence of other variables, we let ∂s denote partial differentiation
with respect to s. We let � or �s = (∂s1 , . . . , ∂sn) denote the gradient of a function
with respect to a vectorial argument s = (s1, . . . , sn). We also introduce some norms.
For an m-vector ξ = (ξ1, . . . , ξm) and an l ×m matrix A, we define

|ξ|∞ = max{|ξi| : i = 1, . . . ,m}, ‖A‖∞= max




m∑
j=1

|Aij | : i = 1, . . . , l


 .

One then has

|Aξ|∞ ≤‖A‖∞ |ξ|∞ and ‖AB ‖∞≤‖A‖∞‖B ‖∞,

where B is a second matrix having m rows. Let C([0, L];Rn) and C1([0, L];Rn)
denote, respectively, the spaces of continuous and continuously differentiable functions
from [0, L] to R

n with corresponding norms

‖ξ(·)‖= sup{|ξ(x)|∞ : x ∈ [0, L]}, ‖ξ(·)‖1= max{‖ξ(·)‖, ‖Dξ(·)‖}.
2. The model. We consider first a single canal parametrized lengthwise by x ∈

[0, L]. Let Yb(x) denote the altitude above sea level of the bed of the canal at x.
The variable y = y(x) ∈ [0, d(x)] denotes the elevation above the canal bed, where
d(x) denotes the depth of the canal. See Figure 2.1. Let σ(x, y) denote the width of
the canal cross section at x and elevation y. Let A(x, t) denote the area of the cross
section at x occupied by water at time t. We assume that the water level is constant
across the canal at height h(x, t) ∈ [0, d(x)]. Clearly, A = A(x, h) and h = h(x,A).
See Figure 2.2. In particular, leaving aside t dependence for the moment,

A(x, h) =

∫ h

0

σ(x, y) dy and A =

∫ h(x,A)

0

σ(x, y) dy.(2.1)

It follows that

∂hA(x, h) = b(x, h) and ∂Ah(x,A) =
1

b(x,A)
,(2.2)

where b(x, h) � σ(x, h) (or b(x,A) � σ(x, h(x,A))) is the width of the water surface
at x.

It turns out to be convenient to choose A(x, t), rather than h(x, t), as our geo-
metric state variable describing the distribution of water along the canal at a given
time since it conveniently leads to a system of conservation laws. The derivation of
the St. Venant equations depends on the assumption that the flow of water along the
canal can be represented by a scalar velocity function V (x, t) in the direction of the
channel from 0 to L. This can be thought of either as a constant or as an average
velocity over the cross section of the channel. For a more detailed physical discussion
of the underlying assumptions of the St. Venant model, see [4, p. 8].

Assuming a constant density (ρ ≡ 1, say), the mass flow rate of the liquid along the
channel is given by Q(x, t) � A(x, t)V (x, t). Conservation of mass is then expressed
by the conservation equation

∂tA + ∂x[AV ] = 0,(2.3)
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Fig. 2.2. Cross section at x.

or, in the weak form, ∫ ∫
[A∂tφ + AV ∂xφ] dx dt = 0(2.4)

for smooth test functions.
To obtain the St. Venant system, the conservation equation has to be comple-

mented with a dynamical equation. We derive this from Hamilton’s principle applied
to the Lagrangian functional

L(A, V ) �
∫ T

0

∫ L

0

[
1

2
AV 2 − g

∫ h(x,A)

0

[Yb(x) + y]σ(x, y) dy

]
dxdt(2.5)

obtained as the difference between the kinetic and potential energies, where g is the
gravitational constant. Here A and Q = AV are assumed to satisfy (2.3), and the
same will have to be true of the variations δA and δQ = (A + δA)(V + δV )− AV =
AδV + V δA. Now if we let δA = ∂xφ and δQ = −∂tφ, with φ a smooth function of x
and t with support in (0, L)× (0, T ), then (2.3) is indeed satisfied. So we get

δA = ∂xφ, AδV = δQ− V δA = −∂tφ− V ∂xφ.

Noting that ∫ h(x,A)

0

Yb(x)σ(x, y) dy = AYb(x),
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using (2.2), and recalling that b(x,A) = σ(x, h(x,A)), we now get

d

dλ
L(A+λδA, V + λδV )

∣∣∣
λ=0

=

∫ T

0

∫ L

0

[
1

2
V 2δA + AV δV − gYb(x)δA− gh(x,A)δA

]
dxdt

=

∫ T

0

∫ L

0

[[
1

2
V 2 − gh(x,A)− gYb(x)

]
∂xφ− V [∂tφ + V ∂xφ]

]
dxdt.

Setting this equal to 0, we get

∫ T

0

∫ L

0

[[
1

2
V 2 + gh(x,A) + gYb(x)

]
∂xφ + V ∂tφ

]
dxdt = 0,(2.6)

the weak form of

∂tV + ∂x

[
1

2
V 2 + gh(x,A) + gYb(x)

]
= 0.(2.7)

Remark 1. One can add an empirically motivated resistance, or friction, term
to the left-hand side of the last equation. Various alternatives occur in the engineer-
ing literature (see, for example, [4, pp. 19–22]). Generically these are of the form
F (x,A, V ) satisfying

F (x,A, 0) = 0 and V F (x,A, V ) ≥ 0.(2.8)

We may also take into account sign conditions on the partial derivatives of F .
Now we consider networks of canals. We use notation similar to that introduced in [6]
for networks of strings and beams. We index the canals, and the quantities associated
with the canals, by i ∈ I = {1, . . . , n}. We label the locations of the end points of the
canals, which we shall refer to as nodes, by j ∈ {1, . . . ,m}. We distinguish between
multiple nodes, indexed by j ∈ JM , at which various canals come together, and the
simple nodes, indexed by j ∈ JS , which are endpoints of a single canal. For j ∈ J ,
we introduce

Ij = {i ∈ I : the ith canal meets the jth node}.

For i ∈ Ij , we set xij = 0 or Li corresponding to the end which meets the other canals
at the jth node. We also set εij = 1 if xij = Li or εij = −1, if xij = 0.

At simple nodes, we shall later impose boundary conditions through which con-
trols can be imposed on the network. At multiple nodes, we shall first impose the
following condition expressing conservation of fluid in the flow through the node in-
dexed by j ∈ JM :∑

i∈Ij

εijQi(xij , t) =
∑
i∈Ij

εijAi(xij , t)Vi(xij , t) = 0 for j ∈ JM .(2.9)

We shall derive a second dynamic node condition from Hamilton’s principle.
For each i ∈ I, we require that Ai(x, t) and Vi(x, t) satisfy the continuity equation

∂tAi + ∂x[AiVi] = 0.(2.10)
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Let A = (A1, . . . , An) and V = (V1, . . . , Vn). We introduce the Lagrangian
functional

L(A,V) �
∑
i∈I

∫ T

0

∫ Li

0

[
1

2
AiV

2
i − g

∫ hi(x,Ai)

0

[Ybi(x) + y]σi(x, y) dy

]
dxdt.(2.11)

The components of A and of V and their variations have to satisfy (2.9) and (2.10).
This can be achieved, much as before, for variations generated by

δAi = ∂xφi, AiδVi = δQi − ViδAi = −∂tφi − V ∂xφi,(2.12)

where the set of smooth functions φi(x, t) satisfy∑
i∈Ij

εij∂tφi(xij , t) = 0 for each j ∈ J .(2.13)

Exactly as before, we then get

d

dλ
L(A+ λδA,V + λδV)

∣∣∣
λ=0

= −
∑
i∈I

∫ T

0

∫ Li

0

[(
1

2
V 2
i + ghi(x,Ai) + gYbi(x)

)
∂xφi + Vi∂tφi

]
dxdt.

Now we set this equal to zero using the variations in two different ways. First,
we restrict our attention to one index i; letting φi have support in (0, L)× (0, T ) and
setting variations in the other components equal to zero, we get the indexed version
of (2.6) with indexed quantities, the weak form of

∂tVi + ∂x

[
1

2
V 2
i + ghi(x,Ai) + gYbi(x)

]
= 0.(2.14)

Second, we concentrate on the jth node, making variations only in Ai and Vi for
i ∈ Ij with j ∈ JM . In fact, we choose any two indices k, l ∈ Ij and set φi ≡ 0 for
i �= k, l. Supposing that xkj = 0 and xlj = 0, we can choose φ ∈ C∞

0 ([0, Ľ)× (0, T ))
with Ľ = min{Lk, Ll} and set φk = φ and φl = −φ to get admissible variations. We
introduce the notation

Si � 1

2
V 2
i + ghi(x,Ai) + gYbi(x)

(a quantity which, divided by g, is called the specific energy) and get

∫ T

0

∫ L̃

0

[(Sk − Sl)∂xφ + (Vk − Vl)∂tφ] dxdt = 0(2.15)

for any φ ∈ C∞
0 ([0, Ľ) × (0, T )). Assuming sufficient regularity, we can integrate by

parts and use (2.14) and the support properties of φ(x, t) to get∫ T

0

[Sk(0, t)− Sl(0, t)]φ(0, t) dt = 0.

Since φ can be chosen so that φ(0, t) is an arbitrary function in C∞
0 ((0, T )), we can

conclude that

Sk(xkj , t) ≡ Sl(xlj , t).
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The above argument can be modified to deal with the various cases in which xkj and
xlj are not both zero. So we end up with the following dynamic node condition for
each j ∈ JM : [

1

2
V 2
i + ghi(·, Ai) + gYbi

]
(xij , t) coincide for i ∈ Ij .(2.16)

Remark 2. One can, in fact, derive this node condition from (2.15) without
assuming differentiability of Ai and Vi. This is done by a mollification argument. So,
in fact,

∑
i∈I

∫ T

0

∫ Li

0

[(
1

2
V 2
i + ghi(x,Ai) + gYbi(x)

)
∂xφi + Vi∂tφi

]
dxdt = 0(2.17)

for test functions φi ∈ C∞
0 ([0, Li) × (0, T )) satisfying that (2.13) is a suitable weak

formulation of both the dynamic equations (2.14) and the dynamic node conditions
(2.16).

To summarize, the network is described by (2.14) and supplemented by the mul-
tiple node conditions (2.9) and (2.16) as well as boundary conditions to be imposed
at the simple nodes and initial conditions prescribing A(x, 0) and V(x, 0). The dis-
cussion of the boundary conditions will be given later, taking into account issues
concerning hyperbolic systems.

We end this section with a comment on energy conservation. Let

E(A, V ) � 1

2
AV 2 + g

∫ h(x,A)

0

[Yb(x) + y]σ(x, y) dy

=
1

2
AV 2 + gAYb(x) + g

∫ h(x,A)

0

yσ(x, y) dy,(2.18)

where A and V satisfy (2.3) and (2.7). Then one easily verifies

∂tE + ∂x[QS] = 0.(2.19)

This of course also holds in indexed form for each canal, and if one introduces the
total energy

E(t) = E(A(·, t),V(·, t)) �
∑
i∈I

∫ Li

0

Ei(Ai, Vi)(x, t) dx,

one obtains, using the multiple node conditions,

DtE(t) =
∑
j∈JS

Q(xij , t)S(xij , t)

so that energy is conserved if, for example, there is no flow through the simple nodes
of the canal network.

Remark 3. Friction can be introduced with a friction term Fi(x,Ai, Vi) in the
left-hand side of each equation (2.14). One then gets the following index-free variant
of (2.19):

∂tE + ∂x[QS] + F (x,A, V ) = 0
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as well as

DtE(t) =
∑
j∈JS

Q(xij , t)S(xij , t)−
∑
i∈I

∫ Li

0

AiViFi(x,Ai, Vi) dx.

The friction terms lead to energy decay because of the assumption (2.8).

3. Equilibrium flows and their perturbations. We seek solutions A and V
of the network system described in the previous section which depend only on x and
not on t. Explicitly, they are required to satisfy



∂x[AiV i] = 0 on [0, Li] for i ∈ I,
∂x[

1
2V

2

i + ghi(x,Ai) + gYbi(x)] = 0 on [0, Li] for i ∈ I,∑
i∈Ij

εijAi(xij)V i(xij) = 0 for j ∈ JM ,
1
2V i(xij)

2 + ghi(xij , Ai(xij)) + gYbi(x) coincide for j ∈ JM , i ∈ Ij .

(3.1)

It is easy to deduce that one must have

Ai(x)V i(x) ≡ Qi with
∑
i∈Ij

εijQij = 0,(3.2)

Si(x) =
1

2
V i(x)

2 + ghi(x,Ai(x)) + gYbi(x) ≡ S,(3.3)

where Qi and S are constants.
We say that the fluid in the canals is still if V = 0. In that case, the components

of A(x) are determined from

hi(x,Ai(x)) =
1

g
[S − gYbi(x)],

which will have a solution respecting the depth restriction on each canal if and only
if

0 ≤ 1

g
[S − gYbi(x)] ≤ di(x) for all i ∈ I.

The equilibria which are not still are more difficult to determine. For the purposes of
this paper, we now make two restrictive assumptions, namely

• the canals are prismatic, which means that the cross sections of the canals
do not depend on x (so di, hi, σi, and bi do not depend directly on x); and
• the system of canals is level, the beds of the canals all lying at the same

constant elevation Yb.
In this case, equilibria A,V will not depend on x. One can think of canals designed
with certain operating conditions in mind. For example, one can specify a standard
water height of h for the whole canal system with h < di for each i ∈ I. For each
canal, one can fix the flow direction, encoding this by εi = 1 or − 1 depending on
whether V i is to be positive or negative. This is to be done in such a way that at
each multiple node flows occur both into and out of the node. We then try to design
the cross sections of each canal in such a way that Ai = Ai(h) satisfy∑

i∈Ij

εijεiAi = 0.(3.4)
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If this is possible, we can set V i = εiV , where V is any given positive velocity, and
easily check that the conditions (3.1) are satisfied. To clarify the meaning of the above
condition, we note that, when εijεi = 1, the flow in the ith canal is into the jth node
while, when εijεi = −1, that flow is away from the node. For canals of rectangular
cross section with bi the breadth of the ith canal, one can require∑

i∈Ij

εijεibi = 0,(3.5)

independently of the value h. It is almost obvious that the above process always works
in the following particular network configurations:

• star configurations in which n canals all meet at one multiple node;
• tree configurations in which the direction of flow is always toward the trunk

or always away from the trunk.
Remark 4. One can easily experiment with a variety of particular networks and

direction assignments to find many other configurations in which the above process
works. These may include closed paths.

A general goal now is to stabilize the flow around such an equilibrium flow by
means of suitable feedback boundary conditions at the simple nodes, which lie at the
extremities of the canal network, i.e., at the points where water flows into or out of
the system of canals. At present, we can do this only for star configurations. In fact,
we first consider a single canal for which our results are also in large part new.

4. Stabilization and null controllability for a single canal. We consider
one level, prismatic canal and study perturbations of constant equilibrium flows.

First we make use of the standard method of Riemann invariants for hyperbolic
systems to be found, for example, in Taylor [9, Chapter 16]. We begin with a single
canal. Evaluating the x derivatives in (2.3) and (2.7), we can rewrite these equations
as a system

∂t

(
A
V

)
+

(
V A

g/b(A) V

)
∂x

(
A
V

)
=

(
0
0

)
.(4.1)

The eigenvalues of the matrix are

λ±(A, V ) = V ± γ(A), where γ(A) =
√

gA/b(A)(4.2)

with λ+ > 0 and λ− < 0 in the subcritical case that

V 2 < gA/b(A).(4.3)

The corresponding left eigenvectors are

l±(A) =
1

2
(±
√

g/[Ab(A)], 1).

Riemann invariants are then obtained by solving

�ξ±(A, V ) = (∂A, ∂V )ξ±(A, V ) = l±(A).

We can take

ξ±(A, V ) =
1

2

(
V ±

∫ A

0

q(α) dα

)
with q(α) =

√
g

αb(α)
.
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The system (4.1) is now equivalent to

∂tξ±(A, V ) + λ±(A, V )∂xξ±(A, V ) = 0.

For solutions A and V , the Riemann invariants ξ± are constant along characteristic
curves (x±(t), t) with

Dtx±(t) = λ±(A(x±(t), t), V (x±(t), t)).

Now we consider perturbations A = A+a and V = V +v of an equilibrium state.
We assume that the equilibrium flow is subcritical so that this will continue to be the
case for small perturbations. The system becomes

∂t

(
a
v

)
+

(
V + v A + a

g/b(A + a) V + v

)
∂x

(
a
v

)
=

(
0
0

)
.(4.4)

In terms of the perturbation variables a and v, the eigenvalues of the matrix are

λ±(a, v) = V + v ± β(a), where β(a) =

√
g

A + a

b(A + a)
,(4.5)

corresponding to Riemann invariants

ξ±(a, v) =
1

2

(
v ±
∫ a

0

p(α) dα

)
with p(α) = q(A + α).(4.6)

The characteristic curves (x±(t), t) are now determined by solving

Dtx±(t) = λ±(a(x±(t), t), v(x±(t), t)).(4.7)

We shall often indicate the values of functions evaluated at equilibrium (i.e., with
a = 0 and v = 0) by a bar. For a and v small, the characteristics will lie close to
those of the subcritical equilibrium, namely (x±(t), t), with

x±(t) = x0 + (V ± β)(t− t0),(4.8)

where (x0, t0) are arbitrary initial data. We note that the map

(a, v) �→ (ξ+(a, v), ξ−(a, v))

is invertible with

v = ξ+ + ξ− and a = a(ξ+ − ξ−),

where a(ξ) is defined implicitly by ξ =
∫ a(ξ)
0

p(α) dα. We note that Da(ξ) = 1/p(a(ξ)).
We next turn to the feedback stabilization of a single canal, which should drive

perturbations a and v to zero exponentially in time. The system has to be comple-
mented by initial conditions

a(x, 0) = a0(x), v(x, 0) = v0(x).(4.9)

In terms of the Riemann invariants, it is well known that one can impose boundary
conditions of the form

ξ+(0, t) = g0(ξ−(0, t)) and ξ−(L, t) = gL(ξ+(L, t)).
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In particular, one could impose the absorbing boundary conditions

ξ+(0, t) = 0 and ξ−(L, t) = 0,(4.10)

equivalent to the following feedback boundary conditions in terms of a and v:

v(0, t) = −P (a(0, t)), v(L, t) = P (a(L, t)) with P (a) =

∫ a

0

p(α) dα.(4.11)

One could also replace P (a) by Taylor approximations P1(a) = p(0)a or P2(a) =
p(0)a + p′(0)a2/2, say, or, alternatively, by other functions of a.

We shall need the following lemma.

Lemma 1. Consider boundary conditions of the form

v(0, t) = f0(a(0, t)), v(L, t) = fL(a(L, t)),(4.12)

where f0 and fL are continuously differentiable functions of a near 0 and satisfy

f0(0) = 0, Df0(0) �= p(0), fL(0) = 0, DfL(0) �= −p(0).

Then, for small enough values of the variables, the boundary conditions can be rewrit-
ten as

ξ+(0, t) = g0(ξ−(0, t)), ξ−(L, t) = gL(ξ+(L, t))

with

g0(0) = 0, Dg0(0) =
Df0(0) + p(0)

Df0(0)− p(0)
, gL(0) = 0, DgL(0) =

DfL(0)− p(0)

DfL(0) + p(0)
.

Proof. We prove the assertions concerning the boundary condition at 0. From
v = ξ+ + ξ− = f0(a(ξ+ − ξ−)), where we suppress the argument (0, t) in all the
functions, one gets

ξ− = φ0(ξ+ − ξ−), with φ0(ξ) =
1

2
[−ξ + f0(a(ξ))].

Now Dφ0(0) = 1
2 [−1 + Df0(0)/p(0)], which is not zero as long as Df0(0) �= p(0).

Hence φ0 has a local inverse near 0. So locally ξ+ − ξ− = φ0−1
(ξ−) or ξ+ = ξ− +

φ0−1
(ξ−) = g0(ξ−) and

Dg0(0) = 1 +
1

Dφ0(0)
=

Df0(0) + p(0)

Df0(0)− p(0)
.

The other boundary condition is treated similarly starting from

ξ+ = φL(ξ+ − ξ−), with φL(ξ) = 1
2 [ξ + fL(a(ξ))].

Remark 5. If Df0(0) = −p(0), as is the case when f0(a) = −P (a) or a Taylor
approximation to P (a), one has Dg0(0) = 0 implying strong damping at 0. The
situation is similar at L if DfL(0) = p(0).
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In order to obtain continuously differentiable solutions of (4.4) with initial con-
ditions (3.4) and boundary conditions (4.12), we need to impose the compatibility
conditions

v0(0) = f0(a0(0)), v0(L) = fL(a0(L)),
g

b(A + a0(0))
Da0(0) + (V + v0(0))Dv0(0)

= Df0(a0(0))
[
((V + v0(0))Da0(0) + (A + a0(0))Dv0(0)

]
,(4.13)

g

b(A + a0(L))
Da0(L) + (V + v0(L))Dv0(L)

= DfL(a0(L))
[
(V + v0(L))Da0(L) + (A + a0(L))Dv0(L)

]
.

These intricate, but obviously necessary, conditions are automatically satisfied for
initial data with compact support in (0, L). At this point, the following generalization
of Theorem 1 of [2] is a direct consequence of Theorem 2 of [5] or, alternatively, of
Theorem 1.3 of [8].

Theorem 2. Consider the St. Venant system (4.4) with boundary conditions
(4.12) and initial conditions (4.9) satisfying the compatibility conditions (4.13). Sup-
pose that

|Dg0(0)DgL(0)| =
∣∣∣∣Df0(0) + p(0)

Df0(0)− p(0)

DfL(0)− p(0)

DfL(0) + p(0)

∣∣∣∣ < 1.(4.14)

Then if ‖ (a0, v0) ‖1 is sufficiently small, there exists a unique continuously differen-
tiable solution (a(x, t), v(x, t)) to the problem which is defined for all positive t and
satisfies an estimate

‖(a(·, t), v(·, t))‖1< Ce−αt ‖(a0, v0)‖,
where C and α are suitable positive constants.

Remark 6. In the notation of [2], the boundary conditions (2.16) of that paper
can be written

u0 = −
(

V

2
+ λ0

)
y0 − y

y + (y0 − y)
� f0(y0 − y),

uL = −
(

V

2
− λL

)
yL − y

y + (yL − y)
� fL(yL − y).

The variables y0, yL, and y correspond to A(0, t), A(L, t), and A, with y0 − y cor-
responding to a(0, t), etc. In our notation, u0 = u(0, t) and uL = u(L, t). The
quantities calculated in the proof of their Theorem 1 correspond directly to our calcu-
lation of Dg0(0) and DgL(0). Our result is more general in that it allows for a broad
class of boundary conditions and does not require rectangular cross sections. For this
purpose, the use of variables A and V is advantageous since they lead to equations
in divergence form, which is not the case if one uses the variables h and V except
in the case of rectangular cross sections. We, however, do not relate our boundary
conditions to Liapunov conditions as is done in [2]. The nice discussion of bound-
ary conditions in [2] justify the assertion that control of the velocity variables can be
achieved by means of adjusting sluice gate heights (through (2.12) of that paper).

Next we show that the use of an absorbing feedback boundary condition takes
the perturbations a and u to zero in finite time.
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Theorem 3. Consider the St. Venant system (4.4) with boundary conditions

v(0, t) = f0(a(0, t)) and v(L, t) = P (a(L, t))(4.15)

(where Df0(0) �= p(0)) and initial conditions (4.9) satisfying the compatibility condi-
tions (4.13). Let T� satisfy

T� >
L

|V − β| +
L

V + β
.

Then, if ‖(a0, v0)‖1 is sufficiently small, the corresponding solution is defined for all
positive times, and, in fact,

a(·, t) ≡ 0 and v(·, t) ≡ 0 for t ≥ T�.

Proof. In this case, we have that ξ−(L, t) ≡ 0 or gL(·) ≡ 0 so that condition
(4.14) of Theorem 2 is automatically satisfied, and, therefore, for small enough initial
data, solutions are defined for all t and decay exponentially.

That the solutions in fact vanish for t ≥ T� follows from the following observations.
Since ξ−(x, t) is constant along characteristics of negative slope, this function vanishes
identically for all (x, t) lying above the characteristic of negative slope emanating from
(L, 0). If that characteristic reaches x = 0 at time T1, say, one can conclude from the
boundary condition at x = 0 that ξ+(0, t) ≡ 0 for t ≥ T1, and hence ξ+(x, t) vanishes
identically above the characteristic of positive slope starting from (0, T1) which meets
x = L at time T1 + T2. For t ≥ T1 + T2, both Riemann invariants and hence also
a(x, t) and v(x, t) vanish identically. To estimate the “traverse times,” we note that,
for sufficiently small initial data, the characteristics lie arbitrarily close to those of
the equilibrium given by the linear functions (4.8), and hence the traverse times T1

and T2 can be made arbitrarily close to

L

|V − β| and
L

V + β
,

respectively, for sufficiently small initial data. The result follows.

Remark 7. If the absorbing boundary condition is also imposed at x = 0, one
can choose a smaller value of T� satisfying

T� > max

{
L

|V − β| ,
L

V + β

}
.

Remark 8. If one does not impose absorbing boundary conditions, which involve
the somewhat complicated function P (a), one can also expect rapid stabilization for
boundary functions f0 and fL satisfying Df0(0) = −p(0) and DfL(0) = p(0) and, in
particular, for the very simple linear conditions

v(0, t) = −p(0)a(0, t) and v(L, t) = p(0)a(L, t)

with p(0) =
√

g/[Ab]. In fact, one can prove that, with such a choice of boundary

conditions, one can achieve an arbitrary exponential rate of decay for sufficiently small
initial data.
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5. Stabilization and null controllability for a star configuration of canals.
Now we consider a star configuration of canals and perturbations A = A + a and
V = V+v of equilibrium states A,V constructed at the end of the previous section.
We assume that the equilibrium flow is subcritical on each canal so that this will
continue to be the case for small perturbations. The flow in each canal is governed by
(4.4) with all the quantities indexed by i and x ∈ [0, Li]. It is convenient to suppose
that, for each i, the parameter value x = 0 corresponds to that end of the ith canal
which lies at the multiple node. It is then useful to parametrize all the canals with a
parameter x over a common interval [0, L], where L could, for example, be the average
canal length. For the ith canal, this would entail a parameter change x �→ L/Li x,
and the system corresponding to that canal becomes

∂t

(
ai
vi

)
+

L

Li

(
V i + vi Ai + ai

g/bi(Ai + ai) V i + vi

)
∂x

(
ai
vi

)
=

(
0
0

)
.(5.1)

The corresponding eigenvalues of the matrix are now

λi±(ai, vi) =
L

Li
(V i + vi ± βi(ai)).

The Riemann invariants ξi± are unaffected by the parameter change and given by the
indexed form of (4.6).

This gives us a hyperbolic system of 2n equations on [0, L] × [0, T ]. Such sys-
tems are discussed in the appendix, which uses a different indexing of the Riemann
invariants, setting

ξi =

{
ξi+ for i = 1, . . . , n,

ξi−n− for i = n + 1, . . . , 2n.

In our case, the equations are pairwise decoupled, and it is convenient to stay with
the indexing ξi± . Initial conditions are given by

a(x, 0) = a0(x), v(x, 0) = v0(x).(5.2)

At x = L, we can introduce decoupled boundary conditions acting independently on
each canal:

vi(L, t) = fLi (ai(L, t)) or ξi−(L, t) = gLi (ξi+(L, t)).(5.3)

The coupling between the variables occurs through the multiple node conditions which
translate into a boundary condition at x = 0. Let

Si(ai, vi) � 1

2
(V i + vi)

2 + ghi(Ai + ai),

Qi(ai, vi) � (Ai + ai)(V i + vi).

Then we have the following set of n multiple node conditions in 2n variables holding
at (0, t): {

Si(ai, vi)− Sn(an, vn) = 0 for i = 1, . . . , n− 1,∑n
i=1 εiQi(ai, vi) = 0.

(5.4)
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To show that this system represents admissible boundary conditions at x = 0, we
need to show that implicitly these equations determine

ξ+(0, t) � (ξ1
+(0, t), . . . , ξn+(0, t))

as a function of

ξ−(0, t) = (ξ1
−(0, t), . . . , ξn−(0, t)).

To do this, we have to show that the following Jacobian matrix is nonsingular:

J+ �




∂ξ1+S1 0 0 . . . 0 −∂ξn+Sn
0 ∂ξ2+S2 0 . . . 0 −∂ξn+Sn

. . . . . . . . . . . . . . . . . .
0 0 0 . . . ∂ξn−1

+
Sn−1 −∂ξn+Sn

∂ξ1+Q1 ∂ξ2+Q2 ∂ξ3+Q3 . . . ∂ξn−1
+

Qn−1 ∂ξn+Qn


 ,

where all the partial derivatives are evaluated at (a, v) = (0, 0). We have, since
vi = ξi+ + ξi− and Pi(ai) = ξi+ − ξi−, that

∂ξi+Si = ∂aiSi∂ξi+ai + ∂viSi∂ξi+vi =
g

bi(Ai + ai)

1

pi(Ai + ai)
+ (V i + vi),

and so, noting that

g

bipi
=

√
gAi/bi = βi,

we get

∂ξi+Si(0, 0) = V i +
g

bipi
= V i + βi.

Similarly,

∂ξi+Qi(0, 0) = Ai +
vi
pi

=
1

pi
(V i + βi).

We note also that V i+βi = (Li/L)λ
i

+, where λ
i

+ is the positive eigenvalue of the sys-
tem associated with the ith canal after reparametrization. We introduce the diagonal
matrices

Λ± � diag

(
L1

L
λ

1

±, . . . ,
Ln
L

λ
n

±

)
= diag(V 1 ± β1, . . . , V n ± βn),

where diag(µ1, . . . , µn) denotes the n × n diagonal matrix with specified diagonal
elements µi. We also introduce the two matrices

G± �




1 0 0 . . . 0 −1
0 1 0 . . . 0 −1

. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 −1
± 1
p1
± 1
p2
± 1
p3

. . . ± 1
pn−1

± 1
pn


 .
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One now easily checks that the Jacobian matrix of the system (5.4) with respect to
ξ+ is of the form J+ = G+Λ+. One can similarly evaluate the Jacobian of the system

with respect to ξ− to get J− = G−Λ−. By the implicit function theorem, the system
(43) of node conditions can therefore be written as an admissible boundary condition
at 0:

ξ+(0, t) = g0(ξ−(0, t)),(5.5)

with

�ξ−g
0(0) = J−1

+ J− = Λ
−1

+ [G−1
+ G−]Λ−.(5.6)

Now the following theorem concerning the stabilizability (and indeed the exis-
tence) of solutions for our star configuration of canals follows easily from Theorem
1.3 of [8].

Theorem 4. Consider the systems (5.1) with boundary conditions (5.4) (equiva-
lent to (5.5)) and (5.3) holding at x = 0 and x = L, respectively, and initial conditions
(5.2) with data satisfying the appropriate compatibility conditions. Suppose that

‖�ξ−g
0(0)‖∞ max

1≤i≤n
|DgLi (0)|

= ‖Λ−1

+ [G−1
+ G−]Λ− ‖∞ max

1≤i≤n

∣∣∣∣DfLi (0)− pi(0)

DfLi (0) + pi(0)

∣∣∣∣ < 1.
(5.7)

Then, for ‖ (a0,v0) ‖1 sufficiently small, there exists a unique continuously differen-
tiable solution to the problem which is defined for all positive t and satisfies

‖(a(·, t),v(·, t))‖1< Ce−αt ‖(a0,v0)‖,
where C and α are suitable positive constants.

In order to apply the cited theorem, we recall the following definition of the
“minimal characteristic number” of a square matrix used by Li in formulating the
hypothesis of boundary damping:

‖A‖min= inf
{‖γAγ−1 ‖∞ |γ is an invertible, square, diagonal matrix

}
.

The damping hypothesis required by Li is that ‖θ‖min< 1, where

θ =

(
0 �ξ+

gL(0)

�ξ−g
0(0) 0

)

with �ξ−g
0(0) given by (5.6) and

�ξ+
gL(0) = diag(. . . , DgLi (0), . . . ) = diag

(
. . . ,

DfLi (0)− pi(0)

DfLi (0) + pi(0)
, . . .

)
.

Note that ‖A ‖min=‖ γAγ−1 ‖min, that ‖A ‖min≤‖A ‖∞, and that, if A is diagonal,
‖A‖min=‖A‖∞= max1≤i≤n |Aii|. Now consider partitioned matrices A of the form

A =

(
0 B
C 0

)
,
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where both B and C are n× n matrices and B is diagonal. Using diagonal matrices
of the form γ = diag(λγ1, γ1), where γ1 is a diagonal n× n invertible matrix and λ is
an arbitrary positive scalar, it is not difficult to obtain the following estimate using
the definition of ‖·‖min and the previously stated properties:

‖A‖min≤‖C ‖min max
1≤i≤n

|Bii|.

This gives estimate (5.7).
Remark 9. With some additional care, one can prove the following estimate,

which can replace (5.7) as damping hypothesis:

‖G−1
+ G− ‖min max

1≤i≤n
V i + βi
|V i − βi|

∣∣∣∣DfLi (0)− pi(0)

DfLi (0) + pi(0)

∣∣∣∣ < 1.

Remark 10. It would be helpful to have a good estimate for ‖G−1
+ G−]‖∞ or for

‖G−1
+ G−]‖min. Since G− = diag(1, . . . , 1,−1)G+, one has

G−1
+ G− = G−1

+ diag(1, . . . , 1,−1)G+

so that the eigenvalues of G−1
+ G− are 1 with multiplicity n−1 and −1 with multiplicity

1. Unfortunately this does not imply anything about ‖G−1
+ G− ‖∞, and what it may

imply for ‖G−1
+ G− ‖min is not yet clear. However, in some situations (all canals and

all data equal), the two norms coincide.
Finally, it is also not difficult to see that the proof of Theorem 3 can be adapted

to prove the following result on null controllability for the star system.
Theorem 5. Consider the systems (5.1) with boundary conditions (5.4) (equiva-

lent to (5.5)) holding at x = 0, absorbing boundary conditions

vi(L, t) = Pi(ai(L, t)) for i = 1, . . . , n,

and holding at x = L and initial conditions (5.2) with data satisfying the appropriate
compatibility conditions. Let T� satisfy

T� > max
1≤i≤n

L2

Li(|V i − βi|)
+ max

1≤i≤n
L2

Li(V i + βi)
.

Then, for small enough initial data, the solution is defined for all positive times and,
in fact,

a(·, t) ≡ 0 and v(·, t) ≡ 0 for t ≥ T�.

Acknowledgments. We note that an “open loop” controllability result for a
single link being equivalent to the system governing the Riemann invariants discussed
in section 4 has been given by Li, Rao, and Jin [7]. The authors thank the referees
for their helpful suggestions.
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Abstract. The paper studies the problem of reachability for linear systems in the presence of
uncertain (unknown but bounded) input disturbances that may also be interpreted as the action of
an adversary in a game-theoretic setting.

It defines possible notions of reachability under uncertainty emphasizing the differences between
reachability under open-loop and closed-loop control. Solution schemes for calculating reachability
sets are then indicated. The situation when observations arrive at given isolated instances of time
leads to problems of anticipative (maxmin) or nonanticipative (minmax) piecewise open-loop control
with corrections and to the respective notions of reachability. As the number of corrections tends to
infinity, one comes in both cases to reachability under nonanticipative feedback control. It is shown
that the closed-loop reach sets under uncertainty may be found through a solution of the forward
Hamilton–Jacobi–Bellman–Isaacs (HJBI) equation.

The basic relations are derived through the investigation of superpositions of value functions for
appropriate sequential maxmin or minmax problems of control.

Key words. reachability, reach sets, differential inclusions, alternated integral, funnel equations,
open-loop control, closed-loop control, dynamic programming, uncertainty, differential games, HJBI
equation

AMS subject classifications. 34HO5, 34G25, 35F10, 49L, 49N70, 91A23
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Introduction. Recent developments in real-time automation have promoted new
interest in the reachability problem—the computation of the set of states reachable
by a controlled process through available controls. Being one of the basic problems
of control theory, it was studied from the very beginning of investigations in this field
(see [19]). The problem was usually studied in the absence of disturbances, under
complete information on the system equations and the constraints on the control
variables. It was shown, in particular, that the set of states reachable at a given
time t under bounded controls is one and the same whether one uses open-loop or
closed-loop (feedback) controls. It was also indicated that these “reachability sets”
could be calculated as level sets for the (perhaps generalized) solutions to a “forward”
Hamilton–Jacobi–Bellman equation [19], [20], [3], [16], [18].

However, in reality, the situation may be more complicated. Namely, if the sys-
tem is subject to unknown but bounded disturbances, it may become necessary to
compute the set of states reachable despite the disturbances or, if exact reachability
is impossible, to find guaranteed errors for reachability.

These questions have implicitly been present in traditional studies on feedback
control under uncertainty for continuous-time systems [11], [28], [4], [10], [13]. They
have also appeared in studies on hybrid and other types of transition systems [1], [29],
[22], [5].

This leads us to the topic of the present paper, which is the investigation of
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reachability under uncertainty for continuous-time linear control systems subjected to
unknown input disturbances, with prespecified geometric (hard) bounds on the con-
trols and the unknowns. The paper indicates various notions of reachability, studies
the properties of respective reach sets, and indicates routes for calculating them.

The first question here is to distinguish whether reachability under open-loop
and closed-loop controls yields the same reach sets. Indeed, since closed-loop con-
trol is based on better information, namely, on the possibility of continuous on-line
observations of the state space variable (with no knowledge of the disturbance), it
must produce, generally speaking, a result which is at least “not worse,” for example,
than the one by an open-loop control which allows no such observations but only the
knowledge of the initial state, with no knowledge of the disturbance. An open-loop
control of the latter type is further referred to as “nonanticipative.”

However, there are many other possibilities of introducing open-loop or piecewise
open-loop controls, with or without the availability of some type of isolated on-line
measurements of the state space variable, as well as with or without an a priori
knowledge of the disturbance. Thus, in order to study the reachability problem in
detail, we introduce a hierarchy of reachability problems formulated under an array
of different “intermediate” information conditions. These are formulated in terms of
some auxiliary extremal problems of the maxmin or minmax type.

Starting with open-loop controls, we first distinguish the case of anticipative con-
trol from nonanticipative control. The former, for example, is when a reachable set,
from a given initial state x0, at given time τ , is defined as the setX−

µ = X−(τ, t0, x0, µ)
of such states x, that for any admissible disturbance given in advance, for the whole
interval under consideration, there exists an admissible control that steers the system
to a µ-neighborhood Bµ(x) = {z : (z − x, z − x) ≤ µ2}. Here the respective auxiliary
extremal problem is of the maxmin type (maximum in the disturbance and minimum
in the control). On the other hand, for the latter, the disturbance is not known in
advance. Then the reachability set from a given initial state is defined as the set
X+
µ = X+(τ, t0, x

0, µ) of such states x whose µ-neighborhoods Bµ(x) may be reached
with the same admissible control for all admissible disturbances. Now the respective
auxiliary problem is of the minmax type.

It is shown that always X+
µ ⊆ X−

µ and that the closed-loop reach set Xµ =
X(τ, t0, x

0, µ) attained under nonanticipative but feedback control lies in between,
namely,

X+
µ ⊆ Xµ ⊆ X−

µ .

There are also some intermediate situations when the observations of the state
space variable arrive at given N isolated instants of time. In that case, one has to deal
with reachability under possible corrections of the control at these N time instants.
Here again we distinguish between corrections implemented through anticipative con-
trol (when the future disturbance is known for each time interval in between the
corrections) and nonanticipative control (when it is unknown). The respective ex-
tremal problems are of sequential maxmin and minmax types accordingly, and the
controls are piecewise open-loop: at isolated time instants of correction, there arrives
information on the state space variable, while in between these instants, the control
is open-loop (either anticipative or not). Both cases produce respective sequences
X−
µ,N = X−

N (τ, t0, x
0, µ), X+

µ,N = X+
N (τ, t0, x

0, µ) of “piecewise open-loop reach sets
(OLRSs).” The relative positions of the reach sets in the hierarchical scheme are as
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follows:

X+
µ ⊆ X+

µ,N ⊆ Xµ ⊆ X−
µ,N ⊆ X−

µ .

Finally, in the limit, as the number of corrections N tends to infinity, both sequences
of reachability sets converge to the closed-loop reach set.1

The adopted scheme is based on constructing superpositions of value functions
for open-loop control problems. In the limit these relations reflect the principle of op-
timality under set-membership uncertainty. This principle then allows one to describe
the closed-loop reach set as a level set for the solution to the forward HJBI (Hamilton–
Jacobi–Bellman–Isaacs) equation. The final results are then presented either in terms
of value functions for this equation or in terms of set-valued relations.

Schemes of such type have been used in synthesizing solution strategies for differ-
ential games and related problems and were constructed in backward time [23], [12],
[27], [28].

The topics of this paper were motivated by applied problems and also by the need
for a theoretical basis for further algorithmic schemes.

1. Uncertain dynamics. Reachability under open-loop controls. In this
section, we introduce the system under consideration and define two types of open-
loop reachability sets. Namely, we discuss reachability under unknown but bounded
disturbances for the system

ẋ = A(t)x+B(t)u+ C(t)v(t),(1)

with continuous matrix coefficients A(t), B(t), C(t). Here x ∈ R
n is the state and

u ∈ R
p is the control that may be selected either as an open-loop control OLC, a

Lebesgue-measurable function of time t, restricted by the inclusion

u(t) ∈ P(t),(2)

or as a closed-loop control CLC, a set-valued strategy

u = U(t, x) ⊆ P(t).(3)

Here v ∈ R
q is the unknown input disturbance with values

v(t) ∈ Q(t),(4)

and P(t),Q(t) are set-valued continuous functions with convex compact values (P ∈
compR

p,Q ∈ compR
q).2

The class of OLCs u(·) bounded by inclusion (2) is denoted by UO, and the class
of input disturbances v(·) bounded by (4) is denoted by VO. The strategies U are
taken to be in UC—the class UC of CLCs that are multivalued maps U(t, x) bounded
by the inclusion (3), which guarantee the solutions to (1), u = U(t, x) (which now
turns into a differential inclusion) for any Lebesgue-measurable function v(·).3

1As indicated in what follows, this is true when all of the sets involved are nonempty and when
the problems satisfy some regularity conditions.

2Set-valued functions P(t) with values in compRp are defined to be continuous in t ∈ [t0, t1] if
the support functions ρ(l|P(t)) = max{(l, x)|x ∈ P(t)} are continuous in t ∈ [t0, t1] uniformly in
{l : (l, l) ≤ 1}.

3For example, the class of set-valued functions with values in compRn, upper semicontinuous in
x and continuous in t.
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We distinguish two types of OLRSs—the maxmin type and the minmax type. As
we will see in the next section, the names maxmin and minmax assigned to these sets
are due to the underlying optimization problems used for their calculation.

Definition 1.1. An OLRS of the maxmin type (from set X0 = X(t0), at
time τ ≥ t0) is the set X−(τ, t0, X0) of all vectors x such that for every disturbance
v(t) ∈ Q(t), there exist an initial state x0 ∈ X0 and an OLC u(t) ∈ P(t) which steer
the trajectory x(t), t0 ≤ t ≤ τ , from state x0 = x(t0) to state

x(τ) = x.(5)

The set X0 is assumed to be convex and compact (X0 ∈ compR
n).

If X−(τ, t0, X0) turns out to be empty, one may introduce the open-loop µ-
reachable set X−(τ, t0, X0, µ) as in Definition 1.1 except that (5) is replaced by

x(τ) ∈ Bµ(x).

Here

Bµ(x) = {x : (x(τ)− x, x(τ)− x) ≤ µ2} = x+ Bµ(0), µ ≥ 0,

is the ball of radius µ with center x.
Thus the OLRS X−(τ, t0, X0) of the maxmin type is the set of points x ∈ R

n

that can be reached, for any disturbance v(t) ∈ Q(t) given in advance, for the whole
interval t0 ≤ t ≤ τ , from some point x(t0) ∈ X0, through some open-loop control
u(·) ∈ UO.

The open-loop µ-reach set (µ-OLRS) X−(τ, t0, X0, µ) is the set of points x ∈
R
n whose µ-neighborhood Bµ(x) may be reached, for any disturbance v(t) given in

advance, through some x(t0) ∈ X0, u(·) ∈ UO.
By taking µ ≥ 0 large enough, we may assume X−(τ, t0, X0, µ) �= ∅.
Denote x(t, t0, x

0|u(·), v(·)) to be the unique trajectory corresponding to x(t0) =
x0, control u(·), and disturbance v(·). Then

∪{x(t, t0, x0|u(·), v(·))|x(t0) ∈ X0, u(·) ∈ UO} = X(t, t0, X
0|P(·), v(·))

is the reach set in the variable u(·) ∈ UO (at time t from set X0) with fixed disturbance
input v(·).

Lemma 1.1.

X−(τ, t0, X0) = ∩{X(t, t0, X
0|P(·), v(·))|v(·) ∈ VO}.(6)

This formula follows from Definition 1.1. Recall the definition of the geometrical
(Minkowski) difference P−̇Q of sets P,Q,

P−̇Q = {c : c+Q ⊆ P}.

Then, directly from (1), one gets

X−(τ, t0, X0) =

(
S(t0, τ)X

0 +

∫ τ

t0

S(s, τ)B(s)P(s)ds
)

−̇
∫ τ

t0

S(s, τ)(−C(s)Q(s))ds.

(7)
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Here S(s, t) stands for the matrix solution of the adjoint equation

∂S(s, t)/∂s = −S(s, t)A(t), S(t, t) = I.

In other words, the set

X−(τ, t0, X0) = X(t, t0, X
0|P(·), {0})−̇X(t, t0, 0|{0},Q(·))

is the geometric difference of two “ordinary” reach sets, namely, the set
X(t, t0, X

0|P(·), {0}) taken from X(t0) = X0 and calculated in the variable u, with
v(t) ≡ 0, and the set X(t, t0, 0|{0},Q(·)) taken from x(t0) = 0 and calculated in the
variable v, with u(·) ≡ 0. This simple geometrical interpretation is, of course, due to
the linearity of (1).

For the µ-reachable set, we have the following lemma.
Lemma 1.2. The set X−(τ, t0, X0, µ) may be expressed as

X−(τ, t0, X0, µ) = ∩{X(t, t0, X
0|P(·), v(·)) + Bµ(0)|v(·) ∈ VO}

= (X(t, t0, X
0|P(·), {0}) + Bµ(0))−̇X(t, t0, 0|{0},Q(·))

(8)

and also as

X−(τ, t0, X0, µ1) ⊆ X−(τ, t0, X0, µ2), µ1 ≤ µ2.

Remark 1.1. Definition (8) of X−(τ, t0, X0, µ) may also be rewritten as

X−(τ, t0, X0, µ) = ∩v∪u∪x0{X(t, t0, x
0|u(·), v(·))+Bµ(0)|x0 ∈ X0, u(·) ∈ UO, v(·) ∈ VO}.

We now define another class of OLRSs under uncertainty—the OLRS of the min-
max type.

Definition 1.2. A µ-OLRS of the minmax type (from set X0 = X(t0), at time
τ ≥ t0) is the set X+(τ, t0, X

0, µ) of all x for each of which there exists a control
u(t) ∈ P(t) that assigns to each v(t) ∈ Q(t) a vector x0 ∈ X0, such that the respective
trajectory x[t] = x(t, t0, x

0|u(·), v(·)) ends in x[τ ] ∈ Bµ(x).
Thus the µ-OLRS of minmax type consists of all x whose µ-neighborhood Bµ(x)

contains the states x[τ ] generated by system (1) under some control u(t) ∈ P(t) and
all {v(t) ∈ Q(t), t0 ≤ t ≤ τ} with x0 ∈ X0 selected depending on u, v.4

A reasoning similar to the above leads to the following lemma.
Lemma 1.3. The set X+(τ, t0, X

0, µ) may be expressed as

X+(τ, t0, X
0, µ) = ∪{(X(τ, t0, X

0|u(·), {0}) + Bµ(0))−̇X(t, t0, 0|{0},Q(·))|u(·) ∈ UO}
(9)
and

X+(τ, t0, X
0, µ1) ⊆ X+(τ, t0, X

0, µ2), µ1 ≤ µ2.

Remark 1.2. Definition (9) of X+(τ, t0, X
0, µ) may be rewritten as

∪u∩v∪x0{(x(t, t0, x0|u(·), {0})+Bµ(0))−x(t, t0, 0|{0}, v(·))|x0 ∈ X0, u(·) ∈ UO, v(·) ∈ VO}.
Direct calculation, based on the properties of set-valued operations, allows us to con-
clude the following.

4With µ = 0 and X0 single-valued, it usually turns out that X+µ = ∅.
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Lemma 1.4. When X+(τ, t0, X
0, µ), X−(τ, t0, X0, µ) are both nonempty for some

µ > 0, we have

X+(τ, t0, X
0, µ) ⊆ X−(τ, t0, X0, µ).

We shall now calculate the OLRSs defined above, using the techniques of convex
analysis [25], [13], [16].

2. The calculation of OLRSs. Here we shall calculate the two basic types of
OLRSs. The relations of this section will also serve as the basic elements for further
constructions which will be produced as some superpositions of the relations of this
section.

The calculations of this section and especially of later sections related to reacha-
bility under feedback control require a number of rather cumbersome calculations of
geometrical (Minkowski) differences and their support functions. In order to simplify
these calculations, we transform system (1) to a simpler form. Taking the transfor-
mation z = S(t, t0)x, one gets

ż = B1(t)u− C1(t)v,

where B1(t) = S(t, t0)B(t) and C1(t) = S(t, t0)C(t)v. (With this transformation, the
terms in S will disappear from (7).)

Keeping the previous notations x,B,C for z,B1, C1, we thus come, without loss
of generality, to the system

ẋ = B(t)u+ C(t)v,(10)

with the same constraints on u, v as before. For (10), consider the following two
problems (where the condition x(t0) ∈ X0 is dropped).

Problem (I). Given a set X0 and x(t0) ∈ R
n, find

V −(τ, x, µ) = max
v

min
u

min
x(τ)

d(x(t0), X
0), τ ≥ t0,

under conditions x(τ) ∈ Bµ(x), u(·) ∈ UO, v(·) ∈ VO.
Problem (II). Given a set X0 and x(t0) ∈ R

n, find

V +(τ, x, µ) = min
u

max
v

min
x(τ)

d(x(t0), X
0), τ ≥ t0,

under conditions x(τ) ∈ Bµ(x), u(·) ∈ UO, v(·) ∈ VO.
Here

d2(x, z) = (x− z, x− z), d(x,G) = min{d(x, z)|z ∈ G)},

and G is a closed set in R
n. Thus

d(x,G) = h+(x,G),

where h+(Q,G) is the Hausdorff semidistance between compact sets Q,G, defined as

h+(Q,G) = max
x

min
z
{(x− z, x− z)1/2|x ∈ Q, z ∈ G}.

The Hausdorff distance is h(Q,M) = max{h+(Q,G), h+(G,Q)}.
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In order to calculate the function V − explicitly, we use the relations

x(t) = x(t0) +

∫ t

t0

(B(s)u(s) + C(s)v(s))ds(11)

and (see [11], [16] for the next formula)

d(x,G) = max
l
{(l, x)− ρ(l|G)|(l, l) ≤ 1}, 5

where

ρ(l|G) = sup{(l, x)|x ∈ G}

is the support function of G [16]. (For compact G, sup may be substituted by max.)
We thus need to calculate

V −(τ, x, µ) = max
v

min
u

min
x(τ)

{d(x(t0), X0)|x(τ) ∈ Bµ(x), u(·) ∈ UO, v ∈ VO},

which gives, after an application of the formula for d(x,G) and of (11) and a further
interchange of minu,minx(τ), and maxl (see [7]),

V −(τ, x, µ)(12)

= max
l

{
(l, x)− ρ(l|X0)− µ(l, l)

1
2 −

∫ τ

t0

(ρ(l|B(s)P(s))− ρ(−l|C(s)Q(s))ds|(l, l) ≤ 1

}
.

Due to (11), the last formula says simply that V − is given by

V −(τ, x, µ) = d(x,X−(τ, t0, x0, µ)),(13)

where

X−(τ, t0, x0, µ) =

(
X0 + Bµ(0) +

∫ τ

t0

B(t)P(s)ds
)
−̇
∫ τ

t0

(−C(s))Q(s)ds.(14)

It then follows that

X−(τ, t0, X0, µ) = {x : V −(τ, x, µ) ≤ 0},(15)

and so (12) implies that x ∈ X−(τ, t0, X0, µ) iff

(l, x) ≤ ρ(l|X0) + µ(l, l)
1
2 +

∫ τ

t0

(ρ(l|B(t)P(s))− ρ(−l|C(t)Q(s)))ds ∀l ∈ R
n.

(Of course, {x : V −(τ, x, µ) ≤ 0} = {x : V −(τ, x, µ) = 0}. Even though V −(τ, x, µ)
is nonnegative, we retain the notation {V − ≤ 0} to suggest that for purposes of
approximation it may be useful to consider {V − ≤ ε}.) This gives, from the definitions
of support function and geometrical difference,

5This formula is always interpreted as d(x,G) = max{0,maxl{(l, x)− ρ(l|G)|(l, l) ≤ 1}}.
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ρ(l|X−(τ, t0, X0, µ))(16)

= ρ

(
l

∣∣∣∣
(
X0 + Bµ(0) +

∫ τ

t0

B(s)P(s)ds
)
−̇
∫ τ

t0

(−C(s)Q(s))ds
)
,

which, interpreted as integrals of multivalued functions, again results in (14).
Theorem 2.1. The set X−(τ, t0, X0, µ) is given by formula (14) and its support

function ρ(l|X−(τ, t0, X0, µ)) by (16).
It is clear that if the difference∫ τ

t0

B(t)P(s)ds−̇
∫ τ

t0

C(s)(−Q(s))ds �= ∅,

then X−(τ, t0, x0, 0) �= ∅.
Note that function V −(τ, x, µ) may also be defined as the solution to
Problem (I*). Given X0, find

V −
∗ (τ, x, µ) = max

v
min
u

min
x(t0)

{d(x(τ),Bµ(x))|x(t0) ∈ X0, u(·) ∈ UO, v(·) ∈ VO}.

Direct calculations then produce the formula

{x : V −
∗ (τ, x, µ) ≤ 0} = X−(τ, t0, X0, µ),(17)

which gives the same result as Problem (I).
Similarly, we may calculate

V +(τ, x, µ) = min
u

max
v

min
x(τ)

{d(x(t0), X0)|x(τ) ∈ Bµ(x), u(·) ∈ UO, v(·) ∈ VO}.

Taking into account the minmax theorem of [7] and the fact that

max
l

g(l) = max
l

(conc g)(l), (l, l) ≤ 1,

we come to

V+(τ, x, µ) = max
l

{
(l, x)−

∫ τ

t0

ρ(l|B(s)P(s))ds+ (conc(−h))(l)|(l, l) ≤ 1

}
,

h(l) = ρ(l|X0) + µ(l, l)
1
2 −

∫ τ

t0

ρ(−l|C(s)Q(s))ds.

(18)

Here (conc h)(l) is the closed concave hull of h(l). Note that

(conc h)(l) = −(conv(−h))(l),

where (conv h)(l) = h∗∗(l) is the closed convex hull and also the Fenchel second
conjugate h∗∗(l) of h(l) (see [25], [13] for the definitions).

Therefore,

V +(τ, x, µ) = d(x,X+(τ, t0, X
0, µ)),(19)

where
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X+(τ, t0, X
0, µ)(20)

=

((
X0 + Bµ(0)

)
−̇
∫ τ

t0

(−C(s))Q(s)ds
)
+

∫ τ

to

B(s)P(s)ds.

It then follows that

X+(τ, t0, X
0, µ) = {x : V +(τ, x, µ) ≤ 0}.(21)

Similarly, (18) implies that V +(τ, x, µ) ≤ 0 iff

(l, x) ≤ (l, x0) +

∫ τ

t0

(ρ(l|B(s)P(s))ds− (conv h)(l) ∀l ∈ R
n

so that the support function

ρ(l|X+(τ, t0, X
0, µ))(22)

= ρ

(
l

∣∣∣∣
∫ τ

t0

B(s)P(s)ds
)
+ ρ

(
l

∣∣∣∣
(
X0 + Bµ(0)

)
−̇
∫ τ

t0

(−C(s))Q(s)ds
)
.

Theorem 2.2. The set X+(τ, t0, X
0, µ) is given by (20) and its support function

ρ(l|X+(τ, t0, X
0, µ)) by (22).

It can be seen from (22) that X+(τ, t0, x
0, 0) may be empty. At the same time,

in order that X+(τ, t0, x
0, µ) �= ∅, it is sufficient that

Bµ(0)−̇
∫ τ

t0

(−C(s))Q(s)ds �= ∅,

which holds for µ > 0 sufficiently large.
It is worth mentioning that a minmax OLRS may be also be specified through an

alternative definition.
Definition 2.1. A µ-OLRS of the minmax type (from set X0, at time τ ≥ t0)

is the union

X+(τ, t0, X
0, µ) = ∪{X+(τ, t0, x

0, µ)|x0 ∈ X0},(23)

where

X+(τ, t0, x
0, µ) = {x : X(τ, t0, x

0|u(·),Q(·)) ⊆ Bµ(x)}

for some u(·) ∈ UP with µ ≥ 0 given and each set X+(τ, t0, x
0, µ) �= ∅.

This leads to the following problem.
Problem (II*). Given set X0, and vector x ∈ R

n, find

V +
∗ (τ, x, µ) = min

u
max
v

min
x(τ)

d(x(τ),Bµ(x)), τ ≥ t0,

under conditions x(t0) ∈ X0, u(·) ∈ UO, v(·) ∈ VO.
Direct calculations here lead to the formula

X+(τ, t0, x
0, µ) = {x : V +

∗ (τ, x, µ) ≤ 0},
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which is the same result as that of Problem (II).
The equivalence of Problems (II) and (II*) means that Definitions 1.2 and 2.1

both lead to the same set X+(τ, t0, x
0, µ). As we shall see, this is not so for the

problem of reachability with corrections. A similar observation holds for Problems (I)
and (I*).

Remark 2.1. For the case in which X0 = {x0} is a singleton, one should recognize
the following. The OLRS of the maxmin type is the set of points reachable at time τ
from a given point x0 for any disturbance v(·) ∈ VO, provided function v(t), t0 ≤ t ≤
τ, is communicated to the controller in advance, before the selection of control u(t).
As mentioned above, the control u(·) is then selected through an anticipative control
procedure.

On the other hand, for the construction of the µ-reach set of the minmax type,
there is no information provided in advance on the realization of v(·), which becomes
known only after the selection of u. Indeed, given point x(t0) = x0, one has to select
the control u(t) for the whole time interval t0 ≤ t ≤ τ , whatever the unknown v(t)
over the same interval is. The control u(·) is then selected through a nonanticipative
control procedure. Such a definition allows us to specify an OLRS as consisting of
points x, each of which is complemented by a neighborhood Bµ(x), so that

X(τ, t0, x
0|u(·),Q(·)) ⊆ Bµ(x)

for a certain control u(·) ∈ UO. This requires µ > 0 to be sufficiently large.
As a first step toward reachability under feedback, we consider piecewise open-loop

controls with the possibility of corrections at fixed instants of time.

3. Piecewise open-loop controls: Reachability with corrections. Here
we define and calculate reachability sets under a finite number of corrections. This
is done either through the solution of problems of sequential maxmin and minmax or
through operations on set-valued integrals.

Taking a given instant of time t∗ ∈ [t0, t1] = T that divides the interval T in two,
namely,

T1 = [t0, t0 + σ), T2 = [t0 + σ, t1], σ = t∗ − t0,

consider the following sequential maxmin problem.
Problem (I1). Given set X0, x ∈ R

n, and numbers µ1 ≥ 0, µ2 ≥ 0, find

V −
1 (t0 + σ, x, µ1)

= max
v

min
u

min
x(t0+σ)

{d(x(t0), X0)|x(t0 + σ) ∈ Bµ1(x);u(t) ∈ P(t), v(t) ∈ Q(t), t ∈ T1},

and then find

V −
1 (τ, x, {µ1, µ2})(24)

= max
v

min
u

min
x(τ)

{V −
1 (t0+σ, x(t0+σ), µ1)|x(τ) ∈ Bµ2(x), u(t) ∈ P(t), v(t) ∈ Q(t), t ∈ T2}.

The latter is a problem on finding a sequential maxmin with one “point of correction”
t = t∗. Using the notation µ[1, 2] = {µ1, µ2}, denote

X−
1 (τ, t0, µ[1, 2]) = {x : V −

1 (τ, x, µ[1, 2]) ≤ 0}.
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Let us find X−
1 (τ, t0, µ[1, 2]), V

−
1 (τ, x, µ[1, 2]), using the technique of convex analysis.

According to section 2 (see (11)), we have

V −
1 (t0 + σ, x(t0 + σ), µ1)

= max

{
(l, x(t0 + σ))− µ1(l, l)

1
2 − ρ(l|X0)

−
∫ t0+σ

t0

(ρ(l|B(s)P(s)))− ρ(−l|C(s)Q(s))ds|(l, l) ≤ 1

}

= d(x(t0 + σ), Z−
1 (t0 + σ, t0, µ1)),

where

Z−
1 (t0 + σ, t0, µ1) =

(
X0 + Bµ1(0) +

∫ t0+σ

t0

B(s)P(s)ds
)
−̇
∫ t0+σ

t0

(−C(s))Q(s))ds.

Substituting this in (24), we have

V −
1 (τ, x, µ[1, 2])

= max
v

min
u

min
x(τ)

max
l

{
(l, x(τ))−

∫ τ

t0+σ

(l, u(s) + v(s))ds− ρ(l|Z−
1 (t0 + σ, t0, µ1))|

|(l, l) ≤ 1, x(τ) ∈ Bµ2(x), u(t) ∈ P(t), v(t) ∈ Q(t), t ∈ T2

}
.

Continuing the calculation, we come to

V −
1 (τ, x, µ[1, 2])(25)

= max
l

{
(l, x)− µ2(l, l)

1
2 −

∫ τ

t0+σ

(ρ(l|B(s)P(s)))ds+
∫ τ

t0+σ

(ρ(−l|C(s)Q(s)))ds

−(conv h1)(l)

}
,

where

h1(l) = ρ(l|X0) + µ1(l, l)
1
2 +

∫ t0+σ

t0

(ρ(l|B(s)P(s))− ρ(−l|C(s)Q(s)))ds.

So (conv h1)(l) is the support function of the set(
X0 + Bµ1

(0) +

∫ t0+σ

t0

B(s)P(s)ds
)
−̇
∫ t0+σ

t0

(−C(s)Q(s))ds.
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Together with (25), this allows us, as in section 2, to express V −
1 (τ, x, µ[1, 2]) as

V −
1 (τ, x, µ[1, 2]) = d(x,X−

1 (τ, t0, x
0, µ[1, 2])),

where

X−
1 (τ, t0, x

0, µ[1, 2])(26)

=

(((
X0 + Bµ1

(0) +

∫ t0+σ

t0

B(s)P(s)ds
)
−̇
∫ t0+σ

t0

(−C(s))Q(s)ds
)

+Bµ2(0) +

∫ τ

t0+σ

B(s)P(s)ds
)
−̇
∫ τ

t0+σ

(−C(s))Q(s)ds.

Formula (26) shows that X−
1 (τ, t0, x

0, µ[1, 2]) (defined as the level set of V −
1 ) is also

the reach set with one correction. In particular, X−
1 (τ, t0, x

0, 0) consists of all states x
that may be reached for any function v(·) ∈ VP , whose values are communicated in two
stages, through two consecutive selections of some open-loop control u(t) according
to the following scheme.

Stage 1. Given at time t0 are the initial state x0 and the function v(t) for t ∈ T1;
select at time t0 the control u(t) for t ∈ T1.

Then at the instant of correction t∗ = t0 + σ comes additional information for
stage 2.

Stage 2. Given at time t∗ are the state x(t∗) and the function v(t) for t ∈ T2;
select at time t = t∗ the control u(t) for t ∈ T2.

This proves Theorem 3.1.
Theorem 3.1. The set

X−
1 (τ, t0, x

0, µ[1, 2]) = {x : V −
1 (τ, x, µ[1, 2]) ≤ 0}

is the maxmin OLRS with one correction at instant t0 + σ and is given by formula
(26).

We refer to X−
1 (τ, t0, x

0, µ[1, 2]) as the maxmin OLRS with one correction at
instant τ1 = t0 + σ.

The two-stage scheme may be further propagated to the class of piecewise open-
loop controls with k corrections. Taking the interval T = [t0, τ ], introduce a partition

Σk = {t0 = τ0, τ1, . . . , τk, τ = τk+1}, τi − τi−1 = σi ≥ 0, i = 1, . . . , k + 1,

so that the interval T is now divided into k + 1 parts

T1 = [t0, τ1), T2 = [τ1, τ2), . . . , Tk+1 = [t1 − τk, t1],

where

τi = t0 +

i∑
j=1

σj , i = 1, . . . , k,

are the points of correction.
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Consider also a nondecreasing continuous function µ(t) ≥ 0, µ(t0) = 0 denoting

µ1 = µ(τ1)− µ(τ0), µi = µ(τi)− µ(τi−1), i = 1, . . . , k + 1; µ = µ(τk+1)− µ(τ0)

and also

µ[1, i] = {µ1, . . . , µi}, k ≥ i > 1.

Problem (Ik). Solve the following consecutive optimization problems.
Find

V −
k (τ1, x, µ1)

= max
v

min
u

min
x(τ1)

{d(x(t0), X0)|x(τ1) ∈ Bµ1(x), u(t) ∈ P(t), v(t) ∈ Q(t), t ∈ T1};

then find

V −
k (τ2, x, µ[1, 2])

= max
v

min
u

min
x(τ2)

{V −
k (τ1, x(t0+σ1), µ1)|x(τ2) ∈ Bµ2(x), u(t) ∈ P(t), v(t) ∈ Q(t), t ∈ T2};

then, consecutively, for i = 3, . . . , k, find

V −
k (τi, x, µ[1, i])

= max
v

min
u

min
x(τi)

{V −
k (τi−1, x(τi−1), µ[1, i− 1])|x(τi) ∈ Bµi

(x), u(t) ∈ P(t),

v(t) ∈ Q(t), t ∈ Ti},
and, finally,

V −
k (τ, x, µ[1, k + 1])

= max
v

min
u

min
x(τ)

{V −
k (τk, x(τk), µ[1, . . . , k])|x(τ) ∈ Bµk+1

(x), u(t) ∈ P(t),

v(t) ∈ Q(t), t ∈ Tk+1}.
Direct calculation gives

V −
k (τ1, x, µ1) = d(x,Xk(τ1, t0, X

0, µ1)),(27)

with

Xk(τ1, t0, X
0, µ1) =

(
X0 + Bµ1

(0) +

∫ τ1

t0

B(s)P(s)ds
)
−̇
∫ τ1

t0

(−C(s))Q(s)ds;

then

V −
k (τ2, x, µ[1, 2]) = d(x,Xk(τ2, t0, X

0, µ[1, 2])) = d(x,X−
k (τ2, τ1, X

−
k (τ1, t0, X

0, µ1), µ2)),
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with

Xk(τ2, t0, X
0, µ[1, 2])

=

(((
X0 + Bµ1(0) +

∫ τ1

t0

B(s)P(s)ds
)
−̇
∫ τ1

t0

(−C(s))Q(s)ds
)
+ Bµ2(0)

+

∫ τ2

τ1

B(s)P(s)ds
)
−̇
∫ τ2

τ1

(−C(s))Q(s)ds;

then, consecutively,

V −
k (τi, x, µ[1, i]) = d(x,X−

k (τi, t0, X
0, µ[1, i]))

= d(x,X−
k (τi, τi−1, X

−
k (τi−1, t0, X

0, µ[1, i− 1]), µi)),

with

X−
k (τi, t0, X

0, µ[1, i]) =

(
· · ·
(
X0+Bµ1(0)+

∫ τ1

t0

B(s)P(s)ds
)
−̇
∫ τ1

t0

(−C(s))Q(s)ds
)

+ · · ·+ Bµi(0) +

∫ τi

τi−1

B(s)P(s)ds
)
−̇
∫ τi

τi−1

(−C(s))Q(s)ds;

and, finally,

V −
k (τ, x, µ[1, k + 1]) = d(x,X−

k (τ, t0, X
0, µ[1, k + 1])),(28)

where

X−
k (τ, t0, x

0, µ[1, k + 1]) =

(
· · ·
(
X0 + Bµ1(0) +

∫ τ1

t0

B(s)P(s)ds
)

(29)

−̇
∫ τ1

t0

(−C(s))Q(s))ds
)
+ · · ·

+Bµi
(0) +

∫ τi

τi−1

B(s)P(s)ds
)
−̇
∫ τi

τi−1

(−C(s))Q(s)ds
)

+ · · ·

+Bµk+1
(0) +

∫ τ

τk

B(s)P(s)ds
)
−̇
∫ τ

τk

(−C(s))Q(s)ds.

We refer to X−
k (τ, t0, µ[1, k+1]) as the maxmin OLRS with k corrections at points

τi, i = [1 . . . k].
Theorem 3.2. The set

X−
k (τ, t0, X

0, µ[1, k + 1]) = {x : V −
k (τ, t0, x, µ[1, k + 1]) ≤ 0}(30)

is given by formula (29).
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We denote

V −
0 (τ, x, µ1) = V −(τ, x, µ1)

and also introduce additional notation for the functions V −
i (τ, x, µ[1, i+ 1]). Denote

V −
i (τ, x, µ[1, i+ 1]) = V −

i (τ, x, µ[1, i+ 1])|V −
i (t0, ·, 0),

emphasizing the dependence of V −
i (τ, x, µ[1, i+1]) on the initial condition V −

i (t0, ·, 0).
We further assume that V (t0, x, 0) = d(x,X0) and also take d(x,X0) =

V −
i (t0, x, 0) for all i.

Note that the number of nodes τj in any partition Σk is k+2 as j = 0, . . . , k+1.
The partition applied to a function Vk is precisely Σk. Consequently, the increment

µ = µ(τ)− µ(t0) =

k+1∑
j=1

µj

is presented as a sum of k + 1 increments µj ≥ 0 once it is applied to a function Vk
with index k.

A sequence of partitions Σk is monotone in k if for every k1 < k2 partition Σk2
contains all the nodes τj of partition Σk1 .

Theorem 3.3. Given are a monotone sequence of partitions Σk, k = 1, 2, . . . ,
N, . . . and a continuous nondecreasing function µ(t) ≥ 0, µ(t0) = 0 that generates for
any partition Σk a sequence of numbers µj = µ(τj)− µ(τj−1), j = 1, . . . , k + 1.

Given also are a sequence of value functions V −
k (τi, t0, µ[1, i]), each of which is

formed by the partition Σk, and a sequence µj , j = 1, . . . , k+1 (k is the index of V −
k ).

Then the following relations are true.
(i) For any fixed τ, x, one has

V −
0 (τ, x, µ1) ≤ · · · ≤ V −

i (τ, x, µ[1, i+ 1]) ≤ V −
i+1(τ, x, µ[1, i+ 2]) ≤ · · ·(31)

· · · ≤ V −
k (τ, x, µ[1, · · · , k + 1]).

(ii) For any fixed τ, x, and index i ∈ [1, k], one has

V −
i (τ, x, µ[1, i+ 1]) ≤ V −

i (τ, x, µ∗[1, i+ 1]),(32)

provided µj ≤ µ∗
j , j = 1, . . . , i+ 1.

(iii) The following inclusions are true for i ∈ [1, k]:

X−
i−1(τ, t0, X

0, µ[1, i]) ⊇ X−
i (τ, t0, X

0, µ[1, i+ 1]),(33)

where the sets X−
i are defined by (30).

The proofs are based on the following properties of the geometrical (Minkowski)
sums and differences of sets P1,P2,P3:

(P1 + P2)−̇P3 ⊇ P1 + (P2−̇P3), P1−̇(P2 + P3) = (P1−̇P2)−̇P3,

and the fact that, in general, a maxmin does not exceed a minmax. Direct calculations
indicate that the following superpositions will also be true.
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Lemma 3.1. The functions V −
k satisfy the property

V −
k (τi, x, µ[1, i] |V −

k (t0, ·, 0))
= V −

k (τi, x, µ[j + 1, i] |V −
k (τj , ·, µ[1, j] |V −

k (t0, ·, 0))),
(34)

provided k + 1 ≥ i ≥ j ≥ 1.
This follows from Theorem 3.2 and the definitions of the respective functions V −

i .
Remark 3.1. Formula (34) reflects a semigroup property but only for the selected

points of correction τi, i = 1, . . . , k.
The reasoning above indicates, for example, thatX−

k (τ, t0, x
0, 0) is the set of states

that may be reached for any function v(·) ∈ VO, whose values are communicated in
advance in k stages, through k + 1 consecutive selections of some open-loop control
u(t) according to the following scheme.

Stage 1. Given at time t0 are the initial state x0 and the function v(t) for t ∈ T1;
select at time t0 control u(t), for t ∈ T1.

Then at instant of correction τj comes additional information for stage (j + 1).
Stage j (j = 2, . . . , k). Given at time τj are the state x(τj) and the function v(t)

for t ∈ Tj+1; select at time τ the control u(t) for t ∈ Tj+1.
Remark 3.2. There is a case when all the functions V −

k (τ, x, 0) taken for all the
integers k ≥ 0 coincide. This is when system (10) satisfies the so-called matching
conditions:

B(t)P(t) ≡ α(t)C(t)Q(t), α(t) ∈ [0, 1), t ∈ [t0, τ ].

We now pass to the problem of sequential minmax, with one correction at instant
t0 + σ = t∗, using the notation for Problem (I1).

Problem (II1). Given set X0, vector x ∈ R
n, and numbers µ1, µ2 ≥ 0, find

V +
1 (t0 + σ, x, µ1)

= min
u

max
v

min
x(t0+σ)

{d(x(t0), X0)|x(t0 + σ) ∈ Bµ1(x);u(t) ∈ P(t), v(t) ∈ Q(t), t ∈ T1};

then find

V +
1 (τ, x, µ[1, 2])(35)

= min
u

max
v

min
x(τ)

{V +
1 (t0+σ, x(t0+σ), µ1)|x(τ) ∈ Bµ2(x), u(t) ∈ P(t), v(t) ∈ Q(t), t ∈ T2}.

The latter is a problem of finding a sequential minmax with one point of correction
t = t∗.

Denoting

X+
1 (τ, t0, X

0, µ[1, 2]) = {x : V +
1 (τ, x, µ[1, 2]) ≤ 0},

let us find X+
1 (τ, t0, X

0, µ[1, 2]), V +
1 (τ, x, µ[1, 2]) using the techniques of convex anal-

ysis (as above, with obvious changes).
This gives

V +
1 (t0 + σ, x, 0) = d(x, Z+

1 (t+ σ, t0, µ1)),
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where

Z+
1 (t+ σ, t0, 0) =

(
(X0 + Bµ1(0))−̇

∫ t0+σ

t0

(−C(s))Q(s)ds
)
+

∫ t0+σ

t0

B(s)P(s)ds.

Continuing the calculations, we have

V +
1 (τ, x, µ)

= min
u

max
v

min
x(τ)

{d(x(t+σ), Z+
1 (t+σ, t0, 0))|x(τ) ∈ Bµ2(x), u(t) ∈ P(t), v(t) ∈ Q(t), t ∈ T2}

= d(x,X+
1 (τ, t0, X

0, µ[1, 2])),

where

X+
1 (τ, t0, X

0, µ[1, 2])(36)

=

((
Z+

1 (t+ σ, t0, 0) + Bµ2(0)

)
−̇
∫ τ

t0+σ

(−C(s))Q(s)ds

)
+

∫ τ

t0+σ

B(s)P(s)ds.

This proves Theorem 3.4.
Theorem 3.4. The set

X+
1 (τ, t0, X

0, µ[1, 2]) = {x : V +
1 (τ, x, µ[1, 2]) ≤ 0}

is the minmax OLRS with one correction at instant t = t0 +σ, given by formula (36).
Here the problem is again solved in two stages, according to the following scheme.
Stage 1. Given at time t0 are set X0 and x ∈ R

n. Select control u(t) (one and
the same for all v) and for each v(t), t ∈ T1, assign a vector x(t0) ∈ X0 that jointly
with u, v produces x(τ) ∈ Bµ1

(0).
Then at instant of correction t∗ = t0 + σ comes additional information for Stage

2.
Stage 2. Given at time t∗ are x(t∗) and vector x ∈ R

n. Select control u(t), t ∈ T2

(one and the same for all v), and for each v(t), t ∈ T2, assign a vector x(t + σ) ∈
Z+(t0 + σ, t0, µ1) that jointly with u, v steers the system to state x(τ) ∈ Bµ2

(x).
We now propagate this minmax procedure to a sequential minmax problem in

the class of piecewise open-loop controls with k corrections, using the notations of
Problem (Ik).

Problem (IIk). Solve the following consecutive optimization problems.
Find

V +
k (τ1, x, µ1)

= min
u

max
v

min
x(τ1)

{d(x(t0), X0)|x(τ1) ∈ Bµ1(x);u(t) ∈ P(t), v(t) ∈ Q(t), t ∈ T1};

then, consecutively, for i = 2, . . . , k, find

V −
k (τi, x, µ[1, i])
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= minumaxvminx(τi−1){V +
k (τi−1, x(τi−1), µ[1, i− 1]) |x(τi) ∈ Bµi(x),

u(t) ∈ P(t), v(t) ∈ Q(t), t ∈ Ti};
and, finally,

V +
k (τ, x, µ[1, k + 1])

= max
v

min
u
{V +

k (τk, x(τk), µ[1, k+1]) |x(τ) ∈ Bµk+1
(x), u(t) ∈ P(t), v(t) ∈ Q(t), t ∈ Tk+1}.

This time, direct calculation gives

V +
k (τ, x, µ) = d(x,X+

k (τ, t0, X
0, µ)),(37)

where

X+
k (τ, t0, x

0, µ)(38)

=

((
· · ·
(
(X0 + Bµ1

(0))−̇
∫ τ1

t0

(−C(s))Q(s)ds
)
+

∫ τ1

t0

B(s)P(s)ds+ Bµ2
(0)

)
−̇ · · ·

−̇
∫ τi

τi−1

(−C(s))Q(s)ds
)
+

∫ τi

τi−1

B(s)P(s)ds+ Bµi+1(0)

)
−̇ · · ·

−̇
∫ τ

τk

(−C(s))Q(s)ds
)
+

∫ τ

τk

B(s)P(s)ds
)
.

We refer to X+
k (τ, t0, x

0, µ) as the maxmin OLRS with k corrections at points τk.
Theorem 3.5. The set

X+
k (τ, t0, x

0, µ[1, k + 1]) = {x : V +
k (τ, x, µ[1, k + 1]) ≤ 0}

is then the minmax OLRS with one correction and is given by formula (38).
Denote

V +(τ, x, µ) = V +
0 (τ, x, µ); V +

i (τ, x, µ[1, i+ 1]) = V +
i (τ, x, µ[1, i+ 1]|V +

i (t0, ·, 0)),
assuming V +

0 (t0, x, µ) = d(x,X0) and, further, taking V +
i (t0, x, 0) = d(x,X0) for

all i. Under the assumptions and notation of Theorem 3.3, the last results may be
summarized in the following theorem.

Theorem 3.6. (i) For any fixed values τ, x one has

V +
0 (τ, x, µ1) ≥ · · · ≥ V +

i (τ, x, µ[1, i+ 1]) ≥ V +
i+1(τ, x, µ[1, i+ 2])

≥ · · · ≥ V +
k (τ, x, µ[1, k + 1]).

(39)

(ii) For any fixed τ, x, and index i ∈ [1, k], one has

V +
i (τ, x, µ1) ≤ V +

i (τ, x, µ2),(40)

provided µ1 ≤ µ2.
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(iii) The following inclusions are true for i ∈ [1, . . . , k], µ ≥ 0:

X+
i−1(τ, t0, X

0, µ[i− 1]) ⊆ X+
i (τ, t0, X

0, µ[1, i]).(41)

(iv) The following superpositions will also be true:

V +
k (τi, x, µ[1, i]|V +

k (t0, ·, 0)) = V +
k (τi, x, µ[j + 1, i]|V +

k (τj , ·, µ[1, j]|V +
k (t0, ·, 0))),

provided k + 1 ≥ i ≥ j ≥ 1.
In this section, we have considered problems with a finite number of possible cor-

rections and additional information coming at fixed instants of time, having presented
a hierarchy of piecewise OLRSs of the anticipative (maxmin) or of the nonanticipative
type. These were presented as level sets for value functions which are superpositions
of “one-stage” value functions calculated in section 2. A semigroup-type property (34)
for these value functions was indicated which is true only for the points of correction
Remark 3.1. In the continuous case, however, we shall need this property to be true
for any points. Then it would be possible to formulate the principle of optimality
under uncertainty for our class of problems.

We shall therefore investigate some limit transitions with a number of corrections
tending to infinity. This will allow a further possibility of continuous corrections of
the control under unknown disturbances.

4. The alternated integrals and the value functions. We observed above
that the OLRSs of both types (maxmin and minmax) are described as the level sets
of some value functions, namely,6

X−
k (τ, t0, X

0, µ(·)) = {x : V −
k (τ, x, µ(·)) ≤ 0}, X+

k (τ, t0, X
0, µ(·))

= {x : V +
k (τ, x, µ(·)) ≤ 0}.

We now propagate this approach, based on using value functions, to systems with
continuous measurements of the state to allow continuous corrections of the control.

First, note that inequality

V −
i (τ, x, µ(·)) ≤ V −

i (τ, x, 0)− µ

is always true with equality attained, for example, under the following assumption.
Assumption 4.1. There exists a scalar function ε(t) > 0 such that

B(t)P(t)−̇(C(t)Q(t) + ε(t)B1(0)) �= ∅

for all t ∈ [t0, τ ].
In order to simplify further explanations, we shall further deal in this section with

the case when µ = 0, omitting the last symbol 0 in the notation for V −, V +.7

Now note that Lemmas 3.1 and 3.2 indicate that each of the functions

V −
k (τ, x, 0 |V −

k (t0, ·, 0)), V +
k (τ, x, 0 |V +

k (t0, ·, 0))

6Here, without abuse of notation for V −
k
, X−

k
, V +, X+

k
, we shall use the symbol µ(·) rather

than the earlier µ[1, k + 1], emphasizing the function µ(t), µ(τ) − µ(t0) = µ used in the respective
constructions.

7The case when µ(·) �= 0 would add to the length of the expressions but not to the essence of the
scheme. This case could be treated similarly, with obvious complements.
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may be determined through a sequential procedure

V −
k (τ, x |V −

k (t0, ·)) = V −
k (τ, x |V −

k (τ − σk, · | . . . |V −
k (t0 + σ1, · |V −

k (t0, ·) . . .)(42)

for V −
k and a similar one for V +

k . How could one express this procedure in terms of
set-valued representations?

For a given partition Σk, we have (j ≤ i){
x : V −

k

(
t0 +

i∑
l=1

σl, x |V −
k

(
t0 +

j∑
l=1

σl, ·
))

≤ 0

}
=

= X−
k

(
t0 +

i∑
l=1

σl, t0 +

j∑
l=1

σl,M−
j

)
,

where M−
j = {x : V −

k (t0 +
∑j
l=1 σl, ·) ≤ 0}. Then, in view of the previous relations

(see (27)–(29)), we may formulate a set-valued analogy of Lemma 3.1.
Lemma 4.1. The following relations are true:

X−
k (τ, t0, X

0)(43)

= X−
k (τ, τ−σk+1, X

−
k (τ−σk+1, τ−σk+1−σk, . . . X−

k (t0+σ2, t0+σ1, X
−
k (t0+σ1, t0, X

0) . . .).

In terms of set-valued integrals, (43) is precisely the equivalent of (29).
Moreover,

V −
k

(
t0 +

i∑
l=1

σl, x|V −
k

(
t0 +

j∑
l=1

σl, ·
))

(44)

= max
v

min
u

. . .max
v

min
u

{
d

(
x

(
t0 +

j∑
l=1

σl

)
,M−

j

)
|x
(
t0 +

i∑
l=1

σl

)
= x;

u(t) ∈ P(t), v(t) ∈ Q(t), t ∈ Tj ; . . . ;u(t) ∈ P(t), v(t) ∈ Q(t), t ∈ Ti

}
.

Similarly, for the sequential minmax, we have

V +
k (τ, x|V +

k (t0, ·)) = V +
k (τ, x|V +

k (τ − σk+1, ·| . . . |V +
k (t0 + σ1, ·|V +

k (t0, ·) . . .).(45)

Using notation identical to (42) and (43), but with minus changed to plus in the
symbols for V −

k , X−
k , we have Lemma 4.2.

Lemma 4.2. The following relations are true:

X+
k (τ, t0, X

0) = X+
k (τ, τ − σk+1, X

+
k (τ − σk+1, τ − σk+1 − σk, . . . ,(46)

X+
k (t0 + σ2, t0 + σ1, X

+
k (t0 + σ1, t0, X

0) . . .).
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In terms of set-valued integrals, formula (46) is precisely the equivalent of (38), pro-
vided µ(t) ≡ 0.8

Moreover,

V +
k

(
t0 +

i∑
l=1

σl, x|V +
k

(
t0 +

j∑
l=1

σl, ·
))

(47)

= min
u

max
v

. . .min
u

max
v

{
d

(
x

(
t0 +

j∑
l=1

σl

)
,M+

j

∣∣∣∣∣x
(
t0 +

i∑
l=1

σl

)
= x;

u(t) ∈ P(t), v(t) ∈ Q(t), t ∈ Tj , ; . . . ;u(t) ∈ P(t), v(t) ∈ Q(t), t ∈ Ti

}
,

where M+
j = {x : V +

k (t0 +
∑j
l=1 σl, ·) ≤ 0}.

It is important to emphasize that until now all the relations were derived for a
fixed partition

Σk = {t0 = τ0, τ1, . . . , τk, τ = τk+1}; τi − τi−1 = σi; i = 1, . . . , k + 1.

What would happen, however, if k increases to infinity with

max{σi : i = 1, . . . , k + 1} → 0, k →∞,

k+1∑
i=1

σi = τ − t0,(48)

and would the result depend on the type of partition?
Our further discussion will require an important nondegeneracy assumption.
Assumption 4.2. There exist continuous vector functions β1(t), β2(t) ∈ R

n, t ∈
[t0, t1], and a number ε > 0 such that

(a) β1(τj) + εB(0) ⊆ X−
j (τj , t0, X

0)(49)

for all of the sets

X−
j (τj , t0, X

0)

= X−
j (τj , τj−1, X

−
j (τj−1, τj−2, . . . , X

−
j (τ1, t0, X

0) . . .)

and

(b) β2(τj) + εB(0) ⊆ X+
j (τj , t0, X

0)(50)

for all of the sets

8Also note that, under Assumption 4.1, with X0 single-valued, one may treat the sets X+
k
(τ, x, 0)

as the Hausdorff limits X+
k
(τ, x, 0) = limµ→+0X+k (τ, x, µ).
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X+
j (τj , t0, X

0)(51)

= X+
j (τj , τj−1, X

+
j (τj−1, τj−2, . . . , X

+
j (τ1, t0, X

0) . . .)

with j = 1, . . . , k + 1, whatever the partition Σk is.
This last assumption is further taken to be true without further notice.9

Observing that (29) and (38) have the form of certain set-valued integral sums
(“the alternated sums”), we introduce the additional notation

X−
k (τ, t0, X

0) = I−(τ, t0, X0,Σk); X+
k (τ, t0, X

0) = I+(τ, t0, X
0,Σk).

Let us now proceed with the limit operation. Take a monotone sequence of par-
titions Σk, k → ∞. Due to inclusions (33) and the boundedness of the sequence
X−
k (τ, t0, X

0) from below by any of the sets X+
i (τ, t0, X

0), i ≤ k, the sequence
I−(τ, t0, X0,Σk) has a set-valued limit. Similarly, the inclusions (40) and the bound-
edness of the sequence X+

k (τ, t0, X
0,Σk) from above ensure that it also has a set-

valued limit. A more detailed investigation of this scheme along the lines of [23]
would indicate that, under Assumption 4.2 (a) and (b), these set-valued limits do not
depend on the type of partition Σk. This leads to Theorem 4.1.

Theorem 4.1. There exist Hausdorff limits I−(τ, t0, X0) = X−(τ, t0, X0),
I+(τ, t0, X

0) = X+(τ, t0, X
0):

limh(I−(τ, t0, X0,Σk), I−(τ, t0, X0)) = 0,

limh(I+(τ, t0, X
0,Σk), I+(τ, t0, X

0)) = 0,

with

max{σi : i = 1, . . . , k + 1} → 0, k →∞,

k+1∑
i=1

σi = τ − t0.

These limits do not depend on the type of partition Σk.
Moreover,

I−(τ, t0, X0) = I+(τ, t0, X
0) = I(τ, t0, X0)(52)

so that

X−
k (τ, t0, X

0) = X+
k (τ, t0, X

0) = X(τ, t0, X
0).

We refer to I(τ, t0, X0) = X(τ, t0, X
0) as the alternated reach set.10

The proofs of the convergence of the alternated integral sums to their Hausdorff
limits and of the equalities (52) are not given here. They follow the lines of those
given in detail in [15] for problems on sequential maxmin and minmax considered in
backward time (see also [23], [9], [14]).

Let us now study the behavior of the function V −
i (τ, x|V −

i (t0, ·)) under condition
(48). According to (38) and (31), the sequence V −

i (τ, x) is increasing in i with i→∞.

9If at some stage this assumption is not fulfilled, it may be applied to sets of type
X−

j (τj , t0, X
0, µ(·)), X+j (τj , t0, X

0, µ(·)) with µ(·) sufficiently large.
10A maxmin construction of the indicated type had been introduced in detail in [23], where it was

constructed in backward time, becoming known as the alternated integral of Pontryagin.
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This sequence is pointwise bounded in x by any solution of Problem (IIk) and therefore
has a pointwise limit. Due to (29), Theorem 4.1, and the continuity of the distance
function d(x,M) in x, M∈ convR

n, we have, with k →∞,

lim d(x, I−k ) = d(x, lim I−k ) = d(x, I−),
and therefore we may conclude that

V −
k (τ, x)→ d(x, I−(τ, t0, X0)) = V−(τ, x)

under condition (48). This yields Theorem 4.2.
Theorem 4.2. Under condition (48), there exists a pointwise limit

lim
k→∞

V −
k (τ, x) = V−(t, x) = d(x,X−(τ, t0, X0)),(53)

where X−(τ, t0, X0) = I−(τ, t0, X0). This limit does not depend on the type of parti-
tion Σk.

The alternated integral is the level set of the function V−(τ, x),

I−(τ, t0, X0) = {x : V−(τ, x) ≤ 0}.
Since V−(t, x) does not depend on the partition Σk and due to the properties of

minmax, we also come to the following conclusion.
Theorem 4.3. The function V−(τ, x) satisfies the semigroup property

V−(τ, x|V−(t0, ·)) = V−(τ, x|V−(t, ·|V−(t0, ·)))(54)

for t ∈ [t0, τ ]. The following inequality is true:

V−(t, x) ≥
{
max
v

min
u
V−(t− σ, x(t− σ))|x(t) = x

}
, σ > 0.(55)

Similarly, for the decreasing sequence of functions V +
k (τ, x), we have Theorem 4.4.

Theorem 4.4. (i) Under condition (48) there exists a pointwise limit

lim
k→∞

V +
k (τ, x) = V+(t, x) = d(x,X+(τ, t0, X

0)),(56)

where X+(τ, t0, X
0) = I+(τ, t0, X

0). This limit does not depend on the type of parti-
tion Σk.

(ii) The alternated integral is the level set of the function V+(τ, x),

I+(τ, t0, X
0) = {x : V+(τ, x) ≤ 0}.

(iii) The function V+(τ, x) satisfies the semigroup property

V+(τ, x|V+(t0, ·)) = V+(τ, x|V+(t, ·|V+(t0, ·)))(57)

for t ∈ [t0, τ ].
(iv) The following inequality is true:

V+(t, x) ≤
{
min
u

max
v
V+(t− σ, x(t− σ))|x(t) = x

}
, σ > 0.(58)

A consequence of (52) is the basic assertion Theorem 4.5.
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Theorem 4.5. With the initial condition V−(t0, x) = V+(t0, x) = d(x,X0) =
V(t0, x), the following equality is true:

V+(τ, x|V+(t0, ·)) = V−(τ, x|V−(t0, ·)) = V(τ, x|V(t0, ·)) = d(x,X(τ, t0, X
0)).(59)

The function V(τ, x) satisfies the semigroup property

V(τ, x|V(t0, ·)) = V(τ, x|V(t, ·|V(t0, ·))).(60)

The last relation follows from (59), (54), (57).
Thus, under the nondegeneracy Assumption 4.2, the two forward alternated in-

tegrals I+, I− coincide, and so do the value functions V−,V+.
Relations (55), (58), and (59) allow us to construct a partial differential equation

for the function V(t, x)—the so-called HJBI equation.
We now investigate the existence of the total derivative dV(t, x)/dt along the

trajectories of system (10). Due to (59) and (13), we have

V(t, x) = d(x,X(t, t0, X
0)) = max{(l, x)− ρ(l|X(t, t0, X

0))|(l, l) ≤ 1}.

Observing that for d(x,X(t, t0, X
0)) > 0 the maximizer l0(t, x) of (61) is unique and

taking l0(t, x) = 0 if d(x,X(t, t0, X
0)) = 0, we may apply the rules for differentiating

a “maximum”-type function [6] to get

dV(t, x)/dt = ∂V/∂t+ (∂V/∂x, ẋ) = (l0, ẋ)− ∂ρ(l0|X(t, t0, X
0))/∂t.

Direct calculations indicate that the respective partials exist and are continuous
in the domain D ∪ intD0, where D = {x : d(x,X(t, t0, X

0)) > 0},D0 = {x :
d(x,X(t, t0, X

0)) = 0} and intD0 stands for the interior of the respective set.
To find the value of the total derivative, take inequalities (58) and (55), which

may be rewritten as

0 ≤ min
u

max
v
{V +(t− σ, x(t− σ))− V +(t, x)|x(t) = x}(61)

and

0 ≥ max
v

min
u
{V −(t− σ, x(t− σ))− V −(t, x)|x(t) = x}.(62)

Dividing both relations by σ > 0 and passing to the limit with σ → 0, we get

max
u

min
v

dV+(t, x)/dt ≤ 0, min
v

max
u

dV−(t, x)/dt ≥ 0.(63)

Since in Theorem 4.5 we had V+(t, x) = V−(t, x) = V(t, x), for the linear system (10)
we have

max
u

min
v

dV(t, x)/dt = min
v

max
u

dV(t, x)/dt, u ∈ P(t), v ∈ Q(t),

which results in the next proposition.
Theorem 4.6. In the domain D ∪ intD0, the value function V(t, x) satisfies the

“forward” equation

∂V/∂t+max
u

min
v

(∂V/∂x,B(t)u+ C(t)v) = 0(64)
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over u ∈ P(t), v ∈ Q(t) with boundary condition

V(t0, x) = d(x,X0).(65)

Equation (63) may be rewritten as

∂V/∂t+ ρ(∂V/∂x|B(t)P(t))− ρ(∂V/∂x|(−C(t))Q(t)) = 0.(66)

The last theorem indicates that the HJBI equation (63) is satisfied everywhere in the
open domain D∪ intD0. However, the continuity of the partials ∂V/∂x, ∂V/∂t on the
boundary of the domains D,D0 was not investigated and in fact may not hold. But
it is not difficult to check that with boundary condition (65) the function V(t, x) will
be a minmax solution to (66) in the sense of [26], which is equivalent to the statement
that V(t, x) is a viscosity solution (see [3], [21]) to (66), (67). This particularly follows
from the fact that function V(t, x) is convex in x, being a pointwise limit of convex in
x functions V−

k (t, x) (see [8]).
Let us note here that the problem under discussion may be treated not only as

above but also within the notion of classical solutions to (66) and (65). Indeed, al-
though all the results above were proved for the criterion d(x(t0, X

0)) in the respective
problems, the following assertion is also true.

Assertion 4.1. Theorems 3.1–3.6 and 4.1–4.6 are all true with the criterion
d(x(t0, X

0)) in the respective problems substituted by d2(x(t0, X
0)).

This assertion follows from direct calculations, as in paper [14], with formula (11)
substituted by

d2(x,G) = max{(l, x)− ρ(l|G)− (1/4)(l, l)1/2}.
The respective value function similar to V(t, x), denoted further as V1(t, x), will now
be a solution to (66) with boundary condition

V1(t0, x) = d2(x,X0).(67)

Moreover,V1(t, x), together with its first partials, turns out to be continuous in t, x ∈
D ∪ D0. Thus we come to the following theorem.

Theorem 4.7. The function V1(t, x)—a classical solution to (66), (67)—satisfies
the relations

{x : V1(t, x) ≤ 0} = X(t, t0, X
0) = I(t, t0, X0).(68)

We have constructed the set X(t, t0, X
0) as the limit of the OLRS and the level

set of function V(t, x), (or function V1(t, x))—the sequential maxmin or minmax of
function d(t,X0) (or function d2(t,X0)) under restriction x(t) = x. It remains to
show that X(t, t0, X

0) is precisely the set of points that may be reached from X0

with a certain feedback control strategy U(t, x), whatever the function v(t) is.
Prior to the next section, we wish to note the following. Function V(t, x) =

V(t, x|V(t0, ·)) may be interpreted as the value function for the following problem.
Problem (IV). Find the value function

V(τ, x) = min
U

max
x(·)

{d(x(t0), X0)| x(τ) = x),U ∈ UC , x(·) ∈ XU (·)},

where U = U(t, x) ∈ UC is a CLC (see section 1) and XU (·) is the set of all solutions
to the differential inclusion

ẋ ∈ B(t)U(t, x) + C(t)Q(t), x(τ) = x,(69)
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generated by x(τ) = x, U(t, x), and taken within the interval t ∈ [t0, τ ].
Its level set

Xµ(τ) = {x : V(τ, x) ≤ µ}

is precisely the closed-loop reach set. It is the set of such points x ∈ R
n for which

there exists a strategy U ∈ UC which for any solution x(t) of (69), x(τ) = x, t ∈ [t0, τ ],
ensures the inequality d(x(t0), X

0) ≤ µ. Due to the structure of (69) (A(t) ≡ 0), this
is equivalent to the following definition of closed-loop reachability sets.

Definition 4.1. A closed-loop reachability set Xµ(τ) is the set of such points
x ∈ R

n for each of which there exists a strategy U ∈ UC that for every v(·) ∈ VO
assigns a point x0 ∈ X0, such that every solution x[t] of the differential inclusion

ẋ ∈ B(t)U(t, x) + C(t)v(t), x(t0) = x0, t0 ≤ t ≤ τ,

satisfies the inequality d(x[τ ], x) ≤ µ.
Once the principle of optimality (60) is true, it may also be used directly to derive

(64)—the HJBI equation for the function V(t, x). Therefore, set Xµ(τ) (if nonempty)
will be nothing else than the set X(τ, t0, X

0) defined earlier as the limit of OLRSs.

5. Closed-loop reachability under uncertainty. We shall now show that
each point of X(t, t0, X

0) may be reached from X0 with a certain feedback control
strategy U(t, x), whatever the function v(t) is.

In order to do this, we shall need the notion of the solvability set (or, in
other terms, “the backward reachability set”—see [12], [27], [16])—a set similar to
X(t, t0, X

0) but constructed in backward time. We first recall from [14] some prop-
erties of these sets. Consider the following problem.

Problem (V). Find the value function

V∗(t, x) = min
U

max
x(·)

{d2(x[t1],M)|U ∈ UC , x(·) ∈ XU},(70)

where M is a given convex compact set (M ∈ convR
n) and XU is the variety of all

trajectories x(·) of the differential inclusion (69), x(τ) = x, t ∈ [t0, t1], generated by
a given strategy U ∈ UC .

The formal HJBI equation for the value V∗(t, x) is

∂V∗
∂t

+ min
u

max
v

(
∂V∗
∂x

,B(t)u+ C(t)v

)
= 0, u ∈ P(t), v ∈ Q(t),(71)

with boundary condition

V∗(t1, x) = d2(x,M).(72)

Equation (71) may be rewritten as

∂V∗
∂t

− ρ

(
∂V∗
∂x
| −B(t)P(t)

)
+ ρ

(
∂V∗
∂x
|C(t)Q(t)

)
= 0.(73)

An important feature is that function V∗(t, x) may be interpreted as a sequential
maxmin similar to the one in section 3. Namely, taking the interval τ ≤ t ≤ t1,
introduce a partition Σk = {τ = τ0, τ1, . . . , τk, τk+1 = t1}, h1 = τk+1 − τk, . . . , hi+1 =
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τk+i+1− τk+i, . . . , hk+1 = τ1− τ0, similar to that of section 3. For the given partition,
consider the recurrence relations

V −
∗k(t1 − h1, x)

=
{
max
v

min
u

d2(x(t1),M)| t1 − h1 ≤ t ≤ t1 , x(t1 − h1) = x
}
,

V −
∗k(t1 − h1 − h2, x)

=
{
max
v

min
u

V −
∗k(t1 − h1, x(t1 − h1))| t1 − h1 − h2 ≤ t ≤ t1 − h1 , x(t1 − h1 − h2) = x

}
,

V −
∗k(τ, x) =

{
max
v

min
u

V −
∗k(τ + hk+1, x(τ + hk+1))| τ ≤ t ≤ τ + hk+1, x(τ) = x

}
,

where v(t) ∈ Q(t), u(t) ∈ P(t) almost everywhere in the respective intervals.
Lemma 5.1 (see [14]). With

max{hi : i = 1, . . . , k + 1} → 0, k →∞, Σk+1
i=1 hi = t1 − τ,(74)

there exists a pointwise limit

V−
∗ (τ, x) = lim

k→∞
V −
∗k(τ, x)

that does not depend upon the type of partition Σk.
The function V−

∗ (τ, x) coincides with V∗(τ, x).
We shall refer to V −

∗ (τ, x) = V∗(τ, x) as the sequential maxmin. This function
enjoys properties similar to those of its “forward time” counterpart, the function
V−(τ, x) of section 3. A similar construction is possible for a “backward” version of
the sequential minmax.

The level set

W(t, t1,M) = {x : V∗(t, x) ≤ 0}
is referred to as the closed-loop solvability set CLSS at time τ = t, from set M. It
may be presented as an alternated integral of Pontryagin—the Hausdorff limit of the
sequence

I∗(t, t1,M,Σk)(75)

=

(
. . .

(
M+

∫ t1

t1−σ1

B(τ)P(τ)dτ
)
−̇
∫ t1

t1−σ1

C(τ)Q(τ)dτ
)
. . .

−̇
∫ t+σk

t

C(τ)Q(τ)dτ,

under conditions (74). Also presumed is a nondegeneracy assumption similar to As-
sumption 4.2.
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Assumption 5.1. For a given setM∈ convR
n, there exists a continuous function

β3(t) ∈ R
n and a number ε > 0 such that

β3(τi) + εB(0) ⊆ I∗(τi, t1,M,Σk)(76)

for any i = 1, . . . , k + 1, whatever the partition Σk is.
This assumption is presumed in the next lemma.
Lemma 5.2. Under condition (76) there exists a Hausdorff limit I∗(t, t1,M):

limh(I∗(t, t1,M,Σk) , I∗(t, t1,M)) = 0.

This limit does not depend on the type of partition Σk and coincides with the CLSS,
W(t, t1,M):

I∗(t, t1,M) =W(t, t1,M).(77)

From the theory of control under uncertainty and differential games, it is known
that if a certain point x∗ ∈ W(t, t1,M), there exists a feedback strategy U(t, x) ∈ UC
that steers system (10) from position {t, x∗} (x(t) = x∗) to set M whatever the
unknown disturbance v(·) is [12], [29], [16]. Therefore, assuming X(t1, t, x

∗) �= ∅
(which is true under further assumptions), we just have to prove the inclusion

x∗ ∈ W(t, t1, X(t1, t, x
∗))

or, in view of the properties of V(t, x),V∗(t, x), that
x∗ ∈ {x : V∗(t, x|t1,V(t1, x)) ≤ 0}.

Here V∗(t, x|t1,V(t1, x)) = V∗(t, x) is the solution to (71) with boundary condition

V∗(t1, x) = V(t1, x).(78)

(Recall that V(t1, x) = d2(x,X(t1, t,X
∗)).)

Due to the definition of the geometrical difference and of the integral I−(t1, t, x∗),
one may check that

I−(t1, t, x∗) = I−(t1, t, 0) + x∗.

We thus have to prove the inclusion

0 ∈ I∗(t, t1, I−(t1, t, 0)).
Under Assumptions 4.2 (a) taken for X0 = {0} and 5.1 for M = {0}, or under As-
sumption 4.1, it is possible to observe, through direct calculation, using the properties
of integrals I∗, I− (see formulas (29),(75)), that the following hold: X(t1, t, x

∗) �= ∅
and

I∗(t, t1, I−(t1, t, 0)) ⊇ I−(t1, t, 0) + I∗(t, t1, 0) = R(t, t1),

where

0 ∈ R(t, t1),

and we arrive at Lemma 5.3.
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Lemma 5.3. Under Assumptions 4.2 (a) taken for X0 = {0} and 5.1 for M =
{0}, or under Assumption 4.1, the following inclusion is true:

x∗ ∈ W(t, t1, X(t1, t, x
∗));(79)

moreover,

X(s, t, x∗) ⊆ W(s, t1, X(t1, t, x
∗)) ∀s ∈ [t, t1].

Inclusion (79) implies the existence of a feedback strategy U∗(t, x) that brings
system (10) from x∗ = x(t) to x(t1) ∈ X(t1, t, x

∗).
Theorem 5.1. Under Assumptions 4.2 (b), X0 = {0}, and 5.1, M = {0}, or

under Assumption 4.1, there exists a closed-loop strategy U∗(t, x) ⊆ UC that steers
system (10) from any position {t, x∗} (x∗ = x(t)) to X(t1, t, x

∗).
The strategy U∗(t, x) may be found through the solution V(t, x) of (71), with bound-

ary condition (78), as

U∗(t, x) = argmin{(∂V∗(t, x)/∂x, u)|u ∈ P(t)}(80)

(if the gradient ∂V∗(t, x)/∂x does exist at {t, x}), or, more generally, as

U∗(t, x) =
{
u : max

v
{dd2(x,W∗[t])/dt|v ∈ Q(t)} ≤ 0

}
,(81)

where W∗[t] = {x : V∗(t, x) ≤ 0}.
This is verified by differentiating V(t, x) with respect to t and checking that almost

everywhere

dV
dt
|u=U∗(t,x) ≤ 0 ∀v(t) ∈ Q(t)

(see [11], [16]).
The previous theorem ensures merely that some point of X(t1, t, x

∗) may be
reached from x∗. In order to demonstrate that any point x� ∈ X(t1, t, x

∗) may be
reached from position {t, x∗}, we have to prove the inclusion

x∗ ∈ W(t, t1, x
�)(82)

for any x� ∈ X(t1, t, x
∗) or

x∗ ∈ {x : V�(t, x|V�(t0, x)) ≤ 0},(83)

provided V�(t1, x�) ≤ 0. Here V�(t, x) is a solution to (66) with boundary condition

V�(t0, x) = d2(x, x�),(84)

where x� ∈ X(t1, t, x
∗).

However, inclusions (82) and (83) again follow from the properties of
I−(t1, t, 0), I∗(t, t1, x∗), assuming that both of these set-valued integrals are nonempty.
The latter, in its turn, is again ensured by either Assumptions 4.2 (a), X0 = 0, and 5.1,
M = 0, or Assumption 4.1. This leads to Theorem 5.2.

Theorem 5.2. Under either Assumptions 4.1 (a), X0 = 0, and 5.1, M = 0, or
4.1 there exists a closed-loop strategy U�(t, x) ⊆ UC that steers system (10) from any
position {t, x∗} (x∗ = x(t)) to point x� ∈ X(t1, t, x

∗).
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The strategy U�(t, x) may be found through the solution V�(t, x) of (71), with
boundary condition (84), as

U�(t, x) = argmin{(∂V�(t, x)/∂x, u)|u ∈ P(t)}(85)

(if the gradient ∂V�(t, x)/∂x does exist at {t, x}) or, more generally, as

U�(t, x) =
{
u : max

v
{dd2(x,W�[t])/dt|v ∈ Q(t)} ≤ 0

}
,(86)

where W�[t] = {x : V�(t, x) ≤ 0}.
Remark 5.1. Assumptions 4.1 (a), X0 = 0, and 5.1, M = 0, are ensured by As-

sumption 4.1. If this does not hold, it is possible to go through all the procedures tak-
ing µ-neighborhoods of sets X(·),W (·) rather than the sets themselves. Then one has
to look for the µ(·)-reach sets X(t, t0, x

∗, µ(·)) and µ-solvability sets W (t, t1, x
�, µ(·))

with µ sufficiently large so that X(t, t0, X
0, µ(·)),W (t, t1, x

�, µ(·)) would surely be
nonempty.

Remark 5.2. The emphasis of this paper is to discuss the issue of reachability
under uncertainty governed by unknown but bounded disturbances. This topic was
studied here through a reduction to the calculation of value functions for a successive
problem on sequential minmax and maxmin of certain distance functions or their
squares. The latter problems were dealt with via techniques of convex analysis and
set-valued calculus. However, the solution schemes of this paper naturally allow a
more general situation, which is to substitute the distance function d(x,M) by any
proper convex function φ(x), for example, with similar results passing through. The
more general problems then reduce to those of this paper.

Thus, given terminal cost function φ(x), it may readily generate a terminal set
M as a level set M = {x : φ(x) ≤ α} for some α, with support function [25]

ρ(l|M) = inf{λ(φ∗(l/λ) + α)|λ > 0}.

The given formalisms for describing reachability are not the only ones available.
We further indicate yet another formal scheme.

6. Reachability and the funnel equations. In this section, we briefly indicate
some connections between the previous results and those that can be obtained through
evolution equations of the “funnel type” [2], [16].

Consider the evolution equations

lim
σ→∞σ−1h+(X−(t+ σ), (X−(t) + σB(t)P(t))−̇σ(−C(t)Q(t))) = 0,(87)

with initial condition

X−(t0) = X0

and

lim
σ→∞σ−1h+(X+(t+ σ), (X−(t)−̇σ(−C(t)Q(t))) + σB(t)P(t)) = 0,(88)

with

X+(t0) = X0.
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Under some regularity assumptions (similar to Assumption 4.1) which ensure that
all the sets that appear in (87), (88) are nonempty, these equations have solutions
which turn out to be set-valued. The solutions X−(t),X+(t) satisfy (87), (88) almost
everywhere. But they need not be unique. However, the property of uniqueness may
be restored if we presume that X−(t),X+(t) are the (inclusion) maximal solutions
(see[16, sections 1.3, 1.7]). (A solution X0(t) to a funnel equation of type (87), (88)
is maximal if it satisfies the inclusion X0(t) ⊇ X (t) for any other solution X (t) to the
respective equation with the same initial condition.)

Equations (87), (88) may be interpreted as some limit form of the recurrence
equations

X−(t+ σ) = (X−(t) + σB(t)P(t))−̇σ(−C(t)Q(t)), X−(t0) = X0(89)

and

X+(t+ σ) = (X+(t)−̇σ(−C(t)Q(t))) + σB(t)P(t),(90)

X+(t0) = X0 + rσB1(0), rB1(0)−̇σ(−C(t)Q(t)) �= ∅.

Indeed, taking, for example, σ = (τ − t0)/k and solving the recurrence equa-
tion (89) for values of time t0 = 0, t0 + σ = 1, . . . , τ − σ, τ = k, from X−(t0) =
X0 = X−

σ (0|τ) to X−(τ) = X−
σ (k|τ), we observe that X−

σ (k|τ) is similar to
I−(τ, t0, X0,Σk) = X−

k (τ, t0, X
0), provided Σk is selected with constant σi = σ =

(τ − t0)/k. Namely, formula

X−
σ (k) = (. . . (X0 +B(σ)P(σ))−̇(−C(σ)Q(s)) + · · ·

+B(τ − σ)P(τ − σ)−̇(−C(τ − σ)Q(τ − σ)) + · · ·+B(τ)P(τ))−̇(−C(τ)Q(τ))

is similar to (29)(when µ = 0) and to (43).
Under Assumtion 4.1, a direct calculation leads to the next conclusions.
Lemma 6.1. The following relations are true with k →∞, (σ(k)→ 0):
(i) limh(X−

σ (k|τ), X−
k (τ, t0, X

0)) = 0.
(ii) limh(X−

σ (k|τ),X−(τ)) = 0.
(iii) Function I−[τ ] = I−(τ, t0, X0) = lim I−(τ, t0, X0,Σk) = X−(τ) is a maxi-

mal solution to (87) with X−(t0) = X0.
Therefore, the closed-loop reach set X (τ, t0, X

0) may also be calculated through
the funnel equation (87), which therefore also describes the dynamics of the level sets
of the value function V(τ, x)—the solution to the forward HJBI equation (66).

Remark 6.1. As we have seen, (87) describes the evolution of the alternated
integral I−(τ, t0, X0). Similarly to that, (88) describes the evolution of the alternated
integral I+(τ, t0, X

0). The recurrence equations (89), (90) may then serve to be the
basis of numerical schemes for calculating the reach sets.

7. Example. Consider the system

ẋ1 = x2 + v,(91)

ẋ2 = u,
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defined on the interval [0, τ ], with hard bounds

|u| ≤ r1, |v| ≤ r2, r1 > 0, r2 > 0,

on the control u and the uncertain disturbance v.
As is known (see, for example, [17]), a parametric representation of the boundary

of the reach set X(τ, t0, x
0|P(·), {0}) of system (91) without uncertainty (v(t) ≡ 0) is

given by two curves (see the external set in Figure 1, generated for x0 = 0, τ = 2, r1 =
2, r2 = 0):

x1(t) = x0
1 + x0

2t± r1(t
2/2− σ2),

x2(t) = x0
2 ± r1(2σ + t),

and where σ ≤ 0 is the parameter (the values σ > 0 correspond to the vertices of
X(τ, t0, x

0|P(·), {0})).
Similarly, the reach set X(τ, t0, X

0|{0},Q(·)) in the variable v is given by the
curves

x1(t) = x0
1 ± x0

2t± r2t,

x2(t) = x0
2.

According to (7) , the set

X−(τ, 0, x0, 0) = X(τ, t0, x
0|P(·), {0})−̇X(τ, t0, 0|{0},Q(·)),

which leads to a parametrization of the boundary of this set in the form

x1(t) = x0
1 + x0

2t± r1(t
2/2− σ2)± r2t,
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x2(t) = x0 − 2± r1(2σ + t)

(see the internal set in Figure 1, generated for X0 = 0, τ = 2, r1 = 2, r2 = 1). Clearly,

X−(τ, 0, x0, 0) ⊂ X(τ, 0, x0|P(·), {0})
so that the OLRSX−(τ, 0, x0, 0) under uncertainty is smaller thanX(τ, 0, x0|P(·), {0})—
the reach set without uncertainty.

Let us now look for the OLRS X−(τ, 0, x0, 0) with one correction at time t =
τ1. Taking τ = 2, τ1 = 1, x0 = 0, r1 = 1, r2 = 1/2, one may figure out that set
X−(τ1, 0, 0, 0) has to be bounded by two curves (Figure 2)

x1(t) = ±(1/2− 2σ2),

x2(t) = ±2(2σ + 1),

which gives X−(τ1, 0, 0, 0) = {0}. Then for r2 > 1/2 we have X−(τ1, 0, 0, 0) = ∅, and
for r2 < 1/2 we come to intX−(τ1, 0, 0, 0) �= ∅.

Continuing with r2 = 1/2, we have

X−(2, 1, X−(1, 0, 0, 0), 0) = {0} ∈ X−(2, 0, 0, 0).

We also observe that with r2 > 1/2 we have X−(τ1, 0, 0, µ) = {0} �= ∅ if µ > 0 is
sufficiently large.

As indicated above, sets X+(τ, t0, x
0, µ) turn out to be empty unless µ is suffi-

ciently large. Continuing our example further, for τ = 2, τ1 = 1, x0 = 0, r1 = 2, r2 = 1,
we have

X−(2, 0, 0, µ) = (Bµ(0) +X(2, 0, 0|P(·), {0}))−̇X(2, 0, 0|{0},Q(·)),
and

X+(2, 0, 0, µ) = (Bµ(0)−̇X(2, 0, 0|{0},Q(·))) +X(2, 0, 0, |P(·), {0}).
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The last set is nonvoid if µ is such that Bµ(0)−̇X(2, 0, 0, |{0},Q(·)) = X+[µ] �= ∅.
The smallest value µ0 of all such µ ensures X+[µ0] = {0}.

For all µ ≥ µ0 it is then possible to compare sets X−(2, 0, 0, µ) and X+(2, 0, 0, µ),
observing that the latter is smaller than the former (see Figure 3, where X−(2, 0, 0, 0)
is shown by the internal continuous curve, X−(2, 0, 0, 1) by the external continuous
curve, and X+(2, 0, 0, 1) by the dashed curve).

8. Conclusion. In this paper, we deal with one of the recent problems in reacha-
bility analysis which is to specify the sets of points that can be reached by a controlled
system despite the unknown but bounded disturbances in the system inputs. The pa-
per gives a description of several notions of such reachability and indicates schemes
to calculate various types of reach sets. We consider systems with linear structure
and closed-loop controls that are generally nonlinear. In particular, we emphasize the
difference between reachability under open-loop and closed-loop controls. We distin-
guish open-loop controls of the anticipative type, which presume the disturbances to
be known in advance, and of the nonanticipative type, which presume no such knowl-
edge. The nonanticipative OLRSs is smaller than the one for anticipative open-loop
controls, and the closed-loop reach set (which is always nonanticipative) lies in be-
tween. Intermediate reach sets are those generated by piecewise closed-loop controls
that allow on-line measurements of the state space variable at isolated instants of
time—the points of correction. Increasing the number of corrections to infinity and
keeping them dense within the interval under consideration, we came to the case of
continuous corrections—the solution to the problem of reachability under closed-loop
(feedback) control.
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The various types of reach sets introduced here were calculated through two alter-
native presentations, namely, either through operations on set-valued integrals or as
level sets for value functions in sequential problems on maxmin or minmax for certain
distance functions.

For the closed-loop reachability problem the corresponding value function defines
a mapping that satisfies the semigroup property. This property allowed us to formulate
the principle of optimality under uncertainty for the class of problems considered here.
The last principle allowed us to demonstrate that the closed-loop reach set under
uncertainty is the level set for the solution to a forward HJBI equation. On the other
hand, the feedback control strategy that steers a point to its closed-loop reach set
(whatever the disturbance is) may be found from the solution to a backward HJBI
equation whose boundary condition is taken from the solution of the earlier mentioned
forward HJBI equation.

This paper leaves many issues for further investigation. For example, there is a
strong demand from many applied areas to calculate reach sets under uncertainty.
However, the given solutions to the problem are not simple to calculate. Among
the nearest issues may be the calculation of the reach sets of this paper through
ellipsoidal approximations along the schemes of [16], [17]. Then, of course, comes the
propagation of the results to nonlinear systems. Here the application of the HJBI
technique seems to allow some progress. Needless to say, similar problems could also
be posed for systems with uncertainty in its parameters or in the model itself as well
as for other types of controlled transition systems.

Acknowledgment. We thank Oleg Botchkarev for the figures.
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CONTROL OF POLLING IN PRESENCE OF VACATIONS IN
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Abstract. Consider a queueing system with many queues, each with its own input stream, but
with only one server. The server must allocate its time among the queues to minimize or nearly
minimize some cost criterion. The allocation of time among the queues is often called polling and
is the subject of a large literature. Usually, it is assumed that the queues are always available, and
the server can allocate at will. We consider the case where the queues are not always available
due to disruption of the connection between them and the server. Such occurrences are common in
wireless communications, where any of the mobile sources might become unavailable to the server
from time to time due to obstacles, atmospheric or other effects. The possibility of such “vacations”
complicates the polling problem enormously. Due to the complexity of the basic problem we analyze
it in the heavy traffic regime where the server has little idle time over the average requirements.
It is shown that the suitable scaled total workloads converge to a controlled limit diffusion process
with jumps. The jumps are due to the effects of the vacations. The control enters the dynamics
only via its value just before a vacation begins; hence it is only via the jump value that the control
affects the dynamics. This type of model has not received much attention. The individual queued
workloads and job numbers can be recovered (asymptotically) from the limit scaled workload. This
state space collapse is critical for the effective numerical and analytical work, since the limit process
is one dimensional. It is also shown, under appropriate conditions, that the arrival process during a
vacation can be approximated by the scaled “fluid” process. With a suitable nonlinear discounted
cost rate, it is shown that the optimal costs for the physical problems converge to that for the limit
problem as the traffic intensity approaches its heavy traffic limit. Explicit solutions are obtained in
some simple but important cases, and the cµ-rule is asymptotically optimal if there are no vacations.
The stability of the queues is analyzed via a perturbed Liapunov function method, under quite
general conditions on the data. Finally, we extend the results to unreliable channels where the data
might be received with errors and need to be retransmitted.

Key words. heavy traffic analysis, queueing networks, scheduling queues, communication net-
works, wireless communications, mobile communications, polling, optimal stochastic control

AMS subject classifications. 90B22, 60K25, 60K30, 60F17, 93E20, 93E25
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1. Introduction. Consider a queueing system with several queues and a single
server. The problem of assigning service among the competing queues in an optimal
way has been studied extensively in the last half of the century, starting with [9,
pp. 84–85]. The assignment is often called “polling.” For linear holding costs, the
fixed-priority policy known as the cµ-rule (and other rules closely related to it) has
been shown to be an optimal policy under a variety of statistical assumptions and
cost structures (see, e.g., [1, 3, 4, 9] and references therein). Due to Little’s rule, this
policy turns out to minimize also the overall average expected waiting time in the
system. The problem can be considered to be one in optimal stochastic control.
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We are concerned with this assignment or polling problem when the connections
between each queue and the server are broken at random times and for random du-
rations. Such intervals during which a queue is not available to the server (even if it
wished to poll it) are often called vacations in the queueing literature. The possibility
of such vacations complicates the control problem considerably, since the possibility
that any queue might not be available to the server at any future time needs to be
accounted for in choosing the current server allocation.

This problem is of considerable importance in contemporary wireless communi-
cations, where the queues are in the mobile sources which generate data to be trans-
mitted and the server is the channel or antenna of the base station. At each time,
one assigns the channel to one of the sources (i.e., points the antenna in the direction
of that source). In more complex cases with so-called smart antennas, the channel
can be shared among the sources in a controlled way, but that possibility will not be
considered here.

Recently, Tassiulas and Ephremides [28] have considered this problem of how
to assign service to competing queues in the presence of random connectivity. The
motivation concerned the dynamic assignment of transmission access to a channel
between mobile terminals, any of which might be unavailable from time to time due to
physical obstacles or to propagation problems (atmospheric attenuation, interference,
noise, fading, etc.). In the context of satellite communications, a survey of such
problems can be found in [11].

The classical cµ-rule turns to be not only far from optimal for this system, but
in fact the system may be unstable when any fixed priority policy is used. Tassiulas
and Ephremides [28] and Tassiulas and Papavassiliou [29] considered the problem of
obtaining a dynamic assignment policy that maximizes the throughput. The solution
methodology is based on stability analysis using Liapunov functions; first a necessary
condition for stability is identified, which holds under any policy. Then a particular
policy is identified for which a sufficient stability condition coincides with the above
necessary stability condition. It then turns out that this policy stabilizes the system
under the largest range of input rates and is thus shown to maximize the throughput
that the system can handle. Such a policy has a very simple form [28]: assign a
transmission opportunity to the longest connected queue.

It turns out that there is a very large class of policies other than the one above
which also achieve that maximum stability region and maximum throughput. (For
example, if we first multiply the length of each queue by some [queue dependent]
positive constant and then assign transmission to the queue with longest weighted
length, still an optimal throughput is achieved; this is suggested by our stability
analysis in section 6.) The aim of this paper is thus to consider control and optimal
control under more sensitive cost criteria, which can not only maximize the throughput
but can also minimize some expected holding costs (or in particular, discounted mean
values of a broad class of functions of the queue lengths or expected workload in the
system).

Due to the complexity of the system and the generality of the statistical assump-
tions, we consider the optimal control problem only in an asymptotic sense; i.e., the
one obtained by an appropriate scaling, corresponding to the heavy traffic regime,
where the server has little spare capacity over the mean requirements. As usual with
heavy traffic analysis, the limit system is substantially simpler than the original phys-
ical system. The aim is to use the limit model to get nearly optimal controls and
approximations to the optimal value functions for the actual physical system under
heavy traffic conditions. For some large class of policies, we establish the convergence
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of the total workload processes to a one dimensional diffusion process with jumps,
where the jumps are due to the possibility that the server will have no work to do
during part of a vacation of some source. The individual workloads and queue lengths
can be approximated in terms of this limit process; hence there is a substantial reduc-
tion in dimension from that of the original problem to unity. This limit result is then
used to obtain a closed form solution for the asymptotic problem for several types of
cost functions. In particular, a closed form solution is obtained for the case when the
cost corresponds to the total workload in the system.

A problem related to the one we solve here has been treated in [8] and refer-
ences therein. There too, optimal scheduling of service opportunities is considered.
However, the problem of random (unpredictable) disconnectivity is not considered
there; instead, there are predictable instances in which service opportunities appear.
These correspond to transmission opportunities between adjacent satellites which use
intersatellite links within a satellite constellation. As in [28], the criterion is to max-
imize the throughput. Several policies are proposed there and their performance is
compared.

The structure of the paper is as follows. Section 2 describes the problem and
lists the assumptions which are needed to get the weak convergence results of section
3. Jobs (batches of data) arrive at the queues of the individual sources at random
times, and in random amounts. It is assumed that the vacations are relatively “rare”
and that the ratio of the vacation intervals to the intervacation intervals is small.
Nevertheless they have a very important effect on the performance. For notational
simplicity, only two sources are considered in the details. However, all of the results
hold irrespective of the number of sources, and we comment on the extensions. The
analysis contains results which are of broader interest. Examples are the proof that
the arrival (and, indeed, the [suitably time scaled] workload and queue processes)
process during a vacation can be well approximated by a “fluid” process under heavy
traffic and that the individual queue sizes can be approximated by linear functions
of the individual queued workloads. The policy affects the limit process only via
the magnitude of the jumps. In particular, the jumps depend only on the “control”
values just before a vacation begins. If we restrict the policy to being a member of
a large class of piecewise continuous feedback policies, then Theorem 3.2 shows that
the individual workloads can be well approximated by linear functions of the total
workload, under heavy traffic.

The discounted cost function is introduced in section 4. The limit control problem
appears to be nonstandard, owing to the special way that the control appears in the
dynamics, even though it appears in the cost function in a standard way. To get
weak convergence of the cost or optimal cost values, one needs a uniform integrability
condition as well as weak convergence, and this is dealt with as well.

The optimal control is computed under some assumptions on the costs in section
5. In section 6 we establish the stability conditions for a large class of policies. We
extend our model and results in section 7, where we consider the case of unreliable
channels which may require retransmissions of erroneous information.

2. The problem formulation. 1 There are two sources with inputs which
generate data in some random way. Any number of sources can be used, but we stick
to two for notational simplicity. The results for the general case will be apparent

1The book by H. Kushner, Heavy Traffic Analysis of Controlled Queueing and Communication
Networks, Vol. 2, Springer, New York, 2001, has much information on related problems.
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from the results for the two source case. The data (or jobs) created by each source
are queued there, and the server alternates service (i.e., polling) between them in some
way to be determined later. There is no switchover time in going from one source
to another. Each of the sources will become unavailable to the server from time to
time. The periods of unavailability are called vacations, in accordance with current
terminology. Strictly speaking, it is the connection from the source to the server which
is “on vacation,” but we simply say that the source itself is on vacation. A source
that is on vacation cannot be polled, but the data or job inputs which it creates still
arrive to its queue. In that case, the content of the unavailable queue grows, but
the server can only work on the available queue. Service is nonpreemptive, and first-
come-first-served (FCFS): i.e., a job once started is completed, assuming that there is
no intervening vacation. Also, the system is assumed to be “work conserving” in that
the server will not idle if there is work to do on an available queue. Suppose that a
vacation starts in the middle of a job. We suppose either (a) that the job is allowed
to be completed, or (b) that it is stopped, but when that source is next served the job
needs only its residual time, or (c) that the entire job needs to be redone. Because of
the “rarity” of vacations under the assumptions (A2.3) and (A2.4) to be introduced
below, the results will be the same for all cases. For specificity, and without loss of
generality in the results, we suppose that both sources are available at time 0.

Our approach is that of heavy traffic analysis, where the “spare capacity” of the
system is small. As usual in heavy traffic analysis, the problem is embedded in a
sequence of problems, indexed by n. As n→∞, the spare capacity of the server goes
to zero, and this is quantified in (A2.2). Let {∆a,n

i,l , l < ∞} denote the interarrival

times for jobs at source i = 1, 2, and let {∆d,n
i,l , l <∞} denote the corresponding work

(real time) requirements.
Comment on weak convergence. Let R

r denote r-dimensional Euclidean
space. The path space for all of the processes will be D(Rr; 0,∞), the space of
R
r-valued functions which are right continuous and have left-hand limits, for the

appropriate values of r. If r = 1, we write simply D(R; 0,∞). The Skorohod topology
will be used on this space. All of the concepts concerning weak convergence which will
be used can be found in the standard references [5, 12]. Summaries with applications
to stochastic systems can be found in [17, 19]. The following is a convenient criterion
for tightness in D(R; 0,∞). It will be used implicitly, without specific mention. Let
Y n(·) be a sequence of processes with paths in D(R; 0,∞). Let T n(t) denote the
stopping times with respect to the filtration engendered by Y n(·) and which are no
larger than t. If, for each t,

(2.1a) lim
δ→0

sup
n

sup
τ∈T n(t)

E (1 ∧ |Y n(τ + δ)− Y n(τ)|) = 0

and

(2.1b) {Y n(s) : n <∞, s ≤ t} is tight in R,

then {Y n(·)} is tight [12].
Notation and assumptions. For some centering constants ∆̄α,n

i , α = a, d,
whose properties will be specified below, define the processes

(2.2) wα,n
i (t) =

1√
n

nt∑
l=1

[
1− ∆α,n

i,l

∆̄α,n
i

]
, t ≥ 0, α = a, d, i = 1, 2.
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When an index of summation is nt we mean the integer part [nt]. Let xni (t) denote
1/
√
n times the number of jobs in queue i at real time nt, including the one in service,

if any. Let WLn
i (t) (called the workload at queue i) denote 1/

√
n times the real time

that the server must work to complete all of the jobs which are in queue i at real time
nt. Thus, time is scaled by 1/n and the state by 1/

√
n. Define the total workload

WLn(t) =
∑

iWLn
i (t). By scaled work we mean 1/

√
n times the actual physical work

in question. The expression scaled time of some event always refers to the real time
of that event divided by n.

Define the index of a job at queue i as one plus the number of jobs that arrived or
were there before it, starting with the ordered

√
nxni (0) jobs which are in that queue

at time zero. Let Ln
i (t) ≥ 0 denote the index of the last customer to enter service

in queue i at or before real time nt. For future use, note that xni (·) and WLn
i (·) are

related by

(2.3) WLn
i (t) ∈


 1√

n

Ln
i (t)+

√
nxn

i (t)−1∑
l=Ln

i
(t)

∆d,n
i,l ,

1√
n

Ln
i (t)+

√
nxn

i (t)−1∑
l=Ln

i
(t)+1

∆d,n
i,l


 .

We will use the following conditions. By “driving random variables,” we mean the
set of initial conditions, the arrival times and service requirements, and the starting
and stopping times of the vacations.

A2.0. For each n, xni (0),WLn
i (0), i = 1, 2, are independent of all of the “future”

driving random variables. None of the sources is on vacation at t = 0. (The last
sentence is used only to simplify the notation.)

A2.1. For α = a, d; i = 1, 2, there are constants ∆̄α
i such that

∆̄α,n
i → ∆̄α

i .

As n→∞, the sequences wα,n
i (·), n <∞, α = a, d; i = 1, 2, converge weakly to mutu-

ally independent Wiener processes wα
i (·), α = a, d, i = 1, 2, with variance parameters

σ2
α,i, respectively.

Define λ̄α,ni = 1/∆̄α,n
i , which will be used interchangeably, and similarly for λ̄αi =

1/∆̄α
i . Define the traffic intensities

ρni = ∆̄d,n
i /∆̄a,n

i = ∆̄d,n
i λ̄a,ni , ρi = ∆̄d

i /∆̄
a
i = ∆̄d

i λ̄
a
i .

A2.2. There is a real number b such that

lim
n

√
n

[∑
i

ρni − 1

]
= b.

Note that (A2.2) implies that
∑

i ρi = 1.
A2.3. For each n, i, the intervals between the end of the lth vacation and the

start of the next one for source i are denoted by nτ s,ni,l , l = 1, . . . . They are mutually
independent, exponentially distributed, independent of all the other “driving” random
variables and have rate λ̄s,ni /n, where λ̄s,ni converges to λ̄si > 0 as n → ∞. The
intervals for the different sources are mutually independent.

A2.4. For each n, i, there are mutually independent and identically distributed
random variables τv,ni,l , l = 1, . . . , such that the duration of the lth vacation interval for

source i is
√
nτv,ni,l . Also, τ

v,n
i,l converges weakly to a random variable τ

v
i as n → ∞.
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For each i, the τv,ni,l , l = 1, . . . , are independent of all other “driving” random variables.

The intervals for the different sources are mutually independent. supi,nEτv,ni,l < ∞.
Define τv,ni,0 = 0.

The convergence to the Wiener process in A2.1 is a convenient way of covering
many common models, the simplest being the independent and identically distributed
cases. The extension of A2.4 which covers correlated (between the sources) vacation
intervals is discussed at the end of section 3. The added difficulties are only algebraic.
We can work with different information structures, in that the server controller can
know either the numbers queued or the work queued. We will confine ourselves to the
first case, but it will be seen that the results are asymptotically (as n→∞) equivalent
in that the minimum costs are the same and a good policy for one is equivalent to a
good policy for the other. This holds since (Theorem 3.1) the scaled number queued
and scaled work queued are (asymptotically) linearly related except on an arbitrarily
small (scaled) time interval. Thus, unless mentioned otherwise, the server does not
know the work in the queues, only the number of jobs in each queue. It also knows
the entire past history, which is the set of past polling decisions, the work done for
each job already served and the timing, as well as the starting and ending times of
the vacations to date, for each source. The admissible control (or polling) policy is
defined in the following way.

A2.5. The server can select the queue served in any nonanticipative way at all,
provided that it does not switch while a job is being processed. By nonanticipative we
mean the following. Suppose that a job has been completed at real time nt and both
sources are available. Then, the next source to be polled is determined by the value (0
or 1) of a measurable function of the initial queue sizes, all arrival and service data,
and the record of vacation starts and completions up to real time nt for each queue.

Later we will also deal with the set of policies which satisfy either of the following
special but important conditions.

A2.6a. (In terms of queued numbers.) There is a real-valued function φ(·), which
is continuous and nondecreasing, such that between vacations the server polls source
1 at real time nt if xn2 (t) < φ(xn1 (t)), and polls source 2 otherwise. The server does
not switch while a job is being processed.

A2.6b. (In terms of queued workload, a less restrictive function.) There is a real-
valued function θ(·) which is continuous at all but a finite number of values such that
between vacations the server polls source 1 if WLn

1 (t) ≥ θ(WLn(t)), and polls source 2
otherwise. The server does not switch while a job is being processed.

3. Weak convergence of the workload and content processes: Arbitrary
controls. For l > 0, define

νni,l =

l∑
k=1

[
τ s,ni,k + τv,ni,k−1/

√
n
]
,

which is 1/n times the real time of the start of the lth vacation at source i. That
is, it is the scaled time of the start of the lth vacation at source i. The (scaled) lth
vacation interval for source i is the half open (scaled) interval [νni,l, ν

n
i,l + τv,ni,l /

√
n).

Discussion of the control problem. The weak convergence result will be in
terms of the total workload (rather than in terms of the workload in each queue),
which will be seen to be enough to get the desired results. In fact, except under
special policies such as A2.6, in general there is no weak convergence result for the
(WLn

i (·), i = 1, 2) or (xni (·), i = 1, 2). Also, the use of WL(·) yields a one dimensional
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limit control problem, a considerable advantage. Next, we introduce some needed
notation, and set the problem up and discuss some of its features in a way that
facilitates the proof of Theorem 3.1.

Let Sa,n
i (t) (resp., Sd,n

i (t)) denote 1/n times the number of jobs that arrived to
(resp., were completely served at) queue i by real time nt. Let Zn(t) denote 1/

√
n

times the total real time that both queues are empty and neither source is on vacation
up to real time nt. Let T v,n(t) denote 1/

√
n times the total time up to real time nt

that the server could not work due to a vacation (i.e., where the contents of the
available queue, if any, is zero, or where there are no available queues). Then we can
write (remaining work = arrived work − work done)

(3.1)
WLn(t) = WLn(0) +

1√
n

∑
i

nSa,n
i

(t)∑
l=1

∆d,n
i,l

− 1√
n
[real time of all service by real time nt] ,

where the last term on the right is

(3.2) − [√nt− Zn(t)− T v,n(t)
]
.

The effect of the vacations: A heuristic discussion. We need to examine
T v,n(t) more carefully, since (as will be seen) it is through this term that the control
affects the paths of the process in the limit. By A2.4, in scaled time the vacations
last τv,ni,l /

√
n units of time, an amount which vanishes as n→∞.

By A2.3, the intervacation times are τv,ni,l in scaled time. Owing to the mutual
independence of the intervacation times for the same queue and for the different
queues, for any T > 0 the probability that vacations will overlap at some point on
the scaled time interval [0, T ] is of the order of 1/

√
n. Since weak convergence on

the time interval [0,∞) is implied by weak convergence on all intervals [0, T ], the
possibility of overlapping can be ignored in the weak convergence proofs. Thus, in
the following discussion, which evaluates the effects of the vacations on the paths for
arbitrarily large n, we will suppose (without loss of generality) that only one source
can be on vacation at a time. More particularly, if one or more vacations overlap,
ignore all but the first. Since this modification alters the paths on each interval [0, T ]
with a probability of the order O(1/

√
n), it does not affect the distribution of the

limit quantities. While the possibility of overlapping vacations is not important for
the purely weak convergence aspects in this section, it will have to be taken into
account when dealing with the convergence of the costs in section 4. This is because
the convergence of the costs (which are not bounded functions) requires both weak
convergence of the processes and uniform integrability of the cost functions, so that
events of small probability cannot necessarily be neglected. Define un(t) = WLn

1 (t).
Hence, WLn

2 (t) = WLn(t)−un(t). It will turn out that un(·) has the effect of a control.
Its value will be seen to be the mechanism for controlling the values of the jumps.

Consider the lth vacation of source i. It starts at (scaled) time νni,l, and the total

workload just before that is WLn(νni,l−). Define Āj,n
i,l to be 1/

√
n times the work

arriving at queue i during the lth vacation of source j. Define

(3.3) Āj,n
i,l (t) =

1√
n

nSa,n
i

((νn
j,l+(τv,n

j,l
∧t)/√n)−)∑

l=nSa,n
i

(νn
j,l

−)+1

∆d,n
i,l .
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The minuses (−) in the lower and upper limits of summation in (3.3) are due to the
fact that (recall that the interval is half open) we count νn1,l as part of the (scaled)

vacation period, but not νn1,l+ τv,n1,l /
√
n, for specificity, although the exact accounting

procedure used at the end-points is asymptotically (as n→∞) irrelevant.
The time scale used in (3.3) will be called the local fluid scale. In this scale, t

denotes an interval of real time of length
√
nt, or, equivalently, an interval in scaled

time of length t/
√
n.

Until further notice, for notational simplicity in the motivational discussion, let
us fix our attention on the lth vacation of source 1. Thus, Ā1,n

i,l = Ā1,n
i,l (∞), the scaled

arriving work at queue i during this vacation. Also, Ā1,n
i,l (t) is 1/

√
n times the work

arriving at queue i in the real time interval [nνn1,l, nν
n
1,l +

√
nt) for t < τv,n1,l .

Let ξv,ni,l denote the change in the total workload during the lth vacation of source
i. If

(3.4a) τv,n1,l < WLn
2 (ν

n
1,l−) + Ā1,n

2,l = WLn(νn1,l−)− un(νn1,l−) + Ā1,n
2,l ,

then the vacation ends before queue 2 is emptied, and the vacation would not seem
to have an immediate effect on the total idle time and workload and (asymptotically,
as n → ∞) ξv,n1,l = 0. This is not quite obvious, and the point is both important
and subtle, since it is possible that the scaled work that arrives during a vacation all
arrives close to the end in which case there might be idle time. However, as seen from
Theorem 3.1, it turns out that (asymptotically, as n→∞ and in the local fluid time
scale) the scaled work can be supposed to arrive “continuously” and at the mean rate
during the vacation, analogously to a “fluid.” This implies that, asymptotically, as
n→∞ and under (3.4a), the vacation has no effect on the total workload.

On the other hand, if

(3.4b) τv,n1,l > WLn(νn1,l−)− un(νn1,l−) + Ā1,n
2,l ≡ τ̂v,n1,l ,

then queue 2 is emptied before the vacation ends. The proof of Theorem 3.1 allows
us to suppose that (asymptotically, as n → ∞, and in the local fluid time scale) the
scaled work arrives continuously, as a fluid, at the mean rate as noted above. However,
the heavy traffic condition A2.2 implies that the service rate is so much faster than
the arrival rate of work at queue 2, that (asymptotically, as n → ∞) the workload
in queue 2 is zero for a nonvanishing fraction of the vacation time. Thus, there is
(asymptotically) forced idle time and an increase in the total workload due to the
vacation. This increase will depend on the value of the workload at queue 2 at the
time that the vacation at queue 1 starts. In turn, that value depends on the control
policy. This is the only way that the control policy affects the workload: via the sizes
of the jumps due to the vacations, which (in turn) is determined by the distribution
of the total workload just before the vacation starts. It will be seen that the difference
between the scaled work that arrives at queue j during this lth vacation of source 1
and λ̄aj ∆̄

d
j τ

v,n
1,l = ρjτ

v,n
1,l converges weakly to zero. Obviously, one can reverse sources

1 and 2 in the above discussion. From the above discussion, we see that the control
can be viewed as the division of the total workload among the two queues.

Suppose, formally, that n indexes a weakly convergent subsequence of(
τv,n1,l , u

n(νn1,l−),WLn(νn1,l−)
)
,

use the same notation (dropping the n superscript) for the weak sense limits, and
formally use the asymptotic fluid approximation to (3.3). This fluid approximation
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simply replaces the terms in (3.3) by their asymptotic mean value and is ρi[τ
v
1,l ∧ t].

We see, formally, that (in the limit) the increase in T v,n(·) (equivalently, in the total
workload) during the lth vacation of source 1 can be written as

ξv1,l =
[
(1− ρ2) τ

v
1,l − [WL(ν1,l−)− u(ν1,l−)]

]+
which equals

(3.5a)
[
ρ1τ

v
1,l − [WL(ν1,l−)− u(ν1,l−)]

]+
.

The analogue for the lth vacation of source 2 is

(3.5b) ξv2,l =
[
ρ2τ

v
2,l − u(ν2,l−)

]+
.

Here, u(t) ≤ WL(t) can be considered to be the control function for the limit system
(3.7), (3.8a). It appears only via the discrete values: u(νi,l−), l < ∞, i = 1, 2. The
notation in (3.5) can be misleading since the use of the symbol u(t−) suggests either
left continuity or that the left-hand limit exists at t, or that (some subsequence of)
un(·) converges weakly. We do not make these claims for general polling policies, but
the sequence un(νni,l−) will always be tight in n. If the control policy is of the type in
(A2.6), then roughly speaking (see Theorem 3.2) the “intervacation sections” of un(·)
will be tight and have continuous weak sense limits.

The intervacation sections. Let ν̄nl and νnl denote, respectively, the (scaled)
time of the beginning and end (respectively) of the lth intervacation interval, irre-
spective of the source. Thus, by our conventions, ν̄nl is 1/n times the real time of
the beginning of the lth vacation. By our convention, no source is on vacation at the
initial time, so that ν̄n1 = 0. Define the intervacation sections as the functions

(3.6) WLn ((ν̄nl + t) ∧ νnl ) , t ≥ 0.

It is constant for t ≥ νnl − ν̄nl .
State space collapse. The physical dimension of the original problem is the

number of sources. Mathematically, the dimension is even higher since the set of
queue lengths is not Markovian. Theorem 3.1 is an example of what is called state
space collapse [7, 24, 25, 26, 32] in the heavy traffic literature. The dimension of
the approximating problem is unity and the original xni (·) (which do not necessarily
converge weakly) can be asymptotically approximated by a constant (depending on
i) times the total workload process WLn(·) (which does converge weakly in the sense
described in the theorem). Such state space collapse is obviously very helpful in the
control problem and for numerical procedures.

Comment on tightness and Theorem 3.1. During a vacation,WLn(·) changes
in steps of size O(1/

√
n) over an interval of scaled size O(1/

√
n). While the effect of

the vacation is (asymptotically) a jump in a well-defined sense, because of the way
that the jump is realized, WLn(·) is not tight in the Skorohod topology. Since the
parts of the path between vacations are well behaved, it is convenient to work with
the effects of the vacations and the intervacation parts separately. Suppose that the
set in (3.6) is tight for each l. It is easy to show this (Theorem 3.1) for l = 1. Then
the set of its “terminal” conditions WLn(νn1−) is also tight, as is un(νnl −). Thus the
set (3.5a) or (3.5b) for the first vacation is also tight (Theorem 3.1). Then, the set of
initial conditions WLn(ν̄2) for the next intervacation interval is tight. Then repeat, as
for the first section, etc. In this way, taking an appropriate subsequence and working
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section by section, one constructs a “limit” process WL(·). We call this procedure
“concatenation.” A primary aim is showing the convergence of the discounted cost
functions (4.3b) to (4.3a) for a well-defined “limit” process WL(·). One does not need
full weak convergence of WLn(·) for this and the piecewise or concatenation approach
is adequate. The various conclusions of the theorem are denoted by (a), (b), etc.

As indicated above, in the proof of the theorem one works step by step. After
some preliminary details concerning convergence of the Sa,n

i (·) and representations of
the workload process, it is shown that the sequence of sections up to the time of the
first vacation is tight and its limit is characterized. Thus, the sequence of states at the
time at which the first vacation starts is tight. Then we deal with the first vacation
and characterize its limits. Now, we have that the sequence of states at the end of
the first vacation is tight, so we can analyze the paths between the end of the first
vacation and the beginning of the second, just as the path up to the first vacation
was handled, etc. In this way, we can see that there is nothing special about the first
intervacation interval or the first vacation. Thus, all of the intervacation sections and
vacation jumps can be dealt with. The appropriate limit process puts these together
in sequence. This type of convergence is sufficient to get the convergence result for the
discounted cost function later on. The procedure is analogous to a common method
of constructing the solution to a jump-diffusion process.

Theorem 3.1. Assume A2.0–A2.5, and suppose that (xni (0), i = 1, 2) converges
weakly to (xi(0), i = 1, 2). (a) Then WLn(0) converges weakly to

∑
i ∆̄

d
i xi(0). (b) For

i = 1, 2, the set

Ψn =
(
WLn(νni,l−), un(νni,l−), τv,ni,l , τs,ni,l , ξv,ni,l , i = 1, 2, l <∞

)
is tight in n. (c) The sequence of intervacation sections of WLn(·) defined by (3.6)
and of Zn(·) are tight for each i and l, the weak sense limit of any weakly convergent
subsequence has continuous paths.

Fix a weakly convergent subsequence of the set Ψn and the set of intervacation
sections of WLn(·) and Zn(·), and index it by n also (abusing terminology). The
weak sense limits are denoted by dropping the n superscript. (d) Then (τ s,ni,l , l < ∞)
converges weakly to (τ si,l, l <∞), where the τ si,l are exponentially distributed with rate

λ̄si . (e) The differences WLn
i (·)− ∆̄d,n

i xni (·) converge weakly to the “zero” process. (f)
Define WL(·) by concatenating the weak sense limits of the successive intervacation
sections of WLn(·). The weak sense limits of any weakly convergent subsequence are
related by

(3.7) WL(t) = WL(0) + bt+ w(t) +
∑
i

Ji(t) + Z(t),

where

(3.8a) Ji(t) =
∑

l:νi,l≤t

ξvi,l, νi,l =

l∑
k=1

τ si,k.

In (3.7) the process WL(·) between its (l− 1)st and lth jump is the value of the weak
sense limit of the process defined by (3.6) on the interval [0, νnl − ν̄nl ). (g) Also

(3.8b)
(
WL(0), w(·), τvi,l, τsi,l; i = 1, 2, l <∞)
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are mutually independent, and w(·) is a Wiener process with variance parameter

(3.9) σ2 =
∑
i

[
ρiσ

2
a,i + σ2

d,i

]
,

which we assume to be positive. (h) Z(·) is the reflection term. It is continuous,
nondecreasing, can increase only at t, where WL(t) = 0 and satisfies Z(0) = 0. (i)
The ξvi,l have the representation (3.5). (j) Define the Poisson processes Ni(·), i = 1, 2,
to be the process with a unit jump at νi,l, l ≥ 1. For each t,

(3.10) w(t+ ·)− w(t), Ni(t+ ·)−Ni(t), i = 1, 2,

is independent of

(3.11)
w(s), Ni(s), s ≤ t; s ≤ t; i = 1, 2,(

u(νi,l−)I{νi,l≤t}, ξvi,lI{νi,l≤t}, i = 1, 2, l <∞) .
(k) The process (3.3) converges weakly to the process with values ρi(t ∧ τvj,l).

Comment on the control u(νi,l−). Under the general conditions that are
used in this theorem to get the weak convergence, we cannot get convergence of the
random processes un(·), only of the random variables which are the values at selected
points. However, in the next section the class of polling policies will be restricted to
be in some very reasonable class, and for this class there will be tightness of un(·)
in an appropriate sense. Then, the weak sense limits will be well-defined admissible
control functions for the weak sense limit WL(·) process.
Proof. As noted below (3.2), without loss of generality we can suppose that at

most one source is on vacation at a time. Given the current real time nt, the real
time since the current service started or has to go, or the real time since or until the
next arrival are called residual times. We define a residual time error term to be a
random process (to be denoted by εn(·)) which is bounded by [constant/

√
n] times

a [finite sum of such residual time terms plus a constant]. Successive uses of εn(·)
might refer to different residual time error terms. Assumption A2.1 implies that the
εn(·) converge weakly to the “zero” process, since the continuity of the limit there
implies that the maximum of the first [nt] summands, divided by

√
n, goes to zero in

probability as n→∞.
The difference between the terms in (2.3) is a residual time error term, thus the

process defined by the difference converges weakly to the “zero” process. The proof
that WLn(0) converges as asserted follows from A2.1 and the representation (2.3),
where t = 0.

For specificity, we will suppose that the preempt-resume discipline holds for any
job which is being served when a vacation of its source starts. Assumption A2.3
implies that, for any t, the number of vacations on any real time interval [0, nt] is
bounded in probability, uniformly in n. Due to this and the fact that (by A2.1) the
maximum of the first [nt] workloads divided by

√
n goes to zero in probability as

n→∞, any of the disciplines cited in section 2 will yield the same result.
We next prove the weak convergence of Sa,n

i (·) to the process with constant values

λ̄ai t. Define T a,n
i (t) =

∑nt
l=1 ∆

a,n
i,l /n. By A2.1, T a,n

i (·) converges weakly to the process

with values ∆̄a
i t = t/λ̄ai . Also, possibly modulo a residual time error term,

Sa,n
i (T a,n

i (t)) = t,

T a,n
i (Sa,n

i (t)) = t.
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This and the weak convergence of T a,n
i (·) imply the asserted weak convergence of

Sa,n
i (·).

The next step is to show the tightness and asymptotic continuity of WLn(·) when
there are no vacations. In the absence of vacations, we can write

(3.12) WLn(t) = WLn(0) +
1√
n

∑
i

nSa,n
i

(t)∑
l=1

∆d,n
i,l − t

√
n+ Zn(t).

The term T v,n(t) of (3.2) is not included since, in this part of the proof, we have
assumed that there are no vacations. For each i, expand the inner sum in (3.12) as

(3.13)
1√
n

nSa,n
i

(t)∑
l=1

[
∆d,n

i,l − ∆̄d,n
i

]
+

1√
n

nSa,n
i

(t)∑
l=1

∆̄d,n
i .

The first term of (3.13) is −∆̄d,n
i wd,n

i (Sa,n
i (t)). Expand the last term in (3.13) as

(3.14)
1√
n
∆̄d,n

i

nSa,n
i

(t)∑
l=1

[
1− ∆a,n

i,l

∆̄a,n
i

]
+

1√
n

∆̄d,n
i

∆̄a,n
i

nSa,n
i

(t)∑
l=1

∆a,n
i,l .

The right-hand sum in (3.14) equals nt minus the time between nt and the last arrival
at or before real time nt. Hence, the right-hand term equals ρni

√
nt plus a residual

time error term.
Summarizing,

(3.15)

WLn(t) = WLn(0) +
∑
i

∆̄d,n
i

[
wa,n
i (Sa,n

i (t))− wd,n
i (Sa,n

i (t))
]

+
√
n

[∑
i

ρni − 1

]
t+ Zn(t) + εn(t).

The hypotheses and the weak convergence of Sa,n
i (·) imply the weak convergence

of the processes on the right of (3.15) to those of (3.7), except possibly that of Zn(·),
with the given definitions of w(·) and b, but without the jump term. If {Zn(·), n <
∞} were not tight and have continuous weak sense limits, then we would have a
contradiction to the facts that Zn(·) can increase only when WLn(t) = 0 and has
jumps of size 1/

√
n only. Thus, by taking a further subsequence if necessary, we can

suppose that Zn(·) converges to the reflection term Z(·) in (3.7). The sequence of
processes defined by (3.15) converges weakly and the limit satisfies (3.7) without the
jump term.

Now, return to the original problem, where there are vacations, and recall that νn1
is the scaled time of the start of the first vacation. For the remainder of this proof,
continue using the assumption that the vacations do not overlap. As noted below (3.2),
this is accomplished by ignoring all but the first if there are overlaps. The alteration
does not change the distribution of the limit processes, since the probability of such
a change on any finite interval goes to zero as n→∞.

By A2.3 and A2.4, the various sequences of times τ s,ni,l , τv,ni,l , i = 1, 2, l = 1, . . . ,

converge weakly and ν̄nl+1−νnl = τv,ni,l /
√
n converges weakly to zero. By A2.3 and the

weak convergence of the sequence of processes defined by (3.15), WLn(νn1−) also con-
verges weakly. Denote the weak sense limits by dropping the superscript n. By A2.3,
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the (τ si,l, l = 1, . . . , i = 1, 2) are mutually independent, and exponentially distributed,

with rate λ̄si for τ si,l. By A2.4, (τvi,l, l = 1, . . . , i = 1, 2) are mutually independent. By
A2.0, A2.1, A2.3, and A2.4, the

(3.16) WL(0), wa
i (·), wd

i (·), τvi,l, τsi,l, i = 1, 2, l = 1, . . . ,

are mutually independent. For each l, νnl converges weakly and νnl+1 − νnl converges
weakly to an exponentially distributed random variable, with rate

∑
i λ̄

s
i , and the

limits are mutually independent and are independent of the random variables in (3.16)
other than {τ si,l; i, l}.

Suppose for the moment that the jumps ξv,ni,l are tight for each i, l. Abusing nota-

tion, let n index a further subsequence along which all of the ξv,ni,l , i = 1, 2, l = 1, . . . ,
also converge weakly, and denote the weak sense limits by dropping the superscript
n. Then, by repeating the analysis which led to (3.15) on each successive intervaca-
tion interval, we are led to (3.7) with Ji(·) defined by (3.8a) and the independence in
(3.8b). Equation (3.7) represents the limit of WLn(·) in the particular sense that its
interjump sections are the weak sense limits of the intervacation sections (3.6) and its
jumps are the limits of the WLn(ν̄nl+1)−WLn(νnl −) (for the chosen subsequence).

By taking a further subsequence, if necessary, we can also suppose that, together
with the other convergences, un(νni,l−), i = 1, 2, l = 1, . . . , converges weakly to random
variables which we call u(νi,l−), i = 1, 2, l = 1, . . .. From the weak convergence of the
un(νni,l−), νni,l, i = 1, 2, l = 1, . . ., we have the weak convergence of the un(νnl −), l =
1, . . ..

We will next show that ξv,ni,l is tight for each i and l and that (3.5) characterizes
the weak sense limits. To simplify the notation, we will start with the first vacation
and let the first vacation be that of source 1. With this simplifying assumption, we
can write τ s,n1,1 = νn1,1 = νn1 , and we will use these variables (and their weak sense
limits) interchangably. By the weak convergence of WLn(·) (with the weak sense limit
of WLn(·) being continuous) when there are no vacations and the weak convergence of
τ s,n1,1 , WLn

1 (τ
s,n
1,1 −) = WLn

1 (ν
n
1−) = un1 (ν

n
1−) converges weakly to the random variable

which we denote by u(νs1,1−). We will show that, under (3.4a),

(3.17) WLn(νn1,1 + τv,n1,1 /
√
n)−WLn(νn1,1)⇒ 0,

and under (3.4b),

(3.18) WLn
2 (ν

n
1,1 + τv,n1,1 /

√
n)⇒ 0,

(3.19) WLn
1 (ν

n
1,1 + τv,n1,1 /

√
n)−WLn

1 (ν
n
1,1) is tight,

and the weak sense limit (along the selected weakly convergent subsequence) of (3.19)
is defined by (3.5). Since the (scaled) vacation interval in question is [νn1,1, ν

n
1,1 +

τv,n1,1 /
√
n), strictly speaking, the arguments in the functions in (3.19) should be (νn1,1+

τv,n1,1 /
√
n)−, and analogously for (3.17) and (3.18). However, since the processes

defined by WLn(t) − WLn(t−) and un(t) − un(t−) converge weakly to the “zero”
process, one can always replace t− by t without changing any of the weak sense
limits. We will do this to simplify the notation.

Since source 2 is being polled during this vacation, for t ≤ τv,n1,1 we can write

(3.20) WLn
2 (ν

n
1,1 + t/

√
n) =

[
WLn(νn1,1)− un(νn1,1)

]− t+T v,n(νn1,1 + t/
√
n)+ Ā1,n

2,1 (t).
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We will next show that the process defined by

Ā1,n
i,1 (t ∧ τv,n1,1 )− ρni (t ∧ τv,n1,1 )

converges weakly to the “zero” process. This is what was meant by the statement
below (3.4a) to the effect that work can be assumed to arrive continuously during a
vacation and it is the last assertion (k) of the theorem. Note that the local fluid time
scale defined below (3.3) is used in (3.20), so that t denotes an interval of length

√
nt

in real time or t/
√
n in scaled time.

Use the representation (3.3) (dropping the − in the indices of summation without
changing the end result) to write Ā1,n

i,1 (t) as

(3.21)

1√
n

nSa,n
i

(νn
1,1+(t∧τv,n

1,1 )/
√
n)∑

l=nSa,n
i

(νn
1,1)+1

[
∆d,n

i,l − ∆̄d,n
i

]

+
1√
n

nSa,n
i

(νn
1,l+(t∧τv,n

1,1 )/
√
n)∑

l=nSa,n
i

(νn
1,1)+1

∆̄d,n
i .

The first term in (3.21) goes weakly to zero by the tightness of νni,l, τ
v,n
i,l in n, the weak

convergence of Sa,n
i (·), and condition A2.1. We need to characterize the right-hand

term of (3.21). Write it as

∆̄d,n
i√
n

nSa,n
i

(νn
1,1+(t∧τv,n

1,1 )/
√
n)∑

l=nSa,n
i

(νn
1,1)+1

[
1− ∆a,n

i,l

∆̄a,n
i

]

+
∆̄d,n

i

∆̄a,n
i

√
n

nSa,n
i

(νn
1,1+(t∧τv,n

1,1 )/
√
n)∑

l=nSa,n
i

(νn
1,1)+1

∆a,n
i,l .

Just as for the first term in (3.21), the first term in the above expression goes weakly
to the “zero” process as n → ∞. The real time difference between the arguments in
the upper and lower indices in the last expression is

√
n[t ∧ τv,n1,1 ]. Hence, the sum in

the second term times 1/
√
n is t∧ τv,n1,1 , modulo a residual time error term. Thus, the

difference between the second term and

(3.22)
∆̄d

i

∆̄a
i

(
t ∧ τv,n1,1

)
= ρi

(
t ∧ τv,n1,1

)
converges weakly to the “zero” process.

The above computations concerning the arriving scaled work during the vacation
show that the net change ξv,n1,1 in the total workload is tight, and that we can suppose,
asymptotically and in the local fluid time scale defined below (3.3), that scaled work
arrives at the queues continuously (i.e., as a fluid process) at the mean rate ρi during
the vacation.

Consider the case (3.4a). By what has just been proved, the scaled work process
arriving to queue 1 during the first vacation is arbitrarily well approximated (in the
local fluid time scale) by (3.22) for i = 1. Similarly, the scaled work that departs queue
2 during that time (local fluid time scale) is (asymptotically) equal to τv,n1,1 minus
the idle time in the local fluid time scale. However, due to the fluid approximation
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and the condition (3.4a), this idle time is zero, asymptotically. Thus, by the above
computation, the net increase in the workload (input minus output) of queue 2 during
the vacation is (asymptotically) equal to [ρ2 − 1]τv,n1,1 . Thus, by the heavy traffic
condition A2.2, adding the changes in the two queues, we see that the net change in
the total workload during the vacation converges weakly to zero as n→∞.

Now, consider the condition (3.4b), continue to use the approximation (3.22), and
recall the definition of τ̂v,ni,l from (3.4b). It is then clear that τv,ni,l − τ̂v,ni,l is the net
contribution to T v,n(·) during this vacation interval, and (3.5) follows from this and
the results of the last paragraph. Let ξv1,1 denote the weak sense limit of ξv,n1,1 . Thus,
we have obtained (3.7) and (3.8) and verified (i) up to and including the time of the
first vacation.

Now, withWLn
i (ν

n
1,1+τv,n1,1 /

√
n) well defined and tight, restart theWLn

i (·) at scaled
time νn1,1 + τv,n1,1 /

√
n and repeat the above approximation and limit procedure. Then

an induction argument yields the asserted limit relations for all of the intervacation
sections and jumps. Take a weakly convergent subsequence of Ψn in the theorem
statement, and obtain (3.7) and (3.8) by concatenating the intervacation sections.

Next, we will prove the (asymptotic) linear relationship (e) between WLn
i (·) and

xni (·). We say that a sequence of real-valued processes qn(·) is bounded in probability
if, for each T > 0,

(3.23) lim
N→∞

lim sup
n

P

{
sup
t≤T
|qn(s)| ≥ N

}
= 0.

It will be seen that the tightness of WLn(·) implies that xni (·) satisfies (3.23). Let

us assume this for the moment. We will use the representation (2.3). Write ∆d,n
i,l =

∆̄d,n
i,l + [∆d,n

i,l − ∆̄d,n
i,l ]. With this representation, expand each of the two terms in

the brackets in (2.3) into two components, analogous to what was done to get the
expression below (3.21). The first component of the expansion of (say) the first term
inside the brackets in (2.3) is

(3.24) ∆̄d,n
i xni (t).

The second component of (again) the first term inside the brackets of (2.3) is

(3.25)
1√
n

Ln
i (t)+

√
nxn

i (t)−1∑
l=Ln

i
(t)

[
∆d,n

i,l − ∆̄d,n
i,l

]
,

and it converges weakly to the “zero” process by the weak convergence assumption
A2.1 on wd,n

i (·) since xni (·) is assumed to satisfy (3.23).
Note that the difference between the two terms inside the brackets of (2.3) is a

residual time error term εn(t), where εn(·) converges weakly to the “zero” process,
and this is true irrespective of whether or not (3.23) holds for xni (·).

By the tightness of the sections of WLn(·) between the (l− 1)st and lth vacations
(for each l) and of the associated set of jumps, (3.23) holds for WLn

i (·), hence it holds
for the process defined by the first term in the brackets in (2.3). Suppose that (3.23)
does not necessarily hold for xni (·). The expansion of the first term in (2.3) into (3.24)

and (3.25) still holds. By the assumption A2.1 on the wd,n
i (·), the fact that the upper

index of summation in (3.25) is no bigger than nSa,n
i (·) + √nxni (0) and the weak

convergence of Sa,n
i (·) and of xni (0), the process defined by (3.25) satisfies (3.23).
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Then, since the sum of (3.24) and (3.25) is the first term in (2.3), which satisfies
(3.23), so must the process defined by (3.24). Hence xni (·) satisfies (3.23). The fact
that (3.23) holds for xni (·) and the assumption A2.1 imply that (3.25) converges weakly

to the “zero” process. Hence, WLn
i (·) is asymptotically equivalent to ∆̄d,n

i xni (·).
Only the nonanticipativity (j) needs to be proved. But this is a consequence of

the independence in (3.16)
More than 2 sources. Suppose that there is an arbitrary number of sources,

with the natural extensions of the assumptions A2.0–A2.5 and the notation holding.
Then, on any (scaled) interval [0, T ], with a probability that goes to one as n → ∞,
there is still only a finite number of vacations and at most one source can be on
vacation at a time. Because of this, the analogues of (3.4) and (3.5) can easily be
written.

Consider the lth vacation of source i. If

τv,ni,l <
[
WLn(νni,l−)−WLn

i (ν
n
i,l−)

]
+
∑
j =i

Āi,n
j,l ,

then the method of Theorem 3.1 can be used to show that (asymptotically) the va-
cation at source i ends before the other queues are emptied, and the vacation has no
immediate effect on the total workload. On the other hand, if

τv,ni,l >
[
WLn(νni,l−)−WLn

i (ν
n
i,l−)

]
+
∑
j =i

Āi,n
j,l ≡ τ̂v,ni,l ,

then there is (asymptotically) a forced idle time during the vacation. Dropping the n
superscripts, the increase in scaled work during the lth vacation of source i has the
asymptotic form

ξvi,l =


τvi,l − [WL(νi,l−)−WLi(νi,l−)]− τvi,l

∑
j =i

ρj




+

which equals [
ρiτ

v
i,l − [WL(νi,l−)−WLi(νi,l−)]

]+
,

where WLi(νi,l−) is the weak sense limit of (a suitable weakly convergent subsequence
of) WLn

i (ν
n
i,l−). This is the only change in Theorem 3.1.

The control form A2.6a. The control form specified by A2.6a seeks to force the
relationship (asymptotic) xn2 (t) ∼ φ(xn1 (t)), at least when possible between vacations,
when both sources are available. The control, in practice, might be based on either
the queue sizes or on the workloads, depending on what information is available
to the controller at the server. Theorem 3.1 implies that we can do either, due
to the asymptotic equivalence WLn

i (·) ∼ ∆̄d,n
i xni (·). To a control represented by

the function φ(·) in A2.6a, there is one in terms of the workload in the sense of
asymptotic equivalence. We will now see that A2.6a is asymptotically equivalent to
the existence of a continuous and nondecreasing function θ(·) such that we poll source
1 if WLn

1 (t) ≥ θ(WLn(t)) and poll source 2 otherwise, provided that the source is
available.

To get θ(·), we use the asymptotic equivalence xn2 (t) ∼ φ(WLn
1 (t)/∆̄

d
1) and

WLn
2 (t) ∼ ∆̄d

2φ(WLn
1 (t)/∆̄

d
1).
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Since, asymptotically, using the policy φ(·) between vacations,

WLn(t) ∼
∑
i

WLn
i (t) = WLn

1 (t) + ∆̄d
2φ(WLn

1 (t)/∆̄
d
1),

we can define an “asymptotic inverse” θ(·) to the function φ(·) in that (between
vacations) we poll source 1 if WLn

1 (t) ≥ θ(WLn(t)) and poll source 2 otherwise. The
inverse is obtained from

WL−WL1 = ∆̄d
2φ(WL1/∆̄

d
1).

Note that we could have started with θ(·) and derived φ(·) from it: i.e., suppose
that we are given a nonnegative, continuous, and nondecreasing function θ(·) satisfying
θ(WL) ≤WL, and use the following rule: between vacations, poll source 1 if WLn

1 (t) ≥
θ(WLn(t)) and poll source 2 otherwise. This can be turned into an (asymptotic) rule
based on the xni (·) by polling source 1 if

xn1 (t)∆̄
d
1 ≥ θ(xn1 (t)∆̄

d
1 + xn2 (t)∆̄

d
2)

and polling source 2 otherwise.
The function φ(·) in terms of the numbers queued is often (but certainly not al-

ways) the more pertinent in applications. However, the dynamic programming equa-
tion will be in terms of the total workload and the system (3.7), since the basic weak
convergence result is in terms of the total workload. The total workload formulation
is also much more convenient from the computational point of view due to the “state
space collapse” for which, no matter how many sources there are, the problem is one
dimensional. Thus, it is important to be able to travel back and forth between the
queued number and total workload forms.

Note on realizing the relationship WLn
1 (t) ∼ θ(WLn(t)), or its equiva-

lent in terms of the number queued, under A2.6. Suppose that both sources
are available at scaled time t, and that we wish to change WLn

1 (·) to the value
WL∗,n

1 > WLn
1 (t) as quickly as possible. In heavy traffic, by polling queue 2, the

scaled queue of source 1 increases at a mean rate of λ̄a1∆̄
d
1

√
n in scaled time. Thus,

it takes approximately [WL∗,n
1 −WLn

1 (t)]/[λ̄
a
1∆̄

d
1

√
n] units of scaled time for the tran-

sition. Thus, in the heavy traffic limit, with neither source on vacation, any desired
change can be realized instantaneously.

The relationship WLn
1 (t) ∼ θ(WLn(t)) cannot be realized arbitrarily well, uni-

formly (for large n) on the entire interval between vacations. This is because the
uncontrollable changes in the WLn

i (·) during a vacation will cause it to be violated
for a short interval just after the vacation ends, while we “catch up.” But there are
εn → 0 as n→∞ such that the sections of the differences

(3.26a) xn1 (·)−
θ(WLn(·))

∆̄d
1

and

(3.26b) xn2 (·)−
WLn(·)− θ(WLn(·))

∆̄d
2

starting (scaled time) εn after a vacation begins and stopping at the start of the
next vacation converge to the zero process as n → ∞. This will be sufficient for our
purposes.
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Using the control θ(·) in A2.6b, we can write the ξvi,l of (3.5) as

(3.27a) ξv1,l ≡
[
(1− ρ2) τ

v
1,l − [WL(ν1,l−)− θ(WL(ν1,l−))]

]+
and

(3.27b) ξv2,l ≡
[
(1− ρ1) τ

v
i,l − θ(WL(ν2,l−))

]+
.

The following theorem codifies the last part of the above discussion and the proof
follows from the computations done in Theorem 3.1. The last sentence of the theorem
holds because of the weak convergence of the intervacation sections and the fact that,
between vacations, WL(·) behaves like a Wiener process, provided that σ2

α,i > 0 for
some α, i.

Theorem 3.2. Assume the conditions of Theorem 3.1 and A2.6a as well. Then
there are positive real numbers εn → 0 such that xn2 (·)− φ(xn1 (·)) converges weakly to
the “zero” process on each interval [νni,l + εn, ν

n
i,l+1]. So do WLn

1 (·) − θ(WLn(·)) and
the processes defined in (3.26), where θ(·) is defined from φ(·) as above the theorem.
Now assume A2.6b in lieu of A2.6a. Then, excluding an arbitrarily small neigh-

borhood of the times where WLn(t) is a point of discontinuity of θ(·), the last sen-
tence of the previous paragraph holds for θ(·). Assume that at least one of the
σ2
α,i, α = a, d, i = 1, 2, is positive. Given ε > 0 and t1 > 0, let Tn

ε (t1) denote the
Lebesgue measure of the closure set of time points on [0, t1] at which WLn(t) is within
ε of a point of discontinuity of θ(·). Then, for each δ > 0 and t1 > 0,

(3.28) lim
ε→0

lim sup
n

P {Tn
ε (t1) ≥ δ} = 0.

Correlated vacations of the sources. Up to now, we have supposed that the
vacation processes of the two sources are independent of each other. This would be
the case if they were due to movement in independent environments or to extraneous
interference if the sources were far apart. If the vacations were due to extraneous
interference which affected the sources in a similar manner, then the vacation intervals
would be correlated. The main problem in introducing such correlation is algebraic,
in that it complicates the expressions.

Let us first suppose that, in addition to the mutually independent vacations spec-
ified by A2.3 and A2.4, there are also simultaneous vacations of the two sources, as
defined by the following condition.

A3.1. For each n, the intervals between the end of a simultaneous vacation
and the start of the next one are denoted by nτm,n

l , l = 1, . . . . They are mutually
independent, exponentially distributed, independent of all the other “driving” random
variables and have rate λ̄m,n/n, where λ̄m,n converges to λ̄m > 0 as n→∞.

A3.2. For each n, there are mutually independent and identically distributed
random variables τmv,n

l , l = 1, . . . , such that the duration of the lth simultaneous
vacation interval is

√
nτmv,n

i,l . Also, τmv,n
l converges weakly to a random variable

τmv
l as n→∞. The τmv,n

l , l = 1, . . . , are independent of all other “driving” random
variables.

If A3.1 and A3.2 are added to the conditions of Theorem 3.1 or Theorem 3.2,
then the results would be the same, except for the addition of another (independent)
jump process Jm(·). Let νm,n

l denote the (scaled) starting times of the successive
mutual vacations, and let νml denote the weak sense limits. The weak sense limit (in
the sense used in Theorem 3.1) equation is

(3.29) WL(t) = WL(0) + bt+ w(t) +
∑
i

Ji(t) + Jm(t) + Z(t),
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where

(3.30) Jm(t) =
∑

l:νm
l

≤t

ξml ,

where ξml is the weak sense limit of (see (3.3))

(3.31) Ām,n
l =

1√
n

nSa,n
1 ((νm,n

l
+τm,n

l
/
√
n)−)∑

l=nSa,n
1 (νm,n

l
−)+1

∆d,n
1,l +

1√
n

nSa,n
2 ((νm,n

l
+τm,n

l
/
√
n)−)∑

l=nSa,n
2 (νm,n

l
−)+1

∆d,n
2,l ,

and the limit is just τml , owing to the analysis done for the Āj,n
i,l in Theorem 3.1 and

A2.2.

4. The limit control problem. The limit dynamical model. Theorem
3.1 enables us to write the correct limit control problem. As usual in heavy traffic
modeling, the aim is to use the limit control problem to get good controls for the
physical problem and approximations to its optimal costs, under heavy traffic. The
limit dynamics are defined by (3.7) and (3.8), where the jumps are defined by (3.5),
where an admissible control u(·) satisfies u(t) ≤ WL(t) and is nonanticipative in
the sense that it is a measurable process, and, for each t, u(t) is independent of
w(t + ·) − w(t), Ni(t + ·) − Ni(t−), i = 1, 2. Since WL(·) is continuous at all t where
there are no jumps and has a left-hand limit at t if there is a jump there, WL(t−)
is well defined for all t. However, u(t−) is not necessarily defined. If the control for
(3.7), (3.8) is defined via a function such as the θ(·) in A2.6b, then we would have
u(t) = θ(WL(·)) and u(t−) is well defined for almost all t, which ensures that u(νi,l−)
is well defined with probability 1. This is one of the main reasons for our interest in
control functions such as θ(·). Alternatively, we could write the jumps as

(4.1a) ξv1,l =
[
ρ1τ

v
1,l − [WL(ν1,l−)− u(ν1,l)]

]+
,

(4.1b) ξv2,l =
[
ρ2τ

v
2,l − u(ν2,l)

]+
,

where u(·) is a “predictable” process [15, 23]. All that is important is the non-
anticipativity as defined above, so that, for each t, u(t) is independent of any jump
that might occur at t.

The cost function. Let ci(·) be a strictly increasing and continuous real-valued
function on [0,∞) with ci(0) = 0, and satisfying ci(x) ≤ Kx +K for some K < ∞.
We will work with a discounted cost function. The cost rate will depend on whether
we are penalizing queued jobs or queued workload. In the latter case, we penalize the
workloads individually and simply use the cost rate∑

i

ci(WLn
i (·)) = c1(u

n(·)) + c2(WLn(·)− un(·)) ≡ c(WLn(·), un(·)).

In the former case, we would like to penalize the queue sizes individually, i.e., with a
cost rate

∑
i ci(x

n
i (t)). Since, in general, we do not have a weak convergence result for

the xni (·) for an arbitrary admissible control policy, we are still forced to work with
the workload formulation. Then we asymptotically approximate in terms of workload
as

(4.2)
∑
i

ci(x
n
i (t)) ≈ c1

(
un(t)

∆̄d,n
1

)
+ c2

(
WLn(t)− un(t)

∆̄d,n
2

)
≡ c(WLn(t), un(t)).
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Let β > 0 be the discount factor. The cost function for the limit system will be

(4.3a) Wβ(WL(0), u(·)) = E

∫ ∞

0

e−βtc(WL(t), u(t))dt,

and for the physical system it will be

(4.3b) Wn
β (WLn(0), un(·)) = E

∫ ∞

0

e−βtc(WLn(t), un(t))dt.

Define Vβ(WL(0)) = infuWβ(WL(0), u(·)) and V n
β (WLn(0)) = infun Wn

β (WL(0), un(·)),
where the un(·) and u(·) are admissible. Under a feedback control θn(·) and associated
polling policy satisfying A2.6b, we can write

(4.4) Wn
β (WLn(0), θn(·)) = E

∫ ∞

0

e−βtc(WLn(t), θn(WLn(t))dt.

A restriction of the class of controls and a redefinition of the inf. As
noted, we would like to show that a nearly optimal control for the limit problem is
nearly optimal for the physical problem for large n and that

(4.5) V n
β (WLn(0))→ Vβ(WL(0))

ifWLn(0) converges weakly toWL(0), analogously to what was done in [2, 20, 21]. This
is hard to do, since the control appears in the dynamics (3.7) only via the magnitude
of the jumps.

The usual method [2, 20, 21] for showing (4.5) involves writing the control in
some form such that the sequence of optimal (or ε-optimal) controls for the physical
problem is tight, and any weak sense limit of the (state process, control process) is an
admissible limit control problem. For example, suppose that we have a problem where
the control is a vector-valued function which takes values in a compact set. Then,
we would write the controls in relaxed control form [19] with the weak topology on
them. Since any sequence of such relaxed controls is tight (in the weak topology
which is normally used), there is always a weakly convergent subsequence. One could
attempt the same thing here. The sequence of relaxed control representations of the
control will be tight. The problem is that our u(·) is the derivative of the relaxed
control. This derivative is defined only almost everywhere, and in particular, it is not
guaranteed that the weak sense limit of un(νni,l−) would be u(νi,l−), where this u(·)
is the derivative of the weak sense limit of the relaxed control representations. The
problem is that, while the cost rate can be written as a linear function of the relaxed
control, the jump distribution depends only on specific values of the un(·).

One can circumvent these difficulties. However, in order to apply any control
which is nearly optimal for the limit system to the physical system, the form in which
u(·) appears in (3.5) essentially implies that it should be a feedback control which is
continuous “most of the time.” Because of these facts, we will be concerned with the
more restricted class of controls of A2.6b defined by the following assumption. It is
seen from the examples in section 5 and numerical data (taken without the restriction
in A4.1) that A4.1 is not restrictive.

A4.1. Given an integer M , let Θ denote a class of functions, each member
of which satisfies A2.6b, has at most M points of discontinuity, and on each finite
interval [0,WL], the functions in Θ are equicontinuous between discontinuities. The
controls will be restricted to such a class, with the polling policy being as defined in
A2.6b.
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Fix the class Θ for some M and modulus of equicontinuity. Redefine V n
β (WL(0))

and Vβ(WL(0)) to be the infima over controls in the class Θ.
A slight alteration of the proof of Theorem 3.1 yields the following. Assume

the conditions of Theorem 3.1 and let θn(·) ∈ Θ. Choose the weakly convergent
subsequence such that θn(·) also converges (in the Skorohod topology) to, say, θ(·).
Then the conclusions of Theorems 3.1 and 3.2 hold. Suppose, in addition, that the
function whose expectation is being taken in (4.4) is uniformly (in n) integrable. Then
the weak convergence in Theorems 3.1 and 3.2 implies that the expected value in (4.4)
converges to the expected value for the controlled limit system. We state this in the
following more restrictive way, since that is the way it will be verified. The proof is
simpler than those in [2, 20, 21] for other control problems under heavy traffic, owing
to the more restricted class of allowed controls. The proof implies that a good control
for the limit problem will be good for the physical problem under heavy traffic.

Theorem 4.1. Assume A4.1 and the conditions of Theorem 3.1. Let ci(·) satisfy
the conditions imposed at the beginning of this section. Suppose that there is a real
C1 such that

(4.6) sup
θ(·)∈Θ

E |WLn(t)|2 ≤ C1t+ C1.

Then the function whose expectation is being taken in (4.4) is uniformly integrable
and

V n
β (WLn(0))→ Vβ(WL(0)).

Comments on the proof. Let ε > 0 be small and arbitrary. Let θε,n(·) and
θε(·) be ε-optimal controls in Θ for the processes WLn(·) and WL(·), with the initial
conditions WLn(0) and WL(0), respectively. Condition A4.1 implies that, by choosing
a subsequence if necessary, we can suppose that θε,n(·) converges to some θ̄(·) ∈ Θ in
the Skorohod topology. Then

ε+ V n
β (WLn(0)) ≥Wn

β (WLn(0), θε,n(·))→Wβ(WL(0), θ̄(·)) ≥ Vβ(WL(0)).

Thus,

lim inf
n

V n(WLn(0)) ≥ Vβ(WL(0)).

Now, apply θε(·) to WLn(·) to get

V n
β (WLn(0)) ≤Wn

β (WLn(0), θε(·))→Wβ(WL(0), θε(·)) ≤ Vβ(WL(0)) + ε.

These inequalities yield the theorem.
On the condition (4.6). Condition (4.6) is not a consequence of the other

conditions. Write (3.15) for the general case where the vacations are included as

WLn(t) = hn(t) + Zn(t).

It follows from the estimates given for the general Skorohod problem in [10, Theorem
2.2.] that there is a real C such that

WLn(t) ≤ C sup
s≤t
|hn(s)| for all t.
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Thus, a sufficient condition for (4.6) is that the following inequalities hold.

(4.7) sup
n

E |WLn(0)|2 <∞,

(4.8) E sup
s≤t
|wα,n

i (Sa,n
i (s))|2 = O(t), α = a, d, i = 1, 2,

(4.9) J̄n(t) =
∑
j

E

∣∣∣∣∣∣
∑

k:νn
j,k

≤t

ξv,nj,k

∣∣∣∣∣∣
2

= O(tp) for some p > 0.

Dealing with (4.8) and (4.9) in detail will take us far afield, but they do hold
under quite broad conditions. To illustrate one of the possibilities, we will give some
of the details under the following condition.

A4.2. For each n, the random variables (∆α,n
i,l , l <∞) are mutually independent

and identically distributed for each i = 1, 2, α = a, d, and the absolute third moments
are uniformly bounded. There are ∆̄α,n

i and ∆̄α
i such that E∆a,n

i,l = ∆̄α,n
i → ∆̄α

i ,

α = a, d. Also, the second moments of τv,ni,l are uniformly bounded.
Theorem 4.2. Assume A2.3, A2.4, and A4.2. Then (4.8) and (4.9) hold.
Proof. First, we consider (4.8). Fix α and i and define ψα,n

i,l = (1−∆α,n
i,l /∆̄α,n

i ).

Let Fα,n
i,l denote the minimal ν-algebra which measures {ψα,n

i,j , j ≤ l}, and write Eα,n
i,l

for the associated conditional expectation. The ψα,n
i,l are martingale differences in

that Eα,n
i,l ψα,n

i,l+1 = 0 with probability one for all l. There is C2 <∞ such that

Eα,n
i,l

∣∣∣ψα,n
i,l+1

∣∣∣2 ≤ C2.

Define

Nα,n
i (t) =

1

n
×min

{
n :

n∑
l=1

∆α,n
i,l ≥ nt

}
.

The Sα,n
i (t) and Nα,n

i (t) will differ by at most 1/n. The Nα,n
i (t) have the advantage

that they are stopping times with respect to the filtrations Fα,n
i,l . In particular, {ω :

Nα,n
i (t) ≥ l} ∈ Fα,n

i,l−1. We have

(4.10) Emax
s≤t
|wα,n

i (Sα,n
i (s))|2 ≤ E max

m≤nNα,n
i

(t)

1

n

∣∣∣∣∣
m∑
l=1

ψα,n
i,l

∣∣∣∣∣
2

.

Owing to the martingale properties, the right-hand side of (4.10) is bounded by
C2ENα,n

i (t). Thus, we need to bound ENα,n
i (t).

For an integer m > 0, write

(4.11)

m ∧ nNa,n
i (t)

n
=

1

n

m∧(nNa,n
i

(t))∑
l=1

1 =
1

n

m∧(nNa,n
i

(t))∑
l=1

ψa,n
i,l +

1

n∆̄a,n
i

m∧(nNa,n
i

(t))∑
l=1

∆a,n
i,l .
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The expectation of the first term on the right is zero. Dropping that term and letting
m→∞ yields

(4.12)

ENa,n
i (t) =

t

∆̄a,n
i

+
1

n
E [(first time of arrival to source i at or after nt− nt)] .

Thus

ENa,n
i (t) =

t

∆̄a,n
i

+ δn,

where limn δn = 0 and (4.8) holds. (The proof of the renewal theorem for the “excess
life” in [13, pp. 192–193] implies that δn → 0.)

Now turn to the proof of (4.9). To bound (4.9), we can use the expression

(4.13) E
∣∣∣ξv,nj,k

∣∣∣2 ≤∑
i

1

n
E

∣∣∣∣∣∣
nSa,n

i
(νn

j,k+τv,n
j,k

/
√
n)∑

l=nSa,n
i

(νn
j,k

)+1

∆d,n
i,l

∣∣∣∣∣∣
2

.

Writing ∆d,n
i,l = [∆d,n

i,l − ∆̄d,n
i ]+∆̄d,n

i in (4.13) and splitting the upper bound in (4.13)

into the two corresponding parts yields a bound on E|ξv,nj,k |2 as (twice) the sum of

∑
i

[
∆̄d,n

i

]2
E
∣∣∣wd,n

i (νnj,k + τv,nj,k /
√
n)− wd,n

i (νnj,k)
∣∣∣2 ≤ C2

∑
i

[
∆̄d,n

i

]2
Eτv,nj,k /

√
n

and

∑
i

[∆̄d,n
i ]2

n
E
[
#arrivals at queue i in real time

[
nνnj,k, nν

n
j,k +

√
nτv,nj,k

]]2
.

The first expression is O(1/
√
n). Following the idea in the expansion (4.11), for

the second expression we get the bound, for some real C3,

C3E
[
τv,nj,k

]2
+ C3E [a residual time term]

2
/n.

However, by the cited proof of the renewal theorem for the “excess life” in [13, pp. 192–
193], and the third moment condition in A4.2, the mean square value of the residual
time term is bounded, uniformly in all indices.

We have obtained a bound for the mean square value of each of the jumps. To
complete the proof, we need to average over the number of vacations on real time
[0, nt]. We do this by ignoring the vacation durations in computing the distribution of
the number of vacations on any real time interval [0, nt], which gives an upper bound.
Then the number has a Poisson distribution for each n, with the rate parameter
being bounded in n, and the number is independent of the jump sizes. If there are L
vacations on [0, nt], then (4.9) is bounded by L2 times the bound on the mean square
value of each jump. Finally, using the Poisson distribution, average over L to get
(4.9) for p = 2.

The Bellman equation for the limit system. Let L denote the differen-
tial generator of the pure diffusion part of (3.7): i.e., for smooth real-valued f(·),
Lf(WL) = σ2fww(WL)/2 + bfw(WL). Write the control in feedback form u(t) =
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θ(WL(t)) ≤WL(t) for some measurable function θ(·). The jump part of the differential
operator acting on a measurable real-valued function f(·) is

(4.14)
∑
i

λ̄siE [f(WL+ ξvi )− f(WL)] ,

where ξvi is the jump due to a vacation of source i, and E denotes the expectation
of the jump given the WL and the control just before the start of the jump. The
boundary condition is fw(0) = 0.

Define V̄β(WL) to be the inf of the cost over all admissible controls, not only those
of the form in (A4.1). Define the function
(4.15)

H(V̄β ,WL) = min
θ(WL)≤WL

{
c(WL, θ(WL)) +

∑
i

λ̄siE
[
V̄β(WL+ ξvi )− Vβ(WL)

]}
.

The formal Bellman equation is the partial differential integral equation

(4.16) LV̄β(WL)− βV̄β(WL) +H(V̄β ,WL) = 0,

with the boundary condition V̄β,WL(0) = 0. The subscript WL denotes the derivative.

Conjecture and assumption. We have not been able to find anything in the
literature concerning the PDE (4.16), where the jump magnitudes are controlled. To
fully justify the restriction A4.1, it is necessary to show both that (4.16) has a unique
(either classical or viscosity sense) solution which is the minimal cost and that the
minimizing θ(·) in (4.15) is of the type in A2.6b. This seems to be a very reasonable
expectation, although we have not been able to demonstrate it. As noted in the next
section, it is essentially obvious in certain special cases, e.g., where ci(x) = xi, and we
expect that it holds under broad conditions on c(·). Note that this is not an impulse
control problem. The jump times are those of a Poisson process.

Thus, we assume that our conjecture is true, namely, that the minimum cost
satisfies (4.16) and that the optimal control, given by the minimizer in (4.15), satisfies
A2.6b. Under this assumption, an optimal control for the limit problem is nearly
optimal for the physical problem under heavy traffic if the controls for the physical
problem are restricted to a large enough class of the type in A4.1.

5. Extensions and comments. In special cases, the weak convergence results
and the form of the limit problem suggest nearly optimal strategies for the physi-
cal problem, without much additional analysis. A case of current interest will be
discussed.

Minimizing the total expected workload. Suppose that the cost rates ci(·),
written in terms of workload, satisfy ci(WLi) = WLi. Then c(WL, θ(WL)) = WL
and the control problem is the minimization of the expectation of the integral of the
discounted total workload. The mean total workload EWL(t) for the limit problem
is minimized, uniformly in t, by using the policy θ(·) that minimizes the mean jump,
namely,

(5.1) Q := λ̄s1E [ρ1τ
v
1 − [WL− θ(WL)]]

+
+ λ̄s2E [ρ2τ

v
2 − θ(WL)]

+
.

Example: The case of exponentially distributed vacation intervals. As an example,
assume that τvi is exponentially distributed with parameter vi. Note that for any real
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number y and any random variable τ , exponentially distributed with parameter w,
we have

E(τ − y)+ = w

∫ ∞

y

e−wx(x− y)dx = w

∫ ∞

0

e−w(y+z)zdz =
e−wy

w
.

Denote for i = 1, 2, j = 1, 2, j �= i,

wi =
vi

1− λ̄aj /λ̄
d
j

.

Then we obtain

Q =
λ̄s1e

−w1(WL−θ)

w1
+

λ̄s2e
−w2θ

w2
.

Thus, for each WL, Q is convex with respect to θ, and its minimum is obtained at
θ for which dQ(θ)/dθ = 0, provided that this solution satisfies θ ∈ (0,WL). If it
does not, then the minimum over θ ∈ [0,WL] is obtained on one of the boundaries.
Differentiating with respect to θ yields

λ̄s1e
−w1(WL−θ) − λ̄s2e

−w2θ = 0.

Solving this equation yields

θ(WL) =
log(λ̄s2/λ̄

s
1)

w1 + w2
+

w1

w1 + w2
WL.

A nearly optimal policy θ(·) for the limit problem should be defined by

θ∗(WL) =
(
min

(
WL,

log(λ̄s2/λ̄
s
1)

w1 + w2
+

w1

w1 + w2
WL
))+

,

and this is borne out by numerical solutions.
Example: The symmetrical case. In the special case where the two sources have

the same rates, it is obvious that θ(WL) = WL/2. Thus, under the conditions of The-
orem 3.1 and the uniform integrability conditions of Theorem 4.1, the minimization
of (5.1) yields a nearly optimal strategy for large n.

No vacations. The asymptotic optimality of the cµ-rule. Suppose that
there are no vacations and the basic desired cost rate is c̄1x

n
1 + c̄2x

n
2 , where c̄i > 0.

Write the limit form of the cost rate in terms of the workload as

(5.2) λ̄d1 c̄1θ(WL) + λ̄d2 c̄2[WL− θ(WL)].

The minimizer of (5.2) is just the cµ-rule. Namely, poll source 1 if λ̄d1 c̄1 > λ̄d2 c̄2 and
there are jobs there, and conversely for source 2. Under the conditions of Theorem 3.1
and the uniform integrability conditions, such a rule would be asymptotically optimal
for the physical system. In this case, the limit workload does not depend on the
polling policy, only the cost rate does. This is an asymptotic form of the well-known
cµ-rule [31]. The asymptotic optimality of this rule under heavy traffic was given in
[30].

The cµ-rule gives priority to one of the queues, and this might lead to unac-
ceptably long waits in the nonpriority queue. This can be alleviated with a nonlinear
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weighting. For example, queue 1 might have a smaller cost rate than queue 2 for mod-
erate queue lengths. But to discourage the complete priority of queue 1, we might
use a nonlinear cost rate for queue 2.
Remark. Note that the optimal policies in all the examples in this section indeed

satisfy assumption A4.1, which is required in Theorem 4.1. Thus the class of policies
described by A4.1 is rich enough to contain an optimal policy within it for these
asymptotic problems.

6. Stability.
Definition: Stability, uniformly in n for large n. Suppose that there

are real n0 and W̄ such that

E
[
time for WLn(t), t ≥ t0, to return to the value WLn(t) ≤ W̄

∣∣
data to real time nt0,WLn(t0) = q

] ≤ F (q)

for all n ≥ n0, t0, q, where F (q) is bounded on each bounded q-set. Then we say that
WLn(·) is stable, uniformly in n.

Definition: Stability for fixed n. Fix n, and suppose that the above
conditional mean return time property holds for all q and t0. Then, for that value of
n, the queue is said to be stable.

We will use the following assumption, a modification of A2.2.

A6.1. There is a real b0 < 0:
√
n

[∑
i

ρni − 1

]
≤ b0 for all n.

Comments on stability. Under A6.1, it is trivial to prove the stability of the
weak sense limit system (3.7) using classical stochastic Liapunov function methods, as
in [14, 16, 17]. Stability is one of the most important properties of physical systems,
and should be proved under broad conditions. It is essentially an assertion on the
robustness of the system, and should hold under reasonable perturbations of the basic
data. Stability of the physical system is not automatically guaranteed by stability of
the weak sense limit. The technique to be employed is versatile and gets the desired
stability property, uniformly in reasonable perturbations of the basic data, in the
sense that the function F (q) will not depend on the exact form of the data, under a
reasonable mixing-type condition. The first definition above concerns large n. It will
be seen that if there are no vacations then we can set n0 = 1 in that definition, under
broad conditions on the data.

Under the conditions of Theorem 3.1, the ratio of time on vacation to total time
goes to zero as n → ∞. If n is fixed and small, then it is conceivable that this ratio
would be large enough so that the accumulation of data during the vacations will not
be offset by the processing between vacations, as is necessary for stability. However,
from the point of view of stability with vacations, there is an equivalence between
large n and small λ̄si . This explains the last assertion of Theorem 6.2.

First, we will provide the motivation for the perturbed Liapunov function ap-
proach. Then it is used for the problem without vacations and stability uniformly
in n (not just in large n) is proved. Then vacations are added. We will simplify the
algebra by supposing that arrivals to the queues can occur only at multiples of (real
time) δ > 0, which can be as small as desired. Otherwise, we would use integrals in
lieu of sums, but the results would be the same. Also, again for notational simplicity
and with little loss of generality, we also suppose that vacations start and stop only
at integral multiples of δ, and modify the assumptions A2.3 and A2.4 appropriately.
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We will also use A2.5 plus other (weak) conditions to be imposed below. Let En
kδ

denote the expectation, given all of the system data up to and including real time kδ.
Let Ia,ni,kδ be the indicator function of an arrival at real time kδ from source i, and let

∆d,n
i,kδ be the associated work, if there is an arrival.
Motivation and background: Perturbed Liapunov functions. A per-

turbed Liapunov function method will be used [6, 17, 18, 22]. The classical Liapunov
function method is quite limited for problems such as ours, since there is not usually
a “contraction” at each step to yield the local supermartingale property of a classical
Liapunov function. The perturbed Liapunov function method is a powerful exten-
sion of the classical method. In the perturbed Liapunov function method, one adds
a small perturbation to the original Liapunov function. As will be seen, when this
perturbation can be well defined it provides an “averaging” which is needed to get
the local supermartingale property.

The primary Liapunov function will be simplyWL(·). The final Liapunov function
will be of the form Wn(·) = WLn(·) + δWn(·), where δWn(·) is bounded. Suppose
that there is no vacation at real time kδ. Then, for WLn(kδ/n) ≥ δ, we can write

(6.1) En
kδWLn(kδ/n+ δ/n)−WLn(kδ/n) = − δ√

n
+

1√
n

∑
i

En
kδI

a,n
i,kδ+δ∆

d,n
i,kδ+δ.

The right-hand term needs to be “averaged,” and this is done with the use of a
perturbation function δWn(·).

Motivation using a simpler problem. Before defining the actual perturbation
which will be used, for motivation we will discuss the general principle with a simpler
form when there are no vacations. Even for this problem, stability of the physical
queues is not guaranteed by stability of the limit system. Let ∆̄a,n

i = 1/λ̄a,ni and ∆̄d,n
i

be centering constants such that the corresponding ρni satisfy A6.1 for some b0 < 0.
More will be said about them later.

Proceeding formally until further notice, define the first suggested perturbation:

(6.2) δW̃n(kδ/n) =
1√
n

∑
i

∞∑
j=k+1

En
kδ

[
Ia,ni,jδ∆

d,n
i,jδ − δλ̄a,ni ∆̄d,n

i

]
.

Clearly, the centering constants must be such that the sum is well defined, and we
return to this point below. If WLn(kδ/n) ≥ δ, then we get

En
kδδW̃

n(kδ/n+ δ/n)− δW̃n(kδ/n)

= − 1√
n

∑
i

En
kδ

[
Ia,ni,kδ+δ∆

d,n
i,kδ+δ − δλ̄a,ni ∆̄d,n

i

]
.

Define W̃n(kδ/n) = WLn(kδ/n) + δWn(kδ/n). Then (6.1) and the last expression
yield

En
kδW̃

n(kδ/n+ δ/n)− W̃n(kδ/n) = − δ√
n
+

1√
n

∑
i

[
δλ̄a,ni ∆̄d,n

i

]
.

By the condition A6.1, the right side of the last expression is asymptotically ≤ b0δ/n.
Thus, it is less than the negative constant b0 times the scaled time interval δ/n. Hence,
when WLn(t) ≥ δ, W̃n(kδ/n) has the supermartingale property and we can use this
to get the desired (uniform in n) stability if W̃n(·) is “well defined and bounded.”
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Let us examine the sum in (6.2) more closely to see why it is well defined and

bounded under broad mixing conditions. Since ∆̄d,n
i and λ̄a,ni are merely centering

constants for the entire sequence, the actual mean values or rates can vary with time
(say, being periodic, etc.). Fix k and let µi,1δ and µi,2δ be the real times of the first
two arrivals to queue i after real time kδ. Formally, consider the part of the inner
sum in (6.2) given by

En
kδ

µi,2∑
j=µi,1+1

[
Ia,ni,jδ∆

d,n
i,jδ − δλ̄a,ni ∆̄d,n

i

]
.

This equals

(6.3) En
kδ

[
∆d,n

i,µi,2δ
− (µi,2 − µi,1)δλ̄

a,n
i ∆̄d,n

i

]
.

Next, suppose that the interarrival times and workloads are mutually indepen-
dent, with the members of each set being mutually independent and identically dis-
tributed, with finite second moments, and means ∆̄a,n

i , ∆̄d,n
i . Then (6.3) equals zero,

since En
kδ(µi,2 − µi,1)δ = ∆̄a,n

i . Obviously, for any integer m, µi,1, µi,2 can be the
mth and (m+1)st arrival times with the same result. Thus, under the independence
assumptions, (6.2) is just

En
kδ

[
∆d,n

i,µi,1δ
− δ(µi,1 − k)λ̄a,ni ∆̄d,n

i

]
= ∆̄d,n

i En
kδ

[
1− δ(µi,1 − k)

∆̄a,n
i

]
,

where En
kδ(µi,1 − k)δ is just the conditional expectation of the mean time to the

next arrival after kδ, given the data to time kδ. For use below, keep in mind that this
quantity is bounded uniformly in k, under the above assumptions on the independence
and the moments. Hence, formally, δW̃n(t) is of the order of 1/

√
n, uniformly in all

variables.
Now, suppose that the interarrival times are as in the last paragraph, but the

service times are correlated, still with centering constant ∆̄d,n
i . Let µi,j , j = 1, . . . ,

denote the sequence of arrival times after kδ. Then (6.3) equals

(6.4) En
kδ

[
∆d,n

i,µi,2δ
− ∆̄d,n

i

]
.

Then, grouping terms and formally speaking, we see that the sum (6.2) is just
(6.3)/

√
n, plus a series

1√
n

∑
i

∞∑
l=µi,2

En
kδ

[
∆d,n

i,l − ∆̄d,n
i,l

]
.

Clearly, the inner sum is bounded under quite broad mixing conditions. All that is
needed is that En

kδ[∆
d,n
i,l − ∆̄d,n

i,l ] → 0 is a summable way as l − k → ∞. A similar

computation can be done if the ∆a,n
i,l are correlated.

If the inner sum in (6.2) is well defined and bounded (uniformly in n, k, ω), then
Theorem 6.1, which summarizes the above discussion, proves stability, uniformly in
(all) n and the discounting which is used there is not needed. While the inner sums
of (6.2) are well defined under broad conditions, there are interesting examples where
they are not. For example, consider the case where ∆a,n

i,l = Hδ = 1/λ̄a,ni , where H is
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an integer and the work in all jobs is just the constant ∆̄d,n
i . Then the inner sum, taken

from k+1 to m, oscillates between zero and −(H−1)δλ̄a,ni ∆̄d,n
i /
√
n as m→∞. The

most convenient way of circumventing this problem is to suitably discount the defining
sums [22, 27]. Thus, for some small β > 0, consider the alternative “discounted”
perturbation

(6.5) δWn
β (kδ/n) =

1√
n

∑
i

∞∑
j=k+1

En
kδe

−(j−k−1)βδ/n
[
Ia,ni,jδ∆

d,n
i,jδ − δλ̄a,ni ∆̄d,n

i

]
.

The sum (6.5) is well defined if E|∆d,n
i,l | is uniformly bounded, and then the conditional

expectation can be taken either inside or outside of the summation.
Stability without vacations. We now proceed to prove the stability results.

It is simpler to start with the assumption that there are no vacations. The following
additional assumption will be used. The above discussion shows that the assumption
covers many cases of interest.

A6.2. There is real B such that w,p.1 |δWn
β (kδ/n)| ≤ B/

√
n for all β > 0 and

all n, k, where δWn
β (·) is defined by (6.5).

Define the final perturbed Liapunov function

(6.6) Wn
β (kδ/n) = WLn(kδ/n) + δWn

β (kδ/n).

Theorem 6.1. Let WLn(0) be tight, suppose that there are no vacations, and
assume A2.5, A6.1, and A6.2. Then the process WLn(·) is stable, uniformly in n.
Proof. We have

(6.7)

En
kδδW

n
β (kδ/n+ δ/n)− δWn

β (kδ/n)

= − 1√
n

∑
i

En
kδ

[
Ia,ni,kδ+δ∆

d,n
i,kδ+δ − δλ̄a,ni ∆̄d,n

i

]
+ εnk ,

where

(6.8) εnk = En
kδ

[
1− e−βδ/n

]
δWn

β (kδ/n+ δ/n).

Thus, adding (6.1) and (6.7),

(6.9) En
kδW

n
β (kδ/n+ δ/n)−Wn

β (kδ/n) = −
δ√
n
+

1√
n

∑
i

[
δλ̄a,ni ∆̄d,n

i

]
+ εnk .

By the condition A6.1, the right side of (6.9) is asymptotically no greater than

(6.10)
b0δ

n
+ εnk .

Assumption A6.2 implies that |εnk | = B[βδ/n]γn, where γn → 0. Thus, for small β

(6.11) En
kδW

n
β (kδ/n+ δ/n)−Wn

β (kδ/n) ≤
b0δ

2n
, for WLn(kδ/n) ≥ δ.

Inequality (6.11) implies that Wn
β (kδ/n) has the supermartingale property when

WLn(kδ/n) ≥ δ. Suppose that Wn
β (kδ/n) = B2 > B + δ and let B2 > B1 > B + δ.

Then, by standard stability arguments [16, 17], the mean number of steps (of real
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time length δ and conditioned on the data to real time kδ) for Wn
β (jδ/n), j ≥ k, to

return to the set where Wn
β (jδ/n) ≤ B1 is bounded by

Wn
β (kδ/n)

[−b0δ/2n] ≤
B +WLn(kδ/n)

[−b0δ/2n] .

Since |δWn
β (t)| ≤ B/

√
n, the return time estimate also holds for WLn(·). Thus, in the

time scale which is used to define WLn(·), where time is compressed by a factor of n,
the conditional mean return time is asymptotically bounded by 2[B+WLn(t)]/[−b0].
Hence, we have stability, uniformly in n.

Stability, with vacations. Now, we add the vacations. Again, to simplify the
notation, suppose a preempt-resume discipline, so that we do not have to concern
ourselves with redoing all of an interrupted job. The analysis for the latter case
follows similar lines.

The polling policy is subject only to the unrestrictive condition A6.3. The condi-
tion is motivated by the fact that the ξvi,l defined by (3.5) go to zero as the individual
workloads go to infinity, since the larger the work remaining in the nonvacationing
sources, the less likely it is that the server will have idle time during a vacation. If A6.3
does not hold, then there might not be stability for each b < 0, uniformly in large n.
For example, suppose that the polling policy is to give source 1 priority. Then WLn

1 (t)
will be arbitrarily close to zero, except possibly during and for a short interval just
after a vacation of that source. Consequently, the mean or conditional mean jump in
the total workload during a vacation of source 2 which starts at scaled time t will not
go to zero as WLn(t) goes to infinity. The condition A6.3 excludes exhaustive polling
(but only when the workload is very large), where a source is polled until its queue is
empty, unless a vacation of that source intervenes. However, when the total workload
is large, we might not want to use exhaustive polling anyway. While we work with
two sources for notational simplicity, the idea is the same no matter what the number
of sources. By our convention, for a vacation that starts at real time kδ, the real time
vacation interval is the half open interval [kδ + δ, kδ + δ +

√
nτv,ni,kδ).

A6.3. The polling policy is unrestricted, except for the following. There are
constants W̄a � W̄b, which will be as large as we wish. If WLn(t) ≤ W̄b, then there
are no restrictions. If WLn(t) > W̄b, then the only restriction is that if

(6.12) WLn
i (t) ≥ W̄a

is not satisfied for some i and the other source is not on vacation, then we poll the
other source.

A6.4. For each ε > 0, there is W̄ <∞ such that for i, j : i �= j,

E
[
ξv,ni,l

∣∣data to scaled time νni,l,WLn
j (ν

n
i,l−) ≥ W̄

]
≤ ε.

The assumption A6.4 holds under the conditions of Theorem 4.2 if A6.3 holds.
The inequality (6.12) (when WLn(t) > W̄b) cannot be guaranteed for all time. It
will sometimes not hold during a vacation or for a vanishingly short (in scaled time)
interval after. The real time interval between vacations is O(n). Let α(·) be a real-
valued function on [0,∞) such that α(n)/

√
n → ∞ and α(n)/n → 0. Suppose

that a vacation ends at real time t0 and the next one begins at real time t1, with
t1 − t0 = O(n). Then with a probability (conditioned on the data up to t0) that goes
to unity as n→∞, one can poll such that (6.12) is guaranteed on [t0+α(n), t1) when
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WLn(t0) > W̄b. The excluded interval is just α(n)/n in scaled time. Condition A6.3
works since the probability that two successive vacations will be within α(n) in real
time is O(α(n)/n).

Theorem 6.2. Let {WLn(0)} be tight and assume A2.3–A2.5 and A6.1–A6.4.
Then the process WLn(·) is stable, uniformly in n. Fix n. Then for small enough
λ̄si , i = 1, 2, WLn(·) is stable.

Note on the stability of the limit problem (3.7). Let L denote the differ-
ential generator of (3.7) when WL > 0. Then

LWL(t) = b+
∑
i

λ̄siEWL(t−),u(t−)ξ
v
i .

Since, for the limit problem, the condition (6.12) can always be guaranteed forWL(t) >
W̄b (except at the jump instants) if W̄b � W̄a are as large as we wish, it can always
be assured that the sum in the above expression is arbitrarily small for large WLn(t).
Then, since b < 0, WL(·) is stable. The proof below attempts to duplicate this idea.
Proof. In this proof, it is more convenient to work in scaled time. Thus, let Es,n

t

denote the expectation conditioned on all data to scaled time t. All scaled times are
integral multiples of δ/n. Suppose that no source is on vacation at scaled time t and
a vacation of some source starts at scaled time t+ δ/n. Then, let τv,nt /

√
n denote the

scaled time which passes until no source is on vacation, and let ξv,nt denote the total
jump in the workload due to all vacations which start at scaled time t+ δ/n and end
at scaled time t + δ/n + τv,nt /

√
n. Thus, it might cover a single vacation, or several

overlapping or abutting vacations.
Define σn

k , k ≥ 0, recursively as follows. Start with σn
0 = 0. Given σn

k , if no
vacation starts at scaled time σn

k + δ/n, then set σn
k+1 = σn

k + δ/n. If a vacation
starts at scaled time σn

k + δ/n, then set σn
k+1 = σn

k + δ/n + τv,nσn
k
/
√
n. Thus, the σn

k

are the sequence of scaled times kδ/n, but with the instants where some source is on
vacation skipped. To prove the stability it is sufficient to work with WLn(σn

k ) and
WLn(σn

k ) ≥ W̄a only.
Until further notice, suppose that the condition A6.3 holds at the start of each

vacation. The event that this is not the case is very rare for large n and will be
accounted for later. Recall the definition of Wn

β (·) in (6.6). Let Ev,n
t denote the

expectation, conditioned on all data to scaled time t and the event that a vacation
starts at scaled time t+ δ/n. By the computations in Theorem 6.1, we have (whether
or not (6.12) holds)
(6.13)

Es,n
σn
k
Wn

β (σ
n
k+1)−Wn

β (σ
n
k )

≤
∏
i

(
1− λ̄s,ni

n
+ o

(
λ̄s,ni

n

))
b0δ

2n
+

[∑
i

δ

n
λ̄s,ni + o

(
δ
∑

i λ̄
s,n
i

n

)]
Ev,n
σn
k
ξv,nσn

k
.

The o(·) will be ignored henceforth. Now, by A6.4 the term Ev,n
σn
k
ξv,nσn

k
in (6.13) goes

to zero as WLn(σn
k ) goes to infinity, which yields the stability, uniformly in n for large

n.
Next let us consider the possibility that we might not always have WLn

i (t) ≥
W̄a, i = 1, 2, at the start of a vacation, when WLn(t) ≥ W̄b, for W̄b � W̄a, both being
sufficiently large. Let Iv,nt+δ/n denote the event that a vacation starts at scaled time

t + δ/n, with WLn
i (t) ≤ W̄a for some i and WLn(t) ≥ W̄b. Let µn

l denote the scaled
time of the lth occurrence of this event. We exploit the fact that this event is “rare”
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for large n, by introducing another perturbation to the Liapunov function. We need
to add the term

(6.14) Es,n
σn
k
Iv,nσn

k
+δ/nτ

v,n
σn
k

to the right side of (6.13) (and multiply the current right-hand term there by (1 −
Iv,nσn

k
+δ/n), which leaves the estimates for that term unchanged. By A2.4, (6.14) is

bounded by C1E
s,n
σn
k
Iv,nσn

k
+δ/n for some constant C1. Introduce the additional perturba-

tion to the Liapunov function:

(6.15) δW̄n
β (kδ/n) = C1

∞∑
l=k+1

e−(l−k−1)βδ/nEs,n
kδ/nI

v,n
lδ/n.

This equals (dropping o(δ/n) terms for simplicity)

(6.16) C1
δ
∑

i λ̄
s,n
i

n

∑
l:µn

l
>kδ/n

Es,n
kδ/ne

−β(µn
l −kδ/n−δ/n).

Write the sum asKn
β (k). Then, for each β > 0, there is n(β) <∞ such thatKn

β (k) ≤ 2
for n ≥ n(β) and all k.

Note the difference of the conditional expectations:

(6.17) Es,n
σn
k
δW̄n

β (σ
n
k+1)− δW̄n

β (σ
n
k ) = −C1E

s,n
σn
k
Iv,nσn

k
+δ/n + εv,nk ,

where

(6.18) εv,nk = C1

[
1− e−βδ/n

] ∞∑
l=k+1

e−(l−k−2)βδ/nEs,n
kδ/nI

v,n
lδ/n.

For n ≥ n(β),

εv,nk ≤ 2C1β
∑
i

λ̄s,ni

n
.

Now, use the new perturbed Liapunov function defined by Wn
β (kδ/n) + δW̄n

β (kδ/n).

The conditional difference (6.17) cancels (6.14), modulo the error εv,nk , which is
O(δβ/n) and β can be made as small as desired for large enough n. The proof is
then completed as in Theorem 6.1

7. Unreliable channels. Up to now, it was supposed that any data sent from
any source to the server arrived without error. In this section, we suppose that an
error during transmission (as distinct from a vacation) is possible. Suppose that the
server time is divided into “slots,” of duration δ > 0. That is, the work in each arrival
is an integral multiple of δ, and each δ-interval is devoted to either a job from one
of the sources, or to idling if there is no work present at the beginning of the slot.
If a vacation starts during a slot, it is assumed that the data in that slot (if any) is
retransmitted later. However, this has no effect on the heavy traffic limit. In case
of an error in transmission, the data in the slot must be retransmitted. A variety of
such situations can be readily incorporated into our general model.

If the sequence of errors is mutually independent in time, or if it does not depend
on the source, then the modeling and analytical problem is relatively simple. The
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errors would not depend on the source if the corrupting noise were at the server/base
station, or was due to, say, a general atmospheric condition which affects all sources in
the same way. On the other hand, if the errors are correlated (say, channels with bursty
noise) and are source dependent as well, then the modeling problem is complicated
by the fact that the server is allowed to poll the sources in a rather arbitrary way.
For example, suppose that the noise is bursty for the channel connecting to one of the
sources but that the channel connecting to the other is noise-free. Then, depending
on how the sources are sequenced, the correlation between the errors can take many
forms. Thus, it is hard to know the relation between the sequencing of the polling
of the sources and the channel noise. One could try to poll taking into account the
correlation. But, even if this were feasible, it is beyond our goals. For these reasons,
we will assume that the disturbing noise does not depend on the source, despite the
importance of the general problem.

The error model. Let Ie,nl denote the indicator function of the event that the
data transmitted in the lth time slot was not acceptable and needed to be retrans-
mitted. Let Se,n

i (t) (resp., Se,n(t)) denote 1/n times the number of slots transmitted
(successfully or not) from source i (resp., from both sources) by real time nt. Let Ia,nl

denote the indicator function of the event that there is available data to be transmit-
ted in time slot l from any source not on vacation. The (scaled) work that must be
retransmitted by real time nt is

(7.1) Ln(t) =
δ√
n

nt/δ∑
l=1

Ie,nl Ia,nl .

For some centering constant pe,n, write Ln(t) as

(7.2) Ln(t) =
δ√
n

nt/δ∑
l=1

[Ie,nl − pe,n] Ia,nl +
√
npe,nSe,n(t)δ.

The last term on the right of (7.2) is (see (3.2))

(7.3) pe,n
[√

nt− T v,n(t)− Zn(t)
]
.

Define

(7.4) we,n(t) =
δ√
n

nt/δ∑
l=1

[Ie,nl − pe,n] Ia,nl .

We will use the following assumptions.

A7.1. The error process is independent of all of the other driving processes. Also,
pe,n converges to the constant pe as n→∞ and we,n(·) converges weakly to a Wiener
process, which will be denoted by we(·), and whose variance is δσ2

e .

A7.2. (The new heavy traffic condition.) There is a constant b such that

lim
n

√
n

[∑
i

ρni + pe,n − 1

]
= b.

A7.1 is an assumption on the channel and will be returned to below. By adding
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the work to be retransmitted, (3.15) becomes

(7.5)

WLn(t) = WLn(0) +
∑
i

∆̄d,n
i

[
wa,n
i (Sa,n

i (t))− wd,n
i (Sa,n

i (t))
]
+ we,n(t)

+
√
n

[∑
i

ρni + pe,n − 1

]
t+ (1− pe,n) [Zn(t) + T v,n(t)] + εn(t),

where εn(·) is a residual time error process.
Under the conditions of Theorem 3.1, with A7.1 added and the new heavy traffic

condition A7.2 used, Theorem 3.1 continues to hold, with the following changes. The
process we(·) is added to w(·). The jumps are computed by first showing that (in
the local fluid time scale) the processes of completed work during a vacation can be
asymptotically approximated by a fluid process with slope 1− pe, and they are

(7.6a)
ξv1,l =

[
((1− pe)− ρ2) τ

v
1,l − [WL(ν1,l−)− u(ν1,l−)]

]+
= [ρ1 − [WL(ν1,l−)− u(ν1,l−)]]+ ,

(7.6b) ξv2,l =
[
((1− pe)− ρ1) τ

v
2,l − u(ν2,l−)

]+
=
[
ρ2τ

v
2,l − u(ν2,l−)

]+
.

Also, we(·) is independent of w(·). With these changes, Theorem 3.2 also holds.
Theorem 4.2 will continue to hold with these changes, provided that E|we,n(t)|2 =
O(t). Similarly, the analogues of the stability results hold.
Remark. It is not possible to account for the retransmissions by simply enlarging

the work in each job by an amount that has the same distribution as the retransmit-
ted work does. This is because the controls are based on either the current queued
work or queued numbers, and not what might be expected due to future errors and
retransmissions.

Comments concerning we,n(·). First, suppose that the errors are independent
from slot to slot with P{Ie,nl = 1} = pe,n. Then Donsker’s theorem [12] implies that
we,n(·) is tight and converges weakly to a Wiener process with variance δpe(1− pe).

Now, turn to the correlated error problem. The error process concerns the chan-
nel, and is defined whether or not there is something to be transmitted. Suppose that
the error process is Markov and doesn’t depend on n, for notational simplicity. In
particular, assume that

P{Ie,nl+1 = 1|Ie,nl = 0} = p, P{Ie,nl+1 = 0|Ie,nl = 1} = q,

where p and q are in (0, 1). Then pe = p/(p + q). Let Iel denote the stationary error
process. Again, it is not hard to verify that we,n(·) converges weakly to a Wiener
process with variance

δE [Iel − pε]
2
+ 2δE

∞∑
l=1

[Iel − pε] [Ie0 − pε]

[12, 17].
We have Ia,nl = 0 if both sources are on vacation, both queues are empty, or one

source is on vacation and the other queue is empty at real time lδ. These possibilities
have negligible effect asymptotically.

Lévy processes. Many other models are possible for the error process (7.1) and
a couple of other possibilities will be outlined. One approach, which does not require
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the addition of A7.1 and uses (3.5) for the jumps, is to simply suppose that Ln(·)
converges weakly to a general Lévy jump process. For example, suppose that the noise
occurs in occasional bursts, where the rate at which the bursts occur (in real time)
is λ̄e,n/n and the duration (in real time) is

√
nτe,nl , where the durations (and the

process of starting) are mutually independent and independent of the other “driving”
random variables in the system. In this model the bursts are rare, and occur at a rate
which is of the order of that of the vacations. But λ̄e,n might be much larger than
λ̄s,n and the τe,nl much smaller than τv,ni,l .

The scheme in the last paragraph supposed a finite rate λ̄e,n for the bursts. The
rate could depend on the duration, so that shorter durations have higher rates, with
the rate going to infinity as the duration goes to zero, but in such a way that there is
a limit Lévy process.
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[19] H. J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in Con-

tinuous Time, 2nd ed., Springer-Verlag, Berlin, New York, 2001.
[20] H. J. Kushner, D. Jarvis, and J. Yang, Controlled and optimally controlled multiplexing

systems: A numerical exploration, Queueing Systems, 20 (1995), pp. 255–291.
[21] H. J. Kushner and K. M. Ramachandran, Optimal and approximately optimal control poli-

cies for queues in heavy traffic, SIAM J. Control Optim., 27 (1989), pp. 1293–1318.
[22] H. J. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications, Springer-

Verlag, Berlin, New York, 1997.



252 EITAN ALTMAN AND HAROLD J. KUSHNER

[23] R. Liptser and A. N. Shiryaev, Statistics of Random Processes, Springer-Verlag, Berlin, New
York, 1977.

[24] W. P. Peterson, Diffusion approximations for networks of queues with multiple customer
types, Math. Oper. Res., 9 (1951), pp. 90–118.

[25] M. I. Reiman, Some diffusion approximations with state space collapse, in Proceedings of
the Int. Seminar on Modelling and Performance Evaluation Methodology, Paris, 1983, F.
Baccelli and G. Fayolle, eds., Springer-Verlag, New York, 1983, pp. 209–240.

[26] M. I. Reiman, A multiclass feedback queue in heavy traffic, Adv. Appl. Probab., 20 (1998), pp.
179–207.

[27] V. Solo and X. Kong, Adaptive Signal Processing Algorithms, Prentice–Hall, Englewood
Cliffs, NJ, 1995.

[28] L. Tassiulas and A. Ephremides, Dynamic server allocation to parallel queues with randomly
varying connectivity, IEEE Trans. Automat. Control, 39 (1993), pp. 466–478.

[29] L. Tassiulas and S. Papavassiliou, Optimal anticipative scheduling with asynchronous trans-
mission opportunities, IEEE Trans. Automat. Control, 40 (1995), pp. 2052–2062.

[30] J. A. van Mieghem, Dynamic scheduling with convex delay costs: The generalized cµ rule,
Ann. Appl. Probab., 5 (1995), pp. 809–833.

[31] J. Walrand, An Introduction to Queuing Networks, Prentice–Hall, Englewood Cliffs, NJ, 1988.
[32] R. J. Williams, Diffusion approximations for open multiclass queueing networks: Sufficient

conditions involving state space collapse, Queueing Systems, 30 (1998), pp. 27–88.



DUALITY IN H∞ CONE OPTIMIZATION∗

ANDREY GHULCHAK† AND ANDERS RANTZER†

SIAM J. CONTROL OPTIM. c© 2002 Society for Industrial and Applied Mathematics
Vol. 41, No. 1, pp. 253–277

Abstract. Positive real cones in the space H∞ appear naturally in many optimization problems
of control theory and signal processing. Although such problems can be solved by finite-dimensional
approximations (e.g., Ritz projection), all such approximations are conservative, providing one-sided
bounds for the optimal value. In order to obtain both upper and lower bounds of the optimal value,
a dual problem approach is developed in this paper. A finite-dimensional approximation of the dual
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problems, a suboptimal solution to the original problem can be found with any required accuracy.
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1. Introduction. Many analysis and synthesis problems of control theory have
recently been stated in terms of convex optimization [3, 18, 22, 24]. This often gives
great benefit for both theoretical analysis and practical computation. However, when
an optimization problem is infinite-dimensional, a reduction to finite-dimensional form
(like Ritz projection, Galerkin finite element scheme, grid methods, etc.) is needed
[3]. Such an approximation introduces conservatism to the problem. The gap between
the true optimal value and its finite-dimensional counterpart can be arbitrarily large.
To overcome this difficulty and to estimate the conservatism, convex duality has been
widely used [3, 4, 8, 11, 12, 16, 17, 24]. Once the dual problem is stated, a similar
finite-dimensional scheme can be applied to obtain an opposite bound for the optimal
value. Provided that there is no duality gap, a suboptimal solution with any degree
of accuracy can be computed by increasing the dimension of the approximations.

In this paper, we consider a cone optimization in the Hardy space H∞, by which
we mean the optimization of a quasi-convex functional on H∞ whose level sets are
positive real cones {h ∈ H∞ : Re (gTh) > 0, g ∈ H∞}, or the intersection of such
cones. Problems of this type appear often in controller design—for example, in H∞

control, in robust stabilization under parametric uncertainty, in output error iden-
tification, etc. The strong practical aspect has become the main motivation of our
work.

The main contribution of the paper is a theoretical development of the duality
relation for this cone optimization. An analytical expression of the infinite-dimen-
sional dual problem is obtained. Similarly to the primal problem, it takes the form of
quasi-convex optimization. A cornerstone of our approach is convex duality, namely,
Ky Fan’s min-max theorem [25]. It is shown that there is no duality gap, and the
primal-dual method can be used to obtain a suboptimal solution with any predefined
level of optimality.

The paper is organized as follows. Section 2 introduces all major notation used
throughout the paper. In section 3, the cone optimization problem inH∞ is described.
Several examples of interesting control problems that can be reduced to such a cone
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optimization are gathered in section 4. The main result, which is the dual form of the
problem, is presented in section 5, followed by a discussion of some particular cases in
section 6. Section 7 compares the main result with duality by Megretski and Rantzer
[17]. A brief discussion on possible numerical realizations of the primal-dual method
is presented in section 8. Finally, a numerical example is given in section 9, where
the primal-dual method is applied to a nonstandard H∞ optimization problem. All
proofs are moved to the appendices.

2. Notation. By R (or C) we denote the field of real (or complex) numbers.
The subset of R of nonnegative numbers is denoted by R+. The unit circle and the
open unit disc in C are denoted by T and D, respectively:

T = {z ∈ C
∣∣ |z| = 1}, D = {z ∈ C

∣∣ |z| < 1}.
For every measurable Y ⊂ C

n, the notation Lp(Y ) stands for the standard Lebesgue
space of functions f : T→ Y equipped with the norm

‖f‖p =

{ (∫
T
|f(z)|p dm(z)

)1/p

, 1 ≤ p < +∞,

ess supz∈T |f(z)|, p = +∞,

where, by | · |, we denote the usual Hölder 2-norm in C
n

|f | =
√
|f1|2 + |f2|2 + · · ·+ |fn|2.

Hp(Y ) denotes the Hardy space of functions in Lp(Y ) that have an analytical contin-
uation inside the unit disc. Hp

0(Y ) denotes the shifted Hp(Y ); that is,

Hp
0(Y ) = zHp(Y ) = {f ∈ Hp(Y )

∣∣ f(0) = 0}.
We use the notationRH∞(Y ) for the set of all functions fromH∞(Y ) that are rational
with real coefficients. The space of all continuous functions f : T → Y is denoted by
C(Y ). The notation A(Y ) stands for the Banach disc algebra H∞(Y ) ∩ C(Y ).

The short notations Lp, Hp, etc. will be used if Y = C
n and the dimension n is

clear from context or makes no difference for presentation.
The orthogonal projection from L2 to H2 is denoted by P+, and P− = I − P+.

The prefix B denotes the unit ball in the corresponding space, and S is the unit sphere.
The superscript T stands for transposition. Re is the real part of a complex number.
A bar over a function denotes the complex conjugate. For two sets A and B,

A \B = {a ∈ A ∣∣ a �∈ B}.
3. Preliminaries. Let F ∈ A(C1×n) and G ∈ A(Cm×n). Denote

Φδ := F + δTG,(3.1)

Jδ(h, z) := ReΦδ(z)h(z).(3.2)

A number of control design problems (see examples in section 4) can be stated as a
convex specification

Jδ(h, z) > 0 ∀z ∈ T, ∀δ ∈ ∆,(3.3)

where the function h ∈ RH∞(Cn×1) is the design parameter (in control applications,
it is usually the free parameter from the Youla parameterization of all stabilizing
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controllers), and the set ∆ ⊂ C
m is the uncertainty region. The cone optimization

problem is to find a (δ-independent) function h ∈ RH∞ that satisfies the condition
(3.3) for as large a region ∆ as possible.

The condition (3.3) is a linear inequality with respect to δ. This implies that,
if it holds for some set ∆, then it holds for the convex hull of the set. Therefore,
without loss of generality, it is sufficient to consider the convex ∆’s only. In addition,
we assume ∆ to be compact.

Assumption. The region ∆ is assumed to be a compact convex set in C
m.

To define how “large” or “small” the region is, we assume that the regions are
described by a monotone family {∆ν} so that the “size” ν is assigned to each set ∆ν

of the family. The monotonicity means that the larger set has the larger size; i.e., if
ν1 ≤ ν2, then ∆ν1 ⊂ ∆ν2

. A common particular case of the monotonic family is the
linear homotopy ∆ν = ν∆ of a set ∆ ⊂ C

m containing the origin.

Thus the problem is to maximize the size ν as follows:

νopt = sup{ν ∣∣ ∃h ∈ RH∞ : Jδ(h, z) > 0 ∀z ∈ T, ∀δ ∈ ∆ν}.(3.4)

It is called the cone optimization problem since the set

Kν = {h ∈ RH∞ ∣∣ Jδ(h, z) > 0 ∀z ∈ T, ∀δ ∈ ∆ν}(3.5)

is a convex cone inH∞. Thus, for a given ν, we have a cone programming (feasibility)
problem which is related to robust linear programming [4] in the following sense: the
linear inequality (3.3) should be satisfied robustly with respect to ∆.

4. Examples of H∞ cone optimization problems. In this section, we gather
several problems in control theory that can be reduced to the cone optimization in
H∞.

In all examples, the homotopy has the form ∆ν = ν∆ for a convex compact set
∆ ⊂ C

m containing the origin.

The following theorem is useful for reducing a problem to the cone optimization.
It is a slightly modified version of [22, Theorem 1].

Theorem 4.1. Let g ∈ C(Cm×1), and ∆ � 0 is a convex set in C
m. The

following statements are equivalent:

1. 1 + δT g(z) �= 0 for all z ∈ T and δ ∈ ∆.
2. There exists a function α ∈ RH∞ such that

Re (1 + δT g(z))α(z) > 0 ∀z ∈ T, δ ∈ ∆.

Example 1: H∞ optimization. Given a (Nz +Ny)× (Nw +Nu) plant P(
z
y

)
= P

(
w
u

)
,

the problem is to find a stabilizing controller u = Ky that minimizes the H∞-norm of
the closed-loop transfer function Tzw. If the disturbance w is scalar (Nw = 1), then
the Youla parameterization of all admissible closed-loop transfer functions (see, for
example, [6]) has the form

Tzw = T1 + T2Q,(4.1)
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where T1 ∈ A(CNz ) and T2 ∈ A(CNz×Nu) are defined by the plant P , and Q is any
function in RH∞(CNu). With this parameterization, the problem can be rewritten
as

min
Q∈RH∞ ‖T1 + T2Q‖∞.

Equivalently, the problem is to maximize ν such that at all frequencies

|T1(z) + T2(z)Q(z)| < ν−1 ∀z ∈ T.(4.2)

For real-rational plants P , the well-developed theory [6] can be applied to solve the
problem. However, in some important cases where P is not rational (e.g., systems
with delays), there is no analytical solution to the problem in general.

The inequality (4.2) can be rewritten as

1 + δT (T1 + T2Q) �= 0 ∀z ∈ T, δ ∈ ν∆,

where ∆ = BC
Nz , and Theorem 4.1 reduces it to

Re (1 + δT (T1(z) + T2(z)Q(z)))α(z) > 0 ∀z ∈ T, δ ∈ ν∆.(4.3)

It takes the form (3.3) with

F =
(
1 0 . . . 0

) ∈ R
Nu+1,

G =
(
T1 T2

) ∈ A,
h =

(
α
Qα

)
∈ RH∞.

(4.4)

Setting δ = 0 in (4.3) gives Reα > 0. Therefore, 1/α ∈ RH∞, and the solution
Q ∈ RH∞ can be reconstructed from h as

Q =
1

h1




h2

h3

...
hNu+1


 .(4.5)

Example 2: Robust stabilization. Given a (Nz +Ny)× (Nw +Nu) uncertain
plant P (

y
z

)
= P

(
w
u

)
,

w = δT z,

where δ ∈ ν∆ for some convex compact ∆ ⊂ R
Nz with 0 ∈ ∆, the problem is to find

a controller u = Ky that robustly stabilizes the plant for as large a ν as possible.
In the case where Nw = 1, the same Youla parameterization (4.1) gives the

following equivalent problem: Find a function Q ∈ RH∞(CNu) that maximizes ν
subject to

1 + δT (T1(s) + T2(s)Q(s)) �= 0 ∀s : Re s ≥ 0, ∀δ ∈ ν∆.
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Again by Theorem 4.1, this problem can be reduced to the form (3.3), with F and G
defined in (4.4). The function Q can be reconstructed from h as in (4.5).
Example 3: Adaptive output error identification. Given a set of stable

scalar polynomials

Pν = {zm + p1z
m−1 + · · ·+ pm

∣∣ |pi − p0
i | ≤ νεi},

find a rational function b such that 1/b ∈ RH∞ and

Re
p(z)

b(z)
> 0 ∀z ∈ T, ∀p ∈ Pν ,

for as large a ν as possible.
The problem appears when a gradient algorithm is applied to output error iden-

tification of a plant transfer function with denominator polynomial p(z). To ensure
exponential convergence of the identification algorithm, certain signals are supposed
to be filtered by a transfer function 1/b, where p/b is strictly positive real [1].

The problem takes the form (3.3) if we denote h = 1/b, F = p0(z), G =
(zm−1, zm−2, . . . , 1)T , and

∆ = {δ ∈ R
m
∣∣ δi ∈ [−εi, εi]}.

5. The problem and the main result. The problem (3.4) is a problem of
quasi-convex optimization; for a given ν, the cone Kν from (3.5) is convex. We will
refer to the problem of finding h ∈ Kν as the primal problem.
Primal problem. Given F ∈ A(C1×n), G ∈ A(Cm×n), and a convex compact

set ∆ν ⊂ C
m, find a function h ∈ RH∞(Cn×1) such that

Jδ(h, z) := Re (F (z) + δTG(z))h(z) > 0 ∀z ∈ T, ∀δ ∈ ∆ν .(5.1)

Since ∆ν and T are compact and all functions in (5.1) are continuous, the primal
problem takes an equivalent form given by the following proposition.

Proposition 5.1. Given ν ∈ R+, the following statements are equivalent:
1. The primal problem has a solution, i.e., ν < νopt with νopt defined in (3.4).
2.

γopt(ν) := sup
h∈BA

inf
z∈T

inf
δ∈∆ν

Jδ(h, z) > 0.(5.2)

Proof. See Appendix A.
Remark 1. Note that γopt(ν) ≥ 0 even if ν ≥ νopt. To see this, put h = 0.
Remark 2. The choice of the unit ball in A as an optimization set in (5.2) is not

essential. Due to linear dependence of Jδ on h, any bounded set with the closure that
absorbs A could be chosen. However, the unit ball has better relations to and easier
interpretations from the classical results, such as the Banach duality, for example,
than any other set (see Appendix B).

To obtain a dual representation of (5.2), we have to slightly modify the problem.
The following lemma states that γopt can be calculated via optimization over the
larger set BH∞. This is a very useful property for our technique, since H∞ is dual
to a “nice” space. This will play a central role in the dual presentation.

Lemma 5.2.

γopt(ν) = sup
h∈BH∞

ess inf
z∈T

inf
δ∈∆ν

Jδ(h, z).(5.3)
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Proof. See Appendix A.
Now we are in a position to present the main result on duality.
Theorem 5.3 (duality). Let F ∈ H∞(C1×n), G ∈ H∞(Cm×n), and let ∆ν ⊂ C

m

be a convex compact set. Denote Φδ as in (3.1). Then the following equality holds:

sup
h∈BH∞(Cn×1)

ess inf
z∈T

inf
δ∈∆ν

ReΦδ(z)h(z) = inf
δ∈L∞(∆ν)

inf
w∈SL1(R+)

inf
p∈H1

0(C
1×n)
‖Φδw − p‖1.

(5.4)

Proof. See Appendix B.
Remark 1. The left-hand side of the equality is γopt(ν) from (5.3). Theorem 5.3

gives the dual representation of the quantity as the minimization problem. The prob-
lem provides an upper bound on γopt(ν) by which we can determine the case when
γopt(ν) = 0.

Remark 2. The dual condition (5.4) can be rewritten in a convex way by setting
a new variable x = δw:

γopt(ν) = inf{‖Fw + xTG− p‖1
∣∣ p ∈ H1

0, ‖w‖1 = 1,(5.5)

w ≥ 0, x(z) ∈ w(z)∆ν ∀z ∈ T}.

Using Theorem 5.3, we state the dual problem to (5.1) as follows.
Dual problem. Given F ∈ A(C1×n), G ∈ A(Cm×n), and a convex compact

set ∆ν ⊂ C
m, find a sequence of functions {(wi, δi, pi)}+∞

i=0 such that wi ∈ SL1(R+),
δi ∈ L∞(∆ν), pi ∈ H1

0(C
1×n), and

‖(F + δTi G)wi − pi‖1 → 0, i→ +∞.(5.6)

We can draw two obvious conclusions from Theorem 5.3.
Corollary 5.4. A number ν is an upper bound on νopt if and only if the dual

problem has a solution.
Proof. By Theorem 5.3, the dual problem has a solution if and only if γopt(ν) = 0,

which is equivalent to ν ≥ νopt by Proposition 5.1.
Corollary 5.5. If there exist w ∈ L1(R+) \ 0 and δ ∈ L∞(∆ν) such that

Φδw ∈ H1
0, then ν ≥ νopt.

Proof. Scale by ‖w‖1, and apply Theorem 5.3 to conclude that γopt(ν) = 0.
Let us point out the main idea behind the equality (5.4). We will see that, if

Φδw ∈ H1
0 for some w ∈ L1(R+)\0 and δ ∈ L∞(∆ν), then, in fact, γopt(ν) = 0. For a

function h ∈ H∞, we have f := Φδwh ∈ H1
0, so the mean value property for harmonic

functions [27] gives∫
T

Re [(F (z) + δ(z)TG(z))h(z)]w(z) dm(z) = Re f(0) = 0.

Therefore, since w ≥ 0 and w �≡ 0, there must exist z ∈ T such that Re (F (z) +
δ(z)TG(z))h(z) ≤ 0, which contradicts the condition (5.1).

The dual problem in the form (5.6) is complicated because it is stated in terms
of sequences of functions. The problem would be much simpler if it were possible
to replace the sequences with their limit points. The main difficulty here is a limit
point for {wi}. It may not exist as an element of SL1(R+). However, the limit
point for {wi} exists either as a regular function in SL1(R+) or as Dirac’s δ-function.
Based on this, the dual problem can be naturally split into two parts—one regular
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and one singular, with no functional sequences left in any of them. The regular part
has already been covered by Corollary 5.5. The simplification of the dual problem is
completed by the singular part in the next theorem.

Theorem 5.6. The optimal value νopt of the cone optimization problem (3.4) has
the dual representation

νopt = min{ νopt|s, νopt|c },(5.7)

where

νopt|s = inf{ν ∣∣ ∃z ∈ T, ∃δ ∈ ∆ν , : Φδ(z) = 0},(5.8)

νopt|c = inf{ν ∣∣ ∃w ∈ L1(R+) \ 0, ∃δ ∈ L∞(∆ν) : Φδw ∈ H1
0}.(5.9)

Proof. See Appendix C.
Remark 1. It can be seen that νopt|s is the optimal value of the problem (3.4)

without an analyticity condition on h, i.e., when we replace the space H∞ with L∞.
Corollary 5.7. The bound νopt|c can be alternatively represented as

νopt|c = inf{ν ∣∣ ∃g ∈ (H2)⊥ \ 0, ∃δ ∈ L∞(∆ν) : P−(Φδg) = 0}.(5.10)

Proof. The proof follows easily from the factorization w = f∗f with the outer
factor f ∈ H2, dividing both sides of Φδw ∈ H1

0 by f and setting g(z) = f∗(z)/z.

The number νopt|s is relatively easy to evaluate:

νopt|s = inf
z∈T

νs(z),(5.11)

where

νs(z) = inf{ν ∣∣ δ ∈ ∆ν , F (z) + δTG(z) = 0};(5.12)

that is, (5.8) is the convex problem at every z ∈ T.
Dealing with νopt|c is a bit more complicated because it requires optimization on

one more infinite-dimensional parameter in H1
0. Denoting x(z) = w(z)δ(z), we have

δ(z) ∈ ∆ν ⇔ x(z) ∈ w(z)∆ν ;

hence (5.9) becomes

νopt|c = inf{ν ∣∣ ∃w ∈ L1(R+) \ 0, ∃x : x(z) ∈ w(z)∆ν , wF + xTG ∈ H1
0}.(5.13)

This is a quasi-convex optimization problem. It can be used to obtain an upper bound
on νopt|c in the following way.

Lemma 5.8. The number ν ∈ R+ is the upper bound on νopt|c if and only if there
exists a solution (x,w, p) ∈ L1(Cm)× L1(R+)×H1

0(C
n) to the problem

p(z) = w(z)F (z) + x(z)TG(z),
x(z) ∈ w(z)∆ν ,
‖w‖1 > 0.

(5.14)

Proof. The proof follows immediately from (5.13).
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Remark. The last condition ‖w‖1 > 0 is needed only to avoid the trivial solution
(x,w, p) = 0. It can be replaced with ‖w‖1 = 1.

The condition (5.14) is linear in (w, p) and convex in x.
To conclude the section, let us give an explicit explanation of how the optimization

in (3.4) can be done by using the dual problem. First, it is relatively easy to estimate
νopt|s from (5.11) by sweeping the unit circle and solving the convex problem (5.12).
When it is done, the search for νopt can be organized as a bisection of [0, νopt|s],
using the duality result to choose the right part of the interval; namely, for a given
ν ∈ [0, νopt|s], one and only one problem of (5.1) and (5.14) has a solution.

6. The primal and dual problems for some particular sets ∆. To get
better insight into the cone optimization problem, we consider in detail several typical
cases. We assume, for simplicity, that the family ∆ν is the linear homotopy of a convex
compact set ∆ � 0, i.e., ∆ν = ν∆.
Case 1. ∆ = 0.
The primal problem (5.1) is to find a function h ∈ RH∞(Cn×1) such that

ReF (z)h(z) > 0 ∀z ∈ T,

for given F ∈ A(C1×n). The dual representation for γopt in Theorem 5.3 simplifies to

γopt := sup
h∈BH∞

ess inf
z∈T

ReF (z)h(z) = inf
w∈SL1(R+)

inf
p∈H1

0

‖Fw − p‖1,

and the duality result in Theorem 5.6 claims that the primal problem has no solution
if and only if

1. ∃w ∈ L1(R+) \ 0 such that Fw ∈ H1
0, or

2. ∃z ∈ T such that |F (z)| = 0.
The second condition is the absence of zeros of F on the unit circle. The following
proposition shows that the first one is related to that in the open unit disc.

Proposition 6.1. Let F ∈ A(C1×n). The following conditions are equivalent:
1. ∃λ ∈ D such that |F (λ)| = 0.
2. ∃w ∈ L1(R+) \ 0 such that Fw ∈ H1

0(C
1×n).

Proof. See Appendix D.
Note that the existence of h ∈ A such that ReF (z)h(z) > 0 for all z ∈ T is

equivalent to the existence of g ∈ A such that Fg = 1 (if we just set g = h(Fh)−1).
Thus the duality theorem in the particular case when ∆ = 0 gives the well-known
result [27] concerning Gelfand’s theory of maximal ideals in disc algebra A:

∃g ∈ A : Fg = 1 ⇔ inf
λ∈D

|F (λ)| > 0.

Let us now give some interpretation to the primal and dual problems in the case
when ∆ = 0. Since the uncertainty set is zero, the primal problem can be interpreted
as a nominal stabilization problem. For example, in the scalar case, a controller
K = β/α stabilizes a plant P = b/a if and only if the characteristic polynomial of
the closed-loop system χ(s) = a(s)α(s)− b(s)β(s) is stable. Equivalently, there exists
h ∈ A(C2×1) such that

Re
(
a(z) −b(z))h(z) > 0 ∀z ∈ T.(6.1)

Indeed, one possible choice of h is (α β)T /χ.
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The dual problem gives a stabilizability criterion as |F (λ)| �= 0 for all λ ∈ D.
In our scalar case example (6.1), the stabilizability criterion gives the following well-
known condition: a plant P = b/a is stabilizable if and only if the polynomials a and
b have no common unstable zeros.
Case 2. ∆ = BC

m.
We will show that this case is reduced to the standard H∞ optimization. The

first step in this direction is the following proposition.
Proposition 6.2. Let F ∈ A(C1×n), G ∈ A(Cm×n), and ∆ = BCm. Then the

following statements are equivalent:
1. ∃h ∈ A(Cn×1) such that

Re (F (z) + δTG(z))h(z) > 0 ∀z ∈ T, ∀δ ∈ ν∆.(6.2)

2. ∃g ∈ A(Cn×1) such that Fg = 1 and ‖Gg‖∞ < ν−1.
Proof. See Appendix D.
Proposition 6.2 reduces the cone optimization problem (3.4) to the convex opti-

mization problem

ν−1
opt = inf

g∈A
{ ‖Gg‖∞

∣∣ Fg = 1}.(6.3)

To obtain the standard H∞ optimization problem from (6.3), we need to perform the
parameterization of all solutions to Fg = 1 (known as the Youla parameterization
in control theory). If g0 ∈ A is a particular solution to the equation Fg = 1 and
M ∈ A(Cn×(n−1)) is a basis of the kernel of F (i.e., FM = 0), then all solutions can
be parameterized as

g = g0 +Mq, q ∈ A(C(n−1)×1),

which gives the standard H∞ setting

ν−1
opt = inf

q∈A
‖Gg0 +GMq‖∞ = inf

q∈RH∞ ‖T1 + T2q‖∞(6.4)

with given T1, T2 ∈ A. To go back to the form (6.2), one can put, for example,

F =
(
1 0 . . . 0

)
, G =

(
T1 T2

)
.(6.5)

Let us now have a look at the dual problem to (6.2). Since the case ∆ = BC
m can

be reduced to the standard H∞ optimization problem (6.4), and the latter has the
well-known dual (see Theorem B.1, for instance), it seems interesting to compare our
dual formulation with the standard one. As we will see, there are some similarities
between these two problems, although they are different.

We assume, for simplicity, that the functions T1 and T2 in (6.4) are scalar. By
(6.5), the problem (6.4) takes the primal form (3.4) as

νopt = sup{ν ∣∣ ∃h ∈ RH∞ : Re [
(
1− δT1(z) −δT2

)
h(z)] > 0 ∀z ∈ T ∀|δ| ≤ ν}.

Applying Theorem 5.6, we obtain the dual problem as νopt = min{νopt|c, νopt|s}, where

νopt|c = inf{‖δ‖∞
∣∣ ∃w ∈ L1(R+) \ 0:

(
1− δT1 −δT2

)
w ∈ H1

0},
νopt|s = inf{|δ| ∣∣ ∃z ∈ T :

(
1− δT1(z) −δT2(z)

)
= 0}.
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Let us interpret first the singular part of the dual problem. Obviously, the equations
δT1(z) = 1, δT2(z) = 0 have a solution δ if and only if T2(z) = 0, in which case

νopt|s = min
z∈T

{|T1(z)|−1
∣∣ T2(z) = 0}.

This upper bound has a trivial interpretation. In fact, for all q ∈ RH∞ (even for all
q ∈ L∞; see Remark 1 after Theorem 5.6), it holds that

‖T1 + T2q‖∞ = sup
z∈T

|T1(z) + T2(z)q(z)| ≥ |T1(z)| ∀z ∈ T : T2(z) = 0,

which gives ν−1
opt ≥ ν−1

opt|s. Thus, if we assume that T2(z) �= 0 on T, then νopt|s = +∞;

i.e., there is no singular part. This brings some dual understanding as to why the H∞

control problem under assumption T2 �= 0 on T (or full rank conditions on matrices
T2, T3 in the four-block case) is easier to solve: the dual problem has only the regular
part.

Let us now interpret the regular part of the dual problem. Because all zeros of
T2(z) on T are under the responsibility of the singular part, we assume without loss of
generality that T2(z) �= 0 on T to deal with νopt = νopt|c. In this case, the inner-outer

factorization T2 = T2iT2o satisfies T−1
2o ∈ A, and hence the problem (6.4) can be

equivalently represented as [6]

ν−1
opt = inf

Q∈RH∞ ‖R−Q‖∞(6.6)

with R = T ∗
2iT1 ∈ C(T). This convex optimization problem has the well-known dual

problem given by the Nehari theorem [6]

ν−1
opt = sup

f∈H2

‖P−(Rf)‖2
‖f‖2 ⇔ νopt = inf

f∈H2

‖f‖2
‖P−(Rf)‖2 .(6.7)

Equivalently, the distance from the function R ∈ C(T) to H∞ is equal to the norm of
Hankel operator HR = P−R. We show that our regular part of the dual problem is
closely connected to (6.7). By Corollary 5.7, we have

νopt|c = inf{‖δ‖∞
∣∣ ∃g ∈ (H2)⊥ \ 0: P−

(
1− δT1 −δT2

)
g = 0}.

Put f := δT2ig. We have P−(T2of) = P−(δT2g) = 0, which gives T2of ∈ H2 and
hence f ∈ H2. Furthermore, g = P−(δT1g) = P−(Rf). Finally δ = T ∗

2if/g, so

‖δ‖∞ =

∥∥∥∥fg
∥∥∥∥
∞

=

∥∥∥∥ f

P−(Rf)

∥∥∥∥
∞
,

and we obtain the following formula for νopt:

νopt = νopt|c = inf
f∈H2

∥∥∥∥ f

P−(Rf)

∥∥∥∥
∞
.(6.8)

This is rather similar to (6.7) yet different. Note that, in general for f ∈ H2,

‖f‖2
‖P−(Rf)‖2 ≤

∥∥∥∥ f

P−(Rf)

∥∥∥∥
∞
,(6.9)
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so the duality condition (6.8) appears to be stronger than (6.7). This is a question of
more delicate analysis to show that for R ∈ C(T) the Hankel operator is compact, and
then there exists a maximizing vector f ∈ H2; i.e., ‖P−(Rf)‖2 = ν−1

opt‖f‖2. Moreover,
for such a vector f , the function P−(Rf)/f is inner (or all-pass), i.e.,

P−(Rf)(z)
f(z)

≡ ν−1
opt ∀z ∈ T,

and the optimal function Qopt in (6.6) can be found as R − Qopt = P−(Rf)/f (see,
for instance, [6]). These extra properties of f/P−(Rf) explain the equality in (6.9)
for the optimal f .
Case 3. ∆ is a convex polytope in C

m.
In this case, both the primal and the dual problems are reduced to linear pro-

gramming which can be stated explicitly in terms of vertices of ∆.
Denote the vertices of ∆ by {δk}Kk=1, δk ∈ C

m. By the Krein–Milman theorem
[26], the polytope ∆ is the convex hull of its vertices

∆ = co {δ1, δ2, . . . , δK}.
This means that the primal problem (5.1) is reduced to the finite number of linear
inequalities at each point z ∈ T

Re (ν−1F (z) + δTk G(z))h(z) > 0 ∀z ∈ T, 1 ≤ k ≤ K,(6.10)

and the primal algorithm can be implemented as linear programming as follows.
Consider the power series decomposition of h ∈ RH∞(Cn×1)

h(z) =

+∞∑
m=0

hmz
m =

(
1 · I z · I z2 · I . . .

)


h0

h1

...


 .

Denoting

φ(z) =
(
1 z z2 . . .

)
,

H =



h0

h1

...


 ,

the decomposition takes the short form h(z) = [φ(z)⊗ I]H, with Kronecker’s product
⊗ defined as

A⊗B =



A11B A12B . . .
A21B A22B . . .

...
...

. . .


 .

Substituting this representation for h into the primal inequality (6.10), we get

Re (ν−1F (z) + δTk G(z))(φ(z)⊗ I)H = Re
(
ν−1 δTk

) [
φ(z)⊗

(
F (z)
G(z)

)]
H > 0.

Denote

R(z) =

(
F (z)
G(z)

)
, Dν =

(
ν−1 ν−1 . . . ν−1

δ1 δ2 . . . δK

)
(6.11)
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to end up with the explicit linear inequality form of (6.10) with respect to H

Re [φ(z)⊗DT
ν R(z)]H � 0 ∀z ∈ T.(6.12)

Now we will show that the dual problem also takes the form of linear programming.
Since the linear homotopy ∆ν = ν∆ is considered, we have by convexity that

δ ∈ ∆ν ⇔ δ =

K∑
k=1

µkδk, µk ≥ 0,

K∑
k=1

µk = ν,

and the pointwise singular part of the upper bound (5.12) becomes

νs(z) = inf

{
K∑

k=1

µk

∣∣∣∣ µk ≥ 0, F (z) +

K∑
k=1

µkδ
T
k G(z) = 0

}
.(6.13)

Similarly, the condition x(z) ∈ w(z)∆ν in (5.14) can be rewritten as

x(z) =
K∑

k=1

µk(z)δk, µk(z) ≥ 0,

K∑
k=1

µk(z) = νw(z),

and the regular part of the dual problem takes the form

w(z)F (z) +

K∑
k=1

µk(z)δ
T
k G(z) = p(z),

K∑
k=1

µk(z) = νw(z),

µk(z) ≥ 0,∫
T

w(z) dm(z) > 0.

The function w can be found from the second equation, and the number of variables
is reduced:

K∑
k=1

µk(z)(ν
−1F (z) + δTk G(z)) = p(z),

µk(z) ≥ 0,∫
T

K∑
k=1

µk(z) dm(z) > 0.

(6.14)

Using the notation above for φ, R, and Dν together with µ(z) = (µ1(z), . . . , µK(z))T ,

p(z) =
+∞∑
m=1

pmz
m = ([zφ(z)⊗ I]P )T ,

the problem can be written as

(−[zφ(z)⊗ I] R(z)TDν

)( P
µ(z)

)
= 0,

µ(z) � 0,

EK

∫
T

µ(z) dm(z) = 1,

(6.15)
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where EK =
(
1 . . . 1

)
is the K-dimensional row vector of ones.

Thus both the primal and the dual problems take the form of linear feasibility
programming. The feasibility problem (6.12) can be solved in the same manner as
(5.2). The condition ‖h‖∞ ≤ 1 cannot be represented as a linear condition on the
coefficients H, so calculation of γopt is not linear programming. However, all we need
is to check if γopt > 0. Let us choose a polyhedral set instead of the unit ball in the
problem (5.2) to add the necessary linearity to the problem. For example, with

H =

{
H
∣∣ +∞∑
m=0

|Hm| ≤ 1

}
,

we have the linear programming to solve the primal problem

γLP
opt = max

H∈H
{γ ∣∣ Re [φ(z)⊗DT

ν R(z)]H � γ ∀z ∈ T}.(6.16)

According to Remark 2 after Proposition 5.1, the conditions γopt > 0 and γLP
opt > 0

are equivalent.
For the dual feasibility problem (6.15), we can do a similar trick,

εopt = max
P

{
ε
∣∣ R(z)TDνµ(z) = [zφ(z)⊗ I]P, µ(z) � ε, EK

∫
T

µ(z) dm(z) = 1

}
,

(6.17)

in order to move the corresponding δ out of boundary inward ∆ν to obtain certain
“robustness” of the inclusion δ ∈ ∆ν . So the dual linear feasibility problem has a
solution if and only if εopt ≥ 0.

7. Comparison with the previous result. In this section, we compare the
duality result with that obtained by Megretski and Rantzer. The following generalized
uniform interpolation problem was considered in [17].

Given Ω(z) ⊂ C
k, find h ∈ RH∞ such that

h(z) ∈ Ω(z) ∀z ∈ T.(7.1)

Our primal problem (5.1) is recovered with

Ω(z) = {ω ∈ C
n+1

∣∣ Re (F (z) + δTG(z))ω > 0 ∀δ ∈ ∆ν}.

The authors of [17] presented the dual to the interpolation problem, which is restated
below. Denote

〈f, g〉 := Re

∫
T

f(z)T g(z) dm(z) =
1

2π
Re

∫ π

−π

f(eiθ)T g(eiθ) dθ.(7.2)

The dual problem is the following integral interpolation problem:
Find a function f ∈ RH1

0 such that

〈f, g〉 < 0(7.3)

for all measurable and bounded functions g satisfying g(z) ∈ Ω(z) for all z ∈ T.
This duality is related to the fact that H1

0 is an annihilator of H∞; i.e., 〈f, h〉 = 0
for all f ∈ H1

0 and all h ∈ H∞.
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It was also shown in [17] that, under additional assumptions on Ω, namely, con-
vexity, continuity, and compactness, there is no duality gap between the two problems.
However, these additional assumptions are very restrictive and are almost never satis-
fied. To meet them, one has to perform a certain “regularization” procedure. Essen-
tially one has to remove neighborhoods of zero and infinity from the cone Ω, replace
the condition in the primal with h(z) ∈ Ωε(z), and modify the dual integral interpo-
lation problem with

sup{〈f, g〉 ∣∣ g(z) ∈ Ωε(z) ∀z ∈ T} < 0,(7.4)

where

Ωε(z) = {ω ∈ BCn+1 | Jδ(ω, z) ≥ ε ∀δ ∈ ∆ν}.
Since the primal problem in (5.1) is a special case of (7.1), there must be a relation
between the dual (7.4) and that in Theorem 5.3.

The purpose of this section is to trace this relation. The following is a formal
brief description of the idea of how to relate the two problems, using the Lagrange
multiplier method (Kuhn–Tucker theorem [25]), to the optimization problem in (7.4).

0 > sup
g(z)∈Ωε(z)

〈f, g〉 = sup
infδ∈∆ν Re Φδ(z)g(z)≥ε

〈f, g〉

= inf
τ(z)≥0

sup
g∈BL∞

inf
δ(z)∈∆ν

(〈f, g〉+ 〈τ,Φδg − ε〉)
= inf

τ(z)≥0
inf

δ(z)∈∆ν

sup
g∈BL∞

(〈f + τΦT
δ , g〉 − 〈τ, ε〉

)
= inf

δ(z)∈∆ν

inf
τ(z)≥0

∫
T

(|f + τΦT
δ | − ετ) dm.

Hence a function f ∈ H1
0 is a solution to (7.3) if and only if there exist functions

δ ∈ L∞(∆ν) and τ ∈ L1(R+) such that

‖f + τΦT
δ ‖1 < ε‖τ‖1.

Denoting w = τ/‖τ‖1, p = −fT /‖τ‖1, we get the similar condition to (5.6) because
ε > 0 can be chosen arbitrarily small in the regularization Ωε.

8. Toward an implementation of the primal-dual method. Although ef-
ficiency of a primal-dual method depends on a numerical implementation, we do not
provide any particular numerical scheme and do not discuss details of corresponding
numerical issues for the following reason. Once the dual pair (5.1), (5.14) is obtained,
one can approach it in many different ways—either directly or via finite-dimensional
approximations. The latter has a large variety of forms and methods: among others,
there are Galerkin-type finite-element schemes, the method of ellipsoids and other
cutting plane methods, the analytic center cutting plane (ACCP), path-following, po-
tential reduction, and other barrier-based interior-point methods [20], and, in some
cases, semidefinite programming and linear matrix inequalities (LMIs), etc. Each of
them has certain advantages and disadvantages, and we cannot prescribe any of them
as a cure for all cases. What we do briefly discuss in this section is a general idea
of how to bridge the gap between the infinite-dimensional convex condition and a
possible numerical implementation of it, taking into account some specific features of
the problem.
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The main difficulty is that the convex problems (5.1) and (5.14), and even their
linear counterparts (6.12) and (6.15), have infinitely many decision variables and
equalities/inequalities. To overcome this difficulty, an approximation should be done.
The analytical property of the functions h and p make a pointwise representation
useless, so the best we can do for the approximation is to introduce a Schauder
basis of the space RH∞ and H1

0. A right choice of basis is very important for fast
convergence yet unclear a priori in general, so an adaptive adjustment of the basis
(especially of the pole location of basis elements) may be useful. Some insight for the
adjustment can be obtained by solving an auxiliary simple problem. For example, the
approximation of ∆ by a ball in C

m gives the equivalent H∞ optimization problem
that can be solved effectively, and the pole location of the optimal solution may be
used for the first choice of the basis in RH∞. Another possibility is to choose a basis
and run the algorithm to find a solution most probably of a very high dimension. If
the choice of basis is bad, the solution will have many close pole-zero cancellations,
and what is left may be used for the basis adjustment.

In any case, by choosing any basis of RH∞, for example, the polynomial basis
{1, z, z2, . . . }, we know that the solution can be found since polynomials are uni-
formly dense in A. This means that we can consider an equivalent problem with a
finite (although unknown a priori) number of decision variables. Since the number
of inequalities is still the continuum, we get a semi-infinite programming that can be
solved in many ways. One is by taking a grid on the unit circle T (see discretization
methods for semi-infinite programming in [10, 23]), which has been realized and dis-
cussed in [8, 9]. Another is to use a cutting plane algorithm and, in particular, the
ACCP method [2, 19] that usually performs better than the method of ellipsoids. A
variation of the ACCP method for cone feasibility problems (our primal problem (5.1)
is conic) appears in [21]. Other barrier function methods applied to similar problems
can be found in [13, 14, 15].

9. Numerical example: A nonconvex H∞ optimization problem. In this
section, a nonconvex H∞ optimization problem is solved numerically by the primal-
dual method derived above. By the H∞ optimization, we mean a problem in the
form

inf
Q∈RH∞{γ

∣∣ T1(z) + T2(z)Q(z) ∈ γΩ ∀z ∈ D},(9.1)

where Ω is the neighborhood of the origin in C and T1, T2 ∈ A. If Ω = D, we have
the standard H∞ optimization [6] since

T1(z) + T2(z)Q(z) ∈ γD ∀z ∈ D ⇔ ‖T1 + T2Q‖∞ ≤ γ.

If Ω is a convex set, the problem (9.1) is convex.
In this section, we consider the H∞ optimization problem (9.1) with the noncon-

vex set

Ω = {reiφ ∈ C
∣∣ 0 ≤ r < | cos(φ)|+ | sin(φ)|}.(9.2)

The shape of Ω is shown in Figure 9.1. This set appears, for example, in the opti-
mization of the stability radius for a linear system (see Example 2 in section 4) with
the “diamond” type of uncertainty in feedback

∆ = {x+ iy ∈ C
∣∣ |x|+ |y| ≤ 1}.
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Fig. 9.1. The set Ω from (9.2).

The problem can be reduced to the cone optimization. First note that Ω = C \∆−1.
Then, for g = T1 + T2Q, we can rewrite the condition g(z) ∈ νΩ as

ν−1g(z) �∈ ∆−1 ⇔ 0 �∈ 1 + ν∆g(z).

Theorem 4.1 implies that there exists a function α ∈ RH∞ such that Re (1 +
ν∆g(z))α(z) > 0. Thus the problem takes the cone optimization form (5.1) with
F = (1 0), G = (T1 T2), and h = col(α,Qα).

The set ∆ is a polytope; hence we can use linear programming as described
in section 6, Case 3. To approximate it by finite-dimensional problems, we choose
a simple idea of discretization. Taking into account only the finite grid {zk}Kk=1,
representing the upper half of T, and the first N coefficients of the function h, the
inequality (6.12) gives the finite-dimensional linear program

AKNHN � 0,(9.3)

where the matrix AKN is of the size 4K × 2N . We solve this feasibility problem as
explained in (6.16) except that we choose another set H, namely,

max{ε ∣∣ AKNHN � ε, −1 � HN � 1}.(9.4)
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Fig. 9.2. The primal algorithm produces lower bounds on νopt.

The dual problem (6.15) is approximated precisely in the same manner to get the
finite-dimensional linear program

A12X = 0,
A22X � 0,
A32X = 1,

(9.5)

where the (2N +4K)-dimensional vector X absorbs N coefficients of the function p ∈
H1

0 and K values of the coordinate functions µ from (6.15). Since the discretization
can have difficulties dealing with equalities, we slightly modify the problem (9.5) as

min{γ ∣∣ −γ � A12X � γ, A22X � 0, A32X = 1}.(9.6)

This is almost the discretization of (5.6). The difference is that we replace the integral
norm with the uniform one (which is approved by Lemma 5.8). The dual algorithm
finds a solution if γ is zero. The details of the algorithms can be found in [8, 9].

Take the following functions:

T1(z) =
z5 + 3z4 + 2z3 + 4z2 + 5z + 3

z3 − z2 − 4z + 12
, T2(z) = z2 +

1

2
.

Since T1/T2 �∈ H∞, the solution to the optimization problem is not trivial.
We run the primal algorithm in the linear programming form (9.4) for different

values of ν. For small enough ν, it finds a solution, and we increase the value. We stop
the optimization at νlow = 3.156 when the degree of approximationN has reached 100.
It becomes hard for the linear solver to find an approximation of higher degree because
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Fig. 9.3. The dual algorithm gives the opposite side bounds on νopt.

the dimension of the linear program (9.4) at this step is already of size 1200 × 200.
The plot of N versus ν is shown in Figure 9.2.

To estimate how far the lower bound νlow is from the optimal value, we use the
dual problem in the form (9.6). If ν > νopt, the error γ may be minimized to zero.
The upper bound νupp obtained by the dual algorithm is 3.1575. Hence the primal
solution for νlow has a good level of suboptimality (about 0.05%). The value of γ as
a function of ν is depicted in Figure 9.3.

It happens that the error γ in our example exhibits the linear dependence on ν
for ν < νopt, which can be also used to find νopt as a solution to γ(ν) = 0.

10. Conclusion. There is a number of design problems in control theory which
can be stated as the quasiconvex optimization (3.4). Given a level of suboptimality,
the corresponding convex problem can be solved by finite-dimensional approximations.
However, these approximations give only one-sided bounds on the optimal value. In
this paper, the dual representation (5.7) to this quasiconvex optimization problem
has been derived using convex duality arguments in a Banach space setting. Opposite
bounds for the optimal value can be obtained by solving the quasiconvex problems
(5.8), (5.9). Hence the quasiconvex optimization problem (3.4) can be solved by a
primal-dual method followed by a line search on ν.

Appendix A. Proofs of Proposition 5.1 and Lemma 5.2.
Proposition A.1. Let ∆ ⊂ C

n be a compact set, and g ∈ C(Cn). Then

G = inf
δ∈∆

Re δT g ∈ C.
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Proof. Let zk → z0 as k → +∞. We have to prove that G(zk) → G(z0).
Obviously, for all δ ∈ ∆, it holds that G(zk) ≤ Re δT g(zk), and hence

lim sup
k→+∞

G(zk) ≤ G(z0).

To prove the opposite inequality, let us consider a subsequence {zkn} of {zk} such that
G(zkn) has a limit. The set ∆ is compact, and the function Re δT g(zkn) is continuous
(linear) with respect to δ. Hence there exists δn ∈ ∆ such that G(zkn

) = Re δTn g(zkn
).

The sequence {δn} is compact, and then there exists a limit point δ0 ∈ ∆. Moreover,

G(zkn)→ Re δT0 g(z0) ≥ G(z0).

Since the subsequence {zkn
} is arbitrary, we conclude that

lim inf
k→+∞

G(zk) ≥ G(z0).

The proposition is proved.
Proposition A.2.
1. The function

Γ(h) := inf
z∈T

inf
δ∈∆ν

Jδ(h, z)(A.1)

is concave, continuous in the uniform topology of A, and positively homoge-
neous:

Γ(λh) = λΓ(h) ∀h ∈ A, λ ∈ R+.

Proof. Recall that Jδ(h, z) = Re (F (z) + δTG(z))h(z). The function Γ is concave
and positively homogeneous as an infimum of linear functions.

To prove that the function Γ is continuous with respect to the topology of uniform
convergence in A, consider the identity

ReΦδh1 = ReΦδh2 +ReΦδ(h1 − h2).

Taking the infimum over T and ∆ν of both sides yields

Γ(h1) ≥ Γ(h2) + inf
z∈T

inf
δ∈∆ν

ReΦδ(z)(h1(z)− h2(z)).

Since h1 and h2 are arbitrary functions in A and can be interchanged, we get

|Γ(h2)− Γ(h1)| ≤ sup
z∈T

sup
δ∈∆ν

|ReΦδ(z)(h2(z)− h1(z))|

≤
(
‖F‖∞ + sup

δ∈∆ν

|δ| ‖G‖∞
)
‖h2 − h1‖∞.

Thus the function Γ is continuous (in fact, even Lipschitz). The proposition is
proved.

Proof of Proposition 5.1. (2) ⇒ (1) Since the set RH∞ is uniformly dense in A
and, by Proposition A.2, Γ is continuous in the uniform topology of A, we have

γopt = sup
h∈BRH∞

inf
z∈T

inf
δ∈∆ν

Jδ(h, z).
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Hence γopt > 0 obviously implies (5.1).
(1) ⇒ (2) Let h0 ∈ RH∞ be such that (5.1) holds. The function Jδ(h0, z) is

continuous on (z, δ), and the set T × ∆ is compact. Then there exists (z0, δ0) such
that

Γ(h0) = inf
z∈T

inf
δ∈∆ν

Jδ(h0, z) = Jδ0(h0, z0) > 0.

Finally,

γopt ≥ sup
h∈BRH∞

Γ(h) ≥ Γ

(
h0

‖h0‖∞

)
=

Γ(h0)

‖h0‖∞ =
Jδ0(h0, z0)

‖h0‖∞ > 0.

Proof of Lemma 5.2. Recall the notation from (3.1) and (3.2),

Φδ = F + δTG, Jδ(h, z) = ReΦδ(z)h(z),

and denote

γH∞ = sup
h∈BH∞

ess inf
z∈T

inf
δ∈∆ν

Jδ(h, z).

It is obvious that γH∞ ≥ γopt. We have to prove the opposite inequality.
By definition, for any ε > 0, there is a function h ∈ BH∞ such that

Jδ(h, z) ≥ γH∞ − ε

for all δ ∈ ∆ν and almost all z ∈ T. The function Jδ is harmonic as the real part of
analytical function. Hence, by the mean value theorem,

Jδ(h, rz) ≥ ess inf
z∈T

Jδ(h, z) ≥ γH∞ − ε

for all δ ∈ ∆, z ∈ T, and 0 ≤ r < 1.
Denote hr(z) = h(rz) for 0 ≤ r < 1. It holds that hr ∈ A and ‖hr‖∞ ≤ ‖h‖∞;

hence hr ∈ BA. Denote similarly Fr(z) = F (rz) and Gr(z) = G(rz). We then obtain

Jδ(hr, z) = ReΦδ(z)hr(z) = Jδ(h, rz) + Re (Φδ(z)− Φ(rz))hr(z)

≥ γH∞ − ε− sup
z∈T

|Φδ(rz)− Φδ(z)|
≥ γH∞ − ε− ‖F − Fr‖∞ − |δ|‖G−Gr‖∞.

Therefore,

Γ(hr) = inf
δ∈∆ν

inf
z∈T

Jδ(hr, z) ≥ γH∞ − ε− ‖F − Fr‖∞ − sup
δ∈∆ν

|δ| ‖G−Gr‖∞.

The functions F and G are continuous, and the Fatou theorem [7] implies that ‖F −
Fr‖∞ → 0 and ‖G−Gr‖∞ → 0 as r → 1. The constant supδ∈∆ν

|δ| is bounded. Thus
γopt ≥ lim

r→1
Γ(hr) ≥ γH∞ − ε

for all ε > 0. Hence γopt ≥ γH∞ .

Appendix B. Proof of Theorem 5.3. We cite first the classical result which
gives the basic Banach duality relation [7, 16]. Recall the notation (7.2)

〈f, g〉 = Re

∫
T

f(z)T g(z) dm(z).
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Theorem B.1. Let 1 ≤ p ≤ +∞, 1/p+ 1/q = 1, and f ∈ Lp. Then the distance
from the f to Hp is

distLp(f,Hp) = sup
h∈BHq

0

〈f, h〉.

There exists a function fopt ∈ Hp such that distLp(f,Hp) = ‖f−fopt‖p. The function
fopt is unique if p �= +∞.

Corollary B.2. Under the same conditions as in Theorem B.1, it holds that

distLp(f,Hp
0) = sup

h∈BHq

〈f, h〉.

Proof. Consider a function f(z)/z ∈ Lp, and apply Theorem B.1.
Now we prove the following lemma.
Lemma B.3. Let a measurable function φ : C

n×C→ R be concave and continuous
in the first argument. Denote φh(z) = φ(h(z), z). Then

sup
h∈BH∞(Cn)

ess inf
z∈T

φh(z) = inf
w∈SL1(R+)

sup
h∈BH∞(Cn)

〈φh, w〉.(B.1)

Proof. Note that

ess inf
z∈T

φh(z) = inf
w∈SL1(R+)

〈φh, w〉.

The set BH∞ is convex and *weak compact, the set SL1(R+) is convex, and the
function 〈φh, w〉 is *weak continuous and concave on h and continuous and convex on
w (even linear). Hence, by Ky Fan’s min-max theorem [5], the order of sup and inf
can be interchanged.

Proof of Theorem 5.3. Denote

Jν(h, z) = inf
δ∈∆ν

Jδ(h, z).

This function is concave in h. By Proposition A.1, it is also continuous in h. Using
Lemma B.3, the min-max theorem [5], and Theorem B.1, we have

sup
h∈BH∞

ess inf
z∈T

Jν(h, z) = inf
w∈SL1(R+)

sup
h∈BH∞

〈Jν(h, ·), w〉

= inf
w∈SL1(R+)

sup
h∈BH∞

inf
δ(z)∈∆ν

〈ReΦδh,w〉 = inf
w∈SL1(R+)

inf
δ(z)∈∆ν

sup
h∈BH∞

〈ΦT
δ w, h〉

= distL1([F + L∞(∆ν)
TG]SL1(R+),H

1
0).

Appendix C. Proof of Theorem 5.6. To begin with, we prove the following
lemma. All details about Borel measures and Lebesgue decomposition can be found
in [27].

Lemma C.1. Let Φ ∈ C, g ∈ L1, and w be the density function of a real Borel
measure µ on T. Then

‖Φw + g‖1 = ‖Φwc + g‖1 +
∫

T

|Φ| dµs,(C.1)

where µ = wc dm + µs is the Lebesgue decomposition to absolutely continuous and
singular parts.
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Proof. Due to the triangular inequality, it is obvious that

‖Φw + g‖1 ≤ ‖Φwc + g‖1 +
∫

T

|Φ| dµs.

Since m(supp (µs)) = 0, for any ε > 0, there is an open set Tε ⊂ T such that
supp (µs) ⊂ Tε and m(Tε) ≤ ε. Then the following inequality holds:

‖Φw + g‖1 = ‖Φws +Φwc + g‖1 =

∫
T\Tε

|Φwc + g| dm+

∫
Tε

|Φws +Φwc + g| dm

≥
∫

T\Tε

|Φwc + g| dm+

∫
Tε

|Φ| dµs −
∫
Tε

|Φwc + g| dm

ε→0−→ ‖Φwc + g‖1 +
∫

supp (µs)

|Φ| dµs = ‖Φwc + g‖1 +
∫

T

|Φ| dµs.

This proves the lemma.

Proof of Theorem 5.6. Denote

γmin = inf
δ(z)∈∆ν

inf
h∈H1

0

inf
‖w‖1=1

‖Φδw − h‖1,

and let δi ∈ L∞(∆ν) and wj ∈ SL1(R+) be such that

inf
h∈H1

0

‖Φδiwj − h‖1 → γmin, i, j → +∞.

Without loss of generality, we assume that δi ∈ C because the set L∞(∆ν) ∩ C is
*weakly dense in L∞(∆ν). The functions F and G belong to A; therefore,

Φδi = F + δTi G ∈ C.

Embed the set SL1(R+) in the unit sphere of real Borel measures on T as w ↪→ µ,

µ(Ω) =

∫
Ω

w(z) dm(z).

The latter set is *weakly compact, so there exists a *weak limit point µopt of the
sequence {µj}+∞

j=1. The measure µopt can be decomposed to the absolutely continuous
µc and singular parts µs as µopt = µc +µs. This corresponds to the decomposition of
a generalized density wopt as wopt = wc + ws, where wc is a regular function in "L1

+

and ws is a generalized function which is equal to zero on T \ E and m(E) = 0.

We claim that wopt can be chosen in such a way that either wc or ws is zero.
Indeed, let λ0 = ‖wc‖1. Then

wopt = λ0w̃c + (1− λ0)w̃s,

where w̃c and w̃s are normalized densities. In the case when λ0 = 0, the claim is
proved. So assume that λ0 > 0. Using Lemma C.1, we have a decomposition

‖Φwopt − h‖1 = λ0

∥∥∥∥Φw̃c − h

λ0

∥∥∥∥
1

+ (1− λ0)

∫
E

|Φ| dµ̃s
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whenever h ∈ H1
0 and Φ ∈ C. This implies that

inf
h∈H1

0

‖Φwopt − h‖1 = λ0 inf
h∈H1

0

‖Φw̃c − h‖1 + (1− λ0)

∫
E

|Φ| dµ̃s

= inf
λ∈[0,1]

(
λ inf

h∈H1
0

‖Φw̃c − h‖1 + (1− λ)

∫
E

|Φ| dµ̃s

)
.

The function is linear with respect to λ. Hence 0 or 1 is always the optimal value.
Moreover, if the optimal λ is 0, then the similar argument proves that the singular
part w̃s of the optimal density wopt can be chosen as a Dirac δ-function at one of the
points z0 = argminz∈T |Φ(z)|.

Thus we have proved that, for any Φ ∈ C, there exists w̃c ∈ S"L1
+ such that

inf
h∈H1

0

inf
‖w‖1=1

‖Φw − h‖1 = min

{
inf

h∈H1
0

‖Φw̃c − h‖1, min
z∈T

|Φ(z)|
}
.

Hence, denoting δopt a *weak limit point of the sequence {δi}+∞
i=1 , we get

γmin = inf
δ(z)∈∆ν

min

{
inf

h∈H1
0

‖Φδw̃c − h‖1, min
z∈T

|Φδ(z)|
}

= min

{
inf

h∈H1
0

‖Φδoptw̃c − h‖1, ess inf
z∈T

|Φδopt(z)|
}
.

To complete the proof, we use Theorem B.1 to conclude that there exists the optimal
function hopt such that

inf
h∈H1

0

‖Φδoptw̃c − h‖1 = ‖Φδoptw̃c − hopt‖1.

Now the condition γmin = 0 can be easily transformed to that stated in Theorem 5.6.
The proof is finished.

Appendix D. Proofs of Propositions in section 6.
Proof of Proposition 6.1. (1) ⇒ (2) Denote by wλ the Poisson kernel at the point

λ ∈ D:

wλ(z) =
1− |λ|2
|z − λ|2 .

It is clear that wλ ∈ L1(R+) and ‖wλ‖1 = 1. Since

F (λ) =

∫
T

F (z)wλ(z) dm(z) =

∫
T

(F (z)wλ(z)− p(z)) dm(z)

for all p ∈ H1
0, we have the inequality

|F (λ)| ≤ inf
p∈H1

0

‖Fwλ − p‖1.(D.1)

The infimum can be calculated by the minimum norm theorem (see Corollary B.2):

|F (λ)| ≤ inf
p∈H1

0

‖Fwλ − p‖1 = sup
h∈BH∞

∫
T

Re (F (z)h(z))wλ(z) dm(z)

= sup
h∈BH∞

ReF (λ)h(λ) = |F (λ)|.
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Hence (D.1) is the equality

|F (λ)| = inf
p∈H1

0

‖Fwλ − p‖1 = ‖Fwλ − p0‖1,

where the existence of p0 is guaranteed by the same minimum norm theorem.
Thus |F (λ)| = 0 implies that Fwλ ∈ H1

0.
(2) ⇒ (1) Denote the entries of F by Fk, and suppose that there exists a w ∈

L1(R+) \ 0 such that

Fk(z)w(z) = zpk(z), pk ∈ H1.(D.2)

For all k, the function zpk(z)/Fk(z) is analytical everywhere in D except the zeros
of Fk. However, these functions are the same function w from (D.2); hence w is the
analytical function everywhere in D except the common zeros of Fk, which are the
zeros of |F |.

Assume that there are no zeros of |F | in D, and so w ∈ H1. The only analytical
functions that take real values on T are constants. Hence w is the constant function.
Furthermore, w(0) = 0 by (D.2). Then w = 0, which contradicts the assumption that
w �= 0. Therefore, there must exist a zero of |F | in D.

Proof of Proposition 6.2. (1) ⇒ (2) The inequality (6.2) implies that Re (F (λ) +
δTG(λ))h(λ) > 0 for all λ ∈ D. Then

(Fh+ δTGh)−1 ∈ A ∀δ ∈ ν∆.(D.3)

In particular, it gives (Fh)−1 ∈ A. The function g = h(Fh)−1 ∈ A satisfies Fg = 1,
and (D.3) becomes

(1 + δTGg)−1 = (Fh)−1(Fh+ δTGh)−1 ∈ A ∀δ ∈ ν∆.(D.4)

Since, for each z ∈ T, one can choose

δ = αG(z)g(z)/|G(z)g(z)|, α ∈ [0, ν],

(D.4) implies that |G(z)g(z)| �∈ [ν−1,+∞). Hence ‖Gg‖∞ < ν−1.
(2) ⇒ (1) By Rouché’s theorem [27], we get (D.4). Thus

1 + δTG(z)g(z) �= 0 ∀z ∈ T, δ ∈ ν∆.

By Theorem 4.1, there exists a function α ∈ A such that

Re (1 + δTG(z)g(z))α(z) > 0 ∀z ∈ T, δ ∈ ν∆.

Finally, for h = gα ∈ A, we have

Re (F (z) + δTG(z))h(z) = Re (1 + δTG(z)g(z))α(z) > 0.
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Abstract. We consider the problem

Max
F

Min
c(p, F ) = 0

h(p, F ),

where F ∈ Rr, p ∈ Rm, and where c(·) and h(·) are C1. Let φ(F ) = Minc(p,F )=0h(p, F ). We
show, by means of simple examples, that φ(·) is, in general, discontinuous. We develop in this paper
necessary conditions for the case where φ(·) is continuous (but not necessarily differentiable). In
an alternative approach (which is computationally inferior), we treat the discontinuous case as well.
We apply the results to robust control in linear systems where p stands for the (structured) real
parameter uncertainty vector and F stands for the control parameters vector. We demonstrate the
results by means of examples.

Key words. robust control, min-max

AMS subject classifications. 93C05, 93D09

PII. S0363012999363572

1. Introduction. Robust control has attracted the attention of researchers for
more than three decades. Basically, we consider a linear time invariant plant with
(constant) real parameters whose values are known to lie in some prescribed (ellip-
soidal) uncertainty set. The uncertainty structure, however, is arbitrary. We seek
a fixed (dynamic) compensator in closed loop such that the closed loop spectrum
lies in a prescribed set in the complex plane (relative stability) for all values in the
uncertainty set. The compensator has any desired structure, like reduced order, or
zeros in the left half plane (LHP). Among infinitely many possible robust controllers,
we identify a controller with a clear geometrical meaning, one that maximizes the
stability margin. In other words, we seek a controller so that we can increase the
uncertainty radius to the maximum while maintaining (relative) stability. It turns
out that such a controller leads to a max-min problem as pointed out in [1]. The
cost in such a max-min problem is the (ellipsoidal) distance, and the constraint is the
stability boundary described by the critical polynomial [2].

While problems of max-min nature are discussed in the literature [3, 4, 5], we treat
the robust control problem independently since it possesses some exclusive properties.
As explained in [5], max-min creates a differentiability problem, since, after the first
operation (minimization), the cost may no longer be smooth. Moreover, as will be
demonstrated in section 7, at a global max-min point, a small variation in the outer
variables (max) may cause a jump in φ(·). It turns out that, while the largest el-
lipsoid may cause a jump, a robust compensator associated with a fixed uncertainty
ellipsoid never creates a jump. In mathematical terms, the fixed uncertain ellipsoid
is associated with MaxF Minp∈P h(p, F ), where the set P depends only on p (and
not on F ). On the other hand, the maximum uncertain ellipsoid is associated with
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Fig. 1.

MaxF Minc(p,F )=0h(p, F ), where the coupling of p and F in the inner operation is
evident. To find necessary conditions for max-min, articles [3, 4, 5] use the directional
derivative, which in turn requires that φ(·) is continuous.

In this paper, we use the Lagrange multiplier method for the inner operation. As
for the outer operation, we show that, under mild conditions, at extremum, the num-
ber of tangent points needed is related to the (reduced) number of control parameters.
It shows, in turn, that the necessary conditions presented in [1] form a special case of
our approach. We also present an alternative approach, which is capable of treating
jumps. However, computationally this approach is inferior to the first approach. The
necessary conditions presented here have the form of a set of polynomial equations.
The solutions of these equations are candidates for robust compensation. To find all
real solutions, we suggest using a probability one homotopy method like HOMPACK
[6]. Finally, we apply to each real solution a robust analysis like [7] and select a robust
compensator.

The paper is organized as follows. In section 2, we recall results from root clus-
tering and parameter space, in particular, the critical polynomial, and state our ob-
jective. In section 3, we present a max-min formulation associated with the largest
ellipsoid contained in the parameter space. Likewise, we present a max-min formu-
lation associated with a fixed uncertainty ellipsoid. In sections 4 and 5, we find
necessary conditions for the largest ellipsoid under the assumption that φ(·) is contin-
uous, while, in section 6, we discuss a more general case using an alternative approach.
In section 7, we present necessary conditions for a fixed ellipsoid. Finally, in section 8,
we demonstrate some of the results by means of examples.

2. Parameter space and problem statement. We consider a linear time
invariant plant P and a linear time invariant controller C connected in a feedback
form. We denote the plant’s and the controller’s transfer functions by P (s; p) and
C(s;F ), respectively, where s ∈ C is the usual complex variable, p ∈ Ω ⊂ Rm is the
plant’s uncertainty parameter vector, Ω is the uncertainty set, and F ∈ Rr is the
controller’s design parameter vector. Let ∆(s; p, F ) be the closed loop characteristic
polynomial, and let σ(∆) be the closed loop spectrum. As an illustration, consider
the unit feedback configuration as depicted in Figure 1.

Let

P (s; p) = D−1
p (s; p)Np(s; p),

C(s;F ) = Nc(s;F )D
−1
c (s;F ).(1)

Then the characteristic equation |I + P (s; p)C(s;F )| = 0 leads to the characteristic
polynomial

∆(s; p, F ) = |Dp(s; p)Dc(s;F ) +Np(s; p)Nc(s;F )|.(2)
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To discuss the matrix version, consider a strictly proper plant with realization

ẋp = Ap(p)xp +Bp(p)u,

y = Cp(p)xp.(3)

We seek a stabilizing compensator of fixed order of the form

ẋc = Acxc +Bc(r − y),

u = Ccxc +Dc(r − y),(4)

where r is a reference signal. Combining (3) and (4) in closed loop, we obtain for
r = 0 and for x = [x′

p x′
c]
′

ẋ = A(p, F )x,(5)

where

A(p, F ) = A(p)−B(p)FC(p),(6)

A(p) =

[
Ap(p) 0

0 0

]
, B(p) =

[
Bp(p) 0

0 I

]
,

C(p) =

[
Cp(p) 0

0 I

]
, F =

[
Dc Cc

Bc Ac

]
.(7)

Design objective. Given an uncertain plant P and a region ℵ ⊂ C in the
complex plane, select F such that σ[∆(s; p, F )] ⊂ ℵ or σ[A(p, F ] ⊂ ℵ for all p ∈ Ω.
Such a controller is called robust.

The root clustering ℵ may represent asymptotic stability, like the left half plane
and unit disk, or relative stability like the left hyperbola. Moreover, in some ap-
plications, we require a controller of fixed structure (including fixed order) or some
other properties like stable controllers. These requirements are included in the above
design objective. As mentioned in the introduction, we achieve our objective using
the concept of worst case design in the parameter space. To this end, we need an im-
portant instrument, known as the critical polynomial c(p, F ) in the parameter space.
This polynomial vanishes at the (relative) stability boundary and is positive in the
interior. As early as 1929, it was recognized [8] that the Hurwitz determinant is a
critical polynomial for the left half plane, and, in 1963, the unit disk counterpart was
constructed [9]. Recently [2, 10], as a part of a general root clustering theory, a critical
polynomial for an arbitrary region was constructed. Consider a region ℵ ⊂ C in the
complex plane

ℵ =

x+ jy : f(x, y) =

∑
i,j

fijx
iyj < 0


 ,(8)

where f(x, y) is a given polynomial in the two real variables x and y. Define the
coefficients φik in the following way:

φ(α, β) = f

(
α+ β

2
,
α− β

2j

)
=
∑

φikα
iβk.(9)
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Then Φ = [φik] is Hermitian and

ℵ = {s ∈ C : φ(s, s̄) < 0}.(10)

By construction, if s = x+ jy ∈ ∂ℵ, the boundary of ℵ, then φ(s, s̄) = 0. In 1983, it
was recognized [11] that, in parameter space analysis, a region ℵ should be regular in
the following sense.

Definition 2.1. φ(α, β), defined above, is regular if α, β ∈ ℵ ⇒ φ(α, β) �= 0.
We say that ℵ is regular if φ(α, β) is regular.

Note that, in previous articles, we have used the term H-transformability to
describe regularity. Following [2, 12], we define the critical polynomial c(p, F ) by a
double resultant operator as follows:

c(p, F ) = Resλ[∆(λ; p, F ),Ress[∆̄(s; p, F ),−φ(λ, s)]],(11)

where “Res” is the resultant of two polynomials, ∆(·) is the (possibly complex) char-
acteristic polynomial, and ∆̄(·) is the conjugate complex of ∆(·). Likewise, given a
matrix A(p, F ) ∈ C

n×n,

c(p, F ) = (−1)n det
[∑

φikA
i ⊗ Āk

]
(12)

where ⊗ is the Kronecker product of two matrices.
In this matrix version, we will feel free to replace the vector F by an appropriate

matrix F . Now consider the image ℵ̂ of ℵ in the parameter space.

(i) ℵ̂ = {(p, F ) ∈ Rm+r : σ(A(p, F )) ⊂ ℵ},

and in the polynomial setting,

(ii) ℵ̂ = {(p, F ) ∈ Rm+r : σ(∆(s; p, F )) ⊂ ℵ}.(13)

It is known [2] that

(i) ℵ̂ ⊂ {(p, F ) ∈ Rm+r : c(p, F ) ≥ 0} always,
(ii) ℵ̂ ⊂ {(p, F ) ∈ Rm+r : c(p, F ) > 0} for regular regions,
(iii) ∂ℵ̂ ⊂ {(p, F ) ∈ Rm+r : c(p, F ) = 0} always.(14)

3. Robust control: Max-min approach. We first assume that the compen-
sator’s parameter vector F is fixed, and we discuss robust analysis. In particular, let
the system characteristic polynomial be

∆(λ; p) =
n∑
i=0

ai(p)λ
i,(15)

where p ∈ Rm is the uncertainty vector associated with the plant and is restricted by

p ∈ Ω ⊂ Rm; Ω =

{
p ∈ Rm :

m∑
i=1

ν2
i p

2
i − γ2 ≤ 0

}
.(16)

The following theorem is straightforward.
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Theorem 3.1. Consider the uncertain polynomial (15), and suppose that the
nominal polynomial ∆(λ; 0) has all of its roots inside a regular region ℵ. Then for all
p ∈ int(Ω), σ(∆(λ; p)) ⊂ ℵ if and only if for all p ∈ int(Ω), c(p) > 0.

Instead of discussing the positivity c(p) in Ω directly, we pose an optimization
problem whose solution identifies the maximum uncertainty radius allowed. Consider

Min

m∑
i=1

ν2
i p

2
i subject to (s.t.) c(p) = 0.(17)

The general meaning of this optimization is depicted in Figure 2.
If we are interested in a fixed radius rather than the maximum radius, we pose

the following problem:

Min

m∑
i=1

ν2
i p

2
i s.t. c(p)− ρ2 = 0.(18)

Here we have to solve (18) for different values of ρ until the corresponding value of∑m
i=1 ν

2
i p

2
i takes the required value γ2. However, in light of (14), we can reverse

the role of the cost and the constraint to obtain a direct representation for a fixed
uncertainty radius as follows:

Min c(p) s.t.
m∑
i=1

ν2
i p

2
i − γ2 ≤ 0.(19)

Note that (19) is equivalent in ℵ̂ to Max[− ln c(p)]. Thus we may write

Max[− ln c(p)] s.t.
m∑
i=1

ν2
i p

2
i − γ2 ≤ 0.(20)

The geometry of (19) and (20) is depicted in Figure 3.
We now present a matrix version. Let A(p) ∈ Rn×n be a system matrix, where

A(0), the nominal matrix, is stable with respect to ℵ. With A(p) and ℵ we associate
the matrix equation ∑

i,k

φikA
i(p)PA

′k
(p) = −Q,(21)

where (·)′ is a matrix transposition, φ(·) defined by (9) is M -transformable [2], and
Q = Q′ > 0.
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According to the theory of composite matrices, the solution to (21) has the form

φ(A(p)⊗A(p))p̂ = −q̂,(22)

where p̂ and q̂ are the stacking operators of matrices P and Q. Recalling the critical
polynomial (12), we see that matrix P has a unique solution if and only if c(p) �= 0.
We conclude

tr(P ) > 0 ∀ p ∈ ℵ̂,
tr(P )→∞ as (p ∈ ℵ̂)→ ∂ℵ̂,(23)

where tr(P ) is the trace of P . Thus (20) can be replaced by the matrix version

Max tr(P ) s.t.
∑
i,k

φikA
i(p)PA

′k
(p) +Q = 0,

m∑
i=1

ν2
i p

2
i − γ2 ≤ 0.(24)

So far we have seen that robust stability can be associated with an optimization
problem. However, robust stability is the analysis part in the design process. Now
we discuss the synthesis; namely, we construct a compensator such that closed loop
relative stability (with respect to ℵ) is preserved in the entire uncertainty set Ω. In
moving from analysis to synthesis, the optimization problem moves from minimization
to a conflict between the uncertainty and the controller. In other words, minimization
becomes max-min operation. This operation reflects our deterministic approach to
robust compensators. That is, we seek a single compensator F such that

σ(∆(λ; p, F )) ⊂ ℵ ∀ p ∈ Ω,(25)

where now ∆(λ; p, F ) is the closed loop characteristic polynomial.
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To this end, we free the compensator F and seek a value that maximizes the
uncertainty radius. Using (17), we obtain the following max-min problem:

Max
F

Min
p

m∑
i=1

ν2
i p

2
i s.t. c(p, F ) = 0.(26)

Likewise, (18) becomes

Max
F

Min
p

m∑
i=1

ν2
i p

2
i s.t. c(p, F )− ρ2 = 0,(27)

while, for fixed uncertainty radius, (19) implies

Max
F

Min
p

c(p, F ) s.t.

m∑
i=1

ν2
i p

2
i − γ2 ≤ 0.(28)

For the inverse critical polynomial (20), we have

Min
F

Max
p

[− ln c(p, F )] s.t.

m∑
i=1

ν2
i p

2
i − γ2 ≤ 0.(29)

Finally, the matrix version (24) now becomes

Min
F

Max
p

tr(P ) s.t.
∑
i,k

φikA
i(p, F )PA

′k
(p, f) +Q = 0,

m∑
i=1

ν2
i p

2
i − γ2 ≤ 0.(30)

It should be emphasized that in a max-min or min-max operation, we first take the
inner operation with respect to p and then the outer operation with respect to F .
While the first operation always leads to a finite point (Ω is compact), the second
operation (with respect to F ) may lead to a point at infinity. This is so since F
is not restricted to lie in a compact set. Furthermore, the number of solutions to
the above problems may be infinity. We leave the discussion of these difficulties to
a later section. Finally, note that we do not suppose that a real conflict between
the uncertainty and the controller takes place. Rather, we associate with the robust
compensator problem a max-min formulation, the solution of which leads to a robust
compensator. This compensator is, of course, not unique.

4. Tangency points. Consider the max-min problem (26)

Max
F

Min
p

m∑
i=1

νip
2
i := p′Dp s.t. c(p, F ) = 0.(31)

Assumption 4.1. The nominal system is stabilizable with respect to ℵ; that is,
{F : (0, F ) ∈ ℵ̂} �= φ.

We define the robustness radius γ(F ) by

γ2(F ) := Min
c(p, F ) = 0

m∑
i=1

ν2
i p

2
i if (0, F ) ∈ ℵ̂; otherwise, γ(F ) := 0.(32)
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In the case of a jump in γ(F ), we can add the notion of a practical robustness radius.
Thus the optimal robust controller F ∗ in the max-min sense is given by

γ∗ := Sup
F

γ(F ) = γ∗(F ∗) ≥ γ(F ∗),(33)

where the inequality in (33) becomes an equality if and only if F ∗ is not a jump point.
The minimization in (32) takes place at contact points of the critical constraint and
the uncertain ellipsoid. Such points are depicted in Figure 4.

Suppose that, at each F with γ(F ) > 0, the contact takes place at p = p(k)(F ).
These are the local maxima of problem (32). We say that points p(k)(F ) are regular
points of the critical surface {p : c(p, F ) = 0} if the gradient of c(p, F ) at the surface
with respect to p does not vanish at these points. In other words,

c(p(k), F ) = 0, γ2(F ) =

m∑
i=1

ν2
i p

(k)2 ⇒ cp(p
(k), F ) �= 0.(34)

At this point, it is worth noting that the critical polynomial c(p, F ) must be in a
reduced form. In particular, let {λi} be the roots of ∆(·; p, F ) = 0. Then [2]

c(p, F ) =
n∏

i,j=1

(−φ(λi, λ̄j)) = (−1)nc̃2(p, F )
n∏
i=1

φ(λi, λ̄i),(35)

where

c̃(p, F ) =
∏
i<j

|φ(λi, λ̄j)|.(36)

Thus cp(p, F ) ≡ 0 for every real (p, F ) on the critical surface. To overcome this
difficulty, we have to replace c(p, F ) by the reduced form

ĉ(p, F ) = (−1)nc̃(p, F )
n∏
i=1

φ(λi, λ̄i).(37)

In the case of complex polynomials, this factorization is impossible. However, for the
real case, we have the following result:
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(i) Given a real characteristic polynomial ∆(s; p, F ),

c(p, F ) = Res[∆(s; p, F ),−φ(s, s)]
(
Res[∆(λ; p, F ),Res[∆(s; p, F ),−φ(λ, s)]]

Res[∆(s; p, F ),−φ(s, s)]
)1

2

.(38)

(ii) Given a real matrix A(p, F ),

c(p, F ) = det

[∑
i

fi0A
i(p, F )

]
det[−φ(A(p, F )�A(p, F ))],(39)

where � is the bialternate produce [2]. In what follows, by c(p, F ) we mean the
reduced form. It should be noted that, for computational simplicity, we remove from
c(·) factors using ĉ = c/gcd(c, ∂c∂p1 , . . . ,

∂c
∂pm

).

Let us first assume that a max-min point is regular. Let p(i), i = 1, 2, . . . , l, be
points of tangency of the critical constraint and the ellipsoid. Using the Lagrange
multiplier method, we may write

(i) cp(p
(i), F ) = λ(i)p(i)′D, D = diag[ν2

k ]
m
k=1,

(ii) c(p
(i)
, F ) = 0, i− 1, 2, . . . , l.(40)

Here

cp(p, F ) =

[
∂c

∂p1
· · · ∂c

∂pm

]
,(41)

and λ is the (inverse) Lagrange multiplier.

Definition 4.1. Given a compensator F satisfying (0, F ) ∈ ℵ̂, we say that
p ∈ Rm is a contact point for F if the minimum (32) is attained. Given F , we say
that p ∈ Rm is a tangency point if, for some real λ,

c(p, F ) = 0, cp(p, F ) = λp′D �= 0.(42)

Note that every contact point for F for which cp �= 0 is a tangency point (but not
necessarily the opposite).

Definition 4.2. If, for some F ∗, there exist a tangency point p∗ and a corre-
sponding λ∗, we say that p∗ has a regular multiplicity k if there exist a neighborhood
NF∗ of F ∗ and C1(NF∗) functions p(i)(F ), λ(i)(F ), i = 1, 2, . . . , k, satisfying (42) for
every F ∈ NF∗ and p(i)(F ∗) = p∗, λ(i)(F ∗) = λ∗, such that k is the maximal possible
number of such {p(i)(F ), λ(i)(F )} pairs. If k = 1, we say that p∗ has a simple regu-
lar multiplicity. If, in addition, p(1)(F ) and λ(1)(F ) are the unique solutions in the
neighborhoods of p∗, λ∗, for every F ∈ NF∗ , we say that p∗ is simple regular.

We open by characterizing simple regular points. If, for some F ∗, there exist a
simple regular tangency point p∗ and a corresponding λ∗, then there exist a neigh-
borhood NF∗ of F ∗ and functions p(F ), λ(F ) ∈ C1(NF∗) satisfying (42) for every
F ∈ NF∗ with initial conditions p(F ∗) = p∗, λ(F ∗) = λ∗. Thus, taking p = p(F ),
λ = λ(F ), we obtain from (42)[

cpp − λD −Dp

cp 0

][
dp

dλ

]
=

[
−cpF
−cF

]
dF , where cpF :=

[
∂2c

∂pi∂Fj

]
.(43)
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Definition 4.3. We define the two matrices

J =

[
cpp − λD −Dp

cp 0

]
, J1 =

[
cpp − λD −Dp −cpF

cp 0 −cF

]
,(44)

where p ∈ Rm, F ∈ Rr, J is (m+ 1)× (m+ 1), and J1 is (m+ 1)× (m+ r + 1).
Assumption 4.2. If p ∈ Rm, λ ∈ R, F ∈ Rr satisfy (42), then J1 is of full rank;

that is,

c(p, F ) = 0, cp(p, F ) = λp′D ⇒ rank(J1) = m+ 1.(45)

Suppose that, contrary to the assumption, rank(J1) = m. Then choose m inde-
pendent rows in J1, and express the remaining one as a linear combination of these m
rows, using m combination coefficients. In that case, we obtain (together with (42))
2m + r + 2 equations in 2m + r + 1 unknowns. If these equations are independent,
then the extra equation restricts the nominal plant. Thus the assumption holds for
almost every nominal plant.

Theorem 4.1. Let p∗ be a tangent point for F ∗ with a corresponding λ∗. Suppose
that Assumptions 4.1 and 4.2 are satisfied. Then p∗ is simple regular if and only if

|J(F ∗
, p∗, λ∗)| �= 0.(46)

Proof. Let Assumption 4.1 be satisfied at (p∗, F ∗, λ∗). Then the implicit function
theorem implies that (46) is sufficient for (42) to have, in some neighborhood NF∗ of
F ∗, a unique solution p(F ) ∈ Np∗ , λ(F ) ∈ Nλ∗ . Moreover, p(F ), λ(F ) ∈ C1(NF∗)
and satisfy the differential equation

d

dF

[
p

λ

]
= J−1(p, F , λ)

[
−cpF
−cF

]
, where

dp

dF
:=

[
dpi
dF j

]
.(47)

The uniqueness implies the initial conditions p(F ∗) = p∗, λ(F ∗) = λ∗, and, according
to Definition 4.2, p∗ is simple regular.

To prove necessity, suppose that the above assumptions are satisfied and that p∗

is simple regular. Then, in some neighborhood NF∗ , system (42) has a solution p(F ),
λ(F ) ∈ C1(NF∗) for which p(F ∗) = p∗, λ(F ∗) = λ∗. For sufficiently small ‖∆F‖, let
F = F ∗ +∆F , ∆p = p(F )− p∗, ∆λ = λ(F )− λ∗. Then, from (42), we obtain

J(p∗, F ∗, λ∗)

[
∆p

∆λ

]
+O(‖∆p‖2 + |∆λ|2) =

[
−cpF
−cF

]
∆F +O(‖∆F‖2).(48)

Since p(F ), λ(F ) ∈ C1(NF∗), it follows that, for sufficiently small ‖∆F‖,
(‖∆p‖, |∆λ|) = O(‖∆F‖).(49)

If (46) does not hold, then there exists µ ∈ Rm+1 with ‖µ‖ = 1 such that

µ′J(p∗, F ∗, λ∗) = 0.(50)

Denote J2 := [ −cpF
−cF ]. Then, multiplying (48) by µ′ and using (49)–(50), we obtain

µ′J2∆F = O(‖∆F‖2).(51)
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However, by Assumption 4.2, we have 0 �= µ′J1 = [µ′J µ′J2] = [0 µ′J2]. Thus
ν′ := µ′J2 �= 0.

Choosing ∆F in the direction of ν, we obtain from (51) ‖ν‖ ‖∆F‖ = |ν′∆F | =
O(‖∆F‖2) or ‖∆F‖−1 = O(1), which is impossible for sufficiently small ∆F . This
contradiction implies that (46) is satisfied.

Remark. Using the above proof, we find that, under the same assumptions, if (46)
does not hold, every solution (p, F, λ) in some neighborhood of (p∗, F ∗, λ∗) satisfies
‖∆F‖ = O(‖∆p‖2 + |∆λ|2). Since p∗ �= 0, it follows that |∆λ| = O(‖∆p‖) and

that there exists a positive constant c such that ‖∆p‖ ≥ c‖∆F‖ 1
2 . In particular,

there exists no Lipschitzian solution p(F ) in the neighborhood of (p∗, F ∗). In fact,
under Assumptions 4.1 and 4.2, there are only two possibilities. Either a Lipschitzian
solution passes through the point and is unique, or every solution that passes through
the point is not Lipschitzian. We conclude that every regular point must be simple
regular.

Corollary 4.1. Suppose that Assumptions 4.1 and 4.2 are satisfied. Then every
jump point F ∗ is a member of the closed algebraic set S1 given by

S1 := {F ∈ Rr : (∃p ∈ Rm, λ ∈ R), c(p, F ) = 0, cp = λp′D, |J(p, F, λ)| = 0}.
Assumption 4.3. The set S1 does not span the entire space; that is, S1 �= Rr.
This assumption is equivalent to the claim that the elimination of p, λ from the

m+2 equations defining S1 results in a nonidentity polynomial equation. As a result,
dim(S1) < r, and S1 has zero Lebesgue measure in Rr.

5. Necessary conditions for max-min: The largest uncertainty possible.
Next we turn to the necessary conditions for max-min points. Let F ∗ be optimal in the
sense of (33) with l tangent points, all simple regular (see Definition 4.2), denoted by
p(i)(F ∗), i = 1, 2, . . . , l, and Lagrange multipliers λ(i)(F ∗). Suppose Assumption 4.1
is satisfied. Then, at each tangent point, the functions

γ(i)2(F ) := p(i)′(F )Dp(i)(F ) are in C1(NF∗).(52)

Define the Jacobian

J3(F ) =
1

2

[
∂γ(i)2

∂Fk

]
∈ Rl×r,(53)

and denote r(J3) = rankJ3(F
∗).

Using γ(i)2 = p′Dp, we have d(γ(i)2) = 2p′Ddp. Multiplying by λ, we have
λd(γ(i)2) = 2λp′Ddp. But by (42), cp = λp′D. Thus λd(γ(i)2) = 2cpdp. On the
other hand, c(p, F ) = 0 implies cpdp + cF dF = 0. Thus λd(γ(i)2) = −2cF dF or
∂(γ(i)2)
∂F = −2λ−1cF .
Thus

J3(F ) =
1

2

[
∂γ(i)2

∂Fk

]
i,k

=




·
−(λ(i))−1cF (p

(i), F )

·


 rank

=




·
cF (p

(i), F )

·




rank
=

[
∂c(p(i), F )

∂Fk

]
i,k

.

Clearly, at F = F ∗,

γ(i)2 = p(i)′Dp(i), i = 1, . . . , l.(54)
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Here we have l equations, and (42),

c(p(i), F ∗) = 0, cp(p
(i), F ∗) = λ(i)p(i)′D, i = 1, . . . , l,(55)

yield another l(m+1) equations for l tangent points. Thus we have l(m+2) equations
in l(m + 1) + r + 1 unknowns. We conclude that, if the equations are independent,
we obtain a finite number of solutions, provided l ≥ r + 1. To cover all possibilities,
we present the following cases.

Case 1. l ≥ r+1. In this case, it suffices to consider l = r+1. Note that, in (54),
the vectors p(i), i = 1, . . . , r + 1, must be distinct. For more details, see the example
in section 8. The set of equations takes the following form:

γ∗2 = p(i)′Dp(i),

c(p(i), F ∗) = 0,

cp(p
(i), F ∗) = λ(i)p(i)′D, i = 1, . . . , r + 1.

(56)

Case 2. r(J3) = 0, 1 ≤ l ≤ r. In this case, J3(F
∗) = 0; that is, cF (p

(i), F ∗) = 0.
Note that J3(F

∗) = 0 defines lr equations, (42) defines l(m+ 1) equations, and (54)
defines another l equations. Thus we have l(m+ r + 2) equations in l(m+ 1) + r + 1
unknowns. We conclude that, for l = 1, we obtain m+ r + 2 equations in m+ r + 2
unknowns. For l ≥ 2, we obtain more equations than unknowns, and, provided these
equations are independent, we conclude that the solution set is empty for almost every
nominal plant. In other words, we have a single simple regular tangent point (l = 1)
for almost all nominal plants. We conclude that cF = 0 and obtain

c(p, F ∗) = 0

cp(p, F
∗) = λp′D

cF (p, F
∗) = 0

(1 equation)

(m equations)

(r equations)




(m+ r + 1) equations in

(m+ r + 1) unknowns.
(57)

Remark. This is the classical case in which γ(F ) ∈ C1(NF∗).
Case 3. 1 ≤ r(J3) ≤ l ≤ r. In this case, J3 has r(J3) independent rows. Without

loss of generality, we may assume that rows i = 1, . . . , r(J3), are independent and
that the rest are their linear combinations. Using ∆F := F − F ∗, we have


γ(1)2(F )

...
γ(l)2(F )


−




γ(1)2(F ∗)
...

γ(l)2(F ∗)


 = J3(F

∗)∆F + o(‖∆F‖), F ∈ NF∗ .(58)

We first prove that r(J3) = l is impossible. If r(J3) = l, J3(F
∗) has l independent

columns. Thus there exists v ∈ Rr such that J3(F
∗)v = col[1 · · · 1]. For sufficiently

small ε > 0, we choose ∆F = εv and obtain


γ(1)2(F )
...

γ(l)2(F )


−




γ(1)2(F ∗)
...

γ(l)2(F ∗)


 =




ε
...
ε


+ 0(ε) > 0.(59)

That is γ(i)(F ) > γ(i)(F ∗) := γ(F ∗), i = 1, . . . , l. Consequently (see the appendix for
discussion), γ(F ) = min1≤i≤l γ(i)(F ) > γ(F ∗), contradicting the optimality of γ(F ∗).
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We conclude that 1 ≤ r(J3) < l ≤ r, which also implies r ≥ 2. Now we express
the rows i = r(J3) + 1, . . . , l, in J3(F

∗) as [l − r(J3)] linear combinations of the
first r(J3) rows. This generates (l− r(J3))r equations in (l− r(J3))r(J3) coefficients.
In addition, we have (55). Thus we have a total of (l − r(J3))r + l + l(m + 1) =
l(m+r+2)−rr(J3) equations in (l−r(J3))r(J3)+l(m+1)+r+1 unknowns. A simple
calculation shows that the number of equations is bigger than the number of unknowns
by (l − r(J3) − 1)(r − r(J3) + 1). Thus the number of equations equals the number
of unknowns only if l = r(J3) + 1. Note that, in all other cases, r(J3) + 2 ≤ l ≤ r, in
which l − r(J3) − 1 ≥ 1 and r − r(J3) + 1 ≥ 3. In these cases, we find at least three
extra equations. We conclude that, if the equations are independent, if l ≥ r(J3) + 2,
the solution set is empty for almost every nominal plant, and it suffices to consider
l = r(J3) + 1, in which l ≤ r(J3) ≤ r − 1 and r ≥ 2. Thus

for each r(J3) = 1, . . . , r − 1,

γ∗2 = p(i)′Dp(i),

c(p(i), F ∗) = 0,

cp(p
(i), F ∗) = λ(i)p(i)′D,


 i = 1, . . . , r(J3) + 1,

cF (p
(i), F ∗)|i=r(J3)+1 =

r(J3)∑
i=1

µicF (p
(i), F ∗).

(60)

That is, for each r(J3) = 1, . . . , r − 1, we obtain r + (m+ 2)(r(J3) + 1) equations in
the same number of unknowns. We summarize our results as follows.

Theorem 5.1. Consider max-min problem (26) or (31), with Assumptions 4.1.
Suppose that, at a max-min point (optimum), all tangent points are simple regular.
Then an optimal compensator satisfies at least one of the following sets of equations:
(56), (57), (60).

Remark. Theorem 4.1 characterizes simple regular points. However, we do not
use it in Theorem 5.1.

Corollary 5.1. The results in Theorem 5.1 remain unchanged if the constraint
in (31) is a C1 function not necessarily a polynomial. If the cost γ2 = p′Dp is replaced
by a more general C1 function, say, h(p, F ), we replace, in (57) and in (60), [cF ] by
[cF − λhF ]. Likewise, cp = λp′D is replaced by cp = λhp.

6. An alternative approach. Consider the max-min problem (26) or (31)

Max
F

Min
p

γ2 =

m∑
i=1

ν2
i p

2
i := p′Dp s.t. c(p, F ) = 0.(61)

Assuming that the critical polynomial c(·) does not vanish with its gradient, we first
perform the minimization part. Define the Lagrangian

L = p′Dp+ λc(p, F ).(62)

Then necessary conditions for the minimum are

Lp := ∇pL(p, F ) = 2p′D + λcp = 0,

Lλ = c(p, F ) = 0.
(63)
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In order to perform the second operation, namely, the maximization with respect to
F , we must, in principle, solve (63) for (p, λ), substitute p in γ2, and maximize with
respect to F . To do so, we set the system of polynomial equations

γ2 − p′Dp = 0,

2p′D + λcp(p, F ) = 0,

c(p, F ) = 0.(64)

Using the Grobner bases [13] to eliminate (p, λ), we obtain the polynomial equation

ϕ(γ2, F ) = 0.(65)

The implicit function ϕ(·) is a polynomial in γ2 whose coefficients are polynomials in
F . To solve

Max
F

γ2 s.t. ϕ(γ2, F ) = 0,(66)

we recall that, while the zeros γ2 of ϕ(·, F ) are continuous functions of F , the function
γ2(F ) obtained from ϕ(γ2, F ) = 0 is not single-valued. Thus the Lagrange multiplier
method does not apply to (66) directly. To see this, define the Lagrangian (with a
“new” multiplier λ) as

L = γ2 + λϕ(γ2, F ).(67)

Denote ϕ′ := ∂ϕ
∂(γ2) ; we have the following necessary conditions for maximum:

∂L
∂(γ2)

= 1 + λϕ′(γ2, F ) = 0,provided ϕ′ �= 0,

∂L
∂Fi

= λ
∂ϕ

∂Fi
= 0.

In other words

ϕ(γ2, F ) = 0,

∂ϕ

∂Fi
= 0, i = 1, . . . , r.

(68)

However, at F ∗, a max-min point, ϕ = 0 and ϕ′ = 0 may hold simultaneously. Thus
we consider the following set of possibilities. Denote ϕ(i) := ( ∂

∂(γ2) )
iϕ(γ2, F ), and

consider, for k = 1, . . . , r − 1,

Max
F

γ2 s.t. ϕ(i) = 0, i = 0, 1, . . . , k.(69)

We assume here that, at F ∗, ϕ(k+1) �= 0. Define the Lagrangian

L = γ2 +

k∑
i=0

λiϕ
(i).(70)
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Then

For each k = 1, . . . , r − 1,

∂L
∂λi

= ϕ(i) = 0, i = 0, 1, . . . , k,

∂L
∂Fj

=

k∑
i=0

λi
∂ϕ(i)

∂Fj
= 0, j = 1, . . . , r.

(71)

In the case when k = r in (69), the constraints define F ∗. In that case, we have the
following conditions:

ϕ(i) = 0, i = 0, 1, . . . , r.(72)

Theorem 6.1. Consider max-min problem (61). Suppose that Assumption 4.1 is
satisfied and that F is in reduced form. Then necessary conditions for max-min are
either (68) or (71) or (72).

At this point, we wish to use the so-called root locus to illustrate both regular and
singular max-min points. Recall that φ(γ2, F ) is a polynomial in γ2 whose coefficients
are functions of F . Denote by γ2(F ) the roots γ2 of ϕ(γ2, F ) = 0 as a function of F .
Consider three basic cases.

Case 1. A single root moves (as a function of F ) in the positive direction, and
backward.

Case 2. A positive real pair of roots move “head on” and pass each other.

Case 3. A positive real pair of roots move “head on” and split into a complex
pair.
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7. Necessary conditions for max-min: The uncertainty region is given.
In the previous section, we have discussed the largest ellipsoid contained in the sta-
bility region. To discuss a given uncertainty region, consider max-min formulation
(27):

Max
F

Min
p

m∑
i=1

ν2
i p

2
i s.t. c(p, F )− ρ2 = 0.(73)

We now solve a series of max-min problems (73) by increasing ρ2 from zero. At each
step, we calculate the measure γ∗2 =

∑m
i=1 ν

2
i p

2
i . The process is stopped at the first

time when γ∗ becomes the given uncertainty radius.
To present a direct approach, we assume that there exists a robust controller F

and recall (28):

Max
F

Min
p

c(p, F ) s.t.

m∑
i=1

ν2
i p

2
i − γ2 ≤ 0.(74)

Note that this problem can be handled using the results presented in [3, 4]. For
additional comments, see section 9.

To solve (74) using our previous results, we first address the inner operation;
namely, we fix F and solve

Min
p

c(p;F ) s.t.

m∑
i=1

ν2
i p

2
i − γ2 ≤ 0.(75)

Since the constraint qualification holds for this problem, we can use Kuhn–Tucker
conditions as necessary conditions. In particular, there exists a Lagrange multiplier
λ such that

(i) cp(p, F ) + 2λp′D = 0,

(ii) λ(p′Dp− γ2) = 0.(76)

We remind the reader that the inner operation in problem (31), namely γ(F ), may
result in a discontinuous function. In the present formulation, the inner operation
is always continuous. The reason lies in the facts that Ω is a connected set and
c(p, F ) is continuous. In contrast to the present situation, in (31), we search for
the largest ellipsoid contained in the stability region. Since the stability region may
be disconnected, it follows that γ(F ) may be discontinuous. We conclude that our
present formulation is regular. We now proceed as in section 4. In particular, we
replace (56) by

cp(p
(i), F ) + 2λ(i)p(i)′D = 0, i = 1, 2, . . . r + 1,

λ(i)(p(i)′Dp(i) − γ2) = 0, i = 1, 2, . . . , r + 1,

c(p(i), F ) = c(p(1), F ), i = 2, 3, . . . , r + 1.

(77)

Likewise, we replace (57) and (60) by proper sets of equations. Note that some
λ(i) may vanish at optimum (interior point). Before closing this section, we wish to
comment on the construction of a fixed order compensator for a nominal plant (with
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Fig. 5.

no uncertainty). Suppose our objective is to find a compensator F0 so as to maximize
the “distance” to the stability boundary. Then we may write

Max
F0

Min
F

(F − F0)
′D(F − F0)

s.t. c(F ) = 0.
(78)

Remarks.
1. Since c(·) is a function of F alone, a jump never occurs.
2. We may interpret the formulation (78) as the “maximum stability margin”

possible.
3. Case 2 given by (57) is impossible for (78) since a single contact point (l = 1)

is impossible.
4. From a practical point of view, we require F to be bounded. In particular,

suppose that we require c1(F ) := F ′D1F − ρ2 ≤ 0. Then, in order to achieve

bounded control parameters (especially in the case when ℵ̂ is unbounded),
we replace the constraint c(F ) = 0 by c(F )c1(F ) = 0.

8. Illustrative examples.
Example 1. Consider the unit feedback system (a feedback version of [14]) pictured

in Figure 5.
The closed loop characteristic polynomial is

∆c(s; p, F ) = s3 + (p1 + p2 + 1)s2 + (p1 + p2 + 3)s+ (6p1 + 6p2 + 2p1p2 + 1 + k).

Recall that the critical polynomial can be generated from the Hurwitz matrix as
follows:

c(p, F ) = |Hn(p, F )| = a0(p, F )|Hn−1(p, F )|,
where c(p, F ) = 0 contains the stability boundary and, in particular,

(i) a0(p, F ) = 0 contains the real root boundary (r.r.b.),
(ii) |Hn−1(p, F )| = 0 contains the complex root boundary (c.r.b.).

In the present example,
(i) a0(p, F ) = 6p1 + 6p2 + 2p1p2 + 1 + k,
(ii) |H2(p, F )| = (p1 − 1)2 + (p2 − 1)2 − k.

The stability region is defined by a0 > 0, a2 > 0, and |H2| = a1a2 − a0 > 0 and is
depicted in Figure 6.

Our objective is to select the control gain k so as to maximize the robustness radius
with respect to the origin. First, note that, as k increases, the circle approaches the
origin, while the hyperbola diverges from the origin. Thus max-min takes place at
equal distances. Note that, since the circle radius is

√
k, the circle is feasible only for

0 < k < 2. Also note that the stability interval for the nominal system is −1 < k < 2.
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Fig. 6.

From symmetry, it is clear that the robustness circle is tangent to the hyperbola at
p1 = p2 < 0. Indeed, cp + λp′ = 0 yields, after solving for λ, p2

∂c
∂p1
− p1

∂c
∂p2

= 0. A

detailed calculation yields (p2 − p1)(p1 + p2 +3) = 0, which means p1 = p2 := p. The

hyperbola now yields p2 + 6p+ 1+k
2 = 0. The solution becomes p = −3 +

√
9− k+1

2 .

Equating the distances from the origin to the circle and to the hyperbola, we obtain

−(−3 +
√
9− 1+k

2 )
√
2 =

√
2 − √k. The two sides of this equation are depicted in

Figure 7. Simple algebra yields 4k2 − 68k + 81 = 0. The optimal gain becomes
k∗ = 1.29, and the robustness radius is γ∗ =

√
2−√k∗ = 0.27. Finally, note that, for

our example, a complete set of necessary conditions is given by (56). In particular,
since r = 1, we have l = 2. Denote p(1) = (x, y), p(2) = (v, w), and g = γ2. Then,
eliminating λ, set (56) takes the form

(1) g − x2 − y2 = 0,
(2) g − v2 − w2 = 0,
(3) (6x+ 6y + 2xy + 1 + k)((x− 1)2 + (y − 1)2 − k) = 0,
(4) (6v + 6w + 2vw + 1 + k)((v − 2)2 + (w − 1)2 − k) = 0,
(5) y[(6 + 2y)((x− 1)2 + (y − 1)2 − k) + 2(x− 1)(6x+ 6y + 2xy + 1 + k)]
−x[(6 + 2x)((x− 1)2 + (y − 1)2 − k) + 2(y − 1)(6x+ 6y + 2xy + 1 + k)] = 0,

(6) w[(6 + 2w)((v − 1)2 + (w − 1)2 − k) + 2(v − 1)(6v + 6w + 2vw + 1 + k)]
−v[(6 + 2v)((v− 1)2 + (w− 1)2 − k) + 2(w− 1)(6v+6w+2vw+1+ k)] = 0.

Using the Grobner package in Maple V, we find that a Grobner basis is formed of 64
(yes, sixty four!) reduced sets of polynomial equations. In principle, we have to test
each of them. To save space, we present the two relevant sets

(a) x + w = 0, v − w = 0, 2g − 16w + 3 = 0, 2k − 8w − 1 = 0, y + w = 0,
4w2 − 16w + 3 = 0,

(b) x + w = 0, v − w = 0, 2g + 16w + 3 = 0, 2k + 8w − 1 = 0, y + w = 0,
4w2 + 16w + 3 = 0.

Each of these sets yields k∗ = 1.3.
Finally, we wish to present a solution based on the alternative approach of sec-

tion 5. Once more, using the Grobner package in Maple V, we obtain from (64)–(65)

ϕ(γ2, F ) =

4∏
i=1

ϕi(γ
2, F ),
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Fig. 7.

Fig. 8.

where

ϕ1(γ
2, F ) = (γ2 + k + 1)2 − 72γ2, ϕ2(γ

2, F ) = (γ2 − k + 2)2 − 8γ2,

ϕ3(γ
2, F ) = γ2 − k + 4, ϕ4(γ

2, F ) = γ2 − k + 8.

Using (72), we find that ϕ(γ2, F ) = 0 and ϕ′(γ2, F ) = 0 are satisfied (among other
points) at ϕ1 = ϕ2 = 0. This yields k2 − 17k + 20.25 = 0 or k∗ = 1.3.

Example 2. Consider the unit feedback system described by Figure 8. Note that
this example is obtained from Example 1 by a simple shift on the parameters:

(pi)o = (pi)n + 3, (k)o = (k)n + 3,where o = old and n = new.

The closed loop characteristic polynomial is

∆c(s; p, F ) = s3 + (p1 + p2 + 7)s2 + (p1 + p2 + 9)s+ (12p1 + 12p2 + 2p1p2 + 52 + k).

The critical polynomial becomes

c(p, F ) = (12p1 + 12p2 + 2p1p2 + 52 + k)((p1 + 2)2 + (p2 + 2)2 + 3− k).

As a result, the stability boundary is formed of two branches—a circle and a hyperbola;
see Figure 9. The circle (c.r.b.) disappears as k reaches the value 3. If we calculate
the distance from each branch to the origin, we find the description of Figure 10.
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Fig. 9.

Fig. 10.

The graph illustrates that the robustness radius has a jump at k = 3. From
an algebraic point of view, using the Grobner package in Maple 6, we obtain from
(64)–(65)

ϕ(γ2, F ) =

5∏
i=1

ϕi(γ
2, F ), where

ϕ1 = (γ2)2 + (2k − 184)γ2 + k2 + 2704 + 104k,

ϕ2 = (γ2)2 − (2k + 10)γ2 + k2 − 22k + 121,

ϕ3 = k − γ2 + 16, ϕ4 = k − γ2 + 17, ϕ5 = k − γ2 + 25.

Using (72), we find that ϕ(γ2, F ) = 0 and ϕ′(γ2, F ) = 0 are satisfied (among other
points) at ϕ2 = ϕ′

2 = 0. This yields k = 3 as expected. Clearly, this example belongs
to Case 3, a singular case. It is singular in the sense that, at a max-min point,
the stability radius γ has a jump, as shown in Figure 10. In fact, a closer look at
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ϕ2 = ϕ′
2 = 0 reveals that the roots γ2(F ) described by Figure 10 satisfy

γ2(F ) =

{
k + 16 for − 16 < k < 3,

k + 5− 4
√
2k − 6 for 3 < k < 11.

In closing this example, we note that, while the detection of the jump is simple, it
illustrates a possible numerical difficulty. The circle tangent to the hyperbola is very
close to the hyperbola along a large portion of the hyperbola.

Example 3. According to Theorem 5.1, one has to find all the solutions of the
sets of equations (56), (57), and (60). In previous examples, the optimal solution
belongs to set (56). The geometric reason is l = r + 1, where l = 2 is the number of
tangent points and r = 1 is the number of control parameters. In the present example,
l = r = 2. In particular, consider the uncertain system ẋ = A(α, β)x+B(α, β)u,

A =

[
0 α− 1

β 0

]
, B =

[
α

1− β

]
,

where the uncertain parameters α and β lie in the set

{(α, β) : (α− 0.5)2 + (β − 0.5)2 ≤ ρ2}.
First, we transform (α, β) into (p1, p2) so that the nominal values α = 0.5, β = 0.5
correspond to the origin p1 = 0, p2 = 0. To this end, let p1 = α − 0.5, p2 = β − 0.5.
Then

A =

[
0 p1 − 0.5

p2 + 0.5 0

]
, B =

[
p1 + 0.5

0.5− p2

]
,

where the uncertainty set takes the form

Ω = {(p1, p2) : p
2
1 + p2

2 ≤ γ2}.
Our objective is to stabilize the above uncertain system using state feedback u = Fx,
F = [f1 f2] for all (p1, p2) ∈ Ω so as to maximize the robustness radius γ. To apply
Theorem 5.1, we calculate the closed loop characteristic polynomial

∆c(s; p, F ) = s2 − [(p1 + 0.5)f1 + (0.5− p2)f2]s

− [(p1 − 0.5)(p2 + 0.5) + (p1 − 0.5)(0.5− p2)f1

+ (p1 + 0.5)(p2 + 0.5)f2].

The stability constraints are

c1 = −[(p1 + 0.5)f1 + (0.5− p2)f2] > 0 (r.r.b.),

c2 = −[(p1 − 0.5)(p2 + 0.5) + (p1 − 0.5)(0.5− p2)f1

+ (p1 + 0.5)(p2 + 0.5)f2] > 0 (c.r.b.).

Note that the open loop satisfies s2 = (p1 − 0.5)(p2 + 0.5). Thus, in the region
{(p1, p2) : |pi| ≤ 0.5}, the roots of the characteristic polynomial are all located in the
interval [−1, 1] on the imaginary axis. Now we wish to study the effect of feedback
control on the stability. To simplify the discussion, let F = [0 f2]. In this case,

2c1 = −(1− 2p2)f2 > 0,

4c2 = −(1 + 2p2)(−1 + 2p1 + f2 + 2p1f2) > 0.
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Fig. 11.

Thus the critical polynomial c = c1c2 defines the following robust stability boundaries:

{(p1, p2) : p2 = 0.5}, {(p1, p2) : p2 = −0.5}, {(p1, p2) : p1 = 0.5(1− f2)/(1 + f2)}.

The stability region is depicted in Figure 11. The stabilizing gain is f2 ∈ (−∞,−1).
In other words, the use of f2 in this interval assures stability in the shaded region.

Since the robustness radius (γ∗ = 0.5) is invariant with respect to f2 ∈ (−∞,−1),
the optimization process does not detect any optimal point. Since the open loop is
marginally stable for all |pi| ≤ 0.5, we modify our original objective as follows: Find
u = Fx such that the closed loop is stable relative to Re(s) < −0.1. We continue with
the control structure F = [0 f2]. The modified characteristic polynomial becomes

∆(s− 0.1) = s2 − [0.2 + (0.5− p2)f2]s

+ [0.26− 0.2f2 − 0.6p2f2 − p1p2 − 0.5p1 + 0.5p2 − p1p2f2 − 0.5p1f2].

The (relative) stability constraints are now

c1 = −0.2− (0.5− p2)f2 > 0,

c2 = 0.26− 0.2f2 − 0.6p2f2 − p1p2 − 0.5p1 + 0.5p2 − p1p2f2 − 0.5p1f2 > 0.

Clearly, given f2, c1 = 0 describes a straight line, while c2 = 0 describes a hyperbola.
We suppose that, at the maximum robustness radius, there are two tangent points—
one on the line and one on the hyperbola. The distance from the origin to the line is
0.5 + 0.2/f2. Let (p1, p2) = (x, y) be the tangent point with the hyperbola. Then

(1) x2 + y2 = (0.5 + 0.2/f2)
2.

The tangency condition at (x, y) is

(2) x(0.5− x− xf2 − 0.6f2)− y(−0.5− y − yf2 − 0.5f2) = 0,

and the hyperbola satisfies

(3) c2(x, y, f2) = 0.
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Solving these equations, we obtain x = −0.02 and y = −0.39, and the optimal gain
is f2 = −1.83. The maximum robustness radius is γ∗ = 0.39.

Now we proceed to the general case where F = [f1 f2]. As before, we are
interested in stability with respect to Re(s) < −0.1. Since we do not have a priori
information about the number of tangent points, we assume, as before, two tangent
points—one on the line and one on the hyperbola. However, in order to use the simple
set of equations (56), we assume three tangent points so that l = r+1 and solve (56)
numerically. If our hypothesis concerning two tangent points is correct, two points
must be identical. Let the point on the line be (x1, x2) and on the hyperbola (x3, x4),
(x5, x6). Then (56) becomes

(1) −0.8− 4x1f1 − 2f1 − 2f2 + 4x2f2 = 0,
(2) 1.04 − 1.6x3f1 + 1.2f1 − 0.8f2 − 2.4x4f2 − 4x3x4 − 2x3 + 2x4 + 4x3x4f1 −

2x4f1 − 4x3x4f2 − 2x3f2 = 0,
(3) 1.04 − 1.6x5f1 + 1.2f1 − 0.8f2 − 2.4x6f2 − 4x5x6 − 2x5 + 2x6 + 4x5x6f1 −

2x6f1 − 4x5x6f2 − 2x5f2 = 0,
(4) x1f2 + x2f1 = 0,
(5) x3(−2.4f2 − 4x3 +2+ 4x3f1 − 2f1 − 4x3f2)− x4(−1.6f1 − 4x4 − 2+ 4x4f1 −

4x4f2 − 2f2) = 0,
(6) x5(−2.4f2 − 4x5 +2+ 4x5f1 − 2f1 − 4x5f2)− x6(−1.6f1 − 4x6 − 2+ 4x6f1 −

4x6f2 − 2f2) = 0,
(7) x2

1 + x2
2 − x2

3 − x2
4 = 0,

(8) x2
1 + x2

2 − x2
5 − x2

6 = 0.
Solving numerically this set of equations using Maple 6, we find three real solutions:

(x1, x2) = (0.052, 0.433), (0.044, 0.426), (0.027, 0.412),

(x3, x4) = (0.027,−0.435), (0.013,−0.l428), (−0.006,−0.413),
(x5, x6) = (0.027,−0.435), (0.013,−0.428), (−0.006,−0.413),
(f1, f2) = (23.91,−199.9), (1.102,−10.76), (0.247,−3.749).

Note, of course, that there are more real solutions to this set of equations. The first
solution (f1, f2) = (24,−200) induces a robustness radius γ∗ = 0.44. This is a 12.5%
increase with respect to the previous (f1, f2) = (0,−1.83) with γ∗ = 0.39. The fact
that there are two identical tangent points implies that neither (56) nor (60) can be
used directly. Indeed, these sets of equations are based on the assumption (which may
not be necessary) of simple roots. Moreover, Maple solves the above set of equations
using a gradient method, starting at some initial point. In other words, the solution
containing a multiple root is approached approximately. On the other hand, the use
of a homotopy method cannot detect a multiple root since homotopy curves are not
allowed to intersect. Still, it is possible to use the homotopy approach indirectly by
first approximating the above set of equations and then decreasing the approximation
parameter.

9. Conclusions. The most important consequence of this paper is the fact that
max-min completely characterizes the largest (or a fixed) ellipsoid contained in the
(relative) stability region in the parameter space. As a result, we have a noncon-
servative approach to feedback compensation in the presence of a real parameter
uncertainty. Since in max-min the inner operation results in a nondifferential func-
tion, we cannot use for the outer operation the Lagrange multiplier method. Instead,
we have found that, under mild conditions, the number of extreme points is related to
the (reduced) number of the controller parameters. Moreover, the largest uncertain
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ellipsoid might result in a jump. In such a case, the performance of the “robust”
controller is sensitive to (small) changes in control parameters. This singular situa-
tion can be handled using our alternative approach; however, due to elimination, it is
numerically expensive. On the other hand, in the case of a fixed uncertain ellipsoid,
a jump never occurs. It is worth noting that the largest uncertain ellipsoid and the
fixed uncertain ellipsoid are related via limiting processes. In particular, solving (73)
and increasing ρ2 from zero, we can approach the required fixed radius. On the other
hand, solving MaxF Minp′Dp=r2c(p, F ) by increasing r from zero, we can approach
the maximum radius. The limiting process, however, requires, in principle, the so-
lution of an infinite number of max-min problems. To achieve performance, we use
relative rather than asymptotic stability. Our approach can handle both polynomial
and matrix versions—the latter can be transformed into the former. The resulting
necessary conditions have the form of a set of nonlinear equations. We suggest the use
of a probability one homotopy method (HOMPACK [6]) for solving these equations
(see also [15, 16, 17]). In the application to control theory, the functions h(·) and c(·)
are usually polynomials. In this important case, the necessary conditions have the
form of a set of polynomial equations, the total degree is simple to calculate, and the
use of HOMPACK is simple. Moreover, in the polynomial case, the use of Grobner
bases simplifies these equations and enables us to solve nontrivial control problems.
Finally, the singular case needs more study. This is left for future research.

Appendix. In section 5, Case 3, we use the following result.
Lemma A.1. The following is satisfied in some neighborhood of F ∗:

γ(F ) = Min
1 ≤ i ≤ l

γ(i)(F ).

Proof. We have to show that at least one of the points p(i)(F ) is indeed a contact
point and not just one satisfying the tangency condition (42). Let

‖p‖D := (p′Dp)1/2 = ‖D1/2p‖.

Since D is a positive definite (p.d.) matrix, it follows that ‖p‖D can be used as a
norm of p. Note that, if p, F, λ satisfy (42) and p �= 0, then λ is uniquely determined
by

λ(p, F ) =
cpp

p′Dp
=

cpp

‖p‖2D
.

From Assumption 4.1 it follows that γ∗ := γ(F ∗) = MaxF γ(F ). Thus F ∗ is a sta-

bilizing controller for the nominal system; that is, (0, F ∗) ∈ ℵ̂, and, in particular,
c(0, F ∗) > 0.

Denote S(F ) := {p(i)(F ): i = 1, . . . , l} in some neighborhood of F ∗. By con-
struction, S(F ∗) is the set of all contact points for F ∗, all simple regular. Thus
there exists an open set U containing S(F ∗) such that, for each F in some neigh-
borhood of F ∗, if p, F , λ, satisfy (42) with p ∈ U , then p ∈ S(F ). Denote
B := {p ∈ Rm : ‖p‖D ≤ γ∗}. By construction, S(F ∗) ⊂ U . Thus p ∈ B\U im-
plies p �∈ S(F ∗), and p ∈ B\U =⇒ c(p, F ∗) �= 0. We conclude that the compactness
of B\U and the continuity of c(p, F ) imply that there exists an open set V containing
B\U such that, for each F in some neighborhood of F ∗, p ∈ V ⇒ c(p, F ) �= 0.

Now denote W = U ∪ V . Then W c, the complement of W , is a closed set
(nonempty, since we may assume that W is bounded). Thus we may denote γ+ :=
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Minp∈W c‖p‖D. Since B\U ⊂ V , it follows that B ⊂ W ; thus p ∈ W c ⇒ p �∈ B ⇒
‖p‖D > γ∗, and γ+ > γ∗.

Since F ∗ stabilizes the nominal system, and since the zeros of ∆(·; 0, F ) vary
continuously with F , it follows that, for each F in some neighborhood of F ∗, (0, F ) ∈
ℵ̂. Since ‖p(1)(F ∗)‖D = γ∗ < γ+, it follows from the continuity of p(1)(F ) at F ∗

that there exists a neighborhood UF∗ of F ∗ for which γ(F ) = Minc(p,F )=0‖p‖D ≤
‖p(1)(F )‖D < γ+, F ∈ UF∗ . Thus, if F ∈ UF∗ with a contact point p(F ), it follows
that ‖p(F )‖D = γ(F ) < γ+ = Minp∈W c‖p‖D; thus p(F ) �∈ W c; that is, p(F ) ∈ W =
U ∪ V .

Now, if p(F ) ∈ V , it follows from the definition of V (with UF∗ sufficiently small)
that c(p(F ), F ) �= 0, contradicting the fact that p(F ) is a contact point for F . We thus
conclude that p(F ) ∈ U\V . Since p(F ) satisfies (42), it follows from the definition
of U (with UF∗ sufficiently small) that p(F ) ∈ S(F ). Thus γ(F ) = ‖p(F )‖D >
Minp∈S(F )‖p‖D. On the other hand, γ(F ) = Minc(p,F )=0‖p‖D ≤ Minp∈S(F )‖p‖D.
Thus we finally conclude:

γ(F ) = Min
p ∈ S(F )

‖p‖D = Min
1 ≤ i ≤ l

‖p(i)(F )‖D, F ∈ UF∗ .
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Abstract. We consider linear systems with m inputs, p outputs, and McMillan degree n such
that n = mp. If both m and p are even, we show that there is a nonempty open (in the usual
topology) subset U of such systems, where the real pole placement map is not surjective. It follows
that, for each system in U , there exists an open set of pole configurations, symmetric with respect
to the real line, which cannot be assigned by any real static output feedback.
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1. Introduction. We consider linear systems S = (A,B,C) described by the
equations

ẋ = Ax+Bu,
y = Cx.

(1.1)

Here the state x, the input u, and the output y are functions of a real variable t
(time), with values in Rn, Rm, and Rp, respectively, the dot denotes the derivative
with respect to t, and A,B,C are real matrices of sizes n × n, n × m, and p × n,
respectively.

Assuming zero initial conditions and applying the Laplace transform, we obtain

Y (s) = C(sI −A)−1B U(s),

so the behavior of our linear system is described by a rational matrix-function C(sI−
A)−1B of size p×m of a complex variable s, which is called the (open loop) transfer
function of S. It is clear that G(∞) = 0. The poles of the transfer function are the
eigenvalues of the matrix A.

For a given p × m matrix function G with the property G(∞) = 0, there exist
infinitely many representations of G in the form G(s) = C(sI −A)−1B. The smallest
integer n over all such representations is called the McMillan degree of G.

We consider the possibility of controlling a given system S by attaching a feed-
back. This means that the output is sent to the input after a preliminary linear
transformation, called a compensator. The compensator may be another system of
the form (1.1) (dynamic output feedback) or just a constant matrix (static output
feedback). In this paper, we consider only static output feedback, referring for the
recent results on dynamic output feedback to [14, 11].

A static output feedback is described by the equation

u = Ky,(1.2)
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where K is an m× p matrix which is usually called a gain matrix. Eliminating u and
y gives

ẋ = (A+BKC)x,

whose characteristic polynomial is

ϕK(s) = det(sI −A−BKC).(1.3)

It is called the closed loop characteristic polynomial.

The pole placement problem is formulated as follows.

Given a system S = (A,B,C) and a set of points {s1, . . . , sn} in C (listed with
multiplicities) symmetric with respect to the real axis, find a real matrix K such that
the zeros of ϕK are exactly s1, . . . , sn.

For a fixed system S, we define the (real) pole placement map

χS : MatR(m× p)→ PolyR(n), χS(K) = ϕK ,(1.4)

where MatR(m × p) is the set of all real matrices of size m × p, PolyR(n) is the set
of all real monic polynomials of degree n, and the polynomial ϕK is defined in (1.3).
Thus to say that, for a system S, an arbitrary symmetric set of poles can be assigned
by a real gain matrix is the same as saying that the real pole placement map χS is
surjective. Extending the domain to complex matrices K and the range to complex
monic polynomials gives the complex pole placement map

MatC(m× p)→ PolyC(n),

defined by the same formula as the real one.

It is easy to see that, for every m,n, p, there are systems for which the pole place-
ment map is not surjective. For example, one can take B = 0 or C = 0. A necessary
condition of surjectivity proved in [13] is that S is observable and controllable. This
is equivalent to saying that the McMillan degree of the transfer function is equal to
n, the dimension of the state space. Notice that this property is generic: it holds for
an open dense subset of the set

A = MatR(n× n)×MatR(n×m)×MatR(p× n)

of all triples (A,B,C). All topological terms in this paper refer to the usual topology.

In this paper, we consider the following problem: for a given triple of integers
(m,n, p), does there exist an open dense subset V ⊂ A such that the real pole placement
map χS is surjective for S ∈ V ? If this is the case, we say that the real pole placement
map is generically surjective for these m,n, and p.

We briefly recall the history of the problem, referring to a comprehensive survey
[2]. The pole placement map defined by (1.3) and (1.4) is a regular map of affine
algebraic varieties. Comparing the dimensions of its domain and range, we conclude
that n ≤ mp is a necessary condition for generic surjectivity of the pole placement
map, real or complex. In the complex case, this condition is also sufficient [7]. To
show this, one extends the pole placement map to a regular map between compact
algebraic manifolds and verifies that its Jacobi matrix is of full rank. In the case when
n = mp, we have the following precise result.
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Theorem A (see [1]). For n = mp, the complex pole placement map is generically
surjective. Moreover, it extends to a finite regular map between projective varieties
and has degree

d(m, p) =
1!2! . . . (p− 1)! (mp)!

m!(m+ 1)! . . . (m+ p− 1)!
.

It follows that, for a generic system (A,B,C) with n = mp and a generic monic
complex polynomial ϕ of degree mp, there are d(m, p) complex matrices K such that
ϕK = ϕ.

The numbers d(m, p) occur as the solution of the following problem of enumer-
ative geometry: how many m-subspaces intersect mp given p-subspaces in Cm+p in
a general position? The answer d(m, p) was obtained by Schubert in 1886 (see, for
example, [9]).

The real pole placement map is harder to study. For a survey of early results, we
refer to [2, 12]. Wang [16] proved that n < mp is sufficient for generic surjectivity of a
real (or complex) pole placement map. A simplified proof of this result can be found
in [17, 12].

From now on, we discuss only the so-called critical case; that is, we assume that

n = mp

in the rest of the paper. In addition, we may assume, without loss of generality, that
p ≤ m, in view of the symmetry of our problem with respect to the interchange of m
and p (see, for example, [15, Theorem 3.3]).

One corollary from Theorem A is that the real pole placement map is generically
surjective if d(m, p) is odd. This number is odd if and only if one of the following
conditions is satisfied [2]: (a) min{m, p} = 1 or (b) min{m, p} = 2, and max{m, p}+1
is an integral power of 2.

In the opposite direction, Willems and Hesselink [18] found by explicit computa-
tion that the real pole placement map is not generically surjective for (m, p) = (2, 2).
A closely related fact, that the problem of enumerative geometry mentioned above
may have no real solutions for the case (m, p) = (2, 2), even when the given 2-subspaces
are real, is mentioned in [8].

In [13], Rosenthal and Sottile found with a rigorous computer-assisted proof that
the real pole placement map is not generically surjective in the case (m, p) = (4, 2),
thus disproving a conjecture of Kim that (2, 2) is the only exceptional case.

In [6], we showed that the real pole placement map is not generically surjective
when p = 2 and m is even, thus extending the negative results for the cases (2, 2) and
(4, 2) stated above.

In the present paper, we extend this result to all cases when both m and p are
even.

Theorem 1.1. If n = mp and m and p are both even, then the real pole placement
map is not generically surjective.

Our proof of Theorem 1.1 explicitly gives a system S0 ∈ A and a polynomial
element u(s) = s(s2 + 1)mp/2−1 such that, for any S′ in a neighborhood of S0, the
real pole placement map χS′ omits a neighborhood of u.

Our proofs in [6] depend on a hard analytic result from [5], related to the so-called
B. and M. Shapiro conjecture, which is stated below in section 2. The proofs in the
present paper are new, even in the case min{m, p} = 2, and they are elementary.

We conclude the introduction with an unsolved problem.
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A system S is called stabilizable (by real static output feedback) if there exists
a gain matrix K ∈ MatR(m × p) such that all zeros of the closed loop characteris-
tic polynomial ϕK belong to the left half-plane. From the positive results on pole
placement stated above, it follows that generic systems with m inputs, p outputs, and
state of dimension n are stabilizable if n < mp or if n = mp and m + p is odd. We
ask whether generic systems with n = mp and even m and p are stabilizable. The
answer is known to be negative in the case (m, p) = (2, 2) [3]. For complex output
feedback, with static or dynamic compensators, the problem of generic stabilizability
was solved in [10].

2. A class of linear systems. We begin with a well-known transformation of
the closed loop characteristic polynomial (1.3). The open loop transfer function of
a system of McMillan degree n, equal to the dimension of the state space, can be
factorized as

C(sI −A)−1B = D(s)−1N(s), detD(s) = det(sI −A),(2.1)

where D and N are polynomial matrix-functions of sizes p×p and p×m, respectively.
For the possibility of such factorization for systems (1.1) of McMillan degree n, we
refer to [4, Assertion 22.6]. Using (2.1) and the identity det(I − PQ) = det(I −QP ),
which is true for all rectangular matrices of appropriate dimensions, we write

ϕK(s) = det(sI −A−BKC) = det(sI −A) det(I − (sI −A)−1BKC)

= det(sI −A) det(I − C(sI −A)−1BK)

= detD(s) det(I −D(s)−1N(s)K) = det(D(s)−N(s)K).

This can be rewritten as

ϕK(s) = det

(
[D(s), N(s)]

[
I
−K

])
.(2.2)

Now we extend χS : K 
→ ϕK to a map between compact manifolds. For this purpose,
we allow an arbitrary (m+ p)× p complex matrix L of rank p in (2.2) instead of[

I
−K

]
,(2.3)

and we define

ϕL(s) = det ([D(s), N(s)] L) .(2.4)

A system S represented by [D(s), N(s)] is called nondegenerate if ϕL �= 0 for every
(m + p) × p matrix L of rank p. Such matrices are called equivalent; L1 ∼ L2 if
L1 = L2U , where U ∈ GLp(C). The set of equivalence classes is the Grassmannian
GC(p,m + p), which is a compact algebraic manifold of dimension mp. If L1 ∼ L2,
we have ϕL1 = cϕL2 , where c �= 0 is a constant. The space of all nonzero polynomials
of degree at most mp, modulo proportionality, is identified with the projective space
CPmp, coefficients of the polynomials serving as homogeneous coordinates. Monic
polynomials represent the points of an open dense subset of CPmp, a so-called big cell,
which consists of polynomials of degree mp. This construction extends the complex
pole placement map of a nondegenerate system to a regular map of compact algebraic
manifolds

χS : GC(p,m+ p)→ CPmp,(2.5)
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where χS(L) is the proportionality class of the polynomial ϕL in (2.4), and L is a
matrix of rank p representing a point in GC(p,m+p). The set B of all nondegenerate
systems is open and dense in the set A of all systems, and the map

X ×GC(p,m+ p)→ CPmp, (S,L) 
→ χS(L)(2.6)

is continuous. Notice that the subset of GR(p,m+ p) consisting of points which can
be represented by matrices L of the form (2.3) is open and dense. It corresponds via
χS to the big cell in CPmp consisting of polynomials of degree mp.

We consider a system S0 = (A0, B0, C0) represented by the polynomial matrix
[D(s), N(s)]

=




1 s . . . sm+p−2 sm+p−1

0 1 . . . (m+ p− 2)sm+p−3 (m+ p− 1)sm+p−2

. . . . . . . . . . . . . . .
0 0 . . . . . . (m+ 1) . . . (m+ p− 1)sm


 .(2.7)

The first row of [D(s), N(s)] consists of monic monomials, and the kth row is the
(k − 1)st derivative of the first for 2 ≤ k ≤ p. This system S0 has McMillan degree
mp, and the matrices A0, B0, C0 can be recovered from [D,N ] by [4, Theorem 22.18].
Let L = (ai,j). Introducing polynomials

fj(s) = a1,j + a2,js+ · · ·+ am+p−1,js
m+p−2 + am+p,js

m+p−1(2.8)

for 1 ≤ j ≤ p, we can write (2.4) as

ϕL = W (f1, . . . , fp) =

∣∣∣∣∣∣∣∣
f1 . . . fp
f ′
1 . . . f ′

p

. . . . . . . . .

f
(p−1)
1 . . . f

(p−1)
p

∣∣∣∣∣∣∣∣
.

Thus, for our system (A0, B0, C0), the pole placement map becomes the Wronski
map, which sends a p-vector of polynomials into their Wronski determinant. We
say that two p-vectors of polynomials are equivalent, (f1, . . . , fp) ∼ (g1, . . . , gp), if
(g1, . . . , gp) = (f1, . . . , fp)U , where U ∈ GLp(C). Equivalent p-vectors have propor-
tional Wronski determinants. Equivalence classes of p-vectors of linearly independent
polynomials of degree at most m+p−1 parametrize the Grassmannian GC(p,m+p).
A p-vector of complex polynomials will be called real if it is equivalent to a p-vector
of real polynomials. The system represented by (2.7) is nondegenerate. This is a
consequence of the well-known fact that the Wronski determinant of p polynomials is
zero if and only if the polynomials are linearly dependent.

To prove Theorem 1.1, we use the following general result (compare [13, Theorem
3.1]).

Proposition 2.1. If, for some (m,n, p), there exists a real nondegenerate system
S0 = (A0, B0, C0) such that the real pole placement map χS0 in (2.5) is not surjective,
then, for these (m,n, p), the real pole placement map is not generically surjective.

Indeed, if χS0 omits one point u, it omits a neighborhood of u, because the image
of a compact space under a continuous map is compact. Using continuity of the
map (2.6), we conclude that, for all S in a neighborhood of S0, the maps χS omit a
neighborhood of u.

In view of Proposition 2.1, to prove Theorem 1.1, it is enough to find a nonzero
real polynomial of degree at most mp which cannot be represented as the Wronski
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determinant of p real polynomials of degree at most m + p − 1. Thus Theorem 1.1
follows from Proposition 2.1 and the following proposition.

Proposition 2.2. If m ≥ p ≥ 2 are even integers, then the polynomial u(s) =
s(s2 + 1)mp/2−1 is not proportional to the Wronski determinant of any p real polyno-
mials of degree at most m+ p− 1.

Proposition 2.2 is motivated by a conjecture of B. and M. Shapiro (see, for ex-
ample, [15]), which says: If the Wronskian determinant of a polynomial p-vector has
only real roots, then this p-vector is real. In [5], we proved this conjecture for p = 2
and used this result in [6] to derive the case p = 2 of Theorem 1.1. In the present
paper, we prove a result, Proposition 3.1 in section 3, which is a very special case of
the B. and M. Shapiro conjecture, but it still permits us to derive Proposition 2.2.

3. The Wronski map. A p-vector of linearly independent polynomials of degree
at most m + p − 1 can be represented by an (m + p) × p matrix L of rank p, whose
columns are composed of the coefficients of the polynomials as in (2.8).

The group GLp(C) acts on such matrices by multiplication from the right. This
action is equivalent to the usual column operations on matrices: interchanging two
columns, multiplying a column by a nonzero constant, and adding to a column a
multiple of another column. For each column j of L, we introduce two integers
1 ≤ ej ≤ dj ≤ m + p, which are the positions of the first and last nonzero elements
of this column, counted from above. Thus deg fj = dj − 1, and the order of a root of
fj at zero is ej − 1. It is easy to see that, by column operations, every (m + p) × p
matrix L = (ai,j) of rank p can be reduced to the following canonical form:

(i) d1 > d2 > · · · > dp,
(ii) aej ,j = 1 for every j ∈ [1, p],
(iii) aek,j = 0 for 1 ≤ j < k ≤ p.
The elements aej ,j = 1, 1 ≤ j ≤ p, of the canonical form will be called the pivot

elements. It follows from (iii) that all numbers ej are distinct.
Proposition 3.1. Suppose that mp is even. Then every polynomial p-vector

(f1, . . . , fp) of degree at most m+ p− 1 in canonical form, which satisfies

W (f1, . . . , fp) = λw, where w(s) = smp/2+1 − smp/2−1, λ ∈ C∗,(3.1)

has only real entries.
Corollary. All polynomial p-vectors of degree at most m+p−1 satisfying (3.1)

are real.
This corollary confirms a special case of the B. and M. Shapiro conjecture, when

the Wronskian determinant of a polynomial p-vector is w(s) = smp/2+1 − smp/2−1,
which is a polynomial with real roots 0,±1.

The properties of the Wronskian determinants used here are well known and easy
to prove.

Lemma. The Wronski map (f1, . . . , fp) 
→W (f1, . . . , fp) is linear with respect to
each fj, and

W (sn1 , . . . , snp) = V (n1, . . . , np)s
n1+···+np−p(p−1)/2,

where

V (n1, . . . , np) =
∏
k<j

(nj − nk)

is the Vandermonde determinant.



POLE PLACEMENT BY STATIC OUTPUT FEEDBACK 309

Using this lemma, we compute the Wronskian determinant of a polynomial p-
vector in canonical form and conclude that

degW (f1, . . . , fp) = d1 + · · ·+ dp − p(p+ 1)/2(3.2)

and

ordW (f1, . . . , fp) = e1 + · · ·+ ep − p(p+ 1)/2,(3.3)

where ord denotes the multiplicity of a root at zero.
Proof of Proposition 3.1. According to (3.1), degw = mp/2 + 1, and ordw =

mp/2− 1. So (3.2) and (3.3) imply

d1 + · · ·+ dp = p(p+ 1)/2 +mp/2 + 1,

e1 + · · ·+ ep = p(p+ 1)/2 +mp/2− 1.

Subtracting the second equation from the first, we get
p∑
j=1

(dj − ej) = 2.

As all the summands are nonnegative, there are two possibilities.
Case 1. In all columns but one, all elements, except the pivot elements, are equal

to zero, and, for the exceptional column j, dj − ej = 2. Computing the Wronskian
and comparing it with (3.1), we obtain

V (. . . , ej − 1, . . . )smp/2−1

+ V (. . . , ej , . . . )aej+1,js
mp/2

+ V (. . . , ej + 1, . . . )aej+2,js
mp/2+1

= −λsmp/2−1 + λsmp/2+1.

Here and in what follows, the notation V (. . . , ej + m, . . . ) means the Vandermonde
determinant of p arguments, whose kth argument is ek − 1 for k �= j and whose jth
argument is ej +m.

Comparing the terms with smp/2−1, we conclude that λ is real. Comparing the
terms with smp/2+1, we conclude that V (. . . , ej +1, . . . ) �= 0, and thus aej+2,j is real.
Now we consider the middle term in the expansion of the Wronskian determinant.
If V (. . . , ej , . . . ) = 0, then ek = ej + 1 for some k. As dk = ek and dj = ej + 2,
we conclude that dk = dj − 1, so k > j by (i) in the definition of the canonical
form. Now (iii) from the definition of the canonical form implies that aej+1,j = 0. If
V (. . . , ej , . . . ) �= 0, we also conclude that aej+1,j = 0. Thus all entries of L are real.

Case 2. In all columns but two, all nonpivot elements are equal to zero, and
the two exceptional columns contain one extra nonzero element each. Let j < k be
the positions of the exceptional columns, and let a = aej+1,j and b = aek+1,k be
the nonzero, nonpivot elements of these columns. Computing the Wronskian and
comparing it with (3.1), we obtain

V (. . . , ej − 1, . . . )smp/2−1

+ (aV (. . . , ej , . . . ) + bV (. . . , ek, . . . )) s
mp/2

+ abV (. . . , ej , . . . , ek, . . . )s
mp/2+1

= −λsmp/2−1 + λsmp/2+1,

(3.4)
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where V (. . . , ej , . . . , ek . . . ) denotes the Vandermonde determinant of p arguments,
whose jth argument is ej and whose kth argument is ek, and, for all other indices
l /∈ {j, k}, the lth argument is el − 1.

Our first conclusions are

V (. . . , ej − 1, . . . ) = −λ(3.5)

and

V (. . . , ej , . . . , ek, . . . ) �= 0.(3.6)

It follows from (3.5) that λ is real. If exactly one of the numbers V (. . . , ej , . . . ) and
V (. . . , ek, . . . ) is zero, then (3.4) implies that at least one of the numbers a or b is zero.
Then the third term in the expansion of the Wronskian is zero, which contradicts (3.4).
If both V (. . . , ej , . . . ) and V (. . . , ek, . . . ) are zero, then V (. . . , ej , . . . , ek, . . . ) = 0,
and this contradicts (3.6). So both V (. . . , ej , . . . ) and V (. . . , ek, . . . ) are nonzero.
This means that there are no pivot elements in the rows ej + 1 and ek + 1. Us-
ing (3.6), we conclude that V (. . . , ej − 1, . . . ), V (. . . , ej , . . . ), V (. . . , ek, . . . ), and
V (. . . , ej , . . . , ek, . . . ) have the same sign, and, by (3.5), all these numbers have the
sign of −λ. As V (. . . , ej , . . . ) and V (. . . , ek, . . . ) are of the same sign, (3.4) implies
that a = −cb, where c > 0, and from the equations

V (. . . , ej , . . . , ek, . . . )ab = λ

and (3.5) we conclude that a and b are real.
The group Aut(CP1) of fractional-linear transformations acts on the space CPk

of proportionality classes of nonzero polynomials of degree at most k by the following
rule: Let

-(s) =
as+ b

cs+ d
, ad− bc �= 0,

represent a fractional-linear transformation. For a polynomial r(s), we put

-r(s) = (−cs+ a)kr ◦ -−1(s).

That this is indeed a group action can be verified as follows. The space of proportion-
ality classes of nonzero polynomials of degree at most k can be canonically identified
with the symmetric power Symk(CP1), which is the set of unordered k-tuples of
points in CP1. To each polynomial r, one puts into correspondence its roots, counted
with multiplicity, and the point ∞ with multiplicity k − deg r. Then the action of
- ∈ Aut(CP1) on such a k-tuple is simply

(s1, . . . , sk) 
→ (-(s1), . . . , -(sk)).

It is easy to verify that this action of Aut(CP1) extends to the space GC(p,m+p)
of equivalence classes of polynomial p-vectors of degree at mostm+p−1. Furthermore,
this extended action is respected by the Wronski map:

W (-g1, . . . , -gp) = -W (g1, . . . , gp).(3.7)

Of course, in the left-hand side of this equality, the group Aut(CP1) acts on
Symm+p−1(CP1), while, in the right-hand side, it acts on Symmp(CP1). Equation
(3.7) permits us to simplify the polynomial equation

W (g1, . . . , gp) = v, v(s) ∼ s(s2 − 1)mp/2−1,(3.8)
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which will be used to prove Proposition 2.2.
Consider the fractional-linear transformation

-(s) = -−1(s) =
1− s

1 + s
.(3.9)

We have - : (0, 1,∞,−1) 
→ (1, 0,−1,∞), and -(R) = R.
Using (3.8) and (3.9), we obtain

-v(s) = (s+ 1)mpv ◦ -−1(s) ∼ smp/2+1 − smp/2−1 = w(s),

where “∼” means “proportional.” Thus, with fj = -gj , (3.8) is equivalent to the
equation

W (f1, . . . , fp) = w, w(s) ∼ smp/2+1 − smp/2−1,(3.10)

which we solved in Proposition 3.1. The conclusion is that

all solutions of (3.8) in canonical form have real coefficients.(3.11)

Proof of Proposition 2.2. Suppose that (f1, . . . , fp) is a real polynomial p-vector
in canonical form satisfying

W (f1, . . . , fp) = u, u(s) = λs(s2 + 1)mp/2−1, λ �= 0.(3.12)

Then (3.3) implies

e1 + · · ·+ ep = 1 + p(p+ 1)/2.

As (ej)
p
j=1 are distinct positive integers, the only possibility is that

{e1, . . . , ep} = {1, 2 . . . , p− 1, p+ 1}.(3.13)

Similarly, (3.2) implies

d1 + · · ·+ dp = mp+ p(p+ 1)/2− 1.

As (dj)
p
j=1 are distinct integers in the interval [1,m+ p], the only possibility is that

{d1, . . . , dp} = {m,m+ 2,m+ 3, . . . ,m+ p}.(3.14)

Notice that the sequence (3.13) contains p/2 + 1 odd numbers and p/2 − 1 even
numbers. On the other hand, the sequence (3.14) contains p/2− 1 odd numbers and
p/2 + 1 even numbers. This implies that, at least for one j,

dj − ej is odd.(3.15)

This means that the polynomial fj contains both even and odd powers of s with
nonzero coefficients. So the polynomial gj(s) = fj(is), i =

√−1, is not proportional
to any polynomial with real coefficients. On the other hand, the polynomial p-tuple
(g1, . . . , gp), where gj(s) = εjfj(is) with appropriate εj ∈ {±1,±i}, is a solution of
(3.8) in canonical form, and we know from (3.11) that all such solutions have real
coefficients. This contradiction completes the proof of Proposition 2.2.
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Abstract. In this paper we study continuous time filtering for linear multidimensional systems
driven by fractional Brownian motion processes. We present the derivation of the optimum linear
filter equations which involve a pair of functional-differential equations giving the optimum error
covariance (matrix-valued) functions and the optimum filter. These equations are the appropriate
substitutes of the matrix-Riccati differential equation arising in classical Kalman filtering. However,
the optimum filter has the classical appearance, and, as usual, it is driven by the increments of the
observed process.
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1. Introduction. In recent years, there has been renewed interest in fractional
Brownian motion, originally introduced by Mandelbrot and Van Ness [1], to model
phenomena that exhibit so-called self-similarity, which is a form of time invariance of
the fundamental structure of the process (fractal), and long range dependence. The
long range dependence, which is absent in regular Brownian motion or, more precisely,
its (distributional) derivative, the white noise, is historically observed in the study of
water accumulation in hydrology [1], ethernet and ATM traffic in telecommunication
systems [7, 8], and stock prices in mathematical finance.

A natural question which arises regards the filtering of stochastic dynamical sys-
tems driven by fractional Brownian motion, when the measurements are linear in the
unobservable variable in additive fractional Brownian motion. Many problems in en-
gineering and science are of this nature, and therefore it is natural to generalize the
linear filtering theory to cover the case in which the standard Brownian motion is re-
placed by fractional Brownian motion. However, unlike the classical Kalman filtering
problem, the optimal filter for linear systems perturbed by fractional Brownian mo-
tion is not straightforward. This is easily verified by consulting the results described
in [14, 11, 13, 16], where the authors treat various versions of filtering and prediction
for fractional processes. In particular, it is easily seen in [14] that even the linear
prediction problem of fractional Brownian motion based on its past history leads to
complicated expressions, and similarly for the rest of these references, which treat the
scalar case.

In this paper, we derive the best linear filter for the multidimensional case, when
the state is described by a linear stochastic differential equation driven by fractional
Brownian motion and the observations are linear in the state process and subject
to additive fractional Brownian motion noise. We show that the methodology of
variational methods, extensively discussed in [4, 5, 6] for deriving the best linear filter

∗Received by the editors February 19, 2000; accepted for publication (in revised form) December
17, 2001; published electronically June 5, 2002.

http://www.siam.org/journals/sicon/41-1/36871.html
†School of Information Technology and Department of Mathematics, University of Ottawa, Ot-

tawa, ON, Canada (ahmed@site.uottawa.ca).
‡School of Information Technology, University of Ottawa, Ottawa, ON, Canada (chadcha@site.

uottawa.ca).

313



314 N. U. AHMED AND C. D. CHARALAMBOUS

when the noises are standard Brownian motions, also apply to the current set-up,
although the resulting equations are more complicated. In particular, the gain of the
filter is shown to satisfy two coupled functional integro-differential matrix equations.
In the limit as the fractional Brownian motion in the dynamics or observations, which
have different Hurst parameters, converges to the standard Brownian motion (through
the convergence of either of the Hurst parameters to 1/2), we also obtain special forms
of the coupled functional equations, which include the well-known Riccati equation
of the error covariance of the Kalman filter, when both Hurst parameters converge to
1/2. Thus, our results give as a special case the solution to the linear filtering problem
when one of the noises is a fractional Brownian motion while the other is a standard
Brownian motion. We also propose a numerical technique for computing the solution
of the coupled functional equations, which merits further investigation.

The key properties of fractional Brownian motion are by now well known and
documented [9, 10, 11, 12, 13, 14, 15, 16, 17; 2, 3]. We shall attempt to summarize
only those results which are important in subsequent developments, while referring
to these references for the proofs.

Let (Ω,F , P ) be a probability space and H ∈ (0, 1). A parameterized family
of random process {BH1

(t), t ≥ 0} based on this probability space is said to be a
fractional Brownian motion if

(i) P{BH(0) = 0} = 1;
(ii) for each t ∈ R+ ≡ [0,∞), BH(t) is an F-measurable random variable having

Gaussian distribution with E{BH(t)} = 0;
(iii) for t, s ∈ R+, E{BH(t)BH(s)} = (1/2){t2H + s2H − |t− s|2H}.
It follows from (iii) and the well-known Kolmogorov’s criterion for continuity that,

for H > (1/2),
(iv) the sample paths of BH are continuous with probability one but nowhere

differentiable.
Further, it follows from (iii) again that the variance of BH(t) is t2H , and for

H = 1/2, E{B1/2(t)B1/2(s)} = t∧ s. That is, B1/2 is the standard Brownian motion.
In fact, fractional Brownian motion can be constructed from classical Brownian

motion by a linear transformation of the form

BH(t) ≡
∫ t

0

KH(t, s)dB(s),(1.1)

where the process {B(t), t ≥ 0} is the classical Brownian motion and KH is a kernel
dependent on the parameter H, known as the Hurst parameter. Assuming (i), one
may choose (see [10])

KH(t, s) =
(t− s)H− 1

2

Γ(H + 1
2 )

F

(
1

2
−H,H − 1

2
, H +

1

2
, 1− t

s

)
1(0,t)(s)(1.2)

(F is the hypergeometric function), which implies that forH = (1/2), B(1/2)(t) = B(t)
is the standard Brownian motion.

It follows from this construction that
(v) BH is self-similar in the sense that, for any α > 0, the probability laws of
{BH(αt)} and {αHBH(t)} coincide.

For other choices and more general fractional Brownian motions and their prop-
erties, see Mandlebrot [1], as well as [9, 10, 11, 12, 13, 14, 15] and [2, 3]. It is reported
in these papers that random processes arising from hydrological and economic time
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series exhibit long range interdependence and self-similarity. Since fractional Brow-
nian motion does have these properties, it is reasonable to use fractional Brownian
motion to model such processes.

A function that plays an important role in the construction of stochastic integrals
based on fractional Brownian motion is given by

ϕH(t) ≡ H(2H − 1)|t|2H−2, t ∈ R.(1.3)

It can easily be shown (see, for example, [13, 14, 3]) that, for all t, s ∈ R+, we have

E{BH(t)BH(s)} =
∫ t

0

∫ s

0

ϕH(τ − θ)dθdτ.(1.4)

One can introduce (see [12, 14, 3]) the class of functions L2
ϕ(R+) which consist of all

Borel measurable real-valued functions {f} defined on R+ satisfying

‖ f ‖2ϕ≡
∫ ∞

0

∫ ∞

0

ϕH(t− s)f(s)f(t)dsdt <∞.(1.5)

With respect to the scalar product

(f, g)ϕ ≡
∫ ∞

0

∫ ∞

0

ϕH(t− s)f(s)g(t)dsdt,(1.6)

L2
ϕ(R+) is a Hilbert space. Stochastic integrals, with respect to the fractional Brow-

nian motion BH , of deterministic integrands from the class L2
ϕ are well defined. More

precisely, for each f ∈ L2
ϕ, the element X given by

X ≡
∫ ∞

0

f(t)dBH(t)(1.7)

is a well-defined random variable (real-valued F-measurable). Since f is deterministic
and BH is Gaussian, the random variable X is also Gaussian, and it is easy to see
that

(a) E{X} = 0 and (b) E|X|2 = ‖ f ‖2ϕ .(1.8)

Since we are interested in the filtering problem for multidimensional processes,
we modify the preceding results to suit this requirement. Again we use (Ω,F , P ) to
denote the basic probability space on which all the random processes to be defined
below are supported. For any integer n one may construct the fractional Brownian
by the following expression:

BH(t) ≡
∫ t

0

KH(t, θ)dB(θ),(1.9)

where B is an n dimensional Brownian motion with covariance, say Q ∈M+
s (n× n).

Here M+
s (n × n) denotes the class of real symmetric positive definite matrices, and

KH is the scalar kernel as introduced above. In view of the previous results, BH is an
Rn-valued Gaussian random process having mean and covariance given by (see, for
example, [3])

(B1) E{BH(t)} = 0,

(B2) E{(BH(t), ξ)(BH(s), η)} =
∫ t
0

∫ s
0
ϕH(τ − θ)(Qξ, η)dτdθ for all ξ, η ∈ Rn.
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Clearly it follows from (B2) that

E{(BH(t), ξ)2} = t2H(Qξ, ξ), ξ ∈ Rn, t ∈ R+.(1.10)

Now we can define stochastic Wiener integrals with respect to the FBM (fractional
Brownian motion). For simplicity we consider finite intervals I ≡ [0, T ], T < ∞.
Let M(k × n) denote the vector space of k × n matrices with real entries. For any
H ∈ (0, 1), let L2

H(I,M(k × n)) denote the Hilbert space with the scalar product
defined by

(σ, β)H ≡
∫
I

∫
I

ϕH(u−v)Tr{σ(u)Qβ′
(v)}dudv for σ, β ∈ L2

H(I,M(k×n))
(1.11)
and the norm by

‖ σ ‖H≡
(∫

I

∫
I

ϕH(u−v)Tr{σ(u)Qσ′
(v)}dudv

)1/2

for σ ∈ L2
H(I,M(k×n)).

(1.12)
Clearly this Hilbert space is related to the FBM BH .

For σ ∈ L2
H(I,M(k × n)), define

Z ≡
∫
I

σ(t)dBH(t) ≡ L(σ).(1.13)

This is a well-defined random variable with values in Rk. The following result is useful
in what follows.

Lemma 1.1. For each σ ∈ L2
H(I,M(k × n)), the element Z given by (1.13) is

a well-defined Gaussian random variable with values in Rk satisfying the following
properties:

(p1) EZ = 0;
(p2) E(Z, ξ)2 =

∫
I

∫
I
ϕH(u− v)(Qσ

′
(u)ξ, σ

′
(v)ξ)dudv for each ξ ∈ Rk;

(p3) E{‖ Z ‖2} = ∫
I

∫
I
ϕH(u− v)Tr{σ(u)Qσ′

(v)}dudv.
Further,

(p4) for H ≥ 1/2, L2(I,M(k × n)) ↪→ L2
H(I,M(k × n)).

Proof. The first statement is obvious. It follows from the fact that a linear
transformation of a Gaussian random process is Gaussian. Since σ is deterministic,
(p1) follows from the property of BH given by (B1), and (p2) follows from the property
(B2). Let {ei, i = 1, 2, . . . , k} be any basis of the space Rk. Replacing ξ by ei in (p2)
and summing over the indices, one obtains (p3). For (p4), let H ≥ 1/2 and take
any σ ∈ L2(I,M(k × n)). We must verify that it belongs to L2

H(I,M(k × n)). By
definition (1.12),

‖ σ ‖2H=
∫
I

∫
I

ϕH(u− v)Tr{σ(u)Qσ′
(v)}dudv.

Since ϕH is symmetric positive and Q is a positive symmetric matrix, we have

‖ σ ‖2H ≤ Tr(Q)

∫
I

∫
I

ϕH(u− v) ‖ σ(u) ‖‖ σ(v) ‖ dudv

≤ Tr(Q)

√∫
I×I

ϕH(u− v) ‖ σ(u) ‖2 dudv
√∫

I×I
ϕH(u− v) ‖ σ(v) ‖2 dudv

≤ Tr(Q)

∫
I

‖ σ(u) ‖2
(∫

I

ϕH(u− v)dv

)
du.

(1.14)
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Now we note that ∫
I

ϕH(u− v)dv = H{u2H−1 + (T − u)2H−1}.(1.15)

It follows from (1.14) and (1.15) that, for H = 1/2, we have

‖ σ ‖2H ≤ Tr(Q) ‖ σ ‖2L2(I,M(k×n)),(1.16)

and for H > 1/2 we have

‖ σ ‖2H≤ 2HT 2H−1 Tr(Q) ‖ σ ‖2L2(I,M(k×n)).(1.17)

This proves that for H ≥ 1/2 the Hilbert space L2(I,M(k × n)) is continuously
embedded in L2

H(I,M(k × n)), proving (p4). This completes the proof.
It is clear from the above result that the operator L defined by (1.13) is a bounded

linear transformation from L2
H(I,M(k × n)) to L2(Ω,F , P ;Rk).

Remark. It is not clear to us at this time whether the following embedding is
true: for 0 < H < 1/2

L2
H(I,M(k × n)) ↪→ L2(I,M(k × n)).

Remark. For T =∞, the embedding (p4) does not hold.

2. System and measurement dynamics and the filtering problem. Since
long term interdependence is encountered only for Hurst parameters greater than 1/2,
from now on we consider only this case. In what follows we shall introduce two FBMs
{BH1

(t), VH2
(t), t ≥ 0}, with H1 >

1
2 , H2 >

1
2 , to represent the noise in the system’s

dynamics and observations. The system is governed by the following linear stochastic
differential equation:

dx(t) = A(t)x(t)dt+ σ(t)dBH1(t),

x(0) = x0.
(2.1)

Simplified versions of model (2.1) have been used in the literature to describe traffic
in Internet applications, such as packetized video data.

The measurement dynamics is given by

dy(t) = H(t)x(t)dt+ σ0(t)dVH2(t), t ≥ 0,

y(0) = 0.
(2.2)

Often, measurements of traffic data consist of an aggregation of various sources from
other users in addition to a linear combination of traffic modeled by x. Under such
a scenario, one can justify the use of FBM in the measurements, in view of the ex-
perimental evidence suggesting that aggregated traffic in Internet applications shows
evidence of self-similarity and long range dependence. We caution the reader that the
matrix H(t) appearing in (2.2) is part of the sensor model and is not to be confused
with the Hurst parameter discussed in the previous section.

Throughout, we consider the processes {x, y} taking values from Rn and Rm,
respectively. The noise processes {BH1(t), VH2(t), t ≥ 0} are FBMs taking values from
Rd and Rm, respectively. For compatibility, it is clear that the matrices {A, σ,H, σ0},
which are deterministic, must take values fromM(n×n),M(n×d),M(m×n),M(m×
m), respectively. Let Fyt , t ≥ 0, be an increasing family of subsigma algebras of the
sigma algebra F induced by the random process {y(t), t ≥ 0}. In other words, this is
the filtration associated with the process y. The basic filtering problem is to find a
process z so that for each t ≥ 0, z(t) is Fyt -adapted (measurable) satisfying
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(1) E{z(t)} = E{x(t)}, t ≥ 0,
(2) E ‖ x(t)− z(t) ‖2−→ is minimum for t ≥ 0.

That is, we want an unbiased minimum variance filter. This is given by

x̂(t) ≡ E{x(t)|Fyt }.(2.3)

However, this is a very difficult problem; therefore our objective here is to find the
best (unbiased-minimum variance = UMV) linear filter driven by the observed process
y, as described by the following stochastic differential equation:

dz(t) = B(t)z(t)dt+ Γ(t)dy(t), t ≥ 0,

z(0) = x̂0 ≡ Ex0,
(2.4)

where B and Γ are suitable matrix-valued functions to be determined. Clearly, by
substituting the observed processes into (2.4), the FBM appears in the observations,
and conditions similar to the previous discussion on Γ should be introduced for the
stochastic integral to be well-defined. These conditions are made explicit in subse-
quent sections where the function spaces associated with B,Γ are identified. Specif-
ically, we shall require that B be locally integrable and Γ ∈ L∞(R+,M(n × m)),
and therefore Γσ0 ∈ L2

H2
(I,M(n×m)), implying that the stochastic integral is well-

defined, and consistent with the definitions of the previous section.

3. Reformulation of the filtering problem as a control problem. We
introduce the following basic assumptions:

(A1) There exist matrices Q ∈M+
s (d× d) and Q0 ∈M+

s (m×m) such that

E{(BH1(t), ξ)(BH1(s), η)} =
∫ t

0

∫ s

0

ϕH1(θ − τ)(Qξ, η)dτdθ, ξ, η ∈ Rd,

E{(VH2(t), ξ)(VH2(s), η)} =
∫ t

0

∫ s

0

ϕH2(θ − τ)(Q0ξ, η)dτdθ, ξ, η ∈ Rm,

where ϕHi , i = 1, 2, are given by (1.3).
(A2) The matrices A and H are locally integrable, while σ ∈ L2

H1
(R+,M(n × d))

and σ0 ∈ L2
H2

(R+,M(m×m)).
(A3) The random elements {x0, BH1(t), VH2(t), t ≥ 0} are mutually statistically

independent.
Recall that we want our filter to have the structure given by (2.4). Define

e(t) ≡ x(t)− z(t), t ≥ 0,(3.1)

where x is the solution of (2.1), and z is the solution of (2.4) corresponding to any
choice of B which is locally integrable and Γ ∈ L∞(R+,M(n ×m)). It follows from
these equations that e must satisfy the stochastic differential equation

de = (A− ΓH)e(t)dt+ (A− ΓH −B)zdt+ σdBH1
− Γσ0dVH2

,

e(0) = e0 ≡ x0 − x̂0,
(3.2)

where, for compactness of notation, we have suppressed the time variable. In fact,
all the matrices appearing in (3.2) are functions of time. For an unbiased estimate,
it follows from this that B must satisfy the identity B = A − ΓH. Clearly, for this
choice of B, the filter equation (2.4) becomes

dz(t) = (A(t)− Γ(t)H(t))z(t)dt+ Γ(t)dy(t), t ≥ 0,

z(0) = x̂0,
(3.3)
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and the error equation (3.2) reduces to

de = (A− ΓH)e(t)dt+ σdBH1 − Γσ0dVH2 ,

e(0) = e0.
(3.4)

For any Γ ∈ L∞(R+,M(n ×m)), let ΦΓ(t, s), 0 ≤ s ≤ t < ∞, denote the transition
operator corresponding to AΓ(t) ≡ A(t) − Γ(t)H(t). Using this transition operator,
we can write the solution of (3.4) as

e(t) = ΦΓ(t, 0)e0 +

∫ t

0

ΦΓ(t, θ)σ(θ)dBH1(θ)−
∫ t

0

ΦΓ(t, θ)Γ(θ)σ0(θ)dVH2
(θ).(3.5)

The error covariance K is defined by

(K(t)ξ, η) ≡ E{(e(t), ξ)(e(t), η)}, ξ, η ∈ Rn, t ≥ 0.(3.6)

From here on, we shall consider only the finite time interval I ≡ [0, T ], T <∞, unless
stated otherwise. We shall need the following result.

Lemma 3.1. Suppose that assumptions (A1)–(A3) hold. Then, for each Γ ∈
L∞(I,M(n×m)), the error covariance K satisfies the following functional differential
equation:

K̇(t) = AΓ(t)K +KA
′
Γ(t) +

∫ t

0

ϕH1(t− s)
{
ΦΓ(t, s)Q̃(s, t) + Q̃

′
(s, t)Φ

′
Γ(t, s)

}
ds

+

∫ t

0

ϕH2(t− s)
{
ΦΓ(t, s)Γ(s)Q̃0(s, t)Γ

′
(t)

+ Γ(t)Q̃
′
0(s, t)Γ

′
(s)Φ

′
Γ(t, s)

}
ds, t ∈ I,

K(0) = K0,

(3.7)

where AΓ(t) = A(t)− Γ(t)H(t) and Q̃(s, t) ≡ σ(s)Qσ
′
(t), Q̃0(s, t) ≡ σ0(s)Q0σ

′
0(t).

Proof. For Γ ∈ L∞(I,M(n × m)), it follows from assumption (A2) that AΓ is
locally integrable, and hence the transition operator is well defined and

sup{‖ ΦΓ(t, s) ‖, s, t ∈ I} <∞.

Hence for each fixed but arbitrary t ∈ I the functions s −→ ΦΓ(t, s)σ(s) and s −→
ΦΓ(t, s)Γ(s)σ0(s) belong to L2

H1
(I,M(n × d)) and L2

H2
(I,M(n × m)), respectively.

Hence the fractional integrals appearing in the expression (3.5) are well defined and,
by virtue of the property (p1) of Lemma 1.1, their expectations vanish. Clearly the
expectation of the first term of (3.5) is zero. Hence the filter is unbiased. Further,
by virtue of our assumption (A3), all three terms in (3.5) are mutually statistically
independent, and hence for each pair of ξ, η ∈ Rn we have

(K(t)ξ, η) ≡E{(e(t), ξ)(e(t), η)} = (ΦΓ(t, 0)K0Φ
′
Γ(t, 0)ξ, η

)
+

∫ t

0

∫ t

0

ϕH1(s− τ)(ΦΓ(t, τ)Q̃(τ, s)Φ
′
Γ(t, s)ξ, η)dsdτ

+

∫ t

0

∫ t

0

ϕH2(s− τ)(ΦΓ(t, τ)Γ(τ)Q̃0(τ, s)Γ
′
(s)Φ

′
Γ(t, s)ξ, η)dsdτ,

(3.8)
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where K0 is the covariance of the random variable x0. Differentiating this term by
term, recalling that ϕHi , i = 1, 2, are symmetric, and adding all the terms, we find
that

(K̇(t)ξ, η) = (AΓ(t)K(t)ξ, η) + (K(t)A
′
Γ(t)ξ, η)

+

∫ t

0

ϕH1
(t− s)([ΦΓ(t, s)Q̃(s, t) + Q̃

′
(s, t)Φ

′
Γ(t, s)]ξ, η)ds

+

∫ t

0

ϕH2
(t− s)([ΦΓ(t, s)Γ(s)Q̃0(s, t)Γ

′
(t)

+ Γ(t)Q̃0(s, t)Γ
′
(s)Φ

′
Γ(t, s)]ξ, η)ds.

(3.9)

Here we have used the basic properties of the transition operator ΦΓ, such as

(∂/∂t)ΦΓ(t, s) = AΓ(t)ΦΓ(t, s) ≡ (A(t)− Γ(t)H(t))ΦΓ(t, s), 0 ≤ s ≤ t,

and ΦΓ(t, t) = Id, t ≥ 0.

Since ξ, η ∈ Rn are arbitrary, (3.7) follows from (3.9) and the definitions of Q̃(s, t)
and Q̃0(s, t). This completes the proof.

Now we are prepared to formulate the filtering problem as a control problem.
First we recall that (3.3), with Γ to be determined, gives an unbiased estimate of x.
For a minimum variance estimate, we must now choose Γ so that TrK(t) is minimum.
We consider a more general problem which covers the filtering problem. Let T be any
arbitrary but finite time with I ≡ [0, T ], and Σ any real positive definite symmetric
matrix-valued function—for example, Σ ∈ L1(I,M+

s (n× n)). Define

J(Γ) =

∫ T

0

Tr(Σ(t)K(t))dt.(3.10)

For compactness of notation, set G ≡ L∞(I,M(n×m)). Then the optimum filtering
problem is equivalent to the problem: find Γ ∈ G that imparts a minimum to the
functional J subject to the dynamic constraint (3.7).

The first question that must be settled is whether the problem, as stated, has a
solution. This is answered in the following corollary.

Theorem 3.2. Suppose that assumptions (A1)–(A3) hold and Σ ∈ L1(I,M+
s ((n×

n)). Then, the optimal control problem as stated above has a solution.
Proof. First assume that Σ = Id, meaning that J(Γ) =

∫
I
TrK(t)dt. Using (3.8)

and computing the TrK(t) with respect to any basis, say {ei, i = 1, 2, 3, . . . , n},
because of the fourth right-hand-side term of (3.9), which involves Γ(s),Γ(t), one
finds that J(Γ) −→ ∞ as ‖ Γ ‖L∞(I,M(n×m))−→ ∞. Further, for any fixed Γ ∈ G,
J(Γ) <∞ and J(Γ) ≥ 0. Define

µ ≡ inf{J(Γ),Γ ∈ G}.
Clearly, it follows from the above comments that the infimum exists. Let {Γn} be a
minimizing sequence. Clearly this is a bounded sequence, and hence there exists a
subsequence, relabeled as such, and an element Γo ∈ G such that Γn → Γo in the weak-
star topology of L∞(I,M(n×m)). This implies that ΦΓn(t, s) −→ ΦΓo(t, s) pointwise
on the triangle 0 ≤ s ≤ t ≤ T (see [6, Theorem 2.3.7]). This fact is proved using the
generalized Gronwall inequality. Let Kn denote the solution of (3.7) corresponding
to Γn, and Ko that corresponding to Γo. Using the weak-star convergence and the
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pointwise convergence stated above, it follows from Lebesgue dominated convergence
theorem that

Tr(Ko(t)) ≤ lim inf
n→∞ Tr(Kn(t)), a.e. t ∈ I.

Then by Fatou’s lemma we obtain∫ T

0

Tr(Ko(t)) dt ≤ lim inf
n→∞

∫ T

0

Tr(Kn(t))dt.

This is equivalent to

J(Γo) ≤ lim inf
n→∞ J(Γn).

Hence µ = J(Γo). In other words, the infimum is attained. This proves that the
optimization problem has a solution, given that Σ is an identity matrix. Note that
K ∈ C(I,M+

s (n× n)) ⊂ L∞(I,M+
s (n× n)), and hence the functional (3.10) is well-

defined. Thus, for a general symmetric positive definite matrix-valued function Σ, the
result follows from orthogonal transformation. This completes the proof.

Remark. The existence result given above also holds if the set G is a closed
bounded convex subset of L∞(I,M(n×m)). This follows from the facts that J is weak-
star lower semicontinuous, as demonstrated above, and that G is weak-star compact.

4. Optimal filter. We have seen in the preceding section that an optimum linear
filter exists and that it can be determined by solving the control problem

J(Γ) =

∫ T

0

Tr(Σ(t)K(t))dt −→ min.(4.1)

subject to the dynamic constraint

K̇(t) = AΓ(t)K +KA
′
Γ(t) +

∫ t

0

ϕH1(t− s)
{
ΦΓ(t, s)Q̃(s, t) + Q̃

′
(s, t)Φ

′
Γ(t, s)

}
ds

+

∫ t

0

ϕH2(t− s)
{
ΦΓ(t, s)Γ(s)Q̃0(s, t)Γ

′
(t)

+ Γ(t)Q̃
′
0(s, t)Γ

′
(s)Φ

′
Γ(t, s)

}
ds, t ∈ I,

K(0) = K0,

(4.2)

with Γ ∈ G.
To obtain the necessary conditions of optimality and finally the optimum filter,

we use the variational technique as in [4, 5]. For this we shall need the Gateaux
differential of K with respect to Γ on G. In general we may assume that G is any
closed convex subset of L∞(I,M(n × m)). Let Γo ∈ G be the optimal control, and
Γ ∈ G any other arbitrary element. We show that the Gateaux differential of K at
Γo in the direction (Γ−Γo) is given by a functional differential equation. For this we
must show that the transition operator ΦΓ is Gateaux differentiable. This is stated
in the following result.

Lemma 4.1. The Gateaux differential of the map Γ −→ ΦΓ at Γo in the direction
Γ− Γo, denoted by Φ̃, is given by

Φ̃(t, θ) = −
∫ t

θ

ds ΦΓo(t, s)(Γ(s)− Γo(s))H(s)ΦΓo(s, θ),(4.3)
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which satisfies the following differential equation:

(∂/∂t)Φ̃(t, θ) = (A(t)− Γo(t)H(t))Φ̃(t, θ)− (Γ(t)− Γo(t))H(t)ΦΓo(t, θ), 0 ≤ θ ≤ t,

Φ̃(θ, θ) = 0, θ ≥ 0.

Further, as Γ→ Γo, Φ̃(t, θ)→ 0 uniformly on I × I.

Proof. The proof follows directly from straightforward computation.

Lemma 4.2. Let G be any closed convex subset of L∞(I,M(n ×m)). Then, for
each pair of Γo,Γ ∈ G, the Gateaux differential of K at Γo ∈ G in the direction Γ−Γo,
denoted by K̃, is the solution of the functional differential equation

˙̃K(t) =AΓo(t)K̃(t) + K̃(t)A
′
Γo(t)− (Γ(t)− Γo(t))H(t)Ko(t)

−Ko(t)H
′
(t)(Γ(t)− Γo(t))

′

+

∫ t

0

ϕH1(t− s)
{
Φ̃(t, s)Q̃(s, t) + Q̃

′
(s, t)Φ̃

′
(t, s)

}
ds

+

∫ t

0

ϕH2(t− s)
{
Φ̃(t, s)Γo(s)Q̃0(s, t)Γ

′
o(t) + Γo(t)Q̃

′
0(s, t)Γ

′
o(s)Φ̃

′
(t, s)

}
ds

+

∫ t

0

ϕH2
(t− s)

{
ΦΓo

(t, s)(Γ− Γo)(s)Q̃0(s, t)Γ
′
o(t)

+ Γo(t)Q̃
′
0(s, t)(Γ− Γo)

′
(s)Φ

′
Γo
(t, s)

}
ds

+

∫ t

0

ϕH2
(t− s)

{
ΦΓo(t, s)Γo(s)Q̃0(s, t)(Γ− Γo)

′
(t)

+ (Γ− Γo)(t)Q̃
′
0(s, t)Γ

′
o(s)Φ

′
Γo
(t, s)

}
ds,

K̃(0) = 0.

(4.4)

Proof. The proof is lengthy but straightforward. We give the basic outline. Let
Γo,Γ ∈ G and ε ∈ [0, 1], and define Γε = Γo + ε(Γ − Γo). Since G is a closed convex
set, Γε ∈ G. Let Kε and Ko denote the solutions of (4.2) corresponding to Γε and Γo,
respectively. Using Lemma 4.1 and the continuous dependence of solutions Γ −→ K,
one can verify that the limit

lim
ε↓0

(1/ε){Kε −Ko}

exists, and that this limit is the solution of (4.4).

Now we are prepared to present the optimal filter equations. Define the following
functionals:

F1(t,K,Γ) ≡AΓK +KA
′
Γ +

∫ t

0

ϕH1
(t− s)

{
ΦΓ(t, s)Q̃(s, t) + Q̃

′
(s, t)Φ

′
Γ(t, s)

}
ds

+

∫ t

0

ϕH2(t− s)
{
ΦΓ(t, s)Γ(s)Q̃0(s, t)Γ

′
(t) + Γ(t)Q̃

′
0(s, t)Γ

′
(s)Φ

′
Γ(t, s)

}
ds

(4.5)
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and

F2(t,K,Γ) ≡
∫ t

0

ϕH2(t− s){Q̃0(s, t)Γ
′
(t) + Q̃

′
0(s, t)Γ

′
(s)Φ

′
Γ(t, s)

− CΓ(t, s)Γ(s)Q̃0(s, t)Γ
′
(t)}ds

−
∫ t

0

ϕH1
(t− s)CΓ(t, s)Q̃(s, t)ds−HK,

(4.6)

where CΓ is given by

CΓ(t, s) ≡
∫ t

s

H(θ)ΦΓ(θ, s)dθ.(4.7)

Theorem 4.3. Suppose that the assumptions of Theorem 3.2 hold. Then, the
optimum linear filter is given by the stochastic differential equation

dz = (A− ΓoH)zdt+ Γody,

z(0) = x̂0,
(4.8)

where the pair {Γo,Ko} satisfies the following functional differential equations:

K̇o = F1(t,Ko,Γo), Ko(0) = K0, t ∈ I,
0 = F2(t,Ko,Γo), t ∈ I.(4.9)

Proof. Suppose that Γo ∈ G minimizes the functional J(Γ) as defined by (3.10).
Let Γ be any element of G, and define Γε ≡ Γo + ε(Γ− Γo) for ε ∈ [0, 1]. Since G is a
closed convex set, Γε ∈ G. Clearly, by the optimality of Γo,

J(Γε)− J(Γo) ≥ 0 for all ε ∈ [0, 1].

Since by Lemma 4.2 the map Γ −→ K is Gateaux differentiable, and its Gateaux
derivative at Γo in the direction Γ− Γo is given by the solution K̃ of (4.4), J is also
Gateaux differentiable at Γo in the direction Γ− Γo, and hence

dJ(Γo,Γ− Γo) =

∫ T

0

Tr{ΣK̃}dt ≥ 0 for all Γ ∈ G.(4.10)

Here we consider only the case G = L∞(I,M(n×m)), which is much easier. We shall
have some comments later for the constrained case. In the unconstrained case the
inequality reduces to the identity

dJ(Γo,Γ− Γo) =

∫ T

0

Tr{ΣK̃}dt = 0 for all Γ ∈ G.(4.11)

Since Σ ∈ L1(I,M+
s (n × n)) is arbitrary and positive definite and T is any finite

positive number, this identity can hold if and only if K̃ is identically zero. Since K̃ is
the solution of the variational equation (4.4) with initial condition K̃(0) = 0, and the
right-hand expression, from the third term through the last term, is a linear functional
of the difference (Γ − Γo), this is possible if and only if this nonhomogeneous term
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vanishes identically for all Γ ∈ G. Thus it is necessary that the following identity hold
for all Γ ∈ G:

0 =− (Γ(t)− Γo(t))H(t)Ko(t)−Ko(t)H
′
(t)(Γ(t)− Γo(t))

′

+

∫ t

0

ϕH1(t− s)
{
Φ̃(t, s)Q̃(s, t) + Q̃

′
(s, t)Φ̃

′
(t, s)

}
ds

+

∫ t

0

ϕH2
(t− s)

{
Φ̃(t, s)Γo(s)Q̃0(s, t)Γ

′
o(t) + Γo(t)Q̃

′
0(s, t)Γ

′
o(s)Φ̃

′
(t, s)

}
ds

+

∫ t

0

ϕH2
(t− s)

{
ΦΓo

(t, s)(Γ− Γo)(s)Q̃0(s, t)Γ
′
o(t)

+ Γo(t)Q̃
′
0(s, t)(Γ− Γo)

′
(s)Φ

′
Γo
(t, s)

}
ds

+

∫ t

0

ϕH2(t− s)
{
ΦΓo(t, s)Γo(s)Q̃0(s, t)(Γ− Γo)

′
(t)

+ (Γ− Γo)(t)Q̃
′
0(s, t)Γ

′
o(s)Φ

′
Γo
(t, s)

}
ds

(4.12)

for all t ∈ I. For simplicity of presentation we denote the members on the right-hand
side of (4.12) as follows:

α1 ≡ −(Γ(t)− Γo(t))H(t)Ko(t)−Ko(t)H
′
(t)(Γ(t)− Γo(t))

′
,(4.13)

α2 ≡
∫ t

0

ϕH1(t− s)
{
Φ̃(t, s)Q̃(s, t) + Q̃

′
(s, t)Φ̃

′
(t, s)

}
ds,(4.14)

α3 ≡
∫ t

0

ϕH2
(t− s)

{
Φ̃(t, s)Γo(s)Q̃0(s, t)Γ

′
o(t) + Γo(t)Q̃

′
0(s, t)Γ

′
o(s)Φ̃

′
(t, s)

}
ds,(4.15)

α4 ≡
∫ t

0

ϕH2(t− s)
{
ΦΓo(t, s)(Γ− Γo)(s)Q̃0(s, t)Γ

′
o(t)

+ Γo(t)Q̃
′
0(s, t)(Γ− Γo)

′
(s)Φ

′
Γo
(t, s)

}
ds,

(4.16)

α5 ≡
∫ t

0

ϕH2(t− s)
{
ΦΓo(t, s)Γo(s)Q̃0(s, t)(Γ− Γo)

′
(t)

+ (Γ− Γo)(t)Q̃
′
0(s, t)Γ

′
o(s)Φ

′
Γo
(t, s)

}
ds.

(4.17)

According to (4.12), the sum

α ≡ α1 + α2 + α3 + α4 + α5 = 0 for all Γ ∈ G and all t ∈ I.(4.18)

Since this identity must hold for all Γ ∈ G, it must also hold for any Γ of the form

Γ(s) = Γo(s) +Xo(s)D(4.19)

for all constant matrices D ∈M(n×m), where Xo is the fundamental solution of the
equation

Ẋo(t) = (A(t)− Γo(t)H(t))X0(t), X(0) = Id,(4.20)
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with Id ∈M(n× n) being the identity matrix. This gives

α1 ≡ −Xo(t)DH(t)Ko(t)−Ko(t)H
′
(t)(X0(t)D)

′
.(4.21)

Denote

Co(t, s) ≡ CΓo(t, s) =

∫ t

s

H(θ)ΦΓo(θ, s)dθ,(4.22)

and note that for Γ given by (4.19), Φ̃ of (4.3) takes the form

Φ̃(t, θ) = −Xo(t)D

(∫ t

θ

ds H(s)ΦΓo
(s, θ)

)
= −Xo(t)DCo(t, θ).

(4.23)

Using these, we obtain

α2 =−Xo(t)D

{∫ t

0

ϕH1
(t− s)Co(t, s)Q̃(s, t)ds

}

−
{∫ t

0

ϕH1(t− s)Q̃
′
(s, t)C

′
o(t, s)ds

}
D

′
X

′
o(t),

(4.24)

α3 =−Xo(t)D

{∫ t

0

ϕH2(t− s)Co(t, s)Γo(s)Q̃0(s, t)Γ
′
o(t)ds

}

−
{∫ t

0

ϕH2(t− s)Γo(t)Q̃
′
0(s, t)Γ

′
o(s)C

′
o(t, s)ds

}
D

′
X

′
o(t),

(4.25)

α4 =Xo(t)D

{∫ t

0

ϕH2
(t− s)Q̃0(s, t)Γ

′
o(t)ds

}

+

{∫ t

0

ϕH2(t− s)Γo(t)Q̃
′
0(s, t)ds

}
D

′
X

′
o(t),

(4.26)

and

α5 =Xo(t)D

{∫ t

0

ϕH2(t− s)Q̃
′
0(s, t)Γ

′
o(s)Φ

′
Γo
(t, s)ds

}

+

{∫ t

0

ϕH2(t− s)ΦΓo(t, s)Γo(s)Q̃0(s, t)ds

}
D

′
X

′
o(t).

(4.27)

Adding all the α’s, we arrive at an expression of the form

α = Xo(t)DM(t) +M
′
(t)D

′
X

′
o(t),(4.28)

where

M(t) ≡ −H(t)Ko(t)+

∫ t

0

ϕH2(t− s)

{
−Co(t, s)Γo(s)Q̃0(s, t)Γ

′
o(t)

+ Q̃0(s, t)Γ
′
o(t) + Q̃

′
0(s, t)Γ

′
o(s)Φ

′
Γo
(t, s)

}
ds

−
∫ t

0

ϕH1
(t− s)Co(t, s)Q̃(s, t)ds.
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By virtue of (4.18) and (4.28), we have

α = Xo(t)DM(t) +M
′
(t)D

′
X

′
o(t) = 0 for all D ∈M(n×m), t ∈ I.(4.29)

Thus

Tr{Xo(t)DM(t)} = 0 for all D ∈M(n×m), t ∈ I.(4.30)

Since Xo(t) is always nonsingular, this implies that M(t) ≡ 0, and hence

F2(t,Ko,Γo) ≡ −H(t)Ko(t) +

∫ t

0

ϕH2(t− s)

{
Q̃0(s, t)Γ

′
o(t) + Q̃

′
0(s, t)Γ

′
o(s)Φ

′
Γo
(t, s)

− Co(t, s)Γo(s)Q̃0(s, t)Γ
′
o(t)

}
ds

−
∫ t

0

ϕH1(t− s)Co(t, s)Q̃(s, t)ds = 0.

(4.31)
Thus it follows from (3.7), (4.5), and (4.31) that the optimal pair must satisfy the
functional differential equation (4.9), and consequently the optimum filter must be
given by (4.8), with the pair {Γo,Ko} being the solution of (4.9). This completes the
proof.

Remark. When G is a closed convex, possibly bounded, (proper) subset of L∞(I,
M(n × m)), the necessary conditions of optimality involve an additional equation,
the adjoint equation associated with the (state) functional equation (4.2). Readers
interested in constrained filtering may see [4, 5].

Remark. If σ0(t) is nonsingular, the filter equation (4.8) can be rewritten as

dz = A(t)zdt+ Γo σ0 dνH(t),

where νH , given by

νH(t) =

∫ t

0

σ−1
0 (s){dy(s)−H(s)z(s)ds}, t ≥ 0,

is an Fyt -measurable Gaussian process. However, according to [16], νH is not the
innovation process, and thus, it is not an FBM with the same Hurst parameter.

Some special cases. Here we adapt the results derived for the special cases, when
either of the two FBMs are replaced by standard Brownian motions, and we further
show that the convergence methodology yields the Kalman filter equations when both
noises are standard Brownian motions. Since the difference between the FBM and the
standard Brownian motion is captured through the function ϕHj

, j = 1, 2, we shall
show that as the Hurst parameters tend to 1/2, ϕHj converges to a delta function.
Once this result is derived, it can be used in the previous general filter equations to
study special cases.

(C1) We show here that if the Hurst parameters Hi → (1/2), i = 1, 2, our fil-
ter equations reduce to the classical Kalman filter equations. We need the
following lemma.

Lemma 4.4. As Hi → (1/2), ϕHi(t)→ (1/2)δ(t), i = 1, 2.
Proof. Let H = Hi = (1/2) + ε, i = 1, 2, ε > 0. Define ψε(t) = ϕ(1/2)+ε(t).

Let C∞
0 [0,∞) denote the class of C∞ functions with compact supports, and take

ξ ∈ C∞
0 [0,∞). Consider the functional

fε(ξ) ≡
∫ ∞

0

ξ(t)ψε(t)dt.
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Then it follows from our definition of ϕH (1.3) that

fε(ξ) ≡ ε(1 + 2ε)

∫ ∞

0

ξ(t)|t|2ε−1dt

= ε(1 + 2ε)

∫ ∞

0

ξ(t) t2ε−1dt

=
(1 + 2ε)

2

∫ ∞

0

ξ(t1/2ε)dt.

We split the integral as

fε(ξ) =
(1 + 2ε)

2

∫ ∞

0

ξ(t1/2ε) dt

=
(1 + 2ε)

2

{∫ 1−0

0

ξ(t1/2ε) dt+

∫ ∞

1+0

ξ(t1/2ε) dt

}
.

Since ξ has compact support on [0,∞) and is C∞, one can easily justify that

lim
ε↓0

(1 + 2ε)

2

∫ 1−0

0

ξ(t1/2ε) dt = (1/2)ξ(0)

and

lim
ε↓0

(1 + 2ε)

2

∫ ∞

1+0

ξ(t1/2ε) dt = 0.

Using these facts, we arrive at the following identity:

lim
ε↓0

fε(ξ) =

(
1

2

)
ξ(0) for every ξ ∈ C∞

0 [0,∞).(4.32)

In fact, it follows from the same arguments that, for any ξ ∈ C∞
0 (R),

lim
ε↓0

fε(ξ) = ξ(0) for every ξ ∈ C∞
0 (R).(4.33)

In other words, as Hi ↓ (1/2), ϕHi , i = 1, 2, converge to the Dirac measures concen-
trated at the origin. This proves the assertion.

Now we are prepared to derive the classical Kalman filter from our main result
given in Theorem 4.3. For given σ and σ0, define, for each t ≥ 0, the (auto) covariance
matrices:

Q(t) ≡ Q̃(t, t) = σ(t)Qσ
′
(t),

Q0(t) ≡ Q̃0(t, t) = σ0(t)Q0σ
′
0(t).

(4.34)

Corollary 4.5. Suppose that Q0(t), as defined by (4.34), is nonsingular. Then
the Kalman filter is given by the error covariance equation,

K̇o(t) = A(t)Ko(t) +Ko(t)A
′
(t) +Q(t)−Ko(t)H

′
(t)Q−1

0 (t)H(t)Ko(t),

K(0) = K0,
(4.35)

and the filter equation,

dz(t) = A(t)z(t)dt+Ko(t)H
′
(t)Q−1

0 (t)(dy(t)−H(t)z(t)dt),

z(0) = x̂0.
(4.36)
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Proof. By virtue of Lemma 4.4, letting Hi ↓ (1/2), i = 1, 2, it follows from the
expressions (4.5) and (4.6) that

F1(t,K,Γ) = AΓ(t)K(t) +K(t)A
′
Γ(t) +Q(t) + ΓQ0(t)Γ

′
(t),

F2(t,K,Γ) = Q0(t)Γ
′
(t)−H(t)K(t).

(4.37)

For optimality, it follows from Theorem 4.3 that both the equations of (4.9) must be
satisfied. The second equation of (4.9) requires that

F2(t,K0,Γo) = Q0(t)Γ
′
o(t)−H(t)Ko(t) = 0.

Taking its transpose and using the assumption that Q0(t) is invertible, we obtain the
optimal Kalman gain

Γo(t) = Ko(t)H
′
(t)Q0(t)

−1.(4.38)

Substituting this into F1 given by (4.37), we obtain

F1(t,Ko,Γo) = A(t)Ko(t) +Ko(t)A
′
(t) +Q(t)−Ko(t)H

′
(t)Q−1

0 (t)H(t)Ko(t).

Using this expression in the first equation of (4.9), we obtain the classical matrix
Riccati differential equation (4.35). Substituting the expression for Γo from (4.38)
into (4.8), we obtain the filter equation (4.36). Hence the Kalman filter follows from
our Theorem 4.3. This completes the proof.

Remark. Note that if Q0(t) is not invertible, we do not have the Kalman filter, or
more precisely, there are many Kalman filter solutions. To choose a unique solution,
one can consider minimizing the norm of Ko subject to the constraint (4.9).

Two other special cases, in which only one of the two Brownian motions is frac-
tional, are given in the following corollary.

Corollary 4.6. Suppose that the following conditions hold:
(C2) The signal process {x} is perturbed by Q-Brownian motion, and the measure-

ment process {y} is driven by Q0-fractional Brownian motion.
(C3) The signal process {x} is perturbed by Q-fractional Brownian motion, and the

measurement process {y} is driven by Q0-Brownian motion.
Then the filter equations for these cases are given by (4.8), while the covariance equa-
tions are given by

K̇ = AΓK +KA
′
Γ +Q(t) +

∫ t

0

ϕH2(t− s)

{
ΦΓ(t, s)Γ(s)Q̃0(s, t)Γ

′
(t)

+ Γ(t)Q̃
′
0(s, t)Γ

′
(s)Φ

′
Γ(t, s)

}
ds,

0 =

∫ t

0

ϕH2
(t− s)

{
Q̃0(s, t)Γ

′
(t) + Q̃

′
0(s, t)Γ

′
(s)Φ

′
Γ(t, s)

− CΓ(t, s)Γ(s)Q̃0(s, t)Γ
′
(t)

}
ds−H(t)K(t)

(4.39)

for (C2), and by

K̇ = AΓK +KA
′
Γ +

∫ t

0

ϕH1(t− s)

{
ΦΓ(t, s)Q̃(s, t) + Q̃

′
(s, t)Φ

′
Γ(t, s)

}
ds

+ Γ(t)Q0(t)Γ
′
(t),

0 = Q0(t)Γ
′
(t)−

∫ t

0

ϕH1(t− s)CΓ(t, s)Q̃(s, t)ds−H(t)K(t)

(4.40)
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for (C3).

Proof. The proof is a straightforward application of Theorem 4.3, with ϕHi , i =
1, 2, replaced by the Dirac measures in the appropriate sections of (4.5) and
(4.6).

5. Optimal filter for dynamically coupled systems. Here the signal and
the observed processes are governed by the following set of stochastic differential
equations:

dx(t) = A(t)x(t)dt+B(t)y(t)dt+ σ(t)dBH1(t), x(0) = x0,

dy(t) = H(t)x(t)dt+ C(t)y(t)dt+ σ0(t)dVH2
(t), y(0) = 0,

(5.1)

where B and C are the coupling matrices taking values fromM(n×m) andM(m×m),
respectively. In this case we have the following result.

Theorem 5.1. Suppose that the assumptions of Theorem 4.3 hold and, further,
that B and C are locally integrable. Then the optimum linear filter for the system
(5.1) is given by

dz = (A− ΓoH)zdt+ (B − ΓoC)ydt+ Γody,

z(0) = x̂0,
(5.2)

where the optimum gain Γo is given by the solutions of (4.9).

Proof. Since the proof is very similar to the previous case, we give only an outline
of the proof. Consider the following linear structure for the optimum filter:

dz = Fzdt+Gydt+ Γdy,

z(0) = x̂0,
(5.3)

where the matrix-valued functions {F,G,Γ} must be chosen to give an unbiased min-
imum variance filter. Define e = x − z, and note that e satisfies the stochastic
differential equation

de = (A− ΓH)edt+ (A− ΓH − F )zdt+ (B −G− ΓC)ydt

+ σdBH1
− Γσ0dVH2

,

e(0) = e0 ≡ x0 − x̂0.

(5.4)

One can show that for the unbiased filter we must have F = A − ΓH and G =
B−ΓC. This reduces the error equation to (3.4), and consequently the error covariance
equation remains unchanged. This means that the optimum Γ must be determined
by the solution of (4.9) as in Theorem 4.3. Once this is done, we obtain the optimum
filter (5.2). This completes the outline of our proof.

6. An algorithm for computation. Here we briefly present a conceptual al-
gorithm for computing the optimum filter gain. We do this by using the result of
Theorem 4.3. Suppose that the nth stage of iteration has been reached and Γn has
been determined.

Step 1: Use Γ = Γn to solve for Kn using the first equation of (4.9).

Step 2: Use Kn in the second equation of (4.9). If F2(t,K
n,Γn) �= 0, solve the

corresponding functional equation given by F2(t,K
n,Γ) = 0, and call the solution

Γn+1.
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Step 3: Use a suitable metric, for example, the metric induced by the standard
L∞ norm, to compute

d(Γn+1,Γn) ≡ ‖ Γn+1 − Γn ‖L∞(I,M(n×m)),

and stop if a predetermined level of accuracy has been met, and print; if not, go to
step 1.

As discussed before, the nonuniqueness of solutions can be addressed by further
minimizing the norm of Γ, subject to the constraint 0 = F2(t,K,Γ), which will result
in a unique solution of the filtering problem (see [4, 5]).

It may be interesting to investigate whether the functional equation (4.9) can be
solved by the use of singular perturbation techniques. An interesting point raised by
the referee is the investigation of the robustness properties of the filter with respect
to the Hurst parameters. In principle, this problem is tractable through the compu-
tation of the norm of the difference between two Γ’s corresponding to different Hurst
parameters.

Acknowledgment. The authors wish to express their thanks to the referee for
his valuable comments.
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Abstract. We consider a Dirichlet minimum problem with a pointwise constraint on the gradi-
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Introduction. The author has been interested in the following specific problem:
consider a constrained Dirichlet problem consisting of minimizing

∫
SR

1
2‖∇u‖2 over

those functions u satisfying the boundary condition u|∂SR
= u0|∂SR

and, in addition,
the constraint ‖∇u(x)‖ ≤ 1 a.e. in SR. Here SR ⊂ �2 is the planar sector obtained
as the intersection of the disk of radius R and of the first orthant. The boundary
datum u0 is defined to be u0(x, y) = 1 − 1

R

√
x2 + y2. When R < 1, there are no

Lipschitzian functions satisfying at once the boundary conditions and the constraint
on the gradient, and so the problem is of interest for R ≥ 1. A computation shows
that the bounded slope condition of constant 1 is satisfied when R ≥ √2. In this
case, since the solution to the Dirichlet problem is regular, Stampacchia’s original
theorem [6] proves that the solution w to the unconstrained Dirichlet problem satisfies
‖∇w(x)‖ ≤ 1, i.e., that the constrained Dirichlet problem is actually equivalent to the
unconstrained problem; hence, in this case, the solution to the constrained problem
inherits all the regularity of the standard unconstrained problem. The motivation for
the present paper was the desire of understanding what happens for 1 ≤ R <

√
2. In

particular, it is our purpose to show that, for all R ≥ 1, the Euler–Lagrange equation
holds for the solution to this problem. To be more precise, consider the following
unconstrained equivalent formulation to the minimization problem presented above:

(DP ) minimize

∫
SR

(
1

2
‖∇u(x)‖2

)∞
dx on u− u0 ∈ H1

0 (SR),

where ( 1
2‖ξ‖2)∞ denotes the map

ξ →
{ 1

2‖ξ‖2 if ‖ξ‖ ≤ 1,

+∞ otherwise.

The (extended-valued) function (1
2‖ξ‖2)∞ is convex, lower semicontinuous, and co-

ercive: solutions to this minimization problem exist. Although the integrand is not
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everywhere differentiable, its subdifferential is defined on the whole effective domain
of the integrand itself: given one solution w, ∂(( 1

2‖∇w(x)‖2)∞) is defined a.e. We
wish to prove the existence of an integrable function p(.), a selection from the map
x→ ∂(( 1

2‖∇w(x)‖2)∞), such that, for every φ ∈ H1
0 (SR), one has∫

SR

〈p(x),∇φ(x)〉 dx = 0.

Equivalently, we wish to prove the existence of p, a weak solution to the system of
equations

p(x) ∈ ∂

((
1

2
‖∇w(x)‖2

)∞)
, div p(x) = 0.

Alternatively, from a control theory point of view, the above problem can be seen
as the problem of minimizing ∫

SR

(
1

2
‖v‖2

)
dx

for u ∈ u0 + W∞
0 (SR), subject to the Hamilton–Jacobi control equation

∇u(x) = v, v ∈ B,

where B is the Euclidean unit ball of �2. Denote by H the map H(p, v) = − 1
2‖v‖2 +

〈p, v〉, and notice that H(p, v) = maxz∈B H(p, z) iff p ∈ ∂( 1
2‖∇v‖2)∞. Hence proving

the validity of the Euler–Lagrange equation in the sense specified above amounts to
proving the existence of p satisfying the equations

∇u(x) = ∇Hp(p(x), v(x)), divp(x) = −∂H

∂u

such that a.e.

H(p(x), v(x)) = max
z∈B

H(p(x), z),

i.e., to proving that the solution w to the optimum control problem satisfies Pon-
tryagin’s maximum principle. The same control formulation, for a different minimum
problem, was already considered in [4].

Problems like the one we consider here, i.e., the problem of minimizing
∫
Ω
f(∇u(x))dx

on a set K of functions instead of on a linear space, are not new in the literature:
these and similar problems have been treated from the point of view of variational
inequalities. In that context, one wishes to show that a solution w is such that∫

Ω

〈∇f(∇w(x)),∇φ(x)〉 dx ≥ 0

whenever φ ∈ C∞
c (Ω) is admissible, i.e., such that w + φ is in K. This kind of

condition is not equivalent to the answer we seek here. Consider, for instance, the
very degenerate problem arising when the boundary conditions are such that there is
only one function in the space W 1,1 satisfying at once the boundary condition and
the constraint on the gradient, as in the case considered here when R = 1. Then
the boundary datum itself is the solution to this problem. However, the relevant



ON A CONSTRAINED DIRICHLET PROBLEM 333

information on this solution that we gain from the validity of a variational inequality
is nil since the only admissible variation φ is φ = 0. On the other hand, the Euler–
Lagrange equation holds on a linear space of test functions φ, independent of whether
or not the test functions are admissible, and this fact should provide useful information
on the solution w even in a degenerate case like this one.

The interest for the special region and boundary condition we examine here arises
from the following considerations: it is known that a key to the understanding of
problems with a constraint on the gradient comes from proving the equivalence of
the given problem with an obstacle problem, as in Brézis and Sibony [1] and in Treu
and Vornicescu [5]. When the constraint is ‖∇u(x)‖ ≤ K, one is lead to consider the
Natural Obstacles: the lower obstacle N−

K(x) = supξ∈∂SR
(u0(ξ) −K‖x − ξ‖) and

the upper obstacle N+
K(x) = infξ∈∂SR

(u0(ξ) + K‖x − ξ‖): simply, any function u
satisfying at once the boundary conditions and the constraint ‖∇u(x)‖ ≤ K must lie
between the lower and the upper Natural Obstacle function. However computations
show that for the region SR and the boundary condition u0 described above, these
Natural Obstacles are not only not smooth but fail to have those reasonable properties
that one can hopefully use to prove regularity of the solutions. Hence this region and
boundary conditions provide possibly the simplest non-trivial example that illustrates
the needs of more precise techniques to handle the problem.

In order to define the Effective Obstacle functions, that we will use instead of the
Natural Obstacles, let us recall the definition of the Bounded Slope Condition [6].

DEFINITION ((BSC)K). Let K be a positive real, Ω a bounded convex set. The
boundary datum u0 satisfies (BSC)K if for every x0 ∈ ∂Ω there exist vectors k+ =
k+(x0) and k− = k−(x0), ‖k+‖ ≤ K, ‖k−‖ ≤ K, such that for every x ∈ ∂Ω, we have

C+ u0(x)− u0(x0) ≤ 〈k+, x− x0〉

and

C− u0(x)− u0(x0) ≥ 〈k−, x− x0〉.

The next definition presents a lower and an upper obstacle for the solutions,
different from the Natural Obstacles.

DEFINITION (effective obstacles). Let V +
K = {x0 ∈ ∂Ω : there exist no k+, ‖k+‖

≤ K satisfying C+ for every x ∈ ∂Ω}; let V −
K = {x0 ∈ ∂Ω : there exist no k−, ‖k−‖ ≤

K satisfying C− for every x ∈ ∂Ω}. Let Φ+
K(x) be identically +∞ when V +

K = ∅ and
infξ∈V +

K
(u0(ξ) + K‖x − ξ‖) otherwise. Let Φ−

K(x) be identically −∞ when V −
K = ∅

and supξ∈V −
K

(u0(ξ)−K‖x− ξ‖) otherwise.

Comparing the definition of the natural obstacles with the definition above, one
can see that the consideration of a smaller set of points (V +

K and V −
K instead of

∂Ω) gives rise to a larger and smoother upper bound and to a smaller and smoother
lower bound for the solution and hence to a lesser constrained problem. Consider the
(trivial) one-dimensional problem, where Ω is the interval (0, 1) and u0(0) = a, u0(1) =
b. In this case, either |b−a| > K and no solution exists, or |b−a| ≤ K: in this second
case, V +

K and V −
K are empty, and, from our theorems below, the constrained problem

is equivalent to the unconstrained problem, as it has to be, since its solutions are
affine functions with the absolute value of the slope = |b − a| ≤ K. The purpose of
section 1 is to prove, under general assumptions on the region of integration Ω and
the integrand f , that the two minimum problems, the problem with the constraint
on the gradient ‖∇u(x)‖ ≤ 1 and the problem constrained by the effective obstacles
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(a less constrained problem than the analogous problem with the natural obstacles),
are actually equivalent; this fact, that we can indeed work with a less constrained
problem, possessing smoother solutions, will be the key to our proof of the validity of
the Euler–Lagrange equation for the constrained Dirichlet problem to be presented in
section 2.

From another point of view, our Theorem 1 below can be seen as a generalization
of Stampacchia’s theorem on the bounded slope condition [6]: in fact, the peculiarity of
Theorem 1 is that the obstacles in its statement disappear (i.e., become, respectively,
+∞ and −∞) when the bounded slope condition is satisfied.

1. The equivalence of variational problems. Theorem 2 of section 2 will
provide suitable regularity for solutions to the problem with obstacles, assuming reg-
ularity of the obstacles. To check that the required assumptions are satisfied by the
specific problem on SR we have in mind, let us first explicitly discuss the effective
obstacles for this problem: when R ≥ √2,Φ+

1 (x, y) = +∞ and Φ−
1 (x, y) = −∞; for

1 ≤ R <
√

2, after some computations we obtain

Φ−
1 (x, y) =




1− 1
Ry −

√
R2−1
R x on S3

R = SR ∩ {y ≥ x 1√
R2−1

},
1−

√
x2 + y2 on S2

R = SR ∩ {
√
R2 − 1x ≤ y ≤ x 1√

R2−1
},

1− 1
Rx−

√
R2−1
R y on S1

R = SR ∩ {0 ≤ y ≤ √R2 − 1x}.

Hence

∇Φ−
1 (x, y) =




(
−

√
R2−1
R ,− 1

R

)
on S3

R,(
− x√

x2+y2
,− y√

x2+y2

)
on S2

R,(
− 1
R ,−

√
R2−1
R

)
on S1

R,

and

∆Φ−
1 (x, y) =




0 on S3
R,

− 1√
x2+y2

on S2
R,

0 on S1
R.

Moreover,

Φ+
1 (x, y) = +∞.

Hence, in this example, when finite, the obstacle is smooth: the map x, y → ∇Φ−
1 (x, y)

is locally Lipschitzian.
Let us also consider, for this special problem, a change of variables τ that will be

of use in the proof of the validity of the Euler–Lagrange equation. Let θ∗ be such that

cos θ∗ = 1
R , sin θ∗ =

√
R2−1
R ; let θ∗∗ = π

2 −θ∗ and θ∗∗∗ = θ∗∗−θ∗. Consider the regions
Σ1 = {(ξ, η) : ξ2 + η2 < R2;− tan θ∗ξ ≤ η ≤ 0}; Σ2 = {(ξ, η) : 0 < ξ < R; 0 ≤ η ≤
θ∗∗∗}; Σ3 = {(ξ, η) : ξ2 +η2 < R2; θ∗∗∗ ≤ η ≤ θ∗∗∗+tan θ∗∗ξ}. Set ΣR = Σ1∪Σ2∪Σ3,
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and define the piecewise smooth transformation τ : ΣR ⊂ �2 → SR by

(
x
y

)
= τ(ξ, η) =




(
cos θ∗∗ − sin θ∗∗

sin θ∗∗ cos θ∗∗

)(
ξ

η − θ∗∗∗

)
on Σ3,(

ξ cos(η + θ∗)
ξ sin(η + θ∗)

)
on Σ2,(

cos θ∗ − sin θ∗

sin θ∗ cos θ∗

)(
ξ
η

)
on Σ1.

One can verify that Φ−
1 (τ(ξ, η)) is (the restriction to ΣR of) the affine function 1− ξ

so that

∂

∂ξ
Φ−

1 (τ(ξ, η)) ≡ −1;
∂

∂η
Φ−

1 (τ(ξ, η)) ≡ 0.

The properties of τ that will be of later use are: (i) τ is orthogonal, i.e. xξxη+yξyη = 0,
(ii) ∂τ

∂ξ (ξ, η) = −(∇Φ−
1 )(τ(ξ, η)), and hence, in particular, ‖∂τ∂ξ ‖ = ‖(xξ, yξ)‖ ≡ 1, and

(iii) for every fixed η, the map ξ → x2
η + y2

η is nondecreasing. The unit vector
1√

x2
η+y2

η

(xη, yη) inherits the regularity of ∂τ
∂ξ (ξ, η).

The following properties of the natural obstacle functions will be of use.
Proposition 1. When u0 is continuous and Φ−

K �≡ −∞, Φ−
K is Lipschitzian of

constant K; whenever ∇Φ−
K exists, we have ‖∇Φ−

K‖ = K and a similar case for Φ+
K .

The following theorem, on the equivalence of variational problems, is also a gen-
eralization of Stampacchia’s theorem on the bounded slope condition [6] and of its
generalization in [3].

Theorem 1. Let Ω be open and bounded; let f be a (possibly extended-valued)
strictly convex function. Let K be positive real, let u0 be in C(Ω) ∩W 1,1(Ω), and let
the effective obstacles Φ−

K(x) , Φ+
K(x) be defined as above. Moreover, assume that w,

a solution to

(PΦK
) minimize

∫
Ω

f(∇u(x)) dx, u− u0 ∈W 1,1
0 (Ω),Φ−

K(x) ≤ u(x) ≤ Φ+
K(x),

is in C(Ω). Then w is Lipschitzian of Lipschitz constant K, and it is a solution to

(P )K minimize

∫
Ω

f(∇u(x)) dx, u− u0 ∈W 1,1
0 (Ω), ‖∇u(x)‖ ≤ K.

Notice that the result is false if we assume f to be convex but not strictly convex:
consider the problem of minimizing∫ 1

−1

f(|x′(t)|)dt, x(−1) = x(1) = 0,

subject to the constraint |x′(t)| ≤ 1
2 , where f : �+ → �+ is the indicator function

of the interval [0, 1]. Then the bounded slope condition (of constant 1
2 ) is verified

both at t = −1 and at t = +1; i.e., the effective obstacles are +∞ and −∞, but it
is not true that all solutions to the (unconstrained) resulting problem of minimizing∫ 1

−1
f(|x′(t)|)dt, x(−1) = x(1) = 0, are Lipschitzian with Lipschitz constant 1

2 : it is
enough to consider x(t) = −1− t for t ≤ 0 and = −1 + t for t > 0.

The following corollary to Theorem 1 is Theorem 2 of [3].
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Corollary 1. Let Ω be open, convex and bounded; let f be a (possibly extended-
valued) strictly convex function. Let K be positive real, let u0 be in C(Ω) ∩W 1,1(Ω),
and let it satisfy (BSC)K . Let w, a solution to

minimize

∫
Ω

f(∇u(x)) dx, u− u0 ∈W 1,1
0 (Ω),

be in C(Ω). Then w is Lipschitzian of Lipschitz constant K, and it is a solution to

minimize

∫
Ω

f(∇u(x)) dx, u− u0 ∈W 1,1
0 (Ω), ‖∇u(x)‖ ≤ K.

Proof of Theorem 1. (a) The proof follows the same steps as the proof of Theo-
rem 2 of [3]. Any function u satisfying the constraints of problem (PK) must satisfy
those of problem (PΦK

); hence inf(PK) ≥ inf(PΦK
). Let I(w) be

∫
Ω
f(∇w(x)) dx;

if we show that a continuous solution w to (PΦK
) satisfies ‖∇w(x)‖ ≤ K, we have

inf(PK) ≤ I(w) = inf(PΦK
). It is enough to show that there cannot exist a unit

vector v, a scalar M > K, and a set E ⊂ Ω with µ(E) > 0 such that, for x in E, the
derivative of the map t → w(x + tv) at t = 0 exists, equals 〈∇w(x),v〉, and is > M.
Let us assume that M,v, E exist. As in [3], the key consists in proving the following
claim.

Claim. Let x∗∗ be a point in Ω such that t → w(x∗∗ + tv) is differentiable in
t = 0 with derivative D∗∗ > M , and let h∗∗ > 0 be such that, for every 0 < h < h∗∗,
x∗∗ − hv ∈ Ω, and

w(x∗∗ + hv)− w(x∗∗)−Mh > 0.

Then w is affine on [x∗∗, x∗∗ + h∗∗v] with derivative D∗∗.
Proof of the claim. Fix h > 0. Consider Ωh = {Ω ∩ (Ω − hv)} and the set

E+
h = {x ∈ Ωh;w(x + hv) > w(x) + hM}. E+

h is open and nonempty since it
contains x∗∗. For x ∈ E+

h , we have that y = x + hv is such that y − hv is in Ω
and w(y − hv) < w(y) − hM. The set E−

h = {y ∈ Ω−h;w(y − hv) < w(y) − hM}
is a translation of E+

h : E−
h − hv = E+

h , and it contains x∗∗ + hv. The proof is
based on taking variations φ+

h (x) = max{w(x + hv) − w(x) − hM, 0} on Ωh and
φ−
h (x) = min{w(x− hv)− w(x) + hM, 0} on Ω−h. However in the present situation,

these variations need not yield admissible functions: for λ > 0, w(x)+λφ+
h (x) > w(x)

on E+
h , but every admissible function has to be bounded above by Φ+

K and analogously
for w(x) + λφ−

h (x). Let us show (for φ−
h ) that this is not the case. Let x be in E−

h .
Since the map Φ−

K(x) is Lipschitzian with constant K, one has

Φ−
K(x)−hK ≤ Φ−

K(x−hv) ≤ w(x−hv) < w(x)−hM = Φ−
K(x)−hM +(w−Φ−

K)(x);

i.e., (w − Φ−
K)(x) > h(M − K). Again, since Φ−

K and Φ−
K are Lipschitzian, |w| is

uniformly bounded, and so is |φ−
h |. Let λ0 ≥ 0 be so small that |λ0φ−

h | ≤ h(M −K).
Then, for all 0 ≤ λ ≤ λ0, we have

Φ−
K(x) = w(x)−(w(x)−Φ−

K(x)) < w(x)−h(M−K) ≤ w(x)+λφ−
h (x) ≤ w(x) ≤ Φ+

K(x);

i.e., the variation λφ−
h (x) is admissible. A similar case holds for λφ+

h (x). Since w is a
minimum, we must have that, for all λ sufficiently small,∫

Ω

f(∇w(x) + λ∇φ+
h (x)) dx ≥

∫
Ω

f(∇w(x)) dx,
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Ω

f(∇w(x) + λ∇φ−
h (x)) dx ≥

∫
Ω

f(∇w(x)) dx.

The above inequalities yield∫
E+

h

{f(∇w(x) + λ[∇w(x + hv)−∇w(x)])− f(∇w(x))} dx ≥ 0,

∫
E−

h

{f(∇w(x) + λ[∇w(x− hv)−∇w(x)])− f(∇w(x))} dx ≥ 0.

Making the change of variables y = x+hv and adding the two inequalities, we obtain∫
E+

h

{f(∇w(x) + λ[∇w(x + hv)−∇w(x)])− f(∇w(x)) + f(∇w(x + hv)

−λ[∇w(x + hv)−∇w(x)])− f(∇w(x + hv))} dx ≥ 0.

Reasoning as in [3], we obtain that, a.e. in E+
h , ∇w(x) = ∇w(x + hv). As a con-

sequence, we have that there exists Λ > 0 such that the map t → w(x∗ + tv) is
affine on [0,Λ] with derivative M + ζ , ζ > 0, and, in addition, that x∗ + Λv is
in ∂Ω. Set x∗∗ to be x∗ + Λv (hence, Λ = ‖x∗∗ − x∗‖). We have obtained that
w(x∗) = w(x∗∗ − Λv) = w(x∗∗)− Λ(M + ζ).

When x∗∗ ∈ ∂Ω \ V −
K , i.e., the bounded slope condition is verified at x∗∗, there

exists k−, ‖k−‖ ≤ K such that, for every x ∈ ∂Ω, we have u0(x)−u0(x∗∗) ≥ 〈k−, x−
x∗∗〉, or, equivalently, for every x ∈ ∂Ω, u0(x) ≥ u0(x∗∗) + 〈k−, x − x∗∗〉. Hence
Theorem 3 of [3] applies with *(x) = u0(x∗∗) + 〈k−, x − x∗∗〉, and we infer that the
solution w satisfies the inequality

w(x∗) ≥ u0(x∗∗) + 〈k−, x∗ − x∗∗〉 ≥ w(x∗∗) + 〈k−, x∗ − x∗∗〉 ≥ w(x∗∗)−KΛ,

contradicting w(x∗) = w(x∗∗)− Λ(M + ζ).
On the other hand, when x∗∗ belongs to V −

K , from the very definition of Φ−
K(x∗),

we have

w(x∗) ≥ Φ−
K(x∗) ≥ w(x∗∗)−KΛ,

again contradicting w(x∗) = w(x∗∗)− Λ(M + ζ).
The assumption that M , v, and E exist leads to a contradiction.
Corollary 2. Under the same assumptions on f , Ω, and u0, problems (PK)

and (PΦK
) coincide in the sense that they have the same solutions.

2. Regularity of the solutions and the validity of the Euler–Lagrange
equation. Our purpose is to apply the results of the previous section to prove the
validity of the Euler–Lagrange equation to the minimization problem described in the
introduction. To do so, we shall need further regularity of the solution. Notice that,
for the specific example we have in mind, the lower obstacle function, as computed in
section 1, is not in W 2,2(SR), but it is in W 2,2(Ω∗) for every Ω∗ ⊂⊂ SR. Theorem 2,
in particular, can be applied to the case Ω = SR and f = Φ−

1 ; in this case, Ω∗ is any
smooth subset of SR bounded away from (0, 0).

We recall that u0 ≥ f on ∂Ω in the sense of W 2,2(Ω) iff (u0 − f)− ∈W 2,2
0 (Ω).
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Theorem 2. Let Ω be an open and bounded set with Lipschitzian boundary,
let Ω∗ ⊂ Ω be open with smooth boundary, and let f ∈ W 1,2(Ω) ∩ W 2,2(Ω∗). Let
u0 ∈W 1,2(Ω) be such that u0 ≥ f on ∂Ω in the sense of W 1,2(Ω). Let w be a solution
to problem (P ):

(P ) minimize

∫
Ω

‖∇u(x)‖2dx, u(x) ≥ f(x) a.e., u− u0 ∈W 1,1(Ω);

then w is in W 2,2(Ω∗).
Proof. (a) Since (w0−f)− = 0 a.e. in Ω∗, w0 ≥ f on Ω∗ in the sense of W 1,2(Ω∗).

Hence [7, p. 82] there exists a sequence of smooth maps,
(
w0
n

)
, converging to w in

W 1,2(Ω∗) such that w0
n ≥ f on ∂Ω∗.

Consider the minimization problem:

(P ∗) minimize

∫
Ω∗
‖∇u(x)‖2dx, u(x) ≥ f(x) a.e., u− w0

n ∈W 1,2(Ω∗),

and let wn be a solution.
(b) Following the technique of Brézis–Stampacchia [2], we will approximate wn

by smoother maps. For positive ε, let wε
n be a solution to the following minimum

problem:

(Pn) minimize

∫
Ω∗

ε‖∇v −∇f‖2 + (v − wn)2 on w0
n + W 1,2(Ω∗).

Claim. wε
n(x) ≥ f(x) a.e. on Ω∗.

Proof of the claim. The functional to be minimized is convex and coercive; hence
a solution wε

n in W 1,2(Ω∗) exists; from known results, it satisfies the following Euler–
Lagrange equation: for every η in W 1,2

0 (Ω∗),∫
Ω∗

ε〈∇wε
n −∇f,∇η〉+ [wε

n − wn]η = 0.

Let η− = (wε
n − f)−, and assume it is not zero a.e. Since

0 ≥ (wε
n − f)− ≥ (wε

n − w0
n)− + (w0

n − f)−,

we have η− ∈W 1,2
0 (Ω∗), and, from the Euler–Lagrange equation, we obtain∫

{wε
n<f}

ε〈∇wε
n −∇f,∇wε

n −∇f〉+ (wε
n − w)(wε

n − f) = 0.

Since, on the set {wε
n < f}, we have wn ≥ f > wε

n, we obtain (wn −wε
n)(f −wε

n) > 0
and hence a contradiction. Thus wε

n(x) ≥ f(x) a.e. on Ω∗.
Moreover, by the regularity results for linear equations, wε

n ∈ W 2,2(Ω∗), and wε
n

is a solution of the equation −ε∆wε
n + (wε

n − wn) + ε∆f = 0.
(c) Notice that, for every η in W 1,2

0 (Ω∗) admissible, i.e., such that wn + η ≥ f ,
one has ∫

Ω∗
〈∇wn(x),∇η(x)〉dx ≥ 0;

we have obtained in (b) that η = wε
n − wn is an admissible variation on Ω∗; hence

0 ≤
∫

Ω∗
〈∇wn,∇η〉 =

∫
Ω∗
〈∇wn,∇wε

n −∇wn〉 ≤
∫

Ω∗
〈∇wε

n,∇wε
n −∇wn〉.
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From∫
Ω∗
〈∇wε

n,∇wε
n −∇wn〉 =

∫
Ω∗

(−∆wε
n)(wε

n − w) = ε

∫
Ω∗

(−∆wε
n)(∆wε

n −∆f),

we obtain

ε

∫
Ω∗
|∆wε

n|2 ≤ ε

(∫
Ω∗
|∆wε

n|2
) 1

2
(∫

Ω∗
|∆f |2

) 1
2

;

i.e.,

(∫
Ω∗
|∆wε

n|2
) 1

2

≤
(∫

Ω∗
|∆f |2

) 1
2

.

As a consequence, from (b) we infer

‖wε
n − wn‖2 ≤ ε2‖∆f‖2

and also ∫
Ω∗
−∆wε

n(wε
n − wn)→ 0

as ε → 0. Hence
∫
Ω∗ ∇wε

n(∇wε
n − ∇wn) and

∫
Ω∗ ∇wn(∇wε

n − ∇wn) → 0 so that
‖∇w −∇wε

n‖2 → 0 as ε→ 0.
(d) Fix any φ ∈ C∞

c (Ω∗). Then∣∣∣∣
∫

Ω∗
〈∇wn,∇φ〉

∣∣∣∣ = lim
ε→0

∣∣∣∣
∫

Ω∗
〈∇wε

n,∇φ〉
∣∣∣∣ ≤ K‖φ‖2

(K independent of n) so that ‖∆wn‖2 ≤ K. The sequence (wn) is weakly precompact
in W 1,2(Ω∗).

(e) A subsequence (still called (wn)) converges weakly in W 1,2(Ω∗) to w∗. We
claim that w∗ − u0 ∈W 1,2

0 (Ω∗). To begin with, we have

d((wn−u0),W 1,2
0 (Ω∗)) ≤ ‖(wn−u0)− [(wn−w0

n) + (w−u0)]‖1,2 = ‖w0
n−w‖1,2 → 0.

Let (yn) be a sequence of convex combinations converging to w in W 1,2(Ω∗): more
precisely, for every n, there are ν(n) indices j1(n), . . . , jν(n) such that j1(n) < · · · <
jν(n) and limn→∞ j1(n) = ∞ and coefficients αj1(n), . . . , αjν(n) such that αj1(n) +
· · ·+ αjν(n) = 1 and αji(n) ≥ 0 such that

yn =
∑

j1(n),...,jν(n)

αjwj → w as n→∞.

Also, let vn ∈ W 1,2
0 (Ω∗) be such that ‖(wn − u0) − vn‖ ≤ 2d((wn − u0),W 1,2

0 (Ω∗)).
Then

d((yn − u0),W 1,2
0 (Ω∗)) ≤ ‖(yn − u0)− vn‖ ≤

∑
j1(n),...,jν(n)(n)

αj‖(wj − u0)− vn‖

≤ 2 sup
j∈{j1(n),...,jν(n)(n)}

d(wj − u0,W 1,2
0 (Ω∗))→ 0 as n→∞

so that w∗ − u0 ∈W 1,2
0 (Ω∗).
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(f) We claim that w∗ is the restriction to Ω∗ of w. Let I(u) be
∫
Ω∗ ‖∇u(x)‖2dx;

then, since the restriction of w to Ω∗ is a minimum for P ∗, I(w) ≤ I(w∗). Assume
there exists σ > 0 such that I(w) ≤ I(w∗) − σ. By the weak lower semicontinuity
of the functional to be minimized, for all n sufficiently large, I(w∗) ≤ I(wn) + σ

2 . In
problems (Pn), compute the integral on w0

n to obtain

I(wn) ≤ I(w0
n) ≤ I(w0

n − w) + I(w) ≤ I(w0
n − w) + I(wn)− σ

2
,

which is a contradiction since I(w0
n−w)→ 0. So w∗ is a solution to problem (P ∗). By

the strict convexity of the functional, the solutions are unique. So w∗ is the restriction
to Ω∗ of w, and the whole sequence (wn) converges weakly to w.

(g) Consider again yn. Fix any φ ∈ C∞
c (Ω∗). Then∣∣∣∣

∫
〈∇w,∇φ〉

∣∣∣∣ = lim
n→∞

∣∣∣∣
∫
〈∇yn,∇φ〉

∣∣∣∣ ≤ K‖φ‖2.

Hence w ∈W 2,2(Ω∗).

Corollary 3. Let u0(x, y) = 1− 1
R

√
x2 + y2; let Φ−

1 (z) be the natural obstacle
for problem (DP ) as computed in section 1. Then problems

minimize

∫
SR

1

2
‖∇u(z)‖2dz : u− u0 ∈W 1,1(SR), Φ−

1 (z) ≤ u(z)

and

minimize

∫
SR

1

2
‖∇u(z)‖2dz : u− u0 ∈W 1,1(SR), ‖∇u(z)‖ ≤ 1

are equivalent in the sense that they have the same solutions.
Proof. Solutions to the obstacle problem are continuous on SR by the previous

theorem.
The following theorem presents the construction of p.
Theorem 3. Let Ω ⊂ � be a bounded convex region. Let w be a solution to

the constrained Dirichlet problem (DP ) on S. Let K = 1 and Φ+
1 (x) and Φ−

1 (x)
be the effective obstacles. Assume that Φ+

1 (x) = ∞ and that Φ−
1 ∈ W 2,2(Ω∗) on

any Ω∗ ⊂⊂ Ω. Assume that there exists a Lipschitzian one-to-one transformation
τ : Σ→ Ω such that

(i) τ is orthogonal;
(ii) ∂τ

∂ξ (ξ, η) = −(∇Φ−
1 )(τ(ξ, η));

(iii) for every η, the map ξ → x2
η + y2

η is nondecreasing;
(iv) τ is piecewise C2 on Σ.

Then there exists p(.), a selection from z → ∂(( 1
2‖∇w(z)‖2)∞), such that, for every

φ ∈W 1,2
0 (Ω), one has ∫

Ω

〈p(z),∇φ(z)〉 dz = 0.

Proof. (a) Apply the previous theorem to infer that w is continuous on Ω. Let
E = {z ∈ Ω : w(z) = Φ−

1 (z)}: E is closed (in Ω). We notice that, on the open set
Ω \ E, w is a solution to the (unconstrained) minimization problem

minimize

∫
Ω\E
‖∇u(z)‖2 dz;

hence w is harmonic in Ω \ E.
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(b) Consider the transformation τ , and set Φ(ξ, η) = Φ−
1 (τ(ξ, η)). We have

Φξ = Φ−
1 xxξ + Φ−

1 yyξ = −‖∇Φ−
1 ‖2 = −1, Φη = 0.

Set E = τ−1(E), ω(ξ, η) = w(τ(ξ, η)). On E, ∇ω = ∇Φ = (−1, 0) . From the
regularity of w and hence of ω, on a.e. line η = const, the map ξ → ∇ω(ξ, η) is
absolutely continuous. Let η = η∗ be one such line. Let (ξ∗, η∗) be in E, so that
ω(ξ∗, η∗) = Φ(ξ∗, η∗). Then, when 0 < ξ ≤ ξ∗, (ξ, η∗) ∈ E. In fact, assume there
exists ξ∗∗ such that ω(ξ∗∗, η∗) > Φ(ξ∗∗, η∗). Since Φξ ≡ 1 and ωξ = wxxξ + wyyξ
with ‖(xξ, yξ)‖ = 1, on {η = η∗} ∩ E we would have points where the gradient of
w is in norm larger than 1. Hence there exist ξE = ξE(η∗) such that {η = η∗} ∩ E
equals either {(ξ, η∗) : 0 < ξ ≤ ξE} or {(ξ, η∗) : 0 < ξ < ξE} according to whether ξE

belongs to τ−1(Ω) or to ∂(τ−1(Ω)).
(c) We wish to show that there exists α(z), α = 1, when ‖∇w(z)‖ < 1, α ≥ 1,

when ‖∇w(z)‖ = 1 such that, for every φ ∈ C∞
c (Ω), one has∫

Ω

α(z)〈∇w(z),∇φ(z)〉 dz = 0.

If this is the case, the map α(.)∇w(.) is p(.), the required selection from the map z →
∂(( 1

2‖∇w(z)‖2)∞). The computation will be performed in the variables (ξ, η). Let

Ξ(η) =
√

(x2
η + y2

η)(ξE(η), η), and define A(ξ, η) = 1√
(x2

η+y2
η)(ξ,η)

Ξ(η) for ξ ≤ ξE(η),

i.e., for (ξ, η) in E, and = 1 otherwise. Then, by assumption (iii), (ξ, η) ∈ E implies
A(ξ, η) ≥ 1. We will show that∫

τ−1(Ω)

A(ξ, η)[〈∇w,∇φ〉(τ(ξ, η))]J(ξ, η) d(ξ, η) = 0.

Then α(z) = A(τ−1(z)) will be the sought-for function α.
Fix φ. Let P (ξ, η) = φ(τ(ξ, η)); let sP be the interior of supp(P ). Recalling that

τ is an orthogonal transformation and that (x2
ξ + y2

ξ ) = 1, we obtain

〈∇w,∇φ〉(τ(ξ, η)) =

[
ωξPξ +

ωηPη
(J)2

]
.

Setting B(ξ, η) = Ξ(η) for ξ ≥ ξE(η) and = J(ξ, η) otherwise, the integral above
becomes ∫

sP

B(ξ, η)

[
ωξPξ +

ωηPη
(J)2

]
d(ξ, η).

We will compute separately

I1 =

∫
sP

B(ξ, η)[ωξPξ] d(ξ, η)

and

I2 =

∫
sP

B(ξ, η)

[
ωηPη

1

(x2
η + y2

η)

]
d(ξ, η).
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(d) From the regularity provided by Theorem 2, on a.e. line η = η∗, the maps

ξ → ∇ω(ξ, η) and ξ →
√

(x2
η + y2

η)ωξP (ξ, η) are absolutely continuous. Consider

I1 =

∫ (∫
{η=η∗}∩E

Ξ(η∗)[ωξPξ] dξ

)
dη∗

+

∫ (∫
{η=η∗}∩(Σ\E)

√
(x2

η + y2
η)[ωξPξ] dξ

)
dη∗.

On E, ωξ = −1; at ∂sP , P = 0, and we obtain

I1 =

∫ (∫ ξE

0

Ξ(η∗)[−Pξ] dξ
)

dη∗ +

∫ (∫ ξ∂

ξE

√
(x2

η + y2
η)[ωξPξ] dξ

)
dη∗

=

∫
Ξ(η∗)[−P (ξE(η∗), η∗)]dη∗ +

∫ (∫ ξ∂

ξE

√
(x2

η + y2
η)[ωξPξ] dξ

)
dη∗.

To compute the second integral above, since(√
(x2

η + y2
η)ωξP

)
(ξ∂ , η∗)−

(√
(x2

η + y2
η)ωξP

)
(ξE , η∗)

=

∫ ξ∂

ξE

(√
(x2

η + y2
η)ωξPξ + P

d

dξ

(√
(x2

η + y2
η)ωξ

))
dξ,

ωξ(ξ
E , η∗) = −1 (the continuity of ωξ is used here), and P (ξ∂ , η∗) = 0 , we obtain

∫ (∫ ξ∂

ξE

√
(x2

η + y2
η)[ωξPξ] dξ

)
dη∗

=

∫ (
−
(√

(x2
η + y2

η)P
)

(ξE , η∗)−
∫ ξ∂

ξE
P

d

dξ

(√
(x2

η + y2
η)ωξ

)
dξ

)
dη∗.

Hence

I1 =

∫ (
−
∫ ξ∂

ξE
P

d

dξ

(√
(x2

η + y2
η)ωξ

)
dξ

)
dη∗

=

∫
sP \E

− d

dξ

(√
(x2

η + y2
η)ωξ

)
P d(ξ, η).

(e) Consider

I2 =

∫
sP

B(ξ, η)

[
ωηPη

1

(x2
η + y2

η)

]
d(ξ, η).
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For a.e. ξ, the map η → ωη
1√

(x2
η+y2

η)
P is absolutely continuous. Fix one such ξ∗;

the intersection of the line ξ = ξ∗ with the open set sP \ E is the union of (at most
countably many) open intervals ((ξ∗, αi(ξ∗)), (ξ∗, βi(ξ∗))), and we obtain∫

sP

B(ξ, η)

[
ωηPη

1

(x2
η + y2

η)

]
d(ξ, η)

=

∫ (∫
Σ∩{ξ=ξ∗}

B(ξ, η)

[
ωηPη

1

(x2
η + y2

η)

]
dη

)
dξ∗

=

∫ ∫
∪((ξ∗,αi(ξ∗)),(ξ∗,βi(ξ∗)))


ωηPη 1√

(x2
η + y2

η)


 dη


 dξ∗

+

∫ (∫
E∩{ξ=ξ∗}

Ξ(η)

[
ωηPη

1

(x2
η + y2

η)

]
dη

)
dξ∗.

The last integral is 0 since, on E, ωη = 0. Consider one interval ((ξ∗, αi(ξ∗)), (ξ∗, βi(ξ∗))):
by the absolute continuity of η → ωη

1√
(x2

η+y2
η)
P , we have

ωη
1√

(x2
η + y2

η)
P |βi

αi
=

∫ βi

αi


P d

dη


ωθ

1√
(x2

η + y2
η)


+


ωη

1√
(x2

η + y2
η)


Pη


 dη.

The points (ξ∗, αi(ξ∗)) and (ξ∗, βi(ξ∗)) are either at ∂sP , so that P = 0, or on E,
and, in this case, by the regularity of ωη

1√
(x2

η+y2
η)

, we have ωη
1√

(x2
η+y2

η)
= 0. Hence

I2 = −
∑
i

∫ ∫ βi

αi


P d

dη


ωη

1√
(x2

η + y2
η)




 dη


 dξ∗

=

∫
sP \E


 d

dη


ωη

1√
(x2

η + y2
η)




P d(ξ, η).

Adding the results of (d) and of (e), we obtain∫
Ω

α(z)〈∇w(z),∇φ(z)〉 dz = I1 + I2

=

∫
sP \E


 d

dη


ωη

1√
(x2

η + y2
η)


+

d

dξ

√
(x2

η + y2
η)ωξ


P d(ξ, η)

=

∫
sP \E

[
ωηη

1

J2
− ωη

Jη
J3

+ ωξ
Jξ
J

+ ωξξ

]
PJ d(ξ, η).
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(f) Expressing the Laplacian of w at the point τ(ξ, η) in terms of ω, for a generic
τ twice differentiable at the point (ξ, η), one obtains

J2∆(w(τ(ξ, η))) = ωξξ(y
2
η + x2

η) + ωηη(x2
ξ + y2

ξ )− 2ωξη(xξxη + yξyη)

+ ωξ

(
xηxηξ − xξxηη + yηyηξ − yξyηη − x2

η

Jξ
J
− y2

η

Jξ
J

+ xηxξ
Jη
J

+ yηyξ
Jη
J

)

+ ωη

(
xξxξη + yξyξη − xηxξξ − yηyξξ − x2

ξ

Jη
J
− y2

ξ

Jη
J

+ xξxη
Jξ
J

+ yξyη
Jξ
J

)
.

This equality, for a transformation τ with properties (i) and (ii), becomes

J2∆(w(τ(ξ, η))) = ωξξ(y
2
η + x2

η) + ωηη + ωξ(JJξ) + ωη

(
−Jη

J

)
.

Since w is harmonic on Ω \ E, its Laplacian computed at τ(ξ, η) for every (ξ, η) ∈
Ω \ E is 0; by the change of variables formula, one obtains then that the integral in
(e) is zero.

This ends the proof.
Remark. In the case when Ω = SR with R = 1 and u0 = 1 −

√
x2 + y2, the

previous construction yields an explicit definition of α: in fact, in this case, we have
that (ξE(η), η) = (1, η), Ξ(η) = 1, and A(ξ, η) = 1√

(x2
η+y2

η)(ξ,η)
Ξ(η) = 1

ξ . Hence we

obtain that, setting z = (x, y), α(z)∇w(z) = 1√
x2+y2

( x√
x2+y2

, y√
x2+y2

) is p(z), the

required selection from the map z → ∂(( 1
2‖∇w(z)‖2)∞) having the property that, for

any φ ∈ C∞
c (S1), ∫

S1

〈p(x),∇φ(x)〉 dx = 0.

In this case, p turns out to be the gradient of the harmonic function log
√

x2 + y2.
Summarizing the results of Corollary 2 and Theorem 3, we obtain the following

corollary.
Corollary 4. For every R ≥ 1 and u0(x, y) = 1− 1

R

√
x2 + y2, a solution w to

problem (DP) on SR satisfies the Euler–Lagrange equation.
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NOTIONS OF OBSERVABILITY FOR UNCERTAIN LINEAR
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Abstract. This paper introduces a notion of observability for a class of uncertain linear sys-
tems with structured uncertainty. In the uncertain systems under consideration, the uncertainty is
described by averaged integral quadratic constraints. In order to define a notion of observability
for uncertain linear systems, the paper introduces a robust observability function which extends the
usual definition of the observability Gramian to the case of uncertain systems. Using this observ-
ability function, a corresponding unobservable cone is defined, and an uncertain system is said to be
robustly observable if this cone contains only the origin. The paper presents an algorithm for find-
ing the robust observability function and corresponding unobservable cone. This algorithm involves
solving a parameterized Riccati differential equation.

Key words. uncertain systems, observability, Riccati equation, integral quadratic constraints,
structured uncertainty

AMS subject classifications. 93B07, 49N10, 93B35, 93B36

PII. S0363012900368077

1. Introduction. An important aspect of control theory is the insight it gives
the control engineer into the control system design problem at hand. Recent research
in robust control theory has resulted in a number of powerful techniques for the
synthesis of robust control systems; see, e.g., [19, 3, 9]. However, there remains a
need for new results on robust control theory which give additional insight into a
given robust control problem. For example, it is extremely helpful for the control
system designer to know what factors are currently limiting the performance of the
control system design and what might be done to the system in order to achieve an
improved level of performance.

One approach to providing the control system designer with additional insight
into the control problem under consideration is the current research into “funda-
mental limitations” in control systems; see, e.g., [15]. In this approach, bounds on
achievable performance are given in terms of plant transfer function properties such
as poles and zeros. Although this approach is very useful in many applications, it
does not fit directly in the uncertain systems approach to robust control system de-
sign. Also, in multivariable control systems, it would be useful to have some insight
into the performance limitations imposed by the structure of the uncertain dynamics.
This fact has motivated us to look at extending the modern control theory notion of
observability to the case of uncertain systems. Naturally, it would also be of inter-
est to look at the dual notion of controllability for uncertain systems. However, this
question is beyond the scope of the current paper.

The notion of observability is one of the fundamental properties of a linear system;
see, e.g., [4]. Together with controllability, the notion of observability can be used
to determine if a given linear system can be stabilized via feedback control. Also, it
can be used to determine if the unobserved states of a system can be estimated via
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a state estimator. However, in considering practical control system and filter design
problems, it was found that the notion of observability offered little real insight to
the designer. To some extent, this fact can be traced to the lack of concern with
robustness issues in the standard definition of observability. For example, the fact
that a given plant model is controllable and observable gives the designer very little
insight into whether a controller can be designed to achieve adequate performance in
the face of model uncertainties. Also, a plant model which fails to be observable can
usually be recognized as deficient from physical principles without the need for the
concept of observability.

The fact that many of the limitations on achievable control system performance
arise from the presence of model uncertainty leads us to think that the notion of
observability may provide considerably more insight into a particular controller or
state estimator design problem if extended to classes of uncertain systems. Thus the
aim of this paper is to introduce a notion of observability for uncertain systems which
will provide insight into the structure of uncertain systems and the limitations on
achievable performance which arise.

The notion of observability for uncertain systems has previously been considered
by a number of authors. In particular, the notion of observability considered in the
papers [5, 6] is most closely related to the notion of observability considered here.
In these papers, the notion of observability introduced is motivated by a certain
set valued state estimation problem. In particular, it is assumed that the state of
the uncertain system is initially completely unknown. Then the uncertain system
is said to be observable if the set of possible initial states consistent with output
measurements over a finite time interval is bounded. This definition of observability
for uncertain systems fits in quite well with problems of set valued state estimation
such as those considered in [6, 8]. However, it cannot be easily extended to the case
of uncertain systems with structured uncertainty. Furthermore, it does not naturally
lead to a notion extending the idea of the unobservable subspace, which arises in
linear systems theory; see, e.g., [17].

The notion of observability introduced in this paper involves extending the def-
inition of the observability Gramian to the case of uncertain systems; see also [2],
where this notion is extended to the case of nonlinear systems. The observability
Gramian can be defined in terms of the energy in the output signal resulting from a
given initial condition. In our definition, we define the robust observability function
as the minimum possible energy in the output signal for the given initial condition
and for any admissible uncertainties. Thus, in our definition of observability, we think
of the uncertainty as attempting to prevent the energy in the initial condition from
being reflected in the output signal. This approach to defining a robust observabil-
ity function for an uncertain system naturally leads to an extension of the notion of
unobservable subspace. That is, we consider the set of all states for which the robust
observability function is zero. This set is no longer a subspace but rather a cone in
the state space. It is hoped that consideration of this cone will give new insight into
the structure of uncertain systems.

As in the papers [5, 6], the uncertain systems considered in this paper will use
an integral quadratic constraint (IQC) uncertainty description. However, in [5, 6],
only one IQC is considered. Thus, in these papers, the uncertainty is unstructured.
The notion of observability introduced in this paper allows for the case of structured
uncertainty in a straightforward way, in particular, using the averaged IQC uncer-
tainty description used in [12, 13]. This uncertainty description allows us to exploit a
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certain S-procedure theorem in order to calculate the observability function in terms
of a certain parameter dependent optimal control problem. A similar result could
have been achieved using stochastic IQC uncertainty descriptions such as in [7, 16].
However, in this paper, we used the averaged IQC approach for the sake of simplicity.

2. Problem formulation. We consider the following time-varying uncertain
system defined on the finite time interval [0, T ]:

ẋ(t) = A(t)x(t) +
k∑
s=1

Bs(t)ξs(t),

y(t) = C(t)x(t) +

k∑
s=1

Ds(t)ξs(t),

z1(t) = K1(t)x(t),

z2(t) = K2(t)x(t),

...

zk(t) = Kk(t)x(t),(2.1)

where x(t) ∈ Rn is the state, y(t) ∈ Rl is the measured output, z1(t) ∈ Rh1 , z2(t) ∈
Rh2 , . . . , zk(t) ∈ Rhk are the uncertainty outputs, ξ1(t) ∈ Rrl , ξ2(t) ∈ Rr2 , . . . , ξk(t) ∈
Rrk are the uncertainty inputs, and A(·), B1(·), . . . , Bk(·), C(·), K1(·), K2(·), . . .,
Kk(·) are bounded piecewise continuous matrix functions defined on [0, T ]. The un-
certainty inputs can be thought of as the outputs of uncertainty blocks as shown in
Figure 2.1. Also, the uncertainty outputs can be thought of as the inputs to these
uncertainty blocks. The bounds on the uncertainties are described below.

System uncertainty. The uncertainty inputs and outputs may be collected to-
gether into two vectors. That is, we define

ξ(t)
∆
= [ξ1(t)′ ξ2(t)′ . . . ξk(t)′ ]′

and

z(t)
∆
= [z1(t)′ z2(t)′ . . . zk(t)′ ]′.

The uncertainty is required to satisfy a certain averaged IQC. That is, we consider
finite collections of uncertainty inputs such that the following constraint is satisfied.

Averaged IQC. Let d1 > 0, d2 > 0, . . . , dk > 0 be given positive constants asso-
ciated with the system (2.1). We will consider collections of uncertainty inputs S =
{ξ1(·), ξ2(·), . . . ξq(·)}. The number of elements q in any such collection is arbitrary.
A collection of uncertainty functions of the form S = {ξ1(·), ξ2(·), . . . ξq(·)} ⊂ L2[0, T ]
is an admissible uncertainty collection for the system (2.1) if the following conditions
hold: Given any ξi(·) ∈ S and any corresponding solution {xi(·), ξi(·), zi(·)} to (2.1)
defined on [0, T ], we have

1

q

q∑
i=1

∫ T

0

(‖ξi1(t)‖2 − ‖zi1(t)‖2) dt ≤ d1,

1

q

q∑
i=1

∫ T

0

(‖ξi2(t)‖2 − ‖zi2(t)‖2) dt ≤ d2,
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Fig. 2.1. An uncertain system with structured feedback uncertainty.

...

1

q

q∑
i=1

∫ T

0

(‖ξik(t)‖2 − ‖zik(t)‖2) dt ≤ dk.(2.2)

Here L2[0, T ] denotes the set of square integrable vector functions defined on the set
[0, T ], and ‖ · ‖ denotes the standard Euclidean norm. The class of all such admissible
uncertainty collections is denoted Ξ. One way in which such uncertainty could be
generated is via structured feedback uncertainty, as shown in the block diagram in
Figure 2.1.

Remarks. The above definition extends the definition of the IQC given in [18,
10, 11]. In these papers, only individual uncertainty inputs are considered rather
than collections of uncertainty inputs. One interpretation of the uncertainty class
described above is a probabilistic one. That is, given any admissible uncertainty
collection S ∈ Ξ, each uncertainty input ξi(·) ∈ S is assigned an equal probability.
Then condition (2.2) amounts to a bound on the expected value of the “measure of
mismatch” between given uncertainty inputs ξs(·) and the following L2[0, T ] induced
norm bound condition: ∫ T

0

(‖ξs(t)‖2 − ‖zs(t)‖2) dt ≤ 0;

see also, e.g., [10] and [11]. It should be noted that the IQC on the uncertainty
allows for nonlinear time-varying dynamic uncertainty. Indeed, the average measure
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of mismatch bound ds can be regarded as a bound on the average size of the initial
condition for the uncertainty dynamics.

Definition 2.1. The robust observability function for the uncertain system
(2.1), (2.2) is defined as

Lo(x0; d1, . . . , dk;T )
∆
= inf

S∈Ξ

1

q

q∑
i=1

∫ T

0

‖y(t)‖2dt,(2.3)

where x(0) = x0 in (2.1).
This definition extends the standard definition of the observability Gramian for

linear systems. In our robust observability function, we consider the worst case ob-
servability in which the uncertainty is trying to force the output of the system to zero
for the given initial condition.

Definition 2.2. A state x0 ∈ Rn is said to be unobservable for the uncertain
system (2.1), (2.2) if

Lo(x0; d1, . . . , dk;T ) = 0

for all constants d1 > 0, d2 > 0,. . .dk > 0 in (2.2). The set of all unobservable states
for the uncertain system (2.1), (2.2) is referred to as the unobservable cone U ; i.e.,

U ∆
= {x ∈ Rn : Lo(x; d1, . . . , dk;T ) = 0 ∀d1 > 0, d2 > 0, . . . , dk > 0}.

Also, the uncertain system (2.1), (2.2) is said to be robustly observable if U = {0},
i.e., if the origin is the only unobservable state.

The above definition of the unobservable cone extends the standard definition
of the unobservable subspace for a linear system (see [17]) to the case of uncertain
systems. The aim of this paper is to find a means of constructing the observability
function Lo(x; d1, . . . , dk;T ) and the unobservable cone U .

Note that the above definition will depend on the time horizon T . Roughly
speaking, the observability of a state x0 may depend on the time horizon T since, as
the time horizon is lengthened, more information is obtained from the measurement
y, but also more uncertainty may be allowed by the averaged IQC (2.2).

3. The main result. The robust observability function Lo(x; d1, . . . , dk;T ) de-
fined in (2.3) is defined as the value function for a constrained optimization problem.
In order to solve this constrained optimization problem, we will use a version of the
S-procedure theorem to convert the constrained optimization problem into an uncon-
strained optimization problem dependent on a set of Lagrange multiplier parameters.

3.1. The unconstrained optimization problem. For the uncertain system
(2.1), (2.2), we define a function Vτ (x0) as follows:

Vτ (x0)
∆
= inf
ξ(·)∈L2[0,T ]

∫ T

0

(
‖y(t)‖2 +

k∑
s=1

τs‖ξs(t)‖2 −
k∑
s=1

τs‖zs(t)‖2
)
dt.(3.1)

Here τ1 ≥ 0, τ2 ≥ 0,. . . ,τk ≥ 0 are given constants. For a given vector of Lagrange
multiplier parameters τ = [τ1 τ2 . . . τk], the quantity Vτ (x0) can be calculated as
the solution to a standard linear quadratic optimal control problem. The solution to
this optimal control problem, which will be given below, is given in terms of a Riccati
differential equation dependent on the vector τ . Subsequently, we will show, using an
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S-procedure theorem, that the robust observability function Lo(x0; d1, . . . , dk;T ) can
be calculated in terms of Vτ (x0).

In order to calculate Vτ (x0), we first introduce some notation. Given τ =
[τ1 τ2 . . . τk], let

B(t) = [B1(t) B2(t) . . . Bk(t)],

D(t) = [D1(t) D2(t) . . . Dk(t)],

Kτ (t) =

k∑
s=1

τsKs(t)
′Ks(t),

Λτ =




τ1I 0
. . .

0 τkI


 .

Using this notation, it follows that the system (2.1) can be rewritten as

ẋ(t) = A(t)x(t) + B(t)ξ(t), x(0) = x0.(3.2)

Also, the function Vτ (x0) can be rewritten as

Vτ (x0) = inf
ξ(·)∈L2[0,T ]

Jτ (ξ(·)),(3.3)

where

Jτ (ξ(·)) =

∫ T

0

[
(C(t)x(t) + D(t)ξ(t))′(C(t)x(t) + D(t)ξ(t))
+ξ(t)Λτξ(t)− x(t)′Kτ (t)x(t)

]
dt

=

∫ T

0

(
x(t)[C(t)′C(t)−Kτ (t)]x(t)
+2x(t)′C(t)′D(t)ξ(t) + ξ(t)′Λτξ(t) + ξ(t)′D′Dξ(t)

)
dt.

(3.4)

If τ = [τ1 τ2 . . . τk] is such that τ1 > 0, τ2 > 0,. . . , τk > 0, then the optimization
problem (3.3) can be solved in terms of the following Riccati differential equation:

−Ṗ = A′P + PA− (PB + C ′D)[Λτ + D′D]−1(D′C + B′P ) + C ′C −Kτ ,

P (T ) = 0.(3.5)

Lemma 3.1. Let τ = [τ1 τ2 . . . τk] be given such that τ1 > 0, τ2 > 0,. . . ,
τk > 0, and consider the corresponding system (3.2) and cost functional (3.4). Then
the optimal control problem (3.3) is such that

Vτ (x0) > −∞

if and only if the Riccati differential equation (3.5) has a solution Pτ (t) defined on
[0, T ]. In this case,

Vτ (x0) = x′0Pτ (0)x0.(3.6)

Proof. This lemma follows directly from a standard result on the linear quadratic
regulator problem; see, e.g., page 55 of [1].
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3.2. An S-procedure result. In order to use the formula (3.6) to calculate
the robust observability function (2.3), we will use the following S-procedure result.
Indeed, consider a set of functionals

F0(ξ(·)), F1(ξ(·)), . . . , Fk(ξ(·))

defined for the system (3.2).
Lemma 3.2. Suppose that, for any collection of input functions {ξ1(·), ξ2(·), . . . , ξq(·)}

such that ξi(·) ∈ L2[0, T ] for all i and

q∑
i=1

F1(ξi(·)) ≥ 0,

q∑
i=1

F2(ξi(·)) ≥ 0,

...
q∑
i=1

Fk(ξi(·)) ≥ 0,(3.7)

we have

q∑
i=1

F0(ξi(·)) ≥ 0.(3.8)

Then there exist constants τ0 ≥ 0, τ1 ≥ 0, . . . ,τk ≥ 0 such that
∑k
i=0 τi > 0 and

τ0F0(ξ(·)) ≥
k∑
i=1

τiFk(ξ(·))(3.9)

for all inputs ξ(·) ∈ L2[0, T ].
Proof. We first define the set

P ∆
= {[F0(ξ(·)), F1(ξ(·)), . . . , Fk(ξ(·))]′ : ξ(·) ∈ L2[0, T ]} ⊂ Rk+1.

Then condition (3.7), (3.8) implies that this set satisfies the assumptions of Theorem
3.1 of [14]. From this theorem, (3.9) follows.

Observation 1. If there exists an input ξ(·) ∈ L2[0, T ] such that F1(ξ(·)) >
0, F2(ξ(·)) > 0, . . . , Fk(ξ(·)) > 0, and the assumptions of the above lemma hold, then
τ0 may be chosen as τ0 = 1 in (3.9); see Observation 3.1 in [14].

3.3. A formula for the robust observability function. In order to present
our main result, which is a formula for the robust observability function Lo(x; d1, . . . , dk;T ),
we first introduce the following notation:

Γ
∆
= {τ = [τ1 τ2 . . . τk] : τ1 > 0 τ2 > 0 . . . τk > 0 and Vτ (x0) > −∞}.

Also,

Γ̄
∆
= {τ = [τ1 τ2 . . . τk] : τ1 ≥ 0 τ2 ≥ 0 . . . τk ≥ 0 and Vτ (x0) > −∞}.
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Theorem 3.3. Consider the uncertain system (2.1), (2.2) and the corresponding
robust observability function (2.3). Then, for any initial condition x(0) = x0,

Lo(x0; d1, . . . , dk;T ) = max
τ∈Γ̄

{
Vτ (x0)−

k∑
s=1

τsds

}
.(3.10)

Proof. Given any admissible uncertainty input collection S ∈ Ξ for the uncertain
system (2.1), (2.2) with initial condition x(0) = x0 and vector τ ∈ Γ̄, we claim

1

q

q∑
i=1

∫ T

0

‖yi(t)‖2dt ≥ Vτ (x0)−
k∑
s=1

τsds.(3.11)

To establish this claim, we first note that it follows from the definition of Vτ (x0)
(3.1) that

∫ T

0

(
‖y(t)‖2 +

k∑
s=1

τs‖ξs(t)‖2 −
k∑
s=1

τs‖zs(t)‖2
)
dt ≥ Vτ (x0)

for all ξ(·) ∈ L2[0, T ]. In particular, this inequality holds for every element in the
given collection S. Hence

1

q

q∑
i=1

∫ T

0

(
‖yi(t)‖2 +

k∑
s=1

τs‖ξis(t)‖2 −
k∑
s=1

τs‖zis(t)‖2
)
dt

≥ 1

q

q∑
i=1

Vτ (x0)

= Vτ (x0).(3.12)

However, S ∈ Ξ implies that (2.2) is satisfied, and hence from (3.12) we obtain

1

q

q∑
i=1

∫ T

0

‖yi(t)‖2dt +

k∑
s=1

τsds ≥ Vτ (x0).

Thus (3.11) holds.
Now, since (3.11) holds for any S ∈ Ξ, we have

inf
S∈Ξ

1

q

q∑
i=1

∫ T

0

‖yi(t)‖2dt ≥ Vτ (x0)−
k∑
s=1

τsds(3.13)

for all τ ∈ Γ̄. We now claim that there exists a τ ∈ Γ̄ such that

inf
S∈Ξ

1

q

q∑
i=1

∫ T

0

‖yi(t)‖2dt ≤ Vτ (x0)−
k∑
s=1

τsds.(3.14)

To establish this claim, we let

c
∆
= inf

S∈Ξ

1

q

q∑
i=1

∫ T

0

‖yi(t)‖2dt.(3.15)
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Also, we define the functionals in Lemma 3.1 as follows:

F0(ξ(·)) ∆
=

∫ T

0

‖y(t)‖2dt− c,

F1(ξ(·)) ∆
=

∫ T

0

(‖z1(t)‖2 − ‖ξ1(t)‖2) dt + d1,

F2(ξ(·)) ∆
=

∫ T

0

(‖z2(t)‖2 − ‖ξ2(t)‖2) dt + d2,

...

Fk(ξ(·)) ∆
=

∫ T

0

(‖zk(t)‖2 − ‖ξk(t)‖2) dt + dk.

Now, for any uncertainty input collection S such that

1

q

q∑
i=1

F1(ξi(·)) ≥ 0,
1

q

q∑
i=1

F2(ξi(·)) ≥ 0, . . . ,
1

q

q∑
i=1

Fk(ξi(·)) ≥ 0,

the averaged IQCs (2.2) are satisfied, and hence S ∈ Ξ. Then it follows from (3.15)
that

1

q

q∑
i=1

F0(ξi(·)) ≥ 0.

Thus the conditions of the S-procedure result, Lemma 3.2, are satisfied. Also, note
that, since d1 > 0, d2 > 0, . . . , dk > 0, then F1(0) > 0, F2(0) > 0, . . . , Fk(0) > 0.
Thus it follows from Lemma 3.2 and Observation 1 that there exist constants τ1 ≥ 0,
τ2 ≥ 0,. . . ,τk ≥ 0 such that

F0(ξ(·)) ≥
k∑
s=1

τsFs(ξ(·))

for all ξ(·) ∈ L2[0, T ]. That is,

∫ T

0

‖y(t)‖2dt− c ≥
k∑
s=1

τs

[∫ T

0

(‖zs(t)‖2 − ‖ξs(t)‖2) dt + ds

]

for all ξ(·) ∈ L2[0, T ]. Hence

inf
ξ(·)∈L2[0,T ]

∫ T

0

(
‖y(t)‖2 +

k∑
s=1

τs‖ξs(t)‖2 −
k∑
s=1

τs‖zs(t)‖2
)
dt ≥ c +

k∑
s=1

τsds.

Then, using (3.1) and (3.15), we have

Vτ (x0) ≥ inf
S∈Ξ

1

q

q∑
i=1

∫ T

0

‖y(t)‖2dt +

k∑
s=1

τsds ≥ 0.

That is, (3.14) is satisfied. Furthermore, since Vτ (x0) ≥ 0, then τ = [τ1 τ2 . . . τk]′ ∈ Γ̄.
Combining (3.13) and (3.14) now leads to (3.10). This completes the proof of the
theorem.
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Corollary 3.4. Consider the uncertain system (2.1), (2.2) and the correspond-
ing robust observability function (2.3). Then, for any initial condition x(0) = x0,

Lo(x0; d1, . . . , dk;T ) = sup
τ∈Γ

{
x′0Pτ (0)x0 −

k∑
s=1

τsds

}
.(3.16)

Proof. It is straightforward to verify that

max
τ∈Γ̄

{
Vτ (x0)−

k∑
s=1

τsds

}
= sup

τ∈Γ

{
Vτ (x0)−

k∑
s=1

τsds

}
.

Hence, using Lemma 3.1, (3.16) follows.
Corollary 3.5. Consider the uncertain system (2.1), (2.2). Then a state x0 ∈

Rn is unobservable if and only if

x′0Pτ (0)x0 ≤ 0

for all τ ∈ Γ.
Proof. If x0 is unobservable, then Lo(x0; d1, . . . , dk;T ) = 0 for all d1 > 0, d2 >

0, . . . , dk. Hence, using Corollary 3.4,

x′0Pτ (0)x0 −
k∑
s=1

τsds ≤ 0

for all d1 > 0, d2 > 0, . . . , dk > 0, and τ ∈ Γ. Thus

x′0Pτ (0)x0 ≤ 0

for all τ ∈ Γ.
Conversely, if

x′0Pτ (0)x0 ≤ 0

for all τ ∈ Γ, then

x′0Pτ (0)x0 −
k∑
s=1

τsds ≤ 0

for all d1 > 0, d2 > 0, . . . , dk > 0, and τ ∈ Γ. Thus, using Corollary 3.4,

Lo(x0; d1, . . . , dk;T ) = sup
τ∈Γ

{
x′0Pτ (0)x0 −

k∑
s=1

τsds

}
≤ 0

for all d1 > 0, d2 > 0, . . . , dk > 0. However, it follows from the definition of the
observability function that Lo(x0; d1, . . . , dk;T ) ≥ 0. Thus

Lo(x0; d1, . . . , dk;T ) = 0

for all d1 > 0, d2 > 0, . . . , dk. That is, x0 is unobservable.
Observation 2. From the above corollary, it follows immediately that the unob-

servable cone U can be written in the form

U = {x ∈ Rn : x′0Pτ (0)x0 ≤ 0 ∀τ ∈ Γ}.
Also, it follows that the uncertain system (2.1), (2.2) is robustly observable if and only
if, for all x0 ∈ Rn : x0 �= 0, there exists a τ ∈ Γ such that

x′0Pτ (0)x0 > 0.



OBSERVABILITY FOR UNCERTAIN SYSTEMS 355

4. An alternative definition of robust observability. In this section, we
compare the notion of robust observability defined above with the notion of robust
observability considered in the paper [6]. This paper considers a class of uncertain
systems in which the uncertainty is described by a single IQC. Hence the uncertainty
in the system is unstructured. Also, in [6] there was no need to use averaged IQCs.

The notion of observability considered in [6] relates to a certain set valued state
estimation problem. The result of [6] shows that the uncertain system under con-
sideration has the property of robust observability if and only if the solution to a
certain Riccati differential equation is positive-definite at time zero. The main result
of this section shows that the definition of robust observability given in [6] is, in fact,
equivalent to our definition of robust observability given in section 2.

The uncertain system considered in [6] can be considered as a special case of the
uncertain system (2.1), (2.2), where k = 1,

ξ1(t) =

[
w(t)
v(t)

]
,

A(t) = A(t); B1(t) = [B1(t) 0],

K1(t) = K(t); C(t) = C(t); D1(t) = [0 I].(4.1)

Also, the uncertainty is assumed to satisfy the IQC∫ T

0

(‖w(t)‖2 + ‖v(t)‖2 − ‖z(t)‖2) dt ≤ d1.(4.2)

This IQC can be considered as a special case of the averaged IQCs (2.2) when we
restrict our attention to uncertainty input collections with one element. Also, note
that we have assumed that, in [6], R(t) ≡ I, Q ≡ I.

According to the definition given in [6], an uncertain system is robustly observable
if the set of all possible states at time t = 0, consistent with the uncertain system
model and given output measurements on [0, T ], is bounded (for all d1 > 0). The main
result of [6] on robust observability gives a characterization of robust observability in
terms of the Riccati differential equation:

−Ẏ (t) = Y (t)A(t) + A(t)′Y (t)− Y (t)B1(t)B1(t)′Y (t)

−K(t)′K(t) + C(t)′C(t), Y (T ) = 0.(4.3)

Indeed, it is shown in [6] that the uncertain system under consideration is robustly
observable (in the sense of [6]) if and only if (4.3) has a solution on [0, T ] and Y (0) > 0.

In order to compare our definition of robust observability with the definition
given in [6], we first observe that the Riccati differential equation (4.3) can be given
an optimal control interpretation. Indeed, if we consider the system (2.1), (4.1) with
initial condition x(0) = x0 and the Riccati differential equation (4.3), then

x′0Y (0)x0 = inf
w(·)∈L2[0,T ]

∫ T

0

(‖C(t)x(t)‖2 − ‖z1(t)‖2 + ‖w(t)‖2) dt.(4.4)

Now consider the quantity (3.1) for the uncertain system (2.1), (4.1), (4.2). This
quantity can be calculated as follows:

Vτ (x0) = inf
ξ(·)∈L2[0,T ]

∫ T

0

(‖y(t)‖2 − τ‖z(t)‖2 + τ‖w(t)‖2 + τ‖v(t)‖2) dt
= inf
w(·)∈L2[0,T ]

inf
v(·)∈L2[0,T ]

∫ T

0

( ‖C(t)x(t) + v(t)‖2 − τ‖z(t)‖2
+τ‖w(t)‖2 + τ‖v(t)‖2

)
dt.
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However,

inf
v(·)∈L2[0,T ]

∫ T

0

(
x(t)′C(t)′C(t)x(t) + 2x(t)′C(t)v(t) + v(t)′v(t) + τ‖v(t)‖2) dt

= inf
v(·)∈L2[0,T ]

∫ T

0

(
[ 1√

1+τ
C(t)x(t) +

√
1 + τv(t)]′[ 1√

1+τ
C(t)x(t) +

√
1 + τv(t)]

− 1
1+τ x(t)′C(t)′C(t)x(t) + x(t)′C(t)′C(t)x(t)

)
dt

=

∫ T

0

τ

1 + τ
x(t)′C(t)′C(t)x(t)dt.

Thus

Vτ (x0) = τ inf
w(·)∈L2[0,T ]

∫ T

0

(
1

1 + τ
x(t)′C(t)′C(t)x(t)− ‖z(t)‖2 + ‖w(t)‖2

)
dt.

Now observe that, for any τ > 0, Vτ (x0) ≤ 0 if and only if V̄τ (x0) ≤ 0, where

V̄τ (x0) = inf
w(·)∈L2[0,T ]

∫ T

0

(
1

1 + τ
x(t)′C(t)′C(t)x(t)− ‖z(t)‖2 + ‖w(t)‖2

)
dt.(4.5)

Also note that it follows from (4.5) that, for any x0 ∈ Rn, V̄τ (x0) is monotone
increasing as τ → 0. Hence it follows from Theorem 3.3 that a state x0 ∈ Rn is
unobservable for the uncertain system (2.1), (4.1), (4.2) if and only if

inf
w(·)∈L2[0,T ]

∫ T

0

(
x(t)′C(t)′C(t)x(t)− ‖z(t)‖2 + ‖w(t)‖2) dt ≤ 0.

Therefore, it follows from (4.4) that the system has no nonzero unobservable state if
and only if

Y (0) > 0.

That is, our robust observability condition is equivalent to the robust observability
condition of [6] for uncertain systems of the form (2.1), (4.1), (4.2). However, in
contrast to the robust observability condition of [6], our robust observability condition
can be applied to systems with structured uncertainty. Also, our robust observability
condition leads naturally to a notion of an unobservable cone.

5. Illustrative examples. In this section, we consider two examples which il-
lustrate our notions of robust observability and the unobservable cone for an uncertain
system.

Example 1. We consider an uncertain system of the form (2.1), (2.2), where k = 1,
T = 10,

A(t) ≡
[ −2 0

0 −1

]
, B1(t) ≡

[
2
0

]
,

K1(t) ≡ [1 0], C(t) ≡ [1 1], D1(t) ≡ 0.

In order to characterize the unobservable cone for this uncertain system, we will
apply Observation 2. This involves solving the Riccati differential equation (3.5) for
different values of the parameter τ > 0. For each value of τ > 0, we form the set
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Fig. 5.1. Unobservable cone for Example 1.

{x ∈ Rn : x′0Pτ (0)x0 ≤ 0}. Then the unobservable cone is the intersection of all of
these sets. This process is illustrated in Figure 5.1.

In this figure, the unshaded region corresponds to the states such that x′0Pτ (0)x0 ≤
0. As more and more values of τ are considered, the remaining unshaded region be-
comes smaller and smaller. Indeed, the unobservable cone in this example consists of
a single line passing through the origin. This can be seen as follows: For each τ > 0,
the set {x ∈ Rn : x′0Pτ (0)x0 ≤ 0} is bounded by two lines which pass through the ori-
gin. Furthermore, it is straightforward to verify that, as τ → 0, both slopes converge
to −1; see also Figure 5.2, in which we plot the slope of these lines as a function of τ .
From this figure, we can conclude that, in this example, the unobservable cone is

U = {x = [x1 x2]′ : x2 = −x1}.
To further understand this result, note that, for this example, the averaged IQC

(2.2) allows for norm bounded uncertainties of the form w(t) = δ(t)z(t), where δ(t)
is a norm bounded uncertain parameter satisfying the bound |δ(t)| ≤ 1. In this case,
the uncertain system can be rewritten as

ẋ =

[ −2 + 2δ(t) 0
0 −1

]
x,

y = [1 1]x.

In particular, if δ(t) ≡ 0.5, this system becomes

ẋ =

[ −1 0
0 −1

]
x,
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y = [1 1]x,

which is an unobservable linear system with unobservable subspace

{x = [x1 x2]′ : x2 = −x1}.

This is the same as the unobservable cone for the uncertain system calculated above.
Note that, for this example, we have D1(t) ≡ 0. That is, we have no uncertainty in

the “C matrix.” In this situation, it is straightforward to verify that the unobservable
cone must lie in this null space of the matrix C. Hence, in a two dimensional system
such as this one, any nontrivial unobservable cone must be a linear space. In the next
example, we allow for uncertainty in the “C matrix” and show that this can lead to
an unobservable cone which is not a linear space.

Example 2. We now consider another uncertain system of the form (2.1), (2.2),
where k = 1, T = 10,

A(t) ≡
[

0 1
−1 −5

]
, B1(t) ≡

[
1
0

]
,

K1(t) ≡ [0 0.7], C(t) ≡ [1 0], D1(t) ≡ 1.

As above, we characterize the unobservable cone for this system using Observation 2.
This leads to the results illustrated in Figure 5.3.

As in Example 1, the unshaded region in this figure corresponds to the states
such that x′0Pτ (0)x0 ≤ 0 for various values of τ . As more and more values of τ are
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considered, the remaining unshaded region becomes smaller and smaller. Also, as
in Example 1, the regions x′0Pτ (0)x0 ≤ 0 are bounded by two straight lines passing
through the origin. By considering the range of values of these slopes, we conclude
that the unobservable cone for this uncertain system is a region in the state space
bounded between the lines {x2 = −1.94x1} and {x2 = 6.47x1}; see, e.g., Figure 5.4,
in which we plot the slopes of these lines as a function of τ . Note that we consider
only τ < 54.4 since, for τ greater than this value, Pτ (0) is negative-definite.

For this uncertain system, the corresponding uncertain system with constant norm
bounded uncertainty is described by the state equations

ẋ =

[
0 1 + 0.7δ1
−1 −5

]
x,

y = [1 0.7δ2]x,

where δ2
1 + δ2

2 ≤ 1. For this system, the corresponding observability matrix is given
by

[
1 0.7δ2

−0.7δ2 1 + 0.7δ1 − 3.5δ2

]
.

This matrix is nonsingular for some values of δ1, δ2 such that δ2
1 + δ2

2 ≤ 1. This is
consistent with the fact that the original uncertain system considered in this example
has a nontrivial unobservable cone.
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6. Conclusions. In this paper, we have introduced a new notion of robust ob-
servability for a class of uncertain systems. We also presented some results which show
how this condition can be tested. A feature of this notion of robust observability is
that it applies to uncertain systems with structured uncertainty. Furthermore, it also
leads naturally to a notion of the unobservable cone for an uncertain system. The
paper shows that the notion of robust observability introduced here is equivalent to an
earlier notion of robust observability which was only applicable to uncertain systems
with unstructured uncertainty. Also, the earlier notion of robust observability did not
lead to a corresponding unobservable cone.

The paper presents two simple examples which illustrate the notion of robust
observability and the calculation of the unobservable cone. These examples also il-
lustrate the relation between the notion of robust observability and corresponding
observability ideas for uncertain systems with constant norm bounded uncertainty.

One of the main areas of future research arising from this paper concerns the
computation of the unobservable cone. The results presented in this paper allow the
unobservable cone to be found by performing a search over the vector of Lagrange
multiplier parameters τ . Future research is required to determine if efficient means
can be found to perform this search, e.g., linear matrix inequality methods, etc.
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A STUDY ON THE OPTIMAL COST FOR THE H∞ PROBLEM OF
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Abstract. In this paper, we propose a new method to obtain the optimal cost (the infimum of
the achievableH∞ norm of a closed-loop system) for discrete linear periodically time-varying (LPTV)
systems. This method reduces via the lifting technique the original problem to the H∞ problems
of linear time-invariant (LTI) systems without the causality constraint, and therefore the optimal
cost can be easily calculated. It is one of the primary advantages over other existing methods. We
also show, by applying our method to LTI systems, that the optimal cost for the H∞ problem of
discrete LTI systems cannot be improved even if we use a class of noncausal controllers. An intriguing
implication of this fact is further shown in the context of causal controllers.

Key words. H∞ problem, discrete linear periodically time-varying system, causality constraint,
lifting technique, optimal cost
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1. Introduction. This paper is devoted to the study of the H∞ problem of
discrete linear periodically time-varying (LPTV) systems. Up to now, several methods
of solution have been proposed for this problem, which can be categorized, roughly
speaking, into the following two approaches:

(1) time-varying approach,
(2) time-invariant (lifting) approach.

In the time-varying approach, the problem of LPTV systems is directly solved in the
framework of general discrete linear time-varying (LTV) systems. As for the H∞
problem of general discrete LTV systems, Feintuch and Francis [4] first derived a
complete solution in 1985. It was based on function space analysis, and the solution
was not given in such a form that engineers could easily apply it to their practical
problems. In fact, the optimal cost, i.e., the infimum of the achievable H∞ norm of
the closed-loop system, was given in terms of an infinite number of operators in the
function space. After the research of Feintuch and Francis [4], not much was reported
on this topic for a while. Recently, however, new advances have emerged, inspired
by the developments in the H∞ theory of time-invariant systems. Actually, Dragan,
Halanay, and Ionescu [3], Katayama and Ichikawa [7], and Scherpen and Verhaegen
[18] gave similar expressions of the solution in terms of algebraic Riccati equations
(AREs), while their approaches were mutually different. Although numerical algo-
rithms to solve time-varying AREs are still under development, we can, in principle,
obtain the solution numerically by applying these results.

In the time-invariant approach, the solution for linear time-invariant (LTI) sys-
tems is directly utilized to solve the problem of LPTV systems. Here, the lifting
technique [11, 8] plays a key role. This technique associates a class of LPTV sys-
tems with an equivalent class of LTI systems. More specifically, the class of m-input,
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p-output, discrete, linear, N -periodic systems can be shown to be equivalent to the
class of mN -input, pN -output discrete LTI systems with the transfer matrix P (λ)
satisfying the condition that P (0) be block lower triangular. Note that P (0) gives the
throughput term in the state space expression, and the above condition corresponds
to the causality requirement. For this reason, the above condition on P (0) is referred
to as the “causality constraint.” This lifting technique enables us to translate the
solution of time-invariant systems to that of periodic systems and reduces the difficul-
ties in dealing with time-varying systems to one point: “how to secure the causality
constraint, i.e., how to make the controller K(λ) satisfy the condition that K(0) be
block lower triangular.” The methods belonging to this “time-invariant (lifting) ap-
proach” category can be classified into several subcategories according to the ways of
coping with this causality constraint.

Feintuch, Khargonekar, and Tannenbaum [5] solved a sensitivity minimization
problem of periodic systems based on the result in [4]. Georgiou and Khargonekar [6]
proposed a constructive algorithm. Voulgaris, Dahleh, and Valavani [19] showed an-
other algorithm for both H∞ and H2 problems of general multirate systems including
LPTV systems. However, these three methods focus on the so-called one-block H∞
problem, and it is not easy to extend them to the four-block H∞ problem.

A method to solve the general four-block H∞ problem was proposed by Chen
and Qiu [2, 13]. They treated the problem in the framework of multirate sampled-
data systems and introduced the notion of “nest operators.” S̊agfors, Toivonen, and
Lennartson [15, 16] also proposed another method using the game theoretic approach
and formulated the solution in terms of AREs.

In this paper, we propose an alternative way to solve the four-block H∞ problem
of discrete LPTV systems, which can be categorized into the time-invariant approach.

Our method is based on the result in [4] and thus bears a certain similarity to
the results in [5, 6] in that the optimal cost for the N -periodic H∞ problem is given
in terms of the maximum of “N values.” Here, even though the “N values” in the
method in [5, 6] are the norms of N infinite dimensional matrices, our method gives
such values as the optimal costs for the N time-invariant H∞ problems without the
causality constraint. Hence our method is more advantageous than other methods in
that the optimal cost is given by solving the ordinary (in the sense that no causality
constraint is imposed on them) LTI H∞ problems.

Another important advantage of our method is that it enables us to show an
interesting property of the discrete LTI H∞ problem. More specifically, we can show
that the optimal cost for the H∞ problem of discrete LTI systems cannot be improved
even if we extend the class of controllers to a certain class of noncausal systems.
Although the practical meaning of this property might be unclear since noncausal
controllers cannot be implemented, it certainly lays a fundamental theoretical basis
for practical problems. In fact, in section 5, we study a discrete H∞ problem in
the context of sampled-data control (with a causal controller) and show, with this
property, the performance limitation that arises if the sampler has a periodic delay.

The outline of this paper is as follows. In section 2, we explain some notation and
definitions used in this paper, and, in section 3, we formulate the discrete LPTV H∞
problem and convert it into a four-block model matching problem. Then, in section 4,
we state our main result, which gives the optimal cost for this H∞ problem based on
the result in [4]. In section 5, we show the properties that can be obtained by applying
our result to LTI systems. Finally, section 6 summarizes the results obtained in this
paper.
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2. Preliminaries. In this section, we introduce the notation and definitions
used in this paper.

2.1. Spaces and norms. The space of complex n × 1 vector valued sequences
x = {xk : k ≥ 0} is denoted by sn or simply s. The subspace of sn of square-summable
sequences is denoted by ln2 or simply l2.

The norm on l2, denoted by ‖ · ‖l2 , is defined as

‖x‖l2 =

( ∞∑
k=0

x∗kxk

)1/2

,(1)

where ∗ denotes complex conjugate transpose.
The space of bounded linear operators from ln2 to lm2 is denoted by Bm×n or just

B. The norm on B, denoted by ‖ · ‖, is defined as

‖F‖ = sup
x∈l2

‖Fx‖l2
‖x‖l2

.(2)

Any operator F in B can be expressed by the matrix representation

F00 F01 F02 · · ·
F10 F11 F12 · · ·
F20 F21 F22 · · ·
...

...
...


 .(3)

The subspace of Bm×n of causal operators is denoted by Cm×n, or simply C, and the
matrix representation of such an operator has a block lower triangular form. The
subspace of Bm×n of time-invariant operators is denoted by T m×n, or just T , and the
matrix representation of such an operator has a block Toeplitz form.

The space of essentially bounded, matrix valued functions defined on the unit
circle is denoted by L∞. The norm on L∞, denoted by ‖ · ‖∞, is defined as

‖f‖∞ = ess sup
θ∈[0,2π]

σ(f(ejθ)),(4)

where σ(·) denotes the maximum singular value. The subspace of L∞, whose element
has analytic continuation into the open unit disc, is denoted by H∞.

Let F be a time-invariant operator in T . From its matrix representation

F0 F−1 F−2 · · ·
F1 F0 F−1 · · ·
F2 F1 F0 · · ·
...

...
...


 ,(5)

define the transfer function F̂ (λ) of F by

F̂ (λ) =
∞∑

k=−∞
Fkλ

k.(6)

Then F̂ (ejθ) ∈ L∞, and ‖F‖ = ‖F̂‖∞. If F ∈ C ∩ T ,

F̂ (λ) =

∞∑
k=0

Fkλ
k,(7)

and F̂ (ejθ) ∈ H∞.
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2.2. Shift operator and truncation operator. The kth shift operator Λk is
defined by

Λk : {x0, x1, . . .}
(8)

→


{0, . . . , 0︸ ︷︷ ︸
k times

, x0, x1, . . .} if k ≥ 0,

{x−k, x−k+1, . . .} if k < 0.

For any F from s to s, the kth input/output-shift operator Sk(F ) (k = 0, 1, . . .) is
defined by

Sk(F ) = Λ−kFΛk.(9)

The kth truncation operator Πk (k = −1, 0, . . .) is defined by

Πk : {x0, x1, . . .}
(10) →

{ {0, 0, . . .} if k = −1,
{x0, x1, . . . , xk, 0, . . .} if k ≥ 0.

2.3. Periodic operator and lifting operator. Periodic operators are defined
as follows via the input/output-shift operator.

Definition 2.1. The operator F is called N -periodic if

F = SN (F ) = Λ−NFΛN .(11)

The subspace consisting of N -periodic operators in Bm×n is denoted by Pm×n
N or

just PN .
Let ΞN be the isomorphism defined by

ΞN : {x0, x1, . . .} ∈ sn

(12)
→







x0

x1

...
xN−1


 ,



xN
xN+1

...
x2N−1


 , . . .



∈ snN ,

and let LN (·) be the lifting operator defined by

LN (F ) = ΞNFΞ−1
N , F : sn → sm.(13)

Then, for any F in Cm×n ∩ Pm×n
N , LN (F ) belongs to CmN×nN ∩ T mN×nN , and

‖LN (F )‖ = ‖F‖.(14)

However, the converse is not true in that for an operator FL in CmN×nN ∩T mN×nN ,
it might not be expressed as FL = LN (F ) for any F ∈ Cm×n ∩ Pm×n

N because of the
causality constraint. Namely, for L−1

N (FL) to belong to Cm×n ∩ Pm×n
N , the transfer

function F̂L of FL should have such a structure that the throughput term F̂L(0) is
block lower triangular. Hence, for convenience hereafter, we define the subspace WN

of CmN×nN ∩ T mN×nN by

WN = {FL : L−1
N (FL) ∈ Cm×n ∩ Pm×n

N }.(15)

Then any function inWN can be associated with a function in Cm×n∩Pm×n
N via LN (·)

and L−1
N (·). We also define the subspace ŴN of H∞, the space of transfer functions

F̂L whose throughput term F̂L(0) is block lower triangular. ŴN in H∞ corresponds
to WN in T .
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✲w

P

✲z

y

✛K

✲u

Fig. 1. The block diagram of the discrete-time system.

3. The discrete LPTV H∞ problem. In this section, we formulate the dis-
crete LPTV H∞ problem and convert it into a model matching problem.

Consider the discrete system shown in Figure 1. In Figure 1, w is the exogenous
input, u is the control input, z is the controlled output, and y is the measurement
output. P denotes a discrete, linear, N -periodic, causal, finite-dimensional generalized
plant that can be partitioned according to w, u, z, y into

P =

[
P11 P12

P21 P22

]
.(16)

K denotes a discrete linear causal controller.
Let us denote by Fl(P,K) the linear fractional transformation (LFT) of K on P ;

namely,

Fl(P,K) = P11 + P12K(I − P22K)−1P21.(17)

The discrete LPTV H∞ problem of P is to find K such that
• the closed-loop system is internally stable,
• the norm of Fl(P,K) (the operator from w to z) is minimized.

In other words, this H∞ problem is the following optimization problem:

ν = inf
K:causal

‖Fl(P,K)‖.(18)

Let us assume that P22 admits a doubly coprime factorization and that the fol-
lowing assumption holds.

Assumption 3.1. ŜL(λ) and T̂L (̃λ) = T̂L
T

(λ−1) are injective for every λ on
the unit circle.

Then (18) can be transformed into a model matching problem of the form (see
Appendix A)

ν = inf
Q∈C∩PN

∥∥∥∥
[
X −Q Y
Z U

]∥∥∥∥ ,(19)

where X, Y , Z, and U belong to PN .
In the next section, we will present our result, which gives the solution to this

problem.
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4. Main result: A new method to obtain the optimal cost for the dis-
crete LPTV H∞ problem. In this section, we give a new type of method to obtain
the optimal cost for the discrete LPTV H∞ problem: a method to calculate ν in (19).
In the following, we will show three versions of our result, which gives the optimal
cost ν in terms of the optimal costs for ordinary LTI H∞ problems.

Our main result is summarized in the following theorem.
Theorem 4.1. For k = 0, 1, . . . , N − 1 let us define

XL
k = LN (Sk(X)), Y Lk = LN (Sk(Y )),(20)

ZLk = LN (Sk(Z)), ULk = LN (Sk(U)),(21)

and

νk = inf
QL

k
∈C∩T

∥∥∥∥
[
XL
k −QLk Y Lk
ZLk ULk

]∥∥∥∥ .(22)

Then

ν = max(ν0, ν1, . . . , νN−1).(23)

The proof of this theorem is given in Appendix B.
The importance of Theorem 4.1 lies in showing the fact that ν can be obtained

by solving N model matching problems. It should also be noted that the infimum in
(22) is not taken over WN but over the larger class C ∩ T . Hence it is easy to check
that the model matching problem (22) is equivalent to the discrete LTI H∞ problem

νk = inf
KL

k
:causal

‖Fl(PLk ,KL
k )‖,(24)

where PLk is defined by

PLk =

[
PLk11 PLk12
PLk21 PLk22

]
(25)

=

[
LN (Sk(P11)) LN (Sk(P12))
LN (Sk(P21)) LN (Sk(P22))

]
.

Thus we are led to the following corollary, in which the advantage of our main result
is exploited more explicitly.

Corollary 4.1. The optimal cost ν is given by

ν = max(ν0, ν1, . . . , νN−1),(26)

where νk (k = 0, 1, . . . , N − 1) is

νk = inf
KL

k
:causal

‖Fl(PLk ,KL
k )‖.(27)

Although Corollary 4.1 holds even for the general four-block H∞ problem, it is
difficult to calculate the optimal cost for such problems analytically. For this reason, in
many practical situations, we consider the suboptimal H∞ problem to find controllers
that make Fl(P,K) < γ for a given γ. Thus we will rewrite Corollary 4.1 to meet
such situations.
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Corollary 4.2. There exists a stabilizing controller K such that

‖Fl(P,K)‖ < γ, K : causal,(28)

if and only if there exists KL
k (k = 0, 1, . . . , N − 1) such that

‖Fl(PLk ,KL
k )‖ < γ, KL

k : causal.(29)

Remark 4.1. Note that this corollary holds without Assumption 3.1. This is
because Assumption 3.1 corresponds to the conditions of invariant zeros on the unit
circle in the standard H∞ problem, and therefore it can be avoided in the case of a
suboptimal problem as (28) by using a similar method to those used in [17, 10, 12].

Since the H∞ problem (27) or (29) is of the LTI system PLk and no causality
constraint is imposed on it, it can be solved by existing algorithms for the LTI H∞
problem. Therefore, the optimal cost ν (or its upper bound γ) for the original problem
can be easily calculated. As mentioned in the introduction, this point is the primary
advantage of our result and the difference from the results in [5] and [6], though our
method gives only the optimal cost for the LPTV H∞ problem and therefore does
not give any explicit knowledge of the structure of optimal controllers.

The following example is meant to illustrate the usefulness of our main result.
Example. Consider the 2-periodic system P whose state space realization is given

by

P =


 A(·) B1(·) B2(·)
C1(·) D11(·) D12(·)
C2(·) D21(·) 0


 ,(30)

where 
 A(2l +m) B1(2l +m) B2(2l +m)
C1(2l +m) D11(2l +m) D12(2l +m)
C2(2l +m) D21(2l +m) 0




(31)

=


 2(m+ 1) 1 1

1 1 m+ 1
−m− 1 m+ 2 0


 ∀ l, m = 0, 1.

In view of (25), let us define

Pk =

[
Sk(P11) Sk(P12)
Sk(P21) Sk(P22)

]
, k = 0, 1.(32)

Then we have P0 = P , and P1 is given by

P1 =


 A′(·) B′

1(·) B′
2(·)

C ′
1(·) D′

11(·) D′
12(·)

C ′
2(·) D′

21(·) 0


 ,(33)

where 
 A′(2l +m) B′

1(2l +m) B′
2(2l +m)

C ′
1(2l +m) D′

11(2l +m) D′
12(2l +m)

C ′
2(2l +m) D′

21(2l +m) 0


(34)

=


 A(2l +m+ 1) B1(2l +m+ 1) B2(2l +m+ 1)
C1(2l +m+ 1) D11(2l +m+ 1) D12(2l +m+ 1)
C2(2l +m+ 1) D21(2l +m+ 1) 0


 .
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Compare this with P0 = P given in (31) to see the role of the input/output-shift
operator.

Now, computing the transformations given in (25) (namely, applying the lifting
technique), we obtain the state space realizations of PL0 and PL1 as

PL0 =




8 4 1 4 1
1 1 0 1 0
2 1 1 1 2
−1 2 0 0 0
−4 −2 3 −2 0


 , PL1 =




8 2 1 2 1
1 1 0 2 0
4 1 1 1 1
−2 3 0 0 0
−4 −1 2 −1 0


 .(35)

Since the optimal costs for the H∞ problems of PL0 and PL1 , which are easily calcu-
lated, are 6.83 and 14.68, respectively, γmin for the H∞ problem of P is 14.68.

5. Application to LTI systems: The performance limitation with non-
causal controllers. In the preceding section, we showed Theorem 4.1 (or, its explicit
forms Corollaries 4.1 and 4.2), which gives the optimal cost for the discrete LPTV
H∞ problem in terms of the optimal costs for discrete LTI H∞ problems. Although
these results are primarily for the discrete LPTV H∞ problem, they can be used to
show a property in regard to the optimal cost for the discrete H∞ problem of LTI
systems when we use noncausal controllers. In this section, we show such a property
and give an example of how we can apply it to practical situations.

If P is an LTI system, we can take any positive integer N and regard P as
N -periodic. Then PLk defined by (25) satisfies

PL0 = PL1 = · · · = PLN−1 = PL,(36)

where PL is

PL =

[
LN (P11) LN (P12)
LN (P21) LN (P22)

]
.(37)

Hence, by applying Corollary 4.1 to P , we obtain

ν = inf
K:causal

‖Fl(P,K)‖ = inf
KL:causal

‖Fl(PL,KL)‖.(38)

The claim of (38) is summarized as follows.
Corollary 5.1. The optimal cost for the LTI H∞ problem of P and that for

the LTI H∞ problem of PL, the lifted system of P , are identical. In other words, the
optimal cost cannot be improved even if we use any possibly noncausal N -periodic
controller K such that the lifted system KL of K is causal.

It is shown in [4, 9, 20] that we cannot improve the optimal cost even if we
consider causal time-varying controllers in the case of the LTI H∞ problem. Thus it
is a matter of course that causal N -periodic controllers do not improve the optimal
cost. However, Corollary 5.1 claims more than that: even if we use such controllers
that belong to the class of noncausal N -periodic systems whose lifted systems are
causal, the optimal cost cannot be improved. In spite of the facts that N can be
taken arbitrarily large and that the above class gets larger as N gets larger (by an
integer multiple), this does not lead to the conclusion that no noncausal controller
improves the optimal cost, however. Indeed, in most cases, the optimal cost improves
with such noncausal controllers that can use information of one step in the future, but
such controllers never belong to the above class since every controller in that class is
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incapable of using future information at t = Nk− 1. Although there is no qualitative
explanation about the difference between these two types of noncausal controllers yet,
we can show an interesting property on the H∞ problem of a certain system by using
Corollary 5.1.

Consider a discrete LTI system P , and let us consider the following two situations:
(a) The measurement output is periodically delayed by one step. That is, for

some N and for some fixed q (0 ≤ q ≤ N − 1), the measurement output y at
t = Np+ q (p = 0, 1, . . .) is not available by the controller until the next step
t = Np+ q + 1 because of, for example, a periodic delay in the circuit of the
sampler. More specifically, we consider a sampler whose input sequence is
the sequence of the (ideal) measurement output y0, y1, . . . , and whose output
sequence is

y0, . . . , yq−1, φ,

[
yq
yq+1

]
, yq+2, . . . , yN+q−1, φ,

[
yN+q

yN+q+1

]
, . . . ,(39)

where φ denotes the empty set.
(b) The measurement output is always delayed by one step. In other words,

we consider a sampler whose input sequence is the sequence of the (ideal)
measurement output y0, y1, . . . , and whose output sequence is

φ, y0, y1, . . . .(40)

In these two situations, we are to solve the H∞ problems and compare the optimal
costs.

Intuitively, the optimal cost νa in (a) seems smaller than the optimal cost νb in
(b) because, at any time instant, more information is available by controllers in (a)
than in (b). However, in reality, the optimal costs in both situations are identical. It
can be shown by applying Corollary 5.1, as we do in the following.

First, we consider the situation (b). Since P , together with the sampler (40), is
modeled as

P ′ =
[
P ′

11 P ′
12

P ′
21 P ′

22

]
=

[
P11 P12

Λ1P21 Λ1P22

]
,(41)

our problem here can be converted into the LTI H∞ problem to find K ′ = KΛ−1
1

for P ′. Therefore, in the lifted space, we are to consider the problem to find K ′L =
LN (K ′) = LN (KΛ−1

1 ) for P ′L = LN (P ′) such that K̂ ′L(0) satisfies the causality

constraint; i.e., K̂ ′L(0) has the block lower triangular form

K̂ ′L(0) =




k′00 0 0k′10 k′11
...

...
. . .

. . .

k′N−2,0 k′N−2,1 · · · k′N−2,N−2 0

k′N−1,0 k′N−1,1 · · · k′N−1,N−2 k′N−1,N−1


 .(42)

Namely, we have

νb = inf
K′:causal

‖Fl(P ′,K ′)‖ = inf
K′L:causal and

satisfying (42)

‖Fl(P ′L,K ′L)‖.(43)
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From Corollary 5.1,

νb = inf
K′:causal

‖Fl(P ′,K ′)‖ = inf
K′L:causal

‖Fl(P ′L,K ′L)‖,(44)

and hence by (43) we have

inf
K′L:causal and

satisfying (42)

‖Fl(P ′L,K ′L)‖ = inf
K′L:causal

‖Fl(P ′L,K ′L)‖.(45)

Next we consider the situation (a). If, as in (b), we treat P together with the
sampler (39) as a plant, it becomes an N -periodic system. Therefore, we can assume
without loss of generality that q = N − 1 from Lemma B.2, and, as mentioned in the
preceding section, we can restrict the class of the controllers to that of N -periodic
systems. On the other hand, if we treat the delay of the measurement output as
a constraint on the controller, we are to consider K such that the elements Kij

(i, j = 0, 1, 2, . . .) of its matrix representation satisfy

Kij = 0, i < j or i = j = Np+ q.(46)

As a consequence, the problem that we should consider here is to find KL = LN (K)

for PL = LN (P ) such that the throughput term K̂L(0) of the transfer function of KL

has the form

K̂L(0) =




k00 0 0k10 k11

...
...

. . .

kN−2,0 kN−2,1 · · · kN−2,N−2 0
kN−1,0 kN−1,1 · · · kN−1,N−2 0


 .(47)

By using P ′ given by (41) and P ′L = LN (P ′), this problem can be further converted
into the problem to find K ′L = LN (KΛ−1

1 ) for P ′L such that the throughput term

K̂ ′L(0) of the transfer function of K ′L has the form

K̂ ′L(0) =




k′00 k′01 0k′10 k′11 k′12
...

...
. . .

k′N−2,0 k′N−2,1 · · · k′N−2,N−2

k′N−1,0 k′N−1,1 · · · k′N−1,N−1


 .(48)

Namely,

νa = inf
K′L:causal and

satisfying (48)

‖Fl(P ′L,K ′L)‖.(49)

Since, as a matter of course,

{K ′L| causal and satisfying (42)}
⊂ {K ′L| causal and satisfying (48)}(50)

⊂ {K ′L| causal},
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it follows from (45) and (49) that νa = νb. This implies that the optimal costs in both
situations (a) and (b) are identical.

This example shows that when we consider the H∞ problem of LTI systems, there
is no advantage in trying to use the available current output if there exists even a
single sequence of the measurement output yp, yN+p, . . . that is delayed by one step.
What is worse, trying to do so rather becomes a disadvantage compared with the
case that all the measurement output is delayed by one step, since in such a case we
can restrict the class of controllers to that of LTI controllers and do not need to take
time-varying controllers into account.

6. Conclusion. In this paper, we proposed a new method to obtain the optimal
cost for the discrete LPTV H∞ problem. Our method reduces the original LPTV H∞
problem to the ordinary LTI H∞ problems in the sense that no causality constraint
is imposed. This point is the primary advantage of our method over other existing
methods of solving the same problem. Another advantage is that by applying our
method to LTI systems, not to LPTV systems, it can be shown that we cannot
improve the H∞ performance of LTI systems even if we use a class of noncausal
controllers. We demonstrated by an example that we can apply this result in order
to discuss the performance limitation of practical problems.

Appendix A. Derivation of (19). In [14], it is shown that a doubly coprime
factorization of an N -periodic operator F can be obtained by a doubly coprime fac-
torization of the LTI system LN (F ) and that each factor which appears in the doubly
coprime factorization of LN (F ) satisfies the causality constraint. By applying this
result to P22 in our problem, we obtain

P22 = NrD
−1
r = D−1

l Nl,(A1)

[
Xl −Yl
−Nl Dl

] [
Dr Yr
Nr Xr

]
= I,(A2)

where Nr, Dr, Xr, Yr, Nl, Dl, Xl, and Yl all belong to C ∩ PN . From (A2), all
controllers that internally stabilize the closed-loop system are parametrized by

K = (Yr −DrQ)(Xr −NrQ)−1

(A3)
= (Xl −QNl)−1(Yl −QDl),

where Q ∈ C. Substituting (A3) into (17), we obtain

Fl(P,K) = R− SQT,(A4)

where

R = P11 + P12DrYlP21 ∈ C ∩ PN ,(A5)

S = P12Dr ∈ C ∩ PN ,(A6)

T = DlP21 ∈ C ∩ PN .(A7)

Therefore, our problem is equivalent to [4, 19]

ν = inf
Q∈C
‖R− SQT‖, R, S, T ∈ C ∩ PN ,(A8)
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where Q ∈ C is a free parameter in the parametrization of stabilizing controllers.
Furthermore, in [1, 19] it is shown that if R, S, and T are N -periodic, the infimum
in the right-hand side of (A8) remains the same if Q is restricted to C ∩PN . Namely,

ν = inf
Q∈C
‖R− SQT‖

(A9)
= inf
Q∈C∩PN

‖R− SQT‖.

Thus, by applying the lifting technique to (A9), we obtain

ν = inf
QL∈WN

‖RL − SLQLTL‖,(A10)

RL = LN (R) ∈ WN , S
L = LN (S) ∈ WN , T

L = LN (T ) ∈ WN(A11)

or, equivalently,

ν = inf
Q̂L(λ)∈ŴN

‖R̂L(λ)− ŜL(λ)Q̂L(λ)T̂L(λ)‖∞,(A12)

R̂L(λ), ŜL(λ), T̂L(λ) ∈ ŴN ,(A13)

where R̂L(λ), ŜL(λ), and T̂L(λ) denote the transfer functions of RL, SL, and TL,
respectively.

Under Assumption 3.1, there exist inner-outer factorizations of ŜL(λ) and T̂L(λ)

in (A12). Therefore, ŜL(λ) and T̂L(λ) can be factorized as follows:

ŜL(λ) = ŜLi (λ)Ŝ
L
o (λ),(A14)

T̂L(λ) = T̂Lo (λ)T̂Li (λ),(A15)

ŜLi (λ) ∈ H∞, ŜLi (̃λ)ŜLi (λ) = I,(A16)

T̂Li (λ) ∈ H∞, T̂Li (λ)T̂Li (̃λ) = I,(A17)

ŜLo (λ), Ŝ
L−1

o (λ), T̂Lo (λ), T̂L
−1

o (λ) ∈ H∞.(A18)

In [2], it is shown that ŜLo (λ), T̂
L
o (λ) can always be chosen so as to belong to

ŴN . In this case, the mapping from Q̂L(λ) to ŜLo (λ)Q̂
L(λ)T̂Lo (λ) is surjective on

ŴN . Therefore, (A12) becomes

ν = inf
Q̂L(λ)∈ŴN

‖R̂L(λ)− ŜLi (λ)Q̂L(λ)T̂Li (λ)‖∞.(A19)

By multiplying [
ŜLi (̃λ)

I − ŜLi (λ)ŜLi (̃λ)

]
(A20)
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from the left and [
T̂Li (̃λ) I − T̂Li (̃λ)T̂Li (λ)

]
(A21)

from the right of (A19), we obtain

‖R̂L(λ)− ŜLi (λ)Q̂L(λ)T̂Li (λ)‖∞ =

∥∥∥∥∥
[
X̂L(λ)− Q̂L(λ) Ŷ L(λ)

ẐL(λ) ÛL(λ)

]∥∥∥∥∥
∞
,(A22)

where X̂L(λ), Ŷ L(λ), ẐL(λ), and ÛL(λ) are defined by[
X̂L(λ) Ŷ L(λ)

ẐL(λ) ÛL(λ)

]
(A23)

=

[
ŜLi (̃λ)

I − ŜLi ŜLi (̃λ)

]
RL(λ)

[
T̂Li (̃λ) I − T̂Li (̃λ)T̂Li (λ)

]
.

Thus our problem (A12) can be rewritten as

ν = inf
Q̂L(λ)∈ŴN

∥∥∥∥∥
[
X̂L(λ)− Q̂L(λ) Ŷ L(λ)

ẐL(λ) ÛL(λ)

]∥∥∥∥∥
∞

(A24)

or

ν = inf
QL∈WN

∥∥∥∥
[
XL −QL Y L

ZL UL

]∥∥∥∥ .(A25)

Let

X = L−1
N (XL), Y = L−1

N (Y L),
(A26)

Z = L−1
N (ZL), U = L−1

N (UL).

Then X,Y, Z, U ∈ PN , and (19) is obtained.

Appendix B. Proof of Theorem 4.1. To prove Theorem 4.1, we use the
following lemmas.

Lemma B.1 (see [4]). Suppose that X, Y , Z, and U belong to B and that µ is
given by

µ = inf
Q∈C

∥∥∥∥
[
X −Q Y
Z U

]∥∥∥∥ .(B1)

Then

µ = sup
k≥−1

‖Γk‖,(B2)

where

Γk =

[
Πk 0
0 I

] [
X Y
Z U

] [
I −Πk 0

0 I

]
.(B3)

Remark B.1. The reader may think that this lemma cannot be applied directly
to (19), because Q in (19) is taken over C ∩ PN , while Q in (B1) is taken over C.
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However, as mentioned before, the right-hand side of (B1) remains the same even if
Q is restricted to C ∩PN provided that X, Y , Z, and U belong to PN . Therefore, the
above lemma implies that ν in (19) is given by the right-hand side of (B2):

ν = sup
k≥−1

‖Γk‖.(B4)

Lemma B.2. Assume that X, Y , Z, and U belong to PN . Then, for any i, j =
0, 1, . . . , N − 1,

inf
Q∈C∩PN

∥∥∥∥
[
Si(X)−Q Si(Y )
Si(Z) Si(U)

]∥∥∥∥ = inf
Q∈C∩PN

∥∥∥∥
[
Sj(X)−Q Sj(Y )
Sj(Z) Sj(U)

]∥∥∥∥ .(B5)

Proof of Lemma B.2. Without loss of generality, we assume that i > j. Since the
mapping Sk(·) is bijective on C ∩ PN ,

inf
Q∈C∩PN

∥∥∥∥
[
Sk(X)−Q Sk(Y )
Sk(Z) Sk(U)

]∥∥∥∥
= inf
Q∈C∩PN

∥∥∥∥
[
Sk(X)− Sk(Q) Sk(Y )

Sk(Z) Sk(U)

]∥∥∥∥(B6)

= inf
Q∈C∩PN

∥∥∥∥
[
Sk(X −Q) Sk(Y )
Sk(Z) Sk(U)

]∥∥∥∥ .
Therefore, it suffices to show that

‖Si(F )‖ = ‖Sj(F )‖ ∀ F ∈ PN ,(B7)

for all i, j = 0, 1, . . . , N − 1. From the definition of Sk(·),

‖Si(F )‖ = ‖Si−j(Sj(F ))‖
= ‖Λ−i+jSj(F )Λi−j‖

(B8) ≤ ‖Sj(F )Λi−j‖
≤ ‖Sj(F )‖.

Since (B8) is also true for Sj(F ) and SN+i(F ),

‖Sj(F )‖ ≤ ‖SN+i(F )‖ = ‖Si(F )‖.(B9)

This completes the proof.
Now we are in a position to prove Theorem 4.1.
Proof of Theorem 4.1. For simplicity, we consider only the 2-periodic case (N =

2); that is, we are to prove that

ν = max(ν0, ν1),(B10)

where

ν0 = inf
QL

0 ∈C∩T

∥∥∥∥
[
XL

0 −QL0 Y L0
ZL0 UL0

]∥∥∥∥
(B11)

= inf
QL∈C∩T

∥∥∥∥
[
XL −QL Y L

ZL UL

]∥∥∥∥ ,



376 S. TANAKA, T. HAGIWARA, AND M. ARAKI

ν1 = inf
QL

1 ∈C∩T

∥∥∥∥
[
XL

1 −QL1 Y L1
ZL1 UL1

]∥∥∥∥ .(B12)

It would be evident that the following arguments can be extended to the general case.

Applying Lemma B.1 to (B11), ν0 is given by

ν0 = sup
k≥−1

‖ΓLk ‖,(B13)

where

ΓLk =

[
Πk 0
0 I

] [
XL Y L

ZL UL

] [
I −Πk 0

0 I

]
.(B14)

From (A26) and (B3), ‖ΓLk ‖ can be expressed in terms of Γk as

‖ΓLk ‖ = ‖Γ2k+1‖.(B15)

Thus, from (B13) and (B15),

ν0 = sup
k=−1,1,...

‖Γk‖.(B16)

Similarly,

ν1 = sup
k=−1,1,...

‖Γ′
k‖,(B17)

where

Γ′
k =

[
Πk 0
0 I

] [
S1(X) S1(Y )
S1(Z) S1(U)

] [
I −Πk 0

0 I

]
.(B18)

Let the matrix representation of

[
X Y
Z U

]
(B19)

be 


X00 X1,−1 X0,−2 X1,−3 · · · Y00 Y1,−1 Y0,−2 Y1,−3 · · ·
X01 X10 X0,−1 X1,−2 · · · Y01 Y10 Y0,−1 Y1,−2 · · ·
X02 X11 X00 X1,−1 · · · Y02 Y11 Y00 Y1,−1 · · ·
X03 X12 X01 X10 · · · Y03 Y12 Y01 Y10 · · ·
...

...
...

...
...

...
...

...
Z00 Z1,−1 Z0,−2 Z1,−3 · · · U00 U1,−1 U0,−2 U1,−3 · · ·
Z01 Z10 Z0,−1 Z1,−2 · · · U01 U10 U0,−1 U1,−2 · · ·
Z02 Z11 Z00 Z1,−1 · · · U02 U11 U00 U1,−1 · · ·
Z03 Z12 Z01 Z10 · · · U03 U12 U01 U10 · · ·
...

...
...

...
...

...
...

...




.(B20)
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Then the matrix representation of Γk (k = 1, 3, . . .) is




X0,−k−1 X1,−k−2 · · · Y00 · · · Y0,−k−1 · · ·
0

...
...

...
...

X0,−1 X1,−2 · · · Y0k · · · Y0,−1 · · ·
0 0 0

Z0,−k−1 Z1,−k−2 · · · U00 · · · U0,−k−1 · · ·
...

...
...

...
0 Z0,−1 Z1,−2 · · · U0k · · · U0,−1 · · ·

...
...

...
...




.(B21)

Also, the matrix representation of Γ′
k (k = 1, 3, . . .) is




X1,−k−1 X0,−k−2 · · · Y10 · · · Y1,−k−1 · · ·
0

...
...

...
...

X1,−1 X0,−2 · · · Y1k · · · Y1,−1 · · ·
0 0 0

Z1,−k−1 Z0,−k−2 · · · U10 · · · U1,−k−1 · · ·
...

...
...

...
0 Z1,−1 Z0,−2 · · · U1k · · · U1,−1 · · ·

...
...

...
...




.(B22)

Since the matrix representation of Γk−1 (k = 1, 3, . . .) is




X1,−k X0,−k−1 · · · Y00 · · · Y1,−k · · ·
0

...
...

...
...

X1,−1 X0,−2 · · · Y0,k−1 · · · Y1,−1 · · ·
0 0 0

Z1,−k Z0,−k−1 · · · U00 · · · U1,−k · · ·
...

...
...

...
0 Z1,−1 Z0,−2 · · · U0,k−1 · · · U1,−1 · · ·

...
...

...
...




,(B23)

Γk−1 can be expressed by

Γk−1 =

[
Λ−1 0
0 Λ−1

]
Γ′
k

[
Λ1 0
0 Λ1

]
.(B24)

Therefore,

‖Γ′
k‖ ≥ ‖Γk−1‖ ∀ k = 1, 3, . . . ,(B25)

and hence
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ν = max

(
sup

k=−1,1,...
‖Γk‖, sup

k=0,2,...
‖Γk‖

)

≤ max

(
sup

k=−1,1,...
‖Γk‖, sup

k=−1,1,...
‖Γ′

k‖
)

(B26)

= max(ν0, ν1)

by (B4), (B16), and (B17). Furthermore, from Lemmas B.1 and B.2 and (B18),

ν = inf
Q∈C∩P2

∥∥∥∥
[
X −Q Y
Z U

]∥∥∥∥
= inf
Q∈C∩P2

∥∥∥∥
[
S1(X)−Q S1(Y )
S1(Z) S1(U)

]∥∥∥∥
(B27)

= sup
k≥−1

‖Γ′
k‖

≥ sup
k=−1,1,...

‖Γ′
k‖ = ν1.

Since ν ≥ ν0 by (B4) and (B16), this, together with (B26), implies that

ν = max(ν0, ν1).(B28)

REFERENCES

[1] H. Chapellat, M. Dahleh, and S. Bhattacharyya, Structure and optimality of multivariable
periodic controllers, IEEE Trans. Automat. Control, 38 (1990), pp. 1300–1303.

[2] T. Chen and L. Qiu, H∞ design of general multirate sampled-data control systems, Automat-
ica J. IFAC, 30 (1994), pp. 1139–1152.

[3] V. Dragan, A. Halanay, and V. Ionescu, Infinite horizon disturbance attenuation for
discrete-time systems. A Popov-Yakubovich approach, Integral Equations Operator Theory,
19 (1994), pp. 153–215.

[4] A. Feintuch and B. A. Francis, Uniformly optimal control of linear feedback systems, Auto-
matica J. IFAC, 21 (1985), pp. 563–574.

[5] A. Feintuch, P. Khargonekar, and A. Tannenbaum, On the sensitivity minimization prob-
lem for linear time-varying periodic systems, SIAM J. Control Optim., 24 (1986), pp.
1076–1085.

[6] T. T. Georgiou and P. P. Khargonekar, A constructive algorithm for sensitivity optimiza-
tion of periodic systems, SIAM J. Control Optim., 25 (1987), pp. 334–340.

[7] H. Katayama and A. Ichikawa, H∞-control with output feedback for time-varying discrete
systems, Internat. J. Control, 63 (1996), pp. 1167–1178.

[8] P. P. Khargonekar, K. Poolla, and A. Tannenbaum, Robust control of linear time-
invariant plants using periodic compensation, IEEE Trans. Automat. Control, 30 (1985),
pp. 1088–1096.

[9] P. P. Khargonekar and K. Poolla, Uniformly optimal control of linear time-invariant
plants: Nonlinear time-varying controllers, Systems Control Lett., 6 (1986), pp. 303–308.

[10] P. P. Khargonekar, I. R. Petersen, and K. Zhou, Robust stabilization of uncertain linear
systems: Quadratic stabilizability and H∞ control theory, IEEE Trans. Automat. Control,
35 (1990), pp. 356–361.

[11] R. A. Meyer and C. S. Burrus, A unified analysis of multirate and periodically time-varying
digital filters, IEEE Trans. Circuits Systems I Fund. Theory Appl., 22 (1975), pp. 162–168.

[12] T. Mita, H∞ Control, Shoko-do, Tokyo, 1994 (in Japanese).
[13] L. Qiu and T. Chen, Multirate sampled-data systems: All H∞ suboptimal controllers and the

minimum entropy controller, IEEE Trans. Automat. Control, 44 (1999), pp. 537–550.
[14] R. Ravi, P. P. Khargonekar, K. D. Minto, and C. N. Nett, Controller parametrization for

time-varying multirate plants, IEEE Trans. Automat. Control, 35 (1990), pp. 1259–1262.
[15] M. F. S̊agfors, H. T. Toivonen, and B. Lennartson, State-space solution to the periodic

multirate H∞ problem: A lifting approach, in Proceedings of the 36th IEEE Conference
on Decision and Control, San Diego, CA, 1997, pp. 2061–2066.



OPTIMAL COST FOR THE DISCRETE H∞ PROBLEM 379

[16] M. F. S̊agfors, H. T. Toivonen, and B. Lennartson, H∞ control of multirate sampled-data
systems: A state-space approach, Automatica J. IFAC, 34 (1998), pp. 415–428.

[17] M. Sampei, T. Mita, and M. Nakamichi, An algebraic approach to H∞ output feedback control
problems, Systems Control Lett., 14 (1990), pp. 13–24.

[18] J. M. A. Scherpen and M. H. G. Verhaegen, H∞ output feedback control for linear discrete
time-varying systems via the bounded real lemma, Internat. J. Control, 65 (1996), pp.
963–993.

[19] P. G. Voulgaris, M. A. Dahleh, and L. S. Valavani, H∞ and H2 optimal controllers for
periodic and multirate systems, Automatica J. IFAC, 30 (1994), pp. 251–263.

[20] C. Zhang, J. Zhang, and K. Fukata, Analysis of H2 and H∞ performance of discrete peri-
odically time-varying controllers, Automatica J. IFAC, 33 (1997), pp. 619–634.



SECOND ORDER SUFFICIENT CONDITIONS FOR OPTIMAL
CONTROL PROBLEMS WITH FREE FINAL TIME:

THE RICCATI APPROACH∗
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Abstract. Second order sufficient conditions (SSC) for control problems with control-state
constraints and free final time are presented. Instead of deriving such SSC from first principles, we
transform the control problem with free final time into an augmented control problem with fixed
final time for which well-known SSC exist. SSC are then expressed as a condition on the positive
definiteness of the second variation. A convenient numerical tool for verifying this condition is based
on the Riccati approach, where one has to find a bounded solution of an associated Riccati equation
satisfying specific boundary conditions. The augmented Riccati equations for the augmented control
problem are derived, and their modifications on the boundary of the control-state constraint are
discussed. Two numerical examples, (1) the classical Earth-Mars orbit transfer in minimal time and
(2) the Rayleigh problem in electrical engineering, demonstrate that the Riccati equation approach
provides a viable numerical test of SSC.

Key words. optimal control, control-state constraints, free final time, second order sufficient
conditions, Riccati equation, Earth-Mars orbit transfer, Rayleigh problem

AMS subject classifications. 49K15, 49K40, 65L10, 70M20, 94C99
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1. Introduction. In the last three decades, one can find an extensive literature
on second order sufficient conditions (SSC) for optimal control problems with control
and state constraints; cf. [2, 4, 6, 7, 8, 9, 10, 20, 25, 26, 31, 32, 35] and further
literature cited in these papers. SSC have shown to be of fundamental importance
for stability and sensitivity analysis of parametric optimal control problems; cf., e.g.,
[2, 5, 9, 10, 18, 19, 21, 23, 24, 33, 34].

SSC are usually expressed in terms of the positiveness of a quadratic form on a
certain critical cone which is obtained through linearization of equality and inequality
constraints. In general, such conditions are far too abstract to lend themselves to
numerical verification. A practical test for SSC can be devised on the basis of a matrix-
valued Riccati equation [23, 25, 37]. The main ideas underlying this approach are
already exposed in the book of Bryson and Ho [1] for unconstrained control problems.
This test requires the construction of a bounded solution to a Riccati equation which
has to satisfy additional boundary conditions. An inherent difficulty arises from the
fact that the coefficients of the Riccati equation depend on the accurate solution for
state, control, and adjoint variables.

Most of the cited papers deal with control problems on a fixed time interval.
Extensions of the results to problems with free final time or with nonfixed time in-
tervals have been discussed in [1, 4, 12, 26, 31, 32]. The method in Bryson and Ho
[1, Chapter 6] uses heuristic arguments and also suffers from the drawback that, e.g.,
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time-optimal control problems are not tractable via this approach. More precisely,
the function α defined in (6.6.13) of [1] is identically zero, and hence the quantity in
(6.6.16) is not defined. A rigorous proof of the SSC in [1] may be found in Chamber-
land and Zeidan [4], where extensions of the results to control problems with mixed
control-state constraints are also given. Again, however, the time-optimal case is not
covered by these conditions. A remedy for this deficiency has been proposed in Hull
[12] for unconstrained control problems. These conditions have been tested in a nu-
merically unchallenging situation. We emphasize that a general approach for SSC on
nonfixed time intervals has been developed by Osmolovskii [26, 31, 32], but the author
does not offer any practical device to test his conditions numerically.

The aim of the present paper is to develop verifiable SCC for control problems
with free final time and mixed control-state constraints. Our approach is rather
straightforward in the sense that it uses the well-known idea (cf., e.g., [11]) of reducing
the free final time case to the fixed final time case by treating the free final time as
an augmented state variable. It is not surprising that this procedure will lead to
an augmented set of Riccati equations and boundary conditions. For unconstrained
control problems, this derivation has already been described in [22].

The organization of the paper is as follows. In section 2, we recall known SSC
for control problems with fixed final time [25, 37]. Section 3 describes the effect of
the time transformation on the augmented variables and functions of the problem.
A straightforward calculation shows that the Riccati equation for the augmented
problem splits into three separate parts. A salient feature of the approach is that it
suffices to solve a reduced form of the Riccati equation on the boundary of the control-
state constraint. The boundary conditions for the Riccati equation are worked out in
some cases of practical interest. In particular, we derive additional sign conditions of
the Riccati solution at the initial and final time which turn out to be crucial in the
numerical test.

In sections 4 and 5, we apply the numerical methodology to two practical and
challenging examples. A highly accurate numerical solution to both examples is ob-
tained via the multiple shooting method [3, 29]. The classical problem of a planar
Earth-Mars orbit transfer in minimal time [14, 16, 17] is treated in section 4. The aug-
mented Riccati equation test succeeds in confirming the optimality of the numerical
solution. Section 5 presents a modification of the Rayleigh problem, which has been
solved in [13, 23, 36] on fixed time intervals. Surprisingly, when no control constraints
are imposed, the free final time problem has several local minima and one local max-
imum. The augmented Riccati test is capable of proving optimality for both local
minima. Then the Rayleigh problem, subject to control constraints, is studied. We
derive the reduced Riccati equations on the boundary of the constraint and compute
a bounded solution which satisfies the extra boundary condition.

Let us mention two further applications and extensions. First, on the basis of
SSC, it is rather straightforward to perform a computational sensitivity analysis for
both examples. The numerical techniques in [21, 24, 23, 33, 34] indicate that sensi-
tivity differentials of optimal solutions with respect to parameters can be obtained
through the solution of an additional linear boundary value problem (BVP). The sec-
ond extension concerns optimal control problems with pure state constraints to which
the techniques of this paper apply as well.

2. Second order conditions for control problems with fixed final time.
We consider the following autonomous control problem (CP) subject to mixed
control-state constraints: for a given final time T > 0, determine a control
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function u ∈ L∞(0, T ;Rm) and a state function x ∈ W 1,∞(0, T ;Rn) that minimize
the
functional

F (x, u) = g(x(0), x(T )) +

∫ T

0

L(x(t), u(t))dt(2.1)

subject to

ẋ(t) = f(x(t), u(t)) for a.e. t ∈ [0, T ] ,(2.2)

ϕ(x(0), x(T )) = 0 ,(2.3)

C(x(t), u(t)) ≤ 0 for a.e. t ∈ [0, T ] .(2.4)

It is assumed that the functions g : R
n × R

n → R, L : R
n × R

m → R, f : R
n ×

R
m → R

n, ϕ : R
n × R

n → R
r, 0 ≤ r ≤ 2n, and C : R

n × R
m → R

k are C2-
functions on appropriate open sets. In this section, the final time T is supposed
to be specified. Further, we assume that there exists a feasible pair of functions
(x0, u0) ∈W 1,∞(0, T ;Rn)× L∞(0, T ;Rm) satisfying the constraints (2.2)–(2.4).

The first order necessary conditions for an optimal pair (x0, u0) are well known
in the literature [11, 28]. The unconstrained Hamiltonian function H0, respectively,
the augmented Hamiltonian H, are defined as

H0(x, u, λ) = L(x, u) + λ∗f(x, u) , H(x, u, λ, µ) = H0(x, u, λ) + µ∗C(x, u),(2.5)

where λ ∈ R
n denotes the adjoint variable and µ ∈ R

k is the multiplier associated
with the control-state constraint (2.4); the asterisk denotes the transpose. Henceforth,
partial derivatives will often be denoted by subscripts. In the following, we shall
make the hypothesis that first order conditions are satisfied in normal form with a
nonzero cost multiplier. Hence we assume that there exist Lagrange multipliers (for
convenience, we shall drop the lower subscript zero)

(λ, µ, ρ) ∈W 1,∞(0, T ;Rn)× L∞(0, T ;Rk)× R
r

such that the following first order necessary conditions hold for a.e. t ∈ [0, T ]:

λ̇(t) = −Hx(x0(t), u0(t), λ(t), µ(t))
∗ ,(2.6)

(−λ(0), λ(T )) = ∇(x(0),x(T )) (g + ρ∗ϕ)(x0(0), x0(T )) ,(2.7)

Hu(x0(t), u0(t), λ(t), µ(t)) = 0,(2.8)

µ(t) ≥ 0 and µ(t)∗C(x0(t), u0(t)) = 0,(2.9)

H0(x0(t), u0(t), λ(t)) ≡ const.(2.10)

We shall use the notation [t] to denote arguments of functions at the reference
solution x0(t), u0(t), λ(t), µ(t). To introduce regularity assumptions, we consider for
β ≥ 0 the set of β-active constraints

Iβ(t) := {i ∈ {1, . . . , k} | Ci[t] ≥ −β} ,
where Ci denotes the ith component of the vector C . In particular, for β = 0, we
obtain the set of active indices

I0(t) = {i ∈ {1, . . . , k} | Ci[t] = 0} .
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The following regularity assumption concerns the linear independence of gradients for
active constraints; cf. [18, 19, 21, 25, 37].

(A1) For some β > 0, the gradients Ci
u[t] are uniformly linear independent for all

i ∈ Iβ(t) a.e. on [0, T ].

Further, we consider a margin δ ≥ 0 and define the set of indices

Jδ(t) := {i ∈ {1, . . . , k} | µi(t) > δ}, jδ(t) := card(Jδ(t)),

where µi denotes the ith component of the multiplier µ. It is obvious that Jδ(t) ⊂
I0(t) holds for all δ ≥ 0 . In particular, the strict complementarity condition µi(t) > 0
is valid for all indices i ∈ Jδ(t) . It will be convenient to introduce the notation

Cδ[t] = (Ci[t]) i∈Jδ(t) .

We assume that the following modified strict Legendre–Clebsch condition [18, 19,
21, 25, 37] is satisfied, where | . | denotes the euclidean norm.

(A2) For some δ > 0, there exists c > 0 such that, for all t ∈ [0, T ], the estimate
v∗Huu[t]v ≥ c|v|2 holds for all v ∈ R

m satisfying Cδ
u[t]v = 0.

SSC can now be derived by studying the behavior of the second variation on
the variational system associated with (2.2)–(2.4). In what follows, we shall use the
abbreviation ϕ[ 0, T ] = ϕ(x0(0), x0(T )) and similar notation. The variational system
of equations (2.2)–(2.4) is the set of functions (y, v) ∈W 1,2(0, T ;Rn)× L2(0, T ;Rm)
satisfying

ẏ(t) = fx[t]y(t) + fu[t]v(t), a.e. t ∈ [0, T ] ,(2.11)

Dx(0)ϕ[0, T ]y(0) +Dx(T )ϕ[0, T ]y(T ) = 0 ,(2.12)

Ci
x[t]y(t) + Ci

u[t]v(t) = 0 ∀ i ∈ Jδ(t) , a.e. t ∈ [0, T ] .(2.13)

Moreover, we introduce the function

G(x(0), x(T )) := g(x(0), x(T )) + ρ∗ ϕ(x(0), x(T ))

and define the (2n, 2n)-matrix

Γ[0, T ] := D2
(x(0),x(T )) G(x0(0), x0(T )) =

(
G00[0, T ] G0T [0, T ]

GT0[0, T ] GTT [0, T ]

)
(2.14)

with obvious notation G00[0, T ] = D2
(x(0),x(0))G[0, T ], G0T [0, T ] = D2

((x(0),x(T ))G[0, T ],

etc. Then the so-called second variation is given by the quadratic form

J2(y, v) =
1

2

∫ T

0

(y(t)∗, v(t)∗)
(

Hxx[t] Hxu[t]
Hux[t] Huu[t]

)(
y(t)
v(t)

)
dt

+
1

2
(y(0)∗, y(T )∗)Γ[0, T ]

(
y(0)
y(T )

)
.(2.15)

The next theorem summarizes the SSC for a weak local minimum which are to
be found in [21, 25, 35, 37].

Theorem 2.1 (SSC for control problems with fixed final time). Let (x0, u0)
be admissible for problem (CP). Suppose that there exist multipliers (λ, µ, ρ) ∈
W 1,∞(0, T ;Rn)× L∞(0, T ;Rk)× R

r such that the following conditions hold:
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(1) the necessary conditions (2.6)–(2.10) are satisfied;
(2) assumptions (A1) and (A2) hold;
(3) there exist γ0 > 0 such that the quadratic form in (2.15) can be estimated

from below as

J2(y, v) ≥ γ0 ( ||y||21,2 + ||v||22 )(2.16)

for all variations (y, v) ∈W 1,2(0, T ;Rn)× L2(0, T ;Rm) satisfying the varia-
tional system (2.11)–(2.13);

(4) if u0 is continuous, then one may choose β = 0 and δ = 0 in assumptions
(A1) and (A2) and in condition (3).

Then for all constants 0 < γ < γ0 with γ0 as in (2.16) there exists α > 0 such that

F (x, u) ≥ F (x0, u0) + γ ( ||x− x0||21,2 + ||u− u0||22 )

holds for all admissible (x, u) with ||x − x0||1,∞ + ||u − u0||∞ ≤ α . In particular,
(x0, u0) provides a strict weak local minimum for problem (CP).

The SSC in the previous theorem usually are not suitable for a direct numerical
verification in practical control problems. Let us mention that, for a discretized version
of the control problem (CP), optimization techniques have been developed that allow
us to check the positiveness condition by computing the reduced Hessian; cf. [2].
In order to obtain verifiable sufficient conditions for the control problem in function
spaces, the SSC in Theorem 2.1 are strengthened in the following way.

Consider a symmetric matrix function Q ∈ W 1,∞(0, T ;Mn×n) . For every vari-
ation y(t) satisfying the linearized state equation (2.11), we have y(t)∗Q(t)(ẏ(t) −
fx[t]y(t) − fu[t]v(t)) ≡ 0. Adding the last identity to the second variation J2(y, v)
in (2.15) and performing a partial integration, we find that the definiteness condition
(2.16) in Theorem 2.1 holds if the following two conditions (a) and (b) are satisfied.

Condition (a). There exist a symmetric matrix Q ∈ W 1,∞(0, T ;Mn×n) and
γ > 0 such that

(y∗, v∗)
(

Q̇(t) +Q(t)fx[t] + fx[t]
∗Q(t) +Hxx[t] Hxu[t] +Q(t)fu[t]

Hux[t] + fu[t]
∗Q(t) Huu[t]

)(
y
v

)

≥ γ |(y, v)|2(2.17)

holds uniformly in t ∈ [0, T ] for all vectors (y, v) ∈ R
n × R

m with

Ci
x[t]y + Ci

u[t]v = 0 ∀ i ∈ Jδ(t) .(2.18)

Condition (b). The boundary condition

(ξ∗0 , ξ
∗
1)

(
G00[0, T ] +Q(0) G0T [0, T ]
GT0[0, T ] GTT [0, T ]−Q(T )

)(
ξ0
ξ1

)
> 0(2.19)

is valid for all (ξ0, ξ1) ∈ R
n × R

n \ {0} satisfying

Dx(0)ϕ[0, T ]ξ0 +Dx(T )ϕ[0, T ]ξ1 = 0 .(2.20)

A first consequence is that the definiteness condition (2.16) holds if the matrix
in (2.17) is positive definite on the whole space R

n × R
m and if conditions (2.19)
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and (2.20) are satisfied. First, this leads to the requirement that the strict Legendre–
Clebsch condition

Huu[t] ≥ c · Im ∀ t ∈ [0, T ] , c > 0,

is valid on the whole interval [0, T ]. Second, by evaluating the Schur complement
of this matrix and using the continuous dependence of ODEs on system data, the
estimate (2.16) follows from the following assumption: there exists a solution of the
Riccati equation

Q̇ = −Qfx[t]−fx[t]∗Q−Hxx[t]+(Hxu[t]+Qfu[t])Huu[t]
−1(Hxu[t]+Qfu[t])

∗,(2.21)

for a.e. t ∈ [0, T ] such that the matrix function Q(t) is bounded on [0, T ] and satisfies
the boundary conditions (2.19) and (2.20); cf. [25, Theorem 5.2].

However, in some applications, these conditions are too strong since the Riccati
equation (2.21) may fail to have a bounded solution; cf. the Rayleigh problem in [23].
A weaker condition can be obtained by introducing the following modified or reduced
Riccati equation. For δ ≥ 0, recall the definition of the vector

Cδ[t] = (Ci[t])i∈Jδ(t) , jδ(t) = ca rd(Jδ(t)) .

Then the matrix Cδ
u[t] of partial derivatives has dimension jδ(t)×m. For simplicity,

the time argument will be omitted in what follows. The pseudoinverse of the matrix
Cδ
u is given by the (m× jδ)-matrix

(Cδ
u)

+ := (Cδ
u)

∗ (Cδ
u(C

δ
u)

∗)−1,

which exists in view of the linear independence assumption (A1). Furthermore, let
(Cδ

u)
⊥ denote an (m × (m − jδ))-matrix whose column vectors form an orthogonal

basis of the kernel Ker(Cδ
u). Consider then the following matrices (cf. [9, 10, 25, 37]):

Dδ := −(Cδ
u)

+Cδ
x , P δ := (Cδ

u)
⊥, Aδ := fx + fuD

δ,(2.22)

Hδxx := Hxx +HxuD
δ + (Dδ)∗Hux + (Dδ)∗HuuD

δ,(2.23)

Hδxu := Hxu + (Dδ)∗Huu ,(2.24)

(Hδuu)(−1) := P δ( (P δ)∗ HuuP
δ )−1(P δ)∗ .(2.25)

Note that the (m × m)-matrix (Hδuu)(−1) in (2.25) is well defined by virtue of as-
sumption (A2). It follows that the estimate (2.16) holds if there exists a symmetric
matrix function Q(t) that solves the Riccati equation

Q̇ = −QAδ − (Aδ)∗Q−Hδxx + (Hδxu +Qfu)(Hδuu)(−1)(Hδxu +Qfu)
∗(2.26)

for a.e. t ∈ [0, T ] such that Q(t) is bounded on [0, T ] and satisfies the boundary
conditions (2.19), (2.20).

In general, it is rather tedious to elaborate this Riccati equation explicitly. To
facilitate the numerical treatment in practical applications, we discuss special cases in
more detail. On interior arcs with C[t] < 0, we have jδ(t) = 0, and thus the Riccati
equation (2.26) reduces to the one introduced in (2.21). Consider now a boundary
arc with jδ(t) = m, where we have as many control components as active constraints.
Due to assumption (A1), the pseudoinverse is given by (Cδ

u)
+ = (Cδ

u)
−1, and hence
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the matrix P δ = (Cδ
u)

⊥ = 0 in (2.22) vanishes. Then the matrices in (2.22)–(2.25)
become

Dδ = −(Cδ
u)

−1Cδ
x, Aδ = fx − fu(C

δ
u)

−1Cδ
x , (Hδuu)(−1) = 0 ,(2.27)

Hδxx = Hxx −Hxu(C
δ
u)

−1Cδ
x + [(Cδ

u)
−1Cδ

x]
∗[Huu(C

δ
u)

−1Cδ
x −Hux] ,(2.28)

and thus the Riccati equation (2.26) reduces to the linear ODE

Q̇ = −QAδ − (Aδ)∗Q−Hδxx .(2.29)

Another special case arises for pure control constraints where we have Cx ≡ 0 . Then
(2.28) and (2.29) simplify to the linear ODE

Q̇ = −Qfx − f∗
xQ−Hxx .(2.30)

The Rayleigh problem in [23] provided an illustrative application of this approach.
Let us also evaluate the boundary conditions (2.19) and (2.20) in a special case

of practical interest. Suppose that the boundary conditions are separated and that
some components for the initial and final state are fixed according to

xk(0) = ak for k ∈ K0 ⊂ {1, . . . , n}, xk(T ) = bk for k ∈ KT ⊂ {1, . . . , n},(2.31)

whereas the other components are free. Denote the complements of the index sets by
Kc

0 = {1, . . . , n}\K0, K
c
T = {1, . . . , n}\KT . Then it is easy to see that the boundary

conditions (2.19), (2.20) are satisfied if the following submatrices are positive definite:

[Q(0) ](i,j)∈Kc
0×Kc

0
> 0 , [−Q(T ) ](i,j)∈Kc

T
×Kc

T
> 0 .(2.32)

By virtue of the continuous dependence of solutions to ODEs on systems data,
one of these definiteness conditions can be relaxed. For example, it suffices to require
only positive semidefiniteness

[Q(0) ](i,j)∈Kc
0×Kc

0
≥ 0 .

This relaxation will be convenient for the numerical verification of SSC applied to the
examples in sections 4 and 5.

3. SSC for control problems with free final time. We consider again the
control problem (CP) in (2.1)–(2.4), but in this section the final time will not be
specified. It will always be assumed that the final time T > 0 is positive. The
first order necessary conditions for problem (CP) with free final time are well known
[11, 28] and extend those given in the last section.

Let H be the Hamiltonian defined in (2.5). Then it is assumed that there exist
multipliers in normal form,

(λ, µ, ρ) ∈W 1,∞(0, T ;Rn)× L∞(0, T ;Rk)× R
r,

which satisfy (2.6)–(2.10). In addition, the following transversality condition associ-
ated with the free final time T holds:

H[T ] = 0 , i.e., H[t] ≡ 0 ∀ t ∈ [0, T ] .(3.1)

These conditions can be obtained by transforming problem (CP) with free final time

T into a problem (C̃P) with fixed final time T̃ = 1. The transformation proceeds by
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augmenting the state dimension and by introducing the free final time as an additional
state variable. Indeed, it is this transformation that will allow us to develop SSC for
the free final time case on the basis of the SSC in Theorem 2.1 for fixed final time.
Now define the new time variable τ ∈ [0, 1] by

t = τ · T , 0 ≤ τ ≤ 1 .(3.2)

We shall use the same notation x(τ) := x(τ ·T ) and u(τ) := u(τ ·T ) for the state and
the control variable with respect to the new time variable τ . The augmented state

x̃ :=

(
x
xn+1

)
∈ R

n+1, xn+1 := T ,

satisfies the differential equations

dx/dτ = T · f(x(τ), u(τ)) , dxn+1/dτ ≡ 0 .(3.3)

As a result of this time transformation, we consider the following augmented control
problem (C̃P) on the fixed time interval [0, 1]: minimize the functional

F (x̃, u) = F (x, T, u) = g̃(x̃(0), x̃(1)) +

∫ 1

0

L̃(x̃(τ), u(τ)) dτ(3.4)

subject to

dx̃/dτ = f̃(x̃(τ), u(τ)), a.e. τ ∈ [0, 1] ,(3.5)

ϕ̃(x̃(0), x̃(1)) = 0 ,(3.6)

C̃(x̃(τ), u(τ)) ≤ 0, a.e. τ ∈ [0, 1] .(3.7)

The functions herein are given by

g̃(x̃(0), x̃(1)) := g(x(0), x(1)) , L̃(x̃, u) := T · L(x, u) ,(3.8)

f̃(x̃, u) :=

(
T · f(x, u)

0

)
,(3.9)

ϕ̃(x̃(0), x̃(1)) := ϕ(x(0), x(1)) , C̃(x̃, u) := C(x, u) .(3.10)

The transformed problem (C̃P) on the fixed time interval [0, 1] falls into the category
of control problems treated in the preceding section. Thus we are able to obtain
SSC for the transformed problem (C̃P) by evaluating the SSC in Theorem 2.1 for the
augmented state variable x̃ = (x, T ) .

First we relate the multipliers for problem (C̃P) to those of problem (CP) on the

time interval [0, T ]. The Hamiltonian for problem (C̃P) becomes

H̃(x̃, u, λ̃, µ̃)= L̃(x̃, u) + λ̃∗f̃(x̃, u) + µ̃∗C̃(x̃, u)(3.11)

= T · [ L(x, u) + λ∗f(x, u) ] + µ̃∗C(x, u),

where λ̃∗ = (λ∗, λn+1) ∈ R
n+1 denotes the augmented adjoint variable and µ̃ ∈ R

k

is the multiplier for the constraint (3.7). Introducing the scaled multiplier µ := µ̃/T ,
the Hamiltonian H̃ is related to the Hamiltonian H in (2.5) as follows:

H̃(x̃, u, λ̃, µ̃) = T · [L(x, u) + λ∗f(x, u) + µ∗C(x, u) ] = T ·H(x, u, λ, µ) .(3.12)
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According to (2.6)–(2.10), the multipliers for problem (C̃P),

(λ̃, µ̃, ρ) ∈W 1,∞(0, 1;Rn+1)× L∞(0, 1;Rk)× R
r , λ̃ =

(
λ
λn+1

)
,

satisfy the following necessary conditions for a.e. τ ∈ [0, 1]:

dλ/dτ = −H̃x[τ ]
∗ = −T ·Hx[τ ]

∗ , dλn+1/dτ = −H̃T [τ ] = −H[τ ] ,(3.13)

(−λ(0), λ(1)) = ∇(x(0),x(1))(g + ρ∗ϕ)(x0(0), x0(1)) ,(3.14)

λn+1(0) = λn+1(1) = 0 ,(3.15)

H̃u[τ ] = 0 ,(3.16)

µ̃(τ) ≥ 0 and µ̃(τ)∗C[τ ] = 0,(3.17)

H̃[τ ] ≡ const. ∀ τ ∈ [0, 1].(3.18)

Relations (3.13), (3.15), and (3.18) immediately yield

0 = H̃[1] = T ·H[1] ,(3.19)

which proves the transversality condition (3.1). To check the Legendre–Clebsch con-
dition in assumption (A2), one has to observe the scaling

H̃uu[τ ] = T ·Huu[τ ] .(3.20)

In order to apply the SSC in Theorem 2.1 to problem (C̃P), we have to evaluate
all terms in relations (2.11)–(2.32) for the tilde quantities defined in (3.8)–(3.10).
Recalling the scaled multiplier µ0 = µ̃0/T in (3.12), we obtain the transformed
quantities

f̃x̃ =

(
T · fx f
0 0

)
, f̃u =

(
T · fu
0

)
, C̃x̃ = (Cx, 0) , C̃u = Cu ,(3.21)

H̃x̃x̃ =

(
T ·Hxx (H0

x)
∗

H0
x 0

)
, H̃xu =

(
T ·Hxu

H0
u

)
, H̃uu = T ·Huu .(3.22)

Observe that the last relations make use of the identity H̃T = H0, which can be
seen from (3.11) with H0 denoting the unconstrained Hamiltonian. The preceding

considerations lead to the following SSC for problem (C̃P) with free final time.

Theorem 3.1 (SSC for control problems with free final time). Let (x0, T0, u0)

with T0 > 0 be admissible for problem (C̃P). Suppose that there exist multipliers
(λ, µ, ρ) ∈W 1,∞(0, 1;Rn)×L∞(0, 1;Rk)×R

r such that the following conditions hold:
(1) the necessary conditions (3.13)–(3.19) are satisfied;
(2) assumptions (A1) and (A2) hold with respect to the time interval [0, 1];
(3) there exists γ0 > 0 such that the quadratic form (2.15) expressed in terms of

the transformed functions (3.21), (3.22) can be estimated from below as

J2(ỹ, ṽ) ≥ γ0 ( ||ỹ||21,2 + ||ṽ||22 )
for all variations (ỹ, ṽ) ∈ W 1,2(0, 1;Rn+1) × L2(0, 1;Rm) which satisfy the
variational system (2.11)–(2.13) on the time interval [0, 1].
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(4) if u0 is continuous, then one may choose β = 0 and δ = 0 in assumptions
(A1) and (A2) and in condition (3).

Then for all constants 0 < γ < γ0 there exists α > 0 such that

F (x, T, u) ≥ F (x0, T0, u0) + γ ( ||x− x0||21,2 + |T − T0|2 + ||u− u0||22 )

holds for all admissible (x, T, u) with ||x − x0||1,∞ + |T − T0| + ||u − u0||∞ ≤ α. In

particular, (x0, T0, u0) provides a strict weak local minimum for problem (C̃P).
Note that this theorem immediately yields SSC for the original problem (CP) since

we have identified the pair of state and control functions (x(t), u(t)) = (x(τ ·T ), u(τ ·T ))
on the interval [0, T ] with the pair (x(τ), u(τ)) on the interval [0, 1]. It is apparent
that these conditions are not very handy in practical applications. Again, we may
resort to the Riccati equations and boundary conditions developed in (2.21)–(2.32).

Now we consider the augmented (n+ 1, n+ 1)-matrix

Q̃ =

(
Q R
R∗ qT

)
,(3.23)

where Q is a symmetric (n×n)-matrix, R is an n-vector, and qT is a scalar. Inserting
the transformed quantities (3.21) and (3.22) into the Riccati equation (2.21) for the
matrix Q̃, we obtain a Riccati equation for Q, a linear equation for R, and a direct
integration for qT on the interval [0, 1]; the argument τ is omitted for simplicity:

dQ/dτ = T · [−Qfx − f∗
xQ−Hxx + (Hxu +Qfu)(Huu)

−1(Hxu +Qfu)
∗ ] ,(3.24)

dR/dτ = −Qf − Tf∗
xR− (H0

x)
∗ + (Hxu +Qfu)(Huu)

−1(H0
u + Tf∗

uR)∗,(3.25)

dqT /dτ = −2R∗f +
1

T
· (H0

u + Tf∗
uR)(Huu)

−1(H0
u + Tf∗

uR)∗ .(3.26)

Clearly, the Riccati equation (3.24) evaluated on the interval [0, 1] agrees with the
Riccati equation (2.21) on the interval [0, T ]. Note again that H0

u ≡ 0 holds on totally
interior arcs with C[t] < 0. We wish to draw attention to the fact that (3.25) and
(3.26) are not identical to corresponding equations in Bryson and Ho [1, sections 6.6,
6.7] and Chamberland and Zeidan [4, formulae (28)–(30)], or Hull [12].

The modified Riccati equation (2.26) can be worked out on the time interval
[0, 1] in a similar way using the transformed quantities (3.21) and (3.22). However,
since this procedure is quite cumbersome, we restrict the discussion to the special
case m = jδ(t), which was considered already in (2.27)–(2.29). Upon computing the
matrices in (2.27) and (2.28),

Aδ = fx − fu(C
δ
u)

−1Cδ
x ,

Hδxx = Hxx −Hxu(C
δ
u)

−1Cδ
x + [(Cδ

u)
−1Cδ

x]
∗[Huu(C

δ
u)

−1Cδ
x −Hux] ,

for the tilde quantities (3.21), (3.22), we recognize that the Riccati equation (2.29)
splits into the following three equations:

dQ/dτ = T · [−QAδ − (Aδ)∗Q−Hδxx ],(3.27)

dR/dτ = −Qf − T · (Aδ)∗R− (H0
x)

∗ − [H0
u(C

δ
u)

−1Cδ
x]

∗,(3.28)

dqT /dτ = −2R∗f .(3.29)
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These formulas simplify considerably if Cx ≡ 0 holds, i.e., if the constraint is a pure
control constraint. Then we get Aδ = fx, and the last equations yield

dQ/dτ = T · [−Qfx − f∗
xQ−Hxx ] , dR/dτ = −Qf − T · f∗

xR− (H0
x)

∗ ,
dqT /dτ = −2R∗f .

(3.30)

These equations will provide a convenient test for SSC when applied to the Rayleigh
problem in section 5.

It is rather tedious to write out the boundary conditions (2.19) and (2.20) in the
general case. We shall only discuss the important case in which the initial and final
states are fixed; i.e., x(0) = x0 and x(1) = x1 hold with prescribed x0, x1 ∈ R

n . In
this situation, the positive definiteness condition (2.32) evaluated for the augmented
matrix Q̃ reduces to the following boundary conditions:

qT (0) > 0 and qT (1) < 0 .(3.31)

These conditions constitute extra conditions for the free final time case and will turn
out to be crucial for the numerical examples discussed in the next two sections. Note
that we may relax one of these conditions, e.g., the initial condition, to qT (0) ≥ 0 by
virtue of the continuous dependence of ODE solutions on initial data.

4. Planar Earth-Mars transfer with minimal flight time. Rocket flights
in an inverse square law field have been studied extensively in the literature; see, e.g.,
Kelley [14, 15], Kenneth and McGill [16], Lawden [17], Moyer and Pinkham [27], and
Oberle and Taubert [30]. We consider the classical Earth-Mars orbit transfer with
minimal transfer time. The state variables are r: distance of the vehicle to the sun; w:
radial component of the velocity; v: horizontal component of the velocity; m: mass
of the vehicle. The control variable is ψ: angle of the thrust vector with respect to
local horizon. The thrust is always at its maximal value βmax since the final time is
minimized. All variables are scaled according to the dynamic model treated in Oberle
and Taubert [30].

The optimal control problem is to minimize the final time

F (x, T, u) = T =

∫ T

0

1 dt(4.1)

subject to the equations of motion,

dr/dt = w,

dw/dt =
v2

r
− 1

r2
+ βmax

c

m
sinψ,

dv/dt = − w v

r
+ βmax

c

m
cosψ,

dm/dt = −βmax ,

(4.2)

and the boundary conditions for the initial and final state

r(0) = 1.0, w(0) = 0.0, v(0) = 1.0, m(0) = 1.0,

r(T ) = 1.525, w(T ) = 0.0, v(T ) = 1.0/
√

r(T ).
(4.3)

The constants are given by c = 1.872 and βmax = 0.075. The underlying physical data
of the vehicle are given as follows: the initial mass is m0 = 679.78 kg; the (maximal)
thrust = 0.56493 N; and the (constant) equivalent exit velocity is vc = 55809 m/s.
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4.1. The BVP. Recall now the time transformation t = τ · T introduced in
(3.2). Since there is no control constraint in this problem, the Hamiltonian (3.12) is
given by

H̃ = T ·
[
1 + λr w + λw

(
v2

r
− 1

r2
+ βmax

c

m
sinψ

)
(4.4)

+ λv

(
− w v

r
+ βmax

c

m
cosψ

)
− λm βmax

]
.

Let us evaluate the first order optimality conditions (3.13)–(3.16) and omit for conve-
nience the subscript zero referring to the optimal solution. The optimal control ψ is
derived from condition (3.16) and the assumed Legendre–Clebsch condition (A2) as

sinψ = − λw√
λ2
w + λ2

v

, cosψ = − λv√
λ2
w + λ2

v

.(4.5)

The adjoint equations (3.13) on the normalized time interval [0, 1] are given by

dλr/dτ = T ·
[
λw

(
v2

r2
− 2

r3

)
− λv

wv

r2

]
,

dλw/dτ = T ·
[
− λr + λv

v

r

]
,

dλv/dτ = T ·
[
− λw

2v

r
+ λv

w

r

]
,

dλm/dτ = T ·
[
− βmax c

m2

√
λ2
w + λ2

v

]
.

(4.6)

The transversality conditions (3.14) and (3.19) yield

λm(1) = 0,

H[1] = 1 − βmax c

m(1)

√
λw(1)2 + λv(1)2 = 0 .

(4.7)

After transforming the state equations (4.2) to the normalized time interval [0, 1]
according to (3.3), we obtain a two-point BVP consisting of (4.2)–(4.8). This BVP
can be further simplified by eliminating the variables m(τ) and λm(τ). The variable
m(τ) is substituted according to

m(τ) = 1.0 − βmax T · τ,(4.8)

and the variable λm can be dropped since it does not enter into the first three equations
in (4.6). The reduced BVP then comprises the six ODEs with respect to the variables
r, w, v, λr, λw, and λv on the fixed time interval [0, 1] and the trivial equation
dT/dτ ≡ 0 in view of (3.3). The corresponding boundary conditions are the six
boundary conditions (4.3) with respect to r, w, and v and the Hamiltonian boundary
condition in (4.7).

Once a solution of this BVP has been determined, the adjoint variable λm can be
obtained through an integration of the last equation in (4.6):

λm(τ) = T ·
∫ 1

τ

βmax c

m(τ)2

√
λw(τ)2 + λv(τ)2 dτ .

Alternatively, λm can be eliminated from the condition H ≡ 0.
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Fig. 4.1. Earth-Mars transfer: State variables r, w, v and control variable ψ.

The code BNDSCO in Oberle and Grimm [29] provides the following initial and
final values for the adjoint variables and the final time:

λr(0) = −0.52729 67236 × 101, λr(1) = −0.37511 95452 × 101,

λw(0) = −0.26088 76037 × 101, λw(1) = 0.40004 02548 × 101,

λv(0) = −0.56884 53434 × 101, λv(1) = −0.35509 23985 × 101,

T = 0.33199 21219 × 101.

(4.9)

Figure 4.1 displays the corresponding state variables r, w, v and the control variable
ψ, while Figure 4.2 shows the adjoint variables.

4.2. SSC. Let us first check the strict Legendre–Clebsch condition in assumption
(A2), taking into account the scaling H̃ψ ψ[τ ] = T ·Hψ ψ[τ ] in (3.20). We obtain

Hψ ψ =
βmax c

m

√
λ2
w + λ2

v

and find

min {H̃ψ ψ[τ ] | τ ∈ [ 0, 1] } = H̃ψ ψ[τ0] = 0.07390 1871 > 0, τ0 = 0.50935 25818 ,

which verifies the strict Legendre–Clebsch condition (A2). To prove the SSC in Theo-
rem 3.1, it remains to show that the Riccati equations (3.24)–(3.26) possess a bounded
solution such that the sign conditions (3.31) hold.
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Fig. 4.2. Earth-Mars transfer: Adjoint variables λr, λw, λv , λm.

The reader is reminded that we have eliminated the state variable m so that the
remaining state variables r, w, v have fixed final values. The symmetric Riccati matrix
Q̃ in (3.23) is given in the form

Q̃ =

(
Q R
R∗ q

)
=




q11 q12 q13 r1
q12 q22 q23 r2
q13 q23 q33 r3
r1 r2 r3 qT


 .

We refrain from writing down the Riccati equations (3.24)–(3.26) explicitly. The eval-
uation is rather tedious but can be simplified with the help of symbolic computations
offered, for example, in the package MAPLE. It should be noted that the coefficients
of the Riccati equation are functions of the nominal trajectory characterized by (4.9).
We merely indicate how to find appropriate initial values for Q̃(0) such that the sign
conditions (3.31) hold:

qT (0) > 0, qT (1) < 0.

We succeeded using a rather heuristic optimization technique. Starting with initial
estimates for Q(0) which allowed the integration of (3.24)–(3.26) on [0, 1], we changed
iteratively one component of Q(0) in order to minimize qT (1). Changing the indices
of components in a cyclic way, we got the following initial values:

q11(0) = 1.0, q12(0) = 2.0, q13(0) = 1.0,
q22(0) = −50.0, q23(0) = −10.0, q33(0) = −100.0,
r1(0) = 80.0, r2(0) = 40.0, r3(0) = 100.0,
qT (0) = 10.0 > 0.

For these data, a solution of the Riccati equations was found to exist on the whole
interval [0, 1] with final value qT (1) = −18.090 44002 < 0 . Hence all assumptions for
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Fig. 4.3. Solutions of the Riccati equations (3.24)–(3.26).

Theorem 3.1 are verified, and we draw the conclusion that the trajectory characterized
by (4.9) provides a weak local minimum for problem (4.1)–(4.3). The component
functions of Q̃[τ ] are shown in Figure 4.3.

5. Control of current in a tunnel-diode oscillator: Rayleigh problem
with control constraints. The following Rayleigh problem has been treated in
[13, 36] as a fixed final time control problem. SSC and sensitivity analysis for this
model have been discussed in Maurer and Augustin [23]. In this section, we investigate
a slightly modified problem with free final time. Figure 5.1 displays an electric circuit
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Fig. 5.1. Tunnel-diode oscillator, x1(t) = I(t).

(tunnel-diode oscillator), where L denotes inductivity, C denotes capacity, R denotes
resistance, I denotes electric current, and D is a diode. The state variables are the
electric current x1(t) = I(t) at time t ∈ [ 0, T ] and x2(t) := ẋ1(t) . The control u(t)
is a suitable transformation of the voltage V0 at the generator.

With an additional parameter c ≥ 0, the Rayleigh problem with free final time is
defined as follows: minimize the functional

Fc(x, T, u) = c · T +

∫ T

0

(u(t)2 + x1(t)
2 ) dt =

∫ T

0

( c+ u(t)2 + x1(t)
2 ) dt(5.1)

subject to

ẋ1(t) = x2(t) , ẋ2(t) = −x1(t) + x2(t) ( 1.4− 0.14x2(t)
2 ) + 4u(t) ,(5.2)

x1(0) = x2(0) = −5 , x1(T ) = x2(T ) = 0 ,(5.3)

|u(t) | ≤ 1 for t ∈ [0, T ] .(5.4)

The solution of this problem with final time T = 4.5 specified and c = 0 may be
found in [23]. In the following, we denote by Fc(T ) the optimal value of the control
problem (5.1)–(5.4) for fixed final time T . The behavior of this function gives insight
into the behavior of optimal solutions for free final time.

5.1. Unconstrained optimal solutions. We consider the unconstrained prob-
lem with control constraint (5.4) deleted. After applying the time transformation
(3.2), the unconstrained Hamiltonian in (3.12) becomes

H̃0(x̃, u, λ̃) = T · [ c+ u2 + x2
1 + λ1x2 + λ2 (−x1 + x2 (1.4− 0.14x2

2) + 4u) ].(5.5)

Henceforth, we omit the lower index zero to denote the optimal solution. The control
is computed from the equation H̃0

u[τ ] = 0, which yields

u(τ) = −2λ2(τ) .

The transformed state equations (3.3) and adjoint equations (3.13) lead to the follow-
ing ODEs in [0, 1] :

dx1/dτ = T · x2,
dx2/dτ = T · (−x1 + 1.4x2 − 0.14x3

2 − 8λ2),

dλ1/dτ = T · (−2x1 + λ2),
dλ2/dτ = T · (−λ1 − 1.4λ2 + 0.42x2

2λ2).

(5.6)
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Fig. 5.2. Graph of Fc(T ) for c = 1/16 and c = 0.

To compute the optimal solution of the control problem with fixed final time, we
resolve the BVP which comprises (5.6) and the boundary conditions

x1(0) = x2(0) = −5, x1(1) = x2(1) = 0 .(5.7)

The BVP is solvable only for final times T > T ∗ > 0 , where T ∗ is a suitable final
time. The optimal value function Fc(T ) is shown in Figure 5.2 for T > T ∗ = 2 and
two different values c = 1/16 and c = 0. Observe that, for c = 1/16, the graph of
Fc(T ) in Figure 5.2 depicts two local minima and one local maximum with respect
to the final time T , whereas no clear minimum can be discerned for c = 0 .

For free final time T , the transversality condition (3.19) and the boundary con-
ditions (5.7) yield 0 = H̃0[1] = T · (c+ u(1)2 + 4λ2(1)u(1)) = T · (c− 4λ2(1)

2), from
which we get the boundary condition

λ2(1)
2 = c/4 .(5.8)

Now we solve the BVP (5.6)–(5.8) for the cases c = 1/16 and c = 0, using again
the code BNDSCO in [29].

Case c = 1/16. We find three solutions:

Solution 1: T = 2.19460 79912, Fc(T ) = 30.06097 62322,
λ1(0) = −9.01234 54748, λ1(1) = 0.97693 36044,
λ2(0) = −2.67606 29500, λ2(1) = 0.125.

Solution 2: T = 2.46029 38602, Fc(T ) = 30.07173 02593,
λ1(0) = −9.01228 20002, λ1(1) = 0.95904 74639,
λ2(0) = −2.67605 43511, λ2(1) = −0.125.

Solution 3: T = 3.51535 36980, Fc(T ) = 29.98534 49252,
λ1(0) = −9.01085 93855, λ1(1) = 0.15146 20116,
λ2(0) = −2.67586 16249, λ2(1) = −0.125.

It is obvious that these three solutions correspond to the two local minima and one
local maximum shown in Figure 5.2. Note that λ2(1) changes sign when passing from
solution 1 to solutions 2 and 3.

Now let us show that solution 3 indeed provides a local minimum. The respec-
tive optimal control, state, and adjoint variables are displayed in Figure 5.3. The
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Fig. 5.3. Optimal control, state, and adjoint variables for c = 1/16 and T = 3.5153536980.

Legendre–Clebsch condition (A2) trivially holds in view of H̃0
uu[τ ] ≡ 2 · T > 0 . Next

we verify that the Riccati equations (3.24)–(3.26) have a bounded solution such that
the boundary conditions (3.31) hold in the relaxed forms qT (0) ≥ 0 and qT (1) < 0 .
The matrix (3.23) becomes

Q̃ =

(
Q R
R∗ q

)
=:


 q1 q2 r1

q2 q4 r2
r1 r2 qT


 ,(5.9)

for which we evaluate the Riccati equations (3.24)–(3.26) as

dq1/dτ = T · [ 2q2 − 2 + 8q2
2 ],

dq2/dτ = T · [−q1 − (1.4− 0.42x2
2)q2 + q4 + 8q2q4 ] ,

dq4/dτ = T · [−2(q2 + (1.4− 0.42x2
2)q4) + 0.84x2λ2 + 8q2

4 ] ,

dr1/dτ = −q1x2 − q2(−x1 + 1.4x2 − 0.14x3
2 − 8λ2) + Tr2

−2x1 + λ2 + 8Tq2r2 ,

dr2/dτ = −q2x2 − q4(−x1 + 1.4x2 − 0.14x3
2 − 8λ2)− Tr1

−T · (1.4− 0.42x2
2)r2 − λ1 − λ2(1.4− 0.42x2

2) + 8Tq4r2 ,

dqT /dτ = −2[ r1x2 + r2(−x1 + 1.4x2 − 0.14x3
2 − 8λ2) ] + 8Tr2

2 .

(5.10)
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It suffices to find a bounded solution of these Riccati equations satisfying qT (0) = 0.
After several trials, we were successful with the initial values

q1(0) = 2.00684 76891, q2(0) = 0.47018 97048, q4(0) = −0.35197 44265,
r1(0) = 0, r2(0) = 0, qT (0) = 0,

for which we get the final values,

q1(1) = 0, q2(1) = 0, q4(1) = 0,

r1(1) = −0.125 = λ2(1), r2(1) = 0.02353 79884, qT (1) = −r2(1) < 0,

and the bound ||Q̃(τ)||∞ ≤ 3 for all τ ∈ [0, 1]. Hence Theorem 3.1 asserts that
solution 3 is indeed a weak local minimum. We mention that the sufficient conditions
in Hull [12] can also be checked numerically for solution 3.

In a similar way, we can test the optimality of solution 1 with T = 2.1946 079912.
We obtain a bounded solution of the Riccati equation for initial values

q1(0) = 1.59068 73787, q2(0) = 0.33016 84322, q4(0) = −0.39917 54076,
r1(0) = 0, r2(0) = 0, qT (0) = 0

and final values

q1(1) = 0, q2(1) = 0, q4(1) = 0,

r1(1) = 0.125 = λ2(1), r2(1) = −1.15193 36046, qT (1) = r2(1) < 0.

These values yield the bound ||Q̃(τ)||∞ ≤ 5 for all τ ∈ [0, 1].
The situation is different for solution 2, which provides a local maximum with

respect to the final time T . All initial values qT (0) ≥ 0 that we tested produce a
solution of the Riccati equation with qT (1) ≥ 0 . Though this test does not exclude
optimality of the solution, it is a rather strong indication of nonoptimality. Thus we
may draw the conclusion that solution 2 behaves like a saddle point solution, which
is a local minimum with respect to control for every fixed time but a local maximum
with respect to final time.

Case c = 0. Here the situation is more complicated since Figure 5.2 does not
indicate a distinctive local minimum. The code BNDSCO of [29] provides, e.g., the
following two solutions:

Solution 1: T = 2.29903 95815, Fc(T ) = 29.9218 12616,
λ1(0) = −9.00409 78999, λ1(1) = 1.00813 43679,
λ2(0) = −2.67325 14651, λ2(1) = 0.

Solution 2: T = 4.50237 87337, Fc(T ) = 29.75107 51464,
λ1(0) = −9.00247 06599, λ1(1) = −0.0044561 06307,
λ2(0) = −2.67303 08344, λ2(1) = 0.

Solving the Riccati equation (5.10), e.g., for the final time T = 2.2990 395815, we
find that the initial value qT (0) = 0 produces the final value qT (1) = 0 in all tested
cases. Thus the sign conditions (3.29) cannot be verified, and the Riccati test is not
able to detect whether solution 1 is a local minimum.
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Fig. 5.4. Graph of Fc(T ) for control constraint |u| ≤ 1: Cases c = 1/16 and c = 0.

5.2. Constrained optimal solutions. Now we consider solutions satisfying, in
addition, the control constraint (5.4),

−1 ≤ u(τ) ≤ 1 ∀ τ ∈ [0, 1] .

The augmented Hamiltonian (3.12) becomes, in view of (5.5),

H̃(x̃, u, λ̃, µ̃)= H̃0(x̃, u, λ̃) + µ̃1(−u− 1) + µ̃2(u− 1)(5.11)

= T · [ c+ u2 + x2
1 + λ1x2 + λ2 (−x1 + x2 (1.4− 0.14x2

2) + 4u)

+ µ1(−u− 1) + µ2(u− 1) ] ,

where µi := µ̃/T, i = 1, 2, are the scaled multipliers. The state and adjoint equations
agree with those given in (5.6). Again, we get the control law u(τ) = −2λ2(τ)
on interior arcs |u(τ)| < 1 . The unconstrained control u(τ) depicted in Figure 5.3
suggests that the constrained control has one boundary arc with u(τ) ≡ 1 and one
boundary arc with u(τ) ≡ −1. Thus we may assume the following solution structure
of the optimal control:

u(τ) =




1, 0 ≤ τ ≤ τ1
−2λ2(τ), τ1 ≤ τ ≤ τ2

−1, τ2 ≤ τ ≤ τ3
−2λ2(τ), τ3 ≤ τ ≤ 1


 .(5.12)

The junction points τ1, τ2, τ3 are implicitly determined through the conditions that
the control is continuous at these points. This leads to the junction conditions

λ2(τ1) = −0.5, λ2(τ2) = 0.5, λ2(τ3) = −0.5 .(5.13)

Hence, on the interval [0, 1], we have to solve the multipoint BVP, which is composed
by the state and adjoint equations (5.6) with control substituted from (5.12) as well
as the boundary and junction conditions (5.7) and (5.13).

The optimal value function F̃c(T ) for the constrained problem is depicted in
Figure 5.4 for the values c = 1/16 and c = 0 . A distinctive minimum can only be
detected in case c = 1/16 .

Case c = 1/16. Again we use the code BNDSCO in [29] and obtain

T = 4.54230 98018, τ1 = 0.22932 06694,
τ2 = 0.37589 55717, τ3 = 0.63465 63122,

λ1(0) = −12.70813 77440, λ1(1) = 0.02860 41331,
λ2(0) = −4.59503 53190, λ2(1) = −0.125,
Fc(T ) = 44.71797 06589.
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Fig. 5.5. Optimal control, state, and adjoint variables for c = 1/16 and T = 4.54230 98018.

The corresponding optimal control, state, and adjoint variables are shown in Fig-
ure 5.5. In order to check the sufficient conditions in Theorem 3.1, we try to find a
bounded solution of the Riccati equations (5.10) on the interior arcs [τ1, τ2] and [τ3, 1]
and the modified Riccati equations (3.30) on the boundary arcs [0, τ1] and [τ2, τ3] .
The modified Riccati equations yield the following linear equations:

dq1/dτ = T · 2(q2 − 1) ,

dq2/dτ = T · [−q1 − (1.4− 0.42x2
2)q2 + q4 ] ,

dq4/dτ = T · [−2(q2 + (1.4− 0.42x2
2)q4) + 0.84x2λ2 ] ,

dr1/dτ = −q1x2 − q2(−x1 + 1.4x2 − 0.14x3
2 + 4u) + Tr2 − 2x1 + λ2 ,

dr2/dτ = −q2x2 − q4(−x1 + 1.4x2 − 0.14x3
2 + 4u)− Tr1

−T · (1.4− 0.42x2
2)r2 − λ1 − λ2(1.4− 0.42x2

2) ,

dqT /dτ = −2 [ r1x2 + r2(−x1 + 1.4x2 − 0.14x3
2 + 4u) ] .

(5.14)

We wish to find a solution satisfying the terminal values q1(1) = q2(1) = q4(1) = 0 .
A bounded solution of the Riccati equations then is obtained for the initial values

q1(0) = 2.39837121, q2(0) = 0.89021498, q4(0) = −1.26573031,
r1(0) = 0, r2(0) = 0, qT (0) = 0,
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Fig. 5.6. Solutions q1, q2, q4, r1, r2, qT of Riccati equations (5.10) and (5.14) for c = 1/16 and
T = 4.54230 98018.

which produce the desired terminal values for q1, q2, q4 and

r1(1) = −0.125 = λ2(1), r2(1) = 0.146395866, qT (1) = −r2(1) < 0 .

For these values, we get the bound ||Q̃(τ)||∞ ≤ 4 for all τ ∈ [0, 1], which can be seen
in Figure 5.6. It is interesting to note that it was not possible to obtain a bounded
solution of the Riccati equation (5.10) on the whole interval. Thus the Riccati test
developed in section 3 in its weaker form considerably facilitates the numerical check
of SSC.

Case c = 0. The code BNDSCO yields the solution

T = 5.15173 31990, τ1 = 0.20192 87957,
τ2 = 0.33186 51046, τ3 = 0.55797 03824,

λ1(0) = −12.70087 48310, λ1(1) = 0.09649 19382,
λ2(0) = −4.58996 79054, λ2(1) = 0,

F̃c=0(T ) = 44.70866 79043.

Evaluating the Riccati equations (5.10) and (5.14) along this specific solution, we
were not able to find a bounded solution satisfying the sign conditions qT (0) ≥ 0 and
qT (1) < 0 . This fact confirms our impression gained from Figure 5.4 that no local
minimum can be identified for c = 0.
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Abstract. In this paper, we define and study a new class of optimal stochastic control problems
which is closely related to the theory of backward SDEs and forward-backward SDEs. The controlled
process (Xν , Y ν) takes values in R

d×R and a given initial data for Xν(0). Then the control problem
is to find the minimal initial data for Y ν so that it reaches a stochastic target at a specified terminal
time T . The main application is from financial mathematics, in which the process Xν is related to
stock price, Y ν is the wealth process, and ν is the portfolio.

We introduce a new dynamic programming principle and prove that the value function of the
stochastic target problem is a discontinuous viscosity solution of the associated dynamic programming
equation. The boundary conditions are also shown to solve a first order variational inequality in the
discontinuous viscosity sense. This provides a unique characterization of the value function which is
the minimal initial data for Y ν .

Key words. stochastic control, dynamic programming, discontinuous viscosity solutions, forward-
backward SDEs
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1. Introduction. Let (Ω,F , P ) be a probability space, T > 0, and let {W (t),
0 ≤ t ≤ T} be a d-dimensional Brownian motion whose P -completed natural filtration
is denoted by F. Given a control process ν = {ν(t), 0 ≤ t ≤ T} with values in the
control set U , we consider the controlled process Zνy = (Xν

y , Y
ν
y ) ∈ R

d × R satisfying

dZ(t) = α (t, Z(t), ν(t)) dt + β (t, Z(t), ν(t)) dW (t), 0 ≤ t < T,(1.1)

together with the initial data Zν(0) = (X(0), y).
For a given real-valued function g, the stochastic target control problem is to

minimize the initial data y while satisfying the random constraint Y ν
y (T ) ≥ g(Xν

y (T ))
with probability one, i.e.,

v(0, X(0)) := inf
{
y ∈ R : ∃ ν ∈ U , Y ν

y (T ) ≥ g
(
Xν
y (T )

)
P − a.s.

}
,

which we call the stochastic target problem.
The chief goal of this paper is to obtain a characterization of the value function

v as a discontinuous viscosity solution of an associated Hamilton–Jacobi–Bellman
(HJB) second order PDE with suitable boundary conditions. We do not address the
important uniqueness issue associated to the HJB equation in this paper. We simply
refer to Crandall, Ishii, and Lions [5] for some general uniqueness results.

The main step in the derivation of the above-mentioned PDE characterization is
a nonclassical dynamic programming principle. To the best of our knowledge, this
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dynamic programming is new; it was only partially used by the authors in a previous
paper [23].

This dynamic programming principle is closely related to the theory of viscosity
solutions. In the derivation of the supersolution property of the HJB equation, the
notion of viscosity solutions is only used to handle the lack of a priori regularity of the
value function. However, the use of the notion of viscosity solutions seems necessary
in order to derive the subsolution property from our dynamic programming principle,
even if the value function were known to be smooth.

This study is mainly motivated by applications to financial mathematics. Indeed,
a special specification of the coefficients α and β (see section 6) leads to the so-called
superreplication problem; see, e.g., El Karoui and Quenez [11], Cvitanić and Karatzas
[6], Broadie, Cvitanić, and Soner [4], Cvitanić, Pham, and Touzi [9], and Cvitanić and
Ma [8].

In the financial mathematics literature, the superreplication problem is usually
solved via convex duality. In this approach, a classical optimal control problem is
derived by first applying the duality; see Jouini and Kallal [15], El Karoui and Quenez
[11], Cvitanić and Karatzas [6], and Föllmer and Kramkov [13]. Then, one may
use classical dynamic programming to obtain the PDE characterization of the value
function v. However, this method cannot be applied to the general stochastic target
problem because of the presence of the control ν in the diffusion part of the state
process Xν . The methodology developed in this paper precisely allows us to avoid
this step and to obtain the PDE characterization directly from the initial (nonclassical)
formulation of the problem without using the duality.

The stochastic target problem is also closely related to the theory of backward
SDEs and forward-backward SDEs; see Antonelli [1], Cvitanić, Karatzas, and Soner
[7], Hu and Peng [16], Ma, Protter, and Yong [18], Ma and Yong [19], Pardoux [20],
and Pardoux and Tang [21]. Indeed, an alternative formulation of the problem is this:
find a triple of F-adapted processes (X,Y, ν) satisfying

(X,Y ) solves (1.1) with ν ∈ U ,X(0) fixed, Y (T ) + A(T ) = g(X(T ))(1.2)

for some nondecreasing F-adapted process A with A(0) = 0 as well as the minimality
condition

(X̃, Ỹ , ν̃, Ã) satisfies (1.2) =⇒ Y (.) ≤ Ỹ (.) P − a.s.

Notice that the nondecreasing process A is involved in the above definition to account
for possible constraints on the control ν; see [7]. In financial applications, this con-
nection has been observed by Cvitanić and Ma [8] and El Karoui, Peng, and Quenez
[12].

The paper is organized as follows: the definition of the stochastic target problem
is formulated in section 2. In section 3, we state the dynamic programming prin-
ciple. Section 4 studies the HJB equation satisfied by the value function v in the
discontinuous viscosity sense. In section 5, the terminal condition of the problem is
characterized by a first order variational inequality again in the discontinuous viscos-
ity sense. Finally, in section 6, we apply our results to the problem of superreplication
under portfolio constraints in a large investor financial market.

2. Stochastic target problem. In this section, we define a nonstandard stochas-
tic control problem.

Let T > 0 be the finite time horizon, and let W = {W (t), 0 ≤ t ≤ T} be a
d-dimensional Brownian motion defined on a complete probability space (Ω,F , P ).
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We denote by F = {F(t), 0 ≤ t ≤ T} the P -augmentation of the filtration generated
by W .

We assume that the control set U is a convex compact subset of R
d with a

nonempty interior, and we denote by U the set of all progressively measurable pro-
cesses ν = {ν(t), 0 ≤ t ≤ T} with values in U .

The state process is defined as follows: given the initial datum z = (x, y) ∈ R
d×R,

an initial time t ∈ [0, T ], and a control process ν ∈ U , let the controlled process
Zνt,z = (Xν

t,x, Y
ν
t,z) be the solution of the SDE

dXν
t,x(u) = µ

(
u,Xν

t,x(u), ν(u)
)
du + σ∗ (u,Xν

t,x(u), ν(u)
)
dW (u), u ∈ (t, T ),

dY ν
t,x,y(u) = b

(
u, Zνt,z(u), ν(u)

)
du + a∗

(
u, Zνt,z(u), ν(u)

)
dW (u), u ∈ (t, T ),

with initial data

Xν
t,x(t) = x, Y ν

t,x,y(t) = y,

where M∗ denotes the transpose of the matrix M , and µ, σ, b, a are bounded functions
on [0, T ] × R

k × U (k = d or d + 1) satisfying the usual conditions in order for the
process Zνt,z to be well defined.

Throughout the paper, we assume that the matrix σ(t, x, r) is invertible and the
function

r �→ σ−1(t, x, r)a(t, x, y, r)

is one to one for all (t, x, y). Let ψ be its inverse; i.e.,

σ−1(t, x, r)a(t, x, y, r) = p ⇐⇒ r = ψ(t, x, y, p).(2.1)

This is a crucial assumption which enables us to match the stochastic parts of the X
and the Y processes by a judicial choice of the control process ν. Similar assumptions
were also utilized in the backward-forward SDEs. See also Remark 2.2.

Now we are in a position to define the “stochastic target” control problem. Let
g be a real-valued measurable function defined on R

d. We shall denote by Epi(g) :=
{(x, y) ∈ R

d × R : y ≥ g(x)} the epigraph of g. Let

v(t, x) := inf
{
y ∈ R : ∃ ν ∈ U , Zνt,x,y(T ) ∈ Epi(g) P − a.s.

}
.(2.2)

In some cases, it is possible to find initial datum and a control so that Y ν
t,x,y(T ) =

g(Xν
t,x(T )). In that case, this problem is equivalent to a backward-forward SDE; see

the discussion in our introduction. In particular, when U = R
d, the corresponding

backward-forward SDE has a solution (see, e.g., [21]), and it is equal to v. However,
when the control set U is bounded, in general there is no solution of the backward-
forward equation, and v is the natural generalization of the backward-forward SDE.
An alternative generalization can be obtained by involving a nondecreasing process,
as discussed in the introduction; see [7].

We conclude this section by introducing several sets to simplify the notation. Let

A(t, x, y) :=
{
ν ∈ U : Zνt,x,y(T ) ∈ Epi(g) P − a.s.

}
.

Note that A(t, x, y) may be empty for some initial datum (t, x, y). Next we define

Y(t, x) := {y ∈ R : A(t, x, y) �= ∅} .
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Then the stochastic target problem can be written as

v(t, x) = inf Y(t, x) = inf {y ∈ R : y ∈ Y(t, x)} .

Remark 2.1. The set Y(t, x) satisfies the following important property:

for all y ∈ R, y ∈ Y(t, x) =⇒ [y,∞) ⊂ Y(t, x).

This follows from the facts that Xν
t,x is independent of y and Y ν

t,x,y(T ) is nondecreasing
in y.

Remark 2.2. A more general formulation of this problem, as discussed in our ac-
companying paper [24], is obtained by defining the reachability set of the deterministic
target Epi(g):

V (t) :=
{
z ∈ R

d+1 : Zνt,z(T ) ∈ Epi(g) P − a.s. for some ν ∈ A} .
From the previous remark, the set V (t) is “essentially” characterized as the epigraph
of the scalar function v(t, .). A standing assumption in [24] is

N (t, z, p) :=

{
ν ∈ R

d : [σ|a](t, z, ν)

[
p
−1

]
= 0

}
�= ∅;

i.e., since we wish to hit the deterministic target Epi(g) with probability one, the
diffusion process has to degenerate along certain directions captured by the kernel N .
This degeneracy assumption is directly related to our condition (2.1).

3. Dynamic programming. In this section, we introduce a new dynamic pro-
gramming equation for the stochastic target problem. This will allow us to charac-
terize the value function of the stochastic target problem as a viscosity solution of a
nonlinear PDE. For the classical stochastic control problem, this connection between
the dynamic programming principle and the PDEs is well known (see, e.g., [14]). The
chief goal of this paper is to develop the same tools for this nonstandard target control
problem. Namely, we will formulate an appropriate dynamic programming principle
and then derive the corresponding nonlinear PDE as a consequence of it.

A discussion of general dynamic programming of this type is the subject of an
accompanying paper by the authors [24].

Theorem 3.1. Let (t, x) ∈ [0, T ]× R
d.

(DP1) For any y ∈ R, set z := (x, y). Suppose that A(t, z) �= ∅. Then, for all
ν ∈ A(t, z) and a [t, T ]-valued stopping time θ,

Y ν
t,x,y(θ) ≥ v

(
θ,Xν

t,x(θ)
)

P − a.s.

(DP2) Set y∗ := v(t, x). Let θ be an arbitrary [t, T ]-valued stopping time. Then, for
all ν ∈ U and η > 0,

P
[
Y ν
t,x,y∗−η(θ) > v

(
θ,Xν

t,x(θ)
) ]

< 1.

Proof. We provide only the main idea of the proof. We refer to [24] for the
complete argument. Let z = (x, y) and ν be as in the statement of (DP1). By the
definition of A(t, z), Zνt,z(T ) ∈ Epi(g). Since Zνt,z(T ) = Zνθ,Zν

t,z(θ)(T ), it follows that

ν(·) ∈ A (θ(w), Zνt,z(t + θ(w))
)

for P almost every w ∈ Ω .
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Then, again for P almost every w ∈ Ω, Y ν
t,z(θ(w)) ∈ Y (θ(w), Xν

t,x(θ(w))
)
, and, by

the definition of the value function, v
(
θ(w), Xν

t,x(θ(w))
) ≤ Y ν

t,z(θ(w)).
We prove (DP2) by contraposition. So, toward a contradiction, suppose that

there exists a [t, T )-valued stopping time θ such that

Y ν
t,x,y∗−η(θ) > v

(
θ,Xν

t,x(θ)
)

P − a.s.

In view of Remark 2.1, this proves that Y ν
t,x,y∗−η(θ) ∈ Y (θ,Xν

t,x(θ)
)
. Then there

exists a control ν̂ ∈ U such that

Y ν̂
θ,Zν

t,x,y∗−η
(θ)(T ) ≥ g

(
X ν̂
θ,Xν

t,x(θ)(T )
)

P − a.s.

Since the process (X ν̂
θ,Xν

t,x(θ), Y
ν̂
θ,Zν

t,x,y∗−η
(θ)) depends on ν̂ only through its realizations

in the stochastic interval [t, θ], we may chose ν̂ so that ν̂ = ν on [t, θ]. (This is the
difficult part of this proof.) Then Z ν̂θ,Zν

t,x,y∗−η
(θ)(T ) = Z ν̂t,x,y∗−η(T ), and therefore

y∗ − η ∈ Y(t, x); hence y∗ − η ≤ v(t, x). Recall that, by definition, y∗ = v(t, x) and
η > 0.

The dynamic programming principle stated in Theorem 3.1 does not require all
of the assumptions made in the first section. Namely, the control set U does not need
to be convex or compact, and the function σ−1(t, x, r)a(t, x, y, r) is not required to be
one to one in the r variable.

For completeness, we mention that the statement of Theorem 3.1 is equivalent to
the following, apparently stronger but more natural, dynamic programming principle.

Corollary 3.1. For all (t, x) ∈ [0, T )×R
d and a [t, T ]-valued stopping time θ,

we have

v(t, x) = inf
{
y ∈ R : ∃ ν ∈ U , Y ν

t,x,y(θ) ≥ v
(
θ,Xν

t,x(θ)
)
P − a.s.} .

4. Viscosity property. In this section, we use the dynamic programming prin-
ciple stated in Theorem 3.1 to prove that the value function of the stochastic target
control problem (2.2) is a discontinuous viscosity solution to the corresponding dy-
namic programming equation.

Following the convention in the viscosity literature, let v∗ (resp., v∗) be the lower
(resp., upper) semicontinuous envelope of v; i.e.,

v∗(t, x) := lim inf
(t′,x′)→(t,x)

v(t′, x′) and v∗(t, x) := lim sup
(t′,x′)→(t,x)

v(t′, x′).

Let δU be the support function of the closed convex set U :

δU (ζ) := sup
ν∈U

(ν∗ζ), ζ ∈ R
d.

We shall denote by Ũ the effective domain of δU and by Ũ1 the restriction of Ũ to the
unit circle:

Ũ =
{
ζ ∈ R

d : δU (ζ) ∈ R
}

and Ũ1 =
{
ζ ∈ Ũ : |ζ| = 1

}
so that Ũ is the closed cone generated by Ũ1. Under our assumptions, since U is a
bounded subset of R

d,

Ũ = R
d and Ũ1 =

{
ζ ∈ R

d : |ζ| = 1
}
.
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Remark 4.1. The compactness of U is only needed in order to establish some
results which require us to extract convergent subsequences from sequences in U .
Therefore, many results contained in this paper hold for a general closed convex
subset U . For this reason, we shall keep using the notation Ũ and Ũ1.

Remark 4.2. For later reference, note that the closed convex set U can be char-
acterized in terms of Ũ (see, e.g., [22]):

ν ∈ U iff inf
ζ∈Ũ

(δU (ζ)− ζ∗ν) ≥ 0,

iff inf
ζ∈Ũ1

(δU (ζ)− ζ∗ν) ≥ 0;

the second characterization follows from the facts that Ũ is the closed cone generated
by Ũ1 and δU is positively homogeneous.

Remark 4.3. We shall also use the following characterization of int(U) in terms
of Ũ1:

ν ∈ int(U) iff inf
ζ∈Ũ1

(δU (ζ)− ζ∗ν) > 0.

To see this, suppose that the right-hand side infimum is zero. Then, for all ε > 0, there
exists some ζ0 ∈ Ũ1 such that 0 ≤ δU (ζ0)− ζ∗0ν ≤ ε/2. Then δU (ζ0)− ζ∗0 (ν + εζ0) < 0,
and therefore ν+εζ0 �∈ U by the previous remark. Since ε > 0 is arbitrary, this proves
that ν �∈ int(U). Conversely, suppose that * := infζ∈Ũ1

(δU (ζ)− ζ∗ν) > 0. Then, by
the Cauchy–Schwarz inequality and the characterization of the previous remark, it is
easily checked that the ball around ν with radius * is included in U .

Remark 4.4. Let f be the function defined on R
d by

f(ν) := inf
ζ∈Ũ1

(δU (ζ)− ζ∗ν) .

Then f is continuous. Indeed, since Ũ1 is a compact subset of R
d, the infimum in the

above definition of f(ν) is attained, say, at ζ̂(ν) ∈ Ũ1. Then, for all ν, ν′ ∈ R
d,

f(ν′) ≤ δU (ζ̂(ν))− ζ̂(ν)∗ν + ζ̂(ν)∗(ν − ν′) = f(ν) + ζ̂(ν)∗(ν − ν′) ≤ f(ν) + |ν − ν′|

by the Cauchy–Schwarz inequality. By symmetry, this proves that f is a contracting
mapping.

Finally, we introduce the Dynkin second order differential operator associated to
the process Xν :

Lνu(t, x) :=
∂u

∂t
(t, x) + µ(t, x, ν)∗Du(t, x) +

1

2
Trace

(
D2u(t, x)σ∗(t, x, ν)σ(t, x, ν)

)
,

where Du and D2u denote, respectively, the gradient and the Hessian matrix of u
with respect to the x variable.

Theorem 4.1. Assume that µ, σ, a, b are all bounded and satisfy the usual
Lipschitz conditions and that v∗, v∗ are finite everywhere. Further assume (2.1) and
that U has a nonempty interior. Then the value function v of the stochastic target
problem is a discontinuous viscosity solution of the equation on [0, T )× R

d,

min {−Lν0u(t, x) + b (t, x, u(t, x), ν0) ; H(t, x, u(t, x), Du(t, x))} = 0,(4.1)
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where

ν0(t, x) := ψ (t, x, u(t, x), Du(t, x)) ,(4.2)

H(t, x, u(t, x), Du(t, x)) = inf
ζ∈Ũ1

(δU (ζ)− ζ∗ν0(t, x)) ;(4.3)

i.e., v∗ and v∗ are, respectively, viscosity supersolution and subsolution of (4.1).
Remark 4.5. In view of Remark 4.2, H ≥ 0 iff ν0 ∈ U . Since U has a nonempty

interior, it follows from Remark 4.3 that H > 0 iff ν0 ∈ int(U).
The proof of Theorem 4.1 will be completed in the following two subsections. The

supersolution part of the claim follows from (DP1) and a classical argument in the
viscosity theory which is due to P.-L. Lions. We shall take advantage of the fact that
the inequality in (DP1) is in the a.s. sense. This allows for suitable change of measure
before taking expectations. The subsolution part is obtained from (DP2) by means
of a contraposition argument.

The above result will be completed in Theorem 5.1 by the description of the
boundary condition. The reader who is not interested in the technical proof of The-
orem 4.1 can go directly to section 5.

4.1. Proof of the viscosity supersolution property. Fix (t0, x0) ∈ [0, T )×
R
d, and let ϕ be a C2([0, T ]× R

d) function satisfying

0 = (v∗ − ϕ)(t0, x0) = min
(t,x)∈[0,T )×Rd

(v∗ − ϕ) .

Observe that v ≥ v∗ ≥ ϕ on [0, T )× R
d.

Step 1. Let (tn, xn)n≥1 be a sequence in [0, T )× R
d such that

(tn, xn) → (t0, x0) and v(tn, xn) → v∗(t0, x0).

Set yn := v(tn, xn)+(1/n) and zn := (xn, yn). Then, by the definition of the stochastic
target control problem, the set A(tn, zn) is not empty. Let νn be any element of
A(tn, zn).

For any [0, T − tn)-valued stopping time θn (to be chosen later), (DP1) yields

Y νn
tn,zn(tn + θn) ≥ v (tn + θn, Xtn,xn

(tn + θn)) P − a.s.

Set βn := yn−ϕ(tn, xn). Since, as n tends to infinity, yn → v∗(t0, x0) and ϕ(tn, xn) →
ϕ(t0, x0) = v∗(t0, x0),

βn → 0 .

Further, since v ≥ v∗ ≥ ϕ, we have v (tn + θn, Xtn,xn
(tn + θn)) ≥ ϕ(tn + θn, Xtn,xn

(tn + θn)) P -a.s. Then

βn +
[
Y νn
tn,zn(tn + θn)− yn

]− [ϕ (tn + θn, Xtn,xn(tn + θn))− ϕ(tn, xn)] ≥ 0 P − a.s.

By Itô’s lemma,

0 ≤ βn +

∫ tn+θn

tn

[
b
(
s, Zνntn,zn(s), νn(s)

)− Lνn(s)ϕ
(
s,Xνn

tn,xn
(s)
)]
ds

+

∫ tn+θn

tn

[
a
(
s, Zνntn,zn(s), νn(s)

)
− σ

(
s,Xνn

tn,xn
(s), νn(s)

)
Dϕ

(
s,Xνn

tn,xn
(s)
)]∗

dW (s).(4.4)
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Step 2. For some large constant C, set

θn := inf
{
s > tn : |Xνn

tn,xn
(s)| ≥ C

}
.

Since U is bounded in R
d and (tn, xn) −→ (t0, x0), one can easily show that

lim inf
n→∞ t ∧ θn > t0 for all t > t0.(4.5)

For ξ ∈ R, we introduce the probability measure P ξn equivalent to P defined by the
density process

Mξ
n(t) := E

(
−ξ
∫ t∧θn

tn

(a− σDϕ)
(
s, Zνntn,zn(s), νn(s)

)
dW (s)

)
, t ≥ tn ,

where E(.) is the Doléans–Dade exponential operator. We shall denote by Eξ
n the

conditional expectation with respect to Ftn under P ξn.
We take the conditional expectation with respect to Ftn under P ξn in (4.4). The

result is

0 ≤ βn + Eξ
n

[∫ tn+h∧θn

tn

(
b
(
s, Zνntn,zn(s), νn(s)

)− Lνn(s)ϕ
(
s,Xνn

tn,xn
(s)
))
ds

]

− ξ Eξ
n

[∫ tn+h∧θn

tn

∣∣a (s, Zνntn,zn(s), νn(s)
)

− σ
(
s,Xνn

tn,xn
(s), νn(s)

)
Dϕ

(
s,Xνn

tn,xn
(s)
)∣∣2ds

]

for all h > 0. We now consider two cases:
• Suppose that the set {n ≥ 1 : βn = 0} is finite. Then there exists a subse-

quence, renamed (βn)n≥1, such that βn �= 0 for all n ≥ 1. Set hn =
√|βn|

and kn := θn ∧ (tn + hn).
• If the set {n ≥ 1 : βn = 0} is not finite, then there exists a subsequence,

renamed (βn)n≥1, such that βn = 0 for all n ≥ 1. Set hn := n−1 and
kn := θn ∧ (tn + hn).

The final inequality still holds if we replace t ∧ θn with kn. We then divide this
inequality by hn and send n to infinity by using (4.5), the dominated convergence
theorem, and the right continuity of the filtration. The result is

0 ≤ lim inf
n→∞

1

hn

∫ tn+hn

tn

[
b
(
s, Zνntn,zn(s), νn(s)

)− Lνn(s)ϕ
(
s,Xνn

tn,xn
(s)
)

− ξ
∣∣a (s, Zνntn,zn(s), νn(s)

)− σ
(
s,Xνn

tn,xn
(s), νn(s)

)
Dϕ

(
s,Xνn

tn,xn
(s)
)∣∣2]ds.

We continue by using the following result, whose proof is given after the proof of the
supersolution property.

Lemma 4.1. Let ψ : [0, T ]×R
d+1×U → R be locally Lipschitz in (t, z) uniformly

in r. Then

1

hn

∫ tn+hn

tn

[
ψ
(
s, Zνntn,zn(s), νn(s)

)− ψ (t0, z0, νn(s))
]
ds→ 0 P − a.s.
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along some subsequence.
In view of this lemma,

0 ≤ lim inf
n→∞

1

hn

∫ tn+hn

tn

[
b (t0, z0, νn(s))− Lνn(s)ϕ (t0, x0)

− ξ |a (t0, z0, νn(s))− σ (t0, x0, νn(s))Dϕ (t0, x0)|2
]
ds.

Then, since h−1
n

∫ tn+hn

tn
ds = 1,

1

hn

∫ tn+hn

tn

[
b (t0, z0, νn(s))− Lνn(s)ϕ (t0, x0)(4.6)

− ξ |a (t0, z0, νn(s))− σ (t0, x0, νn(s))Dϕ (t0, x0)|2
]
ds ∈ c̄oV(t0, z0),

where c̄oV(t0, z0) is the closed convex hull of the set V(t0, z0) defined by

V(t0, z0) :=
{
b(t0, z0, ν)−Lνϕ(t0, x0)−ξ |a(t0, z0, ν)− σ(t0, x0, ν)Dϕ(t0, x0)|2 : ν ∈ U

}
.

Therefore, it follows from (4.6) that

0 ≤ sup
φ∈c̄oV

φ

= sup
ν∈U

{
ξ |−a(t0, z0, ν) + σ(t0, x0, ν)Dϕ(t0, x0)|2 − Lνϕ(t0, x0) + b(t0, z0, ν)

}
(4.7)

for all ξ ∈ R.
Step 3. For a large positive integer n, set ξ = −n. Since U is compact, the

supremum in (4.7) is attained at some ν̂n ∈ U , and

−n |a(t0, z0, ν̂n)− σ(t0, x0, ν̂n)Dϕ(t0, x0)|2 − Lν̂nϕ(t0, x0) + b(t0, z0, ν̂n) ≥ 0.

By passing to a subsequence, we may assume that there exists ν̂ ∈ U such that
ν̂n → ν0. Now let n to infinity in the last inequality to prove that

|a(t0, z0, ν̂n)− σ(t0, x0, ν̂n)Dϕ(t0, x0)|2 → 0(4.8)

and

−Lν0ϕ(t0, x0) + b(t0, z0, ν0) ≥ 0.(4.9)

In view of (4.8), we conclude that

ν0 = ψ (t0, z0, Dϕ(t0, x0)) .(4.10)

Since ν0 ∈ U , it follows from Remark 4.2 that

inf
ζ∈Ũ1

(δU (ζ)− ζ∗ν0) ≥ 0.(4.11)

The supersolution property now follows from (4.9), (4.10), and (4.11).
Proof of Lemma 4.1. Since ψ(t, z, r) is locally Lipschitz in (t, z) uniformly in r,

1

hn

∫ tn+hn

tn

[
ψ
(
s, Zνntn,zn(s), νn(s)

)− ψ (t0, z0, νn(s))
]
ds

≤ K
1

hn

∫ tn+hn

tn

(|s− t0|+
∣∣Zνntn,zn(s)− z0

∣∣) ds
≤ K

(
hn + |tn − t0|+ sup

tn≤s≤tn+hn

∣∣Zνntn,zn(s)− z0

∣∣)
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for some constant K. Thus, to complete the proof of this lemma, it suffices to show

sup
tn≤s≤tn+hn

∣∣Zνntn,zn(s)− z0

∣∣ −→ 0 P − a.s.

along a subsequence. Set

γ(t, x, y, r) :=

(
µ(t, x, r)
b(t, x, y, r)

)
and α(t, x, y, r) :=

(
σ∗(t, x, r)
a∗(t, x, y, r)

)
.

Functions α and γ inherit the pointwise bounds from µ, b, σ, and a. We directly
calculate that, for tn ≤ s ≤ tn + hn,

Zνntn,zn(s)− z0 ≤ |zn − z0|+ ‖γ‖∞hn +

∣∣∣∣
∫ s

tn

α
(
s, Zνntn,zn(s), νn(s)

)
dW (s)

∣∣∣∣ ,
and, therefore,

sup
tn≤s≤tn+hn

∣∣Zνntn,zn(s)− z0

∣∣ ≤ |zn − z0|+ ‖γ‖∞hn

+ sup
tn≤s≤tn+hn

∣∣∣∣
∫ s

tn

α
(
s, Zνntn,zn(s), νn(s)

)
dW (s)

∣∣∣∣ .
The first two terms on the right-hand side converge to zero. We estimate the third
term by Doob’s maximal inequality for submartingales.

The result is

E

[(
sup

tn≤s≤tn+hn

∣∣∣∣
∫ s

tn

α
(
s, Zνntn,zn(s), νn(s)

)
dW (s)

∣∣∣∣
)2
]

≤ 4 E

[∫ tn+hn

tn

α
(
s, Zνntn,zn(s), νn(s)

)2
ds

]

≤ 4 ‖α‖2∞hn.

This proves that

sup
tn≤s≤tn+hn

∣∣Zνntn,zn(s)− z0

∣∣→ 0 in L2(P ),

and, therefore, it also converges P -a.s. along some subsequence.

4.2. Subsolution property. We start with a technical lemma which will be
used both in the proof of the subsolution property and also in the next section on
the characterization of the terminal data. We first introduce some notation. Given a
smooth function ϕ(t, x), we define the open subset of [0, T ]× R

d:

M0(ϕ) :=

{
(t, x) : inf

ζ∈Ũ1

(δU (ζ)− ζ∗ν0(t, x)) > 0 and

−Lν0(t,x)ϕ(t, x) + b (t, x, ϕ(t, x), ν0(t, x)) > 0

}
,

= { (t, x) : ν0(t, x) ∈ int(U) and − Lν0(t,x)ϕ(t, x)

+b (t, x, ϕ(t, x), ν0(t, x)) > 0 },
where ν0(t, x) = ψ(t, x, ϕ(t, x), Dϕ(t, x)) .
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Lemma 4.2. Let ϕ be a smooth test function, and let B = BR(x0) be the open
ball around x0 with radius R > 0. Suppose that there are t1 < t2 ≤ T such that

cl(M) ⊂ M0(ϕ), where M := (t1, t2)×B.

Then

sup
∂pM

(v − ϕ) = max
cl(M)

(v∗ − ϕ),

where ∂pM is the parabolic boundary of M; i.e., ∂pM = ([t1, t2]× ∂B)∪({t2} × B̄
)
.

Proof. We shall denote M := cl(M). Suppose, to the contrary, that

max
M

(v∗ − ϕ)− sup
∂pM

(v − ϕ) := 2β > 0,

and let us work toward a contradiction of (DP2).
Choose (t0, x0) ∈M so that (v − ϕ)(t0, x0) ≥ −β + maxM(v∗ − ϕ), and

(v − ϕ)(t0, x0) ≥ β + sup
∂pM

(v − ϕ).(4.12)

Step 1. In view of Remark 4.5, infζ∈Ũ1
(δU (ζ)− ζ∗ν0) > 0 is equivalent to ν0 ∈

int(U). Set

N :=
{
(t, x, y) : ν̂(t, x, y) ∈ int(U) and − Lν̂(t,x,y)ϕ(t, x) + b (t, x, y, ν̂(t, x, y)) > 0

}
,

where ν̂(t, x, y) = ψ(t, x, y,Dϕ(t, x)), and, for η ≥ 0,

Mη := { (t, x) : (t, x, ϕ(t, x)− η) ∈ N } .

Note that this definition of M0 := M0(ϕ) agrees with the previous definition. More-
over, in view of our hypothesis, for all sufficiently small η, M ⊂ Mη. Fix η ≤ β
satisfying this inclusion.

Step 2. Let η be as in the previous step. Let (Xη, Yη) be the solution of the state
equation with initial data Xη(t0) = x0, Yη(t0) = ϕ(t0, x0)− η and the control ν given
in the feedback form

ν(t, x) = ψ(t, x, ϕ(t, x)− η,Dϕ(t, x)).

Set

ν(t) := ν(t,Xη(t))

so that

(Xη, Yη) = Zνt0,x0,v(t0,x0)−η =
(
Xν
t0,x0

, Y ν
t0,x0,v(t0,x0)−η

)
.

Set

Ŷη(t) := ϕ(t,Xη(t))− η + (v − ϕ)(t0, x0),

and observe that Yη(0) = Ŷη(0) = v(t0, x0)− η. In the next step, we will compare the

processes Yη and Ŷη.
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Step 3. By Itô’s rule,

dŶη(t) = Lν(t)ϕ(t,Xη(t))dt + Dϕ(t,Xη(t)) · σ∗(t,Xη(t), ν(t))dW (t).

In view of (2.1) and the definition of ν(t),

Dϕ(t,Xη(t)) · σ∗(t,Xη(t), ν(t)) = a∗(t,Xη(t), Ŷη(t), ν(t)).

Hence

dŶη(t) = b̂(t)dt + a∗(t,Xη(t), Ŷη(t), ν(t))dW (t),

where

b̂(t) := Lν(t)ϕ(t,Xη(t)).

Recall that Yη solves the same SDE with a different drift term:

dYη(t) = b(t)dt + a∗(t,Xη(t), Yη(t), ν(t))dW (t),

where b(t) := b(t,Xη(t), Yη(t), ν(t)).
Let θ be the stopping time

θ := inf { s > 0 : (t0 + s,Xη(t0 + s)) �∈ M } .
Since M is an open set containing (t0, x0), the stopping time θ is positive a.s.

Now, from the definition of η, we haveM⊂Mη. It follows that, for t ∈ [t0, t0+θ),

(t,Xη(t)) ∈Mη a.s.; i.e., (t,Xη(t), Ŷη(t)) ∈ N a.s. by definition of Mη. Hence

b(t) > Lν(t)ϕ(t,Xη(t)) = b̂(t), t ∈ [t0, t0 + θ), P − a.s.

Since Yη(0) = Ŷη(0) = v(t0, x0)− η, it follows from stochastic comparison that

Ŷη(t) ≤ Yη(t), t ∈ [t0, t0 + θ), P − a.s.

Step 4. We now proceed to contradict (DP2). First, observe that, by continuity
of the process Xη, (t0 + θ,Xη(t0 + θ)) ∈ ∂pM. Also, from inequality (4.12), we have
v ≤ ϕ− β + (v − ϕ)(t0, x0) on ∂pM. Therefore,

Yη(t0 + θ)− v(t0 + θ,Xη(t0 + θ)) ≥ β + Yη(t0 + θ)− ϕ(t0 + θ,Xη(t0 + θ))

+ (v − ϕ)(t0, x0)

= (β − η) + Yη(t0 + θ)− Ŷη(t0 + θ)

≥ β − η ≥ 0

from step 3. By (4.12) and the definition of (Xη, Yη), we have Yη = Y ν
t0,x0,v(t0,x0)−η

and Xη = Xν
t0,x0

. Then the previous inequality contradicts (DP2).

Proof of the subsolution property. Fix (t0, x0) ∈ [0, T ) × R
d, and let ϕ be a

C2([0, T ]× R
d) function satisfying

(v∗ − ϕ)(t0, x0) = (strict) max
(t,x)∈[0,T )×Rd

(v∗ − ϕ) .

Set z0 := (x0, ϕ(t0, x0)). Let M0 := M0(ϕ) be as in the previous lemma. Since
(t0, x0) is a strict maximizer of (v∗−ϕ) and since M0 is an open set, by the previous
lemma we conclude that (x0, y0) �∈ M0. Then, by the definition of M0,

min

{
inf
ζ∈Ũ1

(δU (ζ)− ζ∗ν̂(t0, z0)) , −Lν̂(t0,z0)ϕ(t0, x0) + b (t0, z0, ν̂(t0, z0))

}
≤ 0,

and therefore v∗ is a viscosity subsolution.
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5. Terminal condition. To characterize the value function as the unique so-
lution of the dynamic programming equation, we need to specify the terminal data.
The definition of the value function implies that

v(T, x) = g(x), x ∈ R.(5.1)

However, it is known that

G(x) := lim inf
t↑T, x′→x

v(t, x′)

may be strictly larger than g(x) (see, for instance, [4] and Lemma 5.1 below).
In this section, we will characterize G as the viscosity supersolution of a first order

PDE. We will also study

G(x) := lim sup
t↑T, x′→x

v(t, x′)

and prove that G is a viscosity subsolution of the same equation. More precisely, we
have the following theorem.

Theorem 5.1. Let the assumptions of Theorem 4.1 hold, and assume that G
and G are finite for every x ∈ R

d. Suppose, further, that (g∗)∗ ≥ g. Then G and G,
respectively, are viscosity super- and subsolutions of the following equations on R

d:

min{G(x)− g∗(x); H (T, x,G(x), DG(x))} ≥ 0,

min{G(x)− g∗(x); H
(
T, x,G(x), DG(x)

)} ≤ 0.

In most cases, since a subsolution is not greater than a supersolution, this char-
acterization implies that G ≤ G and therefore that G = G. In the next section,
we provide examples for which this holds, and we will also compute G := G = G
explicitly in those examples.

The rest of this section is devoted to the proof of Theorem 5.1.
Remark 5.1. In the definition of G, we may replace v by v∗:

G(x) = lim sup
t↑T, x′→x

v∗(t, x′).

Similarly,

G(x) := lim inf
t↑T, x′→x

v∗(t, x′).

We start with the following lemma.
Lemma 5.1. Suppose that G(x) and G(x) are finite for every x ∈ R

d. Then

G(x) ≥ g∗(x) for all x ∈ R
d.

Proof. Take a sequence (xn, tn) → (x, T ) with tn < T . Set yn := v(tn, xn)+(1/n).
For each n, there exists a control νn ∈ U satisfying

Y νn
tn,xn,yn(T ) ≥ g

(
Xνn
tn,xn

(T )
)

P− a.s.

Since a and b are bounded,

E
[
Y νn
tn,xn,yn(T )

] ≤ yn + ‖b‖∞(T − tn) = v(tn, xn) +
1

n
+ ‖b‖∞(T − tn).
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We continue by using the following claim, whose proof will be provided later:{
Y νn
tn,xn,yn(T ) , n ≥ 0

}
is uniformly integrable.(5.2)

Then

lim inf
n→∞ v(tn, xn) ≥ lim inf

n→∞ E
[
Y νn
tn,xn,yn(T )

]
= E

[
lim inf
n→∞ Y νn

tn,xn,yn(T )
]

≥ E
[

lim inf
n→∞ g

(
Xνn
tn,xn

(T )
) ]

.

Since U is compact and (tn, xn) converges to (T, x), Xνn
tn,xn

(T ) approaches x as n
tends to infinity. The required result then follows from the definition of the lower
semicontinuous envelope g∗ of g.

It remains to prove claim (5.2). Since b is bounded,

∣∣Y νn
tn,xn,yn(T )

∣∣ ≤ |yn|+ (T − tn)‖b‖∞ +

∣∣∣∣∣
∫ T

tn

a
(
u, Zνntn,xn,yn(u), νn(u)

)∗
dW (u)

∣∣∣∣∣
≤ T‖b‖∞ + |v(tn, xn)|+

∣∣∣∣∣
∫ T

tn

a
(
u, Zνntn,xn,yn(u), νn(u)

)∗
dW (u)

∣∣∣∣∣ .
Now observe that lim sup v(tn, xn) ≤ lim sup v∗(tn, xn) ≤ G(x) and lim inf v(tn, xn) ≥
lim inf v∗(tn, xn) ≥ G(x). This proves that the sequence v(tn, xn) is bounded. In
order to complete the proof, it suffices to show that the sequence{

Un :=

∫ T

tn

a
(
u, Zνntn,xn,yn(u), νn(u)

)∗
dW (u), n ≥ 0

}

is uniformly integrable. Since a is bounded,

sup
n≥0

E
[
U2
n

] ≤ sup
n≥0

(T − tn)‖a∗a‖∞ ≤ T‖a∗a‖∞.

Hence {Un, n ≥ 0} is bounded in L2, and, therefore, it is uniformly integrable.
Next, we will show that G is a viscosity supersolution of H ≥ 0, where H is as in

(4.3).
Lemma 5.2. Suppose that G(x) is finite for every x ∈ R

d. Then G is a viscosity
supersolution of

H(T, x,G(x), DG(x)) ≥ 0.

Proof. By definition, G is lower semicontinuous. Let f be a C2(Rd) function
satisfying

0 = (G− f)(x0) = min
x∈Rd

(G− f)

at some x0 ∈ R
d. Observe that G ≥ f on R

d.
Step 1. In view of Remark 5.1, there exists a sequence (sn, ξn) converging to

(T, x0) such that sn < T and

lim
n→∞ v∗(sn, ξn) = G(x0).
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For a positive integer n, consider the auxiliary test function

ϕn(t, x) := f(x)− 1

2
|x− x0|2 +

T − t

(T − sn)2
.

Let B := B1(x0) be the unit open ball in R
d centered at x0. Choose (tn, xn) ∈

[sn, T ]× B̄, which minimizes the difference v∗ − ϕn on [sn, T ]× B̄.
Step 2. We claim that, for sufficiently large n, tn < T , and xn converges to x0.

Indeed, for sufficiently large n,

(v∗ − ϕn)(sn, ξn) ≤ − 1

2(T − sn)
.

On the other hand, for any x ∈ B̄,

(v∗ − ϕn)(T, x) = G(x)− f(x) +
1

2
|x− x0|2 ≥ G(x)− f(x) ≥ 0.

Comparing the two inequalities leads us to conclude that tn < T for large n. Suppose
that, on a subsequence, xn converges to x∗. Since tn ≥ sn and (tn, xn) minimizes the
difference (v∗ − ϕn),

(G− f)(x∗) − (G− f)(x0)

≤ lim inf
n→∞ (v∗ − ϕn)(tn, xn)− (v∗ − ϕn)(sn, ξn)− 1

2
|xn − x0|2

≤ lim sup
n→∞

(v∗ − ϕn)(tn, xn)− (v∗ − ϕn)(sn, ξn)− 1

2
|xn − x0|2

≤ −1

2
|x∗ − x0|2.

Since x0 minimizes the difference G− f ,

0 ≤ (G− f)(x∗)− (G− f)(x0) ≤ −1

2
|x∗ − x0|2.

Hence x∗ = x0. The above argument also proves that

0 = lim
n→∞(v∗ − ϕn)(tn, xn)− (v∗ − ϕn)(sn, ξn)

= −G(x0) + lim
n→∞ v∗(tn, xn) +

(T − sn)− (T − tn)

(T − sn)2

≥ −G(x0) + lim sup
n→∞

v∗(tn, xn).

This proves that lim supn→∞ v∗(tn, xn) ≤ G(x0). Since lim sup v∗(tn, xn) ≥
lim inf v∗(tn, xn) ≥ G(x0), by definition of G, this proves that

lim
n→∞ v∗(tn, xn) = G(x0).(5.3)

This implies that, for all sufficiently large n, (tn, xn) is a local minimizer of the
difference (v∗ − ϕn). In view of the general theory of viscosity solutions (see, for
instance, Fleming and Soner [14]), the viscosity property of v∗ holds at (tn, xn).

Step 3. We now use the viscosity property of v∗ in [0, T )× R
d: for every n,

H(tn, xn, v∗(tn, xn), Dϕn(xn, tn)) ≥ 0.
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Note that Dϕn(xn, tn) = Df(xn, tn)− (xn−x0), and recall that H is continuous; see
Remark 4.4. Since (tn, xn) tends to (T, x0), (5.3) implies that

H(T, x0, G(x0), Df(x0)) ≥ 0.

These results imply that G is a viscosity supersolution of

min {G(x)− g∗(x); H(T, x,G(x), DG(x))} ≥ 0,(5.4)

proving the first part of Theorem 5.1. The following result concludes the proof of the
theorem.

Lemma 5.3. Suppose that G(x) and G(x) are finite for every x ∈ R
d and that

(g∗)∗ ≥ g. Then G is a viscosity subsolution on R
d of

min
{
G(x)− g∗(x); H(T, x,G(x), DG(x))

} ≤ 0.

Proof. By definition, G is upper semicontinuous. Let x0 ∈ R
d and f ∈ C2(Rd)

satisfy

0 = (G− f)(x0) = max
x∈Rd

(G− f).

We need to show that, if G(x0) > g∗(x0), then

H(T, x0, G(x0), DG(x0)) ≤ 0.(5.5)

So we assume that

G(x0) > g∗(x0).(5.6)

For a positive integer n, set

sn := T − 1

n2
,

and consider the auxiliary test function

ϕn(t, x) := f(x) +
1

2
|x− x0|2 + n(T − t), (t, x) ∈ [sn, T ]× R

d.

In order to obtain the required result, we shall first prove that the test function ϕn
does not satisfy the condition of Lemma 4.2 on [sn, T ]×BR(x0) for some R > 0, and
then we shall pass to the limit as n→∞.

Step 1. By definition, G ≥ G. From Lemma 5.1, this provides G ≥ g∗ and then
G ≥ (g∗)∗ by upper semicontinuity of G. Hence, by assumption of the lemma,

G ≥ g.(5.7)

This proves that (v − ϕn)(T, x) = (g − f)(x) − |x − x0|2/2 ≤ (G − f)(x) ≤ 0 by
definition of the test function f . Then, for all R > 0,

sup
BR(x0)

(v − ϕn)(T, .) ≤ 0.

Now suppose that there exists a subsequence of (ϕn), still denoted (ϕn), such that

lim
n→∞ sup

BR(x0)

(v − ϕn)(T, .) = 0,
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and let us work toward a contradiction. For each n, let (xkn)k be a maximizing sequence
of (v − ϕn)(T, .) on BR(x0); i.e.,

lim
n→∞ lim

k→∞
(v − ϕn)(T, xkn) = 0.

Then it follows from (5.7) that (v − ϕn)(T, xkn) ≤ −|xkn − x0|2/2, which provides

lim
n→∞ lim

k→∞
xkn = x0.

Therefore,

0 = limn→∞ limk→∞(v − ϕn)(T, xkn) = limn→∞ limk→∞ g(xkn)− f(x0)
≤ lim supx→x0

g(x)− f(x0) = (g∗ − f)(x0) < (G− f)(x0)

by (5.6). Since (G − f)(x0) = 0, this cannot happen since (G − f)(x0) = 0. The
consequence of this is

lim sup
n→∞

sup
BR(x0)

(v − ϕn)(T, .) < 0 for all R > 0.(5.8)

Step 2. Let (tn, xn)n be a maximizing sequence of (v∗−ϕn) on [sn, T ]×∂BR(x0).
Then, since T − tn ≤ T − sn = n−2,

lim sup
n→∞

sup
[sn,T ]×∂BR(x0)

(v∗ − ϕn) ≤ lim sup
n→∞

(v∗(tn, xn)− f(xn))− 1

2
R2.

Since tn −→ T and, after passing to a subsequence, xn −→ x∗ for some x∗ ∈ ∂BR(x0),
we get

lim sup
n→∞

sup
[sn,T ]×∂BR(x0)

(v∗ − ϕn) ≤ (G− f)(x∗)− 1

2
R2 ≤ −1

2
R2.

This, together with (5.8), implies that, for all R > 0, there exists n(R) such that, for
all n > n(R),

max{ (v − ϕn) : ∂p ((sn, T )×BR(x0)) } < 0 = (v∗ − ϕn)(T, x0).

Hence it follows from Lemma 4.2 that

(sn, T )×BR(x0) is not a subset of M0(ϕn) for all n > n(R).(5.9)

Step 3. Observe that, for all ν ∈ U and (t, x, y),

−Lνϕn(t, x) = n− Lνf(x)− µ(t, x, ν)∗(x− x0)− 1

2
Trace[σ∗σ](t, x, ν) > b(t, x, y, ν),

provided that n is sufficiently large. Then, for large n,

M0(ϕn) ∩ ((sn, T )×BR(x0))

= { (t, x) ∈ (sn, T )×BR(x0) : H(t, x, ϕn(t, x), Dϕn(t, x)) > 0 }.
In view of this, it follows from (5.9) that there is a sequence (tn, xn) converging to
(T, x0) such that

H(tn, xn, ϕn(tn, xn), Dϕn(tn, xn)) ≤ 0.

We now let n tend to infinity to obtain (5.5).



VISCOSITY PROPERTY FOR STOCHASTIC TARGET PROBLEMS 421

6. Application: Superreplication problem in finance. Consider a financial
market consisting of

• a nonrisky asset with price process X̃0 normalized to unity,
• a risky asset X̃ defined by a positive price process with dynamics described

by an SDE.
A trading strategy is an F-adapted process ν = {ν(t), 0 ≤ t ≤ T} valued in the

closed interval [−*, u] with *, u ∈ [0,∞) and * + u > 0. At each time t ∈ [0, T ],
ν(t) represents the proportion of wealth invested in the risky asset X̃. The set of all
trading strategies is denoted by U .

Given an initial capital ỹ > 0 and a trading strategy ν, the wealth process Ỹ is
defined by

Ỹ ν
ỹ (0) = ỹ and dỸ ν

ỹ (t) = Ỹ ν
ỹ (t)ν(t)

dX̃(t)

X̃(t)
.

We shall consider a “large investor” model in which the dynamics of the risky asset
price process may be affected by trading strategies. Namely, given a trading strategy
ν ∈ U ,

X̃ν(0) = eX
ν(0) = eX(0), X̃ν(t) = eX

ν(t),

dXν(t) = µ (t,Xν(t), ν(t)) dt + σ (t,Xν(t), ν(t)) dW (t),

where W is a one-dimensional Brownian motion. Define the log-wealth process:

Y ν
y (0) = y := ln (ỹ) and Y ν

y (t) = ln
(
Ỹ ν
ỹ (t)

)
.

Then a direct application of Itô’s lemma provides

dY ν
y (t) = b (t,Xν(t), ν(t)) dt + ν(t)σ (t,Xν(t), ν(t)) dW (t),

where

b(t, x, r) = r

(
µ +

1

2
σ2

)
(t, x, r)− 1

2
r2σ2(t, x, r).

Let f be a positive function defined on [0,∞). The superreplication problem is defined
by

ṽ(0, X(0)) := inf
{
ỹ > 0 : ∃ ν ∈ U , Ỹ ν

ỹ (T ) ≥ f (Xν(T )) P − a.s.
}
.

Here f (Xν(T )) is a contingent claim. The value function of the above superreplication
problem is then the minimal initial capital which allows the seller of the contingent
claim to face the promised payoff f (Xν(T )) through some trading strategy ν ∈ U .

To see that the superreplication problem belongs to the general class of stochastic
target problems studied in the previous sections, we introduce

v(0, X(0)) := ln ṽ(0, X(0)) and g := ln f.

Then

v(0, X(0)) := inf
{
y ∈ R : ∃ ν ∈ U , Y ν

y (T ) ≥ g (Xν(T )) P − a.s.
}
.
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Remark 6.1. Assume that function g is bounded. Then the value function v is
bounded. Using the notation of previous sections, we also have that v∗, v∗, G, and G
are bounded functions.

Let us introduce the support function of the interval [−*−1, u−1]:

h(p) := u−1p+ + *−1p−,

with the convention 1/0 = +∞, and the usual notation p+ := p∨ 0 and p− := (−p)+.
Observe that h is a mapping from R into R∪{+∞}. We also denote by F and F the
functions

F := eG = lim sup
t↑T,x′→x

ṽ(t, x′) and F := eG = lim inf
t↑T,x′→x

ṽ(t, x′).

Applying Theorems 4.1 and 5.1, we obtain the following characterization of the super-
replication problem ṽ by a change of variable.

Theorem 6.1. Let µ and σ be bounded Lipschitz functions uniformly in the t
variable, and σ > 0. Suppose further that g is bounded and satisfies (g∗)∗ ≥ g. Then

(i) ṽ is a discontinuous viscosity solution of

min

{
−ṽt(t, x)− 1

2
σ2 (t, x, ṽx(t, x)) ṽxx(t, x) ; ṽ(t, x)− h (ṽx(t, x))

}
= 0

on [0, T )× R .

(ii) The terminal value functions F and F satisfy in the viscosity sense

min{ F − f∗; F − h(F x) } ≥ 0,

min{ F − f∗; F − h(F x) } ≤ 0 on R.

The rest of this section is devoted to the characterization of the terminal functions
F and F . It is known that the first order variational inequality appearing in part (ii)
of the above theorem could fail to have a unique bounded discontinuous viscosity
solution: under our condition (f∗)∗ ≥ f , all viscosity discontinuous bounded solutions
have the same lower semicontinuous envelope; see Barles [3]. Therefore, we do not
have much to say in the case where the payoff function f is not continuous.

We provide a characterization of the terminal condition of the superreplication
problem in the case of Lipschitz payoff function f .

Proposition 6.1. Let the conditions of Theorem 6.1 hold. Assume, further, that
the payoff function f is Lipschitz on R. Then

F (x) = F (x) = f̂(x) := sup
y∈R

f(x + y)e−δ(y),

where δ := δU is the support function of the interval U = [−*, u].
Proof. From Theorem 6.1, functions F and F are, respectively, upper and lower

semicontinuous viscosity sub- and supersolutions of

(VI) min {u− f ; u− h(ux)} = 0 on R.

In order to obtain the required result, we shall first prove that f̂ is a (continuous)

viscosity supersolution of (VI) (step 1). Then we will prove that F ≥ f̂ (step 2). The
proof is then concluded by means of a comparison theorem (Barles [2, Theorem 4.3,
p. 93]); since f is Lipschitz, conditions (H1), (H4), and (H11) of this theorem are easily

seen to hold. Since F ≥ F by definition, the above claims provide f̂ ≥ F ≥ F ≥ f̂ .
Step 1. Let us prove that f̂ is a continuous viscosity supersolution of (VI).
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(i) f̂ is a Lipschitz function. To see this, observe that, since δ is a sublinear

function, it follows that
ˆ̂
f = f̂ , where

ˆ̂
f is defined by the same formula as f̂

with f̂ substituted to f . Then, since f̂ and δ are nonnegative,

f̂(x + y)− f̂(x) ≤ f̂(x + y)(1− e−δ(y)) for all y ∈ R

≤ f̂(x + y)δ(y) ≤ ‖f‖∞ max(u, *)|y|.

(ii) f̂ is a supersolution of (VI). To see this, let x0 ∈ R and ϕ ∈ C1(R) be such

that 0 = (f̂ − ϕ)(x0) = min(f̂ − ϕ). Observe that f̂ ≥ ϕ. Since f̂ > 0, we
can assume without loss of generality that ϕ > 0. By definition, we have
f̂(x0) ≥ f(x0).

It remains to prove that (ϕ′/ϕ)(x0) ∈ [−*, u]. Since
ˆ̂
f = f̂ , we have

ϕ(x0) = f̂(x0) ≥ f̂(x0 + h)e−δ(h) ≥ ϕ(x0 + h)e−δ(h)

for all h ∈ R. Now let h be an arbitrary positive constant. Then

ϕ(x0 + h)− ϕ(x0)

h
≤ ϕ(x0 + h)

1− e−uh

h
,

and, by sending h to zero, we get ϕ′(x0) ≤ uϕ(x0). Similarly, by considering an
arbitrary constant h < 0, we see that ϕ′(x0) ≥ −*ϕ(x0).

Step 2. We now prove that F ≥ f̂ . From the supersolution property of F , we
have that F ≥ f , and, for all y ∈ R, F satisfies in the viscosity sense

δ(y)F − yF x ≥ 0.

By an easy change of variable, we see that G = lnF satisfies in the viscosity sense

δ(y)− yGx ≥ 0.

This proves that the function x �−→ δ(y)x−yG(x) is nondecreasing (see, e.g., Cvitanić,
Pham, and Touzi [9]), and therefore

δ(y)(x + y)− yG(x + y) ≥ δ(y)x− yG(x) for all y > 0,

δ(y)(x + y)− yG(x + y) ≤ δ(y)x− yG(x) for all y < 0.

Recalling that F ≥ f , this provides

F (x) ≥ sup
y∈R

F (x + y)e−δ(y) ≥ sup
y∈R

f(x + y)e−δ(y) = f̂(x).
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Introduction. It is well known that value functions of optimal control problems
are solutions to Hamilton–Jacobi partial differential equations of the form

− ∂

∂t
v(t, x) + inf

u∈P (x,v(t,x))

(
∂

∂x
v(t, x)f(x, v(t, x), u)− g(x, v(t, x), u)

)
= 0

with adequate boundary conditions.
Observe, nevertheless, that, in this equation, the infimum hides two inequalities:
1. there exists u ∈ P (x, v(t, x)) such that

− ∂

∂t
v(t, x) +

∂

∂x
v(t, x)f(x, v(t, x), u)− g(x, v(t, x), u) ≤ 0;

2. for all u ∈ P (x, v(t, x)),

∂

∂t
v(t, x)− ∂

∂x
v(t, x)f(x, v(t, x), u) + g(x, v(t, x), u) ≤ 0.

However, several other problems of control theory lead to the study of controlled
systems of first-order partial differential equations (or systems of first-order partial
differential inclusions): Let P : X×Y ❀ U be a set-valued map associating with any
pair (x, y) a feasible set P (x, y) of controls, and let f and g be single-valued maps
from X × Y × U to finite dimensional vector spaces X and Y , respectively.

The problem is to find a set-valued map V : R+×X ❀ Y satisfying the following:
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1. there exists u ∈ P (x, V (t, x)) such that

0 ∈ “− ∂

∂t
V (t, x) +

∂

∂x
V (t, x)f(x, V (t, x), u)”− g(x, V (t, x), u);(1)

2. for all u ∈ P (x, v(t, x)),

0 ∈ “
∂

∂t
V (t, x)− ∂

∂x
V (t, x)f(x, V (t, x), u)” + g(x, V (t, x), u),(2)

where we shall give a meaning to the derivative

“
∂

∂t
V (t, x)− ∂

∂x
V (t, x)f(x, V (t, x), u)”

in Theorem 3.1 below. Indeed, even in the absence of controls, it is well known that
such solutions may have shocks, i.e., can be set-valued, and, when they happen to be
single-valued, are not even necessarily differentiable in the usual sense.

The definition of solution shall be taken in a generalized sense—the Frankowska
solution1 that we shall define later in the paper.

In order to obtain uniqueness, we have to impose boundary conditions. Fur-
thermore, problems arising in economics, finance, and other fields lead us to introduce
constraints bearing on both the state and the solution. We shall describe these bound-
ary conditions and constraints by introducing two set-valued maps Φ : R+ ×X ❀ Y
and Ψ : R+ × X ❀ Y such that Φ ⊂ Ψ. The first one encompasses initial and/or
boundary-value conditions, or other conditions as we shall see, and the second one
encompasses viability constraints both on the state variables x, which must remain
in the domain of Ψ, and on the solution V (t, x).

We shall prove that there exists a unique “solution” (t, x) ❀ V (t, x) to this general
problem (1,2) satisfying the conditions

∀ (t, x) ∈ R+ ×X, Φ(t, x) ⊂ V (t, x) ⊂ Ψ(t, x)

in the class of closed set-valued maps (i.e., set-valued maps with closed graph) that
depends continuously of the data Φ (in the “graphical sense,” mapping graphical
limits to graphical limits, as is explained later).

Even more, we shall provide an explicit formula when f(x, u) and P (x) do not
depend on the variable y and when

g(x, y, u) := −M(x, u)y − L(x, u)

is affine with respect to y, where

1Hélène Frankowska proved that the epigraph of the value function of an optimal control
problem—assumed to be only lower semicontinuous—is semipermeable (i.e., invariant and back-
ward viable) under a (natural) auxiliary system. Furthermore, when it is continuous, she proved
that its epigraph is viable and its hypograph invariant [43, 44, 46]. By duality, she proved that the
latter property is equivalent to the fact that the value function is a viscosity solution of the associ-
ated Hamilton–Jacobi equation in the sense of Crandall and Lions. See also [32, 31] for more details.
We refer also to [39, 40] for the study of these equations through the characteristics method using
the contingent derivative (and not epi- and hypo- derivatives). Such concepts have been extended
to solutions of systems of first-order partial differential equations without boundary conditions by
Hélène Frankowska and the author (see [19, 20, 21, 22, 23, 24] and chapter 8 of [2] and [7]). See also
[16, 17]. This point of view is used here in the case of boundary value problems.
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1. M is a continuous matrix-valued function

M : (x, u) ∈ X × U �→M(x, u) ∈ L(X,Y ),

2. L is a continuous “vector-Lagrangian”

L : (x, u) ∈ X × U �→ L(x, u) ∈ Y.

Let us denote by C : x ∈ X ❀ C(x) ⊂ C(0,∞;X) × L1(0,∞;U) the set-valued
map associating with x ∈ X the set C(x) of the pairs (x(·), u(·)) of solutions to the
control system {

(i) x′(t) = f(x(t), u(t)),
(ii) u(t) ∈ P (x(t)),

starting at x at t = 0.
In the absence of constraints (Ψ(t, x) := Y ), we shall prove that, setting




JΦ(t; (x(·), u(·)))(T, x)

:= e

∫ t

0
M(x(s),u(s))ds

Φ(T − t, x(t)) +

∫ t

0

e

∫ τ

0
M(x(s),u(s))ds

L(x(τ), u(τ))dτ,

the set-valued solution V is defined by

V (Φ)(T, x) :=
⋃

(x(·),u(·))∈C(x)

⋃
t∈[0,T ]

JΦ(t; (x(·), u(·)))(T, x).

With an adequate choice of the set-valued map Ψ associated with the set-valued
map Φ, we find as a solution the set-valued map defined by

W (Φ)(T, x) :=
⋃

(x(·),u(·))∈C(x)

⋂
t∈[0,T ]

JΦ(t; (x(·), u(·)))(T, x).

We shall find as many formulas as pairs (Ψ,Φ) of set-valued maps (see formula (24)
of Theorem 5.1 below).

We can read this type of result the other way around: For instance, the set-valued
map V (Φ) defined by




V (Φ)(T, x) :=
⋃

(x(·),u(·))∈C(x)

⋃
t∈[0,T ](

e

∫ t

0
M(x(s),u(s))ds

Φ(T − t, x(t)) +

∫ t

0

e

∫ τ

0
M(x(s),u(s))ds

L(x(τ), u(τ))dτ

)

is the unique “solution” to the Hamilton–Jacobi partial differential inclusion (1,2)
satisfying the initial condition

V (0, x) = Φ(0, x)

and

∀ t ≥ 0, x ∈ X, Φ(t, x) ⊂ V (t, x).
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They define set-valued analogue of optimal control problems, where the “∪” op-
eration replaces the “inf” operation and the “∩” operation replaces the “sup” oper-
ation. Actually, when Y := R and when we associate with two extended functions
c : R+ ×X ❀ R ∪ {+∞} and b : R+ ×X ❀ R ∪ {+∞} the set-valued maps{

(i) Φ(t, x) := c(t, x) + R+,
(ii) Ψ(t, x) := b(t, x) + R+,

we find problems of dynamic valuation and management of portfolios in mathematical
finance, used, in particular, for valuating options as in [55, 30, 56]. For instance, we
deduce that


infy∈V (Φ)(T,x) y = inf(x(·),u(·))∈C(x) inft∈[0,T ](
e

∫ t

0
M(x(s),u(s))ds

c(T − t, x(t)) +

∫ t

0

e

∫ τ

0
M(x(s),u(s))ds

L(x(τ), u(τ))dτ

)

is the valuation function of a stopping time problem (see section 5 below).
These two explicit formulas are given by the caliber V : R+ ×X ❀ Y defined in

the following way: y belongs to V (T, x) if there exist a control t ∈ [0, T ] �→ u(t) and
a time T ∗ ∈ [0, T ] such that the solution (x(·), u(·), y(·)) to the control system


(i) x′(t) = f(x(t), y(t), u(t)),
(ii) y′(t) = g(x(t), y(t), u(t)),
(iii) u(t) ∈ P (x(t), y(t))

starting at x(0) = x, y(0) = y satisfies


(i) ∀ t ∈ [0, T ∗], y(t) ∈ Ψ(T − t, x(t)),

(ii) y(T ∗) ∈ Φ(T − T ∗, x(T ∗)).

Observe that taking Φ(t, x) = ∅ whenever t > 0 guarantees that T ∗ = T .
We shall prove that this set-valued map is the unique solution to our problem

(1,2). Actually, this is a reformulation dictated by problems arising in dynamic eco-
nomic theory, finance mathematics, and control theory of the celebrated “method of
characteristics.”

We shall revisit this method using the tools of set-valued analysis and viability
theory which go back to the early 1980’s.2 They find here an unexpected relevance
to assert the existence and the uniqueness of the solution to this problem since such
solutions may have shocks, i.e., can be set-valued, and even when they happen to
be single-valued, they are not differentiable in the usual sense. The tools forged by
set-valued analysis and viability theory happen to allow us to prove existence and
uniqueness in the class of set-valued maps with closed graph only instead of classes
of vector-distributions.3

2See [18, 2, 60], etc., for instance.
3The strong requirement of pointwise convergence of differential quotients can be weakened in

(at least) two ways, with each way sacrificing different groups of properties of the usual derivatives:
• Distributional derivatives. Fix the direction v, and take the limit of the function x �→

∇hf(x)(v) in the weaker sense of distributions. The limit Dvf may then be a distribution
and no longer a single-value map. However, it coincides with the usual limit when f is
Gâteaux differentiable. Moreover, one can define difference quotients of distributions, take
their limit, and thus differentiate distributions.
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The basic concept useful in our framework is the concept of the viable-capture
basin of a “target” C ⊂ K viable in a constrained subset K ⊂ X under a differential
inclusion x′ ∈ F (x): It is the subset CaptKF (C) of initial states x0 ∈ K such that C is
reached in finite time before possibly leaving K by at least one solution x(·) ∈ S(x0),
where S(x0) denotes4 the set of solutions to the differential inclusion x′ ∈ F (x)
starting at x0.

Then we shall prove that the graph of the solution (t, x) ❀ V (t, x) to the above
boundary value problem is the viable-capture basin of the graph of the set-valued map
Φ viable in the graph of the set-valued map Ψ under the auxiliary differential inclusion


(i) τ ′(t) = −1,
(ii) x′(t) = f(x(t), y(t), u(t)),
(iii) y′(t) = g(x(t), y(t), u(t)),
(iv) u(t) ∈ P (x(t), y(t))

and that this solution is unique among the solutions with closed graph to this bound-
ary value problem.

In some instances, this viable-capture basin can be computed analytically, and
we obtain in this case an explicit formula of the solution to the above boundary value
problem.

In all cases, the Viability/Capturability Algorithm designed by Patrick Saint-
Pierre provides numerically the viable-capture basins and thus the solutions to systems
of Hamilton–Jacobi–Bellman equations, bypassing finite-difference methods. (See

Distributions are no longer functions or maps defined on Rn, so they lose the pointwise
character of functions and maps but retain the linearity of the operator f �→ Dvf , which
is mandatory for using the theory of the linear operator for solving partial differential
equations.

• Graphical derivatives. Fix the direction x, and take the limit of the function v �→ ∇hf(x)(v)
in the weaker sense of “graphical convergence.” (The graph of the graphical limit is the
Painlevé–Kuratowski upper limit of the graphs.) The limit Df(x) may then be a set-valued
map and no longer a single-value map. However, it coincides with the usual limit when
f is Gâteaux differentiable. Moreover, one can define difference quotients of set-valued
maps, take their limit, and thus differentiate set-valued maps. These graphical derivatives
keep the pointwise character of functions and maps, which is mandatory for implementing
the Fermat rule, proving inverse function theorems under constraints or using Lyapunov
functions, for instance, but they lose the linearity of the map f �→ Df(x).

In both cases, the approaches are similar: They use (different) convergences weaker than the
pointwise convergence for increasing the possibility for the difference-quotients to converge. But the
price to pay is the loss of some properties by passing to these weaker limits (the pointwise character
for distributional derivatives, the linearity of the differential operator for graphical derivatives).

4When we are studying the viable-capture basins of targets under differential inclusions, we
observe that they are not specific to differential inclusions. They involve only a few properties of the
solution map S, associating with any initial state x the set S(x) of solutions t �→ x(t) that are solutions
to the above differential inclusion starting at x at initial time 0. These properties (translation and
concatenation properties as well as continuity properties) of the solution map x ❀ S(x) are common
to other control problems, such as

1. control problems with memory (see the contributions of [50, 51, 52], some of them being
presented in [2]), before known under the name of functional control problems and now
called “path dependent control systems”;

2. parabolic (diffusion-reaction) type partial differential inclusions (see the contributions of
[64, 65, 66, 67], some of them being presented in [2]), also known as distributed control
systems;

3. “mutational equations” governing the evolution in metric spaces, including “morphological
equations” governing the evolution of sets (see [4], for instance).



430 JEAN-PIERRE AUBIN

[61, 38, 55, 56] for solutions of Hamilton–Jacobi–Bellman equations derived from
mathematical finance.)

This existence and uniqueness result follows from the following three steps:
1. From a characterization proved in [15] stating the viable-capture basin

CaptK(C) is the unique closed subset D between C and K satisfying{
(i) CaptD(C) = D,

(ii) CaptK(D) = D.
(3)

2. From a characterization stated below of the viable-capture basin of a target
C viable in a closed subset K under a differential inclusion x′ ∈ F (x) proved
in [12] (see also [57, 58, 59]): Let us recall that
(a) K\C is a repeller, meaning that all solutions x(·) ∈ S(x) starting from

x ∈ K\C reach C or leave K in finite time;
(b) the subset D\C is said to be locally viable under S if from any initial

state x ∈ D\C starts at least one solution viable in D\C on a nonempty
interval;

(c) a subset D ⊂ K is locally backward invariant relatively to K under S if,
for every x ∈ D, all backward solutions starting from x and viable in K
on an interval [0, T ] are viable in D on [0, T ].

Theorem 0.1. Let us assume that F is Marchaud5 and that a closed subset
C ⊂ K satisfies the property

K\C is a repeller under F .(4)

Then the viable-capture basin CaptK(C) is the unique closed subset D satis-
fying C ⊂ D ⊂ K and{

(i) D\C is locally viable under S,
(ii) D is locally backward invariant relatively to K under S.

(5)

3. From the viability and invariance theorems that translate the necessary and
sufficient conditions (5) in terms of tangential conditions. We recall that the
contingent cone to a subsetK at a point x ∈ K, introduced in the early 1930’s
independently by Bouligand and Severi, adapts to any subset the concept of
tangent space to manifolds: A direction v ∈ X belongs to TK(x) if there exist
sequences hn > 0 and vn ∈ X converging to 0 and v, respectively, such that

∀ n ≥ 0, x+ hnvn ∈ K.

This means that the contingent cone is the Painlevé–Kuratowski upper limit
of the subsets K−x

h when h converges to 0 (see, for instance, [18, 60] for more
details).
We shall use the following statements of [12].
Theorem 0.2. Let us assume that F is Marchaud, that C ⊂ K and K are
closed, and that K\C is a repeller. Then the viable-capture basin CaptKF (C)
is

5F is a Marchaud map if


(i) the graph and the domain of F are nonempty and closed,
(ii) the values F (x) of F are convex,
(iii) the growth of F is linear:

∃ c > 0 | ∀ x ∈ X, ‖F (x)‖ := supv∈F (x) ‖v‖ ≤ c(‖x‖+ 1).
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(a) the largest closed subset D satisfying C ⊂ D ⊂ K and

∀ x ∈ D\C, F (x) ∩ TD(x) �= ∅;(6)

(b) if, furthermore, F is Lipschitz, the unique closed subset D satisfying
C ⊂ D ⊂ K and the Frankowska properties


(i) ∀ x ∈ D\C, F (x) ∩ TD(x) �= ∅,
(ii) ∀ x ∈ D ∩ Int(K), −F (x) ⊂ TD(x),
(iii) ∀ x ∈ D ∩ ∂K, −F (x) ⊂ TD(x) ∪ TX\K(x).

(7)

4. From the property

TGraph(V )(t, x, y) = Graph(DV (t, x, y))

of the contingent derivative DV (t, x, y) of the set-valued map V : (t, x) ❀

V (t, x) at the point (t, x, y) of its graph introduced in [1]: The graph of the
set-valued map DV (t, x, y) from R×X to Y is equal to the contingent cone
to the graph of V at (t, x, y) (see [1]). This is how Fermat in 1637 defined
the derivative of a function as the slope of the tangent to its graph. Leib-
niz and Newton provided the characterization in terms of limits of difference
quotients. Here, too, the contingent derivative DV (t, x, y) is the upper graph-
ical limit of the difference quotients, the graph of which being by definition
the upper limit of the graphs of the difference quotients ∇hV (t, x, y) of V at
(t, x, y) ∈ Graph(V ) defined by

(λ, f) �→ ∇hV (t, x, y)(λ, f) :=
V (t+ λh, x+ hf)− y

h
.

Indeed, we observe that

Graph(∇hV (t, x, y)) =
Graph(V )− (t, x, y)

h

so that the contingent cone to the graph of V , being the upper limit of the
graphs of the difference quotients, is equal by definition to the graph of the
upper graphical limit of the difference quotients. Consequently, to say that
g ∈ Y belongs to the contingent derivative DV (t, x, y) (±1, f) of V at (t, x, y)
in the direction (±1, f) ∈ R×X means that

lim inf
h→0+, f ′→f

∥∥∥∥V (t± h, x+ hf ′)− y

h
− g

∥∥∥∥ = 0.

Since the contingent cone is a closed subset, the graph of a contingent deriva-
tive is always closed and positively homogenous. (This is what remains of the
required linearity of the derivative in classical analysis, but, fortunately, we
can survive pretty well without linearity.)
When u : R × X �→ Y is single-valued, we set Du(t, x) := Du(t, x, u(t, x)).

We see at once that Du(t, x)(±1, f) = ±∂u(t,x)
∂t + ∂u(t,x)

∂x · f whenever u is
differentiable at (t, x). When u is Lipschitz on a neighborhood of (t, x) and
when the dimension of X is finite, the domain of Du(t, x) is not empty.
Furthermore, the Rademacher theorem stating that a locally Lipschitz single-
valued map is almost everywhere differentiable implies that x ❀ Du(t, x) is
almost everywhere single-valued.
However, in this case, equality Du(t, x)(−1,−f) = −Du(t, x)(1, f) is not true
in general. We refer to [18, 60] for more details.
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The above results—which are interesting by themselves for other mathematical
models of evolutionary economics (see [3]), population dynamics, dynamical games
(see [11]), and epidemiology—can be applied to many other problems. Dealing with
subsets, they can be applied to graphs of single-valued maps as well as set-valued
maps, to epigraphs and hypographs of (extended) real-valued functions for solving
Hamilton–Jacobi–Bellman equations, to graph of “impulse” maps (which take empty
values except in discrete sets, useful in the study of hybrid systems or inventory
management), etc. (See, for instance, [5, 10, 6, 8, 9, 25, 26, 27, 28, 29, 34, 53, 54, 62, 63]
and their bibliographical references.)

Outline. We begin in section 1 with two nonstandard motivations arising in
macroeconomic problems faced by central banks (filtering informations on the econ-
omy from past informations and future expectations) and in the study of impulse and
hybrid systems, leading to systems of Hamilton–Jacobi–Bellman inclusions. This sec-
tion (which states the problems without solving them, as this task is done in specific
articles) can be skipped by true believers in mathematics. We define in section 2 the
“caliber” of a pair of set-valued maps (Φ,Ψ) under a control system that appears nat-
urally in some control problems and in economic and financial mathematics. We next
prove in section 3 that the caliber is the unique solution to the system of Hamilton–
Jacobi–Bellman inclusions satisfying the imposed conditions. In section 4, we provide
a useful stability result, stating roughly that the caliber of graphical limits is the
graphical limit of calibers. Section 5 deals with the explicit formula of the caliber
when the control system is structured and the exosystem is affine with respect to the
second variable. We also prove that, in this case, the caliber is the unique solution to
a system of “fixed-set equations” and provide interesting “barrier properties” of the
boundary of the caliber. We derive in section 6 the usual characterization theorems
of the valuation functions of a large class of control and stopping time problems as
Frankowska episolutions to the scalar Hamilton–Jacobi–Bellman equations that jus-
tify the usefulness of the results they are derived from, and we extend this scalar
situation in section 7 to the case of “dynamical vector optimization,” where we look
for intertemporal Pareto minima.

1. Motivations. We shall provide two motivations coming from recent issues
arising

1. in macroeconomics (filtering informations on the economy from past infor-
mations and future expectations), and

2. in hybrid systems and impulse control,
leading to systems of Hamilton–Jacobi–Bellman partial differential inclusions.

We refer to specific articles for more details, since they use the basic theorems of
this paper to solve the Hamilton–Jacobi–Bellman partial differential inclusions that
appear in those articles.

Further applications to the value functions of optimal control and stopping time
problems are given in section 6, and applications to dynamic vector optimization are
given in section 7.

1.1. Selector through past informations and future expectations. As
a first motivation, we present a problem originating in a research program under
current investigation by Noël Bonneuil, Halim Doss, Georges Haddad, Henri Pages,
Dominique Pujal, Patrick Saint-Pierre, and the author on macroeconomic problems
faced by central banks.

We quote excerpts of the introduction of [68]: It is a truism that monetary policy
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operates under considerable uncertainty about the state of the economy and the size
and nature of the disturbances that hit the economy...But in a more realistic case where
important variables are forward-looking [and not only backward-looking] variables, the
problem of efficient signal-extraction is inherently more complicated...In the real world,
many important indicator variables are forward-looking variables [routinely watched
by central banks].

We suggest taking up this issue by using nonlinear continuous evolutionary models
controlled by instruments such as interest rates. We keep the problem of extracting the
“real evolution,” knowing only backward-looking measurements and forward-looking
expectations that we shall describe by “expectation tubes.”

The use of the Kalman filter for extracting information is replaced by the recent
concept of the detector introduced in [13] and [27] in the case of “impulse and hybrid
control systems.” We adapt this concept of the detector in the case of both backward-
looking and forward-looking informations and expectations.

For that purpose, we introduce three time variables for describing the evolution of
the system: the current (or present) time T , the past time t ∈ [0, T ], and a prediction
time or forward-looking time s ≥ T , where a := s− T ∈ R+ is the prediction horizon
used to take into account anticipations and expectations (or make predictions) in the
future.

At each past date, the state is measured, or informations on the state are gathered:
This is mathematically described by a detectability tube (as in [13])

t ∈ R+ ❀ I(t) ⊂ X := Rn

that provides the limited amount of information about the states at time t. We take
I(t) := X when no information is recorded at time t. Hence “discrete” measurements
are obtained when I(t) �= X only for a discrete number of instants tn.

An example of detectability tubes is given by I(t) := h−1(y(t)), where h : X �→ Y
is an observation map (or measurement map) and where t �→ y(t) is the evolution of
the observed output:

∀ t ∈ [0, T ], y(t) = h(x(t)).

The same framework also houses the case when the observation map is set-valued:
We set I(t) := H−1(y(t)), and the above viability condition reads

∀ t ∈ [0, T ], y(t) ∈ H(x(t)),

so that “tychastic” uncertainties (by opposition to stochastic uncertainties) on the
measurements can be incorporated in this framework.

In order to take into account expectations made at each instant t for future
dates s := t + a, a ≥ 0, we describe them mathematically by an expectation tube
(t, a) ∈ R2

+ �→ I(t, a) ⊂ X, where we set I(t, 0) := I(t) for obtaining the detectability
tube.

We may assume that, if a1 ≤ a2, then I(t, a2) ⊂ I(t, a1) ⊂ I(t, 0) =: I(t), since the
predictions made at time t up to time s2 := t+a2 are valid up to time s1 := t+a1 ≤ s2.

Therefore, we associate with any current time T , any horizon s ≥ t, and any
backward-looking time t ∈ [0, T ] the set I(t, s − t) of states measured at time t that
depend upon the duration a := s − t of the expectation interval between t and the
horizon s.
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Hence the information/expectation constraint can be summarized by

∀ T ≥ 0, ∀ s ≥ T, ∀ t ∈ [0, T ], x(t) ∈ I(t, s− t).(8)

Let U be a space of controls, regulees, prices, interest-rate instruments, etc. The
dynamics of the state are described by a map f : (t, a, x, u) ∈ R2

+ ×X × U �→ X and
by a set-valued map P : R+ ×X ❀ U depicting the state-dependent constraints on
the controls u ∈ P (a, x).

For any current time T and horizon s ≥ T , we assume that the evolution of the
state of the system is governed by the control system

∀ t ∈ [0, T ],

{
(i) x′(t) = f(t, s− t, x(t), u(t)),
(ii) u(t) ∈ P (s− t, x(t)).

(9)

In other words, at each time t ∈ [0, T ], the velocity x′(t) depends upon the time t, the
time s− t left to the horizon s, and a control u(t) subjected to constraints depending
upon both the expected time s− t left to the horizon and the state x(t) at time t.

We also introduce a set-valued map a ∈ R+ ❀ C(a) specifying another constraint
on the subsets C(a) of initial states that may depend upon the term a ≥ 0 satisfying

∀ a ≥ 0, C(a) ⊂ I(0, a).

Definition 1.1. Let us consider a control system (f, P ), an expectation tube
I : R2

+ ❀ X, and a tube C : R+ ❀ X satisfying, for all a ≥ 0, C(a) ⊂ I(0, a).
The selector is the set-valued map S(I,C) : R2

+ ❀ X that associates with any
current time T and any expectation a := s−T the (possibly empty) subset S(I,C)(t, a)
of states x ∈ I(t, a) such that there exists a solution x(·) ∈ S(t, a, x) to the system


∀ t ∈ [0, T ], ∀ s := T + a ≥ 0,

(i) x′(t) = f(t, s− t, x(t), u(t)),
(ii) u(t) ∈ P (s− t, x(t))

(10)

such that 


(i) x(0) ∈ C(s),
(ii) ∀ t ∈ [0, T ], x(t) ∈ I(t, s− t),
(iii) x(T ) = x.

In other words, both the dynamics and the constraints depend upon horizon s ≥ T
and take into account the informations gathered at any preceding time t ∈ [0, T ] and
expectations at time s− t left to the horizon s. The selector is thus a tube associating
with any horizon s ≥ T the set of states x such that there exists a control u(·)
governing the evolution x(·) through control system (9):

∀ t ∈ [0, T ],

{
(i) x′(t) = f(t, s− t, x(t), u(t)),
(ii) u(t) ∈ P (s− t, x(t)),

which satisfies for all anterior time t ∈ [0, T ] the expected constraints made at that
time t for the future time s− t.

We can easily check the following lemma.
Lemma 1.2. The graph of the selector S(I,C) is the capture basin of {0} ×

Graph(C) viable in the graph of the tube I under the auxiliary system


(i) τ ′(t) = −1,
(ii) α′(t) = +1,
(iii) x′(t) = −f(τ(t), α(t), x(t)).
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Proof. Indeed, to say that (T, a, x) belongs to the viable-capture basin of {0} ×
Graph(C) viable in Graph(I) means that there exist an evolution x̂(·) to x̂′(t) ∈
−f(T − t, a+ t, x̂(t), ũ(t)) starting at x̂(0) := x and a time t∗ ≥ 0 such that

{
(i) ∀ t ∈ [0, t∗], (T − t, a+ t, x̂(t)) ∈ Graph(I),
(ii) (T − t∗, a+ t∗, x̂(t∗)) ∈ {0} ×Graph(C).

The second condition means that t∗ = T and that x̂(T ) belongs to C(a + T ). The
first one means that for every t ∈ [0, T ], x̂(t) ∈ I(T − t, a+ t). This amounts to saying
that the evolution x(·) := x̂(T − ·) is a solution to the control system

x′(t) = f(t, a+ T − t, x(t), u(t))

starting at x(0) := x̂(T ) ∈ C(T + a), satisfying x(T ) = x, and

∀ t ∈ [0, T ], ∀ a ≥ 0, x(t) ∈ I(t, a+ T − t).

This means that x ∈ S(I,C)(T, a).

We shall therefore characterize the selector as a solution to a system of Hamilton–
Jacobi–Bellman partial differential inclusions

∀ x ∈ V (t, a), ∃ u ∈ P (a, x) such that − ∂V (t, a, x)

∂t
+
∂V (t, a, x)

∂a
+f(t, a, x, u) = 0

satisfying the initial condition

∀ a ≥ 0, V (0, a) = C(a)

and the viability constraints

∀ (t, a) ∈ R2
+, V (t, a) ⊂ I(t, a).

We deduce from the knowledge of the derivatives of the selector the regulation
map R : R2

+ × X ❀ U providing the controls (or regulees, prices, or interest-rate
instruments) that at each time t, for any future date a and any state x, answer the
detection/prediction problems. The regulation map associates with any triple (t, a, x)
the set R(t, a, x) of controls u ∈ P (a, x) such that the solutions to the new control
system 


∀ t ∈ [0, T ], ∀ s ≥ T,

(i) x′(t) = f(t, s− t, x(t), u(t)),
(ii) u(t) ∈ R(t, s− t, x(t))

(11)

satisfy the constraints


(i) x(0) ∈ C(s),
(ii) ∀ t ∈ [0, T ], x(t) ∈ I(t, s− t),
(iii) x(T ) = x.

Finally, the Capture Basin Algorithm allows us to compute the selector and the
regulation map.
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1.2. The substratum of an impulse differential inclusion. Impulse differ-
ential inclusions are described by two set-valued maps, F—the right-hand side of
the differential inclusion x′ ∈ F (x) governing the continuous evolution of an impulse
system—and Φ, describing the reset map reinitializing the system when required and
a constrained set K inside which the evolution of the impulse differential equation
must remain. We denote by S(x) the set of solutions x(·) to the differential inclusion
starting at x.

Let us set x(−t) := limτ 
→t− x(τ) when x(·) is defined on some interval [t − η, t[,
where η > 0, and, for consistency, x(s) = x(−t) if s = t.

An evolution of the impulse differential inclusion, called a “run” or an “exe-
cution” in the hybrid system community, is a finite or infinite sequence x(·) :=
{(τn, xn, xn(·))}n≥0 made of triples of

1. nonnegative cadences τn ∈ [0,+∞[,
2. a sequence of reinitialized states xn,
3. a sequence of motives xn(·) ∈ S(xn) satisfying the end-point condition xn(τn) ∈

Φ−1(xn+1),
defining the sequence of impulse times tn+1 := tn+ τn and, on each interval [tn, tn+1[,

∀ t ∈ [tn, tn+1[, x(t) := xn(t− tn).(12)

If the sequence is finite and stops at τN , we set τN+1 := +∞ and take xN (·) ∈ S(xN ).
(This definition is taken from [25, 26].)

We say that a run x(·) is viable in K if, for any t ≥ 0, x(t) ∈ K.
At this stage, a run x(·) can just be a (discrete) sequence of states xn+1 ∈ Φ(xn) at

a fixed time, or just a (continuous) solution x(·) to the differential inclusion x′ ∈ F (x),
or a hybrid of these two modes, the discrete and the continuous.

We just define the concept of a substratum of an impulse differential inclusion
introduced in [9], which summarizes the salient features of a run, by considering only
its sequences of cadences τn and of reinitialized states xn. Knowing them, we can
reconstruct the motives of the run by taking solutions xn(·) ∈ S(xn) satisfying the
end-point condition xn(τn) ∈ Φ−1(xn+1). The question that arises is to provide an
algorithm that provides these sequences of cadences τn and of reinitialized states xn
without solving the impulse differential inclusion, but only through such an algorithm.
The substratum just does that.

Definition 1.3. We associate with the dynamics (F,Φ) of the impulse differen-
tial inclusion its substratum Γ : R+×K ❀ K, that is the set-valued map associating
with any (T, x) ∈ R+ ×K the subset

Γ(T, x) :=
⋃

x(·)∈SK
F

(x)

Φ(x(T ))

of the elements y ∈ Φ(x(T )), where x(·) ∈ SKF (x) is a solution to the differential
inclusion x′ ∈ F (x) starting at x and viable in K until it reaches x(T ) ∈ C :=
K ∩ Φ−1(K) at time T .

We associate with the substratum Γ
1. the cadence map

C(x) := {t ≥ 0 such that Γ(t, x) �= ∅} and

2. the initialization map I : K ❀ X,

I(x) =
⋃

t∈C(x)

Γ(t, x).
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Knowing the substratum Γ of (K,F,Φ) and thus the cadence map C and the ini-
tialization map I, we can reconstruct a viable run of the impulse differential inclusion
(F,Φ) through the following algorithm: Given the cadence τn and the initial state xn,
we take


(i) the next cadence τn+1 ∈ C(F,Φ)(xn),
(ii) the next reinitialized state xn+1 ∈ Γ(F,Φ)(τn+1, xn) ⊂ I(xn),
(iii) the next motive xn(·) := x(·+ tn), a solution to x′ ∈ F (x) satisfying

xn(0) = xn and xn(τn+1) ∈ Φ−1(xn+1).

(13)

Assume for a while that the impulse differential inclusion is actually an impulse
differential equation (f, ϕ), where the maps f and ϕ are single-valued, and that the
substratum is single-valued and differentiable. We define

Φ(t, x) :=

{
ϕ(x) if x ∈ C := K ∩ ϕ−1(K),
∅ if x /∈ C

and

Ψ(t, x) :=

{
K if x ∈ K,
∅ if x /∈ K.

Then we shall prove that the substratum is a “solution” v(t, x) to the system of
first-order partial differential inclusions

∀ i = 1, . . . n, −∂vi(t, x)
∂t

+
n∑

j=1

∂vi(t, x)

∂xj
fj(x) = 0

satisfying the “condition”

∀ x ∈ C := K ∩ ϕ−1(K), v(0, x) = ϕ(x),

which either is single-valued or takes empty values—and thus is a set-valued map.

Actually, we shall extend this result to general impulse differential inclusions by
characterizing the substratum as a generalized (set-valued) solution—a Frankowska
solution—to the system of first-order partial differential inclusions




(i) − ∂

∂t
V (t, x) +

∂V (t, x)

∂x
· u = 0,

(ii) u ∈ F (x)

satisfying the “condition”

∀ x ∈ C := K ∩ Φ−1(K), V (0, x) = Φ(x)

and the constraints V (t, x) ⊂ K.

Indeed, the substratum is a particular case of a caliber with f(x, y, u) := u,
g(x, y, u) := 0, P (x, y) := F (x), Φ(0, x) := Φ(x) if x ∈ K, Φ(0, x) := ∅ if x /∈ K,
Φ(t, x) := ∅ if t > 0, Ψ(t, x) := K if x ∈ K, and Ψ(t, x) := ∅ otherwise.
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2. The caliber of dynamical constraints and objective. The purpose of
this section is to show how “viability techniques” may be efficient for solving systems
of first-order partial differential inclusions arising in different fields of control theory
and hybrid systems.

We denote by L1(0,∞;U) the set of measurable functions from [0,+∞[ to a vector
space U , the control space.

We consider a control system of the form


(i) x′(t) = f(x(t), y(t), u(t)),
(ii) y′(t) = g(x(t), y(t), u(t)),
(iii) u(t) ∈ P (x(t), y(t)).

We denote by B(x, y) the set of solutions (x(·), y(·), u(·)) ∈ C(0,∞;X×Y )×L1(0,∞;U)
to the above system starting at (x, y) at time 0.

Definition 2.1. We say that the control system is

1. Marchaud if the set-valued map P : X × Y ❀ U is Marchaud and if f :
X × Y × U �→ X and g : X × Y × U �→ Y are continuous and affine,6

2. Lipschitz if the set-valued map P : X ❀ U is Lipschitz and if f : X×Y ×U �→
X and g : X × Y × U �→ Y are Lipschitz.

We associate the set-valued map G : R+ ×X × Y ❀ R+ ×X × Y defined by

G(T, x, y) := {{−1} × {f(x, y, u)} × {g(x, y, u}}u∈P (x,y) ,(14)

and we denote by R the set-valued map defined by the formula

R(T, x, y) = {(T − ·, x(·), y(·), u(·))}(x(·),y(·),u(·))∈B(x,y).

We infer that the set-valued map G is a Marchaud (resp., Lipschitz) map whenever
the control system is Marchaud (resp., Lipschitz).

We introduce now dynamical constraints and objectives defined by

1. a set-valued map Φ : R+ × X ❀ Y defining an objective, regarded as an
obstacle in problems of unilateral mechanics, for instance;

2. a set-valued map Ψ : R+ × X ❀ Y defining dynamical constraints. State
constraints are involved in the domain

Dom(Ψ) := {(t, x) ∈ R+ ×X | Ψ(t, x) �= ∅}

of the set-valued map Ψ.

We shall assume that


(i) ∀ (t, x) ∈ R+ ×X, Φ(t, x) ⊂ Ψ(t, x),

(ii) ∀ t < 0, ∀ x ∈ X, Ψ(t, x) := ∅.

Definition 2.2. The two constraint and objective set-valued maps being given,
the caliber (T, x) ❀ VΨ(Φ)(T, x) of the pair (Ψ,Φ) under the controlled system is the
set-valued map associating with the pair (T, x) made of the horizon T and the initial
state x the set of initial observations y such that there exist a control t ∈ [0, T ] �→ u(t)

6We actually need only that the values {(f(x, y, u), g(x, y, u))}u∈P (x,y) are closed and convex.
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and a time T ∗ ∈ [0, T ] such that a solution (x(·), u(·), y(·)) ∈ B(x, y) starting at
x(0) = x, y(0) = y satisfies


(i) ∀ t ∈ [0, T ∗], y(t) ∈ Ψ(T − t, x(t)),

(ii) y(T ∗) ∈ Φ(T − T ∗, x(T ∗)).
(15)

We observe at once the following property: The caliber satisfies the initial condi-
tion

∀ x ∈ X, VΨ(Φ)(0, x) = Φ(0, x).

Indeed, condition (15) (ii) with T = 0 means that y ∈ VΨ(Φ)(0, x), implying that
T ∗ = 0 and (0, x, y) ∈ Graph(Φ), i.e., y ∈ Φ(0, x). Hence VΨ(Φ)(0, x) ⊂ Φ(0, x) ⊂
VΨ(Φ)(0, x).

What is the connection between this problem and the basic viability theorems?
The answer is simple: The graph of the caliber is the capture basin of the graph of
the set-valued map Φ viable in the graph of Ψ under the auxiliary control system G.

Proposition 2.3. The graph of the caliber VΨ(Φ) is equal to the viable-capture
basin of Graph(Φ) viable in Graph(Ψ) under the auxiliary system R:

Graph(VΨ(Φ))) = Capt
Graph(Ψ)
R (Graph(Φ)).

Proof. It is enough to translate conditions (15) in the form


(i) ∀ t ∈ [0, T ∗], (T − t, x(t), y(t)) ∈ Graph(Ψ),

(ii) (T − T ∗, x(T ∗), y(T ∗)) ∈ Graph(Φ)
(16)

to recognize that

Graph(VΨ(Φ)) = Capt
Graph(Ψ)
R (Graph(Φ)).

This being checked, it will be sufficient to translate the properties of capture
basins in terms of caliber.

3. Set-valued solutions to systems of Hamilton–Jacobi–Bellman inclu-
sions. In the case of controlled systems, we shall relate the caliber with the set-valued
solution to the controlled Hamilton–Jacobi–Bellman partial differential equations:

1. there exists u ∈ P (x, V (t, x)) such that

0 ∈ “− ∂

∂t
V (t, x) +

∂

∂x
V (t, x)f(x, V (t, x), u)”− g(x, V (t, x), u);

2. for all u ∈ P (x, v(t, x)),

0 ∈ “
∂

∂t
V (t, x)− ∂

∂x
V (t, x)f(x, V (t, x), u)” + g(x, V (t, x), u),

satisfying the initial condition

V (0, x) = Φ(0, x)

and the constraints

∀ t ≥ 0, x ∈ X, Φ(t, x) ⊂ V (t, x) ⊂ Ψ(t, x)

in a sense that we make precise in the following theorem.
Theorem 3.1. Let us assume that the system is Marchaud.
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1. Then the caliber VΨ(Φ) of (Ψ,Φ) is the largest closed set-valued map V :
R+ ×X ❀ Y satisfying

∀ (t, x) ∈ R+ ×X, Φ(t, x) ⊂ V (t, x) ⊂ Ψ(t, x)(17)

and 

∀ y ∈ V (t, x)\Φ(t, x), ∃ u ∈ P (x, y)
such that
0 ∈ DV (−1, f(x, y, u))− g(x, y, u).

(18)

2. Let us set

R(t, x, y) := {u ∈ P (x, y) | 0 ∈ DVΨ(Φ)(t, x, y)(−1, f(x, y, u))−g(x, y, u)}.
Knowing the caliber, any solution satisfying the constraints (15) (i) and reach-
ing the objective (15) (ii) in finite time is obtained in the following way: Start-
ing from (x0, y0) such that y0 ∈ VΨ(Φ)(T, x0)\Φ(T, x0), any solution (x(·),
y(·), u(·)) to the control system: for almost all t ∈ [0, T ],


(i) x′(t) = f(x(t), y(t), u(t)),
(ii) y′(t) = g(x(t), y(t), u(t)),
(iii) u(t) ∈ R(T − t, x(t), y(t)),

(19)

starting at (x, y) is a solution satisfying

y(t) ∈ VΨ(Φ)(T − t, x(t))

until the first time t∗ ∈]0, T ] when

y(t∗) ∈ Φ(T − t∗, x(t∗)).

3. If we assume, furthermore, that the system is Lipschitz, then the caliber VΨ(Φ)
of (Ψ,Φ) is the unique closed set-valued map V : R+ × X ❀ Y satisfying
(17), (18), and



∀ y ∈ V (t, x) ∩Ψ◦(t, x), ∀ u ∈ P (x, y),
0 ∈ DV (1,−f(x, y, u)) + g(x, y, u)
and
∀ y ∈ V (t, x) ∩Ψ∂(t, x), ∀ u ∈ P (x, y),
0 ∈ DV (1,−f(x, y, u)) ∪DΨc(+1,−f(x, y, u)) + g(x, y, u),

(20)

where Graph(Ψ◦) := Int(Graph(Ψ)), Graph(Ψ∂) := ∂Graph(Ψ), and Graph(Ψc)
:= X\Graph(Ψ).

Proof.
1. The graph of the caliber VΨ(Φ) being equal to the capture basin

Capt
Graph(Ψ)
G (Graph(Φ)) by Proposition 2.3, we can apply the first part of

Theorem 0.1 since Graph(Ψ) ⊂ R+ ×X × Y is a repeller under G. Hence it
is the largest graph of a set-valued map V : X ❀ Y between Graph(Φ) and
Graph(Ψ) such that, for any (t, x, y) ∈ Graph(V )\Graph(Φ)), i.e., whenever
y ∈ V (t, x)\Φ(t, x), there exists a control u ∈ P (x) such that

(−1, f(x, y, u),−g(x, y, u)) ∈ TGraph(V )(t, x, y).(21)
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In other words, it is the graph of the largest closed set-valued map V satisfying

Φ(t, x) ⊂ V (t, x) ⊂ Ψ(t, x)

and, whenever y ∈ V (t, x)\Φ(t, x), there exists u ∈ P (x, y) such that

0 ∈ DV (−1, f(x, y, u))− g(x, y, u).

2. The solutions (T − ·, x(·), y(·)) viable in the graph of Ψ until they reach the
graph of Ψ satisfy: for almost all t ≥ 0,


u(t) ∈ P (x(t), y(t))
and
(−1, f(x(t), y(t), u(t)), g(x(t), y(t), u(t))) ∈ TGraph(V )(T − t, x(t), y(t)).

This condition can be rewritten as follows:

for almost all t ≥ 0, u(t) ∈ R(T − t, x(t), y(t)).

3. Under the Lipschitz conditions, Theorem 0.2 states that the graph of V
Ψ
(Φ)

is the unique closed subset Graph(V ) satisfying the Frankowska properties:


(i) ∀ (t, x, y) ∈ Graph(V )\Graph(Φ),
∃ u ∈ P (x, y) | (−1, f(x, y, u), g(x, y, u)) ∈ TGraph(V )(t, x, y),

(ii) ∀ (t, x, y) ∈ Graph(V ) ∩ Int(Graph(Ψ)),∀ u ∈ P (x, y),
(1,−f(x, y, u),−g(x, y, u)) ∈ TGraph(V )(t, x, y),

(iii) ∀ (t, x, y) ∈ Graph(V ) ∩ ∂(Graph(Ψ)),∀ u ∈ P (x, y),
(1,−f(x, y, u),−g(x, y, u)) ∈ TGraph(V )(t, x, y) ∪ TX\Graph(Ψ)(t, x, y).

Using the fact that Graph(DV )(t, x, y) = TGraph(V )(t, x, y), we infer the third
part of the theorem.

4. Stability properties. We state the following theorem of [12].
Theorem 4.1. Let us consider a sequence of closed subsets Cn satisfying Viab(K) ⊂

Cn ⊂ K and

Limn→+∞Cn := Limsupn→+∞Cn = Liminfn→+∞Cn.

If the set-valued map F is Marchaud and Lipschitz and if K is closed and backward
invariant under F , then

Limn→+∞CaptK(Cn) = CaptK(Limn→+∞Cn).(22)

Theorem 4.1 implies “continuity properties” of the caliber regarded as a map
Φ �→ VΨ(Φ).

For that purpose, let us recall the following definitions of graphical convergence
(see [18] and/or [60], for instance):

1. the upper limit of the graphs

Limsupn→+∞Graph(Φn) =: Graph(Lim�
n→+∞Φn)

is the graph of the graphical upper limit Lim�
n→+∞Φn defined by

(Lim�
n→+∞Φn)(T, x) = lim inf

n→+∞, s→t, y→x
V (Φn)(s, y);
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2. the lower limit of the graphs

Liminfn→+∞Graph(Φn) =: Graph(Lim�
n→+∞Φn)

is the graph of the graphical lower limit.
Then we derive the following “continuity” properties of the calibers.
Theorem 4.2. Let us consider a sequence of nontrivial set-valued maps Ψn :

R+ ×X ❀ Y ∪ {+∞} and Φn : R+ ×X ❀ Y ∪ {+∞} such that

∀ (T, x) ∈ R+ ×X, Φn(T, x) ⊂ Ψn(T, x).

The calibers also satisfy the following properties:
1. Let us assume that the auxiliary control system F is Marchaud. Then

lim�
n→+∞VΨn(Φn)(T, x) ⊂ Vlim�

n→+∞Ψn
(lim�

n→+∞Φn)(T, x).

2. Let us assume that the auxiliary control system F is Marchaud and Lipschitz.
Then {

V (lim�
n→+∞Φn)(T, x) ⊂ lim�

n→+∞V (Φn)(T, x)

⊂ lim�
n→+∞V (Φn)(T, x) ⊂ V (lim�

n→+∞Φn)(T, x).

Therefore, if the sequence of set-valued maps Φn converges graphically to Φ, the caliber
of the graphical limit is the graphical limit of the calibers.

Proof. If the system is Marchaud, Theorem 4.1 implies that

Limsupn→+∞Capt
Graph(Ψn)
R (Graph(Φn))

⊂ Capt
Limsupn→+∞Graph(Ψn)

R (Limsupn→+∞Graph(Φn)).

Hence we deduce from Proposition 2.3, characterizing the graph of the caliber as a
viable-capture basin, and from the definitions of graphical limits that

lim�
n→+∞VΨn(Φn)(T, x) ⊂ Vlim�

n→+∞Ψn
(lim�

n→+∞Φn)(T, x).

Under Lipschitz conditions of G, Theorem 4.1 implies that

CaptR(Liminfn→+∞Graph(Φn)) ⊂ Liminfn→+∞CaptR(Graph(Φn)).

Hence we deduce that

V (lim�
n→+∞Φn)(T, x) ⊂ lim�

n→+∞V (Φn)(T, x).

This completes the proof.

5. Caliber of structured problems with linear exosystems. Of special
interest is the particular case when the first differential equation does not depend
upon the variable y and when the set-valued map P : X ❀ U does not depend on
the observation variable y: We thus obtain a structured system—as age structured
systems in demography, when x plays the role of the age variable—of the form


(i) x′(t) = f(x(t), u(t)),
(ii) y′(t) = g(x(t), y(t), u(t)),
(iii) u(t) ∈ P (x(t)),
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where y(·) is often regarded as an observation of the state (see, for instance, [14]). In
control theory, the second controlled equation is called the exosystem.

We denote by C : x ∈ X ❀ C(x) ∈ C(0,∞;X) × L1(0,∞;U) the set-valued map
associating with x ∈ X the set C(x) of the pairs (x(·), u(·)) of solutions to the control
system {

(i) x′(t) = f(x(t), u(t)),
(ii) u(t) ∈ P (x(t)),

starting at x at t = 0.
We shall also set g(x, y, u) := −M(x, u)y − L(x, u), where
1. M is a bounded continuous matrix-valued function

M : (x, u) ∈ X × U �→M(x, u) ∈ L(X,Y ), and

2. L is a continuous7 “vector-Lagrangian”

L : (x, u) ∈ X × U �→ L(x, u) ∈ Y

with linear growth.
We introduce the map (y; (x(·), u(·))) ❀ S(y; (x(·), u(·))) associating the subset of
evolutions

y(t) = e
−
∫ t

0
M(x(s),u(s))ds

(
y −

∫ t

0

e

∫ τ

0
M(x(s),u(s))ds

L(x(τ), u(τ))dτ

)
(23)

to the linear dynamical system

y′(t) = −M(x(t), u(t))y(t)− L(x(t), u(t))

starting at y ∈ Y .
We already know that the caliber is the unique Frankowska solution to the fol-

lowing:
1. there exists u ∈ P (x, V (t, x)) such that

0 ∈ “− ∂

∂t
V (t, x) +

∂

∂x
V (t, x)f(x, V (t, x), u)”−M(x, u)V (t, x)− L(x, u);

2. for all u ∈ P (x, v(t, x));

0 ∈ “
∂

∂t
V (t, x)− ∂

∂x
V (t, x)f(x, V (t, x), u)” +M(x, u)V (t, x) + L(x, u),

satisfying the viability constraints

∀ t ≥ 0, x ∈ X, Φ(t, x) ⊂ V (t, x) ⊂ Ψ(t, x)

and the initial condition

V (0, x) = Φ(0, x).

7We could take L to be set-valued map, but we restrict our attention to the single-valued case
for simplicity.
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In summary, we now deal with a structured problem where the exosystem is linear
with respect to the observations. In this case, we shall be able to provide an explicit
formula of the caliber V .

For that purpose, we introduce the subset


JΦ(t; (x(·), u(·)))(T, x)

:= e

∫ t

0
M(x(s),u(s))ds

Φ(T − t, x(t)) +

∫ t

0

e

∫ τ

0
M(x(s),u(s))ds

L(x(τ), u(τ))dτ

(where t ranges over [0, T ]). The controls—most often prices or other regulees in eco-
nomics and portfolios in finance—appear both in the matrix M and in the Lagrangian
L.

We associate with Ψ the set-valued map JΨ defined by


JΨ(t; (x(·), u(·)))(T, x)

:= e

∫ t

0
M(x(s),u(s))ds

Ψ(T − t, x(t)) +

∫ t

0

e

∫ τ

0
M(x(s),u(s))ds

L(x(τ), u(τ))dτ

and

KΨ(t, x; (x(·), u(·))) :=
⋂

s∈[0,t]

JΨ(s, x; (x(·), u(·))).

We next introduce

LΦ
Ψ(t; (x(·), u(·)))(T, x) := KΨ(t, x; (x(·), u(·))) ∩ JΦ(t; (x(·), u(·)))(T, x).

5.1. Explicit formula of the caliber. We shall prove now that the caliber V
of the pair (Ψ,Φ) under B is equal to the set-valued map VΨ(Φ) defined by

VΨ(Φ)(T, x) :=
⋃

(x(·),u(·))∈C(x)

⋃
t∈[0,T ]

LΦ
Ψ(t; (x(·), u(·)))(T, x).(24)

Note that if Ψ1 ⊂ Ψ2 and Φ1 ⊂ Φ2, then VΨ1(Φ1) ⊂ VΨ2(Φ2) and

∀ t ≥ 0, ∀ x ∈ X, Φ(t, x) ⊂ VΨ(Φ)(t, x) ⊂ Ψ(t, x).

We shall use the fact that its graph is the viable-capture basin of the graph of
the cost function Φ viable under the graph of Ψ under the auxiliary system R.

Theorem 5.1. Let us assume that the set-valued maps Ψ and Φ are nontrivial.
Then the caliber of the pair (Ψ,Φ) is equal to the set-valued map VΨ(Φ) defined by
(24).

Furthermore, the caliber is the unique solution V to the two following “fixed set
equations”:


VV (Φ)(T, x) :=

⋃
(x(·),u(·))∈C(x)

⋃
t∈[0,T ] L

Φ
V (t, x; (x(·), u(·)))

= V (T, x)
= VΨ(V )(T, x) :=

⋃
(x(·),u(·))∈C(x)

⋃
t∈[0,T ] L

V
Ψ(t, x; (x(·), u(·))).

(25)

Moreover, when F is Marchaud and the set-valued maps Φ and Ψ are closed, the
graph of the caliber VΨ(Φ) is closed.
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5.2. Examples.
1. We see that the set-valued map defined by

V (Φ)(T, x) :=
⋃

(x(·),u(·))∈C(x)

⋃
t∈[0,T ]

JΦ(t; (x(·), u(·)))(T, x) = VY(Φ)

is the caliber of (Ψ,Φ), where the set-valued map Ψ = Y is defined by

Y(t, x) :=

{
Y if t ≥ 0,
∅ if t < 0.

Indeed, we observe that, taking Ψ = Y,

KY(t, x; (x(·), u(·))) = JY(t, x; (x(·), u(·))) = Y

so that, for any set-valued map Φ, we have LΦ
Y = JΦ and thus V (Φ) = VY(Φ).

2. We also observe that the set-valued map

W (Ψ)(T, x) :=
⋃

(x(·),u(·))∈C(x)

⋂
t∈[0,T ]

JΨ(t; (x(·), u(·)))(T, x) = VΨ(Ψ∅)

is the caliber of (Ψ,Φ), where we take Φ := Ψ∅ : R+ ×X ❀ Y defined by

Ψ∅(t, x) :=

{
Ψ(0, x) if t = 0,
∅ if t �= 0.

Indeed, we see that JΨ∅(t, x; (x(·), u(·))) = ∅ if t < T and JΨ∅(T, x; (x(·), u(·))) =
JΨ(T, x; (x(·), u(·))). Therefore,

L
Ψ∅
Ψ (t, x; (x(·), u(·))) :=

{
KΨ(T, x; (x(·), u(·))) if t = T,
∅ if t < T,

and thus W (Ψ) = VΨ(Ψ∅).
3. Let us introduce a time-independent set-valued map U : X ❀ X. We shall

associate with three pairs (Ψ,Φ) of set-valued maps associated with U the
three following calibers:
(a) Taking Φ := U∅ and Ψ = Y, we obtain

⋃
(x(·),u(·))∈C(x)

(
e

∫ T

0
M(x(s),u(s))ds

U(x(T ))

+

∫ T

0

e

∫ τ

0
M(x(s),u(s))ds

L(x(τ), u(τ))dτ

)
.

WhenM = 0, the above problem boils down to the set-valued equivalent
of the Bolza map

⋃
(x(·),u(·))∈C(x)

(
U(x(T )) +

∫ T

0

L(x(τ), u(τ))dτ

)

and the Mayer map ⋃
(x(·),u(·))∈C(x)

U(x(T ))

when, furthermore, L = 0. This is the case of the substratum of an
impulse differential inclusion defined above (see also [9]).
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(b) Taking Φ := U∅ and Ψ := U , we obtain

⋃
(x(·),u(·))∈C(x)

⋂
t∈[0,T ]

(
e

∫ t

0
M(x(s),u(s))ds

U(x(t))

+

∫ t

0

e

∫ τ

0
M(x(s),u(s))ds

L(x(τ), u(τ))dτ

)
.

(c) Taking Φ := U and Ψ := Y, we obtain

⋃
(x(·),u(·))∈C(x)

⋃
t∈[0,T ]

(
e

∫ t

0
M(x(s),u(s))ds

U(x(t))

+

∫ t

0

e

∫ τ

0
M(x(s),u(s))ds

L(x(τ), u(τ))dτ

)
.

When M = 0, we find

V (U)(T, x) :=
⋃

(x(·),u(·))∈C(x)

⋃
t∈[0,T ]

(
U(x(t)) +

∫ t

0

L(x(τ), u(τ))dτ

)
.

This map—the set-valued analogue of the valuation function of “ob-
stacle problems”—involves “max-plus” operations and is the set-valued
equivalent of the mathematical fear or faith with respect to a Maslov
measure introduced in dynamical optimization by Pierre Bernhard (see
[35, 36, 37]).

Regarding the caliber as a transform Φ �→ V (Φ) mapping closed set-valued maps
to closed set-valued map, we observe that the caliber satisfies

V


 ⋃

i=1,...,n

Φi


 =

⋃
i=1,...,n

V (Φi),

the extensivity property, Φ ⊂ V (Φ), and the monotonicity property: if Φ1 ⊂ Φ2, then
V (Φ1) ⊂ V (Φ2).

We recall that Theorem 4.2 implies that the value transform is also “upper con-
tinuous” in the sense that

Limsupn→+∞, s→t, y→xV (Φn)(s, y) ⊂ V
(
Limsupn→+∞, s→t, y→xΦn(s, y)

)
(t, x)

and actually, under stronger assumptions, “continuous” in the sense that the caliber
of a graphical limit is the graphical limit of calibers.

5.3. Proof of the explicit formula. First, to say that a pair (T, x, y) belongs
to the viable-capture basin

Graph(V ) := Capt
Graph(Ψ)
R (Graph(Φ) ⊂ Graph(Ψ)

means that there exist a solution (T − ·, x̃(·), ũ(·), y(·)) ∈ R(T, x, y) to the auxiliary
control problem and some t∗ ≥ 0 such that


(i) ∀ t ∈ [0, t∗], (T − t, x̃(t), y(t)) ∈ Graph(Ψ),

(ii) (T − t∗, x̃(t∗), y(t∗)) ∈ Graph(Φ)
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or, equivalently, such that


(i) ∀ t ∈ [0, t∗], y(t) ∈ Ψ(T − t, x̃(t)),

(ii) y(t∗) ∈ Ψ(T − t∗, x̃(t∗).

By the very definition of R(T, x, y) and by the definition (23) of the auxiliary system
that its component y(·) satisfies

y(t) = e
−
∫ t

0
M(x̃(s),ũ(s))ds

(
y −

∫ t

0

e

∫ τ

0
M(x̃(s),ũ(s))ds

L(x̃(τ), ũ(τ))dτ

)
,

this implies that (T, x, y) belongs to Capt
Graph(Ψ)
R (Graph(Φ) if and only if there exists

a solution (x̃(·), ũ(·)) ∈ C(x) satisfying, for almost all t ∈ [0, t],


(i) y ∈ e

∫ t

0
M(x̃(s),ũ(s))ds

Ψ(T − t, x̃(t), ũ(t)) +

∫ t

0

e

∫ τ

0
M(x̃(s),ũ(s))ds

L(x̃(τ), ũ(τ))dτ,

(ii) y ∈ e

∫ t∗

0
M(x̃(s),ũ(s))ds

Φ(T − t∗, x̃(t∗)) +
∫ t∗

0

e

∫ τ

0
M(x̃(s),ũ(s))ds

L(x̃(τ), ũ(τ))dτ.

(26)
Since we set

KΨ(t, x; (x̃(·), ũ(·))) :=
⋂

s∈[0,t]

JΨ(s, x; (x̃(·), ũ(·)))

and

LΦ
Ψ(t, x; (x̃(·), ũ(·))) := KΨ(t, x; (x̃(·), ũ(·))) ∩ JΦ(t, x; (x̃(·), ũ(·))),

this is equivalent to state that y belongs to VΨ(Φ)(T, x).
Formula (3) of [15] and the first part of this theorem implies that the caliber is

the unique solution to the system (25).
Finally, the closedness of the graph of the caliber is an immediate consequence

of Theorem 0.1 because Graph(Ψ) ⊂ R+ × X × Y is a repeller under G, which is

Marchaud, and the viable-capture basin Graph(VΨ)(Φ)) := Capt
Graph(Ψ)
R (Graph(Φ))

is closed.

5.4. The barrier property of the caliber. We begin with a first form of the
barrier property.

Proposition 5.2. Let us consider yT ∈ ∂Ψ(T,x)VΨ(Φ)(T, x). Then, any solution
(x(·), u(·)) ∈ C(x) starting from x satisfying the following inclusion: for every t ∈
[0, t∗],

yT ∈ LΦ
Ψ(t; (x(·), u(·)))(T, x)(27)

until the first time t∗ when

yT ∈ Φ(T − t∗, x(t∗)

actually satisfies the following: for every t ∈ [0, t∗],

∀ yT ∈ ∂LΦ
Ψ(t; (x(·), u(·)))(T, x).
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Proof. Since yT belongs to VΨ(Φ)(T, x), there exists a solution (x∗(·), u∗(·)) and
a time t∗ ∈ [0, T ] such that

yT ∈ LΦ
Ψ(t

∗, x; (x∗(·), u∗(·))).
Since yT belongs to ∂Ψ(T,x)VΨ(Φ)(T, x), it can be approximated by elements yn ∈

Ψ(T, x)\VΨ(Φ)(T, x). We know that, for every t and any solution (x(·), u(·)), either yn
does not belong to KΨ(t, x; (x(·), u(·))) or it belongs to KΨ(t, x; (x(·), u(·)))\V (T, x).

We claim that

∀ (x(·), u(·)) ∈ C(x), ∀ t ∈ [0, T ],

KΨ(t, x; (x(·), u(·)))\V (T, x) ⊂ X\JV (t, x; (x(·), u(·))).
(28)

Indeed, take y in KΨ(t, x; (x(·), u(·)))\V (T, x). This means that, for every s ∈
[0, t], y belongs to JΨ(s, x; (x(·), u(·))) or, equivalently,

∀ s ∈ [0, t], (T − s, x(s), y(s)) ∈ Graph(Ψ),

where

y(t) := e
−
∫ t

0
M(x(s),u(s))ds

(
y −

∫ t

0

e

∫ τ

0
M(x(s),u(s))ds

L(x(τ), u(τ))dτ

)
.

Since (T, x, y) does not belong to the viable capture basin, we infer that every
solution in R(T, x, y) starting at (T, x, y) is viable in the graph Graph(Ψ) of Ψ before
hitting the graph Graph(V ) of V : Therefore, if

∀ s ∈ [0, t], y(s) ∈ Ψ(T − s, x(s), u(s)),

we have

y(t) ∈ X\V (T − t, x(t)) ⊂ X\Φ(T − t, x(t)),

which can be written in the form

y ∈ X\JV (t, x; (x(·), u(·))) ⊂ X\JΦ(t, x; (x(·), u(·))).
Therefore, inclusion (28) holds true, and thus yn does not belong to JV (t, x; (x(·), u(·))).
Consequently, for any t ∈ [0, T ] and for any n ≥ 0,

yn ∈ X\LV
Ψ(t, x; (x(·), u(·))) ⊂ X\LΦ

Ψ(t, x; (x(·), u(·))).
This is particularly true for the solution (x∗(·), u∗(·)) and for any t ∈ [0, t∗]. Hence,
letting yn converge to yT , we deduce the conclusion of the proposition.

We can strengthen this result and prove the following “barrier property.” Let us
recall that JVΨ(Φ)(0, x; (x(·), u(·))) = VΨ(Φ)(T, x). We shall prove that the boundary
condition

yT ∈ ∂VΨ(Φ)(T, x) = ∂JVΨ(Φ)(0, x; (x(·), u(·)))
propagates as long as yT remains in the interior of KΨ(t, x; (x(·), u(·))).

Theorem 5.3. Let us consider yT ∈ ∂VΨ(Φ)(T, x) ∩ Int(Ψ(T, x)). Then, any
solution (x(·), u(·)) ∈ C(x) starting from x satisfying the inclusion

yT ∈ JVΨ(Φ)(t, x; (x(·), u(·)))(29)
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until the first time t when

yT /∈ Int(KΨ(t, x; (x(·), u(·))))

actually satisfies

∀ t ∈ [0, t], y ∈ ∂JVΨ(Φ)(t; (x(·), u(·)))(T, x).(30)

Proof. Since yT belongs to ∂VΨ(Φ)(T, x), it can be approximated by elements
yn ∈ Ψ(T, x)\VΨ(Φ)(T, x). By assumption, for any t < t, there exists δt such that

B(yT , δt) ⊂ KΨ(t; (x(·), u(·)))(T, x),

and thus there exists some Nt such that, for any n ≥ Nt, yn belongs to B(yT , δt), and
thus

yn ∈ KΨ(t; (x(·), u(·)))(T, x)\VΨ(Φ)(T, x).

However, by (28), we know that, in this case, yn does not belong to JVΨ(Φ)(t; (x(·),
u(·)))(T, x).

6. Frankowska contingent episolutions to Hamilton–Jacobi–Bellman
equations. When Y := R, we can associate with two extended functions c : R+ ×
X ❀ R ∪ {+∞} and b : R+ ×X ❀ R ∪ {+∞} such that

∀ (t, x) ∈ R+ ×X, 0 ≤ b(t, x) ≤ c(t, x)

the set-valued maps Φ and Ψ defined by{
(i) Φ(t, x) := c(t, x) + R+,
(ii) Ψ(t, x) := b(t, x) + R+

by setting Φ(t, x) := ∅ whenever c(t, x) = +∞. We observe that Graph(Φ) = Ep(c)
and that

DΦ(t, x, c(t, x))(±1, v) = D↑c(t, x)(±1, v) + R+,

where D↑c(t, x) is the contingent epiderivative of c at (t, x) in the direction (±1, v),
defined by

D↑c(t, x)(±1, v) = lim inf
h→0+,v′ 
→v

c(t± h, x+ hv′)− c(t, x)

h
.

We set


Jc(t; (x(·), u(·)))(T, x)

:= e

∫ t

0
M(x(s),u(s))ds

c(T − t, x(t)) +

∫ t

0

e

∫ τ

0
M(x(s),u(s))ds

L(x(τ), u(τ))dτ,

and then

Kb(t, x; (x(·), u(·))) := sup
s∈[0,t]

Jb(s, x; (x(·), u(·))).
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We next integrate this cumulated cost together with the former cost Jc(t, x; (x(s), u(s)))
by introducing the new cost function

Lc
b(t; (x(·), u(·)))(T, x) := max(Kb(t, x; (x(·), u(·))), Jc(t; (x(·), u(·)))(T, x).

We shall deduce from Theorem 5.1 the following consequence.
Theorem 6.1. Let us assume that the extended functions b and c are nontrivial

and nonnegative. The viable-capture basin Capt
Ep(b)
R (Ep(c)) of Ep(c) under R is the

epigraph of the valuation function Vb(c) defined by

Vb(c)(T, x) := inf
(x(·),u(·))∈C(x)

inf
t∈[0,T ]

Lc
b(t; (x(·), u(·)))(T, x).

Furthermore, any solution (x(·), u(·)) ∈ C(x) starting from x ∈ X satisfying the fol-
lowing inequality: for every t ∈ [0, t∗]


Vb(c)(T, x)

≥ e

∫ t

0
M(x(s),u(s))ds

Vb(c)(T − t, x(t)) +

∫ t

0

e

∫ τ

0
M(x(s),u(s))ds

L(x(τ), u(τ))dτ
(31)

until the first time t∗ when

Vb(c)(T − t∗, x(t∗)) = c(T − t∗, x(t∗))

is an optimal solution for the optimal time t∗.
Finally, the valuation function is a solution v to the two following functional

equations stating that the functions Lv
b and Lc

v have the same infimum as Lc
b:


inf(x(·),u(·))∈C(x) inft∈[0,T ] L

c
v(t, x; (x(·), u(·)))

= v(T, x)
= inf(x(·),u(·))∈C(x) inft∈[0,T ] L

v
b(t, x; (x(·), u(·))).

(32)

Proof. It is enough—and easy—to check that

LΦ
Ψ(t; (x(·), u(·)))(T, x) = Lc

b(t; (x(·), u(·)))(T, x) + R+

and thus that

inf
y∈V Φ

Ψ
(t,x)

y = V c
b (t, x)

since inf
(⋃

i∈I [ai,∞[
)
= infi∈I ai.

Theorem 5.3 implies the following form of the optimality principle.
Theorem 6.2. Let us assume that Vb(c)(T, x) > b(T, x). Then any solution

(x(·), u(·)) ∈ C(x) starting from x ∈ Dom(Vb(c)) satisfying inequalities


Vb(c)(T, x)

≥ e

∫ t

0
M(x(s),u(s))ds

Vb(c)(T − t, x(t)) +

∫ t

0

e

∫ τ

0
M(x(s),u(s))ds

L(x(τ), u(τ))dτ
(33)

until the first time t∗ ∈ [0, T ] when

Vb(c)(T − t∗, x(t∗) = b(T − t∗, x(t∗))
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actually satisfies equality

∀ t ∈ [0, t∗], Vb(c)(T, x)

= e

∫ t

0
M(x(s),u(s))ds

Vb(c)(T − t, x(t)) +

∫ t

0

e

∫ τ

0
M(x(s),u(s))ds

L(x(τ), u(τ))dτ.

(34)
The first statement of Theorem 3.1 implies that the valuation function is a

Frankowska contingent episolution to Hamilton–Jacobi–Bellman equations.
Theorem 6.3 (Frankowska). Let us assume that the control system (P, f, L,M)

is Marchaud and that the functions b and c are nontrivial, nonnegative, and lower
semicontinuous.

Then the valuation function Vb(c) is characterized as the smallest of the nonneg-
ative lower semicontinuous functions v : R+×X �→ R+∪{+∞} satisfying, for every
(t, x) ∈]0,∞[×X,


(i) b(t, x) ≤ v(t, x) ≤ c(t, x),
(ii) if (t, x) ∈ Ω(v),

infu∈P (x) (D↑v(t, x)(−1, f(x, u)) + L(x, u) +M(x, u)v(t, x)) ≤ 0.

Let us set

R(t, x) := {u ∈ P (x) | D↑Vb(c)(t, x)(−1, f(x, u))+L(x, u)+M(x, u)Vb(c)(t, x) ≤ 0}.
Knowing the valuation function, an optimal solution is obtained in the follow-

ing way: Starting from x0 such that Vb(c)(T, x0) < c(T, x0), any optimal solution
(x(·), u(·)) is a solution to the control system{

(i) x′(t) = f(x(t), u(t)),
(ii) u(t) ∈ R(T − t, x(t))

(35)

until the first time t∗ ≥ 0 when

Vb(c)(T − t∗, x(t∗)) = c(T − t∗, x(t∗)).

The second part of Theorem 3.1 implies the following existence and uniqueness
result:

Theorem 6.4 (Frankowska). Let us assume that the control system (P, f, L,M)
is Marchaud and Lipschitz and that b and c are nontrivial, nonnegative, and lower
semicontinuous.

Then the valuation function Vb(c) is the unique lower semicontinuous episolution
v to the following system of differential inequalities: for every (t, x) ∈ Dom(v),



(i) b(t, x) ≤ v(t, x) ≤ c(t, x),
(ii) if v(t, x) < c(t, x),

infu∈P (x) (D↑v(t, x)(−1, f(x, u)) + L(x, u) +M(x, u)v(t, x)) ≤ 0,
(iii) if v(t, x) > b(t, x),

supu∈P (x)(D↑v(t, x)(1,−f(x, u))− L(x, u)−M(x, u)v(t, x)) ≤ 0,

(iv) if v(t, x) = b(t, x),
supu∈P (x) [min(D↑v(t, x)(1,−f(x, u)), D↓b(t, x)(1,−f(x, u)))
−L(x, u)−M(x, u)v(t, x)] ≤ 0.

(36)
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Remark. Condition (36) (iv) is automatically satisfied whenever

sup
u∈P (x)

(D↓b(t, x)(1,−f(x, u))− L(x, u)−M(x, u)v(t, x)) ≤ 0.

We refer to the papers [43, 41, 42, 44, 45, 46, 47] for other differential properties
of the value function obtained using the tools of the epigraphical approach and, in
particular, by duality, the links with viscosity solutions and lower semicontinuous
bilateral solutions also introduced in [32, 33] by PDE methods.

7. Vector optimal control problems. When Y := Rn is supplied with the
natural order relation ≤ associated with the positive orthant Rn

+, we can associate

with two maps 0c : R+ ×X ❀ Rn
+ and 0b : R+ ×X ❀ Rn

+ such that

∀ (t, x) ∈ R+ ×X, 0 ≤ 0b(t, x) ≤ 0c(t, x)

the set-valued maps Φ and Ψ defined by{
(i) Φ(t, x) := 0c(t, x) + Rn

+,

(ii) Ψ(t, x) := 0b(t, x) + Rn
+.

In the following formulas, the supremums and the infimums are taken component by
component. We set


J!c(t; (x(·), u(·)))(T, x)

:= e

∫ t

0
M(x(s),u(s))ds

0c(T − t, x(t)) +

∫ t

0

e

∫ τ

0
M(x(s),u(s))ds

L(x(τ), u(τ))dτ,

and then

K!b(t, x; (x(·), u(·))) := sup
s∈[0,t]

J!b(s, x; (x(·), u(·))).

We next integrate this cumulated cost together with the former cost J!c(t, x; (x(s), u(s)))
by introducing the new cost function

L!c!b(t; (x(·), u(·)))(T, x) := max(K!b(t, x; (x(·), u(·))), J!c(t; (x(·), u(·)))(T, x)

and the subset

V!b(0c)(T, x) :=
⋃

(x(·),u(·))∈C(x)

⋃
t∈[0,T ]

L!c!b(t; (x(·), u(·)))(T, x).

We shall deduce from Theorem 5.1 the following consequence.
Theorem 7.1. Let us assume that, for any (x, u) ∈ X ×U and for any y ∈ Rn

+,
whenever yi = 0, then (M(x, u)y)i = 0.

Then

∀ T ≥ 0, x ∈ X, VΨ(Φ)(T, x) = V!b(0c)(T, x) + Rn
+.

Proof. It is enough to check that

LΦ
Ψ(t; (x(·), u(·)))(T, x) = L!c!b(t; (x(·), u(·)))(T, x) + Rn

+.
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By assumption, the cone Rn
+ is forward and backward invariant under the differential

equation y′(t) = M(x(t), u(t))y(t) so that

∀ y ∈ Rn
+, e

±
∫ t

0
M(x(τ),u(τ))dτ

y ∈ Rn
+.

Therefore, since 0c(t, x) ∈ Rn
+, we infer that

JΦ(t; (x(·), u(·)))(T, x) = J!c(t; (x(·), u(·)))(T, x) + Rn
+.

Next we observe that, if ai ∈ Rn,

⋂
i∈I

(ai + Rn
+) = sup

i∈I
ai + Rn

+,

and thus

KΨ(t; (x(·), u(·)))(T, x) = L!b(t; (x(·), u(·)))(T, x) + Rn
+

and

LΦ
Ψ(t; (x(·), u(·)))(T, x) = L!c!b(t; (x(·), u(·)))(T, x) + Rn

+.

Finally, we note that


VΨ(Φ)(T, x)

=
⋃

(x(·),u(·))∈C(x)

⋃
t∈[0,T ]

[
L!c!b(t; (x(·), u(·)))(T, x) + Rn

+

]
= V!b(0c)(T, x) + Rn

+.

Recall that, for a closed subset A ⊂ Rn satisfying A = A+Rn
+, the interior of A

is equal to

Int(A) = A+
◦

Rn
+,

and thus the boundary of A is equal to the set of (weak) Pareto optima of A: Indeed,
y ∈ ∂A if and only if, for any z ∈ A, there exists at least i ∈ {1, . . . , n} such that
yi ≤ zi. We say that z >> y if, for any i ∈ {1, . . . , n}, zi > yi.

Hence we deduce the following consequence of Theorem 5.3.

Theorem 7.2. Let us consider yT >> 0b(T, x)) to be a Pareto minimum of the set
JV�b

(!c)(T, x). Consider any solution (x(·), u(·)) ∈ C(x) starting from x ∈ Dom(Vb(c))
satisfying

yT ≥ JV�b
(!c)(t, x; (x(·), u(·)))(37)

until the first time t∗ when, for at least one component i = 1, . . . , n,

yTi ≤ K!bi
(t∗, x; (x(·), u(·))).

Then yT actually remains a Pareto minimum of the sets JV�b
(!c)(t; (x(·), u(·)))(T, x)

whenever t ∈ [0, t∗].
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Boston, to appear.

[48] H. Frankowska, S. Plaskacz, and T. Rzezuchowski, Measurable viability theorems and the
Hamilton-Jacobi-Bellman equation, J. Differential Equations, 116 (1995), pp. 265–305.

[49] H. Frankowska, S. Plaskacz, and T. Rzezuchowski, Théorèmes de Viabilité Mesurable
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Abstract. The Markov chain approximation method is a widely used, robust, relatively easy to
use, and efficient family of methods for the bulk of stochastic control problems in continuous time
for reflected-jump-diffusion-type models. It has been shown to converge under broad conditions,
and there are good algorithms for solving the numerical problems if the dimension is not too high.
Versions of these methods have been used in applications to various two-player differential and
stochastic dynamic games for a long time, and proofs of convergence are available for some cases,
mainly using PDE-type techniques. In this paper, purely probabilistic proofs of convergence are
given for a broad class of such problems, where the controls for the two players are separated in the
dynamics and cost function, and which cover a substantial class not dealt with in previous works.
Discounted and stopping time cost functions are considered. Finite horizon problems and problems
where the process is stopped on first hitting an a priori given boundary can be dealt with by adapting
the methods of [H. J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems,
in Continuous Time, 2nd ed., Springer-Verlag, Berlin, New York, 2001] as done in this paper for the
treated problems. The essential conditions are the weak-sense existence and uniqueness of solutions,
an “almost everywhere” continuity condition, and that a weak local consistency condition holds
“almost everywhere” for the numerical approximations, just as for the control problem. There are
extensions to problems with controlled variance and jumps.
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1. Introduction. The Markov chain approximation method of [25, 26, 32] is
an effective and widely used method for the numerical solution of virtually all of the
standard forms of stochastic control problems with reflected-jump-diffusion models.
It is robust and can be shown to converge under very broad conditions. In this paper,
the basic ideas will be extended to two-player stochastic dynamic games with the
same systems model, but where the controls for the two players are separated in the
dynamics and cost functions, and for certain classes of stopping time problems. Such
“separated” models occur, for example, in pursuit-evasion games, where each player
controls its own dynamics, risk-sensitive and robust control [2, 3, 8, 18, 36], Lagrangian
formulation of optimization under side constraints, and controlled large deviation
problems [12]. When the robust control is for controlled queues in heavy traffic, with
or without finite buffers, or for its fluid limits, then the state is confined to some
convex polyhedron by boundary reflection [28]. See section 8 for a few illustrations.
The minimizing and maximizing players will be called, respectively, players 1 and 2.

Early results concerning algorithms and convergence for stochastic games for
finite-state Markov chain models are in [30, 31], and a survey is in [37]. The per-
formance of all of these algorithms can be improved with the use of multigrid, Gauss–
Seidel, and various accelerated versions. See [32] for additional references and more
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detail concerning such accelerated algorithms.
Partial results for the convergence problem for approximations of various forms

of continuous state and time dynamic games have appeared, but there does not seem
to be a complete development for the fully stochastic problem for reflected-jump-
diffusion models. The upper value for a deterministic game (an ODE model) was
treated by the Markov chain approximation method in [34, 35]. Results for various
deterministic problems are in [4, 5, 6, 7, 40, 41]. The actual numerical methods which
are used in the computations tend to be of the Markov chain approximation type,
although the proofs are sometimes based on subsequent PDE techniques.

In this paper, we will use purely probabilistic methods of proof. Such methods
have the advantage of providing intuition concerning numerical approximations, they
cover many of the problem formulations to date, and they converge under quite general
conditions. The essential conditions are weak-sense existence and uniqueness of the
solution to the controlled equations, “almost everywhere” continuity of the dynamical
and cost rate terms, and a natural “local consistency” condition: The local consistency
and continuity need hold only almost everywhere with respect to the measure of the
basic model; hence discontinuities and severe singularities in the dynamics and cost
function can be treated under appropriate conditions (see, in particular, Theorems 4.7
and 7.1 and the treatment of discontinuities and complex variational problems with
singularities in [32]). Furthermore, the numerical approximations are represented as
processes which are close to the original, which gives additional intuitive and practical
meaning to the method. Indeed, the Markov chain approximation method seems to
provide the intuition for many of the actual numerical methods which are used, no
matter what the method of proof of convergence.

We will treat only a selection of problems. The basic controlled process x(·) is
defined by (2.2) or, equivalently, (2.4). We concentrate on discounted and stopping
time cost functions. Others, such as finite horizon problems and problems where the
process is stopped on first hitting an a priori given boundary, can be dealt with by
adapting the methods of [32] as done in this paper for the treated problems.

In many applications, the state of the actual physical problem is confined to a
bounded set, and the reflection term in (2.2) ensures the correct boundary behavior.
One example is the heavy traffic limit of controlled queueing networks with finite
buffers [1, 28] or robust control of such systems as in [2, 3], where the set is a hyper-
rectangle. Then robust control or the optimization under side constraints would lead
to a game problem with a hyperrectangular state space. Another example would be
the control of large deviations for such problems, along the lines of [12]. If the system
state is not a priori confined to a bounded set, then, for numerical purposes, it is
commonly necessary to bound the state space artificially and then experiment with
the bounds. Such problems which are bounded for numerical purposes often involve
reflecting boundaries. For this reason, our basic model is confined to a state space
G that is a convex polyhedron, and it is confined by a “reflection” on the boundary.
In [32], the boundary of the state space was determined by a set of smooth curved
surfaces. We restrict our attention to the simpler polyhedral case, since that is the
one most widely used, and it avoids details which distract from the general develop-
ment. However, the approximations of the more general boundaries that were used
in [32] can be carried over without change to the problem of this paper. Similarly, for
simplicity, we drop the jump term (which is treated in [32]) since including it for the
game involves no new issues. See also [27] for a setup where the jumps themselves
are controlled. Again, for simplicity, we do not allow the variance to be controlled.
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However, if (see (2.2)) w(·) = (w1(·), w2(·)), where the wi(·), i = 1, 2, are mutually in-
dependent, and we have the separated form σ(x, u)dw = σ1(x, u1)dw1+σ2(x, u2)dw2,
then the methods in [32, Chapter 13] or [26] can be adapted.

The methods to be used are based on the theory of weak convergence [10, 14]
as they are applied in [32]. For any process with values in a complete and separable
metric space S, let D(S; 0,∞) denote the space of S-valued paths on the time interval
[0,∞) which are right continuous and have left-hand limits, and with the Skorohod
topology used. The path space for the state process x(·) is D(G; 0,∞), where G ⊂
R
r, r-dimensional Euclidean space. The tightness criterion to be used implicitly is

Theorem 2.7b of [24], which is restated as [32, Theorem 9.2.1].
The development involves various concepts from stochastic control and game the-

ory, weak-sense solutions, the Skorohod problem, and numerical methods for stochas-
tic control, not all of which will be familiar to many readers. Because of this, to make
the material as accessible as possible as well as to minimize detail, the development
has been structured to take advantage of the results in [32] whenever possible. The
analysis for the game problem is more difficult than that for the pure control problem,
since we must work with strategies and not simply controls, the strategies of the two
players might be dependent, and they need to be approximated in various ways for
purposes of the analysis.

Sections 2 and 3 give the basic systems model and describe the numerical method.
They also contain necessary background material. The dynamical model is the re-
flected SDE (2.2) or (2.4), also called the Skorohod problem [11, 32, 28]. (See also
the beginning of section 4.) The conditions on the boundary of the state space are
A2.1–A2.2. Condition A2.1 covers the great majority of cases of current interest,
including those that arise from queueing and communications networks, as noted in
section 2. The condition is trivial to verify for the special case where the state space is
a hyperrectangle, with reflection directions being the interior normals. As is common
in control theory when limits of a sequence of controls are involved, much of the anal-
ysis uses the notion of relaxed control, and the necessary definitions are given. The
definitions of the upper and lower value of the game requires a precise definition of the
class of allowed strategies. These are given in section 2. Later, we will define various
subclasses of these sets which are needed in the approximation and limit proofs. The
bulk of the paper works with weak-sense solutions. This allows the greatest generality,
including the possibility of using Girsanov transformation methods for constructing
solutions, hence the possibility of discontinuous dynamics. However, it comes at a
price since the notation is more complicated than what would be required if Lipschitz
conditions (hence strong-sense solutions) were used.

The numerical method, which is the Markov chain approximation procedure, is
discussed in section 3. The actual ways of approximating the original problem to get
the approximating chain and associated cost function are the same as in [32] for the
pure control problem since it is the process for arbitrary controls that is approximated.
The basic and natural local consistency conditions are stated. The approximation to
the original process x(·) is a continuous time interpolation of the chain, and this
interpolation ψh(·) is defined, and a useful representation is given. The upper and
lower values for the game for the chain are defined.

The actual proof of convergence of the numerical method in Theorem 7.1 is not
long. However, it depends on many approximations and estimates as well as on the
fact that the original game has a value. These issues are dealt with in sections 4–6.
Under a Lipschitz condition, Theorem 4.3 shows that the costs are well approximated
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(in a uniform sense) if the controls are, and Theorem 4.4 proves similar facts when
there is only a weak-sense solution. Then it is shown that a fine discretization of any
of the controls in space and time, and even slightly delaying the actions of any of
the controls, changes the costs only slightly, again uniformly in the controls. Loosely
speaking, the costs are continuous in the controls of either player and uniform in the
control of the other. Theorem 4.7 shows, under appropriate conditions, how to get
similar results when the dynamical and cost rate functions are discontinuous. These
approximations are fundamental to the proof of the existence of the value of the game
in section 5 since they imply that slight delays in any of the controls have little effect
on the results, which in turn implies that “who goes first” is not too important.

Section 6 contains the final “auxiliary” result. In the proof of convergence of the
numerical method, one needs to use ε-optimal strategies for the player who goes first.
These strategies are for theoretical purposes only and do not have any use in practice.
The construction of these strategies is much more complicated than what is required
for the pure control problem, and it is done in Theorem 6.1.

The convergence of the numerical method is given in section 7. In the pure
control problem of [32], the numerical approximations are controlled Markov chains,
and one needs to show that the sequence of approximations to the optimal value
function converges as the approximation parameter goes to zero. Here, the numerical
approximations are games for Markov chains. They might or might not have a value,
depending on the form of the approximation. However, one needs to show at least
that the upper and lower values converge to the value of the original game as the
approximation parameter goes to its limit. This is more difficult than the proof
of convergence for the control problem, and one needs to keep careful track of the
information available to the individual players.

Section 8 contains a brief discussion of some examples and extensions. The treat-
ment of the ergodic cost case uses quite different methods and is in [29].

2. The system model.
Assumptions on the state space G. It is assumed that the system state x(t) is

confined to the set G by boundary reflections. Conditions A2.1 and A2.2 are common
in treatments of SDEs with reflections and piecewise smooth boundaries [11, 32, 28].

A2.1. G is a bounded convex polyhedron in r-dimensional Euclidean space R
r

with an interior and a finite number of faces. Let di denote the direction of reflection
to the interior of the ith face, assumed constant there. On any edge or corner, the
reflection direction can be any nonnegative linear combination of the directions on
the adjoining faces. Let d(x) denote the set of reflection directions at x ∈ ∂G, the
boundary of G. For an arbitrary corner or edge of ∂G, let d̄i and n̄i denote the
direction of reflection and the interior normal, respectively, on the ith adjoining face.
Then there are constants ai > 0 (depending on the edge or corner) such that

ai〈n̄i, d̄i〉 >
∑
j:j �=i

aj
∣∣〈n̄i, d̄j〉∣∣ for all i.(2.1)

A2.2. There is a neighborhood N(∂G) and an extension of d(·) to N(∂G) such
that the following holds: For each ε > 0, there is µ > 0 which goes to zero as ε → 0
and such that if x ∈ N(∂G)− ∂G and distance(x, ∂G) ≤ µ, then d(x) is in the convex
hull of {d(v); v ∈ ∂G, distance(x, v) ≤ ε}.

In A2.3, the real variables ci are the coefficients in the cost rate term c′dy, c = {ci},
in (2.5), and Ui is the space of values for the control ui(t) of player i in (2.2).

A2.3. Ui, i = 1, 2, are compact subsets of some Euclidean space, and ci ≥ 0.
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A2.4. The functions ki(·) and bi(·) are real-valued (resp., R
r-valued) and contin-

uous on G×Ui. Let σ(·) be a Lipschitz continuous matrix-valued function on G, with
r rows and with the number of columns being the dimension of the Wiener process in
(2.2). The bi(·, αi) are Lipschitz continuous, uniformly in αi.

Later, the continuity and Lipschitz conditions in A2.4 will be replaced by A2.5
and either A2.6 or A2.7, and then we will be concerned with weak-sense solutions.

Comments on A2.1 and A2.2. Condition A2.2 is unrestrictive since one can
always construct the extension. That A2.1 is quite natural can be seen from the
following comments. First, suppose that the state space is being bounded for purely
numerical reasons. Then the reflections are introduced merely to give a compact set
G, which should be large enough so that the effects on the solution in the region of
main interest are small. Then one often uses a hyperrectangle with normal reflection
directions, in which case the right side of (2.1) is zero. Next, consider a heavy traffic
queueing network model [22, 28, 39] where the state space is the nonnegative orthant,
and the probability that an output of the ith processor goes to the queue for the jth
processor is qij . Define the routing matrix Q = {qij ; i, j}. If the spectral radius of Q is
less than unity, then all customers will eventually leave the system, with probability
one. The model is a special case of (2.2), and we can write z(t) = [I −Q′]y(t), where
yi(·) is nondecreasing, continuous, and can increase only at t, where xi(t) = 0. In this
case, A2.1 implies (see [11, 28]) the so-called completely S condition [22, 28, 38], which
is essential to ensure important properties of the representation (2.2); for example,
that z(·) has bounded variation with probability one. Also, A2.1 implies the Lipschitz
condition and bound in Theorem 4.2.

The system model. Let w(·) be a standard vector-valued Wiener process with
respect to a filtration {Ft, t <∞}, which might depend on the control. Let ui(·), i =
1, 2, be Ui-valued, measurable, and Ft-adapted processes. Such processes are to be
called admissible controls.1 Keep in mind that the mere fact that ui(·), i = 1, 2,
are admissible does not imply that they are acceptable controls for the game since
the two players will have different information available depending on who “goes
first.” Furthermore, controls for the game are defined in terms of “strategies,” as
discussed at the end of this section. Nevertheless, for any controls with the correct
information dependencies, there will be a filtration with respect to which w(·) is a
standard vector-valued Wiener process, and to which the controls are adapted. The
concept of admissibility will be used in getting useful approximations and bounds.

The dynamical model for the game process is the reflected SDE

x(t) = x(0) +

2∑
i=1

∫ t
0

bi(x(s), ui(s))ds+

∫ t
0

σ(x(s))dw(s) + z(t),(2.2)

where ui(·) is the control for player i, i = 1, 2. The process z(·) is due to the boundary
reflections and ensures that x(t) ∈ G. It has the representation

z(t) =
∑
i

diyi(t),(2.3)

where y(0) = 0 and the yi(·) are continuous, nondecreasing, and can increase only
at t, where x(t) is on the ith face of ∂G. The condition (2.1) implies that the set of
reflection directions on any set of intersecting boundary faces are linearly independent.

1They will sometimes be referred to as admissible ordinary controls to distinguish them from
relaxed controls.



462 HAROLD J. KUSHNER

This implies that the representation (2.3) is unique. See [28, Chapter 3] or [11, 21, 32]
for a discussion of equations such as (2.2).

Relaxed controls ri(·). Suppose that, for some filtration {Ft, t <∞} and some
standard vector-valued Ft-Wiener process w(·), each ri(·), i = 1, 2, is a measure on the
Borel sets of Ui× [0,∞) such that ri(Ui× [0, t]) = t and ri(A× [0, t]) is Ft-measurable
for each Borel set A ⊂ Ui. Then ri(·) is said to be an admissible relaxed control for
player i, with respect to w(·). If the Wiener process and filtration have been given or
are obvious or unimportant, we simply say that ri(·) is an admissible relaxed control
for player i [15, 32]. For Borel sets A ⊂ Ui, we will write ri(A× [0, t]) = ri(A, t).

For almost all (ω, t) and each Borel set A ⊂ Ui, one can define the derivative

ri,t(A) = lim
δ→0

ri(t, A)− ri(t− δ, A)

δ
.

Without loss of generality, we can suppose that the limit exists for all (ω, t). Then, for
all (ω, t), ri,t(·) is a probability measure on the Borel sets of Ui, and, for any bounded
Borel set B in Ui × [0,∞),

ri(B) =

∫ ∞

0

∫
Ui

I{(αi,t)∈B}ri,t(dαi)dt.

An ordinary control ui(·) can be represented in terms of the relaxed control ri(·),
defined by its derivative ri,t(A) = IA(ui(t)), where IA(ui) is unity if ui ∈ A and is
zero otherwise. The weak topology [32] will be used on the space of admissible relaxed
controls. Relaxed controls are commonly used in control theory to prove existence
theorems since any sequence of relaxed controls has a convergent subsequence.

Define the relaxed control r(·) = (r1(·) × r2(·)), with derivative rt(·) = r1,t(·) ×
r2,t(·). The r(·) is a measure on the Borel sets of (U1 × U2)× [0,∞), with marginals
ri(·), i = 1, 2. Sometimes we will just write r(·) = (r1(·), r2(·)) without ambiguity.
The pair (w(·), r(·)) is called an admissible pair if each of the ri(·) is admissible with
respect to w(·).

In relaxed control terminology, (2.2) is written as

x(t) = x(0) +

2∑
i=1

∫ t
0

∫
Ui

bi(x(s), αi)ri,s(dαi)ds+

∫ t
0

σ(x(s))dw(s) + z(t).(2.4)

The existence and uniqueness of solutions to (2.4) will be discussed in the next section.
Until section 8, for x(0) = x and β > 0, the cost function is

W (x, r1, r2) = E

∫ ∞

0

e−βt
[

2∑
i=1

∫
Ui

ki(x(s), αi)ri,t(dαi)dt+ c′dy(t)

]
.(2.5)

Define α = (α1, α2), u = (u1, u2), and b(x, α) = b1(x, α1) + b2(x, α2), and define k(·)
analogously.

Weak-sense solution. Suppose that (w(·), r(·)) is admissible with respect to
some filtration {Ft, t <∞} on some probability space. If there is a probability space
on which are defined a filtration {F̃t, t <∞} and an F̃t-adapted triple (x̃(·), w̃(·), r̃(·)),
where (w̃(·), r̃(·)) is admissible and has the same probability law as (w(·), r(·)), and
the triple satisfies (2.4), then it is said that there is a weak-sense solution to (2.4) for
(w(·), r(·)). (The associated reflection process z̃(·) is determined by (x̃(·), w̃(·), r̃(·)).)
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Unique weak-sense solution. Suppose that we are given two probability spaces
(indexed by i = 1, 2) with filtrations {F it , t < ∞} and on which are defined pro-
cesses (xi(·), wi(·), ri(·)), where wi(·) is a standard vector-valued F it -Wiener process,
(wi(·), ri(·)) is an admissible pair, and (xi(·), wi(·), ri(·)) solves (2.4). If equality of
the probability laws of (wi(·), ri(·)), i = 1, 2, implies equality of the probability laws
of (xi(·), wi(·), ri(·)), i = 1, 2, then we say that there is a unique weak-sense solution
to (2.4) for the admissible pair (wi(·), ri(·)).

When working with weak-sense solutions, condition A2.5 and either A2.6 or A2.7
will replace A2.4.

A2.5. The functions σ(·), bi(·), ki(·), i = 1, 2, are bounded and measurable. Equa-
tion (2.4) has a unique weak-sense solution for each admissible pair (w(·), r(·)) and
each initial condition.

A2.6. The functions σ(·), bi(·), and ki(·), i = 1, 2, are continuous.
In A2.7, let (w(·), r(·)) be an arbitrary admissible pair, and let x(·) be the cor-

responding solution. Condition A2.7 differs from A2.6 in that the dynamics can be
discontinuous, provided that not much time is spent in a small neighborhood of the set
of discontinuity. A “threshold” control example where A2.7 holds is where σ(x)σ′(x)
is uniformly positive definite in G, b(x, α) = b̄(x, α)+ b0(x), where b̄(·) =∑i b̄i(·) and
ki(·), b̄i(·), and σ(·) are continuous, and b0(x) takes one of two values, depending on
which side of a hyperplane x lies.

A2.7. There is a Borel set Dd ⊂ G such that σ(·), bi(·), and ki(·), i = 1, 2, are
continuous when x /∈ Dd, and, for each ε > 0, there is tε > 0, which goes to zero as
ε→ 0, and such that, for any real T,

lim
ε→0

sup
x(0)

sup
admis. r(·)

sup
tε≤t≤T

P{x(t) ∈ Nε(Dd)} = 0,

where Nε(Dd) is an ε-neighborhood of Dd.
Comment on the Girsanov transformation method for defining solu-

tions. When there is not a uniform Lipschitz condition (i.e., A2.3 does not hold), a
common and useful approach to modeling uses the Girsanov transformation method
[9, 23, 28, 32]. Here one starts with either a unique strong- or weak-sense solution and
then introduces the control by a change of measure. Under appropriate conditions,
the transformation is used to “shift” the drift term so that it includes the desired
control. This procedure does not change the filtration or the probability space, but
it does change the Wiener process. The new solution will also be weak-sense unique.
See the references for more detail.

Classes of controls and strategies. Definitions. Let {Ft, t < ∞} be a
filtration, and let w(·) be a standard vector-valued Ft-Wiener process. Let Ui denote
the set of controls ui(·) for player i that are admissible with respect to w(·). For
∆ > 0, let Ui(∆) ⊂ Ui denote the subset of admissible controls ui(·) that are constant
on the intervals [k∆, k∆ + ∆), k = 0, 1, . . . , and where ui(k∆) is Fk∆-measurable.
Let B be a Borel subset of U1. Let L1(∆) denote the set of such piecewise constant
controls for player 1 that are represented by functions Q1k(B; ·), k = 0, 1, . . . , of the
conditional probability type

P
{
u1(k∆) ∈ B

∣∣w(s), u2(s), s < k∆;u1(l∆), l < k
}

= Q1k (B;w(s), u(s), s < k∆) ,
(2.6)

where Q1k(B; ·) is a measurable function for each Borel set B. Controls determined by
(2.6) can be called strategies, owing to their explicit dependence on the past actions
of both players.
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If a rule for player 1 is given by the form (2.6), then, in the arguments of the
cost functions, it will sometimes be written as u1(u2) to emphasize its dependence on
u2(·). Although there is also dependence on w(·), that dependence is suppressed in
the notation. Define L2(∆) and the associated rules u2(u1) for player 2 analogously.
The same terminology will be used for relaxed controls. Thus ri(·) ∈ Ui means
that ri(·) is admissible, ri(·) ∈ Ui(∆) means that ri(·) is admissible, the derivative
ri,t(·) is constant on the intervals [k∆, k∆+∆), and ri,t(·) is Fk∆-measurable. Thus
the difference between Li(∆) and Ui(∆) is that, in the former case, the control is
determined by a conditional probability law such as (2.6). However, the uniqueness
condition A2.5 implies that it is only the probability law of (w(·), u1(·), u2(·)) (or, more
generally, of (w(·), r1(·), r2(·))) that determines the law of the solution and hence the
value of the cost. Thus we can always suppose that if the control for, say, player 1 is
determined by a form such as (2.6), then (in relaxed control terminology) the law for
(w(·), r2(·)) is determined recursively by a conditional probability law

P
{{w(s), r2(s), k∆ ≤ s ≤ k∆+∆} ∈ ·∣∣w(s), r2(s), u1(s), s < k∆

}
.

Theorems 4.5–4.7 imply that the values defined by (2.7) and (2.8) would not change
if admissible relaxed controls were used in lieu of admissible ordinary controls.

Upper and lower values. For initial condition x(0) = x, define the upper and
lower values for the game as

V +(x) = lim
∆→0

inf
u1∈L1(∆)

sup
u2∈U2

W (x, u1(u2), u2),(2.7)

V −(x) = lim
∆→0

sup
u2∈L2(∆)

inf
u1∈U1

W (x, u1, u2(u1)).(2.8)

Discussion of (2.7), (2.8). Let us interpret (2.7). For fixed ∆ > 0, consider
the right side of (2.7). For each k, at time k∆, player 1 uses a rule of the form (2.6)
to decide on the constant action that it will take on [k∆, k∆+∆). That is, it “goes
first.” Player 2 can decide on its action at t ∈ [k∆, k∆+∆) at the actual time that it
is to be applied. (Its choice for the discrete instants k∆ is irrelevant.) Thus player 2
“goes last.” Player 2 selects its strategy simply to be admissible. This operation yields
admissible u(·) = (u1(·), u2(·)). Under the Lipschitz condition A2.4, there is clearly a
unique solution to (2.4). Alternatively, under the weak-sense existence and uniqueness
assumption A2.5, there is a probability space on which are defined (w̃(·), ũ(·)) (with
the same distribution as (w(·), u(·))) and on which is defined a solution to (2.4). The
distribution of the set (solution, Wiener process, control) does not depend on the
probability space. Thus, either way, the supu2∈U2

is well defined for each rule for
player 1. As ∆→ 0, the inf sup is monotonically decreasing since player 1 can make
decisions more often. Similar monotonicity was discussed in [20]. The analogous
comments hold for (2.8). In section 4, it will be seen that the infs and sups could be
taken over the relaxed controls without changing the results. Under our conditions,
Theorem 5.1 says that there is a saddle point in that

V +(x) = V −(x) = V (x) for all x ∈ G.(2.9)
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The use of limits of discrete strategies to define the upper and lower values goes
back to [16, 17, 20], where discrete time games were used to approximate continuous
time games. The Elliott–Kalton definition [13] does not require discretization and
admits the widest class of strategies. However, various approaches based on discretized
strategies are shown to yield the same values as those given by the Elliott–Kalton
definition (see, for example, [19]). The references [4, 5, 6] all use various discrete
time approximations in defining value, similar to (2.7) and (2.8). The numerical
approximations converge to the value given by the definition (2.7)–(2.9).

3. The numerical procedure: The Markov chain approximation method.
The Markov chain approximation. Since some facts concerning the Markov

chain approximation method of [25, 26, 32] will be needed when dealing with the con-
vergence of the numerical approximation, let us recall the basic numerical procedure
for the control problem where there is only one player. Loosely speaking, the method
consists of two steps. The first step is the determination of a finite-state controlled
Markov chain that has a continuous time interpolation that is an “approximation”
of the process x(·). The second step solves the optimization problem for the chain
and a cost function that approximates the one used for x(·). Let h denote the ap-
proximation parameter. Under a natural “local consistency” condition, the minimal
cost function V h(x) for the controlled approximating chain converges to the minimal
cost function for the original problem. The optimal control for the original prob-
lem is also approximated. The method is a robust and effective method for solving
optimal control problems for reflected-jump-diffusions under very general conditions.
The approximating chain and local consistency conditions are the same for the game
problems of this paper. There are many methods for getting suitable approximating
chains, and the references contain a comprehensive discussion. An advantage of the
approach is that the approximations “stay close” to the physical model and can be
adjusted to exploit local features. Our main aim is the proof of convergence for the
game problem, so only the essential details of the numerical approximations will be
given, and the reader is referred to the references for more information.

To construct the approximation, start by defining Sh, a discretization of R
r. This

can be done in many ways. For example, Sh might be a regular grid with the distance
between points in any coordinate direction being h. The precise requirements, as
spelled out below, are quite general. It is only the points in G and their immediate
neighbors that will be of interest. The next step is to define the approximating
controlled Markov chain ξhn and its state space, which will be a subset of Sh. The state
space for the chain is usually divided into two parts. The first part is Gh = G∩Sh, on
which the chain approximates the diffusion part of (2.4). If the chain tries to leave Gh,
then it is returned immediately, consistently with the local reflection direction. Thus
define ∂G+

h to be the set of points not in Gh to which the chain might move in one step
from some point in Gh. The set ∂G

+
h is an approximation to the reflecting boundary.

This two-step procedure on the boundary simplifies both coding and analysis. In
particular, it allows us to introduce a reflection process zh(·) that is analogous to
z(·). This “approximating” reflection process is needed to get the correct form for the
limits of the approximating chain and for the components of the cost function that
are due to the boundary reflection.

Local consistency on Gh. First, we define local consistency at x ∈ Gh. Let
uhn = (uh1,n, u

h
2,n) denote the controls used at step n for the approximating chain ξhn.

Let Eh,αx,n (resp., covarh,αx,n) denote the expectation (resp., the covariance), given all

of the data to step n, when ξhn = x, uhn = α. Then the chain satisfies the following
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condition: There is a function ∆th(x, α) > 0 such that

Eh,αx,n
[
ξhn+1 − x

]
= b(x, α)∆th(x, α) + o(∆th(x, α)),

covarh,αx,n
[
ξhn+1 − x

]
= a(x)∆th(x, α) + o(∆th(x, α)), a(x) = σ(x)σ′(x),

lim
h→0

sup
x,α

∆th(x, α) = 0,

‖ξhn+1 − ξnh‖ ≤ K1h

(3.1)

for some real K1. With the straightforward methods in [32], ∆th(·) is obtained au-
tomatically as a byproduct of getting the transition probabilities, and it will be used
as an interpolation interval. Thus, in G, the conditional mean first two moments of
ξhn+1 − ξhn are very close to those of the “differences” of the x(·) of (2.4). The inter-
polation interval ∆th(x, α) can always be selected so that it does not depend on the
control α (or even on the state x), and this is often the choice since it simplifies both
the coding and numerical computations.

Remark concerning discontinuous dynamical and cost terms. The consistency
condition (3.1) need not hold at all points. For example, consider a case where A2.7
holds: Let k(·), σ(·) be continuous, and let b(·) have the form b(x, α) = b0(x)+ b̄(x, α),
where b̄(·) is continuous but b0(·) is discontinuous at Dd ⊂ G. If A2.7 holds for
Dd, then we do not need local consistency there. A2.7 would hold if the “noise”
σ(x)dw “drives” the process away from the set Dd, no matter what the control. See
[32, discussion in section 5.5 and Theorem 10.5.3, and also the discussion concerning
discontinuous dynamics in section 10.2] for examples and more detail.

Local consistency on the reflecting boundary ∂G+
h . From points in ∂G+

h ,
the transitions of the chain are such that they move to Gh, with the conditional mean
direction being a reflection direction at x. More precisely,

lim
h→0

sup
x∈∂G+

h

distance(x,Gh) = 0,(3.2)

and there are θ1 > 0 and θ2(h)→ 0 as h→ 0 such that, for all x ∈ ∂G+
h ,

Eh,αx,n
[
ξhn+1 − x

] ∈ {aγ : γ ∈ d(x), θ2(h) ≥ a ≥ θ1h} ,
∆th(x, α) = 0 for x ∈ ∂G+

h .
(3.3)

The last line of (3.3) says that the reflection from states on ∂G+
h is instantaneous.

Reference [32] has an extensive discussion of straightforward methods of obtaining
useful approximations, which can also be used for the game problem.

A cost function. Define ∆thn = ∆th(ξhn, u
h
n) and thn =

∑n−1
l=0 ∆thl . When ξhn ∈

∂G+
h , we can write (modulo an asymptotically negligible term) ξ

h
n+1−ξhn =

∑
i diδy

h
i,n,

where δyhi,n ≥ 0 and represents the increments in the direction di. The δyhi,n = 0 for

ξhn �∈ ∂G+
h . See also the representation of zh(·) above (3.9). One choice of discounted

cost function for the approximating chain and initial condition x = x(0) is

Wh(x, uh) = E

∞∑
n=0

e−βt
h
n
[
k(ξhn, u

h
n)∆thnI{ξhn∈Gh} + c′δyhn

]
.(3.4)

Admissible controls and the values. Let ph(x, y|u) denote the transition
probability of the chain for u = (u1, u2), u1 ∈ U1, u2 ∈ U2.We will define the strategies
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for the game analogously to what was done in (2.6). If player i goes first, its strategy
is defined by a conditional probability law of the type

P
{
uni,n ∈ ·

∣∣ξhl , l ≤ n; uhl , l < n
}
.

The class of such rules is called Uhi (1). If player i goes last, then its strategy is defined
by a conditional probability law of the type

P
{
uni,n ∈ ·

∣∣ξhl , l ≤ n, uhl , l < n; uhj,n, j �= i
}
.

The class of such strategies is called Uhi (2). Let {δw̃hn, n < ∞} be mutually inde-
pendent random variables and such that δw̃hn is independent of the “past” {ξhl , l ≤
n, uhl , l < n}. For technical reasons, in section 7, the conditioning data might be
augmented by {δw̃hl , l ≤ n}, but the Markov property

P
{
ξhn+1 = x

∣∣ξhl , uhl , l ≤ n
}
= ph

(
ξhn, x

∣∣uhn)
will always hold.

The same notation Uhi (k) is used for the admissible relaxed controls. Define the
upper values, respectively, as

V +,h(x) = inf
u1∈Uh

1 (1)
sup

u2∈Uh
2 (2)

Wh(x, u1, u2),(3.5)

V −,h(x) = sup
u2∈Uh

2 (1)

inf
u1∈Uh

1 (2)
Wh(x, u1, u2).(3.6)

In interpreting the cost function and the interpolations to be defined below, keep
in mind that ∆th(x, α) = 0 for x ∈ ∂G+

h . For x ∈ Gh, the dynamic programming
equation for the upper value is (α = (α1, α2))

V +,h(x) = min
α1∈U1

{ max
α2∈U2

Eαx [e
−β∆th(x,α)V +,h(ξh1 ) + k(x, α)∆th(x, α)]},(3.7)

and, for x ∈ ∂G+
h , it is

V +,h(x) = Ex
[
V +,h(ξh1 ) + c′δyh1

]
.(3.8)

Here Eαx denotes the expectation, given initial state x, with control pair α used, and
Ex is the expectation, given initial state x (the reflection direction is not controlled).
The equations are analogous for the lower value. Owing to the contraction implied
by the discounting, there is a unique solution to (3.7) [35]. If desired, the transition
probabilities could be constructed so that ∆th(·) does not depend on α, and we have
the separated form2

ph(x, y|α) = p̄1(x, y|α1) + p̄2(x, y|α2).

Such a form is useful for establishing the existence of a value for the game for the
chain [31, 30], but it is not needed for the convergence of the numerical method.

Continuous time interpolation. The chain ξhn is defined in discrete time,
but x(·) is defined in continuous time. Only the chain is needed for the numerical

2For example, for the latter use, the splitting method of [32, subsection 5.3.2].
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computations. However, for the proofs of convergence, the chain must be interpolated
into a continuous time process which approximates x(·). The interpolation intervals
are suggested by the ∆th(·) in (3.1). We will use a Markovian interpolation, called
ψh(·). Let {∆τhn , n < ∞} be conditionally mutually independent and “exponential”
random variables in that

Ph,αx,n
{
∆τhn ≥ t

}
= e−t/∆t

h(x,α).

Note that ∆τhn = 0 if ξhn is on the reflecting boundary ∂G+
h . Define τh0 = 0, and, for

n > 0, set τhn =
∑n−1
i=0 ∆τhi . The τhn will be the jump times of ψh(·). Now define ψh(·)

and the interpolated reflection processes by

ψh(t) = x(0) +
∑
τhi+1≤t

[ξhi+1 − ξhi ],

Zh(t) =
∑
τhi+1≤t

[ξhi+1 − ξhi ]I{ξhi ∈∂G+
h },

zh(t) =
∑
τhi+1≤t

Ehi [ξ
h
i+1 − ξhi ]I{ξhi ∈∂G+

h }.

Define the continuous time interpolations uhi (·) of the controls analogously. Let rhi (·)
denote the relaxed control representation of uhi (·). The process ψh(·) is a continuous
time Markov chain. When the state is x and control pair is α, the jump rate out of
x ∈ Gh is 1/∆th(x, α). So the conditional mean interpolation interval is ∆th(x, α);
i.e., Eh,αx,n [τ

h
n+1 − τhn ] = ∆th(x, α).

Define z̃h(·) by Zh(t) = zh(t) + z̃h(t). Note that this representation splits the
effects of the reflection into two parts. The first is composed of the “conditional mean”
parts Ehi [ξ

h
i+1− ξhi ]I{ξhi ∈∂G+

h }, and the second is composed of the perturbations about

these conditional means [32, section 5.7.9]. The process zh(·) is a reflection term of
the classical type. Both components can change only at t, where ψh(t) can leave Gh.
Suppose that at some time t, Zh(t) − Zh(t−) �= 0, with ψh(t−) = x ∈ Gh. Then by
(3.3), zh(t)−zh(t−) points in a direction in d(Nh(x)), where Nh(x) is a neighborhood
with radius that goes to zero as h → 0. The process z̃h(·) is the “error” due to the
centering of the increments of the reflection term about their conditional means and
has bounded (uniformly in x, h) second moments, and it converges to zero, as will be
seen in Theorem 3.1. By A2.1, A2.2, and the local consistency condition (3.3), we
can write (modulo an asymptotically negligible term)

zh(t) =
∑
i

diy
h
i (t),

where yhi (0) = 0 and yhi (·) is nondecreasing and can increase only when ψh(t) is
arbitrarily close (as h→ 0) to the ith face of ∂G.

The interpolated cost criterion. The cost criterion (3.4) can be written (mod-
ulo an asymptotically negligible error), where we use relaxed control terminology,
x(0) = x, and rhi (·) is the relaxed control representation of uhi (·), as

Wh(x, rh) = E

∫ ∞

0

e−βt
[

2∑
i=1

∫
Ui

ki(ψ
h(s), αi)r

h
i,t(dαi)dt+ c′dyh(t)

]
.(3.9)
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In the numerical computations, the controls are ordinary and not relaxed, but it will
be convenient to use the relaxed control terminology when taking limits. The proof
of Theorem 7.1 implies that there is ρh → 0 as h→ 0 such that

V +,h(x) ≤ V −,h(x) + ρh.(3.10)

This implies that either the upper or lower numerical game gives an approximation
to the original game.

A representation for ψh(·). The process ψh(·) has a representation which
makes it appear close to (2.4) and which is useful in the convergence proofs. Let
ξh0 = x. If a(·) is not uniformly positive definite, then augment the probability
space by adding a standard vector-valued Wiener process w̃(·), where, for each n,
δw̃hn+1 = w̃(τhn + ·)− w̃(τhn ) is independent of the “past” {ψh(s), uh(s), w̃(s), s ≤ τhn}.
Then, by [32, sections 5.7.3 and 10.4.1], we can write

ψh(t) = x +

∫ t
0

b(ψh(s), uh(s))ds

+

∫ t
0

σ(ψh(s))dwh(s) + Zh(s) + εh(s),

(3.11)

where ψh(t) ∈ G. The process εh(·) is due to the o(·) terms in (3.1) and is asymptot-
ically unimportant in that, for any T , limh supx,rh sups≤T E|εh(s)|2 = 0. The process

wh(·) is a martingale with respect to the filtration induced by (ψh(·), uh(·), wh(·)) and
converges weakly to a standard (vector-valued) Wiener process. The wh(t) is obtained
from {ψh(s), w̃(s), s ≤ t}. All of the processes in (3.11) are constant on the intervals
[τhn , τ

h
n+1).
Let |zh|(T ) denote the variation of the process zh(·) on the time interval [0, T ].

Then we have the following theorem from [32].
Theorem 3.1 (Theorem 11.1.3 and (5.7.5) [32]). Assume A2.1, A2.2, and the

local consistency conditions, and let b(·) and σ(·) be bounded and measurable. Then,
for any T <∞, there are K2 <∞ and δh, where δh → 0 as h→ 0, and which do not
depend on the controls or initial condition, such that

E
∣∣zh∣∣2 (T ) ≤ K2,(3.12)

E sup
s≤T

∣∣z̃h(s)∣∣2 = δhE
∣∣zh∣∣ (T ).(3.13)

The inequalities hold for yh(·) replacing zh(·).
4. Auxiliary results: Bounds and approximations. This section is con-

cerned with various estimates and approximations of the solution to (2.4) which are
uniform in the control. The proofs of convergence of any numerical approximations
involve approximations of the underlying process, especially when control is involved,
and the results of this section will be used in section 6 to obtain nearly optimal strate-
gies of a particular type that will play a fundamental role in the convergence proofs
of the numerical algorithms. Furthermore, the approximations will be used in section
5 to show that the game has a value. This is critical in showing that the numerical
approximations actually converge to the desired value. The approximations imply,
among other things, that slight delays in the controls of any of the players affect the
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costs only slightly. Delaying the control of the second player is equivalent to that
player “going first” since its actual applied control at any time will depend on “old”
information. This idea will be used in the next section to prove that the game has
a value. The first part of the following theorem is [11, Theorem 2.2]. The inequality
(4.3) is [32, Theorem 11.1.1].

Definition 4.1 (the Skorohod problem). Assume A2.1 and A2.2, and let the
components of the R

r-valued function ψ(·) be right continuous and have left-hand
limits. Consider the equation x̄(t) = ψ(t) + z̄(t), x(t) ∈ G. Then x̄(·) is said to
solve the Skorohod problem [11, 32] if the following holds. The components of z̄(·) are
right continuous with z̄(0) = 0, and z̄(·) is constant on the time intervals where x̄(t)
is in the interior of G. The variation |z̄|(t) of z̄(·) on each [0, t] is finite. There is
measurable γ(·) with values γ(t) ∈ d(x̄(t)), the set of reflection directions at x̄(t), such

that z̄(t) =
∫ t
0
γ(s)d|z̄|(s). Thus z̄(·) can change only when x̄(t) is on the boundary of

G, and then its “increment” is in a reflection direction at x̄(t).
Theorem 4.2. Assume A2.1 and A2.2. Let ψ(·) ∈ D(Rr; 0,∞), and consider

the Skorohod problem x̄(t) = ψ(t) + z̄(t), x(t) ∈ G. Then there is a unique solution
(x̄(·), z̄(·)) in D(R2r; 0,∞). There is K <∞ depending only on the {di} such that

|x̄(t)|+ |z̄(t)| ≤ K sup
s≤t
|ψ(s)|,(4.1)

and, for any ψi(·) ∈ D(Rr; 0,∞), i = 1, 2, and corresponding solutions (x̄i(·), z̄i(·)),
|x̄1(t)− x̄2(t)|+ |z̄1(t)− z̄2(t)| ≤ K sup

s≤t
|ψ1(s)− ψ2(s)|.(4.2)

Consider (2.4), where b(·) and σ(·) are bounded and measurable, and use the represen-
tation (2.3) for the reflection process z(·). Then, for any T <∞, there is a constant
K1 which does not depend on the initial condition or controls and such that

sup
x∈G

E |y(1)|2 ≤ K1.(4.3)

Approximations under the Lipschitz condition A2.4. Suppose that the
Lipschitz and continuity condition A2.4 holds. Then the bound (4.1) and Lipschitz
condition (4.2) ensure a unique strong-sense solution to the SDE (2.2) or (2.4) for any
admissible controls. The proofs of the convergence of the numerical methods and of
the existence of the value depend on our ability to approximate the controls. This is
simplest under the Lipschitz condition A2.4, and we start with that case. Then the
same approximations will be shown to hold if A2.5 and either A2.6 or A2.7 replace
A2.4.

For each admissible relaxed control r(·), let rε(·) be admissible relaxed controls
with respect to the same filtration and Wiener process w(·) and that satisfy

lim
ε→0

sup
ri∈Ui

E sup
t≤T

∣∣∣∣
∫ t

0

∫
Ui

φi(αi)
[
ri,s(dαi)− rεi,s(dαi)

]
ds

∣∣∣∣ = 0, i = 1, 2,(4.4)

for each bounded and continuous real-valued nonrandom function φi(·) and each T <
∞. For future use, note that if (4.4) holds, then it also holds for functions φi(·) of
(t, αi) that are continuous except when t takes some value in a finite set {ti}. Let x(·)
and xε(·) denote the solutions to (2.4) corresponding to r(·) and rε(·), respectively,
with the same Wiener process used. In particular,

xε(t) = x(0) +

∫ t
0

∫
U1×U2

b(xε(s), α)rεs(dα)ds+

∫ t
0

σ(xε(s))dw(s) + zε(t).(4.5)
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Define

ρε(t) =

∫ t
0

∫
U1×U2

b(x(s), α) [rs(dα)− rεs(dα)] ds.

The processes x(·), xε(·), and ρε(·) depend on r(·), but this dependence is suppressed
in the notation. The next theorem shows that the set {x(·)} over all admissible
controls is equicontinuous in probability in the sense that (4.6) holds, and that the
costs corresponding to r(·) and rε(·) are arbitrarily close for small ε, uniformly in r(·).

Theorem 4.3. Assume A2.1 and A2.2, and let b(·), σ(·) be bounded and measur-
able. Then, for each real λ > 0,

lim
∆→0

sup
x(0)

sup
t

sup
r1∈U1

sup
r2∈U2

P

{
sup
s≤∆
|x(t+ s)− x(t)| ≥ λ

}
= 0.(4.6)

Now add the assumptions A2.3 and A2.4, and let (r(·), rε(·)) satisfy (4.4) for each
bounded and continuous φi(·), i = 1, 2, and T < ∞. Define ∆ε(t) = sups≤t |x(s) −
xε(s)|2. Then, for each t,

lim
ε→0

sup
x(0)

sup
r1∈U1

sup
r2∈U2

E

∣∣∣∣sup
s≤t

ρε(s)

∣∣∣∣
2

= 0,(4.7)

lim
ε→0

sup
x(0)

sup
r1∈U1

sup
r2∈U2

[
E∆ε(t) + E sup

s≤t
|z(s)− zε(s)|2

]
= 0,(4.8)

lim
ε→0

sup
x

sup
r1∈U1

sup
r2∈U2

|W (x, r)−W (x, rε)| = 0.(4.9)

Proof. Assume the conditions in the first sentence of the theorem. Define ψ(·) by

ψ(t) =

∫ t
0

∫
U1×U2

b(x(s), α)rs(dα)ds+

∫ t
0

σ(x(s))dw(s).

Then

x(t+ δ)− x(t) = [ψ(t+ δ)− ψ(t)] + [z(t+ δ)− z(t)].

By Theorem 4.2, there is K < ∞ which does not depend on the control or initial
condition and such that

sup
s≤δ
|x(t+ s)− x(t)|+ sup

s≤δ
|z(t+ s)− z(t)| ≤ K sup

s≤δ
[ψ(t+ s)− ψ(t)] .

Now using standard estimates for SDEs to evaluate the fourth moments of the right
side of the last inequality yields, for some K1 <∞,

sup
x(0),t

sup
r1∈U1

sup
r2∈U2

E sup
s≤δ
|x(t+ s)− x(t)|4 ≤ K1δ

2,(4.10)

which implies Kolmogorov’s criterion for equicontinuity in probability, which is (4.6)
[33, Proposition III.5.3]. Write

x(t)− xε(t) =

∫ t
0

∫
U1×U2

[b(x(s), α)− b(xε(s), α)] rεs(dα)ds+ ρε(t)

+

∫ t
0

[σ(x(s))− σ(xε(s))] dw(s) + z(t)− zε(t).
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Now assume the Lipschitz condition A2.4. Then the Lipshitz condition (4.2) together
with standard estimates for SDEs, imply that there is a constant K not depending
on (r(·), rε(·)) or on the initial condition x(0) and such that

E∆ε(t) ≤ K

[
E sup
s≤t
|ρε(s)|2 + (t+ 1)

∫ t
0

E∆ε(s)ds+ E sup
s≤t
|z(s)− zε(s)|2

]
,

E sup
s≤t
|z(s)− zε(s)|2 ≤ K

[
E sup
s≤t
|ρε(s)|2 + (t+ 1)

∫ t
0

E∆ε(s)ds

]
.

(4.11)

Suppose that, in the definition of ρε(·), the function b(x(t), α) was replaced by a
bounded nonrandom function φ(t, α), which is continuous except when t takes values
in some finite set {ti}. Then (4.7) and (4.8) would hold by (4.4) and the use of
Gronwall’s inequality on the first line of (4.11), after the second line is substituted in
to eliminate z(·)− zε(·). The equicontinuity in probability (4.6) and the boundedness
and continuity of b(·) imply that b(x(t), α) can be approximated arbitrarily well by
replacing x(t) by x(kµ) for t ∈ [kµ, kµ + µ), k = 0, 1, . . . , where µ can be chosen
independently of r(·). Doing this approximation and using (4.4) imply (4.7) and
(4.8).

Now we turn our attention to (4.9). By (4.7), (4.8), and the discounting, the
parts of W (x, rε) that involve k(·) converge to the corresponding parts of W (x, r).
As noted below (2.3), the linear independence of the reflection directions on any set
of intersecting boundary faces which is implied by (2.1) implies that z(·) uniquely
determines y(·) with probability one. Thus yε(·) converges to y(·) with probability
one. This convergence, the uniform integrability of the set {|yε(t + 1) − yε(t)|; t <
∞, all r(·), ε > 0} (which is implied by (4.3) and the compactness of G), and the
discounting imply that the component of W (x, rε) involving yε(·) converges to the
component of W (x(0), r) involving y(·).

Weak-sense solutions. The next theorem uses only weak-sense solutions and
does not require the Lipschitz condition A2.4. Except for the uniformity assertion, it
is a slight variation of [32, Theorem 10.1.2] or, equivalently, of [26, Theorem 3.5.2].
The method of proof, using specially selected probability spaces, is very useful in
general when dealing with sequences of solutions that are defined in the weak sense.

Theorem 4.4. Assume A2.1–A2.3, A2.5, and A2.6. Let r(·) and rε(·), ε > 0,
be admissible with respect to some Wiener process wr(·) and satisfy (4.4). For each
ε > 0, there is a probability space with an admissible pair (w̃r,ε(·), r̃ε(·)) which has the
same probability law as (wr(·), rε(·)) and on which is defined a solution (x̃r,ε(·), ỹr,ε(·))
to (2.4). Let xr(·) denote the solution to (2.4), corresponding to (wr(·), r(·)), and let
zr(·) =∑i diyri (·) denote the associated reflection process. Let F (·) be a bounded and
continuous real-valued function on the path space of the canonical set (x(·), y(·), r(·)).
Then the approximation of the solutions by using rε(·) is uniform in that

lim
ε→0

sup
x(0)

sup
r1∈U1

sup
r2∈U2

∣∣EF (x̃r,ε(·), ỹr,ε(·), r̃ε(·))− EF (xr(·), yr(·), r(·))∣∣ = 0.(4.12)

Now let F (·) be only continuous with probability one with respect to the mea-
sure of any solution set (x(·), y(·), r(·)). Then, if (xn(·), yn(·), rn(·)) converges weakly
to (x(·), y(·), r(·)), F (xn(·), yn(·), rn(·)) converges weakly to F (x(·), y(·), r(·)). Also,
(4.12) continues to hold.

Proof. Let F (·) be bounded and continuous. Let (wr(·), r(·)) be an admissi-
ble pair on some probability space, with associated solution process xr(·) and re-
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flection process zr(·) =
∑
i diy

r
i (·). Since (wr(·), rε(·)) is an admissible pair, by

the existence part of A2.5, there is a probability space on which are defined pro-
cesses (x̃r,ε(·), ỹr,ε(·), w̃r,ε(·), r̃ε(·)), where the last two members are an admissible
pair with the same law as (wr(·), rε(·)), and x̃r,ε(·) is the associated weak-sense so-
lution to (2.4), with reflection process z̃r,ε(·) = ∑

i diỹ
r,ε(·). Any weak-sense limit

(as ε → 0) (x̃r(·), ỹr(·), w̃r(·), r̃(·)) of the quadruple must solve (2.4), and w̃r(·) is
a standard vector-valued Wiener process with respect to the filtration generated by
(x̃r(·), w̃r(·), r̃(·)). For a proof of such a characterization of a related limit, see [32,
Theorem 11.1.2].

By (4.4) and the weak convergence, (w̃r(·), r̃(·)) has the probability law of (wr(·),
r(·)). Thus by the uniqueness part of A2.5, (x̃r(·), ỹr(·), w̃r(·), r̃(·)) has the probability
law of (xr(·), yr(·), wr(·), r(·)). This yields convergence (as ε → 0) in (4.12) for each
pair (wr(·), r(·)) and initial condition x(0).

Suppose that the uniformity (in r(·) and x(0)) of the convergence in (4.12) does
not hold. Then there are x(0), xn → x(0), all in G, ρ > 0, εn → 0, bounded and
continuous F (·), and for each n there is a probability space on which are defined an
admissible pair (wn(·), rn(·)), an associated solution (xn(·), yn(·)), and approxima-
tions rn,εni (·) to rni (·), i = 1, 2, satisfying

lim
n→∞E sup

t≤T

∣∣∣∣
∫ t

0

∫
Ui

φi(αi)
[
rni,s(dαi)− rn,εni,s (dαi)

]
ds

∣∣∣∣ = 0, i = 1, 2,(4.13)

for each bounded and continuous real-valued nonrandom function φi(·) and each T <
∞, and with the following additional properties. For each n, there is a probability
space on which are defined an admissible pair (w̃n,ε(·), r̃n,εn(·)), which has the law
of (wn(·), rn,εn(·)), and associated solution (x̃n,εn(·), ỹn,εn(·)) with initial conditions
x̃n,εn(0) = xn such that

lim inf
n

∣∣EF (xn(·), yn(·), rn(·))− EF (x̃n,εn(·), ỹn,εn(·), r̃n,εn(·))∣∣ ≥ ρ.(4.14)

Equation (4.13) is implied by (4.4).
Now take a weakly convergent subsequence of {x̃n,εn(·), ỹn,εn(·), w̃n,εn(·), r̃n,εn(·)},

with limit (x̃(·), ỹ(·), w̃(·), r̃(·)). Take a weakly convergent subsequence of {xn(·), yn(·),
wn(·), rn(·), rn,εn(·)} with limit (x(·), y(·), w(·), r(·), r̂(·)). By (4.13), r(·) = r̂(·). Also,
(x(·), y(·), w(·), r(·)) and (x̃(·), ỹ(·), w̃(·), r̃(·)) both solve (2.4) with initial condition
x(0). Since (w(·), r(·)) has the same law as (w(·), r̂(·)), hence as (w̃(·), r̃(·)), the
quadruples in the last sentence must be identical in law, which (together with the
weak convergence) contradicts (4.14). Thus (4.12) holds.

Now let F (·) be merely bounded and measurable. The first assertion of the last
paragraph of the theorem follows from [14, Theorem 3.1(f), Chapter 3]. With this
in hand, the uniformity of the convergence in (4.12) is treated as for the case of
continuous F (·).

Finite-valued and piecewise constant approximations rε(·) in (4.4):
Definitions. Now some approximations of subsequent interest will be defined. They
are just piecewise constant and finite-valued ordinary controls. Consider the following
discretization of the Ui. Given µ > 0, partition Ui into a finite number of disjoint
subsets Cli , l ≤ pi, each with diameter no greater than µ/2. Choose a point αli ∈ Cli .
Henceforth let pi be some given function of µ.

Now, given admissible (r1(·), r2(·)), define the approximating admissible relaxed
control rµi (·) on the control value space {αli, l ≤ pi} by its derivative as rµi,t(α

l
i) =
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ri,t(C
l
i). Denote the set of such controls over all {Cli , αli, l ≤ pi} by Ui(µ). Let Ui(µ, δ)

denote the subset of Ui(µ) that are ordinary controls and constant on the intervals
[lδ, lδ + δ), l = 0, 1, . . . . Another subclass Ui(µ, δ,∆) will be defined above Theorem
4.6.

Finite-valued controls. The proof that (4.4) holds in the next two theorems is
straightforward and the details are left to the reader. Under the Lipschitz conditions
in A2.4, (4.9) follows from Theorem 4.3, and this implies (4.17). Under A2.5 and
A2.6, use Theorem 4.4 to get (4.17).

Theorem 4.5. Assume A2.1–A2.3, A2.5, A2.6, and the above approximation of
ri(·) by rµi (·) ∈ Ui(µ), i = 1, 2. Then (4.4) and (4.9) hold for µ replacing ε, no matter
what the {Cli , αli}. The same result holds if we approximate only one of the ri(·).

Finite-valued, piecewise-constant, and “delayed” approximations. The
proof that the game has a value in section 6 depends on showing that the cost changes
little if the controls of any player are “delayed” since that implies that the order in
which the players act is not important. Let rµi (·) ∈ Ui(µ), where the control-space
values are {αli, l ≤ pi}. Let ∆ > 0. Define the “backward” differences ∆li,k =

rµi (α
l
i, k∆)−rµi (α

l
i, k∆−∆), l ≤ pi, k = 1, . . . . Define the piecewise constant ordinary

controls uµ,∆i (·) ∈ Ui(µ,∆) on the interval [k∆, k∆+∆) by

uµ,∆i (t) = αli for t ∈
[
k∆+

l−1∑
ν=1

∆νi,k, k∆+

l∑
ν=1

∆νi,k

)
.(4.15)

Note that, on [k∆, k∆+∆), uµ,∆(·) takes the value αli on a time interval of length ∆li,k.
Note also that the uµ,∆i (·) are “delayed” in that the values of ri(·) on [k∆ −∆, k∆)

determine the values of uµ,∆i (·) on [k∆, k∆+∆). Thus uµ,∆i (·) is Fk∆−-measurable.
This delay will play an important role in the next two sections. Let rµ,∆i (·) denote
the relaxed control representation of uµ,∆i (·).

The intervals ∆li,k in (4.15) are just real numbers. For use in section 6, it is
important to have them be some multiple of some small δ > 0, where ∆/δ is an inte-
ger. Consider one method of doing this. Divide [k∆, k∆+∆) into ∆/δ subintervals
of length δ each. To each value αli first assign (the integer part) [∆li,k/δ] subinter-
vals of length δ. Then assign the remaining unassigned subintervals to the values
αli at random with probabilities proportional to the residual (unassigned) lengths

∆li,k − [∆li,k/δ]δ, i ≤ pi. Call the resulting control uµ,δ,∆i (·), with relaxed control

representation rµ,δ,∆i (·). Let Ui(µ, δ,∆) denote the set of such controls. If uµ,δ,∆i (·)
is obtained from ri(·) in this way, then we will henceforth write it as uµ,δ,∆i (·|ri) to
emphasize that fact. Similarly, if uµ,∆i (·) is obtained from ri(·), then it will be written

as uµ,∆i (·|ri). Let rµ,∆i,t (·|ri) denote the time derivative of rµ,∆i (·|ri). As stated in

the next theorem, for fixed µ and small δ, uµ,δ,∆i (·|ri) well approximates uµ,∆i (·|ri)
uniformly in ri(·) and {αli} in that (4.4) holds in the sense that, for each µ > 0 ∆ > 0
and bounded and continuous φi(·),

lim
δ→0

sup
ri∈Ui

E sup
t≤T

∣∣∣∣
∫ t

0

∫
Ui

φi(αi)[r
µ,∆
i,s (dαi|ri)− rµ,δ,∆i,s (dαi|ri)]ds

∣∣∣∣ = 0, i = 1, 2.(4.16)

Theorem 4.6. Assume A2.1–A2.3, A2.5, and A2.6. For ri(·) ∈ Ui, approximate

as above the theorem to get rµ,∆i (·|ri) ∈ Ui(µ,∆) and rµ,δ,∆i (·|ri) ∈ Ui(µ, δ,∆). Then

(4.4) holds for rµ,∆i (·|ri) and (µ,∆) replacing rεi (·) and ε, respectively. Also, (4.16)
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holds and

lim
∆→0

lim
δ→0

sup
x

sup
r1∈U1

sup
r2∈U2

|W (x, r1, r2)−W (x, r1, u
µ,δ,∆
2 (·|r2))| = 0.(4.17)

For each ε > 0, there are µε > 0 and δε > 0 such that, for µ ≤ µε and δ ≤ δε and
ri(·) ∈ Ui, i = 1, 2, there are uµ,δi (·) ∈ Ui(µ, δ) such that (4.4) holds for uµ,δi (·) and
(µ, δ) replacing rεi (·) and ε, respectively, and

sup
x

sup
r1∈U1

sup
r2∈U2

|W (x, r1, r2)−W (x, r1, u
µ,δ
2 )| ≤ ε.(4.18)

The expressions (4.17) and (4.18) hold with the indices 1 and 2 interchanged.
Theorem 4.7. If A2.7 replaces A2.6 in Theorems 4.4–4.6, then their conclusions

continue to hold.
Proof. Only a few details will be given. The last part of Theorem 4.4 will be

used, and we need only identify the F (·) for the present case. Theorem 4.2 and (4.6)
required only measurability and boundedness of b(·) and σ(·). Also, the tightness
of any solution sequence {xε(·), yε(·), wε(·), rε(·)} requires only the measurability and
boundedness of b(·) and σ(·).

For each t > 0, define the bounded real-valued function F (φ(·),m(·)) on the
product path space of x(·) and r(·) by

F (φ(·),m(·)) =
∫ t

0

∫
U1×U2

b(φ(s), α)ms(dα)ds.

Under A2.7, F (φ(·),m(·)) is continuous with probability one with respect to the mea-
sure induced by any pair (x(·), r(·)) solving (2.4). Let (xε(·), yε(·), wε(·), rε(·)) satisfy

xε(t) = x(0) +

∫ t
0

∫
U1×U2

b(xε(s), α)rε(dα)ds+

∫ t
0

σ(xε(s))dwε(s) + zε(t)(4.19)

and converge weakly to (x(·), y(·), w(·), r(·)) as ε→ 0.
For the sake of simplicity and without loss of generality, suppose that the Skoro-

hod representation is used so that all processes are defined on the same probability
space and the weak convergence is equivalent to convergence with probability one
[14, Theorem 1.8, Chapter 3]. First, suppose that σ(·) is continuous but b(·) is not.
By the asserted almost everywhere continuity of F (·) and the weak convergence and
Skorohod representation, the integral in (4.19) involving b(·) converges to∫ t

0

∫
U1×U2

b(x(s), α)rs(dα)ds

with probability one. Discontinuous k(·) is treated in the same way. Also, the stochas-
tic integral and reflection term converge to those for the limit. The proof for the con-
vergence of the stochastic integral uses a finite sum approximation

∑
lγ≤t σ(x

ε(lγ))·
[wε(lγ + γ) − wε(lγ)] and a standard estimate of the errors in this approximation.
The proof for the reflection direction is similar to that in [32, Theorem 11.1.2]. The
uniformity in r(·) of the approximations, as asserted in (4.9), (4.12), (4.17), and (4.18)
in Theorems 4.4–4.6, is shown by a contradiction argument as in Theorem 4.4.

Now, suppose that σ(·) is discontinuous but that A2.7 holds. For ρ > 0, define
the real-valued function fρ(·) by

fρ(x) =

{
1 for dist(x,Dd) ≥ ρ,

dist(x,Dd)/ρ otherwise.
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The function σ(·)fρ(·) is continuous, and, for each T <∞, A2.7 implies that

lim
ρ→0

sup
x(0),r

sup
ε

E sup
t≤T

∣∣∣∣
∫ t

0

σ(xε(s)) [1− fρ(xε(s))] dwε(s)

∣∣∣∣
2

= 0.(4.20)

Now approximate σ(·) by σ(·)fρ(·), and use (4.20) to get the convergence of the
stochastic integrals

∫ t
0

σ(xε(s))dwε(s)→
∫ t

0

σ(x(s))dw(s).

5. Existence of the value of the game.
Motivating the proof that the value exists, i.e., that (2.9) holds. Let

player 1 go first, and have a control that is constant on intervals of length ∆1. The-
orems 4.5–4.7 imply that, if the control for player 2 is delayed by more than ∆1 and
discretized in time, then the costs change little for small ∆1. This delay will mean
that player 1 will know player 2’s actions before it selects its own. This, in turn, is
equivalent to player 2 going first, which (together with the fact that the costs change
little) essentially implies that the upper and lower values are as close as we wish. The
proof formalizes this idea.

Theorem 5.1. Assume A2.1–A2.3, A2.5, and either A2.6 or A2.7. Then the
game has a value in that (2.9) holds.

Proof. Let ∆1 > 0. Let ∆, δ, µ, ε be positive with ∆/δ being an integer. By
Theorems 4.5–4.7, for small enough µ, δ,∆, and large ∆/δ,

|W (x, u1(r2), r2)−W (x, u1(r2), u
µ,δ,∆
2 (·|r2))| ≤ ε(5.1)

for all u1(·) ∈ L1(∆1) and r2(·) ∈ U2. Also, for all ∆1 > 0,

∣∣∣∣ inf
u1∈L1(∆1)

sup
r2∈U2

W (x, u1(r2), r2)− inf
u1∈L1(∆1)

sup
r2∈U2

W (x, u1(r2), u
µ,δ,∆
2 (·|r2))

∣∣∣∣
≤ ε.

(5.2)

The results analogous to (5.1)–(5.2) hold if player 1 goes last. It follows that, in
computing the upper or lower values, we can use either relaxed or ordinary controls
for the player that goes last.

By the definition (2.7), for each ∆1 > 0,

V +(x) ≤ inf
u1∈L1(∆1)

sup
r2∈U2

W (x, u1(r2), r2).(5.3)

Let ε > 0. By (5.2), there is ∆ε > 0 such that, for ∆ ≤ ∆ε, there are µ > 0 and δ > 0
such that, for all ∆1 > 0,

inf
u1∈L1(∆1)

sup
r2∈U2

W (x, u1(r2), r2)

≤ inf
u1∈L1(∆1)

sup
r2∈U2

W (x, u1(r2), u
µ,δ,∆
2 (·|r2)) + ε

≤ inf
u1∈L1(∆1)

sup
r2∈U2

W (x, u1(u
µ,δ,∆
2 (·|r2)), uµ,δ,∆2 (·|r2)) + ε.

(5.4)
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Now let ∆1 < ∆ with ∆/∆1 being an integer. Recall that the process uµ,δ,∆2 (·|r2)
is constant on the intervals [lδ, lδ + δ), l = 0, 1, . . . , and that uµ,δ,∆2 (t|r2) is Fq∆-
measurable for t ∈ [q∆, q∆+∆). Thus, for integers k and q such that k∆1 ∈ [q∆, q∆+

∆), the inf sup and the use of uµ,δ,∆2 (·|r2) on the right of (5.4) can be interpreted to
mean that, at each such time k∆1, player 1 knows all of player 2’s actions on the
entire interval [k∆1, q∆+∆) as well as the data on the “past” up to k∆1. Thus one
computes the value of the main term on the right side of (5.4) as if player 2 goes first:
For k∆1 ∈ [q∆, q∆+∆), player 1 uses a rule which can be represented in the form

P{u1(k∆1) ∈ ·
∣∣u1(l∆1), l < k; uµ,δ,∆2 (lδ|r2), lδ < q∆+∆; w(s), s < k∆1}.(5.5)

Since it is only the joint probability law that matters, it can be supposed that the
value of u2(t) = uµ,δ,∆2 (t|r2) which is actually applied on [q∆, q∆+∆) is determined
by a conditional probability law which can be represented in the form

P
{
(u2(q∆+ lδ), lδ < ∆) ∈ ·∣∣u2(lδ), lδ < q∆; u1(s), w(s), s < q∆

}
,(5.6)

where the u2(lδ) take values in a µ-discretization of U2. Let L2(µ, δ,∆) denote the set
of such rules for player 2. The main term on the right side of (5.4) involves arbitrary
strategies for player 2 but which are discretized in space and time and delayed. By
this fact and the use of the form (5.5), the uµ,δ,∆2 (·|r2) can be replaced by a control
u2(·) in L2(µ, δ,∆), and we can write

inf
u1∈L1(∆1)

sup
r2∈U2

W (x, u1(u
µ,δ,∆
2 (·|r2)), uµ,δ,∆2 (·|r2))

= inf
u1∈L1(∆1)

sup
u2∈L2(µ,δ,∆)

W (x, u1(u2), u2)

= inf
u1∈U1(∆1)

sup
u2∈L2(µ,δ,∆)

W (x, u1(u2), u2).

Now, since player 2 can be considered to “go first,” we can write

inf
u1∈U1(∆1)

sup
u2∈L2(µ,δ,∆)

W (x, u1(u2), u2)

= sup
u2∈L2(µ,δ,∆)

inf
u1∈U1(∆1)

W (x, u1, u2(u1)).
(5.7)

By (5.3), (5.4), and (5.6),

V +(x) ≤ sup
u2∈L2(µ,δ,∆)

inf
u1∈U1(∆1)

W (x, u1, u2(u1)) + ε.(5.8)

For small ∆1 and large ∆/∆1,∣∣∣∣∣ sup
u2∈L2(µ,δ,∆)

inf
u1∈U1(∆1)

W (x, u1, u2(u1))− sup
u2∈L2(µ,δ,∆)

inf
u1∈U1

W (x, u1, u2(u1))

∣∣∣∣∣
≤ ε.

It now follows from this, (5.8), and the definition of V −(x) that, for small ∆ and µ
and large ∆/δ and ∆/∆1,

V +(x) ≤ sup
u2∈L2(µ,δ,∆)

inf
u1∈U1(∆1)

W (x, u1, u2(u1)) + ε

≤ sup
u2∈L2(µ,δ,∆)

inf
u1∈U1

W (x, u1, u2(u1)) + ε

≤ sup
u2∈U2(δ)

inf
u1∈U1

W (x, u1, u2(u1)) + ε ≤ V −(x) + 2ε.

.(5.9)

Since ε is arbitrary and V +(x) ≥ V −(x), the theorem is proved.
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6. An auxiliary result: Nearly optimal policies. The proof of convergence
of the numerical method in the next section will require the use of particular ε-optimal
minimizing (resp., maximizing) strategies for player 1 when it goes first (resp., for
player 2 when it goes first). Such strategies will be constructed in this section. They
are for mathematical purposes only and do not have any practical value otherwise.

In order to motivate the construction, we will first recall the method of proof used
for the pure control problem (where there is only a minimizing player) in [32, Chapters
10 and 11]. Let rh(·) denote the continuous time interpolation of the relaxed control
representation of the optimal control for the approximating chain ξhn. Thus the op-
timal cost V h(x) equals Wh(x, rh). The corresponding set {ψh(·), zh(·), wh(·), rh(·)}
was shown to be tight. The limit (x(·), z(·), w(·), r(·)) of any weakly convergent sub-
sequence was shown to satisfy the (one-player form of) (2.4). Hence it cannot be
better than an optimal solution for (2.4). This implies that lim infh V

h(x) ≥ V (x),
the minimal value of the cost for (2.4).

To finish the convergence proof in [32], we had to show that lim suph V
h(x) ≤

V (x). This was done in the following way. Given arbitrary ε > 0, a special ε-optimal
control for (2.4) was constructed. This special control was such that it could be
adapted for use on the approximating chain, and for small h the interpolated chain
well approximated the limit process under that control. In more detail, let rε(·) denote
the relaxed control form of this special ε-optimal control for (2.4), with Wiener process
wε(·) and associated solution and reflection process (xε(·), zε(·)). Let rε,h(·) denote the
relaxed control form of the adaptation of this special control for use on the chain ξhn,
interpolated to continuous time, and let (ψε,h(·), zε,h(·), wε,h(·)) denote the continuous
time interpolation of the corresponding solution, reflection process and “pre-Wiener”
process in the representation (3.11). Since rε,h(·) is no better than the optimal control
for the chain, V h(x) ≤ Wh(x, rε,h). By the method of construction of rε,h(·), the set
(ψε,h(·), zε,h(·), wε,h(·), rε,h(·)) converged weakly to the set (xε(·), zε(·), wε(·), rε(·)),
with ε-optimal cost W (x, rε). Since ε is arbitrary, we have lim suph V

h(x) ≤ V (x),
which completes the proof that V h(x)→ V (x). See the references for full details.

Such an ε-optimal control for (2.4) (whether minimizing or maximizing) for the
player that goes first plays a similar role for the game problem of this paper. The
construction follows the general lines of what was done in [32, Theorem 10.3.1], but
there are some very important differences since we must work with strategies, where
the two controls depend on each other, which is not the case for the pure (i.e., one-
player) control problem. The construction is done as it is since we know little about
nearly optimal policies in general. For example, we do know whether there are smooth
ε-optimal feedback controls for either player, in general.

Theorem 6.1. Assume A2.1–A2.3, A2.5, and either A2.6 or A2.7. Let player 1
go first. Then, for each ε > 0, there is an ε-optimal minimizing control law for player
1 with the following properties. For positive ∆, δ, and ρ, let δ/ρ and ∆/δ be integers.
The control is constant on the intervals [k∆, k∆+∆), k = 0, 1, . . . , finite-valued, the
value at k∆ is Fk∆-measurable, and, for small λ > 0, it is defined by the conditional
probability law (which defines the function qi,k(·))

P
{
u1(k∆) = γ

∣∣u1(l∆), l < k; w(s), r2(s), s < k∆
}

= P{u1(k∆) = γ
∣∣w(lλ), lλ < k∆; u1(l∆), l < k; uµ,ρ,δ2 (lρ|r2), lρ < k∆}

= q1,k(γ; w(lλ), lλ < k∆; u1(l∆), l < k; uµ,ρ,δ2 (lρ|r2), lρ < k∆).

(6.1)

The function q1k(·) is continuous in the w-arguments for each value of the others.

Since the rule (6.1) depends on r2(·) only via uµ,ρ,δ2 (·|r2) (which is defined above



NUMERICAL METHODS FOR STOCHASTIC GAMES 479

Theorem 4.6), we write the rule as ūε1(u
µ,ρ,δ
2 (·|r2)). In particular, for small λ, µ,∆

and large δ/ρ and ∆/δ, it satisfies the inequality

sup
r2∈U2

W (x, ūε1(u
µ,ρ,δ
2 (·|r2)), r2) ≤ V (x) + ε.(6.2)

Also, if rn2 (·) is a sequence which converges weakly to some r2(·), then

lim sup
n

W (x, ūε1(u
µ,ρ,δ
2 (·|rn2 )), rn2 ) ≤ V (x) + ε.(6.3)

For each r2(·) and l = 0, 1, . . . , let ũµ,ρ,δ2 (lρ|r2) be a control that differs from uµ,ρ,δ2 (lρ|r2)
by at most µ in absolute value. Then (6.2) and (6.3) hold for the perturbation

ũµ,ρ,δ2 (·|r2) replacing uµ,ρ,δ2 (·|r2).
Similarly, if player 2 goes first, then there is an ε-optimal control rule of the same

type: In particular, and with the analogous terminology,

inf
r1∈U1

W (x, r1, ū
ε
2(u
µ,ρ,δ
1 (·|r1))) ≥ V (x)− ε,(6.4)

and (6.4) continues to hold with the perturbation ũµ,ρ,δ1 (·|r1) replacing uµ,ρ,δ1 (·|r1).
Proof. Recall the approximation of the Ui given above Theorem 4.5: Given µ1 > 0,

Ui was partitioned into a finite number of disjoint subsets Cli , l ≤ pi, each with
diameter no greater than µ1/2. A point αli in each Cli was chosen. These are the
values of γ in (6.1). Let player 1 go first. Given ε > 0, there are ∆ > 0, µ1 > 0,
and an ε/8-optimal rule for player 1 which can be represented in the “conditional
probability” form

P
{
u1(k∆) = γ

∣∣u1(l∆), l < k; w(s), r2(s), s ≤ k∆
}
.(6.5)

Call the rule uε1(r2). Then, by the ε/8-optimality, for all r2(·), we have
W (x, uε1(r2), r2) ≤ V +(x) + ε/8.(6.6)

The rule (6.5) needs to be approximated so that it depends only on selected samples
of the data.

Whatever r2(·), uµ,ρ,δ2 (·|r2) is also an admissible control. Hence, by (6.6), for all
r2(·) ∈ U2,

W (x, uε1(u
µ,ρ,δ
2 (·|r2)), uµ,ρ,δ2 (·|r2)) ≤ V +(x) + ε/8.(6.7)

Indeed, (6.7) holds for all uµ,ρ,δ2 (·|r2), irrespective of r2(·). Let µ, ρ, and δ be positive
numbers with ∆/δ and δ/ρ being integers. For small µ and δ and large δ/ρ, Theorems
4.5–4.7 imply that

W (x, uε1(u
µ,ρ,δ
2 (·|r2)), r2) ≤W (x, uε1(u

µ,ρ,δ
2 (·|r2)), uµ,ρ,δ2 (·|r2)) + ε/8(6.8)

for all r2(·) ∈ U2. The control law uε1(u
µ,ρ,δ
2 (·|r2)) can be represented in the form

P{u1(k∆) = γ
∣∣u1(l∆), l < k; r2(s), w(s), s < k∆}

= P{u1(k∆) = γ
∣∣w(s), s < k∆ u1(l∆); l < k; uµ,ρ,δ2 (lρ|r2), lρ < k∆}.(6.9)

Let rn2 (·) converge to r2(·) as n→∞. Then the discrete approximations uµ,ρ,δ2 (·|rn2 )
do not necessarily converge to uµ,ρ,δ2 (·|r2) as n → ∞. They will converge if the limit
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“mass” on the boundaries of the sets {Cm2 ,m ≤ p2} into which U2 is subdivided is
zero—more particularly, if

r2(lδ + δ, ∂Cm2 )− r2(lδ, ∂C
m
2 ) = 0

for all m, l [14, Chapter 3, Theorem 3.1(f)]. Such convergence is hard to ensure for
arbitrary r2(·). The problem is due to the fact that the sets Cn2 are not all closed so
that part of the boundary of some set will actually be in a neighboring set. Owing to
our use of a µ-discretization of the Ui, the worst that can happen is that uµ,ρ,δ2 (lρ|rn2 )
will differ from uµ,ρ,δ2 (lρ|r2) by at most µ for each l in the limit as n→∞. For each

r2(·), let ũµ,ρ,δ2 (·|r2) be any admissible control satisfying

sup
l
|uµ,ρ,δ2 (lρ|r2)− ũµ,ρ,δ2 (lρ|r2)| ≤ µ.

Then, as n→∞ and rn2 (·)→ r2(·), we will have uε1(u
µ,ρ,δ
2 (·|rn2 ))→ uε1(ũ

µ,ρ,δ
2 (·|r2)) for

some perturbation ũµ,ρ,δ2 (·|r2) that differs from ũµ,ρ,δ2 (·|r2) by a most µ at each time
point. For small µ and large δ/ρ, it will be seen that inequality (6.12) holds, and that
is all that will be needed.

For small µ and δ and large δ/ρ, (6.8) yields

W (x, uε1(ũ
µ,ρ,δ
2 (·|r2)), r2) ≤W (x, uε1(ũ

µ,ρ,δ
2 (·|r2)), ũµ,ρ,δ2 (·|r2)) + ε/8(6.10)

for all r2(·) ∈ U2. Inequalities (6.10) and (6.6) (with all r2(·) replaced by ũµ,ρ,δ2 (·|r2))
imply that, for all r2(·) and all such perturbations ũµ,ρ,δ2 (·|r2),

W (x, uε1(ũ
µ,ρ,δ
2 (·|r2)), r2) ≤ V +(x) + 2ε/8.(6.11)

Hence, for small µ and δ and large δ/ρ, the rule (6.9), but with any perturbation

ũµ,ρ,δ2 (·|r2) used in lieu of uµ,ρ,δ2 (·|r2), still yields a 2ε/8-optimal rule for player 1 if it
goes first. Furthermore, if rn2 (·) converges to r2(·), then

lim sup
n

W (x, uε1(u
µ,ρ,δ
2 (·|rn2 )), rn2 ) = W (x, uε1(ũ

µ,ρ,δ
2 (·|r2)), r2) ≤ V +(x) + 2ε/8(6.12)

for some perturbation ũµ,ρ,δ2 (·|r2).
The next step is to approximate the right side of (6.9) so that it depends only

on samples of the w(·). Other than the w(·)-variables, owing to the discretizations of
time and control value, the conditioning data in (6.9) takes only a finite number of
values. By the martingale convergence theorem, as λ→ 0, the function defined by

qλ1,k(γ; w(lλ), lλ < k∆; u1(l∆), l < k; uµ,ρ,δ2 (lρ|r2), lρ < k∆)

≡ P{u1(k∆) = γ
∣∣w(lλ), lλ < k∆; u1(l∆), l < k; uµ,ρ,δ2 (lρ|r2), lρ < k∆}(6.13)

converges to

P{u1(k∆) = γ
∣∣w(s), s < k∆; u1(l∆), l < k;uµ,ρ,δ2 (lρ|r2), lρ < k∆}

for almost all w(·), for each value of the other conditioning variables. Thus, for small
enough λ, the rule (6.9) can be approximated by (6.13). If the new rule is called

ûε,λ1 (uµ,ρ,δ2 (·|r2)), then, for small λ,

W (x, ûε,λ1 (uµ,ρ,δ2 (·|r2)), r2) ≤ V +(x) + 6ε/8,
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and for small λ, µ, ρ, and δ and large ∆/δ and δ/ρ, the same inequality holds if

the perturbation ũµ,ρ,δ2 (·|r2) replaces uµ,ρ,δ2 (·|r2). We can suppose, without loss of
generality, that ∆/λ is an integer.

There is one more approximation since we will require that the function q1,k(·)
in (6.1) be continuous in the w(lλ)-variables for each value of the others. Fix k, and
let m denote the dimension of w(1). Let n = [k∆/λ]− 1. Let ᾱ denote the canonical
value of the entire set {u1(l∆), l < k}, and let β̄ denote the canonical value of the
entire set {u2(lρ), lρ < k∆}. Let wν , vν , ν ≤ n, be vectors in R

m. For κ > 0, define
the smoothed function

qλ,κ1,k

(
γ
∣∣ᾱ, β̄; wν , ν ≤ n

)
=

1

[2πκ]nm/2

∫
· · ·
∫

e−|wν−vν |2/[2κ]qλ1,k
(
γ
∣∣ᾱ, β̄; vν , ν ≤ n

)
dv1 · · · dvn.

(6.14)

The smoothed function defined by (6.14) is continuous in {wν , ν ≤ n} for each value
of ᾱ, β̄, γ. As κ → 0, for each ᾱ, β̄, γ, it converges to qλ1,k

(
γ
∣∣ᾱ, β̄; wν , ν ≤ n

)
for

almost all (Lebesgue measure) {wν , ν ≤ n}. Since the measure of {w(lλ), lλ < k∆} is
absolutely continuous with respect to Lebesgue measure, the convergence is for almost
all w(·). Finally, defining the function q1,k(·) in (6.1) by qλ,κ1,k (·) for small enough λ

and κ and calling the resulting control law ūε1(u
µ,ρ,δ
2 (·|r2)), we have (6.1) and (6.3),

and q1,k(·) is continuous in the w-variables for each value of the others.
If players 1 and 2 are interchanged in all of the above arguments, then we get

an ε-optimal (maximizing) rule analogous to the form (6.1) for player 2, and (6.4)
holds.

7. Convergence of the numerical solutions. The next theorem establishes
the convergence of the numerical procedure. It supposes the local consistency condi-
tion (3.1)–(3.3) everywhere, but recall the remarks concerning discontinuous dynam-
ical and cost terms below (3.1). We do not show the convergence of the controls.
In numerical examples, the sequence of optimal feedback controls for the chain does
converge as well, and, in all examples of which we are aware, it is of a form that can
be shown to be optimal. This would be the case if the optimal feedback controls ūhi (·)
for the chain converged to feedback controls ūi(·), where the convergence is uniform
and the limits are continuous outside of an arbitrarily small neighborhood of a set
Dd satisfying A2.7, and the process (2.4) under the ūi(·) is unique in the weak sense.
Then W (x, ū1, ū2) = V (x).

Theorem 7.1. Assume the local consistency conditions (3.1)–(3.3), A2.1–A2.3,
A2.5, and either A2.6 or A2.7. Then V ±,h(x)→ V (x) as h→ 0.

Proof. Let player 1 go first. Given ε > 0, let us adapt the ε-optimal (minimizing)

rule ūε1(u
µ,ρ,δ
2 (·|r2)) for (2.4) that is defined by (6.1) for use on the chain. With player

1 using this rule for the Markov chain model, for each integer k player 1 uses a constant
control value on the interpolated time interval [k∆, k∆ + ∆). The continuous time
interpolation of the relaxed control representation of the control processes which are
used for the two players will be written as rh(·) = (rh1 (·), rh2 (·)). Thus, for some small
positive µ, ρ, δ, and λ, the adaptation of the rule (6.1) for player 1 for the chain can
be represented by the form, where wh(·) is the “pre-Wiener” process in (3.11),

P
{
uh1 (k∆) = γ

∣∣uh1 (l∆), l < k; , rh2 (s), w
h(s), s ≤ t

}
= P{uh1 (k∆) = γ

∣∣uh1 (l∆), l < k; uµ,ρ,δ2 (lρ|rh2 ), lρ < k∆; wh(lλ), lλ < k∆}
= q1,k(γ

∣∣uh1 (l∆), l < k; uµ,ρ,δ2 (lρ|rh2 ), lρ < k∆; wh(lλ), lλ < k∆).

(7.1)
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Given the rule (7.1) for player 1, player 2 selects a maximizing control at each state
transition. Let uh2 (·) denote player 2’s optimal choice. Then rh2 (·) is its relaxed control
representation, and rh1 (·) is the relaxed control representation of the realization of
player 1’s actions which are determined by (7.1).

Choose a weakly convergent subsequence of {ψh(·), rh(·), wh(·), yh(·)} (abusing
terminology, for simplicity this subsequence is also indexed by h). This converges
weakly to a solution (x(·), r(·), w(·), y(·)) of (2.4) and Wh(x, rh) → W (x, r). The
proofs of these facts are the same as for the pure control problem in [32, Theorems
11.1.2 and 11.1.5]. Let us use the Skorohod representation [14, Theorem 1.8, Chapter
3] so that all processes are defined on the same probability space, and weak conver-
gence becomes convergence with probability one. If

r2(lδ + δ, ∂Cm2 )− r2(lδ, ∂C
m
2 ) = 0

for all m, l, then, using the continuity of q1k(·) in the w-variables,

q1,k(γ
∣∣uh1 (l∆), l < k; uµ,ρ,δ2 (lρ|rh2 ), lρ < k∆; wh(lλ), lλ < k∆)

→ q1,k(γ
∣∣u1(l∆), l < k; uµ,ρ,δ2 (lρ|r2), lρ < k∆; w(lλ), lλ < k∆)

(7.2)

with probability one,

Wh(x, ūε1(u
µ,ρ,δ
2 (·|rh2 )), rh2 )→W (x, ūε1(u

µ,ρ,δ
2 (·|r2)), r2),(7.3)

and (6.2) holds. In any case, as noted in the paragraph below (6.9),

Wh(x, ūε1(u
µ,ρ,δ
2 (·|rh2 )), rh2 )→W (x, ūε1(ũ

µ,ρ,δ(·|r2)), r2),(7.4)

where ũµ,ρ,δ(·|r2) is a perturbation of the type defined in Theorem 6.1. We have,
where r̃i(·) is the relaxed control representations of the canonical ũi(·),

V +,h(x) = inf
ũ1∈Uh

1 (1)
sup

ũ2∈Uh
2 (2)

Wh(x, ũ1, ũ2) ≤ sup
ũ2∈Uh(2)

Wh(x, ūε1(u
µ,ρ,δ
2 (·|r̃2)), r̃2)

= Wh(x, ūε1(u
µ,ρ,δ
2 (·|rh2 )), rh2 )→W (x, ūε1(ũ

µ,ρ,δ
2 (·|r2)), r2).

(7.5)

This and the inequality (6.3) imply that, for any ε > 0,

lim sup
h

V +,h(x) ≤ V (x) + ε.(7.6)

Now repeat the procedure, but with player 2 going first. Use the analogue of
the ε-optimal rule (6.1) for player 2. Then, given that rule for player 2, let player
1 optimize (minimize). Writing rh(·) for the actual control process, we have the
analogue of (7.5), namely,

V −,h(x) = sup
ũ2∈Uh

2 (1)

inf
ũ1∈Uh

1 (2)
Wh(x, ũ1, ũ2) ≥ inf

ũ1∈Uh
1 (2)

Wh(x, r̃1, ū
ε
2(u
µ,ρ,δ
1 (·|r̃1)))

= Wh(x, rh1 , ū
ε
2(u
µ,ρ,δ
1 (·|rh1 )))→W (x, r1, r2) = W (x, r1, ū

ε
2(ũ
µ,ρ,δ
1 (·|r1))),

where ũµ,ρ,δ1 (·|r1) is a perturbation of uµ,ρ,δ1 (·|r1). Using this and (6.4) yields

lim inf
h

V −,h(x) ≥ V (x)− ε.(7.7)

Finally, (7.5) and (7.7) yield

lim sup
h

V +,h(x)− lim inf
h

V −,h(x) ≤ 2ε,

and the proof is concluded since ε > 0 is arbitrary.
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8. Comments and extensions.

8.1. Examples with separated dynamics. Only a few comments will be
made since the interest is in reminding the reader of the connection between risk-
sensitive, robust, constrained, and large deviations control and differential games.

Risk-sensitive control. Let ε > 0, and consider the problem of minimizing

Λε(u1) = lim
T→∞

1

T
logEx exp

[
1

ε

∫ T
0

L(x(s), u1(s))ds

]

for bounded and continuous L(·) with dynamics given by

dx = b(x, u1)dt+

[
ε

2γ

]1/2
σ(x)dw + dz,

where u1(t) ∈ U1, a compact set. This is part of the subject of risk-sensitive control
[18]. Under appropriate conditions, the solution reduces to that of a differential
game with separated dynamics. Let Λ̄ε = infu1 Λ

ε(u1), and define a(x) = σ(x)σ′(x),
assumed positive definite for each x. For x in the interior of G, the Isaacs equation is
[18]

Λ̄ε =
ε

4γ2

∑
i,j

Vxixj (x)aij(x)

+ max
u2

[V ′
x(x)u2 − γ2 |u2|2] + min

u1

[V ′
x(x)b(x, u1) + L(x, u1)] .

This corresponds to a two-person game with cost rate k(x, u) = L(x, u1) − γ2|u2|2.
Only u1 appears in the dynamical equation.

In applications, the set U1 is often unbounded. Effective approaches to deal-
ing with unbounded sets for the control problem are in the chapters concerning the
variational problems in [32], and they can be adapted to the game problem under
appropriate conditions.

Constrained optimization via the Lagrangian method. Consider the model
(2.4), but with only one control u1(·). Let qi(·), i ≤ p, be bounded, continuous, and
continuously differentiable real-valued functions on G, and consider the minimization
of

E

∫ ∞

0

e−βtk1(x(t), u1(t))dt

for a bounded and continuous function subject to the constraints Eqi(x(t)) ≤ 0 for
almost all t, i = 1, . . . , µ. The problem can be formulated as a game, via the intro-
duction of Lagrange multipliers u2,i(t) ≥ 0, i = 1, . . . , p. Define

W (x, u1, u2) = E

∫ ∞

0

e−βt [k1(x(t), u1(t)) + u′
2(t)q(x(t))] dt.

Then the solution is obtained from the game with upper (and lower as well, since the
game has a value) value

lim
∆→0

inf
u∈U1(∆)

sup
u2∈U2

W (x, u1(u2), u2).
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Here the set U2 is [0,∞). However, for numerical purposes, one bounds the interval
and then experiments with the bound until the desired solution is obtained.

Controlled large deviations problems. Consider the problem in controlled
large deviations where one wishes to minimize (over choice of a control) the large
deviations estimate of the probability of an event, say the probability that a set will
be exited over some time interval. The mathematical formulation of such problems
for diffusion-type models often reduces to that of a game, where the dynamics and
cost function are separated, analogously to the forms of b(·) and k(·) in (2.4) and
(2.5). See for example, the development in [12].

8.2. Stopping time problems and pursuit-evasion games.
Stopping cost not depending on who stops first. Suppose that player i now

has a choice of an Ft-stopping time τi as well as of the controls. Define τ = min{τ1, τ2}.
For a continuous function g(·), replace (2.5) by

W (x, r, τ) = E

∫ τ
0

e−βt
[∫
Ui

2∑
i=1

ki(x(t), αi)ri,t(dαi)dt+ c′dy(t)

]

+Ee−βτg(x(τ)).

(8.1)

Thus, in this model, the stopping cost g(x(τ)) does not depend on who selects the
stopping time.

The control spaces such as Ui, Ui(∆),Li(∆), and Ui(µ, δ,∆), etc. need to be
extended so that they include the stopping times. Let U i be the set of pairs (ui(·), τ),
where ui(·) ∈ Ui and τ is an Ft-stopping time. Let U i(∆) denote the subset where
ui(·) ∈ Ui(∆) and τ takes values k∆, k = 0, 1 . . . , where the set {ω : τ = k∆} is
Fk∆-measurable. Similarly, U i(µ, δ,∆) denotes the subset of U i(∆), where ui(·) ∈
Ui(µ, δ,∆). Let L1(∆) denote the set of controls in U1(∆) for player 1 which can be
represented in the form

P
{
τ1 > k∆

∣∣w(s), u2(s), s < t;u1(l∆), l < k, τ1 ≥ k∆
}
,

P
{
u1(k∆) ∈ ·

∣∣w(s), u2(s), s < t;u1(l∆), l < k; τ1 > k∆
}
.

(8.2)

Define L2(∆) analogously for player 2.
The definitions of the upper and lower values in (2.6) are replaced by, respectively,

V +(x) = lim
∆→0

inf
u1,τ1∈L1(∆)

sup
(u2,τ2)∈U2

W (x, u1, u2, τ),

V −(x) = lim
∆→0

sup
(u2,τ2)∈L2(∆)

inf
(u1,τ1)∈U1

W (x, u1, u2, τ).
(8.3)

The first line of (8.3) is to be understood as follows. Suppose that the game has not
stopped by time k∆. Then, at k∆, player 1 goes first and decides whether to stop
based on data to time k∆−. If it stops, the game is over. If not, it selects the control
value u1(k∆) (which it will use until (k∆ + ∆)− or until player 2 stops, whichever
comes first) based on data to time k∆−. If the game is not stopped at k∆ by player
1, then player 2 has the opportunity to stop at any time on [k∆, k∆+∆), with the
decision to stop at any time being based on all data to that time. Until it stops (if
it does), it chooses admissible control values u2(·). The procedure is then repeated
at time k∆ + ∆, and so forth. With these changes and minor (mostly notational)
modifications, the previous theorems continue to hold. In particular, Theorem 7.1
holds.
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Stopping cost depends on who stops first. Now let the cost be

W (x, r, τ1, τ2) = E

∫ τ
0

e−βt
[∫
Ui

2∑
i=1

ki(x(t), αi)ri,t(dαi)dt+ c′dy(t)

]

+Ee−βτ1g1(x(τ1))I{τ1<τ2} + Ee−βτ2g2(x(τ2))I{τ2≤τ1},

(8.4)

where τ = min{τ1, τ2} and the gi(·) are bounded and continuous. The proof in
Theorem 5.1 that the game has a value does not carry over to the present case, since
the stopping cost depends on who stops first. However, if the game has a value, then
Theorem 7.1 holds.

Consider the approximating Markov chain. Let player 1 go first, and let I1 denote
the indicator of the event that player 1 stops at the current step. Then the Bellman
equation for the (for example) upper value is

V +,h(x) = min
I1,α1

{g1(x)I1,

(1− I1)max[max
α2

(Eαx e
−β∆th(x,α)V +,h(ξh1 ) + k(x, α)∆th(x, α)), g2(x)]}.

(8.5)
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Boston, Boston, 1991.

[9] V. E. Benes, Existence of optimal stochastic control laws, SIAM J. Control, 9 (1971), pp.
446–472.

[10] P. Billingsley, Convergence of Probability Measures, 2nd ed., Wiley, New York, 1999.
[11] P. Dupuis and H. Ishii, On Lipschitz continuity of the solution mapping to the Skorokhod

problem, with applications, Stochastics Stochastic Rep., 35 (1991), pp. 31–62.
[12] P. Dupuis and W. M. McEneaney, Risk-sensitive and robust escape criteria, SIAM J. Control

Optim., 35 (1997), pp. 2021–2049.
[13] R. J. Elliott and N. J. Kalton, Existence of Value in Differential Games, Mem. Amer.

Math. Soc., 126, AMS, Providence, RI, 1972.
[14] S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley,

New York, 1986.



486 HAROLD J. KUSHNER

[15] W. F. Fleming, Generalized solutions in optimal stochastic control, in Differential Games and
Control Theory III, E. Roxin, P. T. Liu, and R. Sternberg, eds., Marcel Dekker, New York,
1977, pp. 147–165.

[16] W. H. Fleming, The convergence problem for differential games, J. Math. Anal. Appl., 3
(1961), pp. 102–116.

[17] W. H. Fleming, The convergence problem for differential games II, in Advances in Game
Theory, Ann. of Math. Stud. 52, Princeton University Press, Princeton, NJ, 1964, pp.
195–210.

[18] W. H. Fleming and W. M. McEneaney, Risk-sensitive control on an infinite time horizon,
SIAM J. Control Optim., 33 (1995), pp. 1881–1915.

[19] W. H. Fleming and P. E. Souganidis, On the existence of value functions for two-player
zero-sum differential games, Indiana Univ. Math. J., 38 (1989), pp. 293–314.

[20] A. Friedman, Differential Games, Wiley, New York, 1971.
[21] J. M. Harrison and M. I. Reiman, Reflected Brownian motion on an orthant, Ann. Probab.,

9 (1981), pp. 302–308.
[22] J. M. Harrison and R. J. Williams, Brownian models of open queueing networks with ho-

mogeneous customer populations, Stochastics Stochastics Rep., 22 (1987), pp. 77–115.
[23] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag,

New York, 1988.
[24] T. G. Kurtz, Approximation of Population Processes, CBMS-NSF Regional Conf. Ser. in Appl.

Math. 36, SIAM, Philadelphia, 1981.
[25] H. J. Kushner, Probability Methods for Approximations in Stochastic Control and for Elliptic

Equations, Academic Press, New York, 1977.
[26] H. J. Kushner, Numerical methods for stochastic control problems in continuous time, SIAM

J. Control Optim., 28 (1990), pp. 999–1048.
[27] H. J. Kushner, Jump-diffusions with controlled jumps: Existence and numerical methods, J.

Math. Anal. Appl., 249 (2000), pp. 179–198.
[28] H. J. Kushner, Heavy Traffic Analysis of Controlled Queueing and Communication Networks,

Springer-Verlag, Berlin, New York, 2001.
[29] H. J. Kushner, Numerical Approximations for Stochastic Differential Games: The Ergodic

Case, Report, Applied Math., Brown University, Providence, RI, 2001.
[30] H. J. Kushner and S. G. Chamberlain, Finite state stochastic games: Existence theorems

and computational procedures, IEEE Trans. Automat. Control, 14 (1969), pp. 248–255.
[31] H. J. Kushner and S. G. Chamberlain, On stochastic differential games: Sufficient condi-

tions that a given strategy be a saddle point and numerical procedures for the solution of
the game, J. Math. Anal. Appl., 26 (1969), pp. 560–575.

[32] H. J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in Con-
tinuous Time, 2nd ed., Springer-Verlag, Berlin, New York, 2001.

[33] J. Neveu,Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco,
1965.

[34] O. Pourtallier and M. Tidball, Approximation of the Value Function for a Class of Dif-
ferential Games with Target, Research report 2942, INRIA, Le Chesnay, France, 1996.

[35] O. Pourtallier and B. Tolwinski, Discretization of Isaac’s Equation, Report, INRIA, Le
Chesney, France, 1992.

[36] P. Soravia, H∞ control of nonlinear systems: Differential games and viscosity solutions,
SIAM J. Control Optim., 34 (1996), pp. 1071–1097.

[37] T. E. S. Raghavan and J. A. Filar, Algorithms for stochastic games: A survey, Z. Oper.
Res., 35 (1991), pp. 437–472.

[38] M. I. Reiman and R. J. Williams, A boundary property of semimartingale reflecting Brownian
motions, Probab. Theory Related Fields, 77 (1988), pp. 87–97.

[39] M. R. Reiman, Open queueing networks in heavy traffic, Math. Oper. Res., 9 (1984), pp.
441–458.

[40] M. Tidball, Undiscounted zero-sum differential games with stopping times, in New Trends in
Dynamic Games and Applications, G. J. Oldser, ed., Birkhäuser Boston, Boston, 1995, pp.
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Abstract. Because of the unavoidable use of numerical integration methods, such as Runge–
Kutta or finite elements, the numerical solution of optimal control problems, with either ODE or PDE
dynamics, is governed by a discretization parameter such as the integration mesh-size. Usually, when
explicit integration techniques are used, function and derivative values can be computed exactly for
the discretized problems. Recently, we have come across some examples where function and derivative
values of the explicitly discretized problems had to be approximated by the outcome of N iterations
of a solver. Consequently, the discretization of these problems is controlled by two parameters: the
mesh-size and the number of iterations of the solver.

Referring to [E. Polak, Optimization: Algorithms and Consistent Approximations, Springer-
Verlag, 1997], we find a theory for solving optimization problems that require discretization. It
deals with two situations. In the first, which is referred to as that of consistent approximations, it is
assumed that an infinite dimensional optimization problem can be suitably approximated by a family
of progressively higher dimensional optimization problems. In this case, strategies, in the form of
algorithm models, are presented for “diagonalizing” the solution process. In the second situation,
it is assumed that numerical solution of the dynamic equations does not result in a family of finite
dimensional consistent approximations (e.g., when implicit integration methods are used). For this
case, the theory provides models for the implementation of conceptual algorithms. Unfortunately,
neither of these situations envisions the possibility of two discretization parameters.

In this paper, we present new algorithm models that can be used with two discretization pa-
rameters. The first one controls the mesh-size of an explicit integration scheme, and the second
one controls the precision with which functions and gradients associated with a fixed mesh-size are
computed. The result can be seen as a framework of quasi-consistent approximations.

We implemented these new algorithm models using an approximate steepest descent method for
the solution of two problems: a two-point boundary value problem in which the discretized linear
ODE dynamics are solved approximately using the Gauss–Seidel method and a distributed control
problem in which the discretized dynamics are solved using a domain decomposition algorithm which
can be implemented on parallelized computers. Our numerical results show that these new algorithms
perform quite well and are fairly insensitive to the selection of user-set parameters. Also, they appear
to be superior to some alternative, ad hoc schemes.

Key words. optimization, PDEs, acceleration methods
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1. Introduction. Many classes of optimization problems, such as semi-infinite
optimization problems, continuous optimal control problems with ODE dynamics, and
optimal control problems with PDE dynamics, cannot be solved numerically without
resorting to a discretization strategy. The simplest but least efficient approach is to
discretize the problem with desired precision and to solve the discretized problem
using finite dimensional optimization algorithms. It is much more efficient to start
out with low discretization precision and to increase the precision progressively as the
computation proceeds. Referring to [21], we see that there are essentially two distinct
approaches to “dynamic” discretization. The first and oldest is that of algorithm
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implementation; see, e.g., [1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 19, 18, 23]. In this approach,
first one develops a conceptual algorithm for the original problem and then a numeri-
cal implementation of this algorithm. In each iteration, the numerical implementation
adjusts the precision with which the function and derivative values used by the con-
ceptual algorithm are approximated so as to ensure convergence to a stationary point
of the original problem. When far from a solution, the approximate algorithms per-
form well at low precision, but, as a solution is approached, the demand for increased
precision progressively increases.

The second and more recent approach to dynamic discretization uses sequences
of finite dimensional approximating problems. It was formalized in [20, 21] in the
form of a theory of consistent approximations. Applications to optimal control are
described in [24, 26], and a software package for optimal control, based on consis-
tent approximations, can be obtained from [25]. Within this approach, an infinite
dimensional problem, P, such as an optimal control problem with either ODE or
PDE dynamics, is replaced by an infinite sequence of “nested,” epi-converging finite
dimensional problems {Pk}. Epi-convergence ensures that the global optimal solu-
tions of the approximating problems {Pk} converge to global optimal solutions of the
infinite dimensional problem P. Problem P is then solved by a recursive scheme which
consists of applying a nonlinear programming algorithm to problem Pk until a test
is satisfied, at which point one proceeds to solve problem Pk+1, using the last point
obtained for Pk as the initial point for the new calculation. In [21], we find a num-
ber of Algorithm Models for organizing such a calculation. These range from simple
schemes that ensure the convergence of the subsequence of points, at which discretiza-
tion has been increased, to a stationary point, to quite complex schemes that ensure
the convergence of the entire sequence, constructed by the master algorithm, to a
stationary point, with rate of convergence determined by the nonlinear programming
algorithms being used. The advantages of the consistent approximations approach
over the algorithm implementation approach are that (i) there is a much richer set
of possibilities for constructing precision refinement tests, and hence for devising one
that enhances computational efficiency, and (ii) one can use unmodified nonlinear
programming code libraries as subroutines; see [24, 25].

In this paper, we deal with a situation that has not been considered before: the
case where it is either impossible or uneconomical to compute with high precision the
values and gradients of functions appearing in the finite dimensional consistent ap-
proximating problems Pk, introduced above. We develop a two-tier algorithm, which,
in the first tier, constructs an infinite sequence of epi-converging finite dimensional
approximating problems {Pk} and, in the second tier, uses an algorithm implemen-
tation strategy in solving each Pk. The main task that we had to address was that of
constructing efficient tests for dynamically adjusting two precision parameters, k and
N , where N determines the precision used in the implementation strategy. The end
result can be viewed as a quasi-consistent approximations approach. As we will see in
section 3, our new algorithm performs considerably better than an ad hoc algorithm
implementation scheme on the problems tested.

2. Basic definitions and a motivational example. To make this paper rea-
sonably self-contained, we begin with a definition.

Definition 1. Let S be a normed space, let {Sh}0h=α be a sequence of finite
dimensional subspaces of S such that ∪Sh is dense in S, and consider the problems

(P) min
v∈V

f(v),(1)
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where V is a subset of S and f : S → R is continuous, together with the approxi-
mating problems

(Ph) min
vh∈Vh

fh(vh),(2)

where Vh is a subset of Sh and fh : Sh → R is continuous.
(a) We say that the problems Ph epi-converge

1 to P if (i) for every v ∈ V , there
exists a sequence {vh}, with vh ∈ Vh, such that vh → v, and lim sup fh(vh) ≤ f(v);
and (ii) for every infinite sequence {vh}, such that vh ∈ Vh and vh → v, v ∈ V , and
lim inf fh(vh) ≥ f(v).

(b) We say that upper-semicontinuous, nonpositive-valued functions θh : Vh → R

(θ : V → R) are optimality functions for Ph (P) if they vanish at local minimizers of
Ph (P).

2

(c) We say that the problem-optimality function pairs {Ph, θh} are consistent
approximations to the problem-optimality function pair {P, θ} if the Ph epi-converge
to P, and, for every infinite sequence {vh}, such that vh ∈ Vh and vh → v ∈ V ,
lim sup θh(vh) ≤ θ(v).3

The reason for introducing optimality functions into the definition of consistency
of approximation is that it enables us to ensure that not only global optimal solutions
of the problems Ph converge to global optimal solutions of P, but also local optimal
solutions converge to either local solutions or stationary points.

The motivation for this work stems from the fact that, while attempting to solve
some optimal control problems with distributed dynamics (see Lions [13]), using the
consistent approximations framework, we came across a new difficulty, caused by
the fact that even the discretized state equation cannot be solved with adequate
precision in reasonable time. In such problems, there are two precision parameters to
control: the mesh-size h, which defines the approximating problem, and the number
of iterations N used by a “solver” in solving the discretized state equations. Since
the parameter N seriously impacts the behavior of optimization algorithms as well as
the total work needed to solve a problem, it is desirable to control the two precision
parameters individually.

For example, consider an optimization problem of the form

(P) min
v∈V

f(v),(3)

where V = L2(0, 1),

f(v) = J(u(v), v) =

∫ 2

0

|u(v)− ud|2dx,(4)

and u(v) is the solution of an equation of the form

Cu = Bv(5)

1The epigraphs of fh, restricted to Vh, converge to the epigraph of f , restricted to V , in the
Painlevé–Kuratowski sense (see [22]).

2When optimality functions are properly constructed, their zeros are standard stationary points;
for examples, see [21].

3Note that this property ensures that the limit point of a converging sequence of approximate
stationary points for the Ph must be a stationary point for P.
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such as

−u′′(x) = v(x)I(0,1) ∀x ∈ (0, 2), u(0) = u(2) = 0,(6)

where ud is given and ID is the characteristic function of a set D.
This problem can be approximated by a finite dimensional problem of the form

(Ph) min
vh∈Vh

fh(vh),(7)

where Vh is the space of piecewise constant functions defined on a mesh for (0, 1),
h > 0 is the mesh-size,

fh(vh) = J(uh(vh), vh),(8)

and uh(vh) is the solution of a discretized equation of the form

Chuh = Bhvh,(9)

arising from a centered finite difference approximation to (6).
It is not difficult to show that the problems Ph epi-converge to the problem P

as h → 0, and, if {vh} is a sequence of points such that vh ∈ Vh, h → 0, and
vh → v as h → 0, then gradfh(vh) → gradf(v) as h → 0. These facts show that
the pairs (Ph,−‖gradfh(·)‖) form a family of consistent approximations for the pair
(P,−‖gradf(·)‖). Hence any accumulation point of global optimizers of the problems
Ph is a global optimizer of the problem P, and, if {vh} is a sequence of points such
that vh ∈ Vh, h→ 0, vh → v, and gradfh(vh)→ 0, then gradf(v) = 0 also.

The fact that the approximating pairs (Ph,−‖gradfh(·)‖) are a family of con-
sistent approximations for the pair (P,−‖gradf(·)‖) lays a basis for the solution of
P by the type of algorithm outlined in section 3.3 of [21]. Unfortunately, for small
h, Ch is a large sparse matrix, and it is quite possible that all efficient methods for
solving the linear system for uh(vh) are iterative, and, realistically, only a reasonable
number of iterations of an iterative “solver” can be contemplated. Similar facts apply
to the computation of fh(vh) and gradfh(vh). Thus let uh,N (vh) denote the result of
N iterations of an iterative “solver” applied to the linear system (9), and let fh,N (vh)
denote the associated approximation to fh(vh). Similarly, let gradNfh(vh) denote the
result of N iterations of an iterative “solver” applied to the defining equations for
gradfh(vh). For instance, if the Gauss–Seidel relaxation algorithm is used to solve
(9), then uh,N (vh) is the Nth iterate of the recursion

Lhu
p = Bhvh − Uhup−1, p = 1, . . . , N, u0 given,(10)

where Lh is the lower diagonal part of Ch and Uh its upper part.
Thus we see that, in this case, the “discretized” functions fh(vh) are not com-

putable exactly, and, for obvious reasons, neither are their gradients. We will see
later that this is also the case when domain decomposition is used to solve discretized
PDEs. A quick reference to section 3.3 of [21] shows that the Master Algorithm
Models outlined there are not applicable to these cases, because there are no stan-
dard nonlinear programming algorithms that use approximate function and gradient
values, necessitating the development of a new computational scheme, which we will
present in the next section. At this point, we drop the subscript h on the “controls”
vh since it will be clear from the context as to which subspace Vh a control v is in.
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3. An algorithm model. We will construct a new algorithm model for solving
problems of the form P that uses only approximations fh,N (v) and gradNfh(v) to the
cost function fh(v) and its gradient gradfh(v) by making use of some existing results
in [21]. The relevant results are as follows: First, on page 406 in [21], we find the
following Algorithm Model 3.3.17 for solving problems of the form P, in (4) above,
which uses an iteration function Ah : Vh → Vh, h ∈ (0, h−1], which can be of the form

Ah(v) = v − λ(v)gradfh(v),(11)

where λ(v) > 0 is a step-size.
Algorithm Model 1: Solves problem P.
Parameters. ω ∈ (0, 1), σ > 0.
Data. h−1 ∈ R+, and v

0 ∈ Vh−1 .
Step 0. Set i = 0.
Step 1. Compute the largest hi, of the form hi−1/2k, k ∈ N := {0, 1, 2, 3, . . .}, and

vi+1, such that hi ≤ hi−1 and

vi+1 = Ahi(vi),(12)

and

fhi(vi+1) − fhi(vi) ≤ −σ(hi)ω.(13)

Step 2. Replace i by i + 1, and go to Step 1.
Unfortunately, as we have explained in the preceding section, we may not have

explicit formulas for computing fh(v) and gradfh(v), and hence we may be forced to
use the limited precision results of N iterations of an iterative solver for computing
these quantities. Defining, as before, uh,N (v) to be the result of N iterations of a
solver applied to the defining equation (9), we define

fh,N (v) := J(uh,N (v), v).(14)

As we will see later, gradfh(v) is usually determined as a solution of an adjoint
equation. Hence gradNfh(v) is defined as the result of N iterations of a solver applied
to the adjoint equation. This leads to an approximation Ah,N (v) to the ideal iteration
map Ah(v). For example, the ideal iteration map Ah(v) defined in (11) has to be
replaced by

Ah,N (v) = v − λgradNfh(v),(15)

where the step-size λ is determined either by a modified Armijo rule or by one dimen-
sional minimization.

There are obviously any number of ways of making the parameter N a function
of h, or even a function of h and v, which results in a new approximation to the cost
function

f̂h(v) := fh,N(h,v)(v)(16)

and iteration map

Âh(v) := Ah,N(h,v)(v),(17)

which, hopefully, can be used within the structure of Algorithm Model 1. One can
classify the rules for making N a function of h (or h and v) as open-loop or closed-loop.
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An example of an open-loop rule is to set N = int(1/h), the integer part of 1/h. A
closed-loop rule can be made more subtle and can be designed to produce as small a
parameter N as is compatible with the convergence of the overall solution scheme in
the form of an algorithm model. An example of a closed-loop (feedback) rule can be
found in Algorithm Model 1.2.36 in [21].

The integer N0 > 0 and an increment integer K > 0 are fixed parameters: given
h and v, N(h, v) := N0 + kK, where k ≥ 0 is the smallest integer such that, for
N = N0 + kK,

fh,N (Ah,N (v)) − fh,N (v) ≤ − σ

Nω
,(18)

where σ and ω are as in Algorithm Model 1, say.
Proceeding formally from this point on, we assume that, for every h > 0, we can

construct an iteration map Ah,N : Vh → Vh. In our analysis, we will depend on the
following assumption.

Assumption 1. We will assume the following:
(i) The function f(·) is continuous and bounded from below, and, for all h ∈

(0, hmax], the functions fh(·) are continuous and bounded from below.
(ii) For every bounded set B ⊂ V , there exist κ < ∞, a function N∗ : R+ → N

(the set of positive integers), and functions ϕ : R+×N → R+, ∆ : R+ → R+

with the properties

lim
h→0

N∗(h) =∞,(19)

lim
N→∞

ϕ(h,N) = 0 ∀h > 0,(20)

lim
h→0

ϕ(h,Nh) = 0 ∀Nh ≥ N∗(h),(21)

lim
h→0

∆(h) = 0,(22)

such that, for all h ∈ (0, hmax], v ∈ Vh ∩B,

|fh(v)− f(v)| ≤ κ∆(h),(23)

and, for all h ∈ (0, hmax], N ∈ N , v ∈ Vh ∩B,

|fh,N (v)− fh(v)| ≤ κϕ(h,N).(24)

(iii) For every v∗ ∈ V such that gradf(v∗) �= 0, there exist ρ∗ > 0, δ∗ > 0, h∗ > 0,
and N∗∗ <∞, such that

(25)

fh,N (Ah,N (v))− fh,N (v) ≤ −δ∗ ∀v ∈ Vh ∩B(v∗, ρ∗), ∀h ≤ h∗, ∀N ≥ N∗∗.

Algorithm Model 2: Solves problem P.
Parameters. ω ∈ (0, 1), γ > 0, n,K ∈ N , N∗(·), ∆(·), ϕ(·, ·) verifying (19), (20),

(21), (22).
Data. h0 ∈ (0, hmax], v0 ∈ Vh0 .
Begin Outer Loop
Step 0. Set i = 0.

Begin Inner Loop (Computes f̂h(v
i), Âhi(vi)), and ∆̂(hi, vi)).

Step 1. Set N i = N∗(hi).
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Step 2. Compute a point v∗ = Ahi,Ni(vi).
Step 3. If N i < nN∗(hi) and

fhi,Ni(v∗)− fhi,Ni(vi) > −ϕ(hi, N i)ω,(26)

replace N i by N i +K and go to Step 2.
Else, set

N(hi, vi) := N i,(27)

f̂hi(vi) := fhi,N(hi,vi)(v
i),(28)

Âhi(vi) := Ahi,N(hi,vi)(v
i),(29)

and

∆̂(hi, vi) = ∆(hi) + ϕ(hi, N(hi, vi)).(30)

End Inner Loop
Step 4. If

f̂hi(v∗)− f̂hi(vi) > −γ∆̂(hi, vi)ω,(31)

replace the mesh-size hi by hi/2 and go to Step 1.
Else, set

vi+1 = Âhi(vi),(32)

replace i by i+ 1, and go to Step 2.
End Outer Loop

Remark 1.
1. The main function of the test (26) is to increase N over the initial value of
N = N∗(hi) if that is necessary. It gets reset to N = N∗(hi) whenever hi is
halved.

2. Note that the faster ϕ(h,N)→ 0 as N →∞, the easier it is to satisfy the test
(26) at a particular value of N . Thus, when the solver is fast, the precision
parameter N will be increased more slowly than when it is slow. A similar
argument applies to the reduction of the mesh-size, hi, on the basis of the
test in (31). In the context of dynamics defined by differential equations, the
integration mesh-size will be refined much faster when the Euler method is
used for integration than when a Runge–Kutta method is used for integration.

3. Note that the test (31) effectively requires the computation of vi+2. In an
efficient implementation, this fact must be taken into account so as to avoid
unnecessary duplication of computations.

4. It would be mathematically less elegant, but computationally more efficient,
to replace the test (31) by

fhi,Ni(v∗)− f̂hi(vi) > −∆̂(hi, vi)ω.(33)

The proof of convergence of the resulting algorithm would, if anything, be
slightly simpler.
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We define the problems

(P̂h) inf
v∈Vh

f̂h(v),(34)

where f̂h(v) is defined as in (28) for every h ∈ (0, hmax] and v ∈ Vh.
For every h > 0, N ∈ N , and v ∈ Vh∩B, let gradNfh(v) denote the approximation

to gradfh(v) obtained by means of N iterations of a solver, and let N(h, v) be defined
by (27), in the Inner Loop of Algorithm Model 2. Finally, let

grdf̂h(v) := gradN(h,v)fh(v).(35)

Although the functions −‖grdf̂h(v)‖ are not the negatives of norms of gradients
of the functions f̂h(v) and hence not optimality functions for the problems P̂h, it will

become clear, under the following assumption, that the pairs {P̂h,−‖grdf̂h)‖} are
pseudoconsistent approximations to {P,−‖gradf‖}, in the sense that the problems
P̂h epi-converge to P, and, for any sequences {hi}, hi → 0, {vi}, vi ∈ Vhi , vi → v ∈ V ,
‖grdf̂hi(vi)‖ → ‖gradf(v)‖. We found this observation helpful in constructing the
proof of convergence of Algorithm Model 2.

Assumption 2. For every h > 0, N ∈ N , and v ∈ Vh∩B, let gradNfh(v) denote
the approximation to gradfh(v) obtained by means of N iterations of a solver. We
will assume that, for all h ∈ (0, hmax], v ∈ Vh ∩B,

‖gradfh(v)− gradf(v)‖ ≤ κ∆(h),(36)

and, for all h ∈ (0, hmax], N ∈ N , v ∈ Vh ∩B,

‖gradNfh(v)− gradfh(v)‖ ≤ κϕ(h,N),(37)

where κ, ∆(·), and ϕ(·, ·) are as in Assumption 1.

In order to establish the fact that the pairs {P̂h,−‖grdf̂h)‖} are pseudoconsis-
tent approximations to {P,−‖gradf‖} and to establish the convergence of Algorithm
Model 2, we need the following result.

Lemma 2. Let h0 > 0 be as in the Data of Algorithm Model 2, and, for any
h ∈ (0, h0] and v ∈ Vh, let N(h, v), f̂h(v), Âh(v), and ∆̂(h, v) be defined as in the
Inner Loop of Algorithm Model 2, i.e., by (27), (28), (29), (30), respectively. Then
the following hold.

(a) For every bounded set B ⊂ V , ∆̂(h, v) → 0 as h → 0, uniformly in v ∈ B,
and there exists a κ <∞, such that, for all h ∈ (0, h0], v ∈ Vh ∩B,

|f̂h(v)− f(v)| ≤ κ∆̂(h, v),(38)

and

‖grdf̂h(v)− gradf(v)‖ ≤ κ∆̂(h, v).(39)

(b) For every v̂ ∈ V such that gradf(v̂) �= 0, there exist ρ̂ > 0, δ̂ > 0, ĥ ∈ (0, h0]
such that

f̂h(Âh(v))− f̂h(v) ≤ −δ̂ ∀v ∈ Vh ∩B(v̂, ρ̂), ∀h ≤ ĥ,(40)

where Âh(v) is defined by (29).
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Proof. (a) It follows from (23) and (24) that, for all h ∈ (0, hmax], v ∈ Vh, and
N ∈ N ,

|fh,N (v)− f(v)| ≤ |fh,N (v)− fh(v)|+ |fh(v)− f(v)|
≤ κϕ(h,N) + κ∆(h).

(41)

Hence we have that

|f̂h(v)− f(v)| = |fh,Nh(v)(v)− f(v)| ≤ κ(ϕ(h,N(h, v)) + ∆(h)) ≡ κ∆̂(h, v).(42)

Since

∆̂(h, v) = ϕ(h,N(h, v)) + ∆(h)(43)

and N(h, v) ≥ N∗(h), it follows that ∆̂(h, v)→ 0 as h→ 0, uniformly in v ∈ V ∩B.
The fact that (39) holds follows by similar arguments, and hence we omit its

proof.
(b) Suppose that v∗ ∈ V is such that gradf(v∗) �= 0. Then, by Assumption 2

(iii), there exist ρ∗ > 0, δ∗ > 0, h∗ ∈ (0, h0], and N∗∗ < ∞ such that (25) holds.

Let ĥ ∈ (0, h∗] be such that N∗(h) ≥ N∗∗ for all h ∈ (0, ĥ]. Let h ∈ (0, ĥ] and
v ∈ Vh ∩ B(v∗, ρ∗) be arbitrary, and let v′ = Âh(v). Then, because, for any v ∈ Vh,
N(h, v) ≥ N∗(h) by construction, it follows from (23), (24), and (25) that

f̂h(v
′)− f̂h(v) = fh,N(h,v′)(v

′)− fh,N(h,v)(v)

= [fh,N(h,v′)(v
′)− fh,N(h,v)(v

′)] + [fh,N(h,v)(v
′)− fh,N(h,v)(v)]

≤ [fh,N(h,v′)(v
′)− fh,N(h,v)(v

′)]− δ∗
= [fh,N(h,v′)(v

′)− f(v′)] + [f(v′)− fh,N(h,v)(v
′)]− δ∗

≤ κ[ϕ(h,N(h, v′)) + ϕ(h,N(h, v)) + 2∆(h)]− δ∗

≤ −1
2
δ∗,

(44)

provided that h∗ > 0 is taken sufficiently small. This completes our proof.
The following corollary follows directly from Lemma 2(a).
Corollary 3. Suppose that Assumptions 1 and 2 are satisfied. Then the prob-

lems {P̂h} epi-converge to the problem P, and, for any sequences {hi}, hi → 0, {vi},
vi ∈ Vhi , vi → v ∈ V , ‖grdf̂hi(vi)‖ → ‖gradf(v)‖; i.e., the pairs {P̂h,−‖grdf̂h‖} are
pseudoconsistent approximations to {P,−‖gradf‖}.

Lemma 4. Suppose that Assumption 1 is satisfied.
(a) If vi ∈ V is such that gradf(vi) �= 0, then there exists an hi > 0 such that

(31) fails.
(b) If Algorithm Model 2 constructs an infinite sequence {vi}∞i=0 that has at least

one accumulation point, then hi → 0 as i→∞.
Proof. (a) Suppose that vi ∈ V is such that gradf(vi) �= 0. Then, by Lemma

2(b), there exists an ĥ > 0 such that, for all h ≤ ĥ,

f̂h(Âh(v
i))− f̂h(vi) ≤ −δ̂ ≤ −∆̂(h, vi)ω,(45)

which shows that there exists an hi > 0 such that (31) fails.
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(b) For the sake of contradiction, suppose that the monotone decreasing sequence
{hi}∞i=0 is bounded from below by b > 0. Then there exists an i0 such that h

i =
hi0 = h∗ > 0 for all i ≥ i0. Hence it follows from the fact that (31) fails, at each

i ≥ i0, that f̂h∗(vi) → −∞ as i → ∞. It now follows from (38) that f(vi) → −∞
as i → ∞. However, by assumption, there exist an infinite subsequence {vij} and a
v∗ ∈ Vh∗, such that vij → v∗ as j →∞. Since f(·) is continuous, by assumption, we
conclude that f(vij )→ f(v∗) as j →∞, which is a contradiction and completes our
proof.

Theorem 5. Suppose that Assumption 1 is satisfied.
(a) If {vi}∞i=0 is a sequence constructed by Algorithm Model 2 in solving the prob-

lem P, then every accumulation point v∗ of {vi}∞i=0 satisfies gradf(v∗) = 0.
(b) If f(·) is strictly convex, with bounded level sets, and {vi}∞i=0 is a sequence

constructed by Algorithm Model 2 in solving the problem P, then {vi}∞i=0 converges to
the unique solution of P.

Proof. (a) Suppose that {vi}∞i=0 is a sequence constructed by Algorithm Model 2
and that {vij}∞j=0 is a subsequence converging to a point v̂ and that gradf(v̂) �= 0.

Now, by Lemma 4, hi → 0 as i → ∞, and, by Lemma 2(b), there exist ρ̂ > 0,

δ̂ > 0, ĥ > 0, such that

f̂hi(Âh(v
i))− f̂hi(vi) ≤ −δ̂ ∀vi ∈ B(v̂, ρ̂), ∀hi ≤ ĥ.(46)

Let i0 be such that, for all ij ≥ i0, vij ∈ B(v̂, ρ̂), and

2κ∆̂(hij , vij ) ≤ 1

2
δ̂,(47)

2κ∆̂(hij , vij )1−ω ≤ γ.(48)

Finally, let i1 ≥ i0 be such that h
i ≤ ĥ for all i ≥ i1. Then, for the subsequence

{vij}∞j=0, with ij ≥ i1,

f(vij+1)− f(vij ) ≤ −δ̂ + 2κ∆̂(hij , vij ) ≤ −1
2
δ̂,(49)

and, in addition, in view of Lemma 2 and the test (31), for all i ≥ i1,

f(vi+1)− f(vi) ≤ 2κ∆̂(hi, vi)− γ∆̂(hi, vi)ω
= −∆̂(hi, vi)ω[γ − 2κ∆̂(hi, vi)1−ω] ≤ 0.(50)

Hence we see that the sequence {f(vi)}∞i=i1 is monotone decreasing, and, therefore,
because f(·) is continuous, it must converge to f(v̂). Since this is contradicted by
(48), our proof is complete.

(b) Since a strictly convex function, with bounded level sets, has exactly one
stationary point, the desired result follows from (a) and the fact that {f(vi)}∞i=i1 is
monotone decreasing.

Remark 2. The following Algorithm Model differs from Algorithm Model 2 in
two respects: first, the integer N is never reset and hence increases monotonically,
and second, the test for reducing h is based on the magnitude of the norm of the
approximate cost-gradient. As a result, the proof of its convergence is substantially
simpler than that for Algorithm Model 2. However, convergence can be established
only for the diagonal subsequence {vij}j at which h is halved.
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Algorithm Model 3: Solves problem P.
Parameters. ω ∈ (0, 1), ε0 > 0, K ∈ N , N∗(·), ϕ(·, ·) verifying (19), (20), (21).
Data. h0 > 0, v0 ∈ Vh0 .
Begin Outer Loop
Step 0. Set i = 0, j = 0, N0 = N∗(h0).

Begin Inner Loop
Step 1. Compute a point v∗ = Ahi,Ni(vi).
Step 2. If

fhi,Ni(v∗)− fhi,Ni(vi) > −ϕ(hi, N i)ω,(51)

replace N i by N i +K, and go to Step 1.
Else, set vi+1 = v∗, and go to Step 3.

End Inner Loop
Step 3. If

‖gradNifhi(vi+1)‖ ≤ εi and N i ≥ N∗(hi),(52)

set vj+1
∗ = vi+1, N j+1

∗ = N i, hj+1
∗ = hi, replace j by j+1, hi by hi/2,

εi by εi/2, i by i+ 1, and go to Step 1.
Else, replace i by i+ 1, and go to Step 1.

End Outer Loop
Theorem 6. Suppose that Assumptions 1 and 2 are satisfied and that {vj∗} is a

sequence constructed by Algorithm Model 3 in solving the problem P.
(a) If {vj∗} is finite, then the sequence {vi}∞i=0 has no accumulation points.

(b) If {vj∗} is infinite, then every accumulation point v∗ of {vj∗}∞j=0 satisfies
gradf(v∗) = 0.

(c) If f(·) is strictly convex, with bounded level sets, and {vj∗}∞j=0 is a bounded
sequence constructed by Algorithm Model 3 in solving the problem P, then it converges
to the unique solution of P.

Proof. (a) Suppose that the sequence {vj∗} is finite and that the sequence {vi}∞i=0

has an accumulation point v∗. Then there exist an i0, an h∗ > 0, and an ε∗ > 0,
such that, for all i ≥ i0, h

i = h∗, εi = ε∗, and ‖gradNifhi(vi)‖ > ε∗. But, in this
case, for i ≥ i0, the Inner Loop of Algorithm Model 2 is recognized as being of the
form of Master Algorithm Model 1.2.36 in [21]. It now follows from Theorem 1.2.37
in [21] that N i → ∞ as i → ∞ and that gradfh∗(v∗) = 0. It now follows from (20)
in Assumption 1 and from Assumption 2 that, for some infinite subsequence {vij},
gradNij fh∗(vij ) → gradfh∗(v∗) = 0, which shows that (52) cannot be violated an
infinite number of times, which is a contradiction.

(b) When the sequence {vj∗} is infinite, it follows directly from Assumptions 1 and
2 and the test (52) that, if v∗ is an accumulation point of {vj∗}, then gradf(v∗) = 0.

(c) When the function f(·) is strictly convex, with bounded level sets, it has a
unique minimizer v∗, which is the only point in V satisfying gradf(v∗) = 0. Hence
the desired result follows from (b).

4. A two-point boundary value control problem. Consider again the two-
point boundary value control problem first stated in section 2:

(P1)

∣∣∣∣∣∣∣
min

v∈L2(0,1)
f(v) := J(u(v)) :=

∫ 2

0

|u− ud|2dx subject to

−u′′(x) = v(x)I(0,1) ∀x ∈ (0, 2), u(0) = u(2) = 0.

(53)
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The gradient of f(·) with respect to v can be expressed in terms of p, the solution
of the adjoint equation

−p′′ = 2(u− ud), p(0) = p(2) = 0.(54)

Thus

δf = 2

∫ 2

0

(u− ud)δu = −
∫ 2

0

p′′δu = −
∫ 2

0

pδu′′ =
∫ 1

0

pδv,(55)

which shows that gradf(v) = p on (0,1).
To approximate the problem P1, we use a finite difference method with uniform

mesh of size h = 1/M to solve the differential equation (54). This results in the
approximating problems

(P1h)

∣∣∣∣∣∣∣∣∣∣∣∣

min
v∈Vh

fh(v) :=

2M−1∑
1

|uj − ud(jh)|2 subject to

− 1

h2
(uj+1 − 2uj + uj−1) = vjIj≤M , j = 1, . . . , 2M − 1,

u0 = u2M = 0,

(56)

where Vh is the set of piecewise constant functions on the intervals (jh, (j+1)h], j =
1, . . . ,M . Note that the coefficients uj define a piecewise constant function u(·) on
[0, 2].

As in the continuous case

δf =

2M−1∑
1

2(uj − ud(jh))δuj(57)

and if

−pj+1 − 2pj + pj−1

h2
= 2(uj − ud(jh)), j = 1, . . . , 2M − 1, p0 = p2M = 0,(58)

then

2M−1∑
1

2(uj − ud(jh))δuj = −
2M−1∑

1

pj+1 − 2pj + pj−1

h2
δuj

= −
2M−1∑

1

δuj+1 − 2δuj + δuj−1

h2
pj .

(59)

Therefore,

δf =

M∑
1

pjδvj ,(60)

and hence the gradient gradfh(v) is the piecewise constant function ph(·), on (h, 1+h],
defined by the coefficients p0, p1, . . . , pM .

To illustrate the theory, the difference equations in (56), (58) will be solved by
the Gauss–Seidel method, and the optimization problem will be solved by the method
of steepest descent.
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4.1. Verification of the hypotheses. Algorithm Model 2 depends on Assump-
tion 1 to be satisfied and, in particular, on the existence of three appropriate functions
ϕ(h,N), N∗(h), and ∆(h) and of an appropriate iteration map Ah,N (·).

We begin by showing that parts (i) and (ii) of Assumption 1 are satisfied. When
the ODE for u is multiplied by u and integrated in x, we obtain, after integrating by
parts, that

−
∫ 2

0

(uu′′) =
∫ 1

0

uv =

∫ 2

0

(u′2).(61)

Applying the Schwarz inequality to the middle integral leads to ‖u′‖0 ≤ ‖v‖0. It
follows from the Poincaré inequality that ‖u‖0 ≤ C‖u′‖0 for some C <∞. Hence we
conclude that u is continuous with respect to v in L2:

‖u‖0 ≤ C‖v‖0.(62)

Now the function u→ J(u) is obviously continuous in u, and hence f(·) is continuous
in v.

Using similar arguments, we find that p is continuous in v, and hence gradf(·)
exists and is continuous.

For the discrete problem, we note that (u1, u2, . . . , u2M−1)
T is the solution of a

linear system with right-hand side (v1, . . . , vM , 0.., 0)
T , and the matrix of the linear

system is tridiagonal with 2/h2 on the main diagonal and −1/h2 on the diagonals
below and above the main one. This is a positive definite matrix, and hence u is
continuous with respect to v. Similarly, p is continuous with respect to u and with
respect to v by transitivity.

Next, it follows from the error analysis for the finite difference scheme that, for
some C <∞,

‖uh − u‖0 < Ch2, |Jh(u, v)− J(u, v)| < Ch2,(63)

which implies that

|fh(vh)− f(v)| < Ch2.(64)

Now the Gauss–Seidel algorithm is linearly convergent, but the constant of con-
vergence is proportional to the condition number of the linear system. In particular,
for some C, c <∞,

‖uh,N − uh‖ ≤ C(1− ch2)N ∀N ∈ N .(65)

By inspection, a bound function ϕ is ϕ(h,N) = C ′(1 − ch2)N with any C ′ ≥ C.
However, it contains an unknown constant. We have the choice of either guessing this
constant or replacing the function ϕ with a conservative estimate, such as ϕ(h,N) =
(1 − h2+ε)N , with ε < 1, small; i.e., we replace c with hε. In either event, and to
satisfy the hypothesis, we may take

N∗(h) =
C

h2+2ε
,(66)

with C a generic constant. Indeed,

(1− h2+ε)
C

h2+2ε = exp
C log(1− h2+ε)

h2+2ε
≈ e− C

hε → 0 as h→ 0.(67)

We have thus shown that parts (i) and (ii) of Assumption 1 are satisfied.
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To conclude, we must show that part (iii) of Assumption 1 is satisfied. We will
derive the iteration map Ah,N (·) from the standard steepest descent algorithm with
exact step-size. We recall that, for the problems P1h, this algorithm is defined by the
following iteration function:

Ah(v) := v − λ(v)gradfh(v),(68)

where

λ(v) := argmin
λ
fh(v − λgradfh(v)).(69)

Note that, for our problem, λ(v) can be computed exactly because fh(v−λgradfh(v))
is a quadratic function of λ.

Next, we define Ah,N as follows:

Ah,N (v) := v − λN (v)gradNfh(v),(70)

with

λN (v) := argmin
λ
fh,N (v − λgradNfh(v)),(71)

where fh,N (v) and gradNfh(v) are computed using N iterations of the Gauss–Seidel
algorithm on the difference equation in (56) and the adjoint equation (58), respectively.

Now, it follows from the properties of the method of steepest descent that, given
any v∗ ∈ V = L2(0, 1) such that gradf(v∗) �= 0, there exist ρ∗ > 0, δ∗ > 0, λ∗, and
h∗ > 0, such that, for all v ∈ V ∩B(v∗, ρ), (i) gradfh(v) �= 0 and (ii)

f(v − λ(v)gradf(v))− f(v) ≤ f(v − λ∗gradf(v))− f(v) ≤ −δ∗,(72)

where λ(v) is the exact step-size computed by the Steepest Descent Algorithm. It
now follows from (20), (21), (23), (24) that there exist an h∗ > 0 and an N∗∗ < ∞,
such that, for all h ≤ h∗, N ≥ N∗∗, and v ∈ Vh ∩B(v∗, ρ),

fh,N (v − λN (v)gradNfh(v))− fh,N (v) ≤ fh,N (v − λ(v)gradNfh(v))(73)

− fh,N (v) ≤ −δ∗/2,

which shows that part (iii) of Assumption 1 is satisfied.

4.2. Implementation of Algorithm Model 2. For any positive real number
α, we define ceil[α] to be the smallest integer larger than α. Then, making use of
the maps defined in the preceding subsection, we now obtain from Algorithm Model
2 the following.
Algorithm 1.
Data. C1 > 0, C2 > 0, C3 > 0, ε > 0, h > 0, K ∈ N , v0 ∈ Vh.
Step 0. Set i = 0.

Step 1. Set M = 1/h, N = ceil( C1

h2+2ε ).
Step 2. Compute {uij} using N Gauss–Seidel iterations.

Step 3. Compute {pij} using N Gauss–Seidel iterations.

Step 4. Compute λi = argminλfh,N (v
i − λpi) using N Gauss–Seidel itera-

tions.
Step 5. Set vi+1

j = vij − λipij , j = 1, . . . ,M .
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Step 6. If fh,N (v
i+1)−fh,N (vi) > −C2(1− C4h

2+ε)N , replace N by N+K,
and go to Step 2.
Else, go to Step 7.

Step 7. If fh,N (v
i+1)− fh,N (vi) > −C3[h

2 + (1−C4h
2+ε)N ], replace h by h/2, and

go to Step 1.
Else, replace i by i+ 1, and go to Step 2.

Proposition 7. There exists C∗ such that, if C2 ≥ C∗, C3 ≤ C∗, and {vi}
is a sequence of piecewise constant functions constructed by Algorithm 1, then {vi}
converges to the solution of P1 as i→∞.

Proof. This is Algorithm Model 2 with N∗,ϕ, and ∆ multiplied by constants, and
so, if the last two are smaller than the theoretical constants in (64), (65), then the
method converges in the sense that any accumulation point satisfies the optimality
conditions of the problem. Since the control problem is linear-quadratic, any solution
of the optimality conditions is the solution of the problem.

4.3. Numerical results. Problem (53) was solved with ud = sin(πx) starting
from v = 0, first using the standard steepest descent method, with a fixed mesh of
256 points, and solving the linear system using 500 Gauss–Seidel iterations. Then it
was solved using Algorithm 1 (see Figures 1 and 2).

In the second case, the initial mesh had 8 points, and the final mesh had 512.
The algorithm constants were

C1 = 1, C2 = 0.1, C3 = 2 10
−4, C4 = 5, ε = 0.1, K = 20.

These constants were chosen using trial and error to obtain good efficiency, but, as
shown in Figure 3, the results are not very sensitive to these choices as long as the
order of magnitude is right.

0.01

0.1

1

20 40 60 80 100 120

’cost0.txt’
’cost.txt’

Fig. 1. Cost function versus iteration number with and without mesh adaptation for problem
P1. The smooth curve (–+–) corresponds to standard steepest descent on the finest mesh with 500
Gauss–Seidel iterations for the linear systems. The broken curve (–×–) shows cost function decrease
with Algorithm 1. Although the two curves are similar, there is an order of magnitude decrease in
computing time using Algorithm 1.
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Fig. 2. Mesh-size and number of Gauss–Seidel iterations versus iteration number for problem
P1 solved using Algorithm 1. The top curve is the history of Gauss–Seidel iterations count, and the
lower one is the history of the mesh-size.
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Fig. 3. Cost function for other values of Ci. The behavior of Algorithm 1 on problem P1 is
shown for different values of the implementation constants: C1 divided by 10 (–+–), C2 divided by
10 (–×–), C3 divided by 10 (–∗–), and C4 divided by 10 (–�–).
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Figure 1 shows the convergence history of the cost function for both tests. Figure 2
shows the history of the number of Gauss–Seidel iterations for the second case.

Figure 3 shows the behavior resulting from replacing each constant Ci by Ci/10,
i = 1, 2, 3, 4 (one at a time).

In Figure 4, Algorithm 1 is compared with three other methods:
• Implementation of steepest descent. Use any approximation of the continuous
gradient combined with a mesh refinement/Gauss–Seidel iteration increase
based on when the approximate gradient is no longer an approximate feasible
descent direction; for instance,

(74)

if fh,N (v
i+1)− fh,N (vi) > −ε, then replace (N,h, ε) by (2N,h/2, ε/2).

However, in Figure 4, we see that such a strategy is too crude, especially
because the relationship between the change of h and N is linear.

• Open-loop mesh refinement: In Algorithm 1, we replace Step 7 with the rule
that the mesh should be refined every 20 steps.
• Implementation of Algorithm Model 3: Finally, we compare Algorithm 1 with
Algorithm Model 3, where mesh refinement is based on the norm of the
gradient rather than on cost function decrease.

We have also tested a number of other parameter values and other functions
N∗(h, v), ϕ(h,N) in Algorithm 1. Most of the time, similar computational behavior
to that described here was obtained. However, sometimes the mesh was refined too
quickly, and sometimes the number of Gauss–Seidel iterations became too large too
soon, etc.

It is clear that the common strategy of simply discretizing a problem is easily
modified to conform to Algorithm Model 2 or 3. The computing time will always
be smaller when dynamic precision adjustment is used, and, for reasonable values of

0.01

0.1

1

0 20 40 60 80 100 120 140 160

’cost2.txt’
’cost1.txt’
’cost4.txt’
’cost3.txt’

Fig. 4. Comparison with other methods. Algorithm 1 (–+–) is compared to three other methods:
(i) Implementation of Algorithm Model 3 (–∗–), (ii) Heuristic precision refinement (75) (–×–), (iii)
Algorithm 1 with the test on mesh refinement replaced by a division by two every 20 iterations (–�–).
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algorithm parameters, the computing time will be of an order of magnitude smaller
than in the case where dynamic precision adjustment is not used.

5. A distributed control problem. Let S be a given subset of the boundary
Γ of an open bounded subset Ω of R

d; let ξ be a given function on S (added to
this academic problem only to make it nontrivial (see (81), (91))), and consider the
boundary control problem

(P2)

∣∣∣∣∣∣∣
min

v∈L2(S)
f(v) =

1

2

∫
Ω

[(u− ud)2 + |∇(u− ud)|2] subject to

u−∆u = 0 in Ω, ∂u

∂n
|S = ξv, uΓ−S = ud.

(75)

The gradient of f(·) can be obtained by making use of the fact that

δf =

∫
Ω

((u− ud)δu+∇(u− ud) · ∇δu) + o(|v|) =
∫
S

ξ(u− ud)δv,(76)

which follows from the fact that the PDE in variational form is: find u ∈ H1(Ω), the
Sobolev space of order 1, such that u− ud ∈ H1

0Γ−S
(Ω) := {u ∈ H1(Ω) : v|Γ−S = 0}

and ∫
Ω

(uw +∇u · ∇w) =
∫
S

ξvw ∀w ∈ H1
0Γ−S

(Ω).(77)

So, by inspection of (76), we see that the gradient of f(·) with respect to the L2(S)
norm is

gradvf(v) = ξ(u− ud)|S .(78)

To approximate the problem (75), we used a finite element method with u ∈ Vh,
continuous, and piecewise linear on the triangles of a triangulation of Ω. This results
in the discretized, finite dimensional optimization problem

(P2h)

∣∣∣∣∣∣∣∣
min
v∈Vh

fh(v) =
1

2

∫
Ω

[(u− udh)2 + |∇(u− udh)|2] subject to∫
Ω

(uw +∇u · ∇w) =
∫
S

ξvw ∀w ∈ V 0
h ,

(79)

where V 0
h is the approximation of H

1
0Γ−S

(Ω) consisting of continuous piecewise linear
functions on the triangulation, which are zero on Γ− S.

The gradient of the discrete cost function fh(·) can be obtained exactly as in the
continuous case

δfh =

∫
S

ξ(u− udh)δv.(80)

Therefore,

gradvfh(v) = Ph(ξ(u− udh))|S ,(81)

where Ph is the projection operator from L2(S) into Vh ∩ L2(S).
Strictly speaking, (81) holds only if Ω is a polygonal domain, but this is a standard

technical problem with the finite element method which can be dealt with easily.
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5.1. The Schwarz algorithm. Now, for some reason (parallel computing, for
instance), suppose that we want to solve the discrete PDE (i.e., its equivalent sparse
linear system) by a domain decomposition method (see [14, 15, 16, 17]).

Let Ω = Ω1 ∪ Ω2 with Ω1 ∩ Ω2 �= ∅; let Γ = ∂Ω, and let Γij = ∂Ωi ∩ Ωj . To
compute u, the solution of

u−∆u = f in Ω, u|Γ−S = uΓ,
∂u

∂n
|S = ξv,(82)

the multiplicative Schwarz algorithm starts from a guess u0
1, u

0
2 and computes uj =

u|Ωj
as the limit when n→∞, of the sequence unj , j = 1, 2, defined by

un1 −∆un1 = f in Ω1,

un1 |Γ∩Ω̄1−S = uΓ, un1 |Γ12 = un−1
2 ,

∂un1
∂n
|S∩Ω̄1

= ξv,

un2 −∆un2 = f in Ω2,

un2 |Γ∩Ω̄2−S = uΓ, un2 |Γ21 = un−1
1 ,

∂un2
∂n
|S∩Ω̄2

= ξv,




(83)

and

un = un1 on Ω1 ∩ Ωc2, un = un2 on Ω2 ∩ Ωc1, un =
1

2
(un1 + un2 ) on Ω1 ∩ Ω2.(84)

5.2. The doubly discretized problem. The introduction of the Schwarz al-
gorithm leads to a doubly discretized problem, as follows. Let Th be a triangulation
of Ω of average edge size h such that, by removing triangles, we also obtain proper
triangulations {Tjh}j=1,2 of Ω1 and Ω2.

Let V1h and V2h be the finite element spaces of continuous piecewise affine func-
tions on {Tjh}j=1,2. Let V

0
jh be the subspaces of continuous piecewise linear functions

which are zero on the Dirichlet boundaries Γij , j = 1, 2.
Then the doubly discretized problem is

(85)

(P2h,N )

∣∣∣∣∣∣∣∣∣∣∣∣

min
v∈Vh

fh,N (v) = ‖uN − ud‖2Ω : u0
j = 0, n = 1, . . . , N,

unj ∈ Vjh : unj |Γij = un−1
i ,

∫
Ωj

[unjw +∇unj∇w] =
∫
S

ξvw ∀w ∈ V 0
jh,

j = 1, 2, i = (j + 1) mod 2,

uN = uN1 on Ω1 ∩ Ωc2, uN = uN2 on Ω2 ∩ Ωc1, uN =
1

2
(uN1 + uN2 ) on Ω1 ∩ Ω2.

So N is the number of Schwarz iterations applied to the discretized PDE in (79).
Consider the mapping from V1h × V2h onto itself which defines u

n from un−1 by
(84) and∫

Ωj

[unjw +∇unj∇w] =
∫
S

ξvw ∀w ∈ V 0
jh, unj ∈ Vjh, unj |∂Ωij = un−1

i ,(86)

for j = 1, 2, i = j mod 2, n = 1, . . . , N . Let {A,B,C} be the finite element matrices
associated with this operation. In matrix form, (86) is

AUn = BUn−1 + CV,(87)
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where U denotes the vector of values of u1 at the vertices of T1h and of u2 at the
vertices of T2h, and V is the vector of values of v at the vertices of S.

For simplicity, we choose U0 = 0. The doubly discretized problem (85) can now
be rewritten as

(88)

min
v



(UN − Ud)TG(UN − Ud) :




A 0 0 ... 0 0
−B A 0 ... 0 0
0 −B A .. 0 0.
... ...
... −B A





U1

U2

U3

...
UN


 =



CV
CV
CV
CV
CV





,

where G is the finite element mass matrix (see Ciarlet [6] for more details).
We can express the exact gradient gradfh,N (v) of fh,N (v) in terms of the solution

of the adjoint equation

A −BT 0 ... 0 0
0 A −BT ... 0 0
0 0 A .. 0 0.
... ... −BT
... 0 A





P 1

P 2

P 3

...
PN


 =




0
0
0
0

2G(UN − Ud)


(89)

by making use of the fact that δfh,N = (
∑N

1 Pn)
T
CδV . Thus we see that gradfh,N (v)

= CT
∑N

1 Pn.
The interpretation is that P , like U , is the set of values at vertices of the Schwarz

system

pN −∆pN = 2(uN − ud), pN−1 −∆pN−1 = 0, pN−1
Γij

= pN .(90)

These equations are difficult to implement because, in principle, we must store all
intermediate functions generated by the Schwarz algorithm and integrate the system
for pn in reverse order, although here it is not necessary because the problem is linear.
Hence we will use approximations to the gradients gradfh,N (v) defined by

gradNfh(v) := Πh(ξ(uh,N (v)− ud))|S ,(91)

where Πh is the interpolation operator (Πhg is the piecewise linear function which
coincides with g at the vertices of S) and uh,N is computed by N iterations of the
Schwarz algorithm with the convention that on Ω1 ∩ Ω2, uh,N = 1

2 (u1h,N + u2h,N ).

5.3. Verification of the hypotheses. We proceed exactly as in the one di-
mensional case to show that Assumption 1 is satisfied.

(i) Continuity of f(·) with respect to the control is established in Lions [13].
Continuity of fh(·) with respect to the control is obvious from (89).

(ii) It follows from the finite element error estimates given in [6] that the error
analysis (63), (64) holds for this case as well. Hence we can set ∆(h) = h2.

(iii) The Schwarz algorithm converges linearly with rate (1−d/D), where d is the
diameter of Ω1 ∩ Ω2 and D is the diameter of Ω1 ∪ Ω2; so, instead of (65), we have
the bound

‖uh,N − uh‖ ≤ C
(
1− d

D

)N
∀N ∈ N ,(92)



CONSISTENT APPROXIMATIONS IN OPTIMAL CONTROL 507

for some C ∈ (0,∞), which implies that we can set ϕ(h,N) = (1 − d
D )

N . Note
that, in this case, ϕ(h,N) is actually independent of h. In view of this, we can take
N∗(h) = ceil(C/h), where C > 0 is arbitrary.

(iv) The relation (72) obviously holds for this case as well. To show that the
relation (73) also holds, we make use of the facts that (a)

(93)

gradfh(v) = Ph(ξ(uh(v)− udh))|S , gradNfh(v) = Πh(ξ(uh,N (v)− ud))|S ,

(b) both Ph and Πh tend to the identity operator at the rate O(h) at least, and (c)
the bound functions ∆(h), ϕ(h,N), and N∗(h) have the required properties.

5.4. A numerical example. In this example, Ω1 is the unit circle centered at
the origin, and Ω2 is the rectangle (0, 1)× (0, 1) minus the unit triangle with vertices
(0,0),(0,1),(1,0) and minus a disk of boundary S. The control boundary is S.

The function which is to be recovered by the optimization process is ud =

e−x
√

2 sin(y) over the whole domain Ω. The weight on the control has been delib-
erately chosen to have oscillations ξ = sin(30 ∗ (x − 1.15)) + sin(30 ∗ (y − 0.5)). We
have used an automatic mesh generator controlled by a parameter n, the number of
vertices on the boundaries, so, for practical reasons, we initialized h = 1/(8n). The
number of Schwarz iterations was initialized at 1.

The tests (26) (in AlgorithmModel 2) and (51) (in AlgorithmModel 3) for increas-
ing the number of Schwarz iterations were determined by setting ϕ(h,N) = (0.8)N

and C1 = 0.1. The mesh refinement test (31) in Algorithm Model 2 was implemented
with the right-hand side set to −0.001[10−4h2 + (0.8)1/(8h)], which corresponds to
N∗(h) = 0.1/(8h), ϕ(h,N) = 0.8N , ∆(h) = h2. Naturally other choices of coefficients
and bound functions are possible.

The mesh refinement test (52) in Algorithm Model 3 was implemented by setting
ε(n) = 10−n, where n = 1/8h.

We have used the code freefem+ [2], which is a matlab-like environment for PDEs
developed for the purpose of testing parallel algorithms, among other things.

In Figure 5, we plot the values of the cost function f(·) versus the iteration
number for two cases. The first corresponds to optimization using a fixed mesh and a
fixed number of Schwarz iterations, i.e., without adaptive precision refinement (curve
“criter0”), and the second one was obtained using adaptive refinement based either
on the norm of the gradient (case (i), curve “criter1”), or on the decrease of the cost
function (case (ii), curve “criter”).

Figure 6 shows the number of Schwarz iterations N and the mesh parameter n
versus the iteration number for case (i). After 30 iterations, the gradient is 10−6 times
its initial value, while, without mesh refinement, it is only 10−2 times its initial value
(multilevel effect).

The solution and the precision are shown in Figures 7 and 8, respectively.

6. Conclusion. We have developed algorithm models based on the consistent
approximations approach for solving infinite dimensional problems with two indepen-
dent precision parameters. We have applied it to two optimal control problems with
ODE and PDE dynamics each having two precision parameters: the step-size and an
iteration loop count in the solvers. Our numerical results show that the algorithms
are effective. The numerical study was done using the method of steepest descent,
but the models and the proofs are general and can probably be used with Newton’s
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Fig. 5. Cost function versus iterations for without (–×–) and with mesh adaptation with
Algorithm Model 1 (–+–) and 3 (–∗–) for problem P2. Here again, although the general behavior is
similar, there is an order of magnitude decrease in the computing time with mesh adaptation because
the first fifteen iterations are essentially instantaneous in this case.
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Fig. 6. Changes in the number of mesh points (–+–) and Schwarz iterations (–×–) versus
iteration count when adaptation is used to solve problem P2 by Algorithm Model 3.
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Fig. 7. Left: Level lines of the computed solution u (20 lines equally spaced ranging from −1.77
to 1.77). Right: Level lines of the error u − ud (20 lines equally spaced ranging from −0.0199 to
0.0150).

Fig. 8. Shown here are the 2nd finite element mesh on the left and a zoom of part of the
7th finite element mesh (the last is the 9th) on the right. Both are generated automatically by a
Delaunay–Voronoi mesh generator from a uniform distribution of points on the boundaries.

method, conjugate gradient methods, etc. Other applications are under way, in co-
operation with G. Lemarchand and Y. Achdou, using the conjugate gradient method
for two problems:

• Optimal shape design of wing profiles with mesh adaptation and for which
the iteration number for the solvers of the Euler or compressible Navier–
Stokes equations was determined in the same way as the number of Schwarz
iterations was determined in this paper.
• Volatility smile in financial modeling of option pricing, where one parame-
ter function (the volatility) in the Black–Scholes PDE is adjusted by least
square/optimal control to fit the market observations; there, incomplete gra-
dients are due to short cycles in the solvers, and mesh adaptation is used.

In these two important applications, we have reduced the computing time by an order
of magnitude, as compared to the times with fixed discretization parameters, and we
had no stability problems even though we had much less information as to the rate
of convergence of the solvers to guide the choice of the various parameters of our
algorithm models.
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Abstract. This work is concerned with the boundary stabilization of an abstract system of two
coupled second order evolution equations wherein only one of the equations is stabilized (indirect
damping; see, e.g., J. Math. Anal. Appl., 173 (1993), pp. 339–358). We show that, under a condition
on the operators of each equation and on the boundary feedback operator, the energy of smooth
solutions of this system decays polynomially at ∞. We then apply this abstract result to several
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1. Introduction. Motivations. It is well known that the energy of the solu-
tions of the wave equation in a bounded open domain Ω ⊂ R

N ,{
utt −∆u = 0 in Ω× (0,∞),

u(., 0) = u0(.), ut(., 0) = u1(.) in Ω,
(1)

is dissipated when a boundary feedback of the form

∂u

∂ν
+ au+ lut = 0 on Σ1 = Γ1 × (0,∞)(2)

is applied on a part Γ1 of the boundary Γ of Ω that satisfies certain geometric con-
ditions (see [5], [27], [18]), whereas no feedback is applied on the other part of the
boundary, i.e.,

u = 0 on Σ0 = (Γ− Γ1)× (0,∞).(3)

Here ∆ stands for the Laplacian with respect to the spatial variables, and the subscript
t stands for the partial derivative with respect to the t-variable. We recall that the
energy of a solution u of the wave equation is defined by

E(u(t)) =
1

2

∫
Ω

(|ut|2 + |∇u|2) dx,

and that, formally, the dissipation of energy is given by the relation

E′(u(t)) = −
∫

Γ1

�|ut|2 dγ ≤ 0 for � ≥ 0 on Γ1.

Moreover, if the feedback coefficients a and l are suitably chosen (see, e.g., [18] and the
references therein), the dissipation of the energy through the part Γ1 of the boundary
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is sufficient to lead to exponential decay of the solutions; i.e., there exist positive
constants M and ω such that

E(u(t)) ≤M exp(−ωt)E(u(0))

for all initial data (u0, u1) of finite energy. On the other hand, when no feedback is
applied on the boundary, i.e., when

u = 0 on Σ = Γ× (0,∞),(4)

then the energy of the solutions is conserved, that is, E(u(t)) = E(u(0)) for all t ≥ 0.
One question of interest then is how the stability properties are affected if we couple

the exponentially stable wave equations (1)–(3) to the conservative wave equations (1)
and (4). That is, we wonder how these properties are affected if we consider the
following system:



u1,tt −∆u1 + αu2 = 0 in Ω× (0,∞),

u2,tt −∆u2 + αu1 = 0 in Ω× (0,∞),

∂u1

∂ν
+ au1 + lu1,t = 0 on Σ1 = Γ1 × (0,∞),

u1 = 0 on Σ0 = Γ0 × (0,∞), u2 = 0 on Σ = Γ× (0,∞),

ui(0) = ui0, u
′
i(0) = ui1,

(5)

where α is a coupling parameter. For this model problem, one can remark that a
boundary feedback is applied directly to the first component of the solution, whereas
no direct feedback is applied to the second component. Also of interest is the question
is it possible to obtain a somehow general result for abstract systems of second order
evolution equations coupling a conservative equation to an exponentially stable one?
The abstract model that we refer to in this paper is



u′′1 +A1u1 +Bu′1 + αPu2 = 0 in V ′
1 ,

u′′2 +A2u2 + αP �u1 = 0 in V ′
2 ,

(u1, u
′
1)(0) = (u0

1, u
1
1) = U0

1 ∈ V1 ×H,
(u2, u

′
2)(0) = (u0

2, u
1
2) = U0

2 ∈ V2 ×H,

(6)

where H, V1 ⊂ H and V2 ⊂ H are separable Hilbert spaces; A1, A2 are coercive
self-adjoint unbounded operators in H; B is unbounded symmetric in H, whereas the
coupling operator P is assumed to be bounded in H; P � is the adjoint operator of P ;
and α is a coupling parameter. The total energy of a solution (u1, u2) is defined by

E(u1(t), u2(t))

=
1

2

(
||u′1(t)||2H + ||u′2(t)||2H + ||A1/2

1 u1(t)||2H + ||A1/2
2 u2(t)||2H

)
+ α(u1, Pu2)H ,

where || · ||H and (·)H denote, respectively, the norm and scalar product in H, and

A
1/2
i , i ∈ {1, 2}, denotes the usual fractional power of a coercive self-adjoint operator

Ai in H (see [29]).
Now the questions of interest are is the full above system stable and, if so, at

which rate? We can first remark that if α = 0, then the solutions of both the above
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model problem and the abstract one are not even strongly stable. Hence, the results
we are looking for cannot be obtained by a perturbation argument with respect to the
case α = 0. Moreover, in [2] we have studied the above abstract system in the case of
bounded feedback operators B (internal stabilization case). Using a general result of
[2, section 1] concerning systems of first evolution equations coupling a conservative
equation to a nonconservative one (the coupling operator in the conservative equation
being compact in the product space), we can deduce that our abstract system (6) is
never exponentially stable. Hence if stability holds for such systems, it must be
a weaker stability criterion than the exponential one. Indeed, our main result (see
Theorem 3.3 in section 3 below) shows that if |α| is sufficiently small (but not equal to
0), the total energy of the smooth solutions of (6) decays polynomially at∞, provided
mainly that the semigroup generated by A1 is exponentially stable (see hypothesis
(H1)), and the two operators A0 (where A0 is defined from A1 in section 2) and A2

satisfy a compatibility condition (see (H3)). From this result, we deduce, thanks to
the density of the domains of powers of the generator of the associated first order
evolution equation and to the contractivity of the corresponding semigroup, that any
solution of (6) is strongly stable. The main requirement for proving the above result
is to obtain a generalized integral inequality of the form

∫ T

S

E(u1(t), u2(t))dt ≤ c
k∑
p=0

E(u
(p)
1 (S), u

(p)
2 (S)) ∀0 ≤ S ≤ T

for smooth initial data, where k = 2 in our case and where E stands for the total
energy of the system. Then a general lemma (introduced in [1] and valid for arbitrary
nonzero integer k) shows that if in addition E is a nonincreasing function, it has to
decay polynomially at ∞. The main technical point is then to prove this generalized
inequality. This is done by the use of appropriate multipliers, one of the obvious
difficulties being that, with the second equation not directly stabilized, we miss some
information that we must get back from the system.

We then apply our abstract result to several systems of partial differential equa-
tions. In particular, we obtain a polynomial decay rate for the energy of smooth
solutions of (5) under classical (multiplier-type) geometric conditions on the bound-
ary where the feedback is active. Similar results can be obtained for a Kirchhoff–
Petrowsky system. For these two examples, the operators A0 and A2 coincide. We
further give two examples for which these two operators do not coincide, namely, the
case of two coupled wave equations with different speeds of propagation, and a wave-
Petrowsky coupling. In these two latter cases, we have to restrict our analysis to the
situation in which the spatial domain is an n-dimensional interval.

These results can also be interpreted in the framework of indirect stabilization,
which, as far as we know, was introduced by Russell [32]. Indeed, since strong stability
holds for abstract systems of the form (6), the first equation of this system can be
viewed as an indirect stabilizer for the second equation.

We will now give some references to the existing literature on this subject, refer-
ring the reader to those papers for further references. A large number of papers (see,
e.g., [10], [28], [26], [24], [3], [30]) concern the stabilization of hyperbolic-parabolic
coupled systems, such as thermoelasticity, thermoplates, etc. For such systems, the
main goal is to determine whether the dissipation induced by the heat-type equation
is sufficient for stabilizing the full system obtained by coupling it to a hyperbolic-type
equation. Exponential stability results for coupled hyperbolic-hyperbolic systems via
two feedback operators (i.e., each equation of the system is directly stabilized if the
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coupling parameter is set equal to 0; this is the direct stabilization case) can be found
in [17], [20], [23]. In the case of coupled wave-wave systems subjected to only one
internal feedback operator (this is the indirect internal stabilization situation), posi-
tive and negative exponential stability results have been obtained in [16], [4]. In [2]
we have proved polynomial decay estimates in the indirect internal stabilization case.
These results were extended to several cases (wave-wave, Petrowsky-Petrowsky cou-
pling) for locally distributed indirect stabilization in [8]. In the one-dimensional case,
another approach, based on the use of a Riesz basis, leads to stability results with
an optimal decay rate (see, e.g., [31], [14]). This technique is based on determination
of precise asymptotic estimates of the eigenvalues of the involved operators for large
frequencies. Such precise estimates can be obtained only in the one-dimensional case
and require a careful analysis of the associated spectral problems. Moreover, this
analysis has to be performed for each new system under consideration. The main
advantage of the method presented in our paper is that it is valid in any dimension
and for a wide class of weakly coupled systems, without requiring the performance of
all computations for each new system. However, the stability results obtained by this
method are probably not optimal, in contrast to the one-dimensional results derived
by the use of the Riesz basis.

Complete and partial observability (respectively, controllability) results for cou-
pled systems of either hyperbolic-hyperbolic type or of hyperbolic-parabolic type can
be found in [27]. These results assume that the coupling parameter is sufficiently
small. They have been extended in [19] to the cases of arbitrary coupling param-
eters (assuming bounded coupling operators). For both references, the multiplier
method was the main requirement for obtaining the desired estimates. Complete ob-
servability (respectively, controllability) results have also been obtained in [25] for
systems of coupled second order hyperbolic equations containing first order terms in
both the original and the coupled unknowns. These results are based on Carleman
estimates.

The paper is organized as follows. In section 2, we give the abstract framework
for system (6) and establish the well-posedness of both the uncoupled and coupled
abstract systems. In section 3, we establish a polynomial decay lemma for a nonin-
creasing nonnegative functional satisfying a generalized integral inequality. We then
prove our main stability result and some useful corollaries. Finally, in section 4 we give
several applications of our main results to systems of partial differential equations.

2. Abstract coupled model.

2.1. Introduction. Let Vi, i = 1, 2, and H be separable real Hilbert spaces such
that the injections Vi ⊂ H are dense, compact, and continuous for i = 1, 2, and the
injection V2 ⊂ V1 is continuous.

In all of what follows we identify H with its dual space, so that the injections
Vi ⊂ H ⊂ V ′

i hold and are continuous, dense, and compact. The scalar products on Vi,
i = 1, 2, and H are respectively denoted by (, )Vi and (, )H , whereas the corresponding
norms are respectively denoted by || ||Vi and || ||H . Moreover, we denote by 〈, 〉V ′

i
,Vi

the duality product, and by Ai, i = 1, 2, the duality mapping from Vi to V
′
i defined by

〈Aiw, z〉V ′
i
,Vi

= (w, z)Vi ∀w, z ∈ Vi.

It will also be useful (see subsection 3.2) to assume that V1 contains a closed
subspace V0, equipped with the norm and scalar product induced by those of V1.
Then denoting by i the canonical injection from V0 in V1, and by P0 the operator of
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projection from V1 on V0, we recall that for any u1 ∈ V1, P0u1 is characterized by{ 〈A1i(P0u1), i(φ)〉V ′
1 ,V1

= 〈A1u1, i(φ)〉V ′
1 ,V1

∀ φ ∈ V0, u1 ∈ V1,

P0u1 ∈ V0.
(7)

We define an operator A0 from V0 to V ′
0 by

〈A0φ, ψ〉V ′
0 ,V0

= 〈A1i(φ), i(ψ)〉V ′
1 ,V1

∀ φ, ψ ∈ V0.(8)

Note that A0 is, indeed, the duality mapping from V0 to V ′
0 .

Let B be a given linear continuous operator from V1 to V ′
1 (it will serve as the

abstract formulation of the boundary conditions), which further satisfies

〈Bu, u〉V ′
1 ,V1
≥ 0, 〈Bu, z〉V ′

1 ,V1
= 〈Bz, u〉V ′

1 ,V1
∀u, z ∈ V1.(9)

Moreover, let P be a given linear continuous operator on H, and α be a given nonzero
parameter. For the sake of clarity we will assume that α is positive; nevertheless, the
results in this paper are valid for negative α as well. We consider the following weakly
coupled system: 



u′′1 +A1u1 +Bu′1 + αPu2 = 0 in V ′
1 ,

u′′2 +A2u2 + αP �u1 = 0 in V ′
2 ,

(u1, u
′
1)(0) = (u0

1, u
1
1) = U0

1 ∈ V1 ×H,
(u2, u

′
2)(0) = (u0

2, u
1
2) = U0

2 ∈ V2 ×H.

(10)

In order to study this coupled system, we need to establish basic results on the
decoupled system obtained when α = 0.

2.2. The decoupled system. We consider the decoupled system{
u′′1 +A1u1 +Bu′1 = 0 in V ′

1 ,

(u1, u
′
1)(0) = U0

1 ∈ V1 ×H,(11)

and {
u′′2 +A2u2 = 0 in V ′

2 ,

(u2, u
′
2)(0) = U0

2 ∈ V2 ×H.(12)

We set Hi = Vi ×H for i = 1, 2. This space is equipped with the scalar product

((ui, vi), (ũi, ṽi))Hi
= (ui, ũi)Vi

+ (vi, ṽi)H ∀(ui, vi), (ũi, ṽi) ∈ Hi
and the corresponding norm || ||Hi . We define two linear unbounded operators Ai on
Hi for i = 1, 2 by

A1(u1, v1) = (−v1, A1u1 +Bv1), D(A1) = {(u1, v1) ∈ V1 × V1, A1u1 +Bv1 ∈ H},
A2(u2, v2) = (−v2, A2u2), D(A2) = {(u2, v2) ∈ V2 × V2, A2u2 ∈ H}.

Then the decoupled system (11)–(12) can be reformulated as{
(ui, vi)

′ +Ai(ui, vi) = 0, i = 1, 2,

(ui, vi)(0) = U0
i ∈ Hi, i = 1, 2.

(13)
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Proposition 2.1. We assume the above hypotheses on Vi, H, Ai, and B. Then
Ai is a maximal monotone operator on Hi for i = 1, 2, so that for every U0

i =
(u0
i , u

1
i ) ∈ Hi problem (13) has a unique solution (ui, vi) ∈ C([0,+∞);Hi), i = 1, 2.

Moreover, the energy of the solution, defined by

ei(t) =
1

2
||(ui, vi)||2Hi

,(14)

is locally absolutely continuous for i = 1, 2, and e1 is nonincreasing, whereas e2 is
conserved through time. If, in addition, U0

i ∈ D(Aki ) for k ∈ N
�, then the solution is

in Ck−j([0,+∞);D(Aji )) for j = 0, . . . , k and i = 1, 2.
Proof. For (u1, v1) ∈ D(A1) we have

(A1(u1, v1), (u1, v1))H1 = (−v1, u1)V1 + (A1u1 +Bv1, v1)H = 〈Bv1, v1〉V ′
1 ,V1
≥ 0,

since B satisfies (9). In the same way, for (u2, v2) ∈ D(A2) we obtain (A2(u2, v2),
(u2, v2))H2

= 0. Hence Ai is a monotone operator for i = 1, 2. We now prove that
Ai is onto. For this, it is sufficient to prove that I + A1 + B and I + A2 are onto.
Let h1 ∈ V ′

1 be given arbitrarily. We consider, as usual (see, e.g., [18]), the map F1

defined from V1 on R by

F1(u1) =
1

2
||u1||2H +

1

2
||u1||2V1

+
1

2
〈Bu1, u1〉V ′

1 , V1
− 〈h1, u1〉V ′

1 , V1
.

Then F1 is continuously differentiable and

F ′
1(u1) · φ1 = 〈(I +A1 +B)u1 − h1, φ1〉V ′

1 ,V1
∀u1, φ1 ∈ V1.

Moreover, F1 is convex and coercive, i.e, F1(u1)→ +∞ if ||u1||V1
→ +∞. Therefore,

F1 attains its minimum at some point u1 ∈ V1 for which F ′
1(u1) = 0. Hence we

have (I + A1 + B)u1 = h1. We then deduce easily that I + A1 is onto on H1. In a
similar way, we prove that I + A2 is onto on H2. Hence the operators Ai, i = 1, 2,
are maximal monotone. We easily conclude, using well-known properties of maximal
monotone linear operators (see, e.g., [7]).

2.3. Abstract formulation of the coupled system. We now turn back to
the weakly coupled system (10). We set V = V1 × V2. This space is equipped with
the usual scalar product (u, ũ)V = (u1, ũ1)V1 +(u2, ũ2)V2

and the corresponding norm
|| ||V , where u = (u1, u2) ∈ V and ũ = (ũ1, ũ2) ∈ V . We have V ⊂ H × H ⊂ V ′

with continuous, dense, and compact injections. We also define a linear continuous
operator Aα from V on V ′ by

Aαu = (A1u1 + αPu2, A2u2 + αP �u1), u = (u1, u2) ∈ V.

Moreover, we consider on V the continuous bilinear form

(u, ũ)α = (u, ũ)V + α(Pu2, ũ1)H + α(P �u1, ũ2)H , u = (u1, u2), ũ = (ũ1, ũ2) ∈ V.

Proposition 2.2. Assume the hypotheses of Proposition 2.1. Then there exists
α0 > 0 such that for all 0 ≤ |α| < α0 there exist constants c1(α) > 0 and c2(α) > 0
such that

c1(α)||u||V ≤ ((u, u)α)
1/2 ≤ c2(α)||u||V ∀ u ∈ V.
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Hence, for all 0 ≤ |α| < α0, the application

u ∈ V �→ ||u||α = ((u, u)α)
1/2

defines a norm on V which is equivalent to the norm || ||V . Moreover, for all 0 ≤
|α| < α0, Aα is the duality mapping from V on V ′ when V is equipped with the scalar
product (, )α.

Proof . Let us denote by βi, i = 1, 2, the smallest positive constants such that

||ui||H ≤ βi||ui||Vi ∀ ui ∈ Vi.
Then we have

(u, u)α ≥ ||u1||2V1
+ ||u2||2V2

− 2α||P ||β1β2||u1||V1 ||u2||V2 ≥ ||u||2V (1− α||P ||β1β2).

Hence, setting

α0 = (||P ||β1β2)
−1, c1(α) =

√
1− α||P ||β1β2,

we have √
(u, u)α ≥ c1(α)||u||V ∀ u ∈ V.

In a similar way, we have√
(u, u)α ≤ c2(α)||u||V ∀ u ∈ V,

where

c2(α) =
√

1 + α||P ||β1β2.

We now prove that Aα is the duality mapping for the scalar product (, )α. For
u = (u1, u2) and u = (ũ1, ũ2) given in V we have

〈Aαu, ũ〉V ′,V = (u, ũ)V + α〈Pu2, ũ1〉V ′
1 ,V1

+ α〈P �u1, ũ2〉V ′
2 ,V2

.

Now, since Pu2 ∈ H and ũ1 ∈ V1, we have

〈Pu2, ũ1〉V ′
1 ,V1

= (Pu2, ũ1)H .

In a similar way, we have

〈P �u1, ũ2〉V ′
2 ,V2

= (P �u1, ũ2)H .

Hence

〈Aαu, ũ〉V ′,V = (u, ũ)α.

We now set H = V ×H2. This space is equipped with the scalar product

(U, Ũ)H = (u, ũ)α + (v, ṽ)H×H

and the corresponding norm

||U ||H = (||u||2α + ||v||2H×H)1/2,
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where U = (u, v) ∈ H, with u = (u1, u2), v = (v1, v2). We also define the unbounded
linear operator Aα on H by

AαU = (−v,Aαu+ (Bv1, 0)),

D(Aα) = {U = (u, v) = ((u1, u2), (v1, v2)) ∈ V × V, Aαu+ (Bv1, 0) ∈ H ×H}.

One can easily prove that

U = ((u1, u2), (v1, v2)) ∈ D(Aα)⇐⇒ (u1, v1) ∈ D(A1), (u2, v2) ∈ D(A2).

We can now reformulate the system (10) as the abstract first order equation

{
U ′ +AαU = 0,

U(0) = U0 ∈ H.(15)

Proposition 2.3. Assume the hypotheses of Proposition 2.1, and let α0 be given
as in Proposition 2.2. Then, for all 0 ≤ |α| < α0, Aα is a maximal monotone
linear operator on H, so that for every U0 ∈ H problem (15) has a unique solution
U = (u, v) ∈ C([0,+∞);H). If, in addition, U0 ∈ D(Aαk) for k ∈ N

�, then the
solution is in Ck−j([0,+∞);D(Ajα)) for j = 0, . . . , k. Moreover, the energy of the
solution defined by

E(U(t)) =
1

2
||U ||2H(16)

is locally absolutely continuous, and for strong solutions, i.e., when U0 ∈ D(Aα), we
have

E′(U(t)) = −〈Bu′1, u′1〉V ′
1 ,V1

;(17)

here ′ denotes the derivative with respect to time t. Hence the energy of any solution
of (15) is a nonincreasing function of time.

Proof. The proof is similar to that of Proposition 2.1 and is left to the reader.

Remark. The well-posedness of problem (15) holds true for any α, since Aα is
a compact perturbation of the corresponding decoupled operator (obtained by set-
ting α = 0). Of course, in this case V should be equipped with the norm || ||V ,
and H with the scalar product (U, Ũ) = (u, ũ)V + (v, ṽ)H×H and the corresponding
norm.

For what follows, we will also need the following result whose (easy) proof is left
to the reader.

Proposition 2.4. Assume the hypotheses of Proposition 2.1, and let α0 be given
as in Proposition 2.2. Then, for all 0 ≤ |α| < α0, there exist constants c3(α) > 0 and
c4(α) > 0 such that for all U = (u1, u2, v1, v2) ∈ H we have

c3(α)

2
(||(u1, v1)||2H1

+ ||(u2, v2)||2H2
) ≤ ||U ||2H

(18)

≤ c4(α)

2
(||(u1, v1)||2H1

+ ||(u2, v2)||2H2
).
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3. Main results.

3.1. A generalized integral inequality. We prove below a generalized integral
inequality that will be useful in what follows for obtaining polynomial decay rates for
smooth solutions of coupled equations when only one of the equations is stabilized.
Let A be the infinitesimal generator of a continuous semigroup exp(tA) on a Hilbert
space H, and D(A) its domain. For U0 in H we set U(t) = exp(tA)U0 in all of what
follows.

Theorem 3.1. Assume that there exists a functional E defined on C([0,+∞),H)
such that for every U0 in H, E(exp(.A)) is a nonincreasing, locally absolutely con-
tinuous function from [0,+∞) on [0,+∞). Assume, moreover, that there exist an
integer k ∈ N

� and nonnegative constants cp for p = 0, . . . , k such that

∫ T

S

E(U(t)) dt ≤
k∑
p=0

cpE(U (p)(S)) ∀ 0 ≤ S ≤ T, U0 ∈ D(Ak).(19)

Then the following inequalities hold for every U0 in D(Akn), where n is any
positive integer:

∫ T

S

E(U(τ))
(τ − S)n−1

(n− 1)!
dτ ≤ c

kn∑
p=0

E(U (p)(S)) ∀ 0 ≤ S ≤ T, U0 ∈ D(Akn),

(20)

and

E(U(t)) ≤ c
kn∑
p=0

E(U (p)(0))t−n ∀t > 0, U0 ∈ D(Akn),

where c is a constant that depends on n.
Proof. We first prove (20) by induction on n. For n = 1, it reduces to the

hypothesis (19). Assume now that (20) holds for n, and let U0 be given inD(Ak(n+1)).
Then we have

∫ T

S

∫ T

t

E(U(τ))
(τ − t)n−1

(n− 1)!
dτ dt ≤ c

kn∑
p=0

∫ T

S

E(U (p)(t)) dt

∀0 ≤ S ≤ T, U0 ∈ D(Akn).

Since U0 is in D(Ak(n+1)), we deduce that U (p)(0) = ApU0 is in D(Ak) for p ∈
{0, . . . , kn}. Hence we can apply assumption (19) to the initial data U (p)(0). This,
together with Fubini’s theorem applied on the left-hand side of the above inequality,
gives (20) for n + 1. Using the property that E(U(t)) is nonincreasing in (20), we
easily obtain the last desired inequality.

In all of what follows, we write U instead of U(t) in the expressions involving the
energy, and S will denote a nonnegative real number.

3.2. Polynomial decay of weakly coupled systems. Let us first prove that,
under the hypotheses of Proposition 2.1, the semigroup generated by the operator
−Aα is not exponentially stable.
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Proposition 3.2. We assume the hypotheses of Proposition 2.1 and that the
space V2 ×H is infinite-dimensional. Then the semigroup generated by the operator
−Aα is not exponentially stable.

Proof. We recall that Hi = Vi × H and H = V1 × V2 × H2, and we define the
operators Ai for i = 1, 2 and their domains as in section 2. Now let U0 be given
in H, and U = ((u1, u2), (v1, v2)) be the solution of (15). Setting w1 = (u1, v1) and
w2 = (u2, v2), we can reformulate the system (15) in the following form:



w′
1(t) = L1w1(t) +K1w2(t),

w′
2(t) = L2w2(t) +K2w1(t),

w1(0) = (u0
1, u

1
1) = U0

1 ∈ H1,

w2(0) = (u0
2, u

1
2) = U0

2 ∈ H2,

(21)

where the operators Li are unbounded operators in Hi for i = 1, 2 and are defined by
Li = −Ai, D(Li) = D(Ai) for i = 1, 2. In contrast, the operators K1 and K2 are the
bounded linear operators acting, respectively, from H2 on H1 and H1 on H2 defined
by K1 = (0,−αP ) and K2 = (0,−αP �). Now, from our hypotheses and thanks
to Proposition 2.1, we know that Li generates a strongly continuous semigroup of
bounded linear operators exp(tLi) on Hi for i = 1, 2, and that || exp(tL2)w|| = ||w||
for all w ∈ H2, where || · || denotes the norm on H2. Moreover, one can easily notice
that, thanks to the compact imbedding of V2 in H, K2 is a compact operator. Hence
if V2×H is infinite-dimensional, we can apply the results of [2, section 1], so that the
semigroup generated by −Aα is not exponentially stable.

Hence if the system (15) is stable, it must be stable in a weaker sense than the
exponential one. Indeed, we now want to prove that, under additional hypotheses
on the operators (A1, A2), the operator −Aα generates a polynomially decaying
semigroup.

We first assume that the operatorA1 satisfies the following hypotheses (H1)–(H2):

(H1)




∃γi > 0, i = 1, 2, 3, such that ∀f1 ∈ C1([0,+∞);H) and 0 ≤ S ≤ T,
the solution (u1, v1) of

(u1, v1)
′ +A1(u1, v1) = (0, f1),

(u1, v1) = (u0
1, v

0
1) ∈ D(A1)

satisfies∫ T
S
e1(t) dt ≤ γ1(e1(S) + e1(T )) + γ2

∫ T
S
||f1(t)||2H dt+ γ3

∫ T
S
〈Bv1, v1〉V ′

1 ,V1
dt;

and

(H2)



〈Bu1, i(φ)〉V ′

1 ,V1
= 0 ∀ φ ∈ V0, u1 ∈ V1,

and

∃β > 0, ||u1 − P0u1||2H ≤ β 〈Bu1, u1〉V ′
1 ,V1

∀u1 ∈ V1.

Remarks. The assumption (H1) implies, in particular, that −A1 generates an
exponentially stable semigroup, since for f1 = 0 we deduce that e1, which is locally
absolutely continuous and nonincreasing (see Proposition 2.1), satisfies the classical
integral inequality ∫ T

S

e1(t) dt ≤ (2γ1 + γ3)e1(S) ∀ 0 ≤ S ≤ T,(22)
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so that −A1 generates an exponentially stable semigroup (see [15], [18]). As will
be seen later (in section 4), this property is satisfied for most systems (e.g., wave,
Kirchhoff, etc.).

The hypothesis (H2) implies that B satisfies a “weak” coercivity property (since
the norm on the left-hand side of the second inequality in (H2) is the weaker H-
norm) in the subspace orthogonal to the closed subspace V0. As will be seen later (in
section 4), this property is satisfied for most systems (e.g., wave, Kirchhoff, etc.).

We now state the next hypothesis, which gives the “authorized” couplings in the
abstract system (10). For the sake of simplicity, we still denote by Ai the unbounded
operator on H defined by the restriction of Ai to D(Ai) = {φ ∈ Vi, Aiφ ∈ H} for
i = 0 and i = 2. We now assume the following properties on the coupling:

(H3)




V2 ⊂ V0 with continuous imbedding and

∃ a bounded operator C on H such that

CV2 ⊂ V0, CD(A2) ⊂ D(A0), and A0Cu2 = CA2u2 ∀u2 ∈ D(A2).

Furthermore, we assume that

(H4) ∃γ > 0 such that (Pu2, Cu2)H ≥ γ||u2||2H ∀u2 ∈ H.
We now state the main result of this paper.

Theorem 3.3. Assume that A1, A2, and B satisfy the hypotheses of section 2
and assumptions (H1)–(H4). Then there exists an α1 ∈ (0, α0] such that for all
0 < |α| < α1 the solution U(t) = exp(−Aαt)U0 of (10) satisfies

E(U(t)) ≤ c

tn

2n∑
p=0

E(U (p)(0)) ∀ t > 0, U0 ∈ D(A2n
α ),

where c is a constant depending on α and n. Moreover, if U0 ∈ H, then E(U(t))
converges to zero as t goes to infinity (this is strong stability).

As will be seen in what follows (in section 4), assumptions (H1) and (H2) will
be satisfied for many operators A1. Assumption (H3), which concerns the coupling
between the two operators involved in the full system, is more restrictive. We give
below two abstract examples for which assumption (H3) is satisfied.

Example 1. Case A0 = A2. We give a first example for which assumption (H3)
is trivially satisfied.

Proposition 3.4. Assume that

(H3)′ V0 = V2, A0 = A2, D(A0) = D(A2),
(H4)′ ∃γ > 0, (Pu2, u2)H ≥ γ||u2||2H ∀ u2 ∈ H,

where the equality between Banach spaces E and F has to be understood as E and F
are isomorphic. Then assumptions (H3)–(H4) are trivially satisfied with C = IdH .

Therefore, from Theorem 3.3 and Proposition 3.4, we easily deduce the following
corollary.

Corollary 3.5. Assume that A1, A2, A0, and B satisfy the hypotheses of
section 2, and take assumptions (H1)–(H2) together with (H3)′ and (H4)′. Then there
exists α1 ∈ (0, α0] such that for all 0 < |α| < α1 the solution U(t) = exp(−Aαt)U0 of
(10) satisfies

E(U(t)) ≤ c

tn

2n∑
p=0

E(U (p)(0)) ∀ t > 0, U0 ∈ D(A2n
α ).

Moreover, if U0 ∈ H, then E(U(t)) converges to zero as t goes to infinity.
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Example 2. Case A0 �= A2. The second example allows us a more general
situation, even though it is still restrictive. We define the spaces H,V1, V2, V0 and the
unbounded operators A0 : D(A0) ⊂ H �→ H, A2 : D(A2) ⊂ H �→ H as in section 2,
where D(Ai) = {u ∈ Vi, Aiu ∈ H} for i = 0, 2.

Lemma 3.6. Assume that V2 ⊂ V0 and that there exists a common orthonormal
basis {ek}∞k=1 of eigenfunctions of the operators Ai in H, for i = 0, 2, with

Aiek = λi,kek, k = 1, . . . , i = 0, 2.

Assume, moreover, that the following hypothesis holds:

(H5)

{ ∃r : N
� �→ N

�, one-to-one, such that
λ2,k = λ0,r(k) ∀k ∈ N

�.

Then, there exists a bounded linear operator C in H that satisfies assumption (H3)
and ||Cu||H = ||u||H for all u ∈ H.

Proof. Assume that there exists an application r as above. For u ∈ H, u has a
unique orthonormal expansion u =

∑∞
k=1 ukek, where

∑∞
k=1 |uk|2 < +∞. In the re-

mainder of the proof, we will assume that u ∈ H is written under this form. Moreover,
we recall that for i = 0 or i = 2, u ∈ Vi if and only if

∞∑
k=1

λi,k|uk|2 < +∞,

whereas u ∈ D(Ai) if and only if

∞∑
k=1

|λi,k|2|uk|2 < +∞.

We define C as follows:

Cu =

∞∑
k=1

uker(k).

Hence, we have Cu =
∑∞
l=1 v�e�, where v� = uk if k ∈ {1, . . . ,∞} exists such that

� = r(k), and v� = 0 otherwise. This implies that ||Cu||H = ||u||H for all u ∈ H.
We now check that this operator C satisfies assumption (H3). Let u be given in V2.
Then, thanks to the assumption on r, we have

∞∑
k=1

λ0,r(k)|uk|2 < +∞.

Defining v� as above, we deduce that

∞∑
�=1

λ0,�|v�|2 =

∞∑
k=1

λ0,r(k)|uk|2 < +∞.

Hence, we have Cu ∈ V0, and thanks to the assumption on r, ||Cu||V0 = ||u||V2 holds.
Now let u be given in D(A2), and define v� as above. Then, thanks to the

assumption on r, we prove, as above, that

∞∑
�=1

|λ0,�|2|v�|2 =

∞∑
k=1

|λ0,r(k)|2|uk|2 < +∞.
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Hence, we have Cu ∈ D(A0). Finally, let u be given in D(A2). Then

A2u =

∞∑
k=1

λ2,kukek,

so that, thanks to the assumption on r,

CA2u =

∞∑
k=1

λ0,r(k)uker(k).

On the other hand, we have

A0Cu =

∞∑
�=1

λ0,�vle� = CA2u,

thanks to the above definition of v�.
Thanks to Theorem 3.3 and to Lemma 3.6, we also deduce the following corollary

of our main result.
Corollary 3.7. Assume that A1, A2, A0, and B satisfy the hypotheses of

section 2. Moreover, assume that (H1)–(H2), (H4), and the assumptions of Lemma 3.6
hold. Then there exists α1 ∈ (0, α0] such that for all 0 < |α| < α1 the solution
U(t) = exp(−Aαt)U0 of (10) satisfies

E(U(t)) ≤ c

tn

2n∑
p=0

E(U (p)(0)) ∀ t > 0, U0 ∈ D(A2n
α ).

Moreover, if U0 ∈ H, then E(U(t)) converges to zero as t goes to infinity.
Proof of the main result. We now turn to the proof of Theorem 3.3. However, we

first need to prove the following lemmas.
Lemma 3.8. Assume the hypotheses of Theorem 3.3. Then for all 0 < |α| <

α0 and all U0 = (u0
1, u

0
2, u

1
1, u

1
2) ∈ D(Aα) the solution U(t) = exp(−tAα)U0 =

(u1, u2, v1, v2) of (10) satisfies

αγ

2

∫ T

S

||u2||2H dt ≤ α c

∫ T

S

||u1||2H dt+ c(E(U ′(S)) + E(U(S))) ∀ 0 ≤ S ≤ T,

where c is a constant depending on α.
Proof. Assume first that U0 ∈ D(A2

α); then we know that the solution U(t) =
exp(−tAα)U0 = (u1, u2, v1, v2) of (10) is in C([0,+∞);D(A2

α))∩C1([0,+∞);D(Aα))∩
C2([0,+∞);H). Hence U = (u1, u2, v1, v2) satisfies


v1 = u′1, v2 = u′2,
u′′1 +A1u1 +Bu′1 + αPu2 = 0 in H,

u′′2 +A2u2 + αP �u1 = 0 in H.

(23)

We now evaluate the term

K =

∫ T

S

(u′′1 +A1u1 +Bu′1 + αPu2, Cu2)H

− (Cu′′2 + CA2u2 + αCP �u1, P0u1)H dt = 0.

(24)
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Then we have K = K1 +K2 +K3, where

K1 =

∫ T

S

(u′′1 , Cu2)H − (P0u1, Cu
′′
2)H dt,

K2 =

∫ T

S

(A1u1 +Bu′1, Cu2)H − (CA2u2, P0u1)H dt,

K3 = α

∫ T

S

(Pu2, Cu2)H − (CP �u1, P0u1)H dt.

We first consider the term K1.
Thanks to the regularity of the solution, we have that ui ∈ C2([0,+∞);Vi) for

i = 1, 2. Hence, P0(u
′′
1) = (P0u1)

′′, so that we can rewrite K1 as

K1 =

∫ T

S

(u′′1 − P0u
′′
1 , Cu2)H dt+ [(P0u

′
1, Cu2)H − (P0u1, Cu

′
2)H ]TS .

Hence we have for all ε > 0

|K1| ≤ 1

2ε

∫ T

S

||u′′1 − P0u
′′
1 ||2H dt+

ε

2

∫ T

S

||Cu2||2H dt

+ c
∑
i=1,2

(||u′i(T )||2H + ||ui(T )||2H) + c
∑
i=1,2

(||u′i(S)||2H + ||ui(S)||2H).

On the other hand, since we have

||u′i||2H + ||ui||2H ≤ ||u′i||2H + β2
i ||ui||2Vi

,

we deduce, also using Proposition 2.2, that

∑
i=1,2

(||u′i(·)||2H + ||ui(·)||2H) ≤ 2max

(
1,

max(β2
1 , β

2
2)

c21(α)

)
E(U(·)),

where the constant c1(α) is defined as in Proposition 2.2. Together with hypothesis
(H2), this implies that for all ε > 0

|K1| ≤ β

2ε

∫ T

S

〈Bu′′1 , u′′1〉V ′
1 ,V1

dt+
ε

2

∫ T

S

||Cu2||2H dt+ c(E(U(T )) + E(U(S))).(25)

On the other side, we know from Proposition 2.3 that

E′(U(t)) = −〈Bu′1, u′1〉V ′
1 ,V1

for all U0 ∈ D(Aα), so that we have

E′(U ′(t)) = −〈Bu′′1 , u′′1〉V ′
1 ,V1

for all U0 ∈ D(A2
α). Hence, using this last relation in (25), together with the fact

that E(U(·)) and E(U ′(·)) are nonnegative and nonincreasing, we obtain

|K1| ≤ β

2ε
E(U ′(S)) +

ε

2

∫ T

S

||Cu2||2H dt+ cE(U(S)).(26)
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We now consider the term K2. Since U0 ∈ D(A2
α), and thanks to the hypothesis

(H3), we have u2 ∈ D(A2) ⊂ V0 and Cu2 ∈ D(A0). Therefore, since (H2) holds, we
have

(A1u1 +Bu′1, Cu2)H = 〈A1u1 +Bu′1, i(Cu2)〉V ′
1 ,V1

= 〈A1u1, i(Cu2)〉V ′
1 ,V1

.

On the other hand, by definition of P0 and A0, we have

〈A1u1, i(Cu2)〉V ′
1 ,V1

= 〈A1i(P0u1), i(Cu2)〉V ′
1 ,V1

= 〈A0P0u1, Cu2〉V ′
0 ,V0

= 〈A0Cu2, P0u1〉V ′
0 ,V0

.

Moreover, since Cu2 ∈ D(A0), we have A0Cu2 ∈ H. Hence

〈A0Cu2, P0u1〉V ′
0 ,V0

= (A0Cu2, P0u1)H ,

so that

(A1u1 +Bu′1, Cu2)H = (A0Cu2, P0u1)H .

Hence, thanks once again to assumption (H3), we have finally

K2 = 0.(27)

We now turn to the term K3. Thanks to assumption (H4), we have

K3 ≥ αγ
∫ T

S

||u2||2H dt− αc
∫ T

S

||u1||2H dt.(28)

Using (26)–(28) in (24), we obtain for all ε > 0

αγ

∫ T

S

||u2||2H dt ≤ αc
∫ T

S

||u1||2H dt+
β

2ε
E(U ′(S))

+
ε||C||2

2

∫ T

S

||u2||2H dt+ cE(U(S)).

Choosing ε = αγ/||C||2 and using assumption (H4), we obtain

αγ

2

∫ T

S

||u2||2H dt ≤ αc
∫ T

S

||u1||2H dt+ c(E(U ′(S)) + E(U(S)))

∀ 0 ≤ S ≤ T, U0 ∈ D(A2
α),

(29)

where c is a constant depending on α. By a density argument, we deduce that (29)
holds for every U0 ∈ D(Aα).

From now on, for U(t) = exp(−tAα)U0 = (u1, u2, v1, v2) a solution of (10), we
set ei((ui, vi)(t)) = ei(t) for i = 1, 2, where ei(t) is defined by (14).

Lemma 3.9. Assume the hypotheses of Theorem 3.3. Then there exists α1 ∈
(0, α0] such that for all 0 < |α| < α1 and all U0 = (u0

1, u
0
2, u

1
1, u

1
2) ∈ D(Aα) the

solution U(t) = exp(−tAα)U0 = (u1, u2, v1, v2) of (10) satisfies∫ T

S

e1((u1, v1)(t)) dt ≤ c(α)(E(U(S)) + E(U ′(S))) ∀ 0 ≤ S ≤ T.
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Proof. Assume that U0 ∈ D(Aα); then we know that the solution U(t) of (10) is
in C([0,+∞);D(Aα)) ∩ C1([0,+∞);H). Hence U = (u1, u2, v1, v2) satisfies{

(u1, v1)
′ +A1(u1, v1) = −α(0, Pu2),

(u1, v1)(0) = (u0
1, u

1
1) ∈ A1.

Moreover, we have, in particular, that Pu2 ∈ C1([0,+∞);H). Hence, thanks to
assumption (H1), we have∫ T

S

e1((u1, v1)(t)) dt ≤ γ1(e1((u1, v1)(S)) + e1((u1, v1)(T )))

+ α2γ2||P ||2
∫ T

S

||u2||2H dt+ γ3

∫ T

S

〈Bv1, v1〉V ′
1 ,V1

dt.(30)

Using (29) and (17) in this last relation, we obtain∫ T

S

e1((u1, v1)(t)) dt

≤ γ1(e1((u1, v1)(S)) + e1((u1, v1)(T ))) + γ3(E(U(S))− E(U(T )))

+
2αγ2||P ||2

γ

(
α c

∫ T

S

||u1||2H dt+ cE(U ′(S)) + cE(U(S))

)
∀ 0 ≤ S ≤ T,(31)

so that for

0 < |α| < min

(
α0,

√
γ

4γ2cβ2
1 ||P ||2

)
= α1

we have

0 ≤
(
1− 4γ2α

2cβ2
1 ||P ||2
γ

)∫ T

S

e1(u1, v1)(t)) dt

≤ γ1(e1((u1, v1)(S)) + e1((u1, v1)(T )))

+ c(α)(E(U ′(S)) + E(U(S))) ∀ 0 ≤ S ≤ T.
Hence, thanks to Proposition 2.4, we have∫ T

S

e1((u1, v1)(t)) dt ≤ c(α)(E(U(S)) + E(U ′(S))) ∀ 0 ≤ S ≤ T,(32)

where c(α) is a constant that depends on α but is bounded with respect to it for any
α ∈ [r1, r2], for any 0 < r1 < r2 < α1. In all of what follows, we will denote by c(α)
a generic constant verifying these properties.

Lemma 3.10. Assume the hypotheses of Theorem 3.3. Then for all 0 < |α| <
α0 and all U0 = (u0

1, u
0
2, u

1
1, u

1
2) ∈ D(A2

α) the solution U(t) = exp(−tAα)U0 =
(u1, u2, v1, v2) of (10) satisfies∫ T

S

e2((u2, v2)(t)) dt ≤ c(α)(E(U(S)) + E(U ′(S)) + E(U ′′(S))) ∀ 0 ≤ S ≤ T.

Proof . Since (29) holds for every U0 ∈ D(Aα), we deduce that for any U0 ∈
D(A2

α) we have

αγ

2

∫ T

S

||u′2||2H dt ≤ αc
∫ T

S

||u′1||2H dt+ c(E(U ′(S)) + E(U ′′(S)))(33)

∀ 0 ≤ S ≤ T, U0 ∈ D(A2
α).
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On the other hand, thanks to the third relation in (23), we have

∫ T

S

(u′′2 +A2u2 + αP �u1, u2)H dt = 0,

so that we have

∫ T

S

e2((u2, v2)(t)) dt =

∫ T

S

||u′2||2H dt− 1

2
[(u′2, u2)H ]TS −

α

2

∫ T

S

(u1, Pu2)H dt.

Hence, using (32) and (33) in this last relation, we obtain

∫ T

S

e2((u2, v2)(t)) dt ≤ c(α) (E(U(S)) + E(U ′(S)) + E(U ′′(S)))(34)

∀ 0 ≤ S ≤ T.

Proof of Theorem 3.3. Combining (32) and (33) with the inequality of Proposi-
tion 2.4, we finally obtain for 0 < |α| < α1

∫ T

S

E(U(t)) dt ≤ c(α)(E(U(S)) + E(U ′(S)) + E(U ′′(S)))

∀ 0 ≤ S ≤ T, U0 ∈ D(A2
α).

Now applying Theorem 3.1 with k = 2, we deduce that

E(U(t)) ≤ c(α)

tn

(
2n∑
p=0

E(U (p)(0))

)
∀ t > 0, U0 ∈ D(A2n

α ).

The strong stability result follows easily, thanks to the above inequality for n = 1 and
since exp(−tAα) is a contraction semigroup on H, and D(A2

α) is dense in H.
4. Applications.

4.1. The case A0 = A2. In all of what follows, Ω is a nonempty bounded
open set in R

N having a boundary Γ of class C2, {Γ0,Γ1} is a partition of Γ such that
Γ0∩Γ1 = ∅, and x0 is a point in R

N such that m ·ν ≤ 0 on Γ0 and m ·ν ≥ β > 0 on Γ1,
wherem(x) = x−x0. We set supΩ ||m|| = R. Moreover, we setHp

Γ0
(Ω) = {u ∈ Hp(Ω),

u = · · · = ∂pu
∂νp = 0 on Γ0}.

Coupled wave equations with the same speed of propagation. We consider the
system




u1,tt −∆u1 + αu2 = 0 in Ω× (0,∞),

u2,tt −∆u2 + αu1 = 0 in Ω× (0,∞),

u1 = u2 = 0 on Σ0 = Γ0 × (0,∞),

∂u1

∂ν
+ au1 + �u1,t = 0, u2 = 0 on Σ1 = Γ1 × (0,∞),

(u1, u1,t)(0) = (u0
1, u

1
1), (u2, u2,t)(0) = (u0

2, u
1
2) on Ω,

(35)
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where

a = (N − 1)m · ν

2R2
, l = m · ν

R
.(36)

For clarity, we will assume that a �= 0 or meas(Γ0) > 0, where the measure
stands for the Lebesgue measure. We set H = L2(Ω) and V1 = H1

Γ0
(Ω), equipped,

respectively, with the L2 scalar product and the scalar product (u, z)V1 =
∫
Ω
∇u ·

∇z + ∫
Γ1
auz and the corresponding norms. Moreover, we set V2 = H1

0 (Ω), equipped

with the scalar product (u, z)V2 =
∫
Ω
∇u ·∇z and the associated norm. We define the

duality mappings A1 and A2 as in section 2. Moreover, we define a continuous linear
operator B from V1 to V ′

1 by

〈Bu, z〉V ′
1 ,V1

=

∫
Γ1

�uz dγ.

Then B satisfies (9). We also set P = P � = IdH . Then system (35) can be
rewritten under the form (10) with the above notation. The energy of a solution
U = (u1, u2, v1, v2) is then given by

E(U(t)) =
1

2
(||u1||2V1

+ ||u2||2V2
+ ||u1,t||2H + ||u2,t||2H) + α(u1, u2)H .(37)

To prove polynomial decay of the solutions, we need only to check that the assump-
tions of Corollary 3.5 are satisfied. For the sake of simplicity we will assume that
N ≥ 3. We begin with assumption (H1). Let (u1, v1) be a solution of the system
considered in hypothesis (H1); then u1 satisfies




u1,tt −∆u1 = f1 in Ω× (0,∞),

u1 = 0 on Σ0 = Γ0 × (0,∞),

∂u1

∂ν
+ au1 + �u1,t = 0 on Σ1 = Γ1 × (0,∞),

(u1, u1,t)(0) = (u0
1, u

1
1) ∈ H1 on Ω.

(38)

Then, proceeding as in [18, Theorem 8.6], we use the multiplier Mu1 = m · ∇u1 +
(N−1)

2 u1 in the first equation of (38). We obtain the identity

∫ T

S

e1((u1, v1)(t)) dt

=

∫ T

S

(f1,Mu1)H dt+ [(u1,t,Mu1)H ]ST +
1

2

∫ T

S

∫
Γ0

m · ν
∣∣∣∣∂u1

∂ν

∣∣∣∣
2

dγ dt

+

∫ T

S

∫
Γ1

m · ν
2

(|u1,t|2 − |∇u1|2 + bu2
1 − 2(bu1 + ku1,t)Mu1) dγ dt.(39)

Now, recalling that the following three inequalities hold for all t ≥ 0 (see [18, pp. 106–
108]),

|(u1,t,Mu1)H | ≤ e1((u1, v1)(t)),

|u1,t|2 − |∇u1|2 + bu2
1 − 2(bu1 + ku1,t)Mu1 ≤ 2|u1,t|2 on Γ1,

||Mu1||2H ≤ 2R2e1((u1, v1)(t)),
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and using them in (39), we deduce that for all ε > 0 we have

∫ T

S

e1((u1, v1), t) dt ≤ R

1− εR2
(e1((u1, v1)(S)) + e1((u1, v1)(T )))

+
1

2ε(1− εR2)

∫ T

S

||f1||2H dt+
R

1− εR2

∫ T

S

〈Bu1,t, u1,t〉V ′
1 ,V1

dt.(40)

Now choosing ε = 1/R2, we deduce that the hypothesis (H1) is satisfied with γ1 =
γ3 = 2R and γ2 = 1/2R2.

We now check hypothesis (H2). We set V0 = V2. For the sake of clarity, we
identify i(φ) with φ for φ ∈ V0 (where i is the canonical injection from V0 in V1). We
remark that the first equality in assumption (H2) is trivially satisfied, thanks to the
definition of B and V0. We define P0 and A0 as in section 2. Then P0u1 is the weak
solution of {

−∆P0u1 = −∆u1 in Ω,

P0u1 ∈ V0,

and A0 is defined by

〈A0φ, ψ〉V ′
0 ,V0

=

∫
Ω

∇φ · ∇ψ dx ∀ψ, φ ∈ V0.(41)

We now check the second relation in (H2). For this, we set z = u1−P0u1. Therefore,
z is the weak solution of { −∆z = 0 in Ω,

z = u1 on Γ.

Notice that this function has been introduced by [9] in a different framework. By
classical results on elliptic theory, we deduce that there exists a constant c > 0 such
that

||z||H ≤ c||u1|Γ1
||L2(Γ1),

so that, since m · ν ≥ δ > 0 and � = m·ν
R on Γ1, there exists β > 0 such that

||z||2H ≤ β 〈Bu1, u1〉V ′
1 ,V1

∀u1 ∈ V1.

On the other hand, since V0 = V2 and (41) holds, we deduce that assumption (H3)′

is satisfied. In addition, since P = IdH , assumption (H4)′ is verified with γ = 1. Now
applying Corollary 3.5, we deduce the following result.

Theorem 4.1. There exists an α1 ∈ (0, α0] such that for all 0 < |α| < α1 the
solution U(t) = exp(−Aαt)U0 of (35) satisfies

E(U(t)) ≤ c

tn

2n∑
p=0

E(U (p)(0)) ∀ t > 0, U0 ∈ D(A2n
α ).

Moreover, strong stability holds in the energy space H = V1 × V2 ×H2.
Coupled Kirchhoff–Petrowsky plates. LetN = 2, and assume that Ω is a nonempty

bounded open set in R
N having a boundary Γ of class C4. We assume as before that
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{Γ0,Γ1} is a partition of Γ such that Γ0 ∩ Γ1 = ∅, and x0 is a point in R
N such that

m ·ν ≤ 0 on Γ0 and m ·ν ≥ β > 0 on Γ1, where m(x) = x−x0. We set supΩ ||m|| = R.
We consider the system



u1,tt +∆2u1 + αu2 = 0 in Ω× (0,+∞),

u2,tt +∆2u2 + αu1 = 0 in Ω× (0,+∞),

u1 = u2 = 0 =
∂u1

∂ν
=
∂u2

∂ν
on Σ0 = Γ0 × (0,+∞),

∆u1 + (1− µ)B1u1 = −km · ν ∂u1,t

∂ν
, u2 = 0 =

∂u2

∂ν
on Σ1,

∂∆u1

∂ν
+ (1− µ)∂B2u1

∂τ
= �m · νu1,t on Σ1,

(u1, u1,t)(0) = (u0
1, u

1
1), (u2, u2,t)(0) = (u0

2, u
1
2) on Ω.

(42)

We assume that meas(Γ0) > 0, that the functions k and � are continuous functions
on Γ1, and that there exist constants k0, k1 �0, and �1 such that

k1 ≥ k ≥ k0 > 0, �1 ≥ � ≥ �0 > 0 on Γ1.

We refer the reader to [22] for more details on this model. The constant µ ∈ (0, 1/2)
is the Poisson coefficient, and the boundary operators B1 and B2 are defined by

B1v = 2ν1ν2vxy − ν2
1vyy − ν2

2vxx,

B2v = (ν2
1 − ν2

2)vxy + ν1ν2(vxx − vyy),
where the subscripts x and y denote the partial derivatives with respect to the first
and second components of the space variable. We set H = L2(Ω) (equipped with the
usual norm and scalar product) and V1 = H2

Γ0
(Ω), equipped with the scalar product

(u, z)V1
=

∫
Ω

(uxxzxx + uyyzyy + µ(uxxzyy + uyyzxx) + 2(1− µ)uxyzxy) dx dy

and the associated norm. Moreover, we set V2 = H2
0 (Ω), equipped with the scalar

product

(u, z)V2 =

∫
Ω

∆u∆z dx dy

and the associated norm. We define the duality mappings A1, A2 as in section 2.
Moreover, we define a linear continuous operator B from V1 to V ′

1 by

〈Bu, z〉V ′
1 ,V1

=

∫
Γ1

m · ν
(
� uz + k

∂u

∂ν

∂z

∂ν

)
dγ.

Then B satisfies (9). We also set P = P � = IdH . Then the system (42) can be
rewritten under the form (10) with the above notation. The energy of a solution
U = (u1, u2, v1, v2) is then defined as in (37). We now check the assumptions of
Corollary 3.5. We begin with assumption (H1). Let (u1, v1) be a solution of the
system considered in hypothesis (H1); then u1 satisfies



u1,tt +∆2u1 = f1 in Ω× (0,∞),

u1 =
∂u1

∂ν
= 0 on Σ0 = Γ0 × (0,∞),

∆u1 + (1− µ)B1u1 = −km · ν ∂u1,t

∂ν
on Σ1,

∂∆u1

∂ν
+ (1− µ)∂B2u1

∂τ
= �m · νu1,t on Σ1,

(u1, u1,t)(0) = (u0
1, u

1
1) on Ω.

(43)
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We then proceed as in [22]. Consider the relation∫ T

S

(u1,tt +∆2u1,m · ∇u1)H dt =

∫ T

S

(f1,m · ∇u1)H dt.(44)

This leads to the inequality (see [22])

2

∫ T

S

e1((u1, v1)(t)) dt

=

∫ T

S

(f1,m · ∇u1)H dt+ [(u1,t,m · ∇u1)H ]ST +
1

2

∫ T

S

∫
Γ0

m · ν(∆u1)
2 dγ dt

+
1

2

∫ T

S

∫
Γ1

m · ν|u1,t|2 dγ dt

−
∫ T

S

∫
Γ1

m · ν
(
�u1,tm · ∇u1 + k

∂u1,t

∂ν

∂m · ∇u1

∂ν

)
dγ dt

− 1

2

∫ T

S

∫
Γ1

m · ν(u2
1xx + u2

1yy + 2µu1xxu1yy + 2(1− µ)u2
1xy) dγ dt.(45)

We now estimate the terms on the right-hand side of the above inequality. We first
denote by λ0 the smallest positive constant such that

||∇u||2H ≤ λ2
0||u||2V1

∀u ∈ H2
Γ0
(Ω),(46)

and by µ0 the smallest positive constant such that∫
Γ1

|∇u|2 dγ ≤ µ2
0||u||2V1

∀u ∈ H2
Γ0
(Ω).(47)

Now, using (46) and for all ε > 0, we estimate the first term of (45) as follows:∫ T

S

(f1,m · ∇u1)H dt ≤ 1

2ε

∫ T

S

||f1||2H dt+
εR2

2

∫ T

S

||∇u1||2H dt

≤ 1

2ε

∫ T

S

||f1||2H dt+ εR2λ2
0

∫ T

S

e1((u1, v1)(t)) dt.(48)

We now consider the second term of (45). Using (46) once again, we deduce that

|[(u1,t,m · ∇u1)H ]ST | ≤ Rλ0(e1((u1, v1)(S)) + e1((u1, v1)(T ))).(49)

Since m · ν ≤ 0 on Γ0, we estimate the third term of (45) as follows:

1

2

∫ T

S

∫
Γ0

m · ν(∆u1)
2 dγ dt ≤ 0.(50)

We now consider the fourth term in (45). We have, thanks to our assumptions on �
and k,

1

2

∫ T

S

∫
Γ1

m · ν|u1,t|2 dγ dt ≤ 1

2�0

∫ T

S

∫
Γ1

m · ν
(
�|u1,t|2 + k

∣∣∣∣∂u1,t

∂ν

∣∣∣∣
2
)
dγ dt

=
1

2�0

∫ T

S

〈Bu1,t, u1,t〉V1
′,V1

dt.(51)
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We now turn to the fifth term in (45). Using well-known estimates (see [22]), we
obtain that for all δ > 0∣∣∣∣∣

∫ T

S

∫
Γ1

m · ν
(
�u1,tm · ∇u1 + k

∂u1,t

∂ν

∂m · ∇u1

∂ν

)
dγ dt

∣∣∣∣∣
≤ 1

2δ

∫ T

S

〈Bu1,t, u1,t〉V1
′,V1

dt+
δ

2

∫ T

S

∫
Γ1

m · ν(R2�+ 2k)|∇u1|2 dγ dt

+
δR2

1− µ
∫ T

S

∫
Γ1

km · ν(u2
1xx + u2

1yy + 2µu1xxu1yy + 2(1− µ)u2
1xy)dγ dt

≤ 1

2δ

∫ T

S

〈Bu1,t, u1,t〉V1
′,V1

dt +
δ

2
(R2�1 + 2k1)Rµ

2
0

∫ T

S

||u1||2V1
dt

+
δR2k1

1− µ
∫ T

S

∫
Γ1

m · ν (u2
1xx + u2

1yy + 2µu1xxu1yy + 2(1− µ)u2
1xy

)
dγ dt.

(52)

Using the estimates (48)–(52) in (45), we obtain for all ε > 0 and all δ > 0

(2− εR2λ2
0 − δ(R2�1 + 2k1)Rµ

2
0)

∫ T

S

e1((u1, v1), t) dt ≤ 1

2ε

∫ T

S

||f1||2H dt

+Rλ0(e1((u1, v1)(S)) + e1((u1, v1)(T ))) +

(
1

2�0
+

1

2δ

)∫ T

S

〈Bu1,t, u1,t〉V1
′,V1

dt

+

(
δR2k1

1− µ −
1

2

)∫ T

S

∫
Γ1

m · ν(u2
1xx + u2

1yy + 2µu1xxu1yy + 2(1− µ)u2
1xy) dγ dt.

(53)

Now choosing any δ such that

0 < δ < min

(
1− µ
2R2k1

,
2

Rµ2
0(R

2�1 + 2k1)

)

and then

0 < ε <
2− δRµ2

0(R
2�1 + 2k1)

R2λ2
0

,

we prove that the desired inequality in assumption (H1) is satisfied with the corre-
sponding γi, for i = 1, 2, 3. We now check assumption (H2). We set V0 = V2, and for
the sake of clarity, we identify, as before, i(φ) with φ for any φ ∈ V0. Thanks to the
definition of B and V0, the first relation of (H2) is trivially satisfied. On the other
hand, since the set of C∞-functions on Ω with compact support in Ω is dense in V0,
we deduce that

〈A1u, z〉V ′
1 ,V1

=

∫
Ω

∆u∆z dx dy ∀z ∈ V0.(54)

Hence, for every u1 ∈ V1, P0u1 is the weak solution of{
∆2(P0u1) = ∆2(u1),

P0u1 ∈ H2
0 (Ω).
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We set z = u1 − P0u1; then z is the weak solution of


∆2z = 0,

z = u1,
∂z

∂ν
=
∂u1

∂ν
on Γ.

From classical results, based on elliptic theory, we know that there exists a constant
c > 0 such that, for every u1 ∈ V1, we have

||z||2H ≤ c
∫

Γ1

(
|u1|2 +

∣∣∣∣∂u1

∂ν

∣∣∣∣
2
)
dγ.

Since m · ν ≥ δ > 0, � ≥ �0 > 0, and k ≥ k0 > 0 on Γ1, we deduce that

||z||2H ≤ C〈Bu1, u1〉V ′
1 ,V1

,

so that the second relation in (H2) is satisfied. Moreover, thanks to (54) and since
V0 = V2 holds, assumption (H3)′ is satisfied. Finally, since P = IdH , assumption
(H4)′ is trivially satisfied with γ = 1. Hence, we can apply Corollary 3.5. We deduce
the following result.

Theorem 4.2. There exists an α1 ∈ (0, α0] such that for all 0 < |α| < α1 the
solution U(t) = exp(−Aαt)U0 of (42) satisfies

E(U(t)) ≤ c

tn

2n∑
p=0

E(U (p)(0)) ∀ t > 0, U0 ∈ D(A2n
α ).

Moreover, strong stability holds in the energy space H = V1 × V2 ×H2.

4.2. Case of different operators A0 and A2. In order to avoid loss of reg-
ularity of the solutions, we assume in this subsection that Γ0 = ∅. Hence we do not
treat the case of mixed boundary conditions. Nevertheless, the results are still valid
for a more general situation (see [11, 12, 13]).

Coupled wave equations with different speed of propagation. We consider the
following system:



u1,tt − c1∆u1 + αPu2 = 0 in Ω× (0,∞),

u2,tt − c2∆u2 + αP �u1 = 0 in Ω× (0,∞),

∂u1

∂ν
+ au1 + �u1,t = 0, u2 = 0 on Σ = Γ× (0,∞),

(u1, u1,t)(0) = (u0
1, u

1
1), (u2, u2,t)(0) = (u0

2, u
1
2) on Ω,

(55)

where ci > 0, i = 1, 2, and

a = (N − 1)m · ν

2R2
, l =

m · ν
R
√
c1
.(56)

We mainly keep the notation of section 4.1. We set H = L2(Ω) and V1 = H1(Ω),
equipped, respectively, with the L2 scalar product and the scalar product (u, z)V1 =
c1
∫
Ω
∇u ·∇z+c1

∫
Γ
auz and the corresponding norms. Moreover, we set V2 = H1

0 (Ω),
equipped with the scalar product (u, z)V2

= c2
∫
Ω
∇u · ∇z and the associated norm.
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We define the duality mappings A1 and A2 as in section 2. Moreover, we define a
continuous linear operator B from V1 to V ′

1 by

〈Bu, z〉V ′
1 ,V1

= c1

∫
Γ

�uz dγ.

Then B satisfies (9). We assume for the moment that P is a given bounded operator
in H. Then the system (55) can be rewritten under the form (10) with the above
notation. The energy of a solution U = (u1, u2, v1, v2) is then given by

E(U(t)) =
1

2
(||u1||2V1

+ ||u2||2V2
+ ||u1,t||2H + ||u2,t||2H) + α(u1, u2)H .(57)

To prove polynomial decay of the solutions, we need to check only that the assump-
tions of Lemma 3.6 are satisfied. We begin with assumption (H1). Let (u1, v1) be a
solution of the system considered in hypothesis (H1); then u1 satisfies


u1,tt − c1∆u1 = f1 in Ω× (0,∞),

∂u1

∂ν
+ au1 + �u1,t = 0 on Σ = Γ× (0,∞),

(u1, u1,t)(0) = (u0
1, u

1
1) ∈ H1 on Ω.

(58)

Then, making the change of time variable s =
√
c1t, we obtain a system similar to

system (38), where f1 is replaced by f1/c1, and � is replaced by
√
c1�. However,

as will be seen later, hypothesis (H3) can be checked only for domains Ω which are

N -dimensional intervals
∏N
i=1(ai, bi), where ai < bi, i = 1, . . . , N , and N ≤ 3. Of

course, for such domains the boundary is no longer of class C2. Therefore we need to
check that all the computations performed earlier are still valid in this case. For this,
we make the following statement.

Important Remark. We recall that when Ω is a convex polygon (case N = 2)
or polyhedron (case N = 3), Grisvard’s results (see [11], [12], and also [6]) on the
solution of the Poisson equation

−∆u = f ∈ L2(Ω) in Ω,

subjected to either Dirichlet, Neumann, or oblique boundary conditions in such do-
mains, say that these solutions are in H2(Ω). Moreover, thanks to the above regular-
ity result, all the classical results for the wave equation, subjected to either Dirichlet,
Neumann, or oblique boundary conditions (in particular, the well-known multiplier
identity, which leads to the required estimate in our hypothesis (H1)), are still valid
for convex polygons or polyhedra. Hence our hypothesis (H1) is verified when Ω is an

N -dimensional interval
∏N
i=1(ai, bi), where ai < bi, i = 1, . . . , N , with N ≤ 3. (Let us

remark that in that case the angles between corners as defined in Grisvard’s results
are all equal to π/2.)

We now check hypothesis (H2), assuming as before that Ω is an N -dimensional

interval
∏N
i=1(ai, bi), where ai < bi, i = 1, . . . , N , and N ≤ 3. We set V0 = V2.

For the sake of clarity, we identify i(φ) with φ for φ ∈ V0 (where i is the canonical
injection from V0 in V1). We remark that the first equality in assumption (H2) is
trivially satisfied, thanks to the definition of B and V0. We define P0 and A0 as in
section 2. Then P0u1 is the weak solution of{ −∆P0u1 = −∆u1 in Ω,

P0u1 ∈ V0.
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We now check that the second relation in (H2) holds. We set z = u1 − P0u1. Then,
thanks to the above important remark on the regularity of solutions of the Poisson
equation subjected to oblique boundary conditions in convex polygons or polyhedra,
we know that u1(t) is in H2(Ω) for any positive t. On the other hand, thanks to
similar results (the Dirichlet case), we know that P0u1 is also in H2(Ω). Therefore,
z(·) is in H2(Ω) for any positive t. Moreover, z is a strong solution of{ −∆z = 0 in Ω,

z = u1 on Γ.

In order to establish the second relation in (H2), we introduce the solution of the
following Poisson equation: { −∆w = z in Ω,

w = 0 on Γ.

Then since z ∈ L2(Ω) and thanks to Grisvard’s results, we have that w is in H2(Ω),
so that the trace of the normal derivative of w on Γ is well defined as a function of
H1/2(Γ). Moreover, we have

||w||V1
≤ c||z||H .(59)

Multiplying the above equation by z, integrating by parts, and using the relation
∆z = 0 in Ω and z = u1 on Γ, we obtain the following equality:∫

Ω

z2dx =

∫
Γ

u1
∂w

∂ν
dγ.(60)

Now using the classical multiplier Mw = m · ∇w + N−1
2 w and integrating by parts

the expression

−
∫

Ω

∆wMwdx,

we obtain that ∫
Γ

m · ν
∣∣∣∣∂w∂ν

∣∣∣∣
2

dγ =

∫
Ω

|∇w|2dx+ 2

∫
Ω

zMwdx.

Using (59) in the above equality and since m · ν ≥ β > 0 on Γ, we deduce that there
exists a positive constant c such that∫

Γ

∣∣∣∣∂w∂ν
∣∣∣∣
2

dγ ≤ c||z||2H .

Using this last inequality in (60), we obtain

||z||H ≤ c||u1||L2(Γ).

Hence the second relation of (H2) is satisfied.
We now want to check assumption (H3). For this, we will use Lemma 3.6. As

will be seen below, we can check this restrictive hypothesis only when Ω is an N -
dimensional interval

∏N
i=1(ai, bi), where ai < bi, i = 1, . . . , N , with N ≤ 3.
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We first note that we have, thanks to Grisvard’s regularity results,

A0 = −c1∆, D(A0) = H2(Ω) ∩H1
0 (Ω),

A2 = −c2∆, D(A2) = H2(Ω) ∩H1
0 (Ω).

We denote by A = −∆ the unbounded operator in H with domain D(A) = H2(Ω) ∩
H1

0 (Ω). Then, it is well known that there exists an orthonormal basis in H of eigen-
functions ek of A associated to the eigenvalues λk > 0, for k = 1, . . . . Moreover, λk
and ek are such that { −∆ek = λkek in Ω,

ek ∈ H1
0 (Ω) ∩ C∞(Ω).

Then, {ek}∞k=1 also forms an orthonormal basis of the unbounded operators A0 and
A2, respectively. We denote by λi,k the eigenvalue of the operator Ai associated to
the eigenfunction ek for i = 0, 2. When Ω is an N -dimensional interval, it is more
convenient, as will be seen below, to consider k = (k1, . . . , kN ) ∈ (N�)N . This notation
will be used in all of what follows. We have the following result.

Theorem 4.3. Assume now that Ω is an N -dimensional interval
∏N
i=1(ai, bi),

where ai < bi, i = 1, . . . , N , with N ≤ 3, and that there exists a positive integer k0

such that c2 = k2
0c1. Moreover, assume that for u =

∑
k∈(N�)N ukek in H, Pu is

defined by

Pu =
∑

k∈(N�)N

δkukek0k,

where the sequence of real numbers (δk)k is such that there exist γ > 0 and δ with
0 < γ ≤ δk ≤ δ. Then there exists an α1 ∈ (0, α0] such that for all 0 < |α| < α1 the
solution U(t) = exp(−Aαt)U0 of (55) satisfies

E(U(t)) ≤ c

tn

2n∑
p=0

E(U (p)(0)) ∀ t > 0, U0 ∈ D(A2n
α ).

Moreover, strong stability holds in the energy space H = V1 × V2 ×H2.
Proof. Since Ω is an N -dimensional interval, we have for all k = (k1, . . . , kN ) ∈

(N�)N

ek(x1, . . . , xN ) =

N∏
i=1

sin

(
kiπ(xi − ai)
bi − ai

)
,

whereas

λi,k = ciπ
2

(
N∑
i=1

k2
i

(bi − ai)2
)
.

Thanks to the relation c2 = k2
0c1, we deduce that λ2,k = λ0,k0k for all k ∈ (N�)N ,

where k0k = (k0k1, . . . , k0kN ). Hence the assumptions of Lemma 3.6 are satisfied,
and, in particular, assumption (H5), with the one-to-one application r defined on
(N�)N by r(k) = k0k for k in (N�)N . We define C as in the proof of Lemma 3.6,
that is

Cu =
∑

k∈(N�)N

uker(k).
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Then, thanks to the assumption on the sequence δk, we deduce that P satisfies (H4).
Now applying Corollary 3.7, we conclude the proof.

Remark. If the condition on the ratio of the two speeds of propagation is violated,
one can show that, in some situations, the total energy does not decay to 0 at infinity.
Indeed, assume that there exists a bounded operator C such that (H3) holds, but that
C is not one-to-one, so that the assumption (H4) is not verified. This situation occurs,
for instance, in the above example of two coupled wave equations, when c2/c1 = p2

0/q
2
0 ,

where p0 ∈ N
� and q0 > 1 are integers with no common divisors. In this case, one

can take the operator C defined by

Cu =
∑

n∈(N�)N

unq0enp0 ∀ u =
∑

k∈(N�)N

ukek ∈ H.

If P is any bounded operator on H that is not one-to-one (for instance, one can take
P = C), then, setting u1 = 0 and choosing any smooth function u2 with values in the
kernel of P such that

u′′2 +A2u2 = 0,

the couple (u1, u2) is a solution of the full coupled system (10). Its energy is conserved,
so it does not decay to zero at ∞ unless the initial conditions on u2 and its first
time derivative are zero. With the above choice of C, one can take, for instance,
u2 = y(t)e(p0,...,p0), where y satisfies the ordinary differential equation

y′′ + λ2,(p0,...,p0)y = 0

with nonzero initial data.
Coupled wave-Petrowsky equations. We consider the following system:



u1,tt −∆u1 + αPu2 = 0 in Ω× (0,∞),

u2,tt +∆2u2 + αP �u1 = 0 in Ω× (0,∞),

∂u1

∂ν
+ au1 + �u1,t = 0, u2 = ∆u2 = 0 on Σ = Γ× (0,∞),

(u1, u1,t)(0) = (u0
1, u

1
1), (u2, u2,t)(0) = (u0

2, u
1
2) on Ω,

(61)

where

a = (N − 1)m · ν

2R2
, � =

m · ν
R

.(62)

We mainly keep the notation of section 4.1. We set H = L2(Ω) and V1 = H1(Ω),
equipped, respectively, with the L2 scalar product and the scalar product (u, z)V1

=∫
Ω
∇u · ∇z + ∫

Γ
auz and the corresponding norms. Moreover, we set V2 = H2(Ω) ∩

H1
0 (Ω), equipped with the scalar product (u, z)V2

=
∫
Ω
∆u · ∆z and the associated

norm. We define the duality mappings A1 and A2 as in section 2. Moreover, we define
a continuous linear operator B from V1 to V ′

1 by

〈Bu, z〉V ′
1 ,V1

=

∫
Γ

�uz dγ.

Then B satisfies (9). We assume for the moment that P is a given bounded operator
in H. Then the system (61) can be rewritten under the form (10) with the above
notation. The energy of a solution U = (u1, u2, v1, v2) is then given by

E(U(t)) =
1

2
(||u1||2V1

+ ||u2||2V2
+ ||u1,t||2H + ||u2,t||2H) + α(u1, u2)H .(63)
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To prove polynomial decay of the solutions, we need to check only that the assump-
tions of Lemma 3.6 are satisfied. We first need to characterize the domain of the
operator A2 = ∆2, viewed as an unbounded operator in H. Now let u be given in
D(A2). Then u ∈ V2 and there exists a f ∈ L2(Ω) such that∫

Ω

∆u∆vdx =

∫
Ω

fvdx ∀v ∈ V2.(64)

We set w = ∆u. Since u ∈ V2, we have w ∈ L2(Ω). Moreover, thanks to (64), we
have ∫

Ω

w∆vdx =

∫
Ω

fvdx ∀v ∈ V2.(65)

Hence, since the space of C∞-functions on Ω with compact support in Ω is continuously
imbedded in V2, we deduce that ∆w = f almost everywhere in Ω, so that ∆w ∈ L2(Ω).
We cannot conclude directly because we have to prove that w ∈ H1

0 (Ω). For that, we
proceed as follows.

We introduce the variational solution Θ ∈ H1
0 (Ω) of

∆Θ = f in Ω.

Then, thanks to the above-mentioned Grisvard’s results, we know that Θ ∈ V2. Using
(65) and the definition of Θ, we easily deduce that∫

Ω

w∆vdx = −
∫

Ω

∇Θ · ∇vdx =

∫
Ω

Θ∆vdx ∀v ∈ V2,(66)

so that we have ∫
Ω

(w −Θ)∆vdx = 0 ∀v ∈ V2.(67)

We now choose as a test function v, the variational solution v ∈ H1
0 (Ω) of

∆v = w −Θ in Ω.

Then, thanks to the above-mentioned Grisvard’s results, we know that v ∈ V2. Now
using (67) with this specially chosen v, we obtain that∫

Ω

|w −Θ|2dx = 0.(68)

Hence we have w = Θ almost everywhere on Ω, so that w = 0 on Γ. Hence, thanks
again to Grisvard’s regularity results for the Poisson equation subjected to homoge-
neous Dirichlet boundary conditions, we have w ∈ H2(Ω) ∩H1

0 (Ω). Hence, we have
proved that when u ∈ D(A2), then u ∈ V2 satisfies

∆u = w ∈ H2(Ω) ∩H1
0 (Ω) in Ω.

Then, thanks to Grisvard’s results (see, for instance, [12, section 2.7]) for convex
polygons or polyhedra, we know that u is indeed in H3(Ω), since the involved angles
in an N -dimensional interval are all equal to π/2. Hence the traces of all second
derivatives of u on Γ are well defined, and, moreover, we have

∆u = w = 0 on Γ.(69)
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We will now prove that u is indeed in H4(Ω). We proceed as follows. Let us, for
instance, assume that N = 3, and let us choose one of the six faces, denoted by Γ3,
of the surface Γ, the normal to which is along the x3-direction. Then the tangential
directions to Γ3 are in the xi-directions for i = 1, 2 on Γ3. Since u = 0 on Γ, we
deduce that

∂2u

∂x2
i

= 0 on Γ3 for i = 1, 2.

Then, thanks to (69), we deduce that

∂2u

∂x2
3

= 0 on Γ3.

For each other face of Γ–Γ3, the normal to it is either in the x1- or x2-directions;
hence x3 is always a tangential direction to it. Since u = 0 on Γ, we deduce that

∂2u

∂x2
3

= 0 on Γ− Γ3.

Now we set z = ∂2u/∂x2
3. Then z is the solution of

∆z =
∂2w

∂x2
3

∈ L2(Ω) in Ω,

with homogeneous boundary conditions on Γ. Hence from Grisvard’s regularity results
we deduce that z is in H2(Ω). We proceed in a similar way for the other fourth order
derivatives of u and show in this way that u is in H4(Ω). Hence we have proved that
D(A2) = {u ∈ H4(Ω) ∩ H1

0 (Ω), ∆u = 0 on Γ}. Hence all the integrations by parts
required for the definition of weak solutions of the above coupled wave-Petrowsky
system are justified for data in the domain of the operator.

For the sake of clarity, we identify i(φ) with φ for φ ∈ V0 (where i is the canonical
injection from V0 in V1). We define P0 and A0 as in section 2. From the former example
on wave-wave equations with different speeds of propagation in an N -dimensional
interval, withN ≤ 3, we already know that the hypotheses (H1) and (H2) are satisfied.
We now want to check assumption (H3). For this, we will use Lemma 3.6. We first
note that we have

A0 = −∆, D(A0) = H2(Ω) ∩H1
0 (Ω),

A2 = ∆2, D(A2) = {u ∈ H4(Ω), u = ∆u = 0 on Γ}.

We have already remarked that there exists an orthonormal basis in H of eigenfunc-
tions ek of A0 associated to the eigenvalues λ0,k > 0, for k ∈ (N�)N . Moreover,
λ0,k > 0 and ek are such that

{ −∆ek = λ0,kek in Ω,

ek ∈ H1
0 (Ω) ∩ C∞(Ω).

Then {ek}k∈(N�)N also forms an orthonormal basis of the unbounded operator A2,
with the corresponding eigenvalues λ2,k = λ2

0,k. Then assumption (H5) of Lemma 3.6

is satisfied if and only if there exists a one-to-one application r on (N�)N such that,
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for all k ∈ (N�)N , λ2
0,k = λ0,r(k). In the case of N -dimensional intervals, we know

explicitly the functions ek, and thus we can prove the following result.
Theorem 4.4. Let Ω be an N -dimensional interval

∏N
i=1(ai, bi), where ai < bi,

i = 1, . . . , N , with N ≤ 3. Assume, moreover, that there exists a d > 0 for which
bi − ai = d for all i = 1, . . . , N and such that π

d
√
N
∈ N�. In addition, assume that

for u =
∑
k∈(N�)N ukek in H, Pu is defined by

Pu =
∑

k∈(N�)N

δkuker(k),

where the sequence of real numbers (δk)k is such that there exist γ > 0 and δ with
0 < γ ≤ δk ≤ δ, and where r is the one-to-one application defined by r(k) = (�, . . . , �)

for k ∈ (N�)N , where � = π
d
√
N

∑N
i=1 k

2
i . Then there exists an α1 ∈ (0, α0] such that

for all 0 < |α| < α1 the solution U(t) = exp(−Aαt)U0 of (61) satisfies

E(U(t)) ≤ c

tn

2n∑
p=0

E(U (p)(0)) ∀ t > 0, U0 ∈ D(A2n
α ).

Moreover, strong stability holds in the energy space H = V1 × V2 ×H2.
Proof. Since Ω is an N -dimensional interval, we have for all k ∈ (N�)N

ek(x1, . . . , xN ) =

N∏
i=1

sin

(
kiπ(xi − ai)
bi − ai

)
,

whereas

λ0,k = (d−1π)2
N∑
i=1

k2
i .

Since, by hypothesis, πd−1N−1/2 ∈ N
�, we deduce that λ2,k = λ0,r(k) for all k ∈

(N�)N . Hence the assumptions of Lemma 3.6 are satisfied, and in particular assump-
tion (H5), with the application r defined above. We define C as in the proof of
Lemma 3.6, that is,

Cu =
∑

k∈(N�)N

uker(k).

Then, thanks to the assumption on the sequence δk, we deduce that P satisfies the
assumption (H4). Now applying Corollary 3.7, we conclude the proof.
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Abstract. This paper investigates averaging theory and oscillatory control for a large class of
mechanical systems. A link between averaging and controllability theory is presented by relating the
key concepts of averaged potential and symmetric product. Both analysis and synthesis results are
presented within a coordinate-free framework based on the theory of affine connections.

The analysis focuses on characterizing the behavior of mechanical systems forced by high ampli-
tude high frequency inputs. The averaged system is shown to be an affine connection system subject
to an appropriate forcing term. If the input codistribution is integrable, the subclass of systems
with Hamiltonian equal to “kinetic plus potential energy” is closed under the operation of averaging.
This result precisely characterizes when the notion of averaged potential arises and how it is related
to the symmetric product of control vector fields. Finally, a notion of vibrational stabilization for
mechanical systems is introduced, and sufficient conditions are provided in the form of linear matrix
equality and inequality tests.

Key words. mechanical system, averaging, vibrational stabilization, nonlinear controllability
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1. Introduction. This paper investigates the open loop response of nonlinear
mechanical control systems. This topic is studied in different ways by the classic
disciplines of averaging and controllability. Relying on tools from both fields, this work
characterizes the response of a large class of mechanical systems to high amplitude
high frequency forcing. The class of mechanical control systems we consider includes
systems with integrable inputs (Hamiltonian systems with conservative forces) as well
as systems with more general types of forces and nonholonomic constraints.

Averaging and vibrational stabilization techniques find useful applications in vari-
ous areas. Within the context of mechanical systems, much recent interest has focused
on the control of underactuated robotic manipulators and on the analysis and design
of robotic locomotion devices. Underactuated robotic manipulators have fewer control
inputs than their degrees of freedom due to either design or failure. In both cases, the
objective is to control the system despite the lack of control authority. Examples of
works in this area are [37, 25], where the authors investigate the control via oscillatory
inputs for some two and three degrees of freedom planar manipulators.

Robotic locomotion studies the movement patterns that biological systems and
mechanical robots undergo during locomotion; see [24]. Typically, cyclic motion in
certain internal variables generates displacement in Euclidean space; consider the ex-
ample of how a snake changes its shape to locomote. Computing the feasible trajecto-
ries of a locomotion system is an analytically untractable problem for any nontrivial
example. Averaging provides a means of tackling such problems; see, for example,
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the contributions on motion planning and trajectory generation documented in [17, 6]
and the references therein.

Finally, averaging analysis seems well suited to tackle novel applications in the
field of microelectromechanical systems, and vibrational control is being investigated
within the context of active control of fluids and separation control. Examples in-
clude [7] on the scale dependence in oscillatory control and [43] on unsteady flow
control using oscillatory blowing. In these settings, vibrational stabilization schemes
appear advantageous since they require no expensive or complicated sensing.

Literature review. Averaging theory is discussed in a number of textbooks [13,
42, 19]. The control relevance of averaging ideas was underlined in the work on
vibrational control by Bellman, Bentsman, and Meerkov [9, 10] and by Bentsman
[11]. These works introduce vibrational stabilization techniques under various types
of input forcing (e.g., vector additive, linear, and nonlinear multiplicative forcing).
The later work by Baillieul [3, 4, 5] and Baillieul and Lehman [6] extends these
techniques to the context of mechanical systems described by specific Lagrangian
and Hamiltonian models. In particular, the work in [3] presents two treatments of
averaging for mechanical control systems. The first approach relies on a coordinate
transformation to bring the system to standard averaging form. The second approach
is based on directly averaging the Hamiltonian function and gives rise to the notion of
averaged potential. Some assumptions restrict how applicable the latter approach is.
For example, the control system is assumed to have a cyclic variable and to be single-
input with the control input applied to the cyclic variable. Nonetheless, the notion
of averaged potential has proven very successful in treating a number of important
cases; see, for example, [50, 51, 7].

Another set of relevant results includes the work on small-time local controllability
for mechanical systems. The main references are the original work in Lewis and Mur-
ray [32] and the advances in [31]. These works introduce the notion of configuration
and equilibrium controllability and provide sufficient conditions to characterize them.
The main technical tool is the notion of symmetric product as a way to represent
certain Lie brackets. Control algorithms that exploit motions along the “symmetric
product directions” are presented in [17].

Statement of contributions. This paper contains a number of novel results
both on averaging analysis as well as on control design. One key technical contribution
is the understanding of the relationship between the symmetric product [32] and the
averaged potential [3]. We describe the contributions in the next three paragraphs.

We start by studying the behavior of a large class of mechanical systems forced
by high amplitude high frequency inputs. We rely on the notion of a system de-
scribed by an affine connection as a generalized way of describing mechanical control
systems with simple Hamiltonian, generic nonintegrable (nonconservative) forces and
nonholonomic constraints. Under mild assumptions, we show how the averaged sys-
tem is again a system described by an affine connection and subject to an appropriate
forcing. Since this forcing term is a certain symmetric product, the result illustrates
an instructive connection between controllability and averaging. The averaging anal-
ysis relies on a careful application of the variation of constants formula and of the
homogeneity property of mechanical systems. The theorem statement and proof are
presented in a coordinate-free manner.

We then consider the set of simple mechanical systems, that is, systems with
Hamiltonian equal to “kinetic plus potential,” and we investigate when this subclass
is closed under the operation of averaging. A sufficient condition is that the input
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codistribution be integrable, or in other words, that the control forces be described by
conservative fields. Under this assumption, the Hamiltonian function of the average
system includes a generalized averaged potential. This result shows how the notion
of averaged potential is applicable to a wider set of systems than those considered by
Baillieul [3]. The proof relies on the observation that the averaged potential is related
to a certain symmetric product of functions; see [20].

Finally, we focus on the design of open and closed loop controllers based on
high amplitude high frequency forcing. We introduce an appropriate notion of vibra-
tional stabilization for mechanical systems, where only the configuration variables are
considered. We consider simple systems with integrable forces and assume that the
control system is underactuated (i.e., fewer control inputs are available than degrees
of freedom). We consider the point stabilization problem and design control Lyapunov
functions via the “potential shaping” technique; see the original [46] and a modern
account in [47]. Here the closed loop potential energy reflects the presence of both a
proportional action as well an oscillatory action. We provide sufficient conditions for
stabilizability in the form of a linear matrix equality and inequality test. We illustrate
the control design by applying it to an underactuated two-link manipulator.

Organization. The paper is organized as follows. We present a quick summary
of averaging and introduce some tools from chronological calculus in section 2. In
section 3, we introduce a useful classification of mechanical systems and study their
common homogeneous structure. Section 4 contains the averaging analysis. In sec-
tion 5, we present the vibrational stabilization results and work out the example.

2. Averaging and the variation of constants formula. In this section, we
present some basic results on averaging theory and their coordinate-free interpre-
tation. The averaging results are taken from Sanders and Verhulst [42] and from
Guckenheimer and Holmes [22].

Let x, y, x0 belong to an open subset D ⊂ R
n, let t ∈ R+ = [0,∞), and let the

parameter ε vary in the range (0, ε0] with ε0 � 1. Let f, g : R+×D → R
n be smooth

time-varying vector fields. Consider the initial value problem in standard form:

dx

dt
= εf(t, x), x(0) = x0.(2.1)

If f(t, x) is a T -periodic function in its first argument, we let the averaged system be
the initial value problem

dy

dt
= εf0(y), y(0) = x0,(2.2)

f0(y) =
1

T

∫ T

0

f(t, y)dt.

We say that an estimate is on the time scale δ−1(ε) if the estimate holds for all times
t such that 0 < δ(ε)t < L with L a constant independent of ε. From pages 39 and 71
in [42] and from page 168 in [22], we summarize as follows.

Theorem 2.1 (first order periodic averaging). There exists a positive ε0 such
that, for all 0 < ε ≤ ε0,

(i) x(t)− y(t) = O(ε) as ε→ 0 on the time scale 1/ε, and
(ii) if the origin is a hyperbolically stable critical point for f0, then x(t)− y(t) =

O(ε) as ε → 0 for all t ∈ R+, and the differential equation (2.1) possesses
a unique periodic orbit which is hyperbolically stable and belongs to an O(ε)
neighborhood of the origin.
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Next, consider the initial value problem

dx

dt
= f (t/ε, x) , x(0) = x0,(2.3)

where f(t, x) is a T -periodic function in its first argument. A time scaling argument
shows that the averaged version of this problem is the same as in (2.2). Accordingly,
Theorem 2.1 implies that x(t)− y(t) = O(ε) as ε→ 0 only on the time scale 1 unless
y = 0 is a hyperbolically stable point of f0.

2.1. Variation of constants formula in coordinate-free terms. The varia-
tion of constants formula is a means to bring various systems into the standard form
in (2.1). This tool originates in Lagrange’s work (see [42, page 183]) and is presented
here in a coordinate-free setting.

Given a diffeomorphism φ and a vector field g, the pull-back of g along φ, denoted
φ∗g, is the vector field

(φ∗g)(x) �
(
∂φ−1

∂x
◦ g ◦ φ

)
(x),

where the order of composition of functions is (ϕ ◦ φ) (x) = ϕ(φ(x)). A useful diffeo-
morphism is the flow map y(t) = Φg0,T (y0) describing the solution at time T to the
initial value problem

ẏ = g(t, y), y(0) = y0.

Next, consider the initial value problem

ẋ(t) = f(x, t) + g(x, t), x(0) = x0.(2.4)

We regard f as a perturbation to the vector field g, and we seek to characterize the
flow map of f + g in terms of the nominal flow map of g. The answer is provided by
the variation of constants formula:

Φf+g0,t = Φg0,t ◦ Φ
(Φg

0,t)
∗f

0,t .(2.5)

In other words, if z(t) is the solution to the initial value problem

ż(t) =
(
(Φg0,t)

∗f
)
(z), z(0) = x0,(2.6)

the solution x(t) to the initial value problem (2.4) satisfies

ẋ(t) = g(t, x), x(0) = z(t).(2.7)

We illustrate the formula in Figure 2.1 and provide a self-contained proof in the
appendix.

2.2. Formal expansions for the pull-back of a flow map. Here we study in
more detail the differential geometry of the initial value problem (2.6). Such a system
is referred to as the “pulled back” or the “adjoint” system; e.g., see [23].

If f and g are time-invariant vector fields, the infinitesimal Campbell–Baker–
Hausdorff formula (see [26]) provides a means of computing the pull-back

(Φg0,t)
∗f(x) =

∞∑
k=0

adkg f
tk

k!
,
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x0 δx0

Φf+g
0,T (x0) = Φg

0,T (δx0)

flow along f + g

flow along g

Fig. 2.1. The flow along f + g with initial condition x0 equals the flow along g with initial
condition δx0. The variation δx0 is computed via the variation of constants formula as the flow
along (Φg

0,t)
∗f for time [0, T ] with initial condition x0.

where adg f(x) = [g, f ](x) is the Lie bracket between g and f and ad
k
g f = ad

k−1
g adg f .

If, instead, f is the time-invariant vector field and g is the time-varying vector
field, we invoke a result from the chronological calculus formalism by Agračhev and
Gamkrelidze [2]. It turns out that

(2.8) ((Φg0,t)
∗f)(t, x) = f(x)

+

∞∑
k=1

∫ t

0

. . .

∫ sk−1

0

(
adg(sk,x) . . . adg(s1,x) f(x)

)
dsk . . . ds1.

The convergence properties for the series expansion in (2.8) are difficult to charac-
terize; see, for example, a related discussion in [49] on the Campbell–Baker–Hausdorff
formula. Nonetheless, sufficient conditions for local convergence are given in [2, Propo-
sitions 2.1 and 3.1]. For our analysis, the following simple statement suffices: if the
terms adg(sk) . . . adg(s1) f vanish for all k greater than a given N , then the series in
(2.8) becomes a finite sum.

2.3. Averaging under high magnitude high frequency forcing. We re-
turn to the description of averaging results, and we focus on a setting of interest in
vibrational stabilization problems [9, 10, 11]. Consider the initial value problem

dx

dt
= f(x) + (1/ε)g (t/ε , x) , x(0) = x0,(2.9)

where we assume that g(t, x) is a T -periodic function in its first argument. Let Φg0,t
denote the flow map along g(t, x), and define

F (t, x) =
(
(Φg0,t)

∗f
)
(x),(2.10)

F 0(x) =
1

T

∫ T

0

F (τ, x)dτ.(2.11)

Finally, let z and y be solutions to the initial value problems

ż = F (t/ε, z), z(0) = x0,(2.12)

ẏ = F 0(y), y(0) = x0.(2.13)

Lemma 2.2. Let F be a T -periodic function in its first argument. For t ∈ R+,
we have

x(t) = Φg0,t/ε(z(t)).
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As ε→ 0 on the time scale 1, we have

z(t)− y(t) = O(ε).

If the origin is a hyperbolically stable critical point for F 0, then z(t)− y(t) = O(ε) as
ε→ 0 for all t ∈ R+, and the differential equation (2.12) possesses a unique periodic
orbit which is hyperbolically stable and belongs to an O(ε) neighborhood of the origin.

Proof. As a first step, we change the time scale by setting τ = t/ε. Equation (2.9)
becomes

d

dτ
x = εf(x) + g(τ, x), x(0) = x0.

As a second step, we apply the variation of constants formula

d

dτ
x = g(τ, x), x(0) = z(τ),

d

dτ
z = εF (τ, z), z(0) = x0,

where F is defined according to (2.10). As a third step, we average the initial value
problem in z to obtain

d

dτ
y = εF 0(y), y(0) = x0,

where F 0 is defined according to (2.11) and F is assumed to be a T -periodic function.
The averaged curve y approximates z over the time scale τ = 1/ε and over all time
according to Theorem 2.1. As a fourth step, we change the time scale back to t = ετ
and compute

d

dt
x = (1/ε)g(t/ε, x), x(0) = z(t),

d

dt
z = F (t/ε, z), z(0) = x0,

d

dt
y = F 0(y), y(0) = x0.

These are the definitions of z and y in (2.12) and (2.13). Finally, the equality in x(t)
follows by noting that the flow along (1/ε)g (t/ε , x) for time 1 is equivalent to the
flow along g (t, x) for time 1/ε.

This concludes our geometric presentation of averaging in systems with high mag-
nitude high frequency inputs. These results on averaging and the variation of con-
stants formula are known (see [10, Section III]), and they play a key role in the study
of vibrational stabilization problems; see also [9, 11]. The presentation of these results
in a coordinate-free fashion is novel: for a large class of mechanical control systems,
an explicit expression will be provided for the infinite series describing the variation
of constants formula.

3. Mechanical control systems and their homogeneous structure. In
this section, we present three different types of mechanical systems and a geometric
formalism that leads to a unified modeling framework. We also present some results
on the Lie algebraic structure common to these systems and to generic second order
control systems, where the input is an acceleration (alternatively, a force). To present
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an accessible treatment, we assume the configuration space to be Q = R
n. However,

Remark 3.1 and section 3.1 provide the key ideas necessary to develop a coordinate-
free treatment over manifolds.

Let q = (q1, . . . , qn) ∈ R
n be the configuration of the mechanical system. We

consider the control system

q̈i + Γijk(q)q̇
j q̇k = Y i0 (q) + Y ia (q)u

a(t) +Rij(q)q̇
j ,(3.1)

where the summation convention is in place here and in what follows, the indices j, k
run from 1 to n, the index a runs from 1 to m (the number of input fields), and where
the following hold.

(i) The Γijk are n
2(n+1)/2 arbitrary scalar functions on R

n called the Christoffel

symbols. (They satisfy the symmetric relationship Γijk = Γ
i
kj .)

(ii) q 
→ Ya(q) for a = 1, . . . ,m are vector fields characterizing configuration-
dependent forces applied to the system. Y0, for example, might include the
effect of a conservative force such as gravity.

(iii) The functions t 
→ ua(t) are integrable and describe the control magnitude
applied along the input Ya. The ith component of Ya is Y

i
a . We also let

Y (q, t) = Ya(q)u
a(t).

(iv) R(q)q̇ describes a generic force linearly proportional to velocity.
All quantities are assumed to be smooth functions of their arguments.

Equation (3.1) describes a large class of mechanical systems with Hamiltonian
equal to kinetic plus potential energy, with symmetries and with nonholonomic con-
straints. A slightly loose but instructive classification follows.

Simple systems with integrable forces. These systems have Hamiltonian equal
to “kinetic plus potential energy” and are subject to integrable (conservative) input
forces. For example, should the mechanical system be a robotic manipulator with
motors at joints, then the appropriate Christoffel symbols are computed via a well-
known combination of partial derivatives of the inertia tensor; see the definition of
the Coriolis matrix in [36], for example. Only for this kind of system can one write a
Hamiltonian function that includes the effect of forces; the treatment in Chapter 14
of [38] relies on this assumption.

Simple systems with nonintegrable forces. This class is a superset of the pre-
vious class, where, however, nonintegrable input forces are allowed. For example,
the force applied by a thruster of a satellite, hovercraft, or underwater vehicle is in
general a nonintegrable force. Simplified equations of motion can be written if the
system has symmetries, i.e., if the system’s configuration belongs to the group of rigid
displacements (or one of its subgroups) and its Hamiltonian is independent of the
configuration.

Systems with nonholonomic constraints. This set includes systems from the pre-
vious two subclasses and is additionally subject to nonholonomic constraints. Two
very interesting locomotion devices called snakeboard and roller racer are described in
recent papers [40] and [29]. Two methodologies for writing the equations of motions
for these systems into form (3.1) are discussed in [30, 31, 12]. While the description
“nonholonomic” is commonly used to refer to wheeled robots and while such systems
are usually driftless,1 we consider here nonholonomic systems with drift.

1Driftless control systems have the characterizing property that ui = 0 implies ẋ = 0, where x is
the state and ui are the inputs.
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Three remarks are appropriate. First, the model relies on no specific structure
on the Γijk functions. In the classic Hamiltonian system case, these functions are
readily computed from the inertia matrix. By leaving these functions unspecified, our
analysis includes systems with nonholonomic constraints. We refer to [12, 31] for a
thorough treatment of this point.

Second, the distinctions between these three sets of mechanical systems have
various instructive implications. For example, the notion of “actuated degree of free-
dom” is well defined only in systems subject to integrable forces. This simple fact is
neglected even in recent literature on mechanical control systems.

Third, more complete definitions of the various quantities above should include
transformation rules under changes of coordinates. For example, the Christoffel sym-
bols {Γijk, i, j, k = 1, . . . , n} obey relatively surprising transformation rules if the
correct equations of motion are to be computed. If q = (q1, . . . , qn) ∈ R

n are the
transformed coordinates, the transformation rule for the Γijk is

Γ
k

ij =
∂qp

∂qi
∂qm

∂qj
∂qk

∂qr
Γrpm +

∂qk

∂ql
∂2ql

∂qi∂qj
.(3.2)

We refer to [35, section 7.5] for a more complete discussion.

3.1. Control systems described by an affine connection. Equations (3.1)
are the Euler–Lagrange equations for a simple mechanical system. Numerous method-
ologies are available for writing these equations in vector or in abstract formats. The
theory of affine connections is a convenient formalism that formalizes the Euler–
Lagrange equations as well as more general second order control systems (including
systems with nonholonomic constraints).

An easily accessible treatment of the theory of affine connections is given by
Do Carmo [21]. An early reference on mechanical control systems on Riemannian
manifolds is the work by Crouch [20]. The use of Riemannian concepts is encounter-
ing increasing success as testified by the contributions on modeling [12], decomposi-
tions [33], controllability [32], stabilization [28], tracking [18], interpolation [39], and
(static and dynamic) feedback linearization [8, 41].

A smooth affine connection ∇ is a collection of n3 smooth functions Γijk that
satisfy the transformation rule in (3.2). An affine connection induces an operation
between vector fields as follows. Let the vector fields X and Y have components

X(q) = Xi(q)
∂

∂qi
and Y (q) = Y i(q)

∂

∂qi
.

The covariant derivative of Y along X is the vector field ∇XY defined by

∇XY =
(
∂Y i

∂qj
Xj + ΓijkX

jY k
)

∂

∂qi
.

Similarly, an affine connection induces an operation between a curve γ : [0, 1] 
→ R
n

and a vector field Y . The covariant derivative of Y along γ is a vector field along γ
defined by

∇γ̇Y =
(
dY i(γ(t))

dt
+ Γijkγ̇

jY k
)

∂

∂qi
.

Whenever the reference curve is uniquely determined, we let ∇γ̇Y = DY
dt . The two

definitions of covariant derivative have similarities; however, DYdt is not a vector field
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over R
n, but it is only defined on the trajectory γ : [0, 1] 
→ R

n. We refer to [21] for
a more complete treatment of affine connections and of manifolds.

We are finally ready to rewrite (3.1) in a coordinate-free fashion. According to
the definition of covariant derivative along a curve, the generalized Euler–Lagrange
equations are

D q̇

dt
= Y0(q) +R(q)q̇ + Ya(q)u

a(t),(3.3)

where the covariant derivative of q̇ is computed along the curve q(t), i.e., Dq̇/dt = ∇q̇ q̇.
3.2. Lie algebraic structure. The fundamental structure of the control system

in (3.1) (and, accordingly, (3.3)) is the polynomial dependence of the various vector
fields on the velocity variable q̇. This structure affects the Lie bracket computations
involving input and drift vector fields; see related ideas in [32, 45]. We start by
rewriting the system (3.1) as a first order differential equation. We write

d

dt

[
q
q̇

]
=

[
q̇

−Γ(q, q̇) + Y0(q) +R(q)q̇

]
+

[
0
Ya

]
ua(t),

where Γ(q, q̇) is the vector with ith component Γijk(q)q̇
j q̇k. Also, we let x = (q, q̇),

Zg(x) =

[
q̇

−Γ(q, q̇)
]
, Y lift

a (x) �
[
0

Ya(q)

]
, and Rlift(x) �

[
0

R(q)q̇

]

so that the control system is rewritten as

ẋ = Zg(x) + Y lift
0 (x) +Rlift(x) + Y lift

a (x)ua(t).

Let hi(q, q̇) be the set of scalar functions on R
2n, which are arbitrary functions of

q and homogeneous polynomials in {q̇1, . . . , q̇n} of degree i. Let Pi be the set of vector
fields on R

2n whose first n components belong to hi and whose second n components
belong to hi+1. It is easily seen that

Zg ∈ P1, Rlift ∈ P0, and Y lift
a ∈ P−1.

Direct computations show that the sets {Pi} have the following properties:
(i) [Pi,Pj ] ⊂ Pi+j , i.e., the Lie bracket between a vector field in Pi and a vector

field in Pj belongs to Pi+j .
(ii) Pk = {0} for all k ≤ −2.
(iii) if k ≥ 1, then X(q, 0) = 0 for all X(q, q̇) ∈ Pk.

Given these properties, we investigate the Lie brackets between the vector fields Zg
and Y lift

a . A few useful brackets are

[Zg, Y
lift
a ] ∈ P0, [Y lift

a , Y lift
b ] = 0,

[Y lift
b , [Zg, Y

lift
a ]] ∈ P−1.

Of particular interest is the Lie bracket [Y lift
b , [Zg, Y

lift
a ]]. Since this vector field belongs

to P−1, there must exist a vector field on R
n, which we denote 〈Ya : Yb〉, such that

〈Ya : Yb〉lift = [Y lift
b , [Zg, Y

lift
a ]].
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We call this vector field the symmetric product between Yb and Ya. Some straightfor-
ward computations in coordinates show that 〈Ya : Yb〉 = 〈Yb : Ya〉 and that

〈Yb : Ya〉i = ∂Y ia
∂qj

Y jb +
∂Y ib
∂qj

Y ja + Γ
i
jk(Y

j
a Y

k
b + Y ka Y

j
b ),

〈Yb : Ya〉 = ∇Ya
Yb +∇Yb

Ya.

Remark 3.1. While the results in this section are presented in coordinates, it
is possible to turn them into coordinate-free statements on manifolds. The enabling
concepts are the operation of vertical lift and symmetric product between vector fields
(see [32]), the notion of geometric homogeneity (see [27]), and the intrinsic definition
of the Liouville vector field (see [34, page 64]).

4. Averaging for mechanical systems under high amplitude high fre-
quency forcing. This section contains the main result of the paper. We consider
systems described by an affine connection and subject to high amplitude high fre-
quency forcing. We show how the average system is again described by the same
affine connection subject to an appropriate forcing term. Additionally, we show how
the subclass of systems subject to integrable forces and without nonholonomic con-
straints is also closed under the operation of averaging.

The approach we take differs substantially from the classic averaging of Hamil-
tonian systems; see Chapter 4 in [22]. In that setting, the Hamiltonian system is
integrable, and the variation of constants formula is applied by treating the ε size
forcing as perturbation. In our setting, it is the Hamiltonian dynamics that plays
the role of the perturbation to the dominant high amplitude high frequency forcing.
Finally, it is important to note that, while the accelerations driving the systems are
high amplitude, the generated displacements are typically small in magnitude.

4.1. Systems described by affine connections. Consider a control system
described by an affine connection as in (3.3):

D q̇

dt
= Y0(q) +R(q)q̇ + Ya(q)(1/ε)v

a(t/ε),

q(0) = q0, q̇(0) = v0,
(4.1)

where ua(t) = va(t/ε)/ε, and {v1, . . . , vm} are T -periodic functions that satisfy
∫ T

0

va(s1)ds1 = 0,(4.2)

∫ T

0

∫ s2

0

va(s1)ds1ds2 = 0.(4.3)

Also, let v(t) = [v1(t), . . . , vm(t)]′ and define the matrix Λ according to

Λ =
1

2T

∫ T

0

(∫ s1

0

v(s2)ds2

)(∫ s1

0

v(s2)ds2

)′
ds1.(4.4)

Finally, define the time-varying vector field as

Ξ(t, q) =

(∫ t

0

va(s)ds

)
Ya(q)
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and the curve as

z(t) =
(
q(t), q̇(t)− Ξ(t/ε, q(t))) .(4.5)

Theorem 4.1. Let q(t) be the solution to the initial value problem in (4.1), and
let r(t) be the solution to

D ṙ

dt
= Y0(r) +R(r)ṙ −

m∑
a,b=1

Λab 〈Ya : Yb〉 (r),

r(0) = q0, ṙ(0) = v0.

(4.6)

There exists a positive ε0 such that, for all 0 < ε ≤ ε0,

q(t) = r(t) +O(ε),

q̇(t) = ṙ(t) + Ξ(t/ε, q(t)) +O(ε)
(4.7)

as ε→ 0 on the time scale 1.

Furthermore, let (r, ṙ) = (q1, 0) be a hyperbolically stable critical point for (4.6),
and let its region of attraction contain the initial condition (q0, v0). Then the ap-
proximations in (4.7) are valid for all t ∈ R+, and the curve z(t) is the solution to
an initial value problem which possesses a unique, hyperbolically stable, periodic orbit
belonging to an O(ε) neighborhood of (q1, 0).

Justified by the approximations in (4.7), we call the initial value problem in (4.6)
the averaged mechanical system of the initial value problem in (4.1).

Proof. The proof brings together the analysis in subsections 2.3 and 3.2. As a
first step, we translate the second order (4.1) into the first order format in (2.9). We
let x = (q, q̇) and

f(x) = Zg(x) + Y lift
0 (x) +Rlift(x),

g(t, x) =

m∑
a=1

Y lift
a (x)va(t).

Next, we compute the vector field F according to (2.10):

F (t, y) =
(
(Φg0,t)

∗f
)
(y) =

(
Φ
∑
Y lift
a (y)va(t)

0,t

)∗
(Zg(y) + Y lift

0 (y) +Rlift(y)).

We study its expression according to the series expansion in section 2.2:

(Φg0,t)
∗f = f +

∞∑
k=1

∫ t

0

. . .

∫ sk−1

0

(
adg(sk) . . . adg(s1) f

)
dsk . . . ds1.

The Lie algebraic structure unveiled in section 3.2 leads to remarkable simplifications:

adkY lift
a
(Zg(y) + Y lift

0 (y) +Rlift(y)) = 0 ∀ k ≥ 3,
adY lift

b
adY lift

a
(Zg(y) + Y lift

0 (y) +Rlift(y)) = −〈Ya : Yb〉lift .
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With a little bookkeeping, we exploit these equalities and compute(
Φ
∑
Y lift
a (y)va(t)

0,t

)∗ (
Zg(y) + Y lift

0 (y) +Rlift(y)
)

=
(
Zg + Y lift

0 +Rlift
)
+

m∑
a=1

(∫ t

0

va(s1)ds1

)
[Y lift
a ,

(
Zg + Y lift

0 +Rlift
)
]

+

m∑
a,b=1

(∫ t

0

∫ sb

0

vb(sb)v
a(sa)dsadsb

)
[Y lift
b , [Y lift

a ,
(
Zg + Y lift

0 +Rlift
)
]]

=
(
Zg + Y lift

0 +Rlift
)
+

m∑
a=1

(∫ t

0

va(s1)ds1

)
[Y lift
a ,

(
Zg +Rlift

)
]

−
m∑

a,b=1

(∫ t

0

∫ sb

0

vb(sb)v
a(sa)dsadsb

)
〈Ya : Yb〉lift .

An integration by parts and the symmetry of the symmetric product lead to

m∑
a,b=1

(∫ t

0

∫ sb

0

vb(sb)v
a(sa)dsadsb

)
〈Ya : Yb〉

=
1

2

m∑
a,b=1

(∫ t

0

vb(sb)dsb

∫ t

0

va(sa)dsa

)
〈Ya : Yb〉

so that we have

F (t, y) =
(
Zg + Y lift

0 +Rlift
)
+

m∑
a=1

(∫ t

0

va(s1)ds1

)
[Y lift
a ,

(
Zg +Rlift

)
]

− 1
2

m∑
a,b=1

(∫ t

0

vb(sb)dsb

∫ t

0

va(sa)dsa

)
〈Ya : Yb〉lift .

(4.8)

Assumption (4.2) implies that the function F is T -periodic so that we can compute
its average F 0 according to (2.11). Given the assumption on va in (4.3) and the
definition of Λ in (4.4), we have

F 0(y) =
(
Zg + Y lift

0 +Rlift
)− m∑

a,b=1

Λab 〈Ya : Yb〉lift .

This is precisely the vector field that describes the evolution of (r, ṙ). This proves
that y = (r, ṙ). Let ẑ = (p, ṗ) be the flow of the vector field F starting from (q0, v0).
Lemma 2.2 implies that, over the appropriate time scale,

x(t) = Φg0,t/ε(ẑ(t)),

ẑ(t) = y(t) +O(ε),

and, should (q1, 0) be a hyperbolically stable critical point for F
0, the vector field F

possesses a unique, hyperbolically stable, periodic orbit in an O(ε) neighborhood of
(q1, 0).
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Finally, we verify that the curve ẑ defined via the equality x(t) = Φg0,t/ε(ẑ(t)) is

equal to the curve z defined in (4.5). In coordinates, we have

d

ds

[
q(s)
q̇(s)

]
=

[
0

Ya(q(s))v
a(s)

]
,

(
q(0), q̇(0)

)
= Φg0,t/ε

(
p(t), ṗ(t)

)
so that, at final time s = t/ε, we compute q(t) = q(0) = p(t) and

q̇(t) = Ya(q(0))

∫ t/ε

0

va(s)ds+ q̇(0) = Ξ(t/ε, q(t)) + ṗ(t).

The coordinate-free treatment and the use of the Lie algebraic structure underline
the connection between these results on averaging and the treatment on controllability
in [32] and on motion planning in [17]. To quickly recall the first of these references,
consider the control system in (3.3), where Y0 = R = 0. If the family of vector fields
{Ya, 〈Ya : Yb〉 , a, b = 1, . . . ,m} is full rank in a neighborhood of q0, then the control
system (3.3) is small-time locally accessible from (q0, 0). Similar in these works is
the key observation that a mechanical control system subject to a force Y moves
approximately in the direction spanned by 〈Y : Y 〉.

The novel proof methodology should facilitate further research into higher order
averaging. Indeed, the work in [16] indicates that the exact solution of a mechanical
control system can be written as a series expansion with terms including iterated
symmetric products and time integrals.

4.2. Averaged potential for simple systems with integrable inputs. The
textbook [22] presents the classic result that “the average of a Hamiltonian system
forced by a bounded high frequency perturbation can be computed by averaging its
Hamiltonian.” For the case of high magnitude high frequency forces, the various
insightful works by Baillieul [3, 4] and Baillieul and Lehman [6] introduce the notion
of averaged potential2 as a means to characterize the average behavior.

In this section, we assume that the original forced system is “simple,” i.e., that
no nonholonomic constraints are present, and we answer the questions “when is the
averaged system again simple?” and “what assumptions lead to the definition of an
averaged potential?” Incidentally, the answer to these questions involves the rela-
tionships between various definitions of symmetric product that go back to the early
treatment by Crouch [20].

We quickly review some basic concepts in simple mechanical control systems and
refer to the textbooks [21, 35] for a more detailed presentation. In a mechanical
system without constraints, the total energy is defined as the sum of potential V (q)
and kinetic 1

2 〈〈q̇ , q̇〉〉 = 1
2 q̇
TM(q)q̇, where we denote with both 〈〈· , ·〉〉 andM the metric

associated with the kinetic energy. The tensor R is weakly dissipative if 〈〈q̇ , Rq̇〉〉 ≤ 0;
it is strictly quadratically dissipative if there exists a positive constant β such that

〈〈q̇ , Rq̇〉〉 ≤ −β〈〈q̇ , q̇〉〉.(4.9)

If integrable forces are present, they are written as Ya(q) = gradϕa(q) for a =
1, . . . ,m, where a gradient vector field reads, in coordinates, as

(gradϕa)
i =M ij ∂ϕa

∂qj
.

2More precisely, in Baillieul’s work, the inputs are assumed to be high frequency bounded mag-
nitude velocities. It is therefore very similar to our setting with high magnitude high frequency
accelerations.
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According to the treatment in [38, Chapter 12], the controlled Hamiltonian is

H(q, p, u) = V (q) +
1

2
p′M(q)−1p−

m∑
a=1

ϕa(q)u
a,(4.10)

where the momentum p =M(q)q̇. The affine connection is the Levi–Civita connection
of the metric M . The Christoffel symbols are computed according to the usual

Γkij =
1

2
Mmk

(
∂Mmj

∂qi
+
∂Mmi

∂qj
− ∂Mij

∂qm

)
.

The equations of motion (4.6) take the specific form

D q̇

dt
= − gradV (q) +R(q)q̇ + gradϕa(q)u

a(t).(4.11)

Next we present a useful result on the symmetric product of gradient vector fields.
Lemma 4.2 (symmetric products of functions). Let ϕ1, ϕ2 be two smooth scalar

functions. The symmetric product 〈gradϕ1 : gradϕ2〉 is again a gradient vector field.
Additionally, if one defines a symmetric product of functions according to

〈ϕi : ϕj〉 � ∂ϕi
∂q

M−1 ∂ϕj
∂q

= 〈〈gradϕi , gradϕj〉〉,(4.12)

then

〈gradϕ1 : gradϕ2〉 = grad 〈ϕ1 : ϕ2〉 .

This result was originally proven by Crouch in [20], where this symmetric product
of functions was presented under the name of the Beltrami bracket. It is interesting
to note how, in contrast to the treatment in [20], this symmetric operation is relevant
here in a Hamiltonian system context.

Finally, we are ready to apply Theorem 4.1 to the setting of simple systems.
Theorem 4.3. Consider the simple mechanical control system in (4.11) with

Hamiltonian in (4.10). Let ua(t) = va(t/ε)/ε, and let the functions va satisfy the
condition in (4.3). It follows that the averaged system is a simple mechanical system
subject to no force and with Hamiltonian

Haveraged(q, p) = Vaveraged(q) +
1

2
p′M(q)−1p,

where the averaged potential is defined as

Vaveraged(q) � V (q) +

m∑
a,b=1

Λab 〈ϕa : ϕb〉 (q).(4.13)

Accordingly, the equations of motion for the averaged system are

D q̇

dt
= − grad (Vaveraged) +R(q)q̇.

The result follows directly from Lemma 4.2 and Theorem 4.1. Theorem 4.3 can be
used as follows. In order to stabilize a mechanical control system, we design oscillatory
inputs that render Vaveraged positive definite about the desired equilibrium point. The
next section presents this idea in detail.
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5. Vibrational stabilization of mechanical systems. In this section, we
apply the averaging results to stabilization problems. We focus on simple mechanical
systems, consider the point stabilization problem via oscillatory inputs, and rely on
the averaged Hamiltonian as a candidate control Lyapunov function; see [44].

We start by presenting the notion of vibrational stabilization according to the
treatments in [9, 10, 11]. Consider the control system

dx

dt
= f(x) + ga(x)u

a(t).(5.1)

A critical point x1 of f is said to be vibrationally stabilizable
3 if, for any δ > 0, there

exist almost-periodic zero-average inputs ua(t) such that the system in (5.1) has an
asymptotically stable almost periodic solution x∗(t) characterized by

‖x∗ − x1‖ ≤ δ, x∗ = lim
T→∞

1

T

∫ T

0

x∗(s)ds.

Remark 5.1. We refer to [9, 10, 11] for the vibrational stabilization theory
for systems controlled by vector additive, linear, and nonlinear multiplicative forcing.
Adopting these definitions, the vibrational stabilization problem we consider corre-
sponds to a nonlinear multiplicative setting; see [11]. In that paper, the ith component
of the vibrational forcing depends only on the ith state variable. This requirement is
removed here, and the structure of the nonlinearities we consider is more general.

5.1. Stabilization in systems with integrable inputs. Once more, consider
the control system in (4.11):

D q̇

dt
= − gradV (q) +R(q)q̇ + gradϕa(q)u

a(t).(5.2)

We present a notion of vibrational stabilization tailored to mechanical systems. A
configuration q1 is said to be vibrationally stabilizable if, for any δ > 0, there ex-
ist almost-periodic zero-average inputs ua(t) such that the system in (5.2) has an
asymptotically stable almost-periodic solution q∗(t) characterized by

‖q∗ − q1‖ ≤ δ, q∗ = lim
T→∞

1

T

∫ T

0

q∗(s)ds.(5.3)

This definition is weaker than the general one above since no requirement is imposed
on the behavior of the velocity variables q̇.

Next, we design vibrationally stabilizing control laws. The following useful lemma
focuses on “inverting” the definition of Λ = Λ(v1, . . . , vm) in (4.4).

Lemma 5.2 (design of vibrations). Let t ∈ [0, T ], and define a vector-valued
function of time v(t) = [v1(t), . . . , vm(t)]′ that satisfies (4.2) and (4.3). Any matrix Λ
computed according to (4.4) is symmetric and positive semidefinite. Vice versa, given
any symmetric positive semidefinite matrix Λ, there exists a vector-valued function of
time v that satisfies (4.2), (4.3), and (4.4).

Proof. Obviously, Λ is symmetric, and, for any vector x ∈ R
m, one has

x′Λx =
∫ T

0

(∫ s1

0

(
x′v(s2)

)
ds2

)2

ds1 ≥ 0.

3Baillieul and Lehman [6] assume both the inputs and the asymptotically stable solution x∗ to
be T -periodic.
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Given any symmetric positive semidefinite Λ, we design inputs that satisfy (4.2), (4.3),
and (4.4). First, we introduce the T -periodic base functions

ψi(t) =
4πi

T
cos

(
2π i

T
t

)
, i ∈ N.

Any linear combination of the {ψi} satisfies (4.2), (4.3), and
1

2T

∫ T

0

(∫ s1

0

ψi(s2)ds2

)(∫ s1

0

ψj(s2)ds2

)
ds1 = δij ,

where δij is the Kronecker delta. Next, we diagonalize Λ via an orthogonal similarity
transformation W . Assuming the rank of Λ is p ≤ m, we have

Λ =W diag([λ1, . . . , λp, 0, . . . , 0])W
′ =

p∑
i=1

(
√
λiWei)(

√
λiWei)

′,

where diag([λ1, . . . , λp, 0, . . . , 0]) is the diagonal matrix with nonvanishing elements
{λ1, . . . , λp}, and where {ei, . . . , en} is the usual basis for R

n. Since the vectors
(
√
λiWei) are uniquely determined by Λ, we define

w(t,Λ) =

p∑
i=1

(
√
λiWei) ψi(t).(5.4)

By construction, v(t) = w(t,Λ) satisfies (4.2), (4.3), and (4.4).
Introduce the control gains k1 ∈ R

m, K2,K3 ∈ R
m×m, subject to K2 = K ′

2 ≥ 0
and K3 = K ′

3 ≥ 0. To simplify notation, let ϕ = [ϕ1, . . . , ϕm], and let the m × m
matrix 〈ϕ : ϕ〉 (q) have (a, b) component 〈ϕa : ϕb〉 (q). Let the control input be the
sum of open (feedforward) and closed loop (feedback) terms

u(t, ε) = −k1 −K2ϕ+ (1/ε)w(t/ε,K3),(5.5)

where w is as defined in (5.4). According to Theorem 4.3 and to Lemma 5.2, the
averaged controlled system is Hamiltonian with potential energy given by

Vcontrol(q) = V (q) + k′1ϕ(q) +
1

2
ϕ(q)′K2ϕ(q) + Trace

(
K3 〈ϕ : ϕ〉

)
,(5.6)

where the Trace operation is equivalent to the summation in (4.13). It is useful to
note that Vcontrol depends linearly on the control gains k1,K2,K3.

Existence and stability of equilibrium points are analyzed according to the classic
potential energy criterion. The configuration q1 is an equilibrium point if it is a critical
point for the averaged controlled potential energy Vcontrol; it is locally/globally stable
if Vcontrol has a local/global minimum at q1. Of course, the point is stable only in the
average approximation. We make this point precise in the following theorem.

Theorem 5.3 (vibrational stabilization of configurations). Consider the control
system in (5.2), and assume the tensor R is strictly quadratically dissipative. Let
q1 ∈ R

n, and consider the following set of linear matrix equality and inequalities in
the free variables k1,K2,K3:

K2 = K ′
2 ≥ 0, K3 = K ′

3 ≥ 0,
∂Vcontrol

∂q
(q1) = 0,

∂2Vcontrol

∂q2
(q1) > 0.

(5.7)
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If the convex problem (5.7) is feasible, the configuration q1 is vibrationally stabiliz-
able, and there exists an ε0 > 0 such that stabilizing controls are computed according to
(5.5), with 0 < ε ≤ ε0 and with k1,K2,K3 solutions to the system of equations (5.7).

Proof. As a first step, we prove that (q1, 0) is a locally exponentially stable point
for the averaged controlled system. We follow a well-known procedure (see [47]) and
rely on Theorem 4.3 and Lemma 5.2. At q = q1, the function Vcontrol in (5.6) and its
gradient vanish, while its Hessian is positive definite. The total energy Hcontrol(q, q̇) �
Vcontrol(q) +

1
2 q̇

′Mq̇ is therefore positive definite about (q1, 0). Because R is strictly
quadratically dissipative, there exists a β > 0 such that, along the solutions of the
averaged controlled system,

Ḣcontrol = −β〈〈q̇ , q̇〉〉.

The function Hcontrol is a Lyapunov function for the averaged controlled system, and
(q1, 0) is a stable equilibrium point. Asymptotic stability follows from an application
of LaSalle’s lemma; exponential stability follows from a linearization argument.

As a second step, we prove that the controlled system has a unique periodic
exponentially stable solution q(t) in a neighborhood of q1. We follow a well-known
procedure (see [10]) and rely on Theorem 4.1. Since the averaged system has an
exponentially stable point, the curve z(t) is a solution to a differential equation which
possesses a unique periodic orbit, say, z�(t), which is exponentially stable and belongs
to an O(ε) neighborhood of (q1, 0). The same statement can be made for the first
component of z(t), that is, the curve q(t). We call this periodic orbit q�(t) and its
average q�, as defined in (5.3). Since q�(t) lives in a O(ε) neighborhood of q1, so does
q�. Therefore, there must exist ε0 such that ‖q∗ − q1‖ ≤ δ for any δ > 0.

The stability result relies on the open loop system having full rank dissipation;
i.e., the tensor R is required to be strictly quadratically dissipative. This requirement
can be weakened by augmenting the control input with a “derivative action” (a term
negatively proportional to the velocity). Asymptotic stability is then guaranteed
under a linear-controllability–like condition; see [47, 15].

The location of the poles of the linearized model about q1 affects the behavior of
the controlled system. Given that a large oscillatory signal is superimposed, better
performance is achieved when these poles are far to the left of the imaginary axis.
This and related performance requirements can be addressed within the linear matrix
equality and inequality formulation; see the surveys in [48, 14].

5.2. Vibrational stabilization of an underactuated two-link manipula-
tor. We present a simple example of vibrational stabilization. We consider a planar
two-link manipulator as depicted in Figure 5.1: no potential energy is present. We
assume the manipulator is subject to damping forces at both angles.

The configuration of the system is described by the pair (θ1, θ2), where θ1 is
the angle between the first link and the horizontal axis and θ2 is the relative angle
between the two links. Both angles are measured counterclockwise. The links’ physical
parameters are length 9, mass m, and moment of inertia I. We let 91 = 3, 92 = 4,
m1 = I1 = 921, and m2 = I2 = 922. A known procedure provides the inertia matrix:

M(q) =

[
1013

4 + 192 cos(θ2) 16(5 + 6 cos(θ2))
16(5 + 6 cos(θ2)) 80

]
.

We assume the system is subject to the damping force (−.2θ̇1,−.2θ̇2) and to a single
control input, i.e., a torque τ applied at the first joint. Accordingly, the force can
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Fig. 5.1. Two-link manipulator: θ1 and θ2 are measured counterclockwise. In the right figure,
the gray line is θ1, and the black line is θ2. Despite the superimposed oscillatory behavior, the
variables (θ1, θ2) converge to the global minimum of the averaged controlled potential energy.

be described by the function ϕ(q) = θ1. The symmetric product is easily computed
according to Lemma 4.2:

〈ϕ : ϕ〉 (q) = 20

2313− 1152 cos(2θ2) .

We adopt the control law in (5.5) and compute the averaged controlled potential
according to (5.6):

Vcontrol(q) = k1θ1 +
1

2
k2θ

2
1 + k3

20

2313− 1152 cos(2θ2) .

At k1 = 0 and for any positive k2 and k3, the function Vcontrol has two global minima
at (θ1, θ2) = (0,±π/2).

We run the simulation as follows. We design the control law parameters as ε = .5,
T = 1 , k2 = 15, and k3 = 150. At initial time, the manipulator is at rest with angles
(θ1(0), θ2(0)) = (0, π/16). This initial condition is in the domain of attraction of
the minimum (θ1, θ2) = (0, π/2). The differential equation solver NDSolve within
Mathematica generated the simulation results reported in Figure 5.1.

We conclude the example with a final remark. The stabilization result is not
surprising, and it intuitively agrees with the classic example in [6], where the controlled
variable is the speed of the joint connected to the second link and where the joint
itself is constrained to move vertically.

6. Conclusions. This paper provides a systematic study of high magnitude high
frequency averaging for mechanical systems. The averaging extends the results of ear-
lier works in two directions. First, the analysis applies to the multi-input setting where
controls are not necessarily applied to cyclic variables. Instead, forces are described
as generic one-forms. Additionally, our analysis applies to the case of mechanical sys-
tems with nonholonomic constraints. From a control design viewpoint, the improved
analysis leads to sufficient tests for an appropriate notion of vibrational stabilization.

At the heart of the proposed approach is a detailed analysis of the Lie algebraic
structure of mechanical systems (with or without constraints, with or without non-
integrable forces). It is this structure that enables closed form expressions for the
averaging analysis. Furthermore, it is this same structure that underlies the control-
lability analysis in [32]. Our analysis provides a missing link between the notions of
averaged potential [3] and symmetric product [32].
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Numerous extensions appear promising. First, one could pursue generalizations
to high order averaging and applications in the field of robotic motion planning;
see [17, 16]. Second, the setting of distributed parameter systems with Lagrangian
structure might provide a number of interesting applications and further theoretical
challenges. Finally, the tools developed here might shed new light on the problem of
existence and stability of limit cycles in the study of animal and robotics locomotion.

Appendix. The variations of constants formula in geometric terms.
Lemma A.1. Let f, g be smooth time-varying vector fields on R

n. Let x0 ∈ R
n,

and let T ∈ R
n be small enough so that the flow map Φg0,T is a local diffeomorphism

in a neighborhood of x0. The final value x(T ) = Φ
f+g
0,T (x0) can be written as

x(T ) = Φg0,T (z(T )),(A.1)

ż(t) = ((Φg0,t)
∗f)(z), z(0) = x0.(A.2)

Additionally, we have the formal equality

(A.3) ((Φg0,t)
∗f)(t, x) = f(x)

+

∞∑
k=1

∫ t

0

. . .

∫ sk−1

0

(
adg(sk,x) . . . adg(s1,x) f(x)

)
dsk . . . ds1.

Proof. Let x(T ) = Φf+g0,T (x0), and let y(T ) = Φ
g
0,T (z(T )), where z(t) is computed

via (A.2). We compute

ż = ((Φg0,t)
∗f)(z) = (Tz(Φ

g
0,t)

−1 ◦ f ◦ Φg0,t)(z)
=
(
TzΦ

g
0,t

)−1 ◦ f(y(t), t)

so that

ẏ(t) =
d

dt

(
Φg0,t(z(t))

)
= g

(
Φg0,t(z(t)), t

)
+
(
TzΦ

g
0,t(z(t))

)
ż

= g (y(t), t) +
(
TzΦ

g
0,t(z(t))

)
ż = g (y(t), t) + f(y(t), t).

Therefore, y(t) obeys the same differential equation as x(t). Since it is also clear that
x(0) = y(0), the curves x and y must be equal.

Next, we investigate the pull-back of f along the flow of g. We assume f to be
time-invariant and g time-varying. The following statement is proved in [1, Theo-
rem 4.2.31] and in [2, equation (3.3)]:

d

dt
((Φg0,t)

∗f)(t, x) = (Φg0,t)
∗[g(t, x), f(x)],

where the Lie bracket between g and f is computed at t fixed. At fixed x ∈ R
n, we

integrate the previous equation from time 0 to t to obtain

((Φg0,t)
∗f)(t, x) = f(x) +

∫ t

0

(Φg0,s)
∗[g(s, x), f(x)]ds.

The formal expansion in (A.3) follows from iteratively applying the previous
equality.
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Abstract. This paper deals with a particular class of positive systems. The state components
of a positive system are positive or zero for all positive times. These systems are often encountered
in applied areas such as chemical engineering or biology. It is shown that for this particular class
the first orthant contains an invariant ray in its interior. An invariant ray generalizes the concept of
an eigenvector of linear systems to nonlinear homogeneous systems. Then sufficient conditions for
uniqueness of this ray are given. The main result states that the vector field on an invariant ray
determines the stability properties of the zero solution with respect to initial conditions in the first
orthant. The asymptotic behavior of the solutions is examined. Finally, we compare our results to
the Perron–Frobenius theorem, which gives a detailed picture of the dynamical behavior of positive
linear systems.
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1. Introduction. A dynamical system is said to be positive if it leaves the first
orthant of R

n invariant for future times when initiated in this orthant. Examples
of these systems abound in a variety of applied areas such as biology, chemistry,
economics, and sociology [6], [14], [9]. In a biological system, for example, a state
component will typically be the number of individuals of a certain species in a pop-
ulation of interacting species. State components in a chemical system are typically
concentrations or amounts of chemical substances. Important issues arising in the
study of positive systems are the boundedness of solutions, permanence or persis-
tence, and the (asymptotic) stability of equilibrium points. In this paper the stability
properties of the zero solution of a class of positive systems is considered. At first
glance, it might be surprising that we are interested in the zero solution, because in
most applications this solution is not very interesting. For example, it corresponds to
death of all species in a biological context, or to washout of all chemicals in chemical
engineering. In the context of positive systems, nontrivial equilibrium points are of
much more interest. However, these equilibrium points arise in models where some
type of control action is already present in the model, although implicitly.

As an illustration, consider the simplest example of the well-known predator-prey
model proposed by Volterra (see [6]) to explain the observed oscillations in the biomass
of prey species (denoted by x) and predator species (denoted by y):

ẋ = −axy + bx,

ẏ = cxy − dy,
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where a, b, c, and d are positive constants. The term bx is the growth rate of the prey
species and suggests the availability of a feeding source. The abundance of the food is
represented by the parameter b, which can be interpreted as the implicit control action
hinted at before. If there is no food (b = 0), then the only equilibrium point of the
system is the trivial one. If there is food available (b > 0), then there is a nontrivial
equilibrium point. It might not come as a surprise that the stability behavior of
the zero solution of the simpler system with b = 0 determines to some extent the
behavior of the system with b > 0. (Bifurcation theory might serve as a tool here.)
This motivates the study of the zero solution for the case in which b = 0.

We provide another example of a chemical reactor at the end of section 5.
Therefore, the study of the stability behavior of the zero solution is not only

interesting in its own right, but also important for control purposes.
Homogeneous systems on R

n (see, e.g., [3]) are a particular class of nonlinear
systems. Invariant rays—when they exist—play an important role in the study of the
stability behavior of the zero solution of a homogeneous system. An invariant ray is a
particular curve that is invariant for the flow of the system. It can be interpreted as
the generalization of the concept of the linear space spanned by an eigenvector of a
real eigenvalue, in the context of linear systems, to the context of homogeneous—and
thus generally nonlinear—systems. Suppose that a homogeneous system possesses a
number of invariant rays. A necessary condition for global asymptotic stability (GAS)
of the zero solution is that the vector field on all invariant rays points towards the
origin. Although this condition is not sufficient in general for GAS, we introduce
a particular class of homogeneous systems for which invariant rays determine the
stability behavior.

Within the class of positive systems, cooperative and irreducible systems are well
examined [5], [13]. In this paper a class of positive systems is introduced, characterized
by homogeneous cooperative and irreducible vector fields. It is shown that these
systems enjoy a fairly simple dynamical behavior. This may come as a surprise, since
it is well known that the behavior of homogeneous systems is in principle as involved
as the behavior of general nonlinear systems.

Next, to describe our results in some detail, we digress to discuss positive linear
systems, known to model a number of important physical systems; see, e.g., [9]. A
necessary and sufficient condition for a linear system ẋ = Ax to be positive is that
A be a Metzler matrix (i.e., have nonnegative off-diagonal entries) or equivalently
that the system be cooperative. The principal tool for the analysis of the (stability)
behavior of a positive linear system is the Perron–Frobenius theorem. It is natural to
ask whether it is possible to generalize this to classes of positive nonlinear systems.
The purpose of this paper is to show that this is indeed the case for homogeneous
cooperative and irreducible systems.

First of all it is shown that these systems always possess an invariant ray in the
interior of the first orthant. If the order of the homogeneous vector field is equal to
zero, then this ray is unique in the first orthant; if the order of the vector field is
strictly greater than zero, then the ray is unique in the first orthant if the vector field
on this ray does not point away from the origin. In both cases the stability behavior
of the zero solution of the system is determined by the behavior of the system on this
unique invariant ray.

Several invariant rays may exist if the order of the homogeneous vector field is
strictly greater than zero and if the vector field on every invariant ray points away
from the origin. In this case the stability behavior of the zero solution of the system
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is also determined by the behavior of the system on the invariant rays.
This paper is organized as follows. Basic definitions are given in section 2. In sec-

tion 3, results on homogeneous systems are reviewed. A class of positive homogeneous
systems is introduced in section 4, leading to a criterion for GAS of the zero solution
with respect to the initial conditions in R

n
+ (section 5). The asymptotic behavior of

solutions of this class of systems is examined in section 6. The paper is concluded in
section 7 with a discussion; in particular, the classical Perron–Frobenius theorem for
linear differential equations (see [1] or [13]) is compared to the results of this paper.

2. Preliminaries. Let R be the set of real numbers, and R
n the set of n-tuples

with all components belonging to R. For x ∈ R
n, |x| is the Euclidean norm of x.

R
+ := [0,+∞), R

+
0 := (0,+∞), and R

n
+ (int(Rn

+)) is the set of n-tuples with all
components belonging to R

+ (R+
0 ). Finally, bd(R

n
+) := R

n
+ \ int(Rn

+) is the boundary
of R

n
+.
Let x, y ∈ R

n
+; then x ≤ y means xi ≤ yi ∀i = 1, . . . , n. Furthermore, x < y if

and only if x ≤ y and x �= y, while x 	 y if and only if xi < yi ∀i = 1, . . . , n. For
subsets U and V of R

n
+, we denote U ≤ (<,	)V if x ≤ (<,	)y ∀x ∈ U and y ∈ V .

For x ∈ R
n, diag(x) stands for an n× n diagonal matrix, where the ith diagonal

entry is equal to xi, the ith component of the vector x. A real n×n matrix A = (aij)
is Metzler if and only if its off-diagonal entries aij , ∀i �= j, belong to R

+.
A real n × n matrix A = (aij) is reducible if and only if the index set N :=

{1, 2, . . . , n} can be split into two sets J and K, with J ∪K = N and J ∩K = ∅ such
that ajk = 0 ∀j ∈ J and k ∈ K.

It is clear that A is reducible if and only if there exists a permutation matrix P
such that

PAPT =

(
B 0
C D

)
,

where B and D are square matrices.
The standard basis of the vector space R

n is given by {ei|i ∈ N}, where the ith
entry of ei is equal to 1, while the other entries are equal to 0. An m-dimensional
coordinate subspace of R

n is a subspace of R
n with a basis {ek1

, ek2
, . . . , ekm

}, with
1 ≤ k1 < k2 < · · · < km.

The matrix A is reducible if and only if the linear operator, associated to the
matrix A and the standard basis, has an m-dimensional invariant coordinate subspace
with 1 ≤ m < n.

When A is not reducible, it is irreducible.
Consider the system

ẋ = f(x),(1)

where x ∈ R
n and f(x) is a continuous vector field on R

n, continuously differentiable
(of class C1) on R

n \ {0}, and such that f(0) = 0. Later we give conditions such
that the uniqueness of solutions for system (1) is guaranteed. The forward solution
of system (1) with initial condition x0 ∈ R

n at t = 0 is denoted as x(t, x0), t ∈ Ix0 :=
[0, Tmax(x0)), where Ix0 is the maximal forward interval of existence. A set D ⊂ R

n

is forward invariant for system (1) if and only if ∀x0 ∈ D, x(t, x0) ∈ D ∀t ∈ Ix0 .
System (1) is positive if and only if R

n
+ is forward invariant.

Suppose that D ⊂ R
n is a forward invariant set for system (1). The flow of system

(1) is monotone in D if and only if ∀x0, y0 ∈ D with x0 ≤ (<,	)y0 it holds that
x(t, x0) ≤ (<,	)x(t, y0) ∀t ∈ (Ix0 ∩ Iy0).
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The flow of system (1) is strongly monotone in D if and only if it is monotone in
D and ∀x0, y0 ∈ D with x0 < y0 it holds that x(t, x0)	 x(t, y0) ∀t ∈ (Ix0 ∩Iy0)\{0}.

A point p ∈ R
n is an omega limit point of x0 if there exists an increasing sequence

of time instances {tk}, with tk → +∞ when k → +∞, such that limtk→+∞ x(tk, x0) =
p. The set of all omega limit points of x0 is the omega limit set of x0 and is denoted
by ω(x0). Notice that the omega limit set of x0 may be the empty set, for instance
if the solution starting in x0 diverges. If Tmax(x0) = +∞, then the set O(x0) :=
{x(t, x0)|t ∈ R

+} is the forward orbit of the forward solution x(t, x0). It follows from
classical results on the theory of ordinary differential equations that if cl(O(x0)), the
closure of the forward orbit O(x0), is compact, then ω(x0) is nonempty and compact
and d(ω(x0), x(t, x0))→ 0 when t→ +∞ (where d(A, z) := infy∈A d(y, z) and d(y, z)
is the Euclidean distance between y and z).

3. Homogeneous systems. In this section we review the concept of a homo-
geneous system and discuss some of its properties. Many of these results are known,
and no originality is claimed here. However, we have chosen to include the proofs to
make the paper self-contained.

3.1. Definition and Euler’s formula. We first introduce the concept of a
homogeneous vector field [12].

Definition 3.1. A vector field f(x), x ∈ R
n, is homogeneous of order τ ∈ R with

respect to the dilation map δrλ(x) : R
n → R

n with δrλ(x) = (λr1x1, λ
r2x2, . . . , λ

rnxn),
where r := (r1, r2, . . . , rn) is a fixed n-tuple(ri ∈ R

+
0 ∀i ∈ N), and ∀λ ∈ R

+
0 if and only

if

∀x ∈ R
n, λ ∈ R

+
0 f(δrλ(x)) = λτδrλ(f(x)).(2)

To every n-tuple of positive real numbers, one can associate a dilation map δrλ(x).
When r = (1, 1, . . . , 1), then δrλ(x) is the standard dilation map.

System (1) is homogeneous if f(x) is homogeneous.
We introduce the following hypothesis:
(H1) f(x) is a homogeneous vector field of order τ ∈ R

+ with respect to a dilation
map δrλ(x).

Notice that if (H1) holds, then f(0) = 0 (by continuity of f on R
n), and thus

x = 0 is an equilibrium point of system (1). Since f(x) is C1 on R
n \ {0}, solutions

starting in R
n \ {0} exist and are unique. On the other hand, the vector field f(x)

is only continuous at x = 0. This implies that a solution starting in x = 0 exists
(the zero solution satisfies the differential equation) but might not be unique. The
additional hypothesis (H1) excludes the possibility that there are multiple solutions
starting in x = 0 as proved in [10].

Let U be an open subset of R
n, and suppose that f(x) is a homogeneous vector

field of order τ with respect to the dilation map δrλ(x) and of class C1 on R
n. For

future reference we recall Euler’s formula:

∀x ∈ U
∂f

∂x
(x)diag(r)x = diag(r + τ∗)f(x),

where τ∗ := (τ, . . . , τ). This formula is easily proved by first taking the derivative
with respect to λ on both sides of (2) and then evaluating the resulting equation for
λ = 1.

3.2. Invariant rays. For x ∈ R
n \ {0} and a fixed but arbitrary dilation map

δrλ(x), Rx := {δrλ(x)|λ ∈ R
+
0 } is the ray through x.
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The ω limit sets of points on a ray are related as follows.
Lemma 3.2. If system (1) satisfies (H1) and if p ∈ ω(x0), then δrλ(p) ∈ ω(δrλ(x0)).
This follows immediately from the scaling property [7] of solutions of homogeneous

differential equations. By the scaling property we mean the following: Suppose that
x(t, x0), t ∈ [0, Tmax(x0)), is a solution of system (1). Then ∀λ ∈ R

+
0 the term

δrλ(x(λ
τ t, x0)), t ∈ [0, Tmax(x0)

λτ ), is also a solution of system (1).
Lemma 3.3. If system (1) satisfies (H1) and if there exists a point x̄ ∈ R

n \ {0}
such that

f(x̄) = γx̄diag(r)x̄(3)

for some γx̄ ∈ R, then the vector field f(x) is tangent to Rx̄ at each point of Rx̄.
Proof. Indeed, d

dλ (δ
r
λ(x̄))|λ=1 = diag(r)x̄. This and (3) imply that the vector

field f(x) is tangent to Rx̄ at the point x̄. Moreover, ∀λ ∈ R
+
0

f(δrλ(x̄)) = (γx̄λ
τ )diag(r)δrλ(x̄),(4)

and thus the vector field f(x) is tangent to Rx̄ in every point of Rx̄, which proves the
lemma. Notice that (4) implies that ∀λ ∈ R

+
0

γδrλ(x̄) = γx̄λ
τ .(5)

Suppose that there exists a point x̄ ∈ R
n\{0} such that (3) holds. Then it follows

from Lemma 3.3 that the forward (and backward) solution of system (1), starting in
an arbitrary point of Rx̄, stays on this ray for all future (and past) times for which
this solution is defined. Such a ray is an invariant ray for system (1).

An invariant ray Ry is asymptotically stable, stable, or unstable if and only if
γx < 0, γx ≤ 0, respectively, γx > 0 for some x ∈ Ry and by (5) for any x ∈ Ry.

An easy calculation shows that solutions starting on an invariant ray Rx̄ satisfy
the set of decoupled differential equations

ẋk =
(
γzrkz

− τ
rk

k

)
x

1+ τ
rk

k ∀k ∈ N(6)

for some z ∈ Rx̄, and thus f(z) = γzdiag(r)z for some γz ∈ R. Notice that invariant
rays do not always exist for homogeneous systems. The linear harmonic oscillator,
for example, is homogeneous of order zero with respect to the standard dilation map
but does not possess an invariant ray.

3.3. Projection of a homogeneous system. We next introduce the concept
of a homogeneous norm.

Definition 3.4. A homogeneous norm associated to the dilation map δrλ(x) is a
function ρ : R

n → R
+ satisfying the following:

1. ρ(x) is continuous on R
n and of class C1 on R

n \ {0}.
2. ρ(x) = 0 only if x = 0.
3. ∀x ∈ R

n and ∀λ ∈ R
+
0 , ρ(δrλ(x)) = λρ(x).

For example, the function

(
n∑
i=1

|xi|
p
ri

) 1
p

,(7)

with p > maxi=1,...,n(ri), is a homogeneous norm.
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Pick an arbitrary homogeneous norm ρ(x). Then the ρ-homogeneous unit (n−1)-
sphere is defined as Sρ := {x ∈ R

n|ρ(x) = 1}.
Lemma 3.5. Suppose that system (1) satisfies (H1). Consider the system

ẋ = g(x) :=

{
1

(ρ(x))τ f(x) forx ∈ R
n
+ \ {0},

0 forx = 0.
(8)

Then g(x) is a continuous vector field on R
n, of class C1 on R

n\{0}, and homogeneous
of order zero with respect to δrλ(x).

Proof. Indeed, it is clear that g(x) is continuous on R
n \ {0}, so it only has to be

shown that g(x) is continuous at x = 0. Pick a sequence {xk} → 0 when k → +∞.
Associated to this sequence is the sequence {x′

k} ⊂ Sρ with

xk = δrλk
(x′

k)(9)

for suitable λk ∈ R
+
0 and such that {λk} → 0 when k → +∞. Then

lim
k→+∞

1

(ρ(xk))τ
f(xk) = lim

λk→0

1

(ρ(δrλk
(x′

k)))
τ
f(δrλk

(x′
k))

= lim
λk→0

1

λτk(ρ(x
′
k))

τ
λτkδ

r
λk
(f(x′

k)) by homogeneity of f(x) and of ρ(x)

= lim
λk→0

δrλk
(f(x′

k)) because ρ(x′
k) = 1 as {x′

k} ⊂ Sρ

= 0.

Since f(x) and ρ(x) are of class C1 on R
n \ {0}, and since ρ(x) > 0 ∀x ∈ R

n \ {0},
it follows that g(x) is of class C1 on R

n \ {0}. It is also easily verified that g(x) is
homogeneous of order zero with respect to δrλ(x).

Uniqueness of the solutions for system (8) is guaranteed. A proof of this assertion
proceeds along the same lines of the proof of the uniqueness of solutions of system
(1). In addition, system (8) is topologically equivalent to system (1). Indeed, the
direction of both the vectors f(x) and g(x) is the same ∀x ∈ R

n. This implies that
the solutions of system (1) are transformed to solutions of system (8) by a change in
time scale. In particular, a ray is invariant for system (8) if and only if it is invariant
for system (1), and system (8) is positive if and only if system (1) is positive.

With system (8) we now associate a system defined on Sρ as follows. Consider
the projection map π : R

n \ {0} → Sρ with π(x) := δr1/ρ(x)(x). Notice that

π = π ◦ δrλ(10)

∀λ ∈ R
+
0 . This means that the image of a ray under π is a unique point of Sρ.

Geometrically, π(x) is the intersection of the ray through x and Sρ.
Now pick a point m ∈ R

n \ {0} and consider Rm. It will now be shown that for
all points m′ of the ray Rm, the tangent mapping of π maps the vector g(m′) to the
same vector at π(m). More precisely, it will be shown that

Tmπ(g(m)) = Tm′π(g(m′))(11)

∀m′ ∈ Rm, where Tmπ is the derivative of π at m.
For m′ ∈ Rm there exists by the definition of Rm a λ̃ ∈ R

+
0 such that

m′ = δr
λ̃
(m).(12)
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Then

Tmπ(g(m)) = Tm(π ◦ δr
λ̃
)(g(m)) by (10)

= Tδr
λ̃
(m)π ◦ Tmδr

λ̃
(g(m)) by the chain rule

= Tm′π ◦ Tmδr
λ̃
(g(m)) by (12)

= Tm′π ◦ δr
λ̃
(g(m)) by linearity of the dilation map

= Tm′π(g(m′)) by homogeneity of g of order zero and (12).

Since the preimage of a point y ∈ Sρ, π
−1(y) is equal to the ray through y, Ry, and

by (11), it follows that ∀y ∈ Sρ a unique tangent vector h(y) ∈ TySρ can be defined
as follows:

h(y) = Tmπ(g(m)) ∀m ∈ Ry.(13)

It remains to be shown that h defines a vector field of class C1 on Sρ. This is done

by showing that for every C∞ function f̃ : Sρ → R the function h(f̃) : Sρ → R is of
class C1 on Sρ.

For all m ∈ R
n \ {0} it holds that

h(π(m))(f̃) = Tmπ(g(m))(f̃) by (13)

= g(m)(f̃ ◦ π) by definition of the tangentmapping.

This implies that

h(f̃) ◦ π|m = g(f̃ ◦ π)|m(14)

∀m ∈ R
n \ {0}, and thus h(f̃) ◦ π = g(f̃ ◦ π). Denoting the canonical injection by

j : Sρ → R
n \ {0}, we obtain that

h(f̃) ◦ π ◦ j = g(f̃ ◦ π) ◦ j.(15)

Since π ◦ j is the identity mapping on Sρ, it follows that h(f̃) = g(f̃ ◦ π) ◦ j, which is
clearly of class C1 on Sρ.

Thus the following system can be considered:

ẏ = h(y),(16)

where y ∈ Sρ and h is the vector field of class C1 defined above.
We conclude this section with the following claim.
Proposition 3.6. Suppose that y0 ∈ Sρ is an equilibrium point for system (16).

Then Ry0 is an invariant ray for system (8).
Proof. Since h(y0) = 0, it follows by (13) that

Tmπ(g(m)) = 0 ∀m ∈ Ry0
.(17)

By the chain rule, we have that the tangent mapping of the mapping j◦π : R
n\{0} →

R
n \ {0} equals

Tm(j ◦ π) = Tπ(m)j ◦ Tmπ.(18)

We obtain from (17) and (18) that ∀m ∈ Ry0

(Tm(j ◦ π))(g(m)) = 0.(19)
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In local coordinates we have that j ◦π(x) = ( 1
ρr1 (x)x1, . . . ,

1
ρrn (x)xn), and this implies

that

g(m) =
1

ρ(x)

(
n∑
i=1

∂ρ

∂xi
(m)gi(m)

)
diag(r)m(20)

∀m ∈ Ry0 , and therefore Ry0 is an invariant ray for system (8).

4. A class of positive homogeneous systems. We call on the concept of a
cooperative vector field, which has been widely studied [5], [13].

Definition 4.1. A vector field f(x), x ∈ R
n, is cooperative in W ⊂ R

n if the
Jacobian matrix ∂f

∂x is Metzler ∀x ∈W .
System (1) is called cooperative if the following hypothesis holds.
(H2) f(x) is cooperative in R

n
+ \ {0}.

Theorem 4.2. If system (1) satisfies (H1) and (H2), then R
n
+ is a forward

invariant set for system (1).
Proof. Since τ ≥ 0 and f(x) is cooperative in R

n
+ \ {0}, it follows from Euler’s

formula that fi(x) ≥ 0 ∀x ∈ R
n
+ \ {0} : xi = 0. Also f(0) = 0 and the uniqueness of

solutions for system (1) are guaranteed, as has been shown in the previous section.
Then forward solutions cannot leave R

n
+, proving Theorem 4.2.

For future reference we apply Kamke’s theorem to obtain the following.
Proposition 4.3. If system (1) satisfies (H1) and (H2), then the flow of system

(1) is monotone in R
n
+.

Proof. This follows from Kamke’s theorem [13, Remark 1.4, p. 34] if the following
conditions hold:

1. f(x) is of type K on int(Rn
+), i.e., ∀x, y ∈ int(Rn

+) with x ≤ y it holds that
fi(x) ≤ fi(y) ∀i : xi = yi. It is easily checked that f(x) is of type K on
int(Rn

+) since (H2) holds (see [13, Remark 1.1, p. 33]).
2. R

n
+ is a forward invariant set for system (1). This follows from Theorem 4.2.

3. ∀x, y ∈ R
n
+ with x < y there exist sequences {xn}, {yn} ⊂ int(Rn

+) such that
xn < yn ∀n and xn → x, yn → y when n → +∞. It is easily checked that
this condition holds.

4. f(x) is continuously differentiable on some neighborhood of R
n
+. This condi-

tion is not necessarily satisfied here. Indeed, it may happen that ∂f
∂x is not

defined at x = 0. A closer look at the proof of Kamke’s theorem as stated
in [13] indicates that only the continuity of solutions with respect to initial
conditions is needed. Since we have shown that with (H1) the solutions of
system (1) are unique, it follows that solutions of system (1) are continuous
with respect to initial conditions [4, Theorem 2.1, p. 94].

This concludes the proof.
Theorem 4.4. If system (1) satisfies (H1) and (H2), then there exists at least

one invariant ray in R
n
+ for system (1).

Proof. Since, by Theorem 4.2, R
n
+ is a forward invariant set for system (1), R

n
+ is

also a forward invariant set for system (8). It follows that the set Sρ,+ := R
n
+ ∩ Sρ is

a forward invariant set for system (16). If not, there exists a forward solution y(t, y0),
y0 ∈ Sρ,+ and t ∈ Iy0

, for system (16) and a T ∈ Iy0
such that y(T, y0) ∈ Sρ \ Sρ,+.

But then the forward solution of system (8) starting in y0 at t = 0, z(t, y0), is such
that z(T, y0) ∈ R

n \ R
n
+, and thus we obtain a contradiction.

Since Sρ,+ is compact, system (16), restricted to Sρ,+, is forward complete; i.e.,
forward solutions are defined ∀t ∈ R

+. For each t ∈ R
+ consider the mapping
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ψt : Sρ,+ → Sρ,+ of system (16), mapping y0 → ψt(y0) := y(t, y0). Since Sρ,+ is
compact and since it is a retract of the (n − 1)-dimensional unit disk Dn−1 := {x ∈
R
n−1| |x| ≤ 1}, it follows from a generalization of Brouwer’s fixed point theorem (see,

e.g., [2, p. 171]) that each (continuous) mapping ψt, t ∈ R
+, has a fixed point x∗

t .
Pick an arbitrary T ∗ ∈ R

+
0 and consider the sequence of times {T∗

n } with n ≥ 1
integer and n → +∞. Then ∀n the map ψT∗

n
has at least one fixed point x∗

n. Since

the elements of the sequence {x∗
n}, n → +∞, belong to the compact set Sρ,+, there

exists a convergent subsequence {x∗
nk
} with nk → +∞ when k → +∞. The limit of

this subsequence is denoted as x∗. We will prove that ψt(x
∗) = x∗ ∀t ∈ R

+
0 and thus

that x∗ is an equilibrium point for system (16).
Pick an arbitrary t ∈ R

+
0 . We can find a sequence of nonnegative integers {lk}

and a sequence of real numbers {dk} with 0 ≤ dk < T∗
nk

and dk → 0 when k → +∞
and such that t = lk

T∗
nk

+ dk. It follows that

ψt(x
∗) = limk→+∞ ψt(x

∗
nk
)

= limk→+∞ ψdk(ψlk
T∗
nk

(x∗
nk
)) because t = lk

T∗
nk

+ dk

= limk→+∞ ψdk(x
∗
nk
) because x∗

nk
is a fixed point of ψlk

T∗
nk

= limk→+∞ y(dk, x
∗
nk
) by definition of ψdk

= x∗.

In the above, the third equality is valid since if x∗
n is a fixed point of ψT∗

n
, then x∗

is also a fixed point of ψk T∗
n
∀ nonnegative integers k; the fifth equality is valid since

y(t, x0) is continuous on R
+ × Sρ,+. Since t ∈ R

+
0 was arbitrary, we have proved that

ψt(x
∗) = x∗ ∀t ∈ R

+
0 , and thus x∗ is an equilibrium point of system (16).

Then by Proposition 3.6, Rx∗ is an invariant ray for system (8) and thus also for
system (1).

We introduce the following hypothesis:
(H3) For x ∈ int(Rn

+),
∂f
∂x is irreducible. For x ∈ bd(Rn

+) \ {0}, either ∂f
∂x (x) is

irreducible or fi(x) > 0 ∀i : xi = 0.
System (1) is called irreducible if (H3) holds.
Proposition 4.5. If system (1) satisfies (H1), (H2), and (H3), then the flow of

system (1) is strongly monotone in R
n
+.

Proof. The flow of system (1) is monotone by Proposition 4.3.
It will now be shown that ∀x0, y0 ∈ R

n
+ with x0 < y0 it holds that

x(t, x0)	 x(t, y0) ∀t ∈ (Ix0 ∩ Iy0) \ {0}.(21)

Case 1. y0 ∈ int(Rn
+).

1. If x0 = 0, then x0 	 y0, and thus (21) follows from Proposition 4.3.
2. If x0 �= 0, then (21) follows from the generalized Kamke theorem in [13,

Remark 1.1, p. 58].
Case 2. y0 ∈ bd(Rn

+) \ {0}. Notice that in this case x0 belongs to bd(Rn
+) since

x0 < y0. We distinguish two cases:
1. x0 = 0. We distinguish two subcases:

(a) fi(y0) > 0 ∀i : (y0)i = 0. It is clear that for t small enough and strictly
positive,

0 = x(t, x0)	 x(t, y0).(22)

Then it follows by Proposition 4.3 that (22) holds ∀t ∈ Iy0 \ {0}, which
proves (21).
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(b) ∂f
∂x (y0) is irreducible. It follows from Proposition 4.3 that x(t, y0) > 0
∀t ∈ Iy0 \ {0}. Suppose that (21) does not hold; then there exists some
i ∈ N such that xi(t, y0) = 0 ∀t ∈ [0, t′], where t′ is some strictly positive
real number.
On the other hand, since ∂f

∂x (y0) is irreducible, it follows from Euler’s
formula that there exists some j ∈ N such that fj(y0) > 0, implying
that for small and strictly positive t, xj(t, y0) > 0.
If j = i, then we have reached a contradiction. If j �= i, then we can
pick 0 < t1 < t′ and consider x(t1, y0) ∈ bd(Rn

+) \ {0}.
If ∂f∂x (x(t1, y0)) is reducible, then it follows from (H3) that fk(x(t1, y0)) >
0 ∀k : xk(t1, y0) = 0 (and thus, in particular, for k = i), yielding a
contradiction.
If ∂f

∂x (x(t1, y0)) is irreducible, then there exists a j′ ∈ N with j′ �= j such
that xj′(t, y0) > 0 for small t > t1. This argument is repeated and ends
in a finite number of steps, leading to a contradiction.

2. x0 �= 0. It follows from Case 2.1 that both solution x(t, x0) and y(t, y0) belong
to int(Rn

+) for t ∈ Ix0 \ {0}, respectively, t ∈ Iy0 \ {0}.
On the other hand, it follows from Proposition 4.3 that x(t, x0) < y(t, y0)
∀t ∈ (Ix0 ∩ Iy0

) \ {0}. Suppose that (21) does not hold; then there exists
some l ∈ N such that xl(t, x0) = xl(t, y0) ∀t ∈ [0, t′′], where t′′ is some strictly
positive real number. This contradicts that the flow on int(Rn

+) is strongly
monotone, which follows from the generalized Kamke theorem in [13].

It follows from Theorem 4.4 that if system (1) satisfies (H1) and (H2), there
exists at least one invariant ray in R

n
+ for system (1). Adding hypothesis (H3) allows

us to draw more conclusions regarding the location of these invariant rays in R
n
+ and

their possible uniqueness, by means of the strong monotonicity property of the flow
of system (1) as expressed in Proposition 4.5.

Theorem 4.6. If system (1) satisfies (H1), (H2), and (H3), then the invariant
rays for system (1) in R

n
+ belong to int(Rn

+).
If the order τ of the homogeneous vector field f(x) is equal to zero, then there

exists a unique invariant ray for system (1) in int(Rn
+).

If the order τ of the homogeneous vector field f(x) is greater than zero and if
there exists a stable invariant ray for system (1) in int(Rn

+), then this invariant ray
is unique in int(Rn

+).
If the order τ of the homogeneous vector field f(x) is greater than zero and if

there exists an unstable invariant ray for system (1) in int(Rn
+), then this invariant

ray is not necessarily unique in int(Rn
+). There may be multiple invariant rays for

system (1) in int(Rn
+), all of them unstable.

Proof. Let Rx∗ ⊂ R
n
+ be an invariant ray for system (1); then

f(x∗) = γx∗diag(r)x∗(23)

for some γx∗ ∈ R.
First it is shown that Rx∗ ⊂ int(Rn

+). Suppose not; then Rx∗ ⊂ bd(Rn
+). Ac-

cording to (H3), two cases can be distinguished: ∂f
∂x (x

∗) is irreducible or fi(x
∗) > 0

∀i : x∗
i = 0.

Case 1. ∂f
∂x (x

∗) is irreducible. From Euler’s formula and (23),

(diag(r + τ∗))−1 ∂f

∂x
(x∗)diag(r)x∗ = γx∗diag(r)x∗.(24)
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Since r ∈ int(Rn
+), τ ∈ R

n
+, and

∂f
∂x (x

∗) is Metzler and irreducible, (diag(r+τ∗))−1 ∂f
∂x (x

∗)
is also Metzler and irreducible. In addition, diag(r)x∗ ∈ bd(Rn

+) \ {0}. However, an
irreducible Metzler matrix has no nonzero eigenvector belonging to bd(Rn

+) [1]. Thus
we obtain a contradiction.

Case 2. fi(x
∗) > 0 ∀i : x∗

i = 0. Since x∗ ∈ bd(Rn
+) and with (23), there exists

i ∈ N such that x∗
i = 0 and fi(x

∗) = 0, yielding a contradiction.
Next it is shown that an invariant ray for system (1) is unique.
Suppose that there are two invariant rays R1, R2 ⊂ int(Rn

+) (R1 �= R2) for system
(1). Pick an arbitrary point x̄ ∈ R1. There exist two points p, q ∈ R2 such that
p < x̄ < q and pi = x̄i, qj = x̄j for some i �= j, i, j ∈ N . Indeed, pick an arbitrary
y ∈ R2. Since R2 ⊂ int(Rn

+), it follows that y � 0, and thus the following positive
real numbers can be defined:

λ1 = min
k∈N

((
x̄k
yk

) 1
rk

)
,(25)

λ2 = max
k∈N

((
x̄k
yk

) 1
rk

)
.(26)

Since R1 �= R2, it follows that λ1 �= λ2. Then there exist i, j ∈ N with i �= j such that

λ1 = ( x̄i

yi
)

1
ri and λ2 = (

x̄j

yj
)

1
rj . This implies that p := δrλ1

(y) and q := δrλ2
(y) satisfy

the desired properties.
Solutions of system (1) starting on R1, respectively on R2, satisfy (6). Since p,

q ∈ R2, there exists a λ̃ ∈ R
+
0 such that q = δr

λ̃
(p) and γq = λ̃τγp (see (5)). It follows

from Proposition 4.5 that

x(t, p)	 x(t, x̄)	 x(t, q),(27)

where the first inequality holds ∀t ∈ (Ix̄ ∩ Ip) \ {0}, and the second inequality ∀t ∈
(Ix̄ ∩ Iq) \ {0}. We obtain from (6), (27) and since pi = x̄i and x̄j = qj that(

γprip
− τ

ri
i

)
p
1+ τ

ri
i <

(
γx̄rix̄

− τ
ri

i

)
x̄

1+ τ
ri

i ,(28) (
γx̄rj x̄

− τ
rj

j

)
x̄

1+ τ
rj

j <

(
γqrjq

− τ
rj

j

)
q
1+ τ

rj

j ,(29)

or

γp < γx̄ < γq.(30)

Two cases can be distinguished: τ = 0 and τ > 0.
Case 1. τ = 0. If τ = 0, then γp = λ̃0γq = γq, contradicting (30).
Case 2. τ > 0. We introduce the sign function sign : R→ R as

sign(x) =



−1 forx < 0,

0 forx = 0,

+1 forx > 0.

(31)

From γq = λ̃τγp it follows that sign(γp) = sign(γq).
Case 2(a). sign(γx̄) �= sign(γp). Since sign(γp) = sign(γq), it follows from (30)

that sign(γx̄) = sign(γp) = sign(γq), which is impossible because sign(γx̄) �= sign(γp).
Case 2(b). sign(γx̄) = sign(γp). Two cases can be distinguished: sign(γx̄) = 0

and sign(γx̄) = −1.
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1. sign(γx̄) = sign(γp) = 0. This is impossible since, from (30), γp < γx̄.
2. sign(γx̄) = sign(γp) = −1. From (30),

γp < γq.(32)

On the other hand, since p < x̄ < q and q = δr
λ̃
(p), it follows that λ̃ > 1.

Furthermore, γq = λ̃τγp. But since sign(γp) = sign(γq) = −1, τ > 0, and

λ̃ > 1, it follows that γq ≤ γp, contradicting (32).
Notice that Theorem 4.6 does not exclude the possibility of several invariant rays

in int(Rn
+) for system (1). This can happen only if τ > 0 and if all invariant rays are

unstable. This situation can indeed occur; in particular, we will give an example of
a planar cooperative irreducible and homogeneous system of order τ = 1 possessing
infinitely many unstable invariant rays in int(Rn

+).
Example. Consider the following system:

ẋ = f1(x) := (x1 + x2)x,(33)

where x := (x1, x2)
T ∈ R

2. This system is homogeneous of order τ = 1 with respect
to the standard dilation map. In addition, f1(x) is cooperative in R

2
+, and

∂f1
∂x is

irreducible ∀x ∈ int(R2
+). Notice that (H3) is not satisfied.

Next consider the following system:

ẋ = f2(x) :=

(
x2

1 + x1x2 + x2
2

x2
1 + x1x2 + x2

2

)
.(34)

This system is also homogeneous of order τ = 1 with respect to the standard dilation
map. In addition, f2(x) is cooperative in R

2
+, and

∂f2
∂x is irreducible ∀x ∈ R

2
+ \ {0}.

In particular, ∂f2
∂x is irreducible when x ∈bd(R2

+)\{0}.
Based on systems (33) and (34), we would like to construct a system with infinitely

many unstable invariant rays in int(R2
+). Before doing so, partition R

2
+ into five conic

parts:

R
2
+ :=

5⋃
i=1

Ci,(35)

where C1 := {x ∈ R
2
+|x2 − 1

2x1 ≥ 0, x1 − 1
2x2 ≥ 0}, C2 := {x ∈ R

2
+|x2 − 1

4x1 ≤ 0},
C3 := {x ∈ R

2
+|x2 − 1

2x1 < 0, x2 − 1
4x1 > 0}, C4 := {x ∈ R

2
+|x1 − 1

4x2 ≤ 0}, and
C5 := {x ∈ R

2
+|x1 − 1

4x2 > 0, x1 − 1
2x2 < 0}.

Now define the system

ẋ = f(x) :=



f1(x) forx ∈ C1,

f2(x) forx ∈ C2, C4,

f1(x) + g1(θ)p(x) forx ∈ C3,

f1(x) + g2(θ)p(x) forx ∈ C5,

(36)

where θ := x2

x1
, p(x) := (x2

2, x
2
1)
T , and g1(θ) (g2(θ)) is a continuously differentiable

function defined on [θ2, θ1] := [14 ,
1
2 ] ([θ3, θ4] := [2, 4]) to be specified hereafter. The

aim is to construct g1(θ) and g2(θ) such that f(x) is continuously differentiable on R
2
+,

homogeneous of order τ = 1 with respect to the standard dilation map, cooperative
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on R
2
+, and such that ∂f

∂x is irreducible when x ∈ R
2
+ \ {0}. First g1(θ) is constructed.

Notice that f1(x) + g1(θ)p(x) is homogeneous of order τ = 1 with respect to the
standard dilation map since p(x) is homogeneous of order τ = 1 with respect to the
standard dilation map and since g1 is constant along any ray in C3. For f(x) to
be continuous on ∪3

i=1Ci, it suffices that the following hold: g1(θ) is continuous on
[θ2, θ1], g1(θ1) = 0, and g1(θ2) = 1. Consider the Jacobian of f1(x)+g1(θ)p(x) on C3:

∂f1

∂x
+ g1(θ)

(
0 2x2

2x1 0

)
+

∂g1

∂θ

(
−x3

2

x2
1

x2
2

x1

−x2 x1

)
.(37)

For f(x) to be continuously differentiable on ∪3
i=1Ci, it suffices that the following hold:

g1(θ) is continuously differentiable on [θ2, θ1] and
∂g1
∂θ (θ1) =

∂g1
∂θ (θ2) = 0. Finally, f(x)

is cooperative in ∪3
i=1Ci and irreducible in (∪3

i=1Ci)\{0} if and only if the off-diagonal
elements of the Jacobian (37) are strictly positive when x ∈ C3. This is the case when
the following two conditions are satisfied:

I. x1(1 + θ(2g1(θ) + θ ∂g1∂θ )) > 0 when θ ∈ [θ2, θ1] and x ∈ C3.

II. x2 + 2g1(θ)x1 − ∂g1
∂θ x2 > 0 when θ ∈ [θ2, θ1] and x ∈ C3.

Condition II is satisfied if g1(θ) is chosen such that g1(θ) ≥ 0 and ∂g1
∂θ ≤ 0 when

θ ∈ [θ2, θ1]. Summarizing, we are looking for g1(θ) : [θ2, θ1] → R such that the
following conditions are satisfied:

(C1) g1(θ) is continuously differentiable in [θ2, θ1].
(C2) g1(θ) ≥ 0 in [θ2, θ1] and g1(θ1) = 0, g1(θ2) = 1.
(C3) ∂g1

∂θ ≤ 0 in [θ2, θ1] and
∂g1
∂θ (θ1) =

∂g1
∂θ (θ2) = 0.

(C4) x1(1 + θ(2g1(θ) + θ ∂g1∂θ )) > 0 when θ ∈ [θ2, θ1] and x ∈ C3.
From this we propose that g1(θ) is a third order polynomial in θ:

g1(θ) = a

(
θ3

3
− θ1 + θ2

2
θ2 + θ1θ2θ + c

)
,(38)

where a and c are real numbers that we will determine hereafter. It is clear that
(C1) and (C3) are satisfied if a > 0. From (C2) we find that c = − 1

96 and a = 384,
fixing the function g1(θ). We have to check whether (C4) holds. This amounts to the
following question:

h(θ) := 640θ4 − 576θ3 + 144θ2 − 8θ + 1 > 0 ∀θ ∈ [θ2, θ1]?(39)

It is easily verified by means of Cardano’s formula for finding the roots of a third order
polynomial that ∂h

∂θ = 2560(θ−θ′)(θ−θ′′)(θ−θ∗), where θ′, θ′′ < θ2 and θ∗ ∈ (θ2, θ1).

In addition, ∂2h
∂θ2 (θ

∗) > 0, and thus h(θ) reaches a global minimum in [θ2, θ1]. Finally,
h(θ∗) > 0, and this implies that h(θ) > 0 ∀θ ∈ [θ2, θ1].

We are left with finding an appropriate g2(θ) : [θ3, θ4] → R. Because of the
symmetry of both f1(x) and f2(x) and because 1

θ3
= θ1 and 1

θ4
= θ2, we can set

g2(θ) := g1(
1
θ ) ∀θ ∈ [θ3, θ4].

In conclusion, system (36) is homogeneous of order τ = 1 with respect to the
dilation map, f(x) is cooperative in R

2
+, and

∂f
∂x is irreducible for x ∈ R

2
+ \{0}. There

are an infinite number of unstable invariant rays for system (36) in int(R2
+). Indeed,

every ray in C1 is invariant and unstable for system (36).

5. Main result. Suppose that system (1) satisfies (H1), (H2), and (H3), and
assume that initial conditions for system (1) belong to R

n
+. From Theorem 4.6 it
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follows that there exists at least one invariant ray in R
n
+ for system (1) and that this

invariant ray belongs to int(Rn
+).

If τ = 0, then there exists a unique invariant ray in int(Rn
+).

If τ > 0 and if there exists a stable invariant ray in int(Rn
+), then this invariant

ray is unique.
Consider the flow φt : R

n
+ → R

n of system (1) mapping x0 to φt(x0) := x(t, x0).
∀x0 ∈ R

n
+, φt(x0) exists when t ∈ Ix0 . In the following lemma, we provide sufficient

conditions guaranteeing that φt is defined ∀t ∈ R
+ when restricting initial conditions

to R
n
+.
Lemma 5.1. If system (1) satisfies (H1) and if τ = 0, then φt : R

n
+ → R

n
+ is

defined ∀t ∈ R
+.

If system (1) satisfies (H1), (H2), and (H3); if τ > 0; and if there exists a stable
(and thus unique) invariant ray for system (1) in int(Rn

+), then φt : R
n
+ → R

n
+ is

defined for all t ∈ R
+.

Proof. Case 1. τ = 0. First it will be shown that every forward solution of
system (1) remains in a compact set in finite time intervals. Therefore we consider
the dynamics of a homogeneous norm:

ρ̇ =

(
1

ρ

∂ρ

∂x
f

)
ρ

= k(x)ρ.(40)

It is easily verified that

k(δrλ(x)) = k(x)(41)

∀x ∈ R
n \ {0} and λ ∈ R

+
0 . The function k(x) takes a maximal value M on the

compact set {z ∈ R
n|ρ(z) = 1}. In fact, by (41), M is the maximum of k(x) in

R
n \ {0}. Then ρ̇ ≤Mρ, and thus

ρ(x(t, x0)) ≤ eMtρ(x0).(42)

This implies that x(t, x0), t ∈ Ix0 , belongs to the compact set K := {z ∈ R
n|ρ(z) ≤

eMTmax(x0)ρ(x0)}.
Now suppose that Ix0

= [0, Tmax(x0)), with Tmax(x0) < +∞. Pick a sequence
{xtn} ⊂ x(t, x0) with tn → Tmax(x0) when n → +∞. Since |f(x)| is continuous, it
attains a maximum M ′ on K. Then ∀tn and tm

|xtn − xtm | ≤
∫ tn

tm

|f(x(t, x0))|dt

≤M ′|tn − tm|.
This implies that |xtn−xtm | → 0 when n and m→ +∞. Therefore {xtn} is a Cauchy
sequence and thus converges.

Every sequence on x(t, x0) converges to the same point p ∈ K. Indeed, if this were
not the case, then there would exist two Cauchy sequences on x(t, x0), converging to
different points p1 and p2 ∈ K. Then there would exist a sequence on x(t, x0) with
two limit points p1 and p2. This is impossible since, as we have shown, every sequence
on x(t, x0) is a Cauchy sequence and therefore converges.

Since every sequence on x(t, x0) converges to p, it follows that limt→Tmax(x0) x(t, x0)
= p. The solution x(t, x0) can then be extended by concatenating it with the solu-
tion starting in p. This implies that the maximal forward interval of existence of the
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solution starting at t = 0 in x0 contains Ix0
as a proper subset, contradicting the

assumption that Ix0 is the maximal forward interval of existence. Thus ∀x0 ∈ R
n
+,

Tmax(x0) = +∞, implying that φt is defined ∀t ∈ R
+.

Case 2. τ > 0. Let Rx∗ be the unique stable invariant ray for system (1) in
int(Rn

+). For each x0 ∈ R
n
+ we can find y0 ∈ Rx∗ such that x0 < y0. Since x(t, y0)

satisfies (6) with z = x∗ and γx∗ ≤ 0, we obtain that Iy0
= [0,+∞). This implies that

x(t, x0) belongs to the compact hypercube C := {z ∈ R
n
+|0 ≤ z ≤ x(Tmax(x0), y0)}.

The rest of the proof follows the same lines as the proof of Case 1. The role of
the compact set K is now played by the compact set C.

We are ready to state the main theorem.
Theorem 5.2 (Main Theorem). Assume that system (1) satisfies (H1), (H2),

and (H3), and assume that initial conditions for system (1) belong to R
n
+. Then there

exists at least one invariant ray Rx∗ ⊂ int(Rn
+).

If τ = 0, then Rx∗ is unique in int(Rn
+). If τ > 0 and if Rx∗ is stable, then Rx∗

is unique. If τ > 0 and if Rx∗ is unstable, then Rx∗ is not necessarily unique. If there
are several invariant rays, all of them are unstable.

The zero solution of system (1) is
• unstable if and only if Rx∗ is unstable,
• stable if and only if Rx∗ is stable,
• globally asymptotically stable if and only if Rx∗ is asymptotically stable.

Proof. Sufficiency.
1. Rx∗ is unstable. ∀x0 ∈ Rx∗ , the forward solution of system (1) starting at

t = 0 in x0 satisfies (6) with z = x∗. Since Rx∗ is unstable, γx∗ > 0, and thus
x(t, x0) diverges when t→ Tmax(x0). Then the zero solution of system (1) is
unstable.

2. Rx∗ is stable. ∀x0 ∈ Rx∗ , the forward solution of system (1) starting at
t = 0 in x0 satisfies (6) with z = x∗. Since Rx∗ is stable, γx∗ ≤ 0, and thus
x(t, x0) ≤ x0 ∀t ∈ R

+.
It follows that ∀x0 ∈ Rx∗ the hypercube Cx0 := {y0 ∈ R

n
+|0 ≤ y0 ≤ x0} is a

forward invariant set for system (1). Indeed, if y0 = x0, then x(t, y0) ∈ Cx0

∀t ∈ R
+, since x(t, x0) ≤ x0 ∀t ∈ R

+. If y0 < x0 with y0 ∈ Cx0 , then from
Proposition 4.5 and Lemma 5.1, x(t, y0) 	 x(t, x0) ≤ x0 ∀t ∈ R

+, and thus
x(t, x0) ∈ Cx0 ∀t ∈ R

+.
Since x0 can be chosen arbitrarily close to the origin, the zero solution of
system (1) is stable.

3. Rx∗ is asymptotically stable. ∀x0 ∈ Rx∗ , the forward solution of system (1)
starting at t = 0 in x0 satisfies (6) with z = x∗. Since Rx∗ is asymptotically
stable, γx∗ < 0, and thus limt→+∞ x(t, x0) = 0. Also all forward solutions
starting outside Rx∗ converge to the origin. Indeed, ∀y0 /∈ Rx∗ there exists p ∈
Rx∗ such that y0 < p since Rx∗ ⊂ int(Rn

+). Then it follows from Proposition
4.5 and Lemma 5.1 that x(t, y0)	 x(t, p) ∀t ∈ R

+. From limt→+∞ x(t, p) = 0
it follows that limt→+∞ x(t, y0) = 0.
It has been shown that all forward solutions converge to the origin. Stability
of the zero solution follows from the proof of item 2 above. Thus the zero
solution of system (1) is globally asymptotically stable.

Necessity.
1. System (1) is unstable. This follows from the contrapositive statement of the

statement proved in item 2 of the sufficiency part of this theorem.
2. System (1) is stable. This follows from the contrapositive statement of the

statement proved in item 1 of the sufficiency part of this theorem.
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3. System (1) is asymptotically stable. Suppose that Rx∗ is not asymptotically
stable. Then γx∗ ≥ 0, implying that no forward solution starting on Rx∗

converges to the origin and contradicting the assumption that system (1) is
asymptotically stable.

Example. Consider a reversible chemical reaction at a given, constant tempera-
ture:

A � B,(43)

where A and B are chemical components. Denote the concentrations of A and B,
respectively, by x1 and x2. We assume that this reaction takes place in a closed
chemical reactor and thus there is no exchange of material with the environment.
The rate constant of reaction A → B is denoted by k1 ∈ R

+, and the rate constant
of reaction B → A by k2 ∈ R+. Supposing that the dynamics of both reactions is
dictated by the mass action principle [11] and that both reactions are of second order,
we obtain that the concentrations satisfy the following differential equations:(

ẋ1

ẋ2

)
=

(−k1x
2
1 + k2x

2
2

k1x
2
1 − k2x

2
2

)
.(44)

System (44) is homogeneous of order τ = 1 with respect to the standard dilation
map, cooperative in R

2
+, and (H3) holds. Therefore Theorem 5.2 can be applied. It is

easily verified that Rx∗ with x∗ = (
√
k2

√
k1) is the unique invariant ray in R

2
+ that

belongs to int(R2
+) and that this ray is stable. We conclude that the zero solution of

system (44) is also stable but not asymptotically stable.
One of the basic assumptions in model (44) is that the chemical reactor is closed,

which is usually not satisfied. Indeed, in most models of chemical reactors there is
exchange of chemicals with the environment, and a more realistic model would be (see
[14]) (

ẋ1

ẋ2

)
=

(−k1x
2
1 + k2x

2
2 + (p1(x1, x2)− q1(x1, x2))

k1x
2
1 − k2x

2
2 + (p2(x1, x2)− q2(x1, x2))

)
,(45)

where the functions pi ≥ 0, respectively qi ≥ 0, model the inflow, respectively outflow,
of the chemicals. We show in [8] that the stability behavior of the trivial solution of the
(simpler) system (44) plays an important role in determining the behavior of system
(45) and that this can be extended to more general chemical reactors (in particular, to
reactors containing more than two chemicals, in which several reactions take place).

6. Asymptotic behavior. Assume that system (1) satisfies (H1), (H2), and
(H3), that the initial conditions of (1) belong to R

n
+, and that τ = 0. We recall

from Theorem 4.6 that system (1) possesses a unique invariant ray Rx∗ in R
n
+, which

belongs to int(Rn
+), such that

f(x∗) = γdiag(r)x∗(46)

for some γ ∈ R. The sign of γ then determines the stability properties of the zero
solution of system (1). In this section the limiting behavior of solutions of systems
satisfying these conditions will be described in more detail.

Introduce the following variable:

z(t, x0) := (diag(eγrt))−1φt(x0),(47)
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where eγrt := (eγr1t, eγr2t, . . . , eγrnt).
Since f(x) is homogeneous of order τ = 0 with respect to δrλ(x), it is easily verified

that z(t, x0) satisfies

ż = −γdiag(r)z + f(z),(48)

where z ∈ R
n
+ and z(0, x0) = x0.

System (48) satisfies (H1) with τ = 0, (H2), and (H3), and therefore Theorem
4.6 can be applied to system (48). In particular, there exists a unique invariant ray
for system (48) in int(Rn

+). It is easy to see that this invariant ray is Rx∗ , the unique
invariant ray of system (1). For system (48) this ray consists of equilibrium points. It
follows from Theorem 4.2 that system (48) is positive. Restricting initial conditions
for system (48) to R

n
+, it is possible to define the flow Φt : R

n
+ → R

n of system (48)
(which is defined ∀t ∈ R

+ by Lemma 5.1), mapping R
n
+ into R

n
+.

We recall the following results (see [13, Theorem 2.3, p. 5, and Theorem 3.7, p.
8]).

Lemma 6.1. If the forward flow of a system is strongly monotone, then a limit
set cannot contain two limit points x and y with x < y.

Lemma 6.2. If the forward flow of a system is strongly monotone, if z1 < z2,
and if ω(z1) and ω(z2) are nonempty, then ω(z1) ≤ ω(z2).

It follows from Proposition 4.5 that the forward flow of system (48) is strongly
monotone since system (48) satisfies (H1) with τ = 0, (H2), and (H3). This implies
that Lemmas 6.1 and 6.2 apply to system (48).

Theorem 6.3. If system (1) satisfies (H1) with τ = 0, (H2), and (H3), then
∀x0 ∈ R

n
+ there exists a px0

∈ Rx∗ ∪ {0} such that limt→+∞(diag(eγrt))−1φt(x0) =
px0 .

Proof. The forward solutions of system (48) are bounded. Indeed, for each x0 ∈
R
n
+ there exists a y ∈ Rx∗ such that x0 < y. From Proposition 4.5 it follows that

z(t, x0) 	 z(t, y) ≡ y ∀t ∈ R
+, since y is an equilibrium point of system (48). Thus

all forward solutions of system (48) are bounded, implying that the omega limit set
of every forward solution is nonempty.

The proof of the theorem proceeds in two steps:
1. The omega limit set of every forward solution of system (48) is a subset of

Rx∗ ∪ {0}.
2. The omega limit set of every forward solution of system (48) consists of a

single equilibrium point.
First a proof of item 1 is given. Suppose that there exists a x0 ∈ R

n
+ such that

ω(x0) �⊂ Rx∗ ∪ {0}. Then there exist at least two points p and q ∈ ω(x0) with p �= q
and p /∈ Rx∗ ∪ {0}. Indeed, the existence of p ∈ ω(x0) with p /∈ Rx∗ ∪ {0} follows
immediately from the assumption that ω(x0) �⊂ Rx∗ ∪{0}. Now suppose that p is the
only element in ω(x0). Then p is an equilibrium point of system (48) and thus belongs
to Rx∗ ∪{0}, since omega limit sets are (forward) invariant sets. This contradicts the
fact that p /∈ Rx∗ ∪{0}. Therefore there exists a second element q ∈ ω(x0) with p �= q.

Three cases can occur: p ≤ q, q ≤ p, or p and q are not related by ≤.
Case 1. p ≤ q. Now δrλ(x0) < x0 ∀λ ∈ (0, 1), and using Lemmas 3.2 and 6.2, this

implies in particular that ∀λ ∈ (0, 1)

δrλ(q) ≤ p.(49)

On the other hand, it follows from p ≤ q and p �= q that p < q. This means that there
exist two subsets J and K of N , where J is a subset of N and K can be empty such
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that N = J ∪K and

pj < qj ∀j ∈ J,

pk = qk ∀k ∈ K.

This implies that there exists a λ∗ ∈ (0, 1) close to 1 such that

pj < (δrλ∗(q))j ∀j ∈ J,

(δrλ∗(q))k ≤ pk ∀k ∈ K.

This implies that p < δrλ∗(q) or that p and δrλ∗(q) are not related by ≤, contradicting
(49).

Case 2. q ≤ p. If q < p, then a contradiction is obtained using an argument
similar to that of Case 1.

Case 3. p and q are not related by ≤. We have δrλ(x0) < x0 ∀λ ∈ (0, 1), and using
Lemmas 3.2 and 6.2, this implies in particular that ∀λ ∈ (0, 1)

δrλ(p) ≤ q.(50)

On the other hand, since p and q, p �= q, are not related by ≤, there exist i, j ∈ N
with i �= j such that

pi < qi,

pj > qj .

This implies that there exists a λ̃ ∈ (0, 1) close to 1 such that

(δr
λ̃
(p))i < qi,

(δr
λ̃
(p))j > qj .

This implies that δr
λ̃
(p) and q are not related by ≤, contradicting (50). This concludes

the proof of item 1.
Next a proof of item 2 is given. Suppose that there exists a x0 ∈ R

n
+ such that

ω(x0) ⊂ Rx∗ ∪{0} contains two points p and q with p �= q. Since both p and q belong
to Rx∗ ∪ {0} and since Rx∗ ⊂ int(Rn

+), we may assume that p 	 q. However, it
follows from Lemma 6.1 that p and q cannot be related by <. Thus a contradiction
is obtained, and this proves item 2.

7. Discussion of the results. In this paper a particular class of positive homo-
geneous systems has been introduced for which the stability behavior with respect to
initial conditions in R

n
+ can be characterized by means of a simple criterion expressed

in Theorem 5.2. This contrasts with the case of homogeneous systems on R
n, where

in general no criteria for (asymptotic) stability are available.
In the following we will review the Perron–Frobenius theorem. Although this

theorem normally refers to discrete-time systems, we consider its linear continuous-
time version.

Consider the linear system

ẋ = Ax,(51)

where A is an irreducible Metzler matrix and x ∈ R
n. This system is cooperative and

irreducible in R
n
+ (in fact, also in R

n) and homogeneous of order τ = 0 with respect
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to the standard dilation map. Since (Ax)i ≥ 0 when xi = 0, R
n
+ is a forward invariant

set for system (51). Thus system (51) is a positive system.
For this class of systems the Perron–Frobenius theorem states that there exists a

unique eigenvector z in R
n
+ (up to multiplication with positive scalars) and such that

z ∈ int(Rn
+). Also, the eigenvalue γ associated with z is real and simple and has the

property that if γ′ is an eigenvalue of A and γ′ �= γ, then Re(γ′)< γ, where Re(γ′)
stands for the real part of γ′. The sign of γ then determines the stability behavior of
the zero solution of system (51): It is unstable if γ > 0, stable if γ ≤ 0, and GAS if
γ < 0. Furthermore, ∀x0 ∈ R

n
+ there exists a cx0 such that limt→+∞ eAtx0/e

γt = cx0
z.

Theorems 4.6 and 5.2 generalize the Perron–Frobenius theorem for linear cooper-
ative and irreducible systems to the class of homogeneous cooperative and irreducible
systems and therefore to a nonlinear context. We distinguish two cases.

Case 1. τ = 0. If the order of the homogeneous vector field equals zero, then
according to Theorem 4.6 there exists a unique invariant ray in R

n
+, and it belongs to

int(Rn
+). This ray plays the role of the unique eigenvector associated to the dominat-

ing eigenvalue featured in the Perron–Frobenius theorem for linear cooperative and
irreducible systems.

According to Theorem 5.2, the stability behavior of the zero solution with re-
spect to the initial conditions in R

n
+ is completely determined by the flow on the

unique invariant ray. This is reminiscent of the Perron–Frobenius theorem for linear
cooperative and irreducible systems, where the sign of the eigenvalue associated to
the unique eigenvector determines the stability behavior of the system. The only
difference is that the stability behavior in the linear case holds with respect to initial
conditions in R

n and not just in R
n
+.

It follows from Theorem 6.3 that the properties of the asymptotic behavior of
solutions of homogeneous order zero, systems which are cooperative and irreducible,
are similar to those of solutions of system (51).

Therefore the conclusions of the Perron–Frobenius theorem for linear coopera-
tive and irreducible systems remain valid for the class of homogeneous order zero
cooperative and irreducible systems, provided one restricts initial conditions to R

n
+.

Case 2. τ > 0. If the order of the homogeneous vector field is strictly positive,
then according to Theorem 4.4 there is at least one invariant ray in R

n
+. It follows

from Theorem 4.6 that every invariant ray in R
n
+ belongs to int(Rn

+).
1. An invariant ray is unique in R

n
+ if it is stable or asymptotically stable. The

stability behavior of the zero solution with respect to the initial conditions
in R

n
+ is completely determined by the flow on this unique invariant ray.

Therefore the conclusions of the Perron–Frobenius theorem remain valid for
the class of homogeneous systems of positive order, which are cooperative and
irreducible, if the invariant ray is stable or asymptotically stable, provided
one restricts initial conditions to R

n
+.

2. If an invariant ray is unstable, then it is not necessarily unique. In case there
are several invariant rays in R

n
+, all of them belong to int(Rn

+), and they are
all unstable. The zero solution is then unstable. This is in contrast with
the Perron–Frobenius theorem for linear cooperative and irreducible systems,
where the eigenvector associated with the dominating eigenvalue is always
unique.
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Abstract. This work is concerned with the maximum principles for optimal control problems
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1. Introduction. In this paper, we shall study the optimal control problems
governed by 3-dimensional Navier–Stokes equations{

∂y
∂t − γ∆y + y · ∇y +∇p = D0u+ f0 in Ω× (0, T ),
∇ · y = div y = 0 in Ω× (0, T ); y = 0 in ∂Ω× (0, T )(1.1)

with some types of state constraints, which we shall state later. Here and throughout
this paper, we shall omit (x, t) in all functions of (x, t) if there is no ambiguity. In
(1.1), Ω is a bounded and open subset of R3 with smooth boundary ∂Ω, T > 0 is a
given constant, γ > 0 is the viscosity constant, f0 ∈ L2(0, T ;L2(Ω)) is a source field,
y(x, t) = (y1(x, t), y2(x, t), y3(x, t)) is the velocity vector, ∇ · y is the divergence of y,
p stands for the pressure, and u ∈ L2(0, T ;U) is input; here we have denoted by U a
real Hilbert space and by D0 a linear bounded operator from U to (L2(Ω))3.

Let us introduce some functional spaces to represent the Navier–Stokes equa-
tion (1.1) as infinite dimensional differential equations. For the details, we refer the
reader to [7] and [18].

Let V be the divergence free subspace of (H1
0 (Ω))

3; i.e.,

V = {y ∈ (H1
0 (Ω))

3 : ∇ · y = 0 in Ω}

and

H = {y ∈ (L2(Ω))3 : ∇ · y = 0 in Ω; n · y = 0 on ∂Ω}.

The space H is endowed with the usual (L2(Ω))3-norm denoted by | · | and V with
the norm ‖ · ‖ defined by

‖y‖2 =
∑

1≤i≤3

∫
Ω

|∇yi|2dx, y = (y1, y2, y3).
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We shall denote by 〈·, ·〉 the scalar product of H and the pairing between V and its
dual V ∗ with the norm ‖ · ‖∗. Let A ∈ L(V, V ∗) and b : V ×V ×V → R be defined by

〈Ay, z〉 =
∑

1≤i,j≤3

∫
Ω

∇yi · ∇zidx ∀ y, z ∈ V(1.2)

and

b(y, z, w) =
∑

1≤i,j≤3

∫
Ω

yiDizjwjdx ∀ y, z, w ∈ V,(1.3)

respectively, where Di =
∂
∂xi
. We define B : V → V ∗ by

〈B(y), w〉 = b(y, y, w) ∀ y, w ∈ V.(1.4)

Let f(t) = Pf0(t) and D ∈ L(U,H) be given by D = PD0, where P : (L
2(Ω))3 →

H is the projection on H. Then we may rewrite the state system (1.1) as

y′(t) + γAy(t) +By(t) = Du(t) + f(t) a.e. in (0, T ).(1.5)

The general functional framework which will be in effect throughout this paper
is explained in the following hypotheses.

(H1) V and H are two real Hilbert spaces with the norms ‖·‖, | · | and the scalar
products 〈·, ·〉V and 〈·, ·〉. Moreover, V ⊂ H ⊂ V ∗ algebraically and topologically with
compact injection, where we identify H with its own dual and denote by V ∗ the dual
space of V , with norm denoted by ‖ · ‖∗. Denote again by 〈·, ·〉 the pairing between
V and V ∗.

(H2) γ > 0 is a constant. A ∈ L(V, V ∗) is symmetric and coercive, satisfying
that 〈Ay, y〉 = ‖y‖2 for all y ∈ V . We set D(A) = {y ∈ V : Ay ∈ H} and denote
by A again the restriction of A to H. Then, as we know (cf. [3]), A is a positive,

self-adjoint operator, and D(A
1
2 ) = V .

(H3) The operator B : V → V ∗ is defined by (1.4), where b : V × V × V → R
is a trilinear continuous functional satisfying

b(y, z, w) = −b(y, w, z) ∀ y, z, w ∈ V,(1.6)

|b(y, z, w)| ≤ C ·
{ |y| 12 ‖y‖ 1

2 ‖z‖‖w‖,
‖y‖‖z‖‖w‖ 1

2 |w| 12 ∀ y, z, w ∈ V,(1.7)

|b(y, z, w)| ≤ C ·


‖y‖ 1

2 |Ay| 12 ‖z‖|w| ∀ y ∈ D(A), z ∈ V,w ∈ H,
‖y‖‖z‖ 1

2 |Az| 12 |w| ∀ y ∈ V, z ∈ D(A), w ∈ H,
|y|‖z‖‖w‖ 1

2 |Aw| 12 ∀ y ∈ H, v ∈ V,w ∈ D(A),
(1.8)

where C denotes several positive constants.
(H4) D ∈ L(U,H), f ∈ L2(0, T ;H), where U is a real Hilbert space with the

norm denoted by | · |U and the scalar product 〈·, ·〉U .
Recall that assumption (H3) is satisfied for b given by (1.3) (see [18]). We shall

denote by Y the space W 1,2([0, T ];H) ∩ L2(0, T ;D(A)), where W 1,2([0, T ];H) is the
space of all absolutely continuous functionals y : [0, T ] → H such that y′ = dy

dt ∈
L2(0, T ;H). We have (cf. [3]) that Y ⊂ C([0, T ];V ). We shall denote by W (0, T ) the
space {y : y ∈ L2(0, T ;V ), y′ ∈ L2(0, T ;V ∗)} endowed with the norm ‖y‖W (0,T ) =

[
∫ T
0
‖y‖2dt+ ∫ T

0
‖y′‖∗dt] 12 . We have (cf. [12, Chapter 4]) that W (0, T ) ⊂ C([0, T ];H).



CONTROL OF 3-DIMENSIONAL NAVIER–STOKES EQUATIONS 585

The cost functional we shall study in this paper is as follows:

L(y, u) =

∫ T

0

[g(t, y(t)) + h(u(t))]dt,(1.9)

where we assume the following.
(H5) g : [0, T ]× V → R+ is measurable in the first variable, g(t, 0) ∈ L∞(0, T ),

and for every r > 0, there exists an Lr > 0 independent of t such that

|g(t, y1)− g(t, y2)| ≤ Lr‖y1 − y2‖ ∀ t ∈ [0, T ], ‖y1‖+ ‖y2‖ ≤ r.(1.10)

h : U → R̄ ≡ (−∞,∞] is convex and lower semicontinuous. Moreover, there exist
c1 > 0 and c2 ∈ R such that

h(u) ≥ c1|u|2U − c2 ∀ u ∈ U.(1.11)

In section 4, we shall give some explicit forms of the integrand g(t, y), such as
| curl y|2, which physically motivate the results.

In this paper, we shall derive the Pontryagin maximum principle for optimal
control governed by system (1.5) with three types of state constraints, including a
type of integral, a type of two point boundary (time variable), and a periodic type.
The periodic type is a special case of a type of two point boundary. However, in the
maximum principle for optimality of the two point boundary case, obtained in this
paper (Theorem 2.4), we do not know if the multiplier is nonzero, i.e., if the maximum
principle is qualified for the two point boundary case. Even for the periodic case,
we cannot get a qualified maximum principle by the same methods as those used
in getting the maximum principle for the two point boundary case. Such difficulty
exists also for the optimal control governed by a semilinear parabolic equation with
a two point boundary state constraint (cf. [16], [17], and [20]). This stimulates us to
investigate, in particular, the periodic case to derive a qualified maximum principle.
Now we formulate our problems as follows.

The first optimal control problem (P1) we shall study in this paper is as follows.
(P1) inf L(y, u) over all (y, u) ∈ Y × L2(0, T ;U) subject to{

y′ + γAy +By = Du+ f a.e. in (0, T ),
y(0) = y0,

(1.12)

with

F (y) ∈W,(1.13)

where y0 ∈ V and we assume the following.
(H6) F : L2(0, T ;V ) → X is continuously Frechet differentiable, where X is a

Banach space with the dual X∗ strictly convex, and W ⊂ X is a closed and convex
subset.

The second problem (P2) we shall study is as follows.
(P2) inf L(y, u) over all (y, u) ∈ Y × L2(0, T ;U) subject to (1.5) and

(y(0), y(T )) ∈ S,(1.14)

where we assume the following.
(H7) S ⊂ H ×H is a closed and convex subset.
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The third problem (P3) we shall study is as follows.

(P3) inf L(y, u) =
∫ T
0
[g(t, y) + h(u)]dt over all (y, u) ∈ Y × L2(0, T ;U) subject

to (1.5) and

y(0) = y(T ).(1.15)

In (P3), we modify the assumption on the functional g as follows.
(H8) g : [0, T ]×H → R+ is measurable in the first variable, g(t, 0) ∈ L∞(0, T ),

and for each r > 0, there exists an Lr > 0 independent of t such that

|g(t, y1)− g(t, y2)| ≤ Lr|y1 − y2| ∀ t ∈ [0, T ]; |y1|+ |y2| ≤ r.

For both physical and mathematical reasons, we consider the space Y as the
state space in our problems. Physically, one needs the optimal state to have some
smoothness, and, mathematically, because of the complexity of operator B, it is very
difficult to analyze the linearized system corresponding to (1.12) around a state y,
which is a weak solution to (1.12); i.e., y ∈ L2(0, T ;V ) and y′ ∈ L1(0, T ;V ∗), even
though such a weak solution exists for each u ∈ L2(0, T ;U) (cf. [7] and [18]). However,
as we know (cf. [7] and [18]), for each y0 ∈ V , u ∈ L2(0, T ;U), there exists T ∗ ≡
T ∗(y0, u) such that (1.12) has a unique solution in W

1,2([0, T1];H) ∩ L2(0, T1;D(A))
for all T1 < T ∗. Thus, for T > 0 given, (1.7) may have no solution inW 1,2([0, T ];H)∩
L2(0, T ;D(A)) for each u ∈ L2(0, T ;U) and y0 ∈ V . So problems (P1), (P2), and (P3)
are non-well-posed optimal control problems.

One of the main difficulties is that system (1.2) may have no solution in Y for each
u ∈ L2(0, T ;U), and the estimates on the operator B defined in (1.4) are weaker than
those for the 2-dimensional Navier–Stokes equation. This makes us unable to apply
the general techniques in, for instance, [3], [8], [17], and [19] to study the variations of
the state with respect to the controls and to study the adjoint system and linearized
system corresponding to (1.5). We overcome such difficulty by thinking of system (1.5)
as a constraint mixed by the state and the control and then by introducing kinds
of penalty functionals so that we may transfer the original non-well-posed control
problems into optimization problems, where the variables y and u are independent.
Thus we do not need to analyze the variations of the state with respect to the control.
Instead, we use some special way involving the generic solvability theorem for linear
parabolic evolution systems to construct the adjoint state. We believe that there
are other ways to approach such problems. For instance, we may consider the local
optimal control problem governed by (1.5), which means that the control set is taken
as Uad = {u ∈ L2(0, T ;U) : ‖u‖L2(0,T ;U) ≤ r} for some small r > 0 depending on T . In
such a way, system (1.12) has a unique solution y ∈ Y corresponding to each u ∈ Uad.
However, we believe the methods deployed in this paper are more constructive.

Another difficulty is caused by the involvement of state constraints (1.13) and
(1.14) and the integrand g(t, y), which is allowed to be from R+ × V to R (instead of
from R+×H to R). This makes the analyses of the linearized system and the adjoint
system of (1.5) more complicated.

For other literature on optimal control problems governed by Navier–Stokes equa-
tions and related to this paper, we cite [3], [4], [5], [6], [8], [9], [11], [12], and [13].

The outline of this paper is as follows. In section 2, we give and prove the
necessary conditions for optimalities of problems (P1) and (P2). In section 3, we get
the first order necessary conditions of optimality for problem (P3) in terms of the
Euler–Lagrange system. In section 4, we give some examples covered by the form of
cost functionals (1.9) and the form of state constraints (1.13) and (1.14).
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2. Optimal control with state constraint of integral type. Let (y∗, u∗)
be optimal for problem (P1). In this section, we shall state and prove the necessary
conditions for (y∗, u∗). First we recall approximations gε of g and hε of h as follows.
For the details, we refer the reader to [1, Chapter 1]. Let gε : [0, T ] × V → R+ be
defined by

gε(t, y) =

∫
Rm

g(t, Pmy − εΛmτ)ρm(τ)dτ ∀ y ∈ V,(2.1)

where m = [ε−1], ρm is a mollifier on Rm, Pm : V → Xm is the projection operator
from H to Xm, which is the finite dimensional space generated by {ei}mi=1, where
{ei}∞i=1 is an orthonormal basis in V , and Λm : Rm → Xm is defined by Λm(τ) =∑m
i=1 τiei, τ = (τ1, . . . , τm). Let hε : U → R be defined by

hε(u) = inf{|u− v|2U/(2ε) + h(v) : v ∈ U}.(2.2)

Now, for each ε > 0, we define a penalty functional Lε : Y × L2(0, T ;U)→ R by

Lε(y, u) =

∫ T

0

[gε(t, y) + hε(u)]dt+
1

4

∫ T

0

‖y − y∗‖4dt+ 1
2

∫ T

0

|u− u∗|2dt

+
1

2ε

∫ T

0

|y′ + γAy +By −Du− f |2dt+ 1

2ε
[ε+ dW (F (y))]

2.

(2.3)

Since y ∈ Y ⊂ C([0, T ];V ), Lε is well defined, and we may define Y0 = {y ∈ Y :
y(0) = y0}. Consider the approximation problem (P1ε) as follows.

(P1ε) inf Lε(y, u) over all (y, u) ∈ Y0 × L2(0, T ;U).
We have the following existence and approximation results for problem (P1ε).
Lemma 2.1. For each ε > 0, problem (P1ε) has at least one solution.
Proof. It is clear that inf(P1ε) > −∞. Let (yn, un) ∈ Y0 × L2(0, T ;U) be such

that

inf(P1ε) ≤ Lε(yn, un) ≤ inf(P1ε) +
1

n
, n = 1, 2, . . . .(2.4)

By (2.3) and (2.4), we imply that

‖un‖L2(0,T ;U) ≤ C(2.5)

and

‖yn‖L4(0,T ;V ) ≤ C;(2.6)

here and throughout the proof of Lemma 2.1, we shall denote by C several positive
constants independent of n. By (2.3) and (2.4) again, there exist vn ∈ L2(0, T ;H),
n = 1, 2, . . . , such that

‖vn‖L2(0,T ;H) ≤ C(2.7)

and {
y′n + γAyn +Byn = Dun + vn a.e. in (0, T ),
yn(0) = y0.

(2.8)
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Multiplying (2.8) by yn, integrating on (0, t), using Gronwall’s inequality, and
noting that 〈Byn, yn〉 = 0, which is from (1.6), we get that

|yn(t)|2 +
∫ T

0

‖yn(t)‖2dt ≤ C ∀ t ∈ [0, T ].(2.9)

It follows from (1.8) that

∫ t

0

|〈Byn, Ayn〉|ds ≤ C

∫ t

0

‖yn‖ 3
2 |Ayn| 32 ds

≤ γ

4

∫ t

0

|Ayn|2ds+ Cγ

∫ t

0

‖yn‖6ds;
(2.10)

here and throughout what follows, Cγ denotes several positive constants independent
of n but dependent on γ.

Multiplying (2.8) by Ayn and integrating on (0, t), by (2.10), (2.5), and (2.7) we
get that

‖yn(t)‖2 + γ

∫ T

0

|Ayn(t)|2dt ≤ Cγ

(
1 +

∫ t

0

‖yn(s)‖4‖yn(s)‖2ds
)
.

Then, by (2.6) and by Gronwall’s inequality, we obtain that

‖yn(t)‖2 + γ

∫ T

0

|Ayn(t)|2dt ≤ C ∀ t ∈ [0, T ].(2.11)

Now it follows from (1.8) and (2.11) that, for each w ∈ H,

|〈Byn, w〉| = |b(yn, yn, w)| ≤ C‖yn‖ 3
2 |Ayn| 12 |w| ≤ C|Ayn| 12 |w|,

which implies that

∫ T

0

|Byn|2ds ≤ C.(2.12)

By (2.11), (2.12), and (2.8), we obtain that

‖y′n‖L2(0,T ;H) ≤ C.(2.13)

Thus by (2.5), (2.6), (2.11), (2.13), the Arezala–Ascoli theorem, and the Aubin com-
pactness theorem, we conclude that there exist (ỹ, ũ) ∈ Y × L2(0, T ;U) and subse-
quences of {yn} and {un}, still denoted by themselves, such that, as n→∞,

yn → ỹ
strongly in C([0, T ];H) ∩ L2(0, T ;V ),
weakly in L2(0, T ;D(A)) ∩ L4(0, T ;V ),

(2.14)

y′n → ỹ′ weakly in L2(0, T ;H),(2.15)

un → ũ weakly in L2(0, T ;U).(2.16)

Next we claim that

Byn → Bỹ strongly in L2(0, T ;H) as n→∞.(2.17)
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To this end, we observe first that

|〈Byn −Bỹ, w〉| ≤ |b(yn − ỹ, yn, w)|+ |b(yn, yn − ỹ, w)|
≤ C[‖yn − ỹ‖ 1

2 |A(yn − ỹ)| 12 ‖yn‖+ ‖yn‖ 1
2 |Ayn| 12 ‖yn − ỹ‖]|w|

≤ C[‖yn − ỹ‖ 1
2 |A(yn − ỹ)| 12 + |Ayn| 12 ‖yn − ỹ‖]|w|

for each w ∈ H. Since ‖yn − ỹ‖C([0,T ];V ) ≤ C, which is from (2.11), the above
inequality implies that∫ T

0

|Byn −Bỹ|2dt ≤ C

∫ T

0

[‖yn − ỹ‖|A(yn − ỹ)|+ |Ayn|‖yn − ỹ‖2]dt

≤ C



[∫ T

0

‖yn − ỹ‖2dt
] 1

2
[∫ T

0

|A(yn − ỹ)|2dt
] 1

2

+ ‖yn − ỹ‖C([0,T ];V )

[∫ T

0

|Ayn|2dt
] 1

2
[∫ T

0

‖yn − ỹ‖2dt
] 1

2




→ 0 as n→∞.

By (2.14), (2.15), (2.16), and (2.17), we infer that

limn→∞

∫ T

0

‖yn − y∗‖4dt ≥
∫ T

0

‖ỹ − y∗‖4dt(2.18)

and

limn→∞

∫ T

0

|y′n + γAyn +Byn −Dun − f |2dt ≥
∫ T

0

|ỹ′ + γAỹ +Bỹ −Dũ− f |2dt.
(2.19)

By (1.10), (2.1), (2.11), and (2.14), we imply that∫ T

0

|gε(t, yn)− gε(t, ỹ)|dt ≤ L

∫ T

0

‖yn − ỹ‖dt→ 0 as n→∞,(2.20)

where L > 0 is independent of n. Since hε is convex and continuous, it follows from
(2.16) that

limn→∞

∫ T

0

hε(un)dt ≥
∫ T

0

hε(ũ)dt.(2.21)

By (2.14) and (H6), F (yn)→ F (ỹ) as n→∞. Thus we have that
1

2ε
(ε+ dW (F (yn)))

2 → 1

ε
(ε+ dW (F (ỹ)))

2 as n→∞.(2.22)

On the other hand, since yn(0) = y0 and yn(0) → ỹ(0) strongly in H, we have
that ỹ(0) = y0, which shows that ỹ ∈ Y0. Thus it follows immediately from (2.4) and
(2.18)–(2.22) that (ỹ, ũ) is optimal for problem (P1ε). This completes the proof.

Lemma 2.2. Let (yε, uε) be optimal for problem (P1ε). Then there exists a gen-
eralized subsequence of (yε, uε), still denoted by itself, such that

uε → u∗ strongly in L2(0, T ;U), yε → y∗ strongly in Y as ε→ 0.
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Remark . We say yε → y∗ strongly in Y as ε → 0 if yε → y∗ strongly in
L2(0, T ;D(A)) ∩ C([0, T ];V ) and dyε/dt→ dy∗/dt strongly in L2(0, T ;H) as ε→ 0.

Proof. Since (yε, uε) is optimal for (P1ε), it follows from (2.3) that

Lε(yε, uε) ≤ Lε(y
∗, u∗) =

∫ T

0

[gε(t, y∗) + hε(u
∗)]dt+

ε

2
.(2.23)

By (2.1) and by the same argument as in [1, Chapter 3], we get that

|gε(t, y∗)− g(t, y∗)| ≤ L(‖y∗ − Pmy
∗‖+ ε),(2.24)

where L > 0 is a constant independent of ε, and the projection operator Pm was given
in (2.1). By (2.23), (2.24), and the same argument as in [17], we get that

limε→0L(yε, uε) ≤ L(y∗, u∗).(2.25)

On the other hand, it follows from (2.3) and (2.25) that

‖yε‖L4(0,T,V ) + ‖uε‖L2(0,T ;U) ≤ C,(2.26) ∫ T

0

|y′ε + γAyε +Byε −Duε − f |2dt ≤ 2Cε,(2.27)

and

[ε+ dW (F (yε))]
2 ≤ 2Cε.(2.28)

Here and throughout the proof of Lemma 2.2, we shall denote by C several positive
constants independent of ε.

By (2.27), there exists a vε ∈ L2(0, T ;H) for each ε > 0 such that ‖vε‖L2(0,T ;H) →
0 as ε→ 0, and {

y′ε + γAyε +Byε = Duε + vε + f a.e. in (0, T ),
yε(0) = y0.

(2.29)

By (2.26) and (2.29), using the same argument as in the proof of Lemma 2.1, we
obtain that there exist ỹ ∈ Y , ũ ∈ L2(0, T ;U), and subsequences of {yε} and {uε},
still denoted by themselves, such that, as ε→ 0,

yε → ỹ
strongly in C([0, T ];H) ∩ L2(0, T ;V ),
weakly in L2(0, T ;D(A)),

(2.30)

‖yε‖C([0,T ];V ) ≤ C,(2.31)

y′ε → ỹ′ weakly in L2(0, T ;H),(2.32)

and

uε → ũ weakly in L2(0, T ;U).(2.33)

By (2.30) and (2.31) and by the same argument as in the proof of Lemma 2.1, we
deduce that

Byε → By∗ strongly in L2(0, T ;H) as ε→ 0.(2.34)
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Thus, by (2.30)–(2.34), we may pass to the limit for ε→ 0 in (2.29) to derive that{
ỹ′ + γAỹ +Bỹ = Dũ+ f a.e. in (0, T ),
ỹ(0) = y0.

(2.35)

It follows from (2.30) and (H6) that

F (yε)→ F (ỹ) strongly in X as ε→ 0.(2.36)

However, by (2.28), we have that dW (F (yε)) → 0 as ε → 0, which, combined with
(2.36), indicates that

F (ỹ) ∈W,(2.37)

since W is closed. Thus, by (2.35) and (2.37), we infer that

L(y∗, u∗) ≤ L(ỹ, ũ)(2.38)

because (y∗, u∗) is optimal for (P ).
Now by (2.1), (1.10), and (2.31), one can get that

|gε(t, yε)− gε(t, ỹ)| ≤ L‖yε − ỹ‖,(2.39)

lim
ε→0

gε(t, ỹ(t)) = g(t, ỹ(t)) ∀ t ∈ [0, T ],(2.40)

|gε(t, ỹ(t))− g(t, ỹ(t))| ≤ L(‖ỹ − Pmỹ‖+ ε),(2.41)

where L > 0 is independent of ε, and Pm was given in (2.1). Then, by (2.39), (2.40),
(2.41), and the Lebesgue dominated convergence theorem, we get that

∫ T

0

|gε(t, yε)− g(t, ỹ)|dt ≤
∫ T

0

[|gε(t, yε)− gε(t, ỹ)|+ |gε(t, ỹ)− g(t, ỹ)|]dt

≤
∫ T

0

[L‖yε(t)− ỹ(t)‖+ |gε(t, ỹ)− g(t, ỹ)|]dt
→ 0 as ε→ 0.

(2.42)

By the same argument as in [1, Chapter 5], we deduce that

limε→0

∫ T

0

[
hε(uε) +

1

2
|uε − u∗|2

]
dt ≥

∫ T

0

[
h(ũ) +

1

2
|ũ− u∗|2

]
dt.(2.43)

Now it follows from (2.38), (2.42), and (2.43) that

limε→0Lε(yε, uε) ≥ L(ỹ, ũ) ≥ L(y∗, u∗).(2.44)

Thus, by (2.25) and (2.44), we infer that ũ = u∗, ỹ = y∗,

uε → u∗ strongly in L2(0, T ;U) as ε→ 0,(2.45)

and

yε → y∗ strongly in L4(0, T ;V ) as ε→ 0.(2.46)
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Finally, we shall prove that yε → y∗ strongly in Y as ε→ 0. To this end, we first
observe that{

(yε − y∗)′ + γA(yε − y∗) +Byε −By∗ = D(uε − u∗) + vε a.e. in (0, T ),
(yε − y∗)(0) = 0.(2.47)

Multiplying (2.47) by A(yε − y∗) and integrating on (0, t), we get

1

2
‖yε(t)− y∗(t)‖2 + γ

∫ T

0

|A(yε − y∗)|2dt

≤ γ

2

∫ T

0

|A(yε − y∗)|2dt+ Cδ

{∫ T

0

|Byε −By∗|2dt+
∫ T

0

[|D(uε − u∗)|2U + |vε|2]dt
}
.

This together with (2.34) and (2.47) yields that

y′ε → (y∗)′ strongly in L2(0, T ;H) as ε→ 0.

Hence yε → y∗ strongly in Y as ε→ 0. This completes the proof.
Now we are in a position to state and prove the necessary conditions for (y∗, u∗).

Let yε be a solution to problem (P1ε), ε > 0, and define the operator B
′(yε(t)) : V →

V ∗ for each t ∈ [0, T ] by
〈B′(yε(t))z, w〉 = b(z, yε(t), w) + b(yε(t), z, w) ∀ z, w ∈ V.(2.48)

It is clear that B′(yε(t)) ∈ L(V, V ∗) for each t ∈ [0, T ]. The adjoint operator of
B′(yε(t)), [B′(yε(t))]∗ is given by

〈[B′(yε(t))]∗q, w〉 = b(w, yε(t), q) + b(yε(t), w, q).(2.49)

Because {yε} is bounded in C([0, T ];V ), it follows from (1.7), (2.48), and (2.49) that
‖B′(yε(t))ϕ‖∗ ≤ C‖yε‖‖ϕ‖ ≤ C‖ϕ‖ ∀ ϕ ∈ V,(2.50)

‖[B′(yε(t))]∗ϕ‖∗ ≤ C‖yε‖‖ϕ‖ ≤ C‖ϕ‖ ∀ ϕ ∈ V,(2.51)

|〈B′(yε(t))ϕ,ϕ〉| ≤ C‖yε‖|ϕ| 12 ‖ϕ‖ 3
2 ≤ γ

2
‖ϕ‖2 + Cγ |ϕ|2 ∀ ϕ ∈ V,(2.52)

and

|〈[B′(yε)]∗ϕ,ϕ〉| ≤ γ

2
‖ϕ‖2 + Cγ |ϕ|2 ∀ ϕ ∈ V.(2.53)

By (2.50)–(2.53), using a standard existence result for linear evolution equations
(cf. [12, Theorem 1.2, Chapter 3]), the Cauchy problems{

ϕ′ + γAϕ+B′(yε)ϕ = g a.e. in (0, T ),
ϕ(0) = x

(2.54)

and {−ψ′ + γAψ + [B′(yε)]∗ψ = g a.e. in (0, T ),
ψ(T ) = x

(2.55)

have unique solutions ϕ and ψ in W (0, T ) for each g ∈ L2(0, T ;V ∗) and x ∈ H,
respectively. Moreover,

‖ϕ′‖2L2(0,T ;V ∗) + ‖ϕ‖2L2(0,T ;V ) ≤ C(‖g‖2L2(0,T ;V ∗) + |x|2),(2.56)
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and

‖ψ′‖2L2(0,T ;V ∗) + ‖ψ‖2L2(0,T ;V ) ≤ C(‖g‖2L2(0,T ;V ∗) + |x|2).(2.57)

If g ∈ L2(0, T ;H) and x ∈ V , then ϕ,ψ ∈ Y (cf. [1]).
Similar to (2.48), we may define operator B′(y∗(t)) : V → V ∗ and obtain similar

estimates to (2.56) and (2.57).
In order to get the necessary conditions for (y∗, u∗), we need one more assumption,

as follows.
(H9) The set F ′(y∗)Rr −W has finite codimensionality in X for some r > 0,

where

M(0, r) = {v ∈ L2(0, T ;U) : ‖v‖L2(0,T ;U) ≤ r}(2.58)

and

Rr = {z ∈ Y : z′ + γAz +B′(y∗)z = Dv a.e. in (0, T )

and z(0) = 0 for some v ∈M(0, r)}.(2.59)

For the definition of a set to be finite codimensional in X and for related results,
we refer the reader to [14]. Throughout what follows, we shall denote by ∂g(t, y∗) the
generalized derivative of g to the second variable at y∗ and by ∂h(u∗) the subdifferen-
tial of h at u∗. For the details, we refer the reader to [1]. We denote by 〈·, ·〉X∗,X the
pairing between X∗ and X and by [F ′(y∗)]∗ and D∗ the adjoint operators of F ′(y∗)
and D, respectively.

Theorem 2.3. Suppose that (H1)–(H6) hold. Let (y
∗, u∗) be optimal for problem

(P1). Suppose further that (H7) holds. Then there exists a triplet (λ0, ϕ, ξ0) ∈ R ×
L2(0, T ;V ) ∩W (0, T )×X∗ with (λ0, ξ0) �= 0 such that{−p′ + γAp+ [B′(y∗)]∗p+ [F ′(y∗)]∗ξ0 ∈ −λ0∂g(t, y

∗) a.e. in (0, T ),
p(T ) = 0,

(2.60)

〈ξ0, w − F (y∗)〉X∗,X ≤ 0 ∀ w ∈W,(2.61)

and

D∗p(t) ∈ λ0∂h(u
∗(t)) a.e. in (0, T ).(2.62)

Moreover, if F ′(y∗) is injective, then (λ0, p) �= 0.
Proof. Let Z = {y ∈ Y : y(0) = 0}. For z ∈ Z, v ∈ L2(0, T ;U), we set

yρε = yε + ρz, uρε = uε + ρv, where (yε, uε) is optimal for problem (P1ε). It is clear
that yρε ∈ Y0, u

ρ
ε ∈ L2(0, T ;U),

yρε → yε strongly in Y as ρ→ 0,

and

uρε → uε strongly in L
2(0, T ;U) as ρ→ 0.

One can easily check that

(Byρε −Byε)/ρ = B′(yε)z + ρB(yε).(2.63)
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Hence

(Byρε −Byε)/ρ→ B′(yε)z strongly in L2(0, T ;H) as ρ→ 0.(2.64)

It follows from (2.64) that

1

2ερ

∫ T

0

[|(yρε )′ + γAyρε +Byρε −Duρε − f |2 − |y′ε + γAyε +Byε −Duε − f |2]dt

→
∫ T

0

〈qε, z′ + γAz +B′(yε)z −Dv〉dt as ρ→ 0,

(2.65)

where qε =
1
ε [y

′
ε+γAyε+Byε−Duε−f ]. Since 〈Ay, z〉 = 〈y, z〉V for all y ∈ D(A), z ∈

V , we infer that

lim
ρ→0

1

4ρ

∫ T

0

[‖yρε − y∗‖4 − ‖yε − y∗‖4]dt =
∫ T

0

‖yε − y∗‖2〈yε − y∗, z〉V dt

=

∫ T

0

‖yε − y∗‖2〈A(yε − y∗), z〉dt.
(2.66)

By the same argument as in [1, Chapter 5], we see that

lim
ρ→0

1

ρ

∫ T

0

[gε(t, yρε )− gε(t, yε)]dt =

∫ T

0

〈∇gε(t, yε), z〉dt(2.67)

and

lim
ρ→0

1

ρ

∫ T

0

{
[hε(u

ρ
ε)− hε(uε)] +

1

2
[‖uρε − u∗‖2 − ‖uε − u∗‖2]

}
dt

=

∫ T

0

〈∇hε(uε) + uε − u∗, u〉Udt.
(2.68)

By the same argument as in [21], we get that

lim
ρ→0

[(ε+ dW (F (y
ρ
ε )))

2 − (ε+ dW (F (yε)))
2]

=
ε+ dW (F (yε))

ε
〈ξε, F ′(yε)z〉X∗,X ,

(2.69)

where ∇gε(t, yε) denotes the gradient of gε to the second variable at yε and ∇hε(uε)
denotes the gradient of hε at uε, while ξε ∈ ∂dW (F (yε)). Moreover,

‖ξε‖X∗ =

{
1 if F (yε) /∈W,
0 if F (yε) ∈W,

(2.70)

because W is convex and closed and X∗ is strictly convex (cf. [15, Chapter 5]).
Since (Lε(y

ρ
ε , u

ρ
ε) − Lε(yε, uε))/ρ ≥ 0 for all ρ > 0, it follows from (2.3) and

(2.65)–(2.69) that

0 ≤ λε

∫ T

0

[〈∇gε(t, yε), z〉+ 〈∇hε(uε), v〉U
+ ‖yε − y∗‖2〈A(yε − y∗), z〉+ 〈uε − u∗, v〉U ]dt

+

∫ T

0

〈pε, z′ + γAz +B′(yε)z −Dv〉dt

+

∫ T

0

〈[F ′(yε)]∗ξε, z〉dt ∀ z ∈ Z, v ∈ L2(0, T ;U),

(2.71)
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where

λε =
ε

ε+ dW (F (yε))
, pε = λεqε ∈ L2(0, T ;H).(2.72)

By taking z = 0 in (2.71), we obtain that

D∗pε = λε∇hε(uε) + λε(uε − u∗) a.e. in (0, T ),(2.73)

while, by taking v = 0 in (2.71), we get that

0 =

∫ T

0

〈λε∇gε(t, yε) + [F ′(yε)]∗ξε + λε‖yε − y∗‖2A(yε − y∗), z〉dt

+

∫ T

0

〈pε, z′ + γAz +B′(yε)z〉dt ∀ z ∈ Z.
(2.74)

We may regard (2.73) and (2.74) as the necessary conditions for (yε, uε). Now we are
in a position to pass to the limit for ε → 0 in (2.73) and (2.74) to derive (2.62) and
(2.60), respectively.

First we deal with (2.73). Note that αε ≡ λε∇gε(t, yε) + [F ′(yε)]∗ξε + λε‖yε −
y∗‖2A(yε − y∗) ∈ L2(0, T ;V ∗) and {αε}ε>0 is bounded in L

2(0, T ;V ∗).
By (2.55), we may let pε1 ∈W (0, T ) be the solution to{−p′ε1 + γApε1 + [B

′(yε)]∗pε1 = −αε a.e. in (0, T ),
pε1(T ) = 0.

(2.75)

Multiplying (2.75) by z and integrating on (0, t), we get that∫ T

0

〈pε1, z′ + γAz +B′(yε)z〉dt = −
∫ T

0

〈αε, z〉dt.

This together with (2.74) implies that∫ T

0

〈pε − pε1, z
′ + γAz +B′(yε)z〉dt = 0 ∀ z ∈ Z.(2.76)

By (2.54), for each g ∈ L2(0, T ;H), there exists z ∈ Z such that z′ + γAz +
B′(yε)z = g in (0, T ). Thus it follows from (2.76) that pε(t) = pε1(t) a.e. in (0, T ).
So pε ∈W (0, T ) and satisfies

‖p′ε‖2L2(0,T ;V ∗) + ‖pε‖2L2(0,T ;V ) ≤ C‖αε‖2L2(0,T ;V ∗) ≤ C.(2.77)

By the Aubin compactness theorem and the trace theorem (cf. [13, Theorem 3.1
of Chapter 1]), there exist p ∈W (0, T ) and a subsequence of pε, still denoted by itself,
such that

pε → p strongly in L2(0, T ;H) weakly in L2(0, T ;V ) as ε→ 0,

p′ε → p′ weakly in L2(0, T ;V ∗) as ε→ 0,

pε(0)→ p(0) weakly in H as ε→ 0.

(2.78)

By (2.70) and (2.72), we have that

1 ≤ λε + ‖ξε‖X∗ ≤ 2 ∀ ε > 0.(2.79)
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Thus there exist generalized subsequences of λε and ξε such that

λε → λ0 as ε→ 0,(2.80)

and

ξε → ξ0 weakly star in X
∗ as ε→ 0.(2.81)

By Lemma 2.2 and (2.78), using the same argument as in [2, (1)], we may pass
to the limit for ε→ 0 in (2.73) to derive (2.62).

Next we deal with (2.74), i.e., pass to the limit for ε→ 0 in (2.74).
By Lemma 2.2 and by the same argument as in [1, Chapter 5], we infer that

∇gε(t, yε)→ β weakly in L2(0, T ;V ∗) and β(t) ∈ ∂g(t, y∗(t)) a.e. in (0, T ).(2.82)

By (H6), Lemma 2.2, and (2.81), we obtain that

[F ′(yε)]∗ξε → [F ′(y∗)]∗ξ0 weakly in L2(0, T ;V ∗) as ε→ 0.(2.83)

By Lemma 2.2 again, we get that

‖yε − y∗‖2A(yε − y∗)→ 0 strongly in L2(0, T ;H).(2.84)

Now we claim that

[B′(yε)]∗pε → [B′(y∗)]∗p weakly star in L2(0, T ;V ∗) as ε→ 0.(2.85)

Here is the argument. For any w ∈ L2(0, T ;V ), we have from (1.7) and (2.49) that

∫ T

0

|〈[B′(yε)]∗pε − [B′(y∗)]∗p, w〉|dt

=

∫ T

0

|b(w, yε, pε) + b(yε, w, pε)− b(w, y∗, p)− b(y∗, w, p)|dt

≤
∫ T

0

|b(w, yε − y∗, pε)|dt+
∫ T

0

|b(w, y∗, pε − p)|dt

+

∫ T

0

|b(yε − y∗, w, pε)|dt+
∫ T

0

|b(y∗, w, pε − p)|dt

≤ C

[∫ T

0

‖w‖‖pε‖‖yε − y∗‖ 1
2 |yε − y∗| 12 dt+

∫ T

0

‖w‖‖y∗‖‖pε − p‖ 1
2 |pε − p| 12

]

≤ C


‖yε − y∗‖ 1

2

C([0,T ];V )‖yε − y∗‖ 1
2

C([0,T ];H)

[∫ T

0

‖w‖2dt
] 1

2
[∫ T

0

‖pε‖2dt
] 1

2

+ ‖y∗‖C([0,T ];V )

[∫ T

0

‖w‖2dt
] 1

2
[∫ T

0

‖pε − p‖2dt
] 1

4
[∫ T

0

|pε − p|2dt
] 1

4


.

(2.86)

By (2.78), (2.86), and Lemma 2.2, we obtain (2.85) as claimed.
Thus, by (2.78), (2.80), and (2.82)–(2.85), we may pass to the limit for ε→ 0 in

(2.75) to obtain that p ∈W (0, T ) and satisfies (2.60).
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On the other hand, since ξε ∈ ∂dW (F (yε)), we must have that
〈ξε, w − F (yε)〉X∗,X ≤ 0 ∀ w ∈W.

This implies that

〈ξε, w − F (y∗)〉X∗,X ≤ 〈ξε, F (yε)− F (y∗)〉X∗,X .(2.87)

Then, by Lemma 2.2, (H6), and (2.81), we may pass to the limit for ε→ 0 in (2.87)
to get (2.61).

We have proved (2.60), (2.61), and (2.62). Now we are in a position to show that
(λ0, ξ0) �= 0. To this end, we suppose that λ0 = 0. Then, by (2.79) and (2.80), there
exist ε1 > 0 and δ > 0 such that

2 ≥ ‖ξε‖X∗ ≥ δ > 0 ∀ ε < ε1.(2.88)

It follows from (2.71) and (2.87) that

−ηε(z, v) ≤ 〈ξε, F ′(y∗)z − w + F (y∗)〉X∗,X

+

∫ T

0

〈pε, z′ + γAz +B′(y∗)z −Dv〉dt
(2.89)

for all (z, v) ∈ Z × L2(0, T ;U) and w ∈W , where

ηε(z, v) = λε

{∫ T

0

[〈∇gε(t, yε), z〉+ 〈∇hε(uε), v〉U ]dt

+

∫ T

0

〈‖yε − y∗‖2A(yε − y∗), z〉dt

+

∫ T

0

〈uε − u∗, v〉Udt
}
+

∫ T

0

〈pε, [B′(yε)−B′(y∗)]z〉dt

+ 〈ξε, [F ′(yε)− F ′(y∗)]z + F (yε)− F (y∗)〉X∗,X .

(2.90)

For each ε > 0 and v ∈ M(0, r), where M(0, r) was given in (2.58) and r > 0
was given in (H9), let zε(v) be the solution to (2.54) with g = Dv and x = 0; then
zε(v) ∈ Z, and

‖zε(v)‖2L2(0,T ;D(A)) + ‖z′ε(v)‖2L2(0,T ;H) ≤ C ∀ v ∈M(0, r),(2.91)

where C > 0 is independent of ε and v. Here we have used the estimate

|〈B′(yε)zε, Azε〉| ≤ C‖zε‖ 1
2 ‖yε‖|Azε| 32 ≤ γ

4
|Azε|2 + Cγ‖zε‖2,

which is from (1.8), (2.48), and Lemma 2.2.
It follows from (1.8) and (2.48) that∫ T

0

|〈pε, [B′(yε)−B′(y∗)]zε(v)〉|dt

≤ C

∫ T

0

[|b(zε(v), yε − y∗, pε)|+ |b(yε − y∗, zε(v), pε)|]dt

≤ C

∫ T

0

‖zε(v)‖‖pε‖‖yε − y∗‖ 1
2 |yε − y∗| 12 dt

≤ C‖yε − y∗‖ 1
2

C([0,T ];V )‖yε − y∗‖ 1
2

C([0,T ];H)‖zε(v)‖L2(0,T ;V )‖pε‖L2(0,T ;V ).

(2.92)
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By (2.90), (2.91), (2.92), and Lemma 2.2, one can easily check that

ηε(zε(v), v)→ 0 as ε→ 0 uniformly in v ∈M(0, r).(2.93)

Thus it follows from (2.89), (2.9), and (2.59) that

〈ξε, F ′(y∗)z − w + F (y∗)〉X∗,X ≥ −ηε ∀ z ∈ Rr, w ∈W,(2.94)

where ηε → 0 as ε → 0. By (H9), F
′(y∗)Rr −W has finite codimensionality in X,

and so does F ′(y∗)Rr −W + F (y∗). Thanks to [14, Lemma 3.6], we conclude from
(2.88), (2.93), and (2.94) that (λ0, ξ0) �= 0.

Finally, if F ′(y∗) is injective and (λ0, p) �= 0, then it follows from (2.60) that
[F ′(y∗)]∗ξ0 = 0, which implies that ξ0 = 0. This contradiction leads (λ0, p) �= 0 and
completes the proof.

Now we turn to present the maximum principle for problem (P2). Let (y
∗, u∗) be

optimal for problem (P2). We set

Qr1,r2 =

{
(z0, zT ) ∈ V × V :

∃ z ∈ Y with ‖z‖Y ≤ r1 such that
Az ∈ D(M(0, r2)) and z(0) = z0, z(T ) = zT

}
,

(2.95)

where A is the operator from Y to L2(0, T ;H) defined by

Az = z′ + γAz +B′(y∗)z,(2.96)

M(0, r2) was defined in (2.58), and D(M(0, r2)) = {Dv : v ∈ M(0, r2)}. Then we
assume the following.

(H10) The set Qr1,r2−S has finite codimensionality inH×H for some r1, r2 > 0.
The main result for problem (P2) will be as follows.
Theorem 2.4. Suppose that (H1)–(H5) and (H7) hold. Let (y∗, u∗) be optimal

for problem (P2). Suppose further that (H10) holds. Then there exists (λ0, p) ∈
R×W (0, T ) with (λ0, p) �= 0 such that

−p′ + γAp+ [B′(y∗)]∗p ∈ −λ0g(t, y
∗) a.e. in (0, T ),

〈p(0), x0 − y∗(0)〉 − 〈p(T ), x1 − y∗(T )〉 ≤ 0 ∀ (x0, x1) ∈ S,
D∗p(t) ∈ λ0∂h(u

∗(t)) a.e. in (0, T ).

In this case, we introduce the penalty functional

Lε(y, u) =

∫ T

0

[gε(t, y) + hε(u)]dt+
1

2

∫ T

0

|u− u∗|2Udt+
1

2
‖y(0)− y∗(0)‖2

+
1

4

∫ T

0

‖y − y∗‖4dt+ 1

2ε
[ε+ dS(y(0), y(T ))]

2

+
1

2ε

∫ T

0

|y′ + γAy +By −Du− f |2dt,

where dS(·, ·) denotes the distance of (·, ·) to S in H×H, and we consider the following
approximation problem.

(P2ε) inf Lε(y, u) over all (y, u) ∈ Y × L2(0, T ;U).
Since the main ideas and steps in the proof of Theorem 2.4 are similar to those

in the proof of Theorem 2.3, we omit the proof of Theorem 2.4 here.
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3. Optimal control with periodic inputs. The form of state constraint (1.14)
covers the periodic case; we will see this in Example 4.7 in section 4. However, in
Theorem 2.4, we cannot get λ0 �= 0. In this section, we shall derive the qualified
maximum principle for the periodic case (i.e., λ0 �= 0) by a different method.

Let X = {y ∈ Y : y(0) = y(T )}. Then X is dense in L2(0, T ;H) (cf. [3]).
Suppose that (H8) holds and gε : [0, T ] × H → R+ is defined in the similar way
as in (2.1), where we replace V by H, and hε is defined by (2.2). We introduce
Lε : Y × L2(0, T ;U)→ R by

Lε(y, u) =

∫ T

0

[gε(t, y) + hε(u)]dt+
1

4

∫ T

0

‖y − y∗‖4dt

+
1

2

∫ T

0

|u− u∗|2Udt+
1

2ε

∫ T

0

|y′ + γAy +By −Du− f |2dt
(3.1)

and consider the following approximation problem (P3ε).
(P3ε) inf Lε(y, u) over all (y, u) ∈ X × L2(0, T ;U).
Similar to Lemmas 2.1 and 2.2, we may have the following existence and approx-

imation results for problem (P3ε). We omit the proofs here.
Lemma 3.1. For each ε > 0, problem (P3ε) has at least one solution.
Lemma 3.2. Let (yε, uε) ∈ X × L2(0, T ;U) be optimal for problem (P3ε). Then

yε → y∗ strongly in Y as ε→ 0,

uε → u∗ strongly in L2(0, T ;U) as ε→ 0.

In the space L2(0, T ;H), we define the operators

Aεϕ = ϕ′ + γAϕ+B′(yε)ϕ ∀ ϕ ∈ D(Aε) = X(3.2)

and

Aε∗ϕ = −ϕ′ + γAϕ+ [B′(yε)]∗ϕ ∀ ϕ ∈ X,(3.3)

where B′(yε) and [B′(yε)]∗ were defined in (2.48) and (2.49), respectively. It is readily
seen that ∫ T

0

〈Aε∗q, ϕ〉dt =
∫ T

0

〈Aεϕ, q〉dt ∀ ϕ, q ∈ D(Aε) = D(Aε∗) = X.(3.4)

The operators A and A∗ are defined by the same formulae (3.2) and (3.3), where
yε = y∗.

Lemma 3.3. The operators Aε, Aε∗, A, and A∗ are closed, densely defined,
and have closed ranges in L2(0, T ;H). Moreover, dimN(Aε), dimN(Aε∗) ≤ n0,
independent of ε, Aε∗ is the adjoint operator of Aε, and the following estimates hold:

‖Aε−1g‖L2(0,T ;D(A))∩W 1,2([0,T ];H) ≤ C‖g‖L2(0,T ;H) ∀ g ∈ R(Aε),(3.5)

‖(Aε∗)−1g‖L2(0,T ;D(A))∩W 1,2([0,T ];H) ≤ C‖g‖L2(0,T ;H) ∀ g ∈ R(Aε∗).(3.6)

Similarly, the operator A∗ and A are mutually adjoint and estimates (3.5) and
(3.6) remain true for A and A∗. Here we have used the symbols N and R to denote
the null space and the range of the corresponding operators.
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Remark . Lemma 3.3 was obtained by Barbu (cf. [3, Lemma 2]) for 2-dimensional
Navier–Stokes equations. We observe that it works for 3-dimensional Navier–Stokes
equations, and the proof is similar to that in [3].

Proof of Lemma 3.3. Consider the linear evolution equation{
ϕ′ + γAϕ+B′(yε)ϕ = g a.e. in (0, T ),
ϕ(0) = x.

(3.7)

By (2.50) and (2.52), system (3.7) has a unique solution ϕ ≡ ϕε(t;x, g) ∈W (0, T )
for each x ∈ H, g ∈ L2(0, T ;H), satisfying the estimate (2.56) with ‖g‖L2(0,T ;V ∗) re-
placed by ‖g‖L2(0,T ;H). Moreover, if x ∈ V , then it follows that ϕ ∈ Y ⊂ C([0, T ];V ).

In the latter case, if we multiply (3.7) by tAϕ(t), integrate on (0, t), and observe
that (by (1.8) and (2.48))

|〈B′(yε)ϕ,Aϕ〉| ≤ |b(ϕ, yε, Aϕ)|+ |b(yε, ϕ,Aϕ)|
≤ C[‖ϕ‖ 1

2 |Aϕ| 12 ‖yε‖+ ‖yε‖‖ϕ‖ 1
2 |Aϕ| 12 ]|Aϕ|

≤ C‖ϕ‖ 1
2 |Aϕ| 32

≤ γ

4
|Aϕ|2 + Cγ‖ϕ‖2,

we get that

1

2
t‖ϕ(t)‖2 + γ

∫ t

0

s|Aϕ(s)|2ds

≤ γ

4

∫ t

0

s|Aϕ(s)|2ds+ Cγ

∫ T

0

|g(t)|2dt+ γ

4

∫ t

0

s|Aϕ(s)|2ds+ Cγ

∫ T

0

‖ϕ‖2dt,

which, together with (2.56), implies that

t‖ϕ(t)‖2 ≤ C[|x|2 + ‖g‖2L2(0,T ;H)] ∀ t ∈ [0, T ].
This estimate extends to all solutions to (3.7), where x ∈ H, and we have, there-
fore, that

ϕε(T ;x, g) ∈ V ; ‖ϕε(T ;x, g)‖2 ≤ C[|x|2 + ‖g‖2L2(0,T ;H)] ∀ ε > 0,(3.8)

where C > 0 is independent of ε.
We define Gε : L

2(0, T ;U) → H by Gε(g) = ϕε(T ; 0, g) and define Γε : H → H
by Γεx = ϕε(T ;x, 0). It is clear that

ϕε(T ;x, g) = Γεx+Gεg,(3.9)

and estimate (3.8) yields that

‖Γε‖L(H,V ) + ‖Gε‖L(L2(0,T ;H),V ) ≤ C ∀ ε > 0.(3.10)

Since the injection of V into H is compact, we infer that Γε is completely contin-
uous. Let (y, g) ∈ Aε; i.e., Aεy = g. We have, therefore, that y(t) = ϕε(t;x, g), where
(I − Γε)x = Gεg. By the Fredholm–Riesz theory (cf. [22, Chapter X]), we know that
R(I − Γε) is closed and dimN(I − Γε) < ∞. Hence R(Aε) is closed in L2(0, T ;H),
and N(Aε) is finite dimensional. Moreover, if (ϕn, gn) ∈ Aε and ϕn → ϕ, gn → g
strongly in L2(0, T ;H), then we have

ϕ′
n + γAϕn +B′(yε)ϕn = gn a.e. in (0, T ).(3.11)
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Multiplying (3.11) by tϕn(t) and integrating on (0, t), by (2.52) we get that

t|ϕn(t)|2 + γ

∫ t

0

s‖ϕn(s)‖2ds ≤ Cγ

[
1 +

∫ t

0

s|ϕn(s)|2ds
]
.

By Gronwall’s inequality, we get that t|ϕn(t)|2 ≤ C for all t ∈ [0, T ]. This implies
that |ϕn(T )| ≤ C, and so |ϕn(0)| ≤ C. Then it follows from (3.8) that {ϕn(0)} is
bounded in V , and, as seen earlier, this implies that {ϕn} is bounded in Y .

Hence, on a subsequence, still denoted by ϕn,

ϕn → ϕ strongly in L2(0, T ;V ) ∩ C([0, T ];H) as ε→ 0,

which, combined with (1.8) and Lemma 3.2, indicates that∫ T

0

|B′(yε)ϕn −B′(yε)ϕ|2dt ≤ C

∫ T

0

‖ϕn − ϕ‖‖Aϕn −Aϕ‖‖yε‖dt

≤ C

[∫ T

0

‖ϕn − ϕ‖2
] 1

2
[∫ T

0

‖Aϕn −Aϕ‖2dt
] 1

2

→ 0 as ε→ 0.

Hence we may pass to the limit for n→∞ in (3.11) to get that (ϕ, g) ∈ Aε, i.e., Aε
is closed.

Now let Γ ∈ L(H,H) be defined by Γx = ϕ(T ;x, 0), where ϕ is the solution to{
ϕ′ + γAϕ+B′(y∗)ϕ = g a.e. in (0, T ),
ϕ(0) = x.

As seen earlier, Γ ∈ L(H,V ), and so Γ is completely continuous from H into itself.
Moreover, by Lemma 3.2 and the estimate (3.10), it follows that

Γε → Γ in L(H,H) as ε→ 0.

Since dimN(I − Γ) < ∞, the latter implies that there exists n0 > 0 such that
dimN(I − Γε) ≤ n0 for all ε > 0. Hence dimN(Aε) ≤ n0 for all ε > 0 as claimed.
Moreover, we have that

|(I − Γε)−1g0| ≤ C|g0| ∀ g0 ∈ R(I − Γε).(3.12)

Indeed, otherwise there exist xε ∈ R((I − Γε)∗), fε ∈ R(I − Γε) such that (I −
Γε)xε = fε and |fε| = 1, |xε| → ∞. Let x̃ε = xε

|xε| and f̃ε =
fε
|xε| . Then f̃ε → 0

and (I − Γε)x̃ε = f̃ε. We have that Γεx̃ε = ϕ(T ; x̃ε, 0). It follows from (3.8) that
‖Γεx̃ε‖ ≤ C|x̃ε| ≤ C. This implies that {Γεx̃ε} has a subsequence which converges in
H. Since x̃ε = Γεx̃ε+f̃ε, we infer that there exists a subsequence of {x̃ε}, still denoted
by itself, such that x̃ε → x0 in H and |x0| = 1. We have that x0 ∈ R((I − Γ)∗) and
(I − Γ)x0 = 0, which contradicts the fact that

R((I − Γ)∗)⊕N(I − Γ) = H.

Recall that ϕ = ϕε(t;x, g), where (I − Γε)x = Gεg is a solution to Aεϕε = g. It
follows from (3.12) that

|ϕε(0)| ≤ |(I − Γε)−1(Gεg)| ≤ C|Gεg|.(3.13)
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Then, as seen above, we have that

‖ϕε‖W 1,2([0,T ];H) + ‖ϕε‖L2(0,T ;D(A)) ≤ C‖g‖L2(0,T ;H) ∀ g ∈ R(Aε),

which implies (3.5).
The corresponding properties of the operator Aε∗ follow from the previous argu-

ments because, in this case, (3.7) is replaced by

ϕ′ + γAϕ+ [B′(yε)]∗ϕ = g, ϕ(0) = x,

and so the previous estimates remain valid. In particular, it follows that the operator
Aε∗ is closed, and so we conclude from (3.4) that its adjoint is precisely Aε.

Similarly, we may prove the corresponding results for the operators A and A∗.
This completes the proof.

Theorem 3.4. Let (H1)–(H4) and (H8) hold. Suppose that (y∗, u∗) is optimal
for problem (P3). Then there exists p ∈ X such that

p′ − γAp− [B′(y∗)]∗p ∈ ∂g(t, y∗) a.e. in (0, T ),(3.14)

and

D∗p(t) ∈ ∂h(u∗(t)) a.e. in (0, T ).(3.15)

Proof. Let (yε, uε) be optimal for (P3ε). For any z ∈ X, v ∈ L2(0, T ;U) fixed, we
set yρε = yε + ρz and uρε = uε + ρv. Then (yρε , u

ρ
ε) ∈ X × L2(0, T ;U). By the same

argument as in the proof of Theorem 2.3, we have that

0 ≤
∫ T

0

[〈∇gε(t, yε), z〉+ 〈∇hε(uε), v〉U ]dt

+

∫ T

0

〈‖yε − y∗‖2A(yε − y∗), z〉dt

+

∫ T

0

〈uε − u∗, v〉Udt+
∫ T

0

〈pε, z′ + γAz +B′(yε)z −Dv〉dt

(3.16)

for all z ∈ X and v ∈ L2(0, T ;U), where pε =
1
ε [y

′
ε + γAyε +Byε −Duε − f ].

By taking v = 0 in (3.17), we get that

∫ T

0

〈∇gε(t, yε) + ‖yε − y∗‖2A(yε − y∗), z〉dt

+

∫ T

0

〈pε,Aεz〉dt = 0 ∀ z ∈ Z.
(3.17)

Hence pε ∈ D(Aε∗) = X, and

Aε∗pε = −∇gε(t, yε)− ‖yε − y∗‖2A(yε − y∗).(3.18)

By taking z = 0 in (3.16), we deduce that

∫ T

0

[〈∇hε(uε), v〉U − 〈D∗pε, v〉U + 〈uε − u∗, v〉U ]dt ≥ 0 ∀ v ∈ L2(0, T ;U).
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This yields that

D∗pε(t) = ∇hε(uε(t)) + uε(t)− u∗(t) a.e. in (0, T ).(3.19)

By (3.19) and Lemma 3.2 and using the same argument as in [2, Chapter 1],
we have

‖D∗pε‖L2(0,T ;H) ≤ C ∀ ε > 0.(3.20)

Now, by Lemma 3.3 and the closed range theorem (cf. [20, p. 205]), we may write

pε = p1
ε + p2

ε,

where p1
ε ∈ R(Aε) and p2

ε ∈ N(Aε∗). By Lemma 3.3 again, we get that

‖p1
ε‖L2(0,T ;D(A))∩W 1,2([0,T ];H) ≤ C ∀ ε > 0.(3.21)

On the other hand, since the space N(Aε∗) is finite dimensional, we infer that
the restriction of D to N(Aε∗), still denoted by D, has closed range. Then by the
closed range theorem again, we deduce that

p2
ε = p3

ε + p4
ε,

where p3
ε ∈ R(D) and p4

ε = N(D∗). Then, by (3.20), we see that {p3
ε} is bounded in

L2(0, T ;H). Since {p3
ε} ⊂ N(Aε∗) and dim(Aε∗) ≤ n0, there exist p

3 ∈ L2(0, T ;H)
and a subsequence of p3

ε, still denoted by itself, such that

p3
ε → p3 strongly in L2(0, T ;H) as ε→ 0.(3.22)

By (3.21), we may assume that (without loss of generality)

p1
ε → p1 strongly in L2(0, T ;H) as ε→ 0.(3.23)

By Lemma 3.2, one can easily check that

Aεz → Az weakly in L2(0, T ;H) ∀ z ∈ X.(3.24)

Since p2
ε = p3

ε + p4
ε ∈ N(Aε), we may rewrite (3.18) as

Aε∗(p1
ε + p3

ε) = −∇gε(t, yε)− ‖yε − y∗‖2A(yε − y∗),

which is equivalent to

∫ T

0

〈∇gε(t, yε) + ‖yε − y∗‖2A(yε − y∗), z〉dt

+

∫ T

0

〈p1
ε + p3

ε,Aεz〉dt = 0
(3.25)

for all z ∈ X.
By Lemma 3.2 and by the same argument as in [1, Chapter 5], we have that

∇gε(t, yε)→ β weakly in L2(0, T ;H) and β ∈ ∂g(t, y∗) a.e. in (0, T ).(3.26)
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Now by (3.22), (3.23), (3.24), (3.26), and Lemma 3.2, we may pass to the limit
for ε→ 0 in (3.25) to get∫ T

0

〈β, z〉dt+
∫ T

0

〈p1 + p3,Az〉dt = 0 ∀ z ∈ Z.

This shows that p1 + p3 ∈ D(A∗) and

A(p1 + p3) = β.(3.27)

By (3.22), (3.23), (3.26), and Lemma 3.2, we may pass to the limit for ε → 0 in
(3.19) to get that

D∗(p1 + p3) ∈ ∂h(u∗) a.e. in (0, T ).(3.28)

Let p = p1 + p3 ∈ X. Then p ∈ X. By (3.27) and (3.28), we derive (3.14) and
(3.15). This completes the proof.

4. Applications. In this section, we shall point out some special cases of cost
functionals and state constraints covered by (1.9), (1.13), and (1.14).

Example 4.1. Let g(t, y) = 1
2 [|y − y0(t)|2 + |∇ × y|2], where y0 ∈ L∞(0, T ;H)

stands for reference velocity and ∇× y = curl y, and let h(u) = 1
2 |u|2U .

One can check that g : [0, T ] × V → R+ and h : U → R satisfy all conditions in
(H5). In this case, our objective is to determine the control u in such a way that the
velocity vector is as close as possible, in the sense of (P1) (or (P2)), to the desired
velocity y0, and the turbulence is minimal.

Example 4.2. In (H6), we take X = L2(0, T ;V ), F ≡ I, the identity operator on
L2(0, T ;V ), and W = {y ∈ L2(0, T ;V ) : ‖y‖L2(0,T ;V ) ≤ ρ}.

It is clear thatW is closed and convex and has finite codimensionality in L2(0, T ;V ).

In this case, (1.13) is equivalent to
∫ T
0
‖y‖2dt ≤ ρ, which is equivalent to (cf. [5])∫ T

0
|∇ × y|2dt ≤ ρ2. Thus the state constraint (1.13) in this case means that the

average of the turbulence in [0, T ] is governed by ρ2.

Example 4.3. In (H6), we may take X = R, F (y) =
∫ T
0
|y|2dt, andW = (−∞, ρ2].

It is clear that W is convex and closed in X = R with the codimension zero
(cf. [6] and [10]) and F ′(y) injective for all y ∈ L2(0, T ;V ). In this case, (1.13) is

equivalent to
∫ T
0
|y|2dt ≤ ρ2. Thus the state constraint (1.13) means that the average

of the energy in [0, T ] is governed by ρ2.

Example 4.4. In (H6), we may take X = R, F (y) =
∫ T
0
[|∇× y|2− c|y|2]dt, where

c ≥ 0 and W = (−∞, ρ2].
One can easily check that F is class of C1 and F ′(y) is injective (for c small

enough), and W is closed and convex with the codimension zero. In this case, (1.13)

is equivalent to
∫ T
0
[|∇ × y|2 − c|y|2]dt ≤ ρ2 or

∫ T
0
|∇ × y|2dt ≤ c

∫ T
0
|y|2dt + ρ2. Thus

the state constraint (1.13) in this case means that the average of the turbulence is
governed by the average of the energy and ρ2.

Recall that the enstrophy set (cf. [6] and [10]) K = {y0 ∈ V : |∇ × y0|2 ≤
ϕ(|y0|2) + ρ2} plays an important role in fluid mechanics. We may regard K̃ as a

special generalized enstrophy set, where K̃ = {y ∈ L2(0, T ;V ) :
∫ T
0
|∇ × y|2dt ≤

c
∫ T
0
|y|2dt+ ρ2}. Thus (1.13) in this case means that y ∈ K̃.
Example 4.5. In (H6), we may takeX = R,W = (−∞, ρ2], and F (y) =

∫ T
0
〈y,∇×

y〉2dt+ λ2
∫ T
0
‖y‖2dt.
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One can easily check that F is class of C1 and F ′(y) is injective. In this case,
(1.13) is equivalent to

∫ T
0
〈y,∇× y〉2dt+ λ2

∫ T
0
‖y‖2dt ≤ ρ2.

Recall that the helicity set K1 = {y0 ∈ V : 〈y0,∇×y0〉2+λ2‖y0‖2 ≤ ρ2} plays an
important role in fluid mechanics, and, in particular, it is an invariant set of Euler’s
equation (cf. [9]). We may regard K̃1 as a generalized helicity set, where

K̃1 =

{
y ∈ L2(0, T ;V ) :

∫ T

0

〈y,∇× y〉2dt+ λ2

∫ T

0

‖y‖2dt ≤ ρ2

}
.

The state constraint (1.13) in this case means that y ∈ K̃1.
Example 4.6. In (H7), let S = {y0} × S1, where y0 ∈ V and S1 ⊂ H is convex

and closed. Furthermore, we assume the following.
(H10,1) S1 has finite codimensionality in H.
We claim that (H10,1) implies (H10). To this end, let Γ : H → H and G :

L2(0, T ;U)→ H be defined by Γx = ϕ(T ;x, 0) and Gu = ϕ(T ; 0, u), where ϕ(t;x, u)
is the solution to {

ϕ′ + γAϕ+B′(y∗)ϕ = Du a.e. in (0, T ),
ϕ(0) = x.

(4.1)

Notice that (4.1) has a unique solution ϕ(t;x, u) ∈ W (0, T ) for each x ∈ H and
u ∈ L2(0, T ;U). Moreover, ϕ(t;x, u) ∈ Y if x ∈ V and u ∈ L2(0, T ;U).

Let M(0, r) be defined by (2.58), let Qr1,r2 be defined in (3.2), and let E(0, r)
be defined by E(0, r) = {z0 ∈ V : ‖z0‖ ≤ r}. Consider the set {(z0,Γz0 + Gu) :
z0 ∈ E(0, r), u ∈ M(0, r)}. It is clear that E(0, r) has finite codimensionality in
H for each r > 0. Thus by (H10,1) and by [14, Proposition 4], we deduce that
{(z0,Γz0 +Gu) : z0 ∈ E(0, r), u ∈M(0, r)}− {y0}× S1 has finite codimensionality in
H ×H.

However, for all z0 ∈ E(0, r) and u ∈ M(0, r), Γz0 + Gu = ϕ(T ; z0, u) ∈ V
and |ϕ(t; z0, u| ≤ r0 for some r0 > 0 independent of z0 and u. Hence Qr0,r ⊃
{(z0,Γz0 +Gu) : z0 ∈ E(0, r), u ∈M(0, r)}. So Qr0,r − S has finite codimensionality.
This means (H10,1) implies (H10).

Example 4.7. Let Γ, G, M(0, r), and E(0, r) be defined in Example 4.6.
Let Q = {x1 − Γx0 : (x0, x1) ∈ S}, Rr = GM(0, r) = {Gu : u ∈ M(0, r)}, and

R̃r = {(z0, zT ) ∈ H ×H : z0 ∈ E(0, r), zT = Γz0 +Gu, u ∈M(0, r)}. We assume the
following.

(H10,2) Rr −Q has finite codimensionality in H.
We recall the following proposition; for its proof, we refer the reader to [20,

Lemma 2.5].
Proposition 4.8. Rr −Q is finite codimensional in H if and only if R̃r − S is

so in H ×H.
By the same argument as in Example 4.6, we have that R̃r ⊂ Qr0,r for some r0 >

0. Thus (H10,2) implies (H10).
Next we shall show that Theorem 2.4 works for the periodic case, i.e., the case

where S = {(x, x, ) : x ∈ H} without assumption (H10). Indeed, in this case,
Q = {(I − Γ)x : x ∈ H}. By the previous discussion (cf. the proof of Lemma 3.3 in
section 3), R(I −Γ)∗ is closed, dimN(I −Γ) <∞, and H = R((I −Γ)∗)⊕N(I −Γ).
Thus Q has finite codimensionality in H. So does Rr − Q (cf. [14, Proposition 4 of
Chapter 4]). Then it follows from Proposition 4.8 that Qr0,r has finite codimension-
ality.



606 GENGSHENG WANG

Notice that, in this case, we cannot get λ0 = 0; i.e., the maximum principle we
obtain is not qualified.

REFERENCES

[1] V. Barbu, Optimal Control of Variational Inequalities, Pitman Res. Notes Math. Ser. 100,
Pitman, Boston, 1984.

[2] V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press,
Boston, 1993.

[3] V. Barbu, Optimal control of Navier-Stokes equations with periodic inputs, Nonlinear Anal.,
31 (1998), pp. 15–31.

[4] V. Barbu, The time optimal control of Navier-Stokes equations, Systems Control Lett., 30
(1997), pp. 93–100.

[5] V. Barbu and N. Pavel, Flow-invariance closed set with respect to nonlinear semigroup
flows, J. Math. Anal. Appl., to appear.

[6] V. Barbu and S. Sritharan, Flow-invariance preserving feedback controllers for Navier-
Stokes equations, J. Math. Anal. Appl., 255 (2001), pp. 281–307.

[7] P. Constantin and C. Foias, Navier-Stokes Equations, The University of Chicago Press,
Chicago, 1998.

[8] H. O. Fattorini and S. S. Sritharan, Necessary and sufficient conditions for optimal con-
trols in viscous flow problems, Proc. Royal Soc. Edinburgh Sect. A, 124 (1994), pp.
211–251.

[9] H. O. Fattorini and S. S. Sritharan, Optimal control problems with state constraints in
fluid mechanics and combustion, Appl. Math. Optim., 38 (1998), pp. 159–192.

[10] V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, Springer-Verlag,
New York, 1998.

[11] A. V. Fursikov, Control problems and theorems concerning unique solvability of a mixed
boundary value problem for three-dimensional Navier–Stokes and Euler equations, Mat.
Sb., 115 (1981), pp. 281–306, 320 (in Russian).

[12] A. V. Fursikov, Optimal control problems for Navier–Stokes system with distributed control
function, in Optimal Control of Viscous Flow VI, SIAM, Philadelphia, 1998, pp. 109–150.

[13] K. Ito and S. Kang, A dissipative feedback control synthesis for systems arising in fluid
dynamics, SIAM J. Control Optim., 32 (1994), pp. 831–854.

[14] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,
Springer-Verlag, Berlin, Heidelberg, New York, 1971.

[15] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Valued Problems and Applica-
tion, Springer-Verlag, Berlin, Heidelberg, New York, 1972.

[16] X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser
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Abstract. This paper is concerned with the boundary controllability of entropy weak solutions
to hyperbolic systems of conservation laws. We prove a general result on the asymptotic stabilization
of a system near a constant state. On the other hand, we give an example showing that exact
controllability in finite time cannot be achieved, in general.

Key words. boundary control, hyperbolic system, conservation laws

AMS subject classifications. 35L65, 93C20

PII. S0363012901392529

1. Introduction. Consider an n× n system of conservation laws on a bounded
interval:

ut + f(u)x = 0, t ≥ 0, x ∈ ]a, b[.(1.1)

The system is assumed to be strictly hyperbolic, each characteristic field being either
linearly degenerate or genuinely nonlinear in the sense of Lax [8]. We shall also
assume that all characteristic speeds are bounded away from zero. More precisely, let
f : Ω �→ R

n be a smooth map defined on an open set Ω ⊆ R
n. For each u ∈ Ω, call

λ1(u) < · · · < λn(u) the eigenvalues of the Jacobian matrix Df(u). We assume that
there exist a minimum speed c0 > 0 and an integer p ∈ {1, . . . , n} such that{

λi(u) < 0 if i ≤ p,
λi(u) > 0 if i > p,

(1.2) ∣∣λi(u)∣∣ ≥ c0 > 0, u ∈ Ω.(1.3)

By (1.2), for a solution defined on the strip t ≥ 0, x ∈ ]a, b[, there will be n − p
characteristics entering at the boundary point x = a and p characteristics entering at
x = b. The initial-boundary value problem is thus well posed if we prescribe n − p
scalar conditions at x = a and p scalar conditions at x = b [11]. See also [1, 2] for
the case of general entropy weak solutions taking values in the space BV of functions
with bounded variation.

In the present paper, we study the effect of boundary conditions on the solution
of (1.1) from the point of view of control theory. Namely, given an initial condition

u(0, x) = φ(x), x ∈ ]a, b[,(1.4)

with small total variation, we regard the boundary data as control functions, and we
study the family of configurations

R(T ) .= {u(T, ·)} ⊂ L1
(
[a, b] ; R

n
)
,(1.5)

which can be reached by the system at a given time T > 0.
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Beginning with the simplest case, consider a strictly hyperbolic system with con-
stant coefficients:

ut +Aux = 0,(1.6)

where A is an n× n constant matrix, with real distinct eigenvalues

λ1 < · · · < λp < 0 < λp+1 < · · · < λn.
Call

τ
.
= max

i

b− a
|λi|

the maximum time taken by waves to cross the interval [a, b]. In this case, it is easy
to see that the reachable set in (1.5) is the entire space: R(T ) = L1 for all T ≥ τ . In
other words, the system is completely controllable after time τ . Indeed, for any T ≥ τ
and initial and terminal data φ, ψ ∈ L1

(
[a, b];Rn

)
, one can always find a solution of

(1.4), defined on the rectangle [0, T ]× [a, b], such that

u(0, x) = φ(x), u(T, x) = ψ(x), x ∈ [a, b].
Such a solution can be constructed as follows. Let l1, . . . , ln and r1, . . . , rn be dual
bases of right and left eigenvectors of A so that li · rj = δij . For i = 1, . . . , n, let
ui(t, x) be a solution to the scalar Cauchy problem

ui,t + λiui,x = 0,

ui(0, x) =

{
li · φ(x) if x ∈ [a, b],
li · ψ(x+ λiT ) if x ∈ [a− λiT, b− λiT ],
0 otherwise.

Then the restriction of

u(t, x) =
∑
i

ui(t, x)ri

to the interval [0, T ] × [a, b] satisfies (1.6) and takes the required initial and termi-
nal values. Of course, this corresponds to the solution of an initial-boundary value
problem, determined by the n boundary conditions{

li · u(t, a) = ui(t, a), i = p+ 1, . . . , n,

li · u(t, b) = ui(t, b), i = 1, . . . , p.

This result on exact boundary controllability has been extended in [9, 10] to the case
of general quasi-linear systems of the form

ut +A(u)ux = 0.

In this case, the existence of a solution taking the prescribed initial and terminal
values is obtained for all sufficiently small data φ, ψ ∈ C1.

The aim of the present paper is to study analogous controllability properties
within the context of entropy weak solutions t �→ u(t, ·) ∈ BV . For the definitions
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and basic properties of weak solutions, we refer to [4]. For general nonlinear systems,
it is clear that a complete controllability result within the space BV cannot hold.
Indeed, already for a scalar conservation law, it was proved in [3] that the profiles
ψ ∈ BV which can be attained at a fixed time T > 0 are only those which satisfy the
Oleinik-type conditions

ψ′(x) ≤ f ′
(
ψ(x)

)
(x− a)f ′′(ψ(x)) for almost every x ∈ [a, b].

For general n×n systems, a complete characterization of the reachable set R(T )
does not seem possible, due to the complexity of repeated wave-front interactions.

Our first result is concerned with stabilization near a constant state. Assuming
that all characteristic speeds are bounded away from zero, we show that the system can
be asymptotically stabilized to any state u∗ ∈ Ω, with quadratic rate of convergence.

Theorem 1. Let K be a compact, connected subset of the open domain Ω ⊂
R
n. Then there exist constants C0, δ, κ > 0 such that the following holds. For every

constant state u∗ ∈ K and every initial data u(0) = φ : [a, b] �→ K with Tot.Var.{φ} <
δ, there exists an entropy weak solution u = u(t, x) of (1.1) such that, for all t > 0,

Tot.Var.
{
u(t)

} ≤ C0 e
−2κt

,(1.7) ∥∥u(t, x)− u∗∥∥
L∞ ≤ C0 e

−2κt

.(1.8)

The proof will be given in section 2. An interesting question is whether the
constant state u∗ can be exactly reached in a finite time T . By the results in [9], this
is indeed the case if the initial data has a small C1 norm. On the contrary, in the
final part of this paper, we show that exact controllability in finite time cannot be
attained, in general, if the initial data is only assumed to have small total variation.

Our counterexample is concerned with a class of strictly hyperbolic, genuinely
nonlinear 2× 2 systems of the form (1.1). More precisely, we assume the following.

(H) The eigenvalues λi(u) of the Jacobian matrix A(u) = Df(u) satisfy

−λ∗ < λ1(u) < −λ∗ < 0 < λ∗ < λ2(u) < λ
∗.(1.9)

Moreover, the right eigenvectors r1(u), r2(u) satisfy the inequalities

Dλ1 · r1 > 0, Dλ2 · r2 > 0,(1.10)

r1 ∧ r2 < 0, r1 ∧ (Dr1 · r1) < 0, r2 ∧ (Dr2 · r2) < 0.(1.11)

Here Dλi, Dri denote the differentials of the functions λi(u), ri(u), while ∧ is the
wedge product: if v = (v1, v2), w = (w1, w2), we define

v ∧ w .
= v1w2 − v2w1.

A particular system which satisfies the above assumptions is the one studied by
DiPerna [7]: 


ρt + (uρ)x = 0,

ut +

(
u2

2
+

K2

γ − 1
ργ−1

)
x

= 0,

with 1 < γ < 3. Here ρ > 0 and u denote the density and the velocity of a gas,
respectively.
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Fig. 1.

The last two inequalities in (1.11) imply that the rarefaction curves (i.e., the inte-
gral curves of the vector fields (r1, r2) in the (u1, u2) plane) turn clockwise (Figure 1).
In such a case, the interaction of two shocks of the same family generates a shock in
the other family.

Theorem 2. Consider a 2× 2 system satisfying the assumption (H). Then there
exist initial data φ : [a, b] �→ R

2 having arbitrarily small total bounded variation for
which the following holds. For every entropy weak solution u of (1.1), (1.4), with
Tot.Var.

{
u(t, ·)} remaining small for all t, the set of shocks in u(t, ·) is dense on [a, b]

for each t > 0. In particular, u(t, ·) cannot be constant.

As a preliminary, in section 3, we establish an Oleinik-type estimate on the decay
of positive waves. This bound is of independent interest and sharpens the results in
[5] for systems satisfying the additional conditions (H).

As a consequence, this implies that positive waves are “weak” and cannot com-
pletely cancel a shock within finite time. The proof of Theorem 2 is then achieved by
an induction argument. We show that, if the set of 1-shocks is dense on [0, T ]× [a, b],
then the set of points Pj = (tj , xj), where two 1-shocks interact and create a new
2-shock, is also dense on the same domain. Therefore, new shocks are constantly
generated, and the solution can never be reduced to a constant. Details of the proof
will be given in section 4.

As in [9], all of the above results refer to the case where total control on the
boundary values is available. As a consequence, the problem is reduced to proving
the existence (or nonexistence) of an entropy weak solution defined on the open strip
t > 0, x ∈ ]a, b[ , satisfying the required conditions. This is a first step toward the
analysis of more general controllability problems, where the control acts only on some
of the boundary conditions. We thus leave open the case where a subset of indices
I ⊂ {1, . . . , n} is given, and one requires

li · u(t, a) =
{
αi(t) if i ∈ I,
0 if i /∈ I, i = p+ 1, . . . , n,

li · u(t, b) =
{
αi(t) if i ∈ I,
0 if i /∈ I, i = 1, . . . , p,
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for some control functions αi acting only on the components i ∈ I.
Throughout the following, we denote by ri(u), li(u) the right and left i-eigenvectors

of the Jacobian matrix A(u)
.
= Df(u). As in [4], we write σ �→ Ri(σ)(u0) for the

parametrized i-rarefaction curve through the state u0 so that

d

dσ
Ri(σ) = ri

(
Ri(σ)

)
, Ri(0) = u0.

The i-shock curve through u0 is denoted by σ �→ Si(σ)(u0). It satisfies the Rankine–
Hugoniot equations

f
(
Si(σ)

)− f(u0) = λi(σ)
(
Si(σ)− u0

)
for some shock speed λi. We recall (see [4, Chap. 5]) that the general Riemann
problem is solved in terms of the composite curves

Ψi(u0)(σ) =

{
Ri(u0)(σ) if σ ≥ 0,
Si(u0)(σ) if σ < 0.

(1.12)

2. Proof of Theorem 1. The proof relies on the following two lemmas.
Lemma 1. In the setting of Theorem 1, there exists a time T > 0 such that the

following holds. For every pair of states ω, ω′ ∈ K, there exists an entropic solution
u = u(t, x) of (1.1) such that

u(0, x) ≡ ω, u(T, x) ≡ ω′ for all x ∈ [a, b].(2.1)

Proof. Consider the function

Φ(σ1, . . . , σn ; v, v
′) .= Ψn(σn) ◦ · · · ◦Ψp+1(σp+1)(v

′)−Ψp(σp) ◦ · · · ◦Ψ1(σ1)(v).(2.2)

Observe that, whenever v = v′, the n × n Jacobian matrix ∂Φ/∂σ1 · · ·σn computed
at σ1 = σ2 = · · · = σn = 0 has full rank. Indeed, the columns of this matrix are
given by the linearly independent vectors −r1(v), . . . ,−rp(v), rp+1(v), . . . , rn(v). By
the implicit function theorem and a compactness argument, we can find δ > 0 such
that the following holds. For every v, v′ ∈ K, with |v − v′| ≤ δ, there exist unique
values σ1, . . . , σn such that

v′′ .= Ψn(σn) ◦ · · · ◦Ψp+1(σp+1)(v
′) = Ψp(σp) ◦ · · · ◦Ψ1(σ1)(v).(2.3)

Defining the time as

τ
.
= max

1≤i≤n
sup
u∈Ω

b− a∣∣λi(u)∣∣ ,(2.4)

we claim that there exists an entropy weak solution u : [0, 2τ ]× [a, b] �→ Ω such that

u(0, x) ≡ v, u(2τ, x) ≡ v′.(2.5)

The function u is constructed as follows (see Figure 2). For t ∈ [0, τ ], we let u be
the solution of the Riemann problem

u(0, x) =
{
v if x < b,
v′′ if x > b.

(2.6)
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Fig. 2.

Moreover, for t ∈ [τ, 2τ ], we define u as the solution of the Riemann problem

u(τ, x) =
{
v′ if x < a,
v′′ if x > a.

(2.7)

It is now clear that the restriction of u to the domain [0, 2τ ] × [a, b] satisfies the
conditions in (2.5). Indeed, by (2.3), on [0, τ ] the solution u contains only waves of
families ≤ p, originating at the point (0, b). By (2.4), these waves cross the whole
interval [a, b] and exit from the boundary point a before time τ . Hence u(τ, x) ≡ v′′.
Similarly, still by (2.3), for t ∈ [τ, 2τ ], the function u contains only waves of families
≥ p+1, originating at the point (τ, a). By (2.4), these waves cross the whole interval
[a, b] and exit from the boundary point b before time 2τ . Hence u(2τ, x) ≡ v′.

Next, given any two states ω, ω′ ∈ K, by the connectedness assumption, we can
find a chain of points ω0 = ω, ω1, . . . , ωN = ω′ in K such that |ωi − ωi−1| < δ for
every i = 1, . . . , N . Repeating the previous construction in connection with each pair
of states (ωi−1, ωi), we thus obtain an entropy weak solution u : [0, 2Nτ ]× [a, b] �→ Ω
that satisfies the conclusion of the lemma, with T = 2Nτ .

In the following, we shall construct the desired solution u = u(t, x) as the limit
of a sequence of front tracking approximations. Roughly speaking, an ε-approximate
front tracking solution is a piecewise constant function uε, having jumps along a finite
set of straight lines in the t-x plane, say, x = xα(t), which approximately satisfies the
Rankine–Hugoniot equations:∑

α

∣∣f(u(t, xα+))− f(u(t, xα−))− ẋα (u(t, xα+)− u(t, xα−))∣∣ < ε
for all t > 0. For details, see [4, p. 125].

Lemma 2. In the setting of Theorem 1, for every state u∗ ∈ Ω, there exist
constants C, δ0 > 0 for which the following holds. For any ε > 0 and every piecewise
constant function ū : [a, b] �→ Ω such that

ρ
.
= sup
x∈[a,b]

∣∣ū(x)− u∗∣∣ ≤ δ0, δ
.
= Tot.Var.{ū} ≤ δ0,(2.8)
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Fig. 3.

there exists an ε-approximate front tracking solution u = u(t, x) of (1.1), with u(0, x) =
ū(x), such that

sup
x∈[a,b]

∣∣u(3τ, x)− u∗∣∣ ≤ Cδ2, Tot.Var.
{
u(3τ)

} ≤ Cδ2.(2.9)

Proof. On the domain (t, x) ∈ [0, τ ] × [a, b], we construct u as an ε-approximate
front tracking solution in such a way that, whenever a front hits one of the boundaries
x = a or x = b, no reflected front is ever created (see Figure 3). Since all fronts
emerging from the initial data ū at time t = 0 exit from [a, b] within time τ , it is
clear that u(τ) can contain only fronts of second or higher generation order. In other
words, the only fronts that can be present in u(τ, ·) are the new ones, generated
by interactions at times t > 0 (the dotted lines in Figure 3). Therefore, using the
interaction estimate (7.69) in [4], we obtain

sup
x∈[a,b]

∣∣u(τ, x)− u∗∣∣ = O(1) · (ρ+ δ), Tot.Var.
{
u(τ)

}
= O(1) · δ2.(2.10)

We now apply a similar procedure as in the proof of Lemma 1 and construct a solution
on the interval [τ, 3τ ] in such a way that u(3τ) ≈ u∗. More precisely, to construct u
on the domain [τ, 2τ ] × [a, b], consider the state v′′ implicitly defined by (2.2), with
v
.
= u(τ, b−), v′ .= u∗. On a forward neighborhood of the point (τ, b), we let u coincide

with (a front tracking approximation of) the solution to the Riemann problem

u(τ, x) =
{
u(τ, b−) if x < b,
v′′ if x > b.
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This procedure will introduce at the point (τ, b) a family of wave-fronts of families
i = 1, . . . , p, whose total strength is O(1) · (ρ+ δ). Because of (2.4), all of these fronts
will exit from the boundary x = a within time 2τ . Of course, they can interact with
the other fronts present in u(τ, ·). In any case, the total strength of fronts in u(2τ, ·)
is still estimated as

Tot.Var.
{
u(2τ)

}
= O(1) · δ2.(2.11)

Next, to define u for t ∈ [2τ, 3τ ], consider the state v′′′ implicitly defined by{
u(2τ, a+) = Ψn(σn) ◦ · · · ◦Ψp+1(σp+1)(v

′′′),
u∗ = Ψp(σp) ◦ · · · ◦Ψ1(σ1)(v

′′′).
(2.12)

On a forward neighborhood of the point (2τ, a), we let u coincide with (a front tracking
approximation of) the solution to the Riemann problem

u(2τ, x) =
{
u(2τ, a+) if x > a,
v′′′ if x < a.

This procedure introduces at the point (2τ, a) a family of wave-fronts of families
i = p + 1, . . . , n, whose total strength is O(1) · (ρ + δ). Because of (2.4), all of these
fronts will exit from the boundary x = b within time 3τ . Of course, they can interact
with the other fronts present in u(2τ, ·). In any case, the total strength of fronts in
u(3τ, ·) is still estimated as

Tot.Var.
{
u(3τ)

}
= O(1) · δ2.(2.13)

Moreover, the difference between the values u(3τ, x) and u∗ will be of the same or-
der of the total strength of waves in u(τ, ·) so that the first inequality in (2.9) will
also hold.

Proof of Theorem 1. Using the same arguments as in the proof of Lemma 1, for
every ε > 0, we can construct an ε-approximate front tracking solution u = u(t, x) on
[0, 2Nτ ]× [a, b] such that

sup
x∈[a,b]

∣∣u(2Nτ, x)− u∗∣∣ = O(1) · δ, Tot.Var.
{
u(2Nτ)} = O(1) · δ.(2.14)

Choosing δ > 0 sufficiently small, we can assume that, in (2.14), O(1) · δ < δ0 < 1/C,
the constant in Lemma 2. Calling T

.
= 2Nτ , we can now repeat the construction

described in Lemma 2 on each interval
[
T + 3kτ, T + 3(k + 1)τ

]
. This yields

sup
x∈[a,b]

∣∣u(T + 3kτ, x)− u∗∣∣ ≤ δk, Tot.Var.
{
u(T + 3kτ)

} ≤ δk,(2.15)

where the constants δk satisfy the inductive relations

δk+1 ≤ Cδ2k.(2.16)

Choosing a sequence of ε-approximate front tracking solutions uε satisfying (2.15)–
(2.16) and taking the limit as ε → 0, we obtain an entropy weak solution u which
still satisfies the same estimates. The bounds (1.7)–(1.8) are now a consequence of
(2.15)–(2.16), with a suitable choice of the constants C0, κ.
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3. Decay of positive waves. Throughout the following, we consider a 2 × 2
system of conservation laws

ut + f(u)x = 0,(3.1)

satisfying the assumptions (H). Following [6, p. 128], we construct a set of Riemann
coordinates (w1, w2). One can then choose the right eigenvectors of Df(u) so that

ri(u) =
∂u

∂wi
,

∂λi
∂wi

= Dλi · ri > 0, i = 1, 2.(3.2)

It will be convenient to perform most of the analysis on a special class of solutions:
piecewise Lipschitz functions with finitely many shocks and no compression waves.
Due to the geometric structure of the system, this set of functions turns out to be
positively invariant for the flow generated by the hyperbolic system. We first derive
several a priori estimates concerning these solutions, in particular on the strength and
location of the shocks. We then observe that any BV solution can be obtained as a
limit of a sequence of piecewise Lipschitz solutions in our special class. Our estimates
can thus be extended to general BV solutions.

Definition 1. We call U the set of all piecewise Lipschitz functions u : R �→ R
2

with finitely many jumps such that
(i) at every jump, the corresponding Riemann problem is solved only in terms of

shocks (no centered rarefactions);
(ii) no compression waves are present; i.e., wi,x(x) ≥ 0 at almost every x ∈ R,

i = 1, 2.
The next lemma establishes the forward invariance of the set U .
Lemma 3. Consider the 2 × 2 system of conservation laws (3.1) satisfying the

assumptions (H). Let u = u(t, x) > be the solution to a Cauchy problem, with small
total variation, satisfying u(0, ·) ∈ U . Then

u(t, ·) ∈ U for all t ≥ 0.(3.3)

Proof. We have to show that, as time progresses, the total number of shocks does
not increase and no compression wave is ever formed. This will be the case provided
that the following hold:

(i) The interaction of two shocks of the same family produces an outgoing shock
in the other family.

(ii) The interaction of a shock with an infinitesimal rarefaction wave of the same
family produces a rarefaction wave in the other family.

Both of the above conditions can be easily checked by analyzing the relative
positions of shocks and rarefaction curves. We will do this for the first family, leaving
the verification of the other case to the reader.

Call σ �→ R1(σ) the rarefaction curve through a state u0, parametrized so that

λ1

(
R1(σ)

)
= λ1(u0) + σ.

It is well known that the shock curve through u0 has a second order tangency with
this rarefaction curve. Hence there exists a smooth function c1(σ) such that the point

S1(σ)
.
= R1(σ) + c1(σ)

σ3

6
r2(u0)
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(a)                                                                            (b)

Fig. 4.

lies on this shock curve for all σ in a neighborhood of zero. From the Rankine–
Hugoniot equations, it now follows that

χ(σ)
.
=
(
f
(
R1(σ)+c1(σ)(σ

3/6) r2(u0)
)−f(u0)

)∧(R1(σ)+c1(σ)(σ
3/6) r2(u0)−u0

)
= 0.

(3.4)
Differentiating the wedge product (3.4) four times at σ = 0 and denoting derivatives
with upper dots, we obtain

d4χ

dσ4
(0) = 4

[
λ1(u0)

...

R1 (0) + 2R̈1(0) + λ2(u0) c1(0)r2(u0)
] ∧ Ṙ1(0)

+ 6
[
λ1(u0)R̈1(0) + Ṙ1(0)

] ∧ R̈1(0) + 4λ1(u0)Ṙ1(0) ∧
[ ...
R1 (0) + c(0)r2(u0)

]
= 4
(
λ2(u0)− λ1(u0)

)
c1(0) r2(u0) ∧ r1(u0) + 2(Dr1 · r1)(u0) ∧ r1(u0)

= 0.

Hence

c1(0) =
(Dr1 · r1) ∧ r1

2(λ2 − λ1)(r1 ∧ r2) < 0.(3.5)

By (3.5), the relative position of 1-shock and 1-rarefaction curves is as depicted in
Figure 1. By the geometry of wave curves, the properties (i) and (ii) are now clear.
Figure 4a illustrates the interaction of two 1-shocks, while Figure 4b shows the in-
teraction between a 1-shock and a 1-rarefaction. By ul, um, ur we denote the left,
middle, and right states before the interaction, while u′m is the middle state after the
interaction. In the two cases, the solution of the Riemann problem contains a 2-shock
and a 2-rarefaction, respectively.

The next lemma shows the decay of positive waves for solutions with small total
variation, taking values inside U .

Lemma 4. Let u = u(t, x) be a solution of the Cauchy problem for the 2 × 2
system (3.1) satisfying (H). Assume that

u(t, ·) ∈ U , t ≥ 0.(3.6)

Then there exist κ, δ > 0 such that, if Tot.Var.(u(t, ·)) < δ for all t, then its Riemann
coordinates (w1, w2) satisfy

0 ≤ wi,x(t, x) ≤ κ

t
, t > 0, i = 1, 2.(3.7)
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Proof. We consider the case i = 1. Fix any point (t̄, x̄). Since centered rarefaction
waves are not present, there exists a unique 1-characteristic through this point, which
we denote as t �→ x1(t; t̄, x̄). It is the solution of the Cauchy problem

ẋ(t) = λ1

(
u(t, x(t))

)
, x(t̄) = x̄.(3.8)

The evolution of w1,x along this characteristic is described by

d

dt
w1,x

(
t, x1(t)

)
= w1,xt+λ1w1,xx = −(λ1w1,x)x+λ1w1,xx = − ∂λ1

∂w1
w2

1,x−
∂λ1

∂ω2
w1,xw2,x.

Since the system is genuinely nonlinear, there exists k1 > 0 such that ∂λ1/∂w1 ≥
k1 > 0, and hence

d

dt
w1,x

(
t, x1(t)

) ≤ −k1w
2
1,x +O(1) · w1,xw2,x.(3.9)

Moreover, at each time tα where the characteristic crosses a 2-shock of strength |σα|,
we have the estimate

w1,x(tα+) ≤
(
1 +O(1) · |σα|

)
w1,x(tα−).(3.10)

Let Q(t) be the total interaction potential at time t (see, for example, [4, p. 202]),
and let V2(t) be the total amount of 2-waves approaching our 1-wave located at x1(t).
Repeating the arguments in [4, p. 139], we can find a constant C0 > 0 such that the
quantity

Υ(t)
.
= V1(t) + C0Q(t), t > 0,

is nonincreasing. Moreover, for almost every t, one has

Υ̇(t) ≤ −∣∣λ2 − λ1

∣∣|w2,x|
(
t, x1(t)

)
,

while, at times tα, where x1 crosses a 2-shock of strength |σα|, there holds
Υ(tα−) ≤ Υ(tα+)− |σα|.

Call W (t)
.
= w1,x

(
t, x1(t)

)
. By the previous estimates, from (3.9) and (3.10), it

follows that

Ẇ (t) ≤ −k1W
2(t)− C Υ̇(t)W (t),

W (tα+)−W (tα−) ≤ C
[
Υ(tα+)−Υ(tα−)

]
W (tα−)(3.11)

for a suitable constant C. We now observe that

y(t)
.
=

e−CΥ(t)∫ t
0
k1e−CΥ(s)ds

is a distributional solution of the equation

ẏ = −k1y
2 − C Υ̇(t)y,

with y(t)→∞ as t→ 0+. A comparison argument now yields W (t) ≤ y(t). Since Υ
is positive and decreasing, we have

W (t) ≤ 1

k1

1∫ t
0
e−CΥ(s)ds

≤ eCΥ(0)

k1t
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for all t > 0. This establishes (3.7) for i = 1, with κ
.
= eCΥ(0)/k1. The case i = 2 is

identical.
We conclude this section by proving a decay estimate for positive waves, valid for

general BV solutions of the system (3.1). For this purpose, we need to recall some
definitions introduced in [5]. See also [4, p. 201].

Let u : R �→ R
2 have bounded variation. By possibly changing the values of u at

countably many points, we can assume that u is right continuous. The distributional
derivative µ

.
= Dxu is a vector measure, which can be decomposed into a continuous

and an atomic part: µ = µc + µa. For i = 1, 2, the scalar measures µi = µic + µ
i
a are

defined as follows. The continuous part of µi is the Radon measure µic such that∫
φ dµic =

∫
φ li(u) · dµc(3.12)

for every scalar continuous function φ with compact support. The atomic part of µi

is the measure µia concentrated on the countable set {xα; α = 1, 2, . . .}, where u has
a jump, such that

µia
({xα}) = σα,i

.
= Ei

(
u(xα−), u(xα+)

)
(3.13)

is the size of the ith wave in the solution of the corresponding Riemann problem with
data u(xα±). We regard µi as the measure of i-waves in the solution u. It can be
decomposed in a positive and a negative part so that

µi = µi+ − µi−, |µi| = µi+ + µi−.(3.14)

The decay estimate in (3.7) can now be extended to general BV solutions. Indeed, we
show that the density of positive i-waves decays as κ/t. By meas(J) we denote here
the Lebesgue measure of a set J .

Lemma 5. Let u = u(t, x) be a solution of the Cauchy problem for the 2×2 system
(3.1) satisfying (H). Then there exist κ, δ > 0 such that, if Tot.Var.(u(t, ·)) < δ for all
t, then the measures µ1+

t , µ2+
t of positive waves in u(t, ·) satisfy

µi+t (J) ≤ κ

t
meas(J)(3.15)

for every Borel set J ⊂ R and every t > 0, i = 1, 2.
Proof. For every BV solution u of (3.1), we can construct a sequence of solutions

uν with uν → u as ν → ∞ and such that uν(t, ·) ∈ U for all t. Calling (wν1 , w
ν
2 ) the

Riemann coordinates of uν , by Lemma 4 we have

0 ≤ wνi,x(t, x) ≤
κ

t
, t > 0, i = 1, 2, ν ≥ 1.(3.16)

For a fixed t > 0, observe that the map x �→ wν1 (t, x) has upward jumps precisely at
the points xα where u(t, ·) has a 2-shock. Define µ̃ν as the positive, purely atomic
measure, concentrated on the finitely many points xα where u(t, ·) has a 2-shock, such
that

µ̃ν
({xα}) = wν1 (t, xα+)− wν1 (t, xα−) ≤ C |σα|3(3.17)

for some constant C. By possibly taking a subsequence, we can assume the existence
of a weak limit µ̃ν ⇀ µ̃. Because of the estimate in (3.17), the measure µ̃ is purely
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atomic and is concentrated on the set of points xβ , which are limits as ν → ∞ of
a sequence of points xνα, where uν(t, ·) has a 2-shock of uniformly positive strength
|σν | ≥ δ > 0. Therefore, µ̃ is concentrated on the set of points where the limit
solution u(t, ·) has a 2-shock and makes no contribution to the positive part of µ1+

t .
We thus conclude that the positive part of µ1+

t is absolutely continuous with respect to
Lebesgue measure, with density ≤ κ/t. An analogous argument holds for µ2+

t .
Corollary 1. Let u = u(t, x) be a solution of the 2 × 2 system (1.1). Let the

assumptions (H) hold. Fix ε > 0, and consider the subinterval [a′, b′] .= [a+ ε, b− ε].
Assume that, at time t = 0, the measures µ1+, µ2+ of positive waves in u(0, ·) on
[a, b] vanish identically. Then, for every t > 0, one has

µi+t (J) ≤ κλ∗

ε
meas(J)(3.18)

for every Borel set J ⊂ [a′, b′] and every t > 0, i = 1, 2.
Indeed, recalling (1.9), the values of u(t, ·) restricted to the interval [a′, b′] can

be obtained by solving a Cauchy problem, with initial data assigned on the whole
interval [a, b] at time t− ε/λ∗.

4. Proof of Theorem 2.
Lemma 6. In the same setting as Lemma 4, assume that there exists κ′ > 0 such

that

0 ≤ wi,x(t, x) ≤ κ′, t ∈ [0, T ], i = 1, 2.(4.1)

Let t �→ x(t) be the location of a shock, with strength
∣∣σ(t)∣∣. There exists a constant

0 < c < 1 such that ∣∣σ(t)∣∣ ≥ c∣∣σ(s)∣∣, 0 ≤ s < t ≤ T.(4.2)

Proof. To fix the ideas, let u(t, ·) have a 1-shock located at x(t), with strength∣∣σ(t)∣∣. Outside points of interaction with other shocks, the strength satisfies an in-
equality of the form

d

dt

∣∣σ(t)∣∣ ≥ −C ·(w1,x

(
t, x(t)+

)
+w1,x

(
t, x(t)−)w2,x

(
t, x(t)+

)
+w2,x

(
t, x(t)−))∣∣σ(t)∣∣.

(4.3)
At times where our 1-shock interacts with other 1-shocks, its strength increases. More-
over, at each time tα where our 1-shock interacts with a 2-shock, say, of strength |σα|,
one has ∣∣σ(tα+)∣∣ ≥ ∣∣σ(tα−)∣∣ (1− C ′|σα|

)
(4.4)

for some constant C ′. Assuming that the total variation remains small, the total
number of 2-shocks which cross any given 1-shock is uniformly small. Hence (4.3)–
(4.4) together imply (4.2).

Lemma 7. Let t �→ u(t, ·) ∈ U be a solution of the Cauchy problem for a genuinely
nonlinear 2× 2 system satisfying (1.11). Assume that there exists κ′ > 0 such that

wi,x(t, x) ≤ κ′, t ∈ [0, T ], i = 1, 2.(4.5)

Since no centered rarefactions are present, any two i-characteristics, say, x(t) < y(t),
can uniquely be traced backward up to time t = 0. There exists a constant L > 0
such that

y(t)− x(t) ≤ L(y(s)− x(s)), 0 ≤ s < t ≤ T.(4.6)
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Proof. Consider the case when i = 2. By definition, the characteristics are
solutions of

ẋ(t) = λ2

(
u(t, x(t))

)
, ẏ(t) = λ2

(
u(t, y(t))

)
.

Since the characteristic speed λ2 decreases across 2-shocks, we can write

ẏ(t)− ẋ(t) ≤ C
∫ y(t)

x(t)

∣∣w1,x(t, ξ)
∣∣+ ∣∣w2,x(t, ξ)

∣∣ dξ + C ∑
α∈S1[x,y]

∣∣σα(t)∣∣,(4.7)

where S1[x, y] denotes the set of all 1-shocks located inside the interval
[
x(t), y(t)

]
.

Introduce the function

φ(t, x)
.
=




0 if x ≤ x(t),
x−x(t)
y(t)−x(t) if x(t) < x < y(t),

1 if x ≥ y(t).
Moreover, define the functional

Φ(t)
.
=
∑
α∈S1

φ
(
t, xα(t)

) ∣∣σα(t)∣∣+ C0Q(t),

where the summation now refers to all 1-shocks in u(t, ·) and Q is the usual interaction
potential. Observe that the map t �→ Φ(t) is nonincreasing. By (4.5) and (4.7), we
can now write

ẏ(t)− ẋ(t) ≤ C ′(1− Φ̇(t)
)(
y(t)− x(t))

for some constant C ′. This implies (4.6) with L = exp
{
C ′T + C ′Φ(0)

}
.

The next result is the key ingredient toward the proof of Theorem 2. It provides
the density of the set of interaction points where new shocks are generated.

Lemma 8. Fix ε > 0, and define a′′ = a + 2ε, b′′ = b − 2ε. Consider a 2 × 2
system of the form (1.1), satisfying (H). Let u be an entropy weak solution defined on
[0, τ ]× [a, b], with τ

.
= ε/4λ∗. Let (3.18) hold for all t ∈ [0, τ ], and assume that u(0, ·)

has a dense set of 1-shocks on the interval [a′′, b′′]. Then, for 0 ≤ t ≤ τ , the solution
u(t, ·) has a set of 1-shocks which is dense on [a′′, b′−λ∗t] and a set of 2-shocks which
is dense on [a′′, b′′].

Proof. By the assumptions of the lemma, there exists a sequence of piecewise
Lipschitz solutions t �→ uν(t) ∈ U such that uν → u in L1,

0 ≤ wνi,x(t, x) ≤
2κλ∗

ε
, i = 1, 2, ν ≥ 1,

and, moreover, the following holds. For every ρ > 0, there exists δ > 0 such that each
uν(0, ·) (with ν large enough) contains at least one 1-shock of strength

∣∣σν(0)∣∣ ≥ δ on
every subinterval J ⊂ [a′′, b′′] having length ≥ ρ.

To prove the first statement in Lemma 8, fix t ∈ [0, τ ], and consider any nontrivial
interval [p, q] ⊆ [a′′, b′′− tλ∗]. Call s �→ pν(s), s �→ qν(s) the backward characteristics
through these points, relative to the solution uν . We thus have{

ṗν(s) = λ1

(
uν(s, pν(s))

)
,

q̇ν(s) = λ1

(
uν(s, qν(s))

)
,

{
pν(t) = p,

qν(t) = q.
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By Lemma 7, qν(0)−pν(0) ≥ ρ for some ρ > 0 independent of ν. Hence, each solution
uν contains a shock of strength

∣∣σν(s)∣∣ ≥ δ located inside the interval
[
pν(0), qν(0)

]
.

Lemma 5 now yields
∣∣σν(t)∣∣ ≥ cδ. By possibly taking a subsequence, we conclude

that the limit solution u(t, ·) contains a 1-shock of positive strength at the point
x(t) = limxν(t) ∈ [p, q].

To prove the second statement, we will show that the set of points where two
1-shocks in u interact and produce a new 2-shock is dense on the triangle

∆
.
=
{
(t, x) ; t ∈ [0, τ ], a′′ < x < b′′ − λ∗t}.

Indeed, let t ∈ [0, τ ] and p < q be as before. For each ν sufficiently large, let t �→ xν(t)
be the location of a 1-shock in uν , with strength

∣∣σν(t)∣∣ ≥ δ > 0. Assume xν(·)→ x(·)
as ν → ∞, and xν(t) ∈ [p, q], so that x(t) is the location of a 1-shock of the limit
solution u, say, with strength

∣∣σ(t)∣∣ > 0.

We claim that the set of times t̂ where some other 1-shock σ′ impinges on σ and
generates a new 2-shock is dense on [0, t]. To see this, fix 0 < t′ < t′′ < t. For each
ν sufficiently large, consider the backward 1-characteristics yν , zν impinging from
the left on the shock xν at times t′′, t′, respectively (see Figure 5). These provide
solutions to the Cauchy problems

ẏν(t) = λ1

(
uν
(
t, yν(t))

)
, yν(t

′′) = xν(t
′′),

żν(t) = λ1

(
uν(t, zν(t))

)
, zν(t

′) = xν(t
′),

respectively. Observe that

zν(0)− yν(0) ≥ ρ

for some ρ > 0 independent of ν. Indeed, the genuine nonlinearity of the system
implies

λ1

(
uν(t, xν(t)−)

)− ẋν(t) ≥ κ∣∣∣uν(t, xν(t) + )− uν(t, xν(t)− )∣∣∣ ≥ κδ.
Therefore,

xν(t
′)− yν(t′) ≥ ρ′ > 0

for some constant ρ′ > 0 independent of ν. By Lemma 6, the interval
[
yν(0), zν(0)

]
has uniformly positive length. Hence it contains a 1-shock of uν(0, ·) with uniformly
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positive strength
∣∣σν(0)∣∣ ≥ δ > 0. By Lemma 5, every uν has a 1-shock with strength∣∣σν(t)∣∣ ≥ cδ located along some curve t �→ x̃ν(t) with

yν(t) < x̃ν(t) < zν(t), t ∈ [0, t′].

Clearly, this second 1-shock impinges on the shock xν at some time tν ∈ [t′, t′′],
creating a new 2-shock with uniformly large strength. Letting ν →∞, we obtain the
result.

Proof of Theorem 2. Let δ0 > 0 be given. We can then construct an initial
condition u(0, ·) = φ, with Tot.Var.{φ} < δ0, having a dense set of 1-shocks on the
interval [a, b] and no other waves. As a consequence, for any ε > 0, by Corollary 1,
we have the estimate (3.18) on the density of positive waves away from the boundary.

Fix τ = ε/4λ∗, and consider again the subinterval [a′′, b′′] = [a+ 2ε, b− 2ε]. We
can apply Lemma 8 first on the time interval [0, τ ], obtaining the density of 2-shocks
on the region [0, τ ]×[a′′, b′′]. Then, by induction onm, the same argument is repeated
on each time interval t ∈ [mτ, (m+ 1)τ

]
, proving the theorem.
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Abstract. The paper aims to develop some basic principles and tools of nonconvex variational
analysis with applications to necessary suboptimality and optimality conditions for constrained opti-
mization problems in infinite dimensions. We establish a certain subdifferential variational principle
as a new characterization of Asplund spaces. This result is different from conventional support forms
of variational principles and appears to be convenient for applications to nonsmooth optimization.
Based on the subdifferential variational principle, we obtain new necessary conditions for suboptimal
solutions in general nonsmooth optimization problems with equality, inequality, and set constraints
in Asplund spaces. In this way we establish the so-called sequential normal compactness proper-
ties of constraint sets that play an essential role in infinite-dimensional variational analysis and its
applications. As a by-product of our approach, we derive various forms of necessary optimality con-
ditions for nonsmooth constrained problems in infinite dimensions, which extend known results in
that direction.

Key words. variational analysis, variational principles, nonsmooth optimization, Banach and
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1. Introduction. This paper is devoted to variational analysis in infinite di-
mensions and its applications to optimization problems. The main topic is related
to variational principles that play a crucial role in nonlinear analysis and its various
applications in infinite-dimensional spaces; cf. Ekeland [7], Borwein and Preiss [2],
and Deville, Godefroy, and Zizler [6].

In this paper we consider the framework of Asplund spaces that were originally
defined as Banach spaces on which every convex continuous function is generically
Fréchet differentiable. This class is sufficiently broad and convenient for the theory
and applications. It includes all Banach spaces with Fréchet smooth renorms or bump
functions—in particular, every reflexive space. On the other hand, there are Asplund
spaces that fail to have even a Gâteaux smooth renorm. The class of Asplund spaces
admits many nice geometric characterizations; see, e.g., [6] and [24].

The first result of this paper gives a new variational characterization of Asplund
spaces that we call the subdifferential variational principle. The major difference
between this result and variational principles in the conventional support form is
that, instead of a supporting/minimization condition for the given lower semicontin-
uous function f : X → (−∞,∞], the subdifferential variational principle provides a
dual-space condition involving the Fréchet subdifferential of f . If the space in ques-
tion admits a Fréchet smooth renorm (bump function), the subdifferential variational
principle implies a smooth variational principle in the conventional support form of
Borwein–Preiss (resp., Deville–Godefroy–Zizler). Fabian and Mordukhovich [9] re-
cently proved that the mentioned smooth renorm/bump function assumption on X
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is not only sufficient but also necessary for the validity of the corresponding smooth
variational principle. In contrast, the subdifferential variational principle turns out
to be a characterization of Asplund spaces and may be treated as an appropriate
variational principle for this general class of Banach spaces. In fact, we show that the
subdifferential variational principle is equivalent to the extremal principle established
in Mordukhovich and Shao [19] as another characterization of Asplund spaces. The
latter result can be viewed as a variational analogue of the convex separation principle
in the case of nonconvex sets.

Next we give applications of the subdifferential variational principle to subopti-
mality conditions for problems of mathematical programming in infinite dimensions.
This means that we do not assume the existence of optimal solutions and obtain con-
ditions held for suboptimal (ε-optimal) solutions, which always exist. The latter is
particularly important for infinite-dimensional problems of optimization and optimal
control, where the existence of optimal solutions requires quite restrictive assump-
tions. As pointed out by Young [30], any theory of necessary optimality conditions
is “naive” until the existence of optimal solutions is clarified. This was the primary
motivation for developing theories of generalized curves/relaxed controls in problems
of the calculus of variations and optimal control to automatically ensure the exis-
tence of optimal solutions. For the general optimization theory in infinite dimensions,
an alternative route to avoiding trouble with the existence of optimal solutions is to
find “suboptimal solutions,” which are “almost” optimal and which “almost” satisfy
necessary conditions for optimality.

Necessary conditions for suboptimal solutions were first obtained by Ekeland [7]
for classical problems of nonlinear programming with smooth equality and inequality
constraints and unconstrained optimal control. More recent developments for nondif-
ferentiable programming are given by Loridan [16], Bustos [5], and Hamel [11] that
are based mostly on Ekeland’s variational principle and the usage of Clarke’s general-
ized gradients for locally Lipschitzian functions. Suboptimality conditions for various
problems of optimal control can be found in Gabasov, Kirillova, and Mordukhovich
[12], Mordukhovich [17], Moussaoui and Seeger [22], Sumin [27], and their references.

In this paper we establish, based on the subdifferential variational principle, nec-
essary conditions for suboptimal solutions in a sufficiently broad class of optimization
problems, with equality and inequality constraints given by locally Lipschitzian func-
tions, as well as geometric constraints given by closed sets. The main results are
expressed in terms of our basic (limiting) normal cone and subdifferential, which may
be much smaller than Clarke’s counterparts even in finite dimensions and enjoy full
calculus under general qualification conditions and the so-called sequential normal
compactness assumptions. The latter assumptions, which are automatic in finite di-
mensions, are crucial to perform limiting procedures and prove the required calculus
rules. As an essential part of our approach, we obtain new subdifferential conditions
ensuring the sequential normal compactness of constraint sets given by Lipschitzian
equalities and inequalities. We also establish a weak form of suboptimality conditions
for problems with non-Lipschitzian data that do not require constraint qualifications.
As a by-product of our approach, we prove necessary optimality conditions for the
mentioned problems in strong and weak forms. In particular, the weak form of these
results extends to the case of Asplund spaces the necessary optimality conditions for
problems with non-Lipschitzian data recently obtained by Borwein, Treiman, and Zhu
[4] in reflexive spaces.

The rest of the paper is organized as follows. Section 2 contains preliminary
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results and notation used in the paper. Section 3 is devoted to the subdifferential
variational principle and its relation to other basic principles of variational analysis.
In section 4 we present and discuss necessary suboptimality and optimality conditions
for a general constrained problem of nondifferentiable programming in Asplund spaces.
Proofs of these conditions are given in section 5, where we also establish sequential
normal compactness of the constraint sets, which is crucial for the proof of the main
results and is certainly of independent interest.

2. Preliminaries. Our notation is basically standard and can be found in [20]
with most of the definitions and results presented in this section. Finite-dimensional
versions of these constructions and results are given in [17] and [26], while [29] contains
recent applications to optimal control.

For any Banach space X we denote its norm by ‖ · ‖ and the dual space by X∗

with the canonical pairing 〈·, ·〉; B and B
∗
stand for the closed unit balls in the space

and dual space in question. We use R
+
to denote the interval [0,∞), R the interval

(−∞,∞], and R
+
Ω := {αx|α ≥ 0, x ∈ Ω} for a given subset Ω of X.

Let x̄ ∈ Ω and ε ≥ 0. Then

N̂ε(x̄; Ω) :=

{
x∗ ∈ X∗

∣∣∣∣∣ lim sup
x

Ω→x̄

〈x∗, x− x̄〉
‖x− x̄‖ ≤ ε

}
(2.1)

is the set of ε-normals to Ω at x̄, where x
Ω→ x̄ means that x → x̄ with x ∈ Ω. In

particular, N̂0(x̄; Ω) is a cone that is called the prenormal cone or the Fréchet normal

cone to Ω at x̄ and is denoted by N̂(x̄; Ω) for simplicity. When Ω is convex, N̂(x̄; Ω)
reduces to the normal cone of convex analysis.

Given a multifunction F : X →→ X∗, the expression

Lim sup
x→x̄

F (x) := {x∗ ∈ X∗| ∃ sequences xk → x̄ and x∗k
w∗
→ x∗

with x∗k ∈ F (xk) for all k ∈ N}
signifies the sequential Painlevé–Kuratowski upper (outer) limit with respect to the
norm topology in X and the weak∗ topology w∗ in X∗.

Now we define the (basic, limiting) normal cone to Ω at x̄ ∈ Ω by
N(x̄; Ω) := Lim sup

x
Ω→x̄,ε↓0

N̂ε(x; Ω).(2.2)

If X is Asplund, this is equivalent to

N(x̄; Ω) = Lim sup
x

Ω→x̄

N̂(x; Ω).(2.3)

For an extended-real-valued lower semicontinuous (l.s.c.) function f : X → R, the

Fréchet subdifferential ∂̂f(x̄) at x̄ ∈ dom f is given by

∂̂f(x̄) :=

{
x∗ ∈ X∗

∣∣∣∣ lim infx→x̄

f(x)− f(x̄)− 〈x∗, x− x̄〉
‖x− x̄‖ ≥ 0

}

or, equivalently, by

∂̂f(x̄) =
{
x∗ ∈ X∗

∣∣∣ (x∗,−1) ∈ N̂((x̄, f(x̄)); epi f)} ,(2.4)
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where epi f denotes the epigraph of f . For any x̄ ∈ dom f , the sets

∂f(x̄) := {x∗ ∈ X∗ | (x∗,−1) ∈ N((x̄, f(x̄)); epi f)},(2.5)

∂∞f(x̄) := {x∗ ∈ X∗ | (x∗, 0) ∈ N((x̄, f(x̄)); epi f)}(2.6)

are called, respectively, the basic subdifferential and the singular subdifferential of f at
x̄. We have ∂∞f(x̄) = {0} when f is Lipschitz continuous around x̄. If X is Asplund,
the following relations hold for any l.s.c. function f :

∂f(x̄) = Lim sup

x
f→x̄

∂̂f(x) and ∂∞f(x̄) = Lim sup
x

f→x̄,λ↓0
λ∂̂f(x),(2.7)

where x
f→ x̄ means that x→ x̄ with f(x)→ f(x̄). Note that, due to (2.4)–(2.6), one

has

N̂(x̄; Ω) = ∂̂δ(x̄; Ω) and N(x̄; Ω) = ∂δ(x̄; Ω) = ∂∞δ(x̄; Ω)

for any Ω ⊂ X and x̄ ∈ Ω, where δ(x; Ω) is the indicator function of Ω.
Recall [21] that Ω is sequentially normally compact at x̄ ∈ Ω if for any sequences

xk
Ω→ x̄ and x∗k ∈ N̂(xk; Ω) with x∗k w

∗
→ 0 one has ‖x∗k‖ → 0. It always holds when Ω is

compactly epi-Lipschitzian at x̄ in the sense of [3] (see also [15] for a dual counterpart
of the latter property), in particular, if either X = R

n
or Ω is epi-Lipschitzian at

x̄ in the sense of [25]. A function f : X → R is sequentially normally epi-compact
at x̄ ∈ dom f if epi f is sequentially normally compact at (x̄, f(x̄)). Note that f is
sequentially normally epi-compact at x̄ if it is Lipschitz continuous around this point.

The following basic calculus result for subdifferentials and its corollary for normal
cones were proved in [20] by using the extremal principle; see below.

Proposition 2.1. Let X be an Asplund space and let fi : X → R, i = 1, . . . , n,
be l.s.c. functions. Assume that all but one of these functions are sequentially nor-
mally epi-compact at a common point x̄ of their domains. Suppose that the following
qualification condition holds:[

x∗i ∈ ∂∞fi(x̄) (1 ≤ i ≤ n) and

n∑
i=1

x∗i = 0

]
=⇒ x∗1 = · · · = x∗n = 0.

Then one has the subdifferential sum rule

∂(f1 + · · ·+ fn)(x̄) ⊂ ∂f1(x̄) + · · ·+ ∂fn(x̄).

In particular, if Ω1 and Ω2 are closed subsets of X such that one of them is
sequentially normally compact at x̄ ∈ Ω1 ∩ Ω2 and N(x̄; Ω1) ∩ (−N(x̄; Ω2)) = {0},
then N(x̄; Ω1 ∩ Ω2) ⊂ N(x̄; Ω1) +N(x̄; Ω2).

The next result follows from Proposition 2.1 and provides useful subdifferential
representations of the basic normal cone to functional constraint sets given by equal-
ities and inequalities.

Proposition 2.2. The following assertions hold in any Asplund space X.
(a) Let Ω := {x ∈ X| f(x) ≤ 0}, where f : X → R is l.s.c. around x̄ ∈ Ω. Suppose

that there is no α �= 0 with (0, α) ∈ N((x̄, 0); epi f). Then

N(x̄; Ω) ⊂ {x∗ ∈ X∗| (x∗,−α) ∈ N((x̄, 0); epi f) for some α ≥ 0},(2.8)
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which is equivalent to N(x̄; Ω) ⊂ ∂∞f(x̄) ∪ R
+
∂f(x̄) if f(x̄) = 0. If, in

addition, f is locally Lipschitzian around x̄ with f(x̄) = 0, then

N(x̄; Ω) ⊂
⋃
α≥0

α∂f(x̄).

(b) Let Ω := {x ∈ X| f(x) = 0}, where f : X → R is continuous around x̄ ∈ Ω.
Then

N(x̄; Ω) ⊂ ∂∞f(x̄) ∪ ∂∞(−f)(x̄) ∪R
+
∂f(x̄) ∪R

+
∂(−f)(x̄)(2.9)

if 0 /∈ ∂f(x̄) ∪ ∂(−f)(x̄). In particular, if f is locally Lipschitzian around x̄,
then

N(x̄; Ω) ⊂
⋃
α≥0

α
(
∂f(x̄) ∪ ∂(−f)(x̄)

)
.

The main tool of our analysis in this paper is the extremal principle, which pro-
vides necessary conditions for set extremality in terms of a generalized Euler equation
and can be treated as a local variational extension of the classical convex separa-
tion to systems of nonconvex sets. We refer the reader to [19] and the recent survey
[18] for more information about the extremal principle and its various applications.
The version of the extremal principle that we need in what follows is formulated in
Theorem 3.1 of the next section, where it is used to derive the subdifferential varia-
tional principle. Now we recall that, given two subsets Ω1 and Ω2 of a Banach space
X, a point x̄ ∈ Ω1 ∩ Ω2 is locally extremal for the system {Ω1,Ω2}, named in this
case an “extremal system,” if there are sequences a1k → 0 and a2k → 0 in X and a
neighborhood U of x̄ such that

(Ω1 − a1k) ∩ (Ω2 − a2k) ∩ U = ∅ for all k ∈ N.

Various examples of extremal systems in variational analysis, optimization, and re-
lated topics can be found in [18] and in the rest of this paper.

3. Variational principles. In this section we establish the subdifferential vari-
ational principle as a characterization of Asplund spaces. In the next theorem we
derive the subdifferential variational principle from a version of the extremal princi-
ple formulated below, and then we discuss its relationships with smooth variational
principles in conventional support forms.

Theorem 3.1. Let X be a Banach space. Then the following assertions are
equivalent:

(a) (Extremal principle) For every locally extremal point x̄ of a closed set system
{Ω1,Ω2} in X and any ε > 0 there exist xi ∈ Ωi ∩ (x̄ + εB) and x∗i ∈
N̂(xi; Ωi) + εB

∗
(i = 1, 2) such that

‖x∗1‖+ ‖x∗2‖ = 1, x∗1 + x∗2 = 0.

(b) (Subdifferential variational principle) For any l.s.c. function f : X → R

bounded from below and every ε > 0, λ > 0, and x̄ ∈ dom f with f(x̄) <

infX f + ε there exist x̂ ∈ X and x̂∗ ∈ ∂̂f(x̂) such that
(i) ‖x̂− x̄‖ < λ,
(ii) f(x̂) < infX f + ε,
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(iii) ‖x̂∗‖ < ε/λ.
(c) X is an Asplund space.
Proof. Implication (c)⇒(a) was first proved in [19]; another proof is given in [10].

Let us justify the remaining parts of the theorem. We begin with (b)⇒(c), and then
derive (a)⇒(b), which is the main part.

(b)⇒(c). It is well known and easy to prove that a function f : X → R is

Fréchet differentiable at x if and only if the sets ∂̂f(x) and ∂̂(−f)(x) are nonempty
simultaneously. Take an arbitrary convex continuous function f : X → R. Then
∂̂f(x) agrees with the subdifferential of convex analysis and is nonempty at every
x ∈ X. To establish the Asplund property of X, it is sufficient to show, due to [24,
Proposition 1.25], that there is a dense subset S ⊂ X such that ∂̂(−f)(x) �= ∅ for
every x ∈ S.

Denote g(x) := −f(x) and fix x̄ ∈ X and ε > 0. Since g is continuous, there
exists a positive number ε̃ < ε such that g(x) > g(x̄)− ε whenever ‖x− x̄‖ ≤ ε̃. Thus
we have h(x̄) < infX h(x) + 2ε for all x ∈ X, where h(x) := g(x) + δ(x; x̄ + ε̃B) is
obviously l.s.c. on X. Applying the subdifferential variational principle to the latter
function, we find a point x̂ ∈ X with ‖x̂ − x̄‖ < ε̃ such that ∂̂h(x̂) �= ∅. This clearly
implies that ∂̂g(x̂) �= ∅, i.e., the set of points x ∈ X with ∂̂(−f)(x) �= ∅ is dense in X.
Hence X must be Asplund.

(a)⇒(b). First we choose ε1 > 0 such that f(x̄) < infX f + ε − ε1 and let
λ1 := (2ε)−1(2ε − ε1)λ. Applying Ekeland’s variational principle, we find x̃ ∈ X
satisfying ‖x̃− x̄‖ < λ1, f(x̃) ≤ infX f + ε− ε1, and

f(x̃) < f(x) + λ−1
1 (ε− ε1)‖x− x̃‖ for all x ∈ X\{x̃}.(3.1)

Define two closed subsets of X ×R by

Ω1 := epi f, Ω2 :=
{
(x, µ) ∈ X ×R

∣∣µ ≤ f(x̃)− λ−1
1 (ε− ε1)‖x− x̃‖

}
.

It is easy to conclude from (3.1) that (x̃, f(x̃)) is a locally extremal point of the set
system {Ω1,Ω2}; thus we can use the extremal principle.

Consider the norm ‖(x, µ)‖ := ‖x‖ + |µ| on X × R and observe that the corre-
sponding dual norm on X∗ × R is given by ‖(x∗, µ∗)‖ = max{‖x∗‖, |µ∗|}. Applying
the extremal principle to the above system, for any ε2 > 0 we find (xi, µi) ∈ Ωi and
(x∗i , µ

∗
i ) ∈ N̂((xi, µi); Ωi), i = 1, 2, satisfying

‖xi − x̃‖+ |µi − f(x̃)| < ε2, i = 1, 2,(3.2)

1

2
− ε2 < max{‖x∗i ‖, |µ∗

i |} <
1

2
+ ε2, i = 1, 2,(3.3)

max{‖x∗1 + x∗2‖, |µ∗
1 + µ∗

2|} < ε2.(3.4)

Observe that (x∗2, µ
∗
2) �= 0 when ε2 is sufficiently small. It follows from the structure

of Ω2 that µ2 = f(x̃) − λ−1
1 (ε − ε1)‖x2 − x̃‖, which yields µ∗

2 > 0 and thus implies
that

x∗2
µ∗

2

∈ ∂̂ (λ−1
1 (ε− ε1)‖ · −x̃‖

)
(x2) and

‖x∗2‖
µ∗

2

≤ λ−1
1 (ε− ε1).

Taking (3.3) into account, the latter gives the estimate

µ∗
2 ≥ min

{
(1− 2ε2)λ1

2(ε− ε1) ,
1

2
− ε2
}
,(3.5)



SUBOPTIMALITY AND OPTIMALITY CONDITIONS 629

which ensures by (3.4) that µ∗
1 < 0 when ε2 is sufficiently small. This allows us to show

that µ1 = f(x1), since the opposite implies µ
∗
1 = 0 due to (x∗1, µ

∗
1) ∈ N̂((x1, µ1); Ω1)

and the definition of Fréchet normals. Consequently, −x∗1/µ∗
1 ∈ ∂̂f(x1).

It follows from (3.5) that ε2/µ
∗
2 → 0 as ε2 ↓ 0. Putting all the above together, we

conclude that

‖x∗1‖
|µ∗

1|
<
‖x∗2‖+ ε2
µ∗

2 − ε2
=


 ‖x∗

2‖
µ∗

2
+ ε2

µ∗
2

1− ε2
µ∗

2


 <

ε

λ

when ε2 is sufficiently small. On the other hand, it follows from (3.2) and the choice
of λ1 that

‖x1 − x̄‖ < λ1 + ε2 and f(x1) = µ1 < inf
X
f + ε− ε1 + ε2.

Finally, letting x̂ := x1 and x̂
∗ := −x∗1/µ∗

1, we get all the conclusions (i)–(iii) in (b)
and finish the proof of the theorem.

Remark 3.1. If f is smooth (Fréchet differentiable on its domain), then relation
(iii) of the subdifferential variational principle reduces to ‖f ′(x̂)‖ ≤ ε/λ, which can
be viewed as an approximate version of Fermat’s stationary principle for suboptimal
solutions in unconstrained optimization and was first obtained by Ekeland [7] in ar-
bitrary Banach spaces. The next step was made by Rockafellar [25], who established,
employing the sum rule for Clarke’s generalized gradients, the corresponding gener-
alized gradient version of assertion (b) in Theorem 3.1 for l.s.c. functions on Banach
spaces. The same device, invoking the sum rule for two functions in Proposition 2.1,
one of which is Lipschitz continuous, leads to the counterpart of Theorem 3.1(b) in
terms of basic subgradients (2.5) in Asplund spaces; cf. [26, Proposition 10.44] in
finite dimensions. Such a proof does not work for Fréchet subgradients in infinite
dimensions; however, one can get the required conclusions of (b) in Asplund spaces
by employing the “strong fuzzy sum rule” of Fabian [8, Theorem 3], which is actually
equivalent to the extremal principle; see [19].

Remark 3.2. If X admits a Fréchet smooth renorm, conclusions (b) of Theorem
3.1 follow from the Borwein–Preiss smooth variational principle [2], which is equiva-
lent, in this case, to the extremal principle by [1, Theorem 3.1]. Note that the smooth
renorm assumption is not only sufficient but also necessary for the fulfillment of the
smooth variational principle; see [9, Theorem 4.2]. On the other hand, the subdiffer-
ential variational principle is proved to be a characterization of Asplund spaces, and
thus it can be viewed as an appropriate variational principle for this class of Banach
spaces with no smoothness assumptions.

Remark 3.3. It follows from Theorem 4.6 in Fabian and Mordukhovich [9] that
the subdifferential variational principle (b) in Theorem 3.1 directly implies enhanced
versions of smooth variational principles in conventional support forms if the Asplund
space X in question satisfies certain smoothness assumptions related to the existence
of either smooth renorms or smooth bump functions of several types; see [9] for more
details. Note that the combination of Theorem 3.1(b) and [9, Theorem 4.6] ensures the
fulfillment of smooth variational principles that provide some additional information
on supporting functions in comparison with the classical results of Borwein–Preiss
and Deville–Godefroy–Zizler.

4. Necessary suboptimality and optimality conditions. Let us consider a
general optimization problem of mathematical programming with equality, inequality,
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and set constraints:

(P)




minimize f0(x)
subject to
x ∈ ∆ ⊂ X,
fi(x) ≤ 0, i = 1, . . . , p,
fi(x) = 0, i = p+ 1, . . . , p+ q,

where fi : X → R are functions on a Banach space X. The main objective of this sec-
tion is to present and discuss necessary conditions for suboptimal solutions to problem
(P), proofs of which are given in the next section. In these results we do not assume
the existence of optimal solutions that is an underlying assumption in the theory
of necessary optimality conditions. The latter assumption is rather restrictive for
problems of infinite-dimensional optimization and optimal control, while suboptimal
solutions always exist. Based on the subdifferential variational principle, we find sub-
optimal solutions to (P) that approximately satisfy necessary conditions for optimality
in problems with nonsmooth data. As a by-product of our approach, we derive refined
necessary conditions for optimal solutions to (P), provided that they exist.

We obtain two types of results in this direction. Results of the first type justify
“strong” necessary suboptimality and optimality conditions in both qualified and
nonqualified forms for problems with Lipschitzian functions in terms of the basic
normals and subgradients discussed in section 2. Proofs of these results essentially
exploit the calculus rules and representations given in Propositions 2.1 and 2.2, as well
as new subdifferential conditions for the sequential normal compactness of constraint
sets derived in section 5. Independent results of the second type provide a “weak”
form of necessary suboptimality and optimality conditions in terms of Fréchet normals
and subgradients for problems with non-Lipschitzian data.

Let us consider the constraint sets

Ωi := {x ∈ X| fi(x) ≤ 0}, i = 1, . . . , p,(4.1)

Ωi := {x ∈ X| fi(x) = 0}, i = p+ 1, . . . , p+ q,(4.2)

and denote by

C :=
p+q⋂
i=1

Ωi ∩∆, I(x) := {i = 1, . . . , p+ q| fi(x) = 0}

the sets of feasible solutions to (P) and active constraint indices, respectively. We
always assume that C �= ∅. To compress the statements of necessary suboptimality
and optimality conditions formulated below, it is convenient to introduce the following
sets of generalized multipliers.

Definition 4.1. Let x ∈ C and µ ∈ {0, 1} be given. Then
(a) Mµ(x) denotes the collection of all tuples

(x∗0, . . . , x
∗
p+q, x

∗
∆, α1, . . . , αp+q) ∈ (X∗)2+p+q × [0,∞)p+q(4.3)

satisfying the conditions

x∗0 ∈ ∂f0(x), x∗∆ ∈ N(x; ∆),
x∗i ∈ ∂fi(x) for i ∈ {1, . . . , p} ∩ I(x),
x∗i ∈ ∂fi(x) ∪ ∂(−fi)(x) for i = p+ 1, . . . , p+ q,
αi = 0 for i /∈ I(x),

(4.4)
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and

µx∗0 +
∑
i∈I(x)

αix
∗
i + x∗∆ = 0.(4.5)

(b) M∞
µ (x) denotes the collection of all tuples (4.3) for which (4.4) and (4.5) hold,

except that the inclusion required for x∗0 in (4.4) is replaced by x∗0 ∈ ∂∞f0(x).
(c) Given r > 0, let Mµ(x; r) denote the set of all tuples (4.3) obeying (4.4) and∥∥∥∥∥∥µx∗0 +

∑
i∈I(x)

αix
∗
i + x∗∆

∥∥∥∥∥∥ ≤ r, µ+
∑
i∈I(x)

αi ≥ 1.(4.6)

The next theorem gives strong necessary suboptimality conditions in both non-
qualified (Fritz John) and qualified (Kuhn–Tucker) forms.

Theorem 4.2. Let X be an Asplund space. Assume that ∆ is closed, that all of
f1, . . . , fp+q are locally Lipschitzian around each point of C, and that infC f0 > −∞.
Given an arbitrary ε > 0, let x̄ ∈ C be an ε-optimal solution to (P), i.e., f0(x̄) <
infC f0 + ε. The following three assertions hold:

(a) Suppose that f0 is also locally Lipschitzian around each point of C. Then for
every λ > 0 there are x̂ ∈ C ∩ (x̄ + λB) and µ ∈ {0, 1} such that f0(x̂) ≤
infC f0 + ε and Mµ(x̂; ε/λ) �= ∅.

(b) Suppose that f0 is l.s.c. on C and that each x ∈ C obeys both conditions (i)
and (ii):
(i) the basic qualification condition, namely, for every tuple of form (4.3)

in M∞
1 (x) one has x∗0 = 0, x

∗
∆ = 0, and αi = 0 for all i ∈ I(x);

(ii) either f0 is sequentially normally epi-compact at x or ∆ is sequentially
normally compact at x (in particular, ∆ = X).

Then for every λ > 0 there is x̂ ∈ C ∩ (x̄+ λB) such that f0(x̂) ≤ infC f0 + ε
and M1(x̂; ε/λ) �= ∅.

(c) Conversely, if the suboptimality conditions in (b) hold for any problem (P)

with C = X and an l.s.c. function f0 : X → R concave on its domain, then
X must be Asplund.

Remark 4.1. If f0 is locally Lipschitzian around every x ∈ C, then ∂∞f0(x) = {0}
and the basic qualification condition in (i) is a constraint qualification. Moreover, if
∆ = X and all fi are strictly differentiable at x, then (i) is equivalent to the classical
Mangasarian–Fromovitz constraint qualification:

(1) f ′p+1(x), . . . , f
′
p+q(x) are linearly independent.

(2) There exists z ∈ X such that

〈f ′i(x), z〉 < 0 for all i ∈ {1, . . . , p} ∩ I(x),
〈f ′i(x), z〉 = 0 for all i = p+ 1, . . . , p+ q.

In this smooth case, the suboptimality conditions of Theorem 4.2(b) reduce to those
obtained by Ekeland [7] under a more restrictive constraint qualification. Namely, it
was assumed in [7, Theorem 3.1] that all {f ′i(x)| i ∈ I(x)} are linearly independent
for each x ∈ C.

Next we present necessary optimality conditions in (P ), which can be viewed as
the limiting case of Theorem 4.2 as ε = 0. Note that M1(x; 0) =M1(x).

Theorem 4.3. Let X be an Asplund space, and let x̄ be an optimal solution to
(P). Suppose that the corresponding assumptions in (a) and (b) of Theorem 4.2 are
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imposed only at x = x̄. Then the conclusions of these assertions hold with ε = 0 for
x̂ = x̄.

The last theorem of this section contains both necessary suboptimality and opti-
mality conditions in problems (P) with no Lipschitzian, qualification, and/or sequen-
tial normal compactness assumptions. We obtain results in a weak approximate form
of nonsmooth Lagrange multipliers with the replacement of relations (4.4)–(4.6) by
their weaker counterparts.

To compress the statements of weak necessary suboptimality and optimality con-
ditions in (P), it is convenient to introduce the following set. Given ε > 0, a weak∗

neighborhood V ∗ of the origin in X∗, and x ∈ C, we denote byWε,V ∗(x) the collection
of all tuples

w := (x0, . . . , xp+q, x∆, x
∗
0, . . . , x

∗
p+q, x

∗
∆, α0, . . . , αp+q)

∈ X2+p+q × (X∗)2+p+q × [0,∞)1+p+q

satisfying the conditions

x∆ ∈ ∆ ∩ (x+ εB),

f0(x0)− f0(x)| ≤ ε, ‖xi − x‖ ≤ ε for i = 0, . . . , p+ q,

x∗∆ ∈ N̂(x∆; ∆), x∗i ∈ ∂̂fi(xi) for i = 0, . . . , p,(4.7)

x∗i ∈ ∂̂fi(xi) ∪ ∂̂(−fi)(xi) for i = p+ 1, . . . , p+ q,

and

0 ∈
p+q∑
i=0

αix
∗
i + x∗∆ + V ∗,

p+q∑
i=0

αi = 1.(4.8)

Theorem 4.4. Let X be an Asplund space, and let V ∗ be an arbitrary weak∗

neighborhood of the origin in X∗. The following assertions hold for problem (P):
(a) Assume that ∆ is closed, that f0, . . . , fp are l.s.c., and that fp+1, . . . , fp+q

are continuous around each x ∈ C. Suppose also that infC f0 > −∞. Then
there is a number ε̄ > 0 such that for every 0 < ε < ε̄ and every x̄ ∈ C with
f0(x̄) < infC f0 + ε2 one has Wε,V ∗(x̄) �= ∅.

(b) Let x̄ be an optimal solution to (P). Suppose that the assumptions in (a) are
satisfied locally around x̄. Then for every ε > 0 there is a w ∈ Wε,V ∗(x̄),
which obeys in addition the estimates

|fi(xi)− fi(x̄)| ≤ ε, i = 1, . . . , p+ q,(4.9)

for the corresponding vectors xi.
In the case of reflexive Banach spaces X, necessary optimality conditions in Theo-

rem 4.4(b) reduce the main result of Borwein, Treiman, and Zhu [4, Theorem 2.1], ob-
tained by a different technique based on “fuzzy” representations of the Fréchet normal
cone, to the constraint sets (4.1) and (4.2). Recently these results were extended to
the case of Asplund spaces by Ngai and Théra [23], who independently derived a
version of Theorem 4.4(b) using Treiman’s approach in [28] and a fuzzy chain rule
for Fréchet subgradients. Furthermore, the result of [23] claims that all multipliers
α0, . . . , αp+q are nonzero, but it is actually equivalent to the statement of Theo-
rem 4.4(b), since we can always cause them to be nonzero by small perturbations.
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5. Proofs and auxiliary results. In this section we give proofs of the sub-
optimality and optimality results presented in section 4. These proofs apply the
subdifferential variational principle of Theorem 3.1. Beyond that principle and the
calculus rules given in section 2, our arguments strongly involve the following theorem
ensuring the sequential normal compactness of the constraint sets (4.1) and (4.2). The
proof of this theorem is based on the extremal principle.

Theorem 5.1. Let X be an Asplund space, and let f : X → R be a function
Lipschitz continuous around a given point x̄ ∈ X. Then the following assertions hold:

(a) The set Ω := {x ∈ X| f(x) ≤ 0} is sequentially normally compact at x̄,
provided that f(x̄) = 0 and 0 /∈ ∂f(x̄).

(b) The set Ω := {x ∈ X| f(x) = 0} is sequentially normally compact at x̄,
provided that 0 /∈ ∂f(x̄) ∪ ∂(−f)(x̄).

Proof. We prove both assertions (a) and (b) in a parallel way. In what follows,
the set Θ ⊂ X × R stands for either epi f in (a) or gph f in (b). Choose arbitrary

sequences (xk, x
∗
k) ∈ X × X∗ such that xk ∈ Ω, x∗k ∈ N̂(xk; Ω) for all k ∈ N, and

xk → x̄, x∗k
w∗
→ 0 as k → ∞. It is required to prove that ‖x∗k‖ → 0 as k → ∞. We

are going to show that there exists a subsequence of {x∗k} with ‖x∗k‖ → 0. Since this
result can be applied to any subsequence of {x∗k}, it ensures the required convergence
of the whole sequence.

Fix a sequence εk ↓ 0 as k → ∞. By the definition of N̂(xk; Ω), we find a
neighborhood Uk of xk such that

〈x∗k, x− xk〉 − εk‖x− xk‖ ≤ 0 for all x ∈ Uk ∩ Ω.(5.1)

Consider the sets

Λ1k := {(x, 0, γ) ∈ X ×R×R| γ ≥ 0},
Λ2k := {(x, µ, γ) ∈ X ×R×R| (x, µ) ∈ Θ,

γ ≤ 〈x∗k, x− xk〉 − εk(‖x− xk‖+ |µ|)}.
Obviously these sets are closed in X × R × R and (xk, 0, 0) ∈ Λ1k ∩ Λ2k. It follows
from (5.1) that

Λ1k ∩ (Λ2k − (0, 0, ν)) ∩ (Uk ×R×R) = ∅ for all ν > 0.

This means that (xk, 0, 0) is a locally extremal point of the system {Λ1k,Λ2k}. SinceX
is an Asplund space, so is the product spaceX×R×R; see [24]. Thus we can apply the
extremal principle in Theorem 3.1(a). Using this result, we find (xik, µik, γik) ∈ Λik
and

(x∗ik, µ
∗
ik, γ

∗
ik) ∈ N̂((xik, µik, γik); Λik) for i = 1, 2,(5.2)

satisfying the relations

‖xik − xk‖+ |µik|+ |γik| ≤ εk, i = 1, 2,(5.3)

1

2
− εk ≤ max {‖x∗ik‖, |µ∗

ik|, |γ∗ik|} ≤
1

2
+ εk, i = 1, 2,(5.4)

max {‖x∗1k + x∗2k‖, |µ∗
1k + µ∗

2k|, |γ∗1k + γ∗2k|} ≤ εk.(5.5)

It easily follows from (5.2) as i = 1 that x∗1k = 0 and γ∗1k ≤ 0. Then (5.5) implies
‖x∗2k‖ ≤ εk. Let us show that there exists a constant c > 0 such that

(x∗2k + γ∗2kx
∗
k, µ

∗
2k) ∈ N̂cεk((x2k, µ2k);Θ).(5.6)
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Using (5.2) with i = 2 and the definition of N̂ , we have

lim sup

(x,µ,γ)
Λ2k→ (x2k,µ2k,γ2k)

〈x∗2k, x− x2k〉+ µ∗
2k(µ− µ2k) + γ∗2k(γ − γ2k)

‖x− x2k‖+ |µ− µ2k|+ |γ − γ2k| ≤ 0,(5.7)

where

γ2k ≤ 〈x∗k, x2k − xk〉 − εk(‖x2k − xk‖+ |µ2k|)

due to the construction of Λ2k. If this inequality is strict, (5.7) implies that γ
∗
2k = 0

by letting x = x2k, µ = µ2k and passing to the limit as γ → γ2k. Furthermore, setting
γ = γ2k in (5.7), we get (x

∗
2k, µ

∗
2k) ∈ N̂((x2k, µ2k);Θ), which ensures (5.6) in this case.

The other case of

γ2k = 〈x∗k, x2k − xk〉 − εk(‖x2k − xk‖+ |µ2k|)

is more difficult and can be handled as follows. We substitute

γ := 〈x∗k, x− xk〉 − εk(‖x− xk‖+ |µ|)

into (5.7) and find a neighborhood Vk of (x2k, µ2k) such that

〈x∗2k, x− x2k〉+ µ∗
2k(µ− µ2k) + γ∗2k(γ − γ2k)

‖x− x2k‖+ |µ− µ2k|+ |γ − γ2k| ≤ εk(5.8)

for all (x, µ) ∈ Θ ∩ Vk. In this case

|γ − γ2k − 〈x∗k, x− x2k〉|
= |−εk(‖x− xk‖+ |µ|) + εk(‖x2k − xk‖+ |µ2k|)|
≤ εk(‖x− x2k‖+ |µ− µ2k|),

|γ − γ2k| ≤ (1 + ‖x∗k‖)(‖x− x2k‖+ |µ− µ2k|).

Then (5.8) gives the estimate

〈x∗2k + γ∗2kx
∗
k, x− x2k〉+ µ∗

2k(µ− µ2k)

‖x− x2k‖+ |µ− µ2k| ≤ (2 + |γ∗2k|+ ‖x∗k‖)εk ≤ cεk(5.9)

for all (x, µ) ∈ Θ ∩ Vk and c := supk{2 + |γ∗2k| + ‖x∗k‖}. Note that c < ∞, since the
sequence {x∗k} is w∗-convergent, and hence it is bounded due to the classical uniform
boundedness theorem. Thus we get (5.6) from (5.9) and definition (2.1).

Note that the sequences of real numbers {µ∗
ik} and {γ∗ik}, i = 1, 2, are bounded

due to (5.4); hence we may assume that each of them converges. Due to (5.5) we have

− lim
k→∞

µ∗
1k = lim

k→∞
µ∗

2k := µ̄∗, − lim
k→∞

γ∗1k = lim
k→∞

γ∗2k := γ̄∗ ≥ 0.

Let us show that µ̄∗ = 0 under the assumptions made. Indeed, assume the contrary
and pass to the limit in (5.6) as k →∞. Taking into account definition (2.2) and also
that x2k → x̄ and µ2k → 0 = f(x̄) by (5.3), we get (0, µ̄∗) ∈ N((x̄, f(x̄));Θ) due to
x∗k

w∗
→ 0. This implies that 0 ∈ ∂f(x̄) when Θ = epi f , and 0 ∈ ∂f(x̄)∪∂(−f)(x̄) when

Θ = gph f . Each of these conclusions contradicts the assumptions made in (a) and
(b), respectively. Thus µ̄∗ = 0. Consequently, (5.4) and x∗1k = 0, ‖x∗2k‖ ≤ εk imply
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that γ̄∗ �= 0 and thus γ̄∗ > 0. Without loss of generality we assume that γ∗2k ≥ d > 0
for some constant d and all k ∈ N.

To finish the proof, let us consider the following two cases for each k ∈ N. (Only
case (i) applies when Θ = gph f .)

Case (i). µ2k = f(x2k). Substituting µ = f(x) and µ2k = f(x2k) into (5.9), we
get the estimates:

|〈x∗k, x− x2k〉|
‖x− x2k‖ ≤ |〈x

∗
2k, x− x2k〉|

γ∗2k‖x− x2k‖ +
|µ∗

2k| · |f(x)− f(x2k)|
γ∗2k‖x− x2k‖

+
cεk
γ∗2k

(
1 +
|f(x)− f(x2k)|
‖x− x2k‖

)

≤ ‖x
∗
2k‖
d

+
|µ∗

2k|L
d

+
cεk
d
(1 + L)

for all x in a neighborhood of x2k, where L is a Lipschitz modulus of f around x̄. The
latter yields

‖x∗k‖ ≤
‖x∗2k‖
d

+
|µ∗

2k|L
d

+
cεk
d
(1 + L).(5.10)

Case (ii). µ2k > f(x2k). (This only applies when Θ = epi f .) In this case
(x, µ2k) ∈ Θ ∩ Vk when x is near x2k. Substituting µ = µ2k into (5.9), we get
‖x∗2k + γ∗2kx

∗
k‖ ≤ cεk. This implies the estimate

‖x∗k‖ ≤
cεk
d
+
‖x∗2k‖
d

.(5.11)

Summarizing both cases (i) and (ii), we see that for each k ∈ N either (5.10) or
(5.11) holds. This finally implies that ‖x∗k‖ → 0 as k → ∞, since ‖x∗2k‖ ≤ εk for all
k ∈ N. The proof of the theorem is complete.

Remark 5.1. The assumptions 0 /∈ ∂f(x̄) and 0 /∈ ∂f(x̄) ∪ ∂(−f)(x̄) are essential
in Theorem 5.1. A corresponding counterexample is provided by the function f(x) =
‖x‖2 at x̄ = 0 for assertion (a) and by the function f(x) = −‖x‖ at the same point
for assertion (b).

Remark 5.2. It is proved by Rockafellar [25] that if 0 /∈ ∂f(x̄), where ∂ denotes
the Clarke subdifferential, then the set Ω = {x| f(x) ≤ 0} is epi-Lipschitzian at x̄,
provided that f(x̄) = 0 and f is Lipschitz continuous around x̄. It is well known that

∂f(x̄) = cl∗co∂f(x̄)

for locally Lipschitz functions in Asplund spaces; see [20, Theorem 8.11]. Thus, can
we expect Ω to be epi-Lipschitzian at x̄ under the weaker condition 0 /∈ ∂f(x̄) ensuring
the sequential normal compactness property of this set due to Theorem 5.1(a)? The
answer is negative even in finite dimensions. A counterexample is provided by the
function f : R

2 → R defined by f(x1, x2) := |x1| − |x2|. One can check that

0 /∈ ∂f(0, 0) =
{
(x1, x2) ∈ R

2| |x1| ≤ 1 and either x2 = 1 or x2 = −1
}
,

while the set {(x1, x2) ∈ R
2| |x1| ≤ |x2|} is obviously not epi-Lipschitzian at (0, 0).

Proof of Theorem 4.2. Let us first prove assertion (b). Define an l.s.c. function f
by

f(x) := f0(x) + δ(x;C) for all x ∈ X,(5.12)
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which is obviously bounded from below on X. Since infX f = infC f0, we have f(x̄) <
infX f + ε for any x̄ and ε > 0 given in the theorem. Applying the subdifferential
variational principle of Theorem 3.1(b) to the function f in (5.12) with the given
λ > 0, we find x̂ ∈ C and x̂∗ ∈ ∂f(x̂) such that

‖x̂− x̄‖ < λ, f0(x̂) = f(x̂) < inf
X
f + ε = inf

C
f0 + ε, ‖x̂∗‖ < ε/λ.(5.13)

Due to the structure of the feasible set C in (P), we get from (5.12) that

∂f(x̂) = ∂


f0 + ∑

i∈I(bx)
δ(·; Ωi) + δ(·; ∆)


 (x̂),(5.14)

with the sets Ωi defined in (4.1) and (4.2). Now let us apply to (5.14) the basic calculus
rules of Proposition 2.1 as well as the subdifferential conditions for the sequential
normal compactness of the sets Ωi obtained in Theorem 5.1. In this way, using
assumptions (i) and (ii) and the normal cone representations of Proposition 2.2, we
ensure that M1(x̂; ε/λ) �= ∅), which proves (b).

Next let us justify (a). By the proof of (b) we get x̂ and x̂∗ ∈ ∂f(x̂) satisfy-
ing (5.13) and (5.14). If the basic qualification condition in (i) holds at x̂, then (a)
follows, with µ = 1, from the subsequent proof of (b). Suppose that (i) does not hold
at x̄. This means that there are numbers αi ≥ 0 for i ∈ I(x̂), not all zero, and vectors
x∗∆ ∈ N(x̂; ∆), x̂∗i ∈ ∂fi(x̂) for i ∈ {1, . . . , p} ∩ I(x̂), and x̂∗i ∈ ∂fi(x̂) ∪ ∂(−fi)(x̂) for
i = p+ 1, . . . , p+ q satisfying ∑

i∈I(bx)
αix̂

∗
i + x∗∆ = 0.

Dividing the latter equality by α :=
∑
i∈I(bx) αi > 0, we arrive at the conclusions of

(a) with µ = 0.
It remains to prove (c). Let X be a Banach space, and let f : X → R be an

arbitrary concave continuous function. Due to the continuity of f , for any x̄ ∈ X and
ε > 0 there is 0 < ε1 < ε such that f(x̄) < f(x) + 2ε for all x ∈ x̄ + ε1B. Consider
the following unconstrained optimization problem of type (P):

minimize f0(x) on X, with f0(x) := f(x) + δ(x; x̄+ ε1B),(5.15)

where f0 : X → R obviously satisfies the assumptions in (c). Applying to (5.15) the
suboptimality conditions in (b), we find x̂ ∈ x̄+ ε1

2 B such that ∂f0(x̂) = ∂f(x̂) �= ∅. It
is well known (see [20]) that the basic subdifferential (2.5) admits the representation

∂f(x̂) = Lim sup
x→bx,γ↓0

∂̂γf(x)

for any continuous function f on a Banach space X, where

∂̂γf(x̄) :=

{
x∗ ∈ X∗

∣∣∣∣ lim infx→x̄

f(x)− f(x̄)− 〈x∗, x− x̄〉
‖x− x̄‖ ≥ −γ

}
.

So for every γ > 0 there is a xγ ∈ x̄+εB with ∂̂γf(xγ) �= ∅. This implies that, for any
concave continuous function f : X → R and any γ > 0, the set {x ∈ X| ∂̂γf(x) �= ∅}
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is dense in X. Now the Asplund property of X follows from [13, Proposition 1]. This
ends the proof of the theorem.

Proof of Theorem 4.3. Obviously x̄ is an optimal solution to the problem of uncon-
strained minimization of the function f : X → R defined in (5.12). Due to Fermat’s
stationary principle in terms of the basic subdifferential (2.5), we have 0 ∈ ∂f(x̄). Let
us first consider the case in which the assumptions of Theorem 4.2(b) hold around
x̄. Then, by Theorem 5.1, each of the sets Ω1, . . . ,Ωp+q defined in (4.1) and (4.2) is
sequentially normally compact at x̄. Now employing Propositions 2.1 and 2.2, we get
necessary optimality conditions of the form M1(x̄; 0) �= ∅. Similarly to the proof of
Theorem 4.2(a), these conditions imply the nonqualified form of Mµ(x̄; 0) �= ∅ with
µ ∈ {0, 1} when the basic qualification condition is not imposed.

Proof of Theorem 4.4. First let us justify the weak necessary suboptimality con-
ditions in (a). For any z ∈ X and γ > 0 we consider a family of the w∗-neighborhoods

V ∗(z; γ) :=
{
x∗ ∈ X∗| |〈x∗, z〉| < γ

}
of the origin in X∗ that form a basis of the weak∗ topology. Taking an arbitrary
w∗-neighborhood V ∗ in the theorem, we find constants γ̄ > 0, l ∈ N and vectors
zj ∈ X with ‖zj‖ = 1, 1 ≤ j ≤ l, such that

l⋂
j=1

V ∗(zj ; 2γ̄) ⊂ V ∗.

Let us show that the conclusions of the theorem hold for every ε satisfying

0 < ε < ε̄ := min{γ̄, 1}.
Indeed, take any x̄ ∈ C with f0(x̄) < infC f0 + ε2, and find ν ∈ (0, ε) such that

f0(x̄) < inf
C
f0 + (ε− ν)2.

Then for the function f : X → R defined in (5.12) one has

f(x̄) < inf
X
f + (ε− ν)2.

Applying the subdifferential variational principle of Theorem 3.1(b), we find x̂ ∈ C

and x̂∗ ∈ ∂̂f(x̂) such that
‖x̂− x̄‖ < ε− ν, ‖x̂∗‖ < ε− ν < γ̄, and

f0(x̂) < inf
C
f0 + (ε− ν)2 < inf

C
f0 + ε− ν.

The latter implies that

|f0(x̂)− f0(x̄)| < ε− ν.
Now let us take γ := γ̄/(p+ q + 1) and consider the w∗-neighborhood

V̂ ∗ :=
l⋂

j=1

V ∗(zj ; γ).
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Given V̂ ∗ and ν, we employ the “weak fuzzy sum rule” of [8, Theorem 2] to x̂∗ ∈ ∂̂f(x̂)
and find

x∆ ∈ ∆, x0 ∈ X, yi ∈ X for i = 1, . . . , p+ q,

x̂∗∆ ∈ ∂̂δ(x∆; ∆) = N̂(x∆; ∆), x∗0 ∈ ∂̂f0(x0),

y∗i ∈ ∂̂δ(yi; Ωi) = N̂(yi; Ωi) for i = 1, . . . , p+ q

satisfying the relations

‖x0 − x̂‖ < ν, |f0(x0)− f0(x̂)| < ν, ‖x∆ − x̂‖ < ν,

‖yi − x̂‖ < ν/2 for i = 1, . . . , p+ q, and

x̂∗ ∈ x∗0 +
p+q∑
i=1

y∗i + x̂∗∆ + V̂ ∗.

To finish the proof, we need to consider the following two cases.
Case (1). There exist either i ∈ {1, . . . , p} and α �= 0 satisfying (0, α) ∈

N((yi, 0); epi fi) or i ∈ {p + 1, . . . , p + q} satisfying 0 ∈ ∂fi(yi) ∪ ∂(−fi)(yi). If this
happens for some i ∈ {1, . . . , p}, we use the basic normal cone representation (2.3)
and find elements (xi, µi) ∈ epi fi and (x∗i ,−µ∗

i ) ∈ N̂((xi, µi); epi fi) with

‖xi − yi‖ < ν/2, µ∗
i > 0, and x∗i ∈ µ∗

i V
∗.

It is easy to check that N̂((xi, µi); epi fi) ⊂ N̂((xi, fi(xi)); epi fi), since µi ≥ fi(xi).

So we have (x∗i ,−µ∗
i ) ∈ N̂((xi, fi(xi)); epi fi), and hence

x∗i /µ
∗
i ∈ ∂̂fi(xi) with x∗i /µ

∗
i ∈ V ∗.

If i ∈ {p + 1, . . . , p + q}, we use the basic subdifferential representation (2.7) for
continuous functions and find xi ∈ X and x∗i ∈ ∂̂fi(xi) ∪ ∂̂(−fi)(xi) such that

‖xi − yi‖ < ν/2 and x∗i ∈ V ∗.

So in both situations of case (i) we get all the required relations of the theorem with
αi = 1 (the other αi are 0) and x

∗
∆ = 0.

Case (2). Otherwise. In this case we can use the normal cone representations (2.8)
and (2.9), since the qualification assumptions of Proposition 2.2 hold. Employing (2.9)
and then (2.7) for the equality constraints at yi, we find

xi ∈ X, x∗i ∈ ∂̂fi(xi) ∪ ∂̂(−fi)(xi), and βi ≥ 0

for i = p+ 1, . . . , p+ q satisfying

‖xi − yi‖ < ν/2 and βix
∗
i ∈ y∗i + V̂ ∗, 1 ≤ i ≤ p+ q.

Now let us consider the inequality constraints and use representation (2.8) of the
basic normal cone for each i = 1, . . . , p. Taking (yi, y

∗
i ) above, we find µ

∗
i ≥ 0 such

that (y∗i ,−µ∗
i ) ∈ N((yi, 0); epi fi). Then using the limiting representation (2.3) of the

basic normal cone in Asplund spaces, we approximate (y∗i ,−µ∗
i ) in the weak

∗ topology
of X∗ ×R by elements (z∗i ,−r∗i ) ∈ N̂((zi, ri); epi fi), with (zi, ri) sufficiently close to
(yi, 0). Without loss of generality we may assume that ri = fi(zi); cf. case (1). If
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r∗i �= 0, we set βi := r∗i , xi := zi, and x∗i := z∗i /βi ∈ ∂̂fi(xi) to get the required
relations. If r∗i = 0, then, using the techniques developed in [14, proof of Theorem
4], we find an X∗-norm approximation βix

∗
i of z

∗
i with some βi ≥ 0, and an X-

norm approximation xi of zi such that (x
∗
i ,−1) ∈ N̂((xi, fi(xi)); epi fi), which means

x∗i ∈ ∂̂fi(xi).
Combining all of the above relationships and taking into account that ν < ε < γ̄,

we get

|f0(x0)− f0(x̄)| < ε,

‖x∆ − x̄‖ < ε, ‖xi − x̄‖ < ε for i = 0, . . . , p+ q,

0 ∈ x∗0 +
p+q∑
i=1

βix
∗
i + x̂∗∆ + V ∗.

Finally, setting β := 1/(1 +
∑p+q
i=1 βi) and noting that βV

∗ ⊂ V ∗, we arrive at (4.7)
and (4.8) with

x∗∆ := βx̂∗∆, α0 := β, and αi := ββi for i = 1, . . . , p+ q.

This justifies assertion (a) of the theorem.
It remains to prove the weak necessary optimality conditions in (b). Since x̄

provides a local minimum to the function f in (5.12), we have 0 ∈ ∂̂f(x̄). Now
following the (simplified) scheme in the proof of assertion (a), we arrive at all the
conclusions of (b) except estimates (4.9) for i = 1, . . . , p. If fi(x̄) = 0 for some
i ∈ {1, . . . , p}, then (4.9) follows directly from the lower semicontinuity of fi at x̄.
Otherwise, if fi(x̄) < 0 for some i ∈ {1, . . . , p}, we substitute this constraint by
gi(x) := fi(x) − fi(x̄) ≤ 0 and observe that x̄ is an optimal solution to the new

problem with gi(x̄) = 0 and ∂̂gi(x̄) = ∂̂fi(x̄). Thus we get the desired necessary
optimality conditions under the general assumptions of the theorem.

Acknowledgments. The authors are grateful to M. Fabian, A. Kruger, and two
anonymous referees for valuable suggestions and remarks that helped us to improve
the original presentation.
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[30] L. C. Young, Lectures on the Calculus of Variations and Optimal Control Theory, Saunders,

Philadelphia, 1969.



SINGULARLY PERTURBED CONTROL SYSTEMS WITH
ONE-DIMENSIONAL FAST DYNAMICS∗

ZVI ARTSTEIN† AND ARIE LEIZAROWITZ‡

SIAM J. CONTROL OPTIM. c© 2002 Society for Industrial and Applied Mathematics
Vol. 41, No. 2, pp. 641–658

Abstract. The order reduction approach to singularly perturbed control systems suggests em-
ploying as a variational limit the differential algebraic system obtained when the small parameter is
set to be zero. It is known that the method is valid only under restrictive convergence conditions
on the fast dynamics. We verify in this paper that, when the fast state variable is one-dimensional,
the order reduction method is valid in general. This is true, however, when appropriate relaxation is
allowed in the reduced-order system. We also indicate how to extract near optimal solutions to the
original system from optimal solutions of the order reduction one along the traditional reasoning of
separating time scales. Examples are displayed, showing that, without allowing the relaxation, the
order reduction may not provide the correct limit.
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1. Introduction. Consider the optimal control problem with singularly per-
turbed fast dynamics as follows:

minimize

∫ 1

0

c(x(t), y(t), u(t))dt(1.1)

subject to

dx

dt
= f(x, y, u),

ε
dy

dt
= g(x, y, u),

(1.2)

with initial conditions

x(0) = x0, y(0) = y0,(1.3)

where x ∈ Rn, y ∈ Rm, and u ∈ Rk (see Remark 8.1 for extensions). The under-
standing is that the parameter ε multiplying the derivative of the y variable is small.
Hence y is referred to as the fast variable. One is interested, in fact, in the limit
behavior of the value and of the solutions to the problem as ε→ 0. This limit struc-
ture may be drawn from a limit problem. Hence we may try to identify an optimal
control problem whose optimal value and solutions are limits, as ε → 0, of the value
and optimal solutions to the original system. Such a limit system is referred to as a
variational limit.
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The order reduction approach offers a candidate for a variational limit for the
singularly perturbed system. It asserts that the behavior, when the small parameter
tends to zero, is captured by the system arrived at when the parameter is set to be
zero, namely, when (1.2) is replaced by

dx

dt
= f(x, y, u),

0 = g(x, y, u).

(1.4)

The initial condition of the fast variable may not be compatible with the algebraic
equation in (1.4); then a boundary layer is permitted.

The order reduction method yields suitable variational limits for a broad variety
of situations, extending beyond optimal control problems. For the theory and many
important applications, consult Kokotovic, Khalil, and O’Reilly [14]. See also Koko-
tovic and Khalil [13] and O’Malley [15]. However, for the order reduction method to
apply, the optimal solutions have to satisfy quite restrictive conditions. In particular,
on the fast scale, the dynamics has to converge to a stationary point. Many systems
fail to have this property, and there are examples demonstrating that (1.4) may not
be an appropriate variational limit for (1.2). Examples for this phenomenon, and
alternative variational limits, were offered in Artstein [2], Artstein and Gaitsgory [3],
[4], Gaitsgory [10], [11], and Vigodner [16].

In this paper, we establish, under mild conditions, that, for a one-dimensional
fast variable y, namely a scalar, the system (1.4) is an appropriate variational limit
for (1.2), provided that an appropriate relaxation of the order reduction system is
allowed. No restrictions are put on the dimensions of the slow variable and the
control variable. The relaxation is needed, however, for both the control variable
and the stationary limit of the fast variable and the control. Indeed, the stationary
solution of the reduced-order system serves as a control on the slow time scale; hence
it may be subject to relaxation. In the particular case where the slow dynamics is not
present, it is enough to employ relaxed controls, and, moreover, a stationary solution
exists. A similar observation concerning a one-dimensional fast variable holds and
is easy to verify for the uncontrolled version (see Remark 8.2). The result for the
optimal control problem, even without slow dynamics, is not that apparent. Indeed,
we provide examples (see Examples 8.3 and 8.4) demonstrating that, without allowing
relaxed controls, the order reduction may not be a suitable variational limit.

Once an optimal solution to the relaxed version of the order reduction is detected,
one can construct a near optimal solution to the original problem (1.1)–(1.3). This
can be carried out along the traditional reasoning of separating the slow and fast
components in the order reduction method. Consult Kokotovic, Khalil, and O’Reilly
[14].

The paper is organized as follows. In the next section, we display some termi-
nology and the technical assumptions. The interpretation of relaxed solutions for the
order reduction problem is displayed in section 3, where the main general result is
given. In section 4, we state the main result concerning the special case where there
is no slow dynamics in the optimization process. The information we get in this case
is sharper than in the general case. Two auxiliary lemmas are stated and verified
in section 5. They are independent of optimality considerations. They capture and
reveal, however, the role of the condition that y is a scalar variable. The proofs of
the two main results, the special case with no slow dynamics and the general coupled
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dynamics, are given in sections 6 and 7, respectively. In the closing section, we display
some comments, extensions, and examples. In particular, counterexamples are given
(Examples 8.5 and 8.7), showing that the relaxation of the fast stationary limit must
be allowed, and results are exhibited (Proposition 8.9 and Example 8.10), addressing
the situation where there is no need to use such a relaxation.

2. The setting. In this section, we set the terminology and display the condi-
tions under which the main result is verified.

The control functions which are admissible for the optimal control system (1.1)–
(1.3) are functions u(·) : [0, 1]→ Rk which are Lebesgue measurable. We assume that,
if there exists a solution to (1.2)–(1.3) when an admissible control u(·) is applied, this
solution is unique. We denote by costε(u(·)) the cost of applying the admissible
control function, namely, the outcome of the integral in (1.1) evaluated with the
control function and with the resulting trajectories satisfying (1.2) and (1.3) for a
given value of ε. We denote by val(ε) the infimum of costε(u(·)) over all admissible
controls.

Assumption 2.1.

(i) Continuity: The functions f(x, y, u), g(x, y, u), and c(x, y, u) are continuous
in their respective domains.

(ii) Uniqueness: Plugging a bounded and measurable control function u(·) in (1.2)
with any initial conditions yields a unique solution (xε(·), yε(·)) on [0, 1].

(iii) Controllability of the fast flow: Consider the controlled equation dy
ds = g(x, y, u)

for x fixed and for s ∈ [0,∞). Any initial fast state y1 can be steered to any
other state y2 by an admissible bounded control on some interval [0, S].

(iv) Boundedness: There exists a uniformly bounded family of admissible controls
uε(·), parameterized by ε, such that the resulting trajectories (xε(·), yε(·)) are
also uniformly bounded, and such that val(ε) − costε(uε(·)) tends to zero as
ε→ 0.

Conditions (i) and (ii) of Assumption 2.1 are standard. Condition (iii) is a simple
one when y is scalar, as it assumes, roughly, that, for x and y fixed, the function
g(x, y, u) takes both positive and negative values. Condition (iv) can be derived from
growth conditions on the cost function. It holds in broad classes of optimal control
problems, let alone in practically all of the applications.

The term “near optimal control” is used throughout the paper, meaning that the
near optimal control in question, which depends typically on a parameter, yields an
arbitrarily good approximation to the optimal cost as the parameter tends to its limit.

3. The general result. In this section, we clarify how the order reduction
system is solved and state the main result.

As mentioned already, the main result assumes that relaxed controls may be
used. Relaxed controls were originated by Warga and are heavily employed in optimal
control theory. For the theory, background, and applications of relaxed controls,
consult Warga [17], Young [18], or Berkovitz [7]. Here we recall some essential facts.
A relaxed control is a function which at each point t takes as a value a probability
measure, say, µ, on the control space. We shall need two types of relaxation—one on
the original control space and the second on the limit stationary fast dynamics, when
considered as a control for the slow dynamics.

Consider first relaxed controls with values being probability measures on Rk,
namely, the relaxation in the control space. The effect of the probability measure on
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the right-hand side of (1.2) and on the cost function in (1.1) is via averaging. Namely,
when the relaxed control µ is applied, these functions take the values∫

Rk

f(x, y, u)µ(du),

∫
Rk

g(x, y, u)µ(du), and

∫
Rk

c(x, y, u)µ(du),

which are denoted, respectively, by f(x, y, µ), g(x, y, µ), and c(x, y, µ). It is clear
that a control value u can be regarded as the relaxed control measure supported on
the singleton {u}. (As commented on in Remarks 6.3 and 7.3, for a one-dimensional
y, it will be enough to consider relaxed controls whose values are supported at any
given time on either 3 points or on (n+ 3)2 points, depending on the problem.)

An admissible relaxed control is a measurable mapping µ(·) defined on [0, 1] and
with values in the space of probability measures on Rk. We denote this space by
P(Rk). The space P(Rk) is endowed with the metric of weak convergence of measures
(see, e.g., Billingsley [8]), namely, µi converge as i→∞ to µ0 if∫

Rk

h(u)µi(du)→
∫
Rk

h(u)µ0(du),

as i → ∞, holds for every bounded and continuous real valued function h(·). Con-
vergence of relaxed controls is taken in the sense of weak convergence of measures
over [0, 1]×Rk (see Warga [17]). In particular, the relaxed controls µi(·) converge as
i→∞ to the relaxed control µ0(·) if the convergence

∫ 1

0

∫
Rk

h(t, u)µi(t)(du)dt→
∫ 1

0

∫
Rk

h(t, u)µ0(t)(du)dt,

as i→∞, holds for every bounded and continuous real valued function h(·, ·).
The order reduction variational limit of (1.1)–(1.3), with relaxed controls, is as

follows:

minimize

∫ 1

0

c(x(t), y(t), µ(t))dt(3.1)

subject to

dx

dt
= f(x, y, µ),

0 = g(x, y, µ),

(3.2)

with initial condition

x(0) = x0.(3.3)

We wish to emphasize the difference between (1.4) and (3.2); namely, in (3.2), relaxed
controls are employed. Notice that the initial condition for the fast variable does not
appear in the limit problem. Indeed, as in the standard order reduction case, the
near optimal trajectories of the perturbed system may exhibit a boundary layer near
t = 0.

In order to explain our interpretation of the order reduction system, we now
display an equivalent formulation as follows.
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We view the pairs (y, µ), which solve the algebraic equation in (3.2), as admissible
controls for the differential equation in (3.2). To this end, we define

V (x) = {(y, µ) : 0 = g(x, y, µ)}.(3.4)

It is clear from the continuity assumption that the sets V (x) are closed and the set
valued map x → V (x) has a closed graph. Using the notation v for the pair (y, µ),
the order reduction problem can now be rephrased as follows:

minimize

∫ 1

0

c(x(t), v(t))dt(3.5)

subject to

dx

dt
= f(x, v),

v ∈ V (x),
(3.6)

with the initial condition (3.3).
An admissible trajectory of (3.2)–(3.3) (equivalently, of (3.6), (3.3)), is a triplet

of functions, (x(·), y(·), µ(·)), from [0, 1] to (Rn × Rm × P(Rk)) (the space P(Rk)
was described earlier) such that x(0) = x0 and such that both the differential and
the algebraic equations in (3.2) are satisfied (equivalently, (3.6) is satisfied). (See
Remark 8.6.)

As in the standard optimal control theory, relaxed controls may be needed for
solving (3.5)–(3.6). Recall that here the controls are pairs v = (y, µ) of solutions
of the algebraic equation, and include, in particular, stationary points of the fast
variable. Hence the relaxation amounts to employing probability measures, say, ν, on
the set V (x) (the effect being the convexification of this set). The meaning of c(x, ν)
and f(x, ν) for the relaxation of the order reduction is drawn in the usual manner,
namely,

c(x, ν) =

∫
V (x)

c(x, y, µ)ν(dy × dµ), f(x, ν) =
∫
V (x)

f(x, y, µ)ν(dy × dµ).(3.7)

With a relaxed control ν over V (x), namely, over pairs (y, µ), we associate its
effective distribution, say, N(ν) over Rm × Rk. Namely, the probability measure
N(ν) is given by

N(ν)(C ×D) =

∫
C×M

µ(D)ν(dy × dµ)(3.8)

with M being the family of probability measures on Rk. It is clear that c(x, ν) =
c(x,N(ν)) and f(x, ν) = f(x,N(ν)), which justifies the term “effective distribution.”

An admissible relaxed trajectory of (3.5)–(3.6) is now a pair (x(·), ν(·)) of mea-
surable functions from [0, 1] into the product of Rn and the collection of probability
measures over the pairs (y, µ) which belong to V (x(t)); this is true for almost every t
and such that (3.2) is satisfied with ν replacing (y, µ). (Equivalently, when in (3.6),
V (x) is replaced by its convex hull.)

The cost of an admissible trajectory (x(·), ν(·)) is
∫ 1

0
c(x(t), ν(t))dt, employing

the term c(x, ν) given in (3.7) (compare with (3.1)). In view of the boundedness
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assumption, Assumption 2.1(iv), we consider only relaxed trajectories with uniformly
bounded supports. (In particular, x(·) is bounded and absolutely continuous.) The
cost of the trajectory is denoted by costR(x(·), ν(·)) (or by costR(x(·), y(·), µ(·)) if the
trajectory is not a relaxed one). The subscript R stands for reduction.

As is customary, the infimum of all admissible costs is the value of the optimization
problem. We need two notions. We denote by val(OR) the infimum over all admissible
trajectories which use relaxation only in the control, and we denote by val(ROR) the
infimum of the costs over all admissible relaxed trajectories. (Here OR and ROR
stand for order reduction and relaxed-order reduction, respectively.)

In general, val(ROR) may be strictly less than val(OR). This is demonstrated
in Example 8.7. In our application, it is val(ROR) which plays the key role (see also
Remark 8.8). We display in Proposition 8.9 conditions under which the two values
coincide.

We now state our main general result.
Theorem 3.1. Let Assumption 2.1 hold, and suppose that the fast variable y is

a scalar. Then the following hold:
(i) The values val(ε) converge to val(ROR) as ε→ 0.
(ii) An optimal admissible relaxed trajectory of the order reduction problem exists.
(iii) For any admissible relaxed trajectory (x̄(·), ν̄(·)), there exists a sequence uε(·)

of control functions such that costε(uε(·)) converges to costR(x̄(·), ν̄(·)) as
ε→ 0, and the triplets (xε(·), yε(·), uε(·)), resulting from the solution of (1.2)–
(1.3), converge to (x̄(·), ν̄(·)) as follows. The convergence of the slow dynamics
component is uniform on [0, 1]. The pairs (yε(·), uε(·)) converge, in the sense
of relaxed control, to the probability measure valued function N(ν̄(·)). In
particular, if the admissible relaxed solution (x(·), ν(·)) is optimal for the order
reduction system, then the controls uε(·) are near optimal for the original
system when ε is small.

4. The case of fast dynamics. As explained in the introduction, the results
are sharper in the case where the slow variable x is absent from the control problem.
This case is examined in the present section.

For completeness, we restate the optimal control problem without the slow vari-
able. The problem then is as follows:

minimize

∫ 1

0

c(y(t), u(t))dt(4.1)

subject to

ε
dy

dt
= g(y, u),(4.2)

with initial condition

y(0) = y0.(4.3)

The main result in this case takes a particular form as follows. Since the control
problem is time-independent and the x variable, which acts as a parameter for the
fast dynamics in the full problem, is absent, it is clear that the order reduction prob-
lem (4.1)–(4.3) reduces (see, however, Remark 6.2 and Examples 8.3 and 8.4) to the
following optimization problem:

minimize c(y, µ)(4.4)
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subject to

0 = g(y, µ),(4.5)

where µ is a relaxed control. Notice that, again, the initial condition for the fast
variable does not appear in the limit problem.

As in the full problem, we denote by val(ε) the optimal value of the problem
(4.1)–(4.3), and we denote by val(OR) the optimal value of the problem (4.4)–(4.5).
(In the present case, there is no need to use the relaxation of the fast variable; hence
we do not refer to val(ROR).) The functions costε and costR have the same meaning
as in the full problem. When we refer to Assumption 2.1 in the present case, we
interpret it with the absence of the x variable.

Theorem 4.1. Consider the optimal control problem (4.1)–(4.3) and the order
reduction limit (4.4)–(4.5), both under Assumption 2.1, and when the fast variable y
is one-dimensional. Then the following hold:

(i) val(ε) converges to val(OR) as ε→ 0.
(ii) An optimal solution (ȳ, µ̄) of the order reduction system exists.
(iii) For any solution (ȳ, µ̄) of the order reduction equation (4.5), there exists a

bounded sequence uε(·) of control functions such that costε(uε(·)) converges to
costR(ȳ, µ̄) as ε → 0, and the pairs (yε(·), uε(·)), resulting from the solution
of (4.2)–(4.3), converge to the constant function (ȳ, µ̄) as follows. The con-
vergence of the y-component is uniform on any subinterval [δ, 1] with δ > 0.
The control functions uε(·) converge to µ̄ in the sense of relaxed controls. In
particular, if (ȳ, µ̄) is an optimal solution of (4.4)–(4.5), then the control uε(·)
forms a near optimal control for the original problem (4.1)–(4.3) when ε is
small.

5. Two key lemmas. In this section, we display two auxiliary results which
hold the key to the main results of the paper, as they capture the role played by y
being one-dimensional. The results are similar and have similar proofs, yet it is easier
to provide independent proofs than to reduce one case to the other. The two results
are independent of the optimality considerations of the singularly perturbed problem.

We start with a construction as follows. Let (yi(·), ui(·)) be a uniformly bounded
family of functions from [0, 1] into Rm × Rk. (Indeed, we think of them as the fast
trajectories and controls of a singularly perturbed system.) For each i, let Pi be the
distribution of the mapping (yi(·), ui(·)) in Rm × Rk. Namely, Pi is the probability
measure given by

Pi(B) = λ({t : (yi(t), ui(t)) ∈ B})(5.1)

for every Borel set B and where λ is the Lebesgue measure on the unit interval.
Assume that the measures Pi converge in the sense of weak convergence of probability
measures. Let the limit probability measure of Pi on R

m ×Rk be denoted by P .
Let P 1 be the marginal measure of P on the fast coordinate space Rm; namely,

P 1(C) = P (C ×Rk)(5.2)

for all Borel sets C ⊆ Rm. The superscript 1 indicates that the marginal is taken on
the first coordinate, but also recall that we assume that, and later use, m = 1.

It is clear that P 1 is a probability measure on Rm. Let µ(·) be the disintegration
of P with respect to P 1. Namely, for P 1-almost every y, the measure µ(y) is a
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probability measure on Rk, which depends measurably on y, and such that, for Borel
subsets C of Rm and D of Rk,

P (C ×D) =

∫
C

µ(y)(D)P 1(dy).(5.3)

The construction is a standard one; see, e.g., Ash [6]. It is valid for any finite-
dimensional fast dynamics. The following result depends on y being one-dimensional.

Lemma 5.1. Suppose that the variable y is scalar, and suppose that, for every i,
the pair (yi(·), ui(·)) satisfies the differential equation

εi
dy

dt
= g(y, u)(5.4)

with εi → 0 and with g(·, ·) continuous. Then g(y, µ(y)) = 0 for P 1-almost every y.

Proof. The condition g(y, µ(y)) = 0 means that∫
Rk

g(y, u)µ(y)(du) = 0.(5.5)

Clearly, it is enough to prove that∫ y2

y1

∫
Rk

g(y, u)µ(y)(du)P 1(dy) = 0(5.6)

whenever [y1, y2] is an interval in the one-dimensional space, and such that y1 and y2
are not atoms of the marginal measure P 1. Equivalently, it is enough to verify that∫

[y1,y2]×Rk

g(y, u)P (dy × du) = 0(5.7)

for such intervals. Denote

Ji = {t : (yεi(t), uεi(t)) ∈ [y1, y2]×Rk}.(5.8)

The definition of P as the limit of the distributions Pi and the continuity of the func-
tion g(y, u) together with the boundedness assumption on the controls and trajectories
imply that the left-hand side of (5.7) is the limit, as i→∞, of∫

Ji

g(yi(t), ui(t))dt.(5.9)

For a fixed i, we divide the set Ji into three parts and perform the integration in
(5.9) on each part separately.

Let Ji,1 be the subset of points t in Ji which do not belong to an interval, say,
[t1, t2], included in Ji. Then, for t ∈ Ji,1 (except possibly for t = 0 and t = 1), the
derivative of yi(·) at t, if it exists, must be equal to 0. Otherwise, on one side at least,
the trajectory would enter the interval [y1, y2]. Since (yi(·), ui(·)) is a solution of the
ordinary differential equation, this derivative exists λ-almost everywhere, and, since
the differential equation is (5.4), it follows that g(yi(t), ui(t)) = 0 for λ-almost every
t in Ji,1. Hence, when the integration (5.9) is performed on Ji,1, the value is 0.
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Consider now a maximal interval [t1, t2] included in Ji. Then yi(t1) and yi(t2)
take as values either y1 or y2. Consider the case where yi(t1) = yi(t2), say, where
they both are equal to y1. From (5.4) we deduce that

∫ t2

t1

g(yi(t), ui(t))dt = εiy1 − εiy1 = 0(5.10)

and likewise when the common value is y2. Let Ji,2 denote the union of such intervals
in Ji. Then, when the integration (5.9) is performed on Ji,2, the value is again 0.

The rest of the set Ji (call it Ji,3) consists of intervals [t1,j , t2,j ] such that yi(t1,j) �=
yi(t2,j). In particular, there are only a finite number, say, r, of such intervals, and,
moreover, if the index j signifies the order of these intervals, it follows that yi(t2,j) =
yi(t1,j+1). In particular, when the integration (5.9) is performed on Ji,3, employing
the differential equation (5.4), we get∫

Ji,3

g(yi(t), ui(t))dt =
∑
j

εi(yi(t2,j)− yi(t1,j)) = εiyi(t2,r)− εiyi(t1,1).(5.11)

All in all, the integral (5.9) is the sum of the integrals on Ji,1, Ji,2, and Ji,3;
namely, it is equal to the value exhibited in (5.11). Since the trajectories are uni-
formly bounded, it follows that, as εi → 0, the integral (5.9) tends to zero. By the
construction of Ji, the desired equality (5.7) is verified, and the proof is complete.

Remark 5.2. The proof, specifically the arguments leading to (5.10) and (5.11),
relies heavily on y being one-dimensional. The result does not hold in higher dimen-
sions, as, e.g., Example 7.4 in [5], Example 10.2 in [3], or Example 10.1 in [4] show.
A weaker result, however, does hold in higher dimensions, namely, that integrating
g(y, u) against P is equal to zero. This was established (in a slightly different context)
in Artstein [1, (4.2)].

For the second auxiliary result, we need the following construction. We start again
with a uniformly bounded family of functions (yi(·), ui(·)) from [0, 1] into Rm × Rk.
We assume now that the functions converge in the sense of relaxed controls; namely,
there exists a measure valued function η(·) on [0, 1], with each value η(t) being a
probability measure on Rm ×Rk such that∫ 1

0

h(t, yi(t), ui(t))dt→
∫ 1

0

∫
Rm×Rk

h(t, y, u)η(t)(dy × du)dt,(5.12)

as i→∞, holds for every bounded and continuous real valued function h(·, ·, ·).
For a fixed t, we construct the marginals as in the preceding construction; namely,

let η1(t) be the marginal of η(t) on Rm, and let µ(t, ·) be the disintegration of η(t) with
respect to η1(t). (At this point, it is not clear how to get the measurable dependence
of µ(·, y), but, as we shall see, it will follow from the derivations.)

Lemma 5.3. Suppose that the variable y is scalar, and suppose that, for every i,
the pair (yi(·), ui(·)) satisfies a differential equation

εi
dy

dt
= g(xi(t), y, u)(5.13)

with εi → 0, with xi(·) : [0, 1]→ Rn being a uniformly converging prescribed sequence
(say, the limit is x0(·)), and with g(·, ·, ·) continuous. Then, for λ-almost every t, the
equality g(x0(t), y, µ(t, y)) = 0 holds for η1(t)-almost every y.
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Proof. We start as in the previous proof. Verifying g(x0(t), y, µ(t, y)) = 0 for t
fixed amounts to ∫

Rk

g(x0(t), y, u)µ(t, y)(du) = 0.(5.14)

Clearly, it is enough to prove that∫ y2

y1

∫
Rk

g(x0(t), y, u)µ(t, y)(du)η
1(t)(dy) = 0(5.15)

for intervals [y1, y2] with a dense family of end points in the one-dimensional space.
Equivalently, it is enough to verify that∫

[y1,y2]×Rk

g(x0(t), y, u)η(t)(dy × du) = 0(5.16)

for such intervals. Since η(·) is measurable (and by this we overcome the difficulty of
establishing that µ(·, y) is measurable), it follows that, in order to verify the equality
(5.16) for λ-almost every t, it is enough to verify that

1

2δ

∫ t+δ

t−δ

∫
[y1,y2]×Rk

g(x0(t), y, u)η(s)(dy × du)ds(5.17)

converges to 0 as δ → 0. The continuity of g(·, ·, ·) and the continuity of x0(·) imply
that it is enough to establish the convergence to 0 of the integration in (5.17) when
the constant x0(t) is replaced by the function x0(·). For convenience, we display the
formula with this change:

1

2δ

∫ t+δ

t−δ

∫
[y1,y2]×Rk

g(x0(s), y, u)η(s)(dy × du)ds.(5.18)

Since the function η(·) is the relaxed control limit of the distributions of (yi(·), ui(·)),
it follows from (5.12) and from Theorem 2.1(v) in Billingsley [8] that, if we assume
that the points y1, y2 are such that the integral over [t− δ, t+ δ] of the η-measure of
{y1} ×Rk is zero and likewise with y2, we get that (5.18) is the limit as i→∞ of

1

2δ

∫
Ji

g(x0(s), yi(s), ui(s))ds(5.19)

with

Ji = {s ∈ [t− δ, t+ δ] : (yi(s), ui(s)) ∈ [y1, y2]×Rk}.(5.20)

It is clear that there exists a dense sequence of points in R with the properties de-
manded of y1 and y2. Since the function g is continuous, the convergence of xi(·) to
x0(·) implies that the integral in (5.19) shares the same limit, as i→∞, with

1

2δ

∫
Ji

g(xi(s), yi(s), ui(s))ds.(5.21)

We now show that the quantity (5.21) converges to 0 as i→∞. This, in view of the
chain of arguments, would complete the proof.
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To this end, we proceed in a way similar to the proof of the preceding lemma.
Since the arguments are delicate, we provide the details as follows.

For a fixed i, we divide the set Ji into three parts and perform the integration in
(5.21) on each part separately.

Let Ji,1 be the subset of points s in Ji which do not belong to an interval, say,

[s1, s2], included in Ji. Then, if the derivative dyi
ds (·) exists at s ∈ Ji,1, it must be

equal to 0 (except possibly for s = t − δ and s = t + δ). Otherwise, on one side
at least, the trajectory would enter the interval [y1, y2]. Since (yi(·), ui(·)) solves the
differential equation (5.13), it follows that the derivative exists λ-almost everywhere,
and then g(xi(s), yi(s), ui(s)) = 0. Hence, when the integration (5.21) is performed
on Ji,1, the value is 0.

Consider now a maximal interval [s1, s2] included in Ji. Then yi(s1) and yi(s2)
take as values either y1 or y2. Consider the case where yi(s1) = yi(s2), say, where
both are equal to y1. From (5.13), we deduce that

1

2δ

∫ s2

s1

g(xi(s), yi(s), ui(s))ds = εiy1 − εiy1 = 0(5.22)

and likewise when the common value is y2. Let Ji,2 denote the union of such intervals
in Ji. Then, when the integration (5.21) is performed on Ji,2, the value is again 0.

The rest of the set Ji (call it Ji,3) consists of intervals [s1,j , s2,j ] such that
yi(s1,j) �= yi(s2,j). In particular, there are only a finite number, say, r, of such
intervals in [t − δ, t + δ], and, moreover, if the index j signifies the order of these in-
tervals, it follows that yi(s2,j) = yi(s1,j+1). In particular, when the integration (5.21)
is performed on Ji,3, employing the differential equation (5.13), we get

1

2δ

∫
Ji,3

g(xi(s), yi(s), ui(s))ds =
∑
j

εi(yi(s2,j)− yi(s1,j))

= εiyi(s2,r)− εiyi(s1,1).
(5.23)

All in all, the integral (5.21) is the sum of the integrals on Ji,1, Ji,2, and Ji,3; namely, it
is equal to the value exhibited in (5.23). Since the trajectories are uniformly bounded,
it follows that, as i → 0, the integral (5.21) tends to zero. This verifies the desired
convergence, and the proof is complete.

6. Proof of Theorem 4.1. Let uε(·) be the uniformly bounded family of near
optimal controls for ε small, guaranteed by Assumption 2.1(iv). Let yε(·) be the
resulting trajectories of the fast variable. The assumption implies, in particular, that
the pairs (yε(·), uε(·)) are uniformly bounded. We fix a subsequence εi such that

lim inf
ε→0

val(ε) = lim
εi→0

val(εi).(6.1)

We refer now to the construction in section 5 with (yi(·), ui(·)) being (yεi(·), uεi(·)).
We may also choose the sequence such that the distributions Pi, as defined in (5.1),
converge, say, to P . The continuity of the cost functional together with Assump-
tion 2.1(iv) and (6.1) imply that

lim inf
ε→0

val(ε) =

∫
R×Rk

c(y, u)P (dy × du).(6.2)
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Let P 1 be the marginal of P on R, and let µ(·) be the disintegration of P with respect
to P 1, as was described at the beginning of section 5. Then∫

R×Rk

c(y, u)P (dy × du) =
∫
R

∫
Rk

c(y, u)µ(y)(du)P 1(dy).(6.3)

The right-hand side of (6.3) can be written as
∫
R
c(y, µ(y))P 1(dy). Since, by Lemma 5.1,

each pair (y, µ(y)) in the latter integral satisfies g(y, µ(y)) = 0, namely, it solves (4.5),
it follows that

lim inf
ε→0

val(ε) ≥ val(OR).(6.4)

This verifies one direction of claim (i) in Theorem 4.1.
All of the values of (yε(·), uε(·)) are in one compact set, say, B̄. Since the function

g(y, u) is continuous, it follows that the family of admissible pairs (y, µ(y)) supported
in B̄ is compact. The continuity of c(y, u) implies, therefore, that, among these pairs,
a minimizer of c(y, µ) exists. Let (ȳ, µ̄(ȳ)) be this minimizer. We show later that this
minimizer is an optimal solution of the reduced-order problem (4.4)–(4.5).

At this point, we ignore the optimality property of (ȳ, µ̄(ȳ)) and the fact that it
is supported on B̄ and regard it as a general admissible solution of (4.5). We now
construct the family uε(·) promised in claim (iii) of the theorem. The controllability
assumption, Assumption 2.1(iii), implies the existence of a bounded control function,
say, w(·), defined on, say, the interval [0, S], such that the solution of dyds = g(y, w(s))
with y(0) = y0 satisfies y(S) = ȳ. We define uε(t) = w(ε−1t). It is clear then that
the solution yε(·) of (4.2)–(4.3), resulting by applying this control function, satisfies
yε(εS) = ȳ. If relaxed controls were permissible on [εS, 1], we could use µ̄(ȳ) on
this interval, and claim (iii) of the theorem would be satisfied. However, since such
relaxed controls are not allowed, we have to resort to the classical approximation of
a relaxed control by ordinary controls (see, e.g., Warga [17]). In fact, given a fixed ε,
for an arbitrary desired approximation, there exists an ordinary control function uε(·)
on [εS, 1] such that the resulting trajectory yε(·) stays close to ȳ during [εS, 1] and
such that uε(·) approximates, as relaxed controls, the constant relaxed control µ̄(ȳ).
The continuity of c(y, u) implies then that costε(uε(·)) approximates costR(ȳ, µ̄). This
verifies the construction required by claim (iii) of the theorem.

The preceding construction implies, in particular, that

lim sup
ε→0

val(ε) ≤ val(OR),(6.5)

and, together with (6.4), claim (i) of the theorem is complete.
Recall that the specific pair (ȳ, µ̄(ȳ)) was optimal only among those admissible

relaxed controls supported on B̄. However, the construction verifying claim (iii) of the
theorem together with (6.2) imply that costR(ȳ, µ̄(ȳ)) is less than or equal to val(OR).
In particular, the pair (ȳ, µ̄(ȳ)) is actually optimal for the order reduction problem
(4.4)–(4.5). Hence claim (ii) of the theorem is verified as well. This completes the
proof of Theorem 4.1.

Remark 6.1. In retrospect, (6.2) and (6.3) imply that, when the disintegration
P1 is carried out, P1-almost every pair (y, µ(y)) is an optimal solution of the order
reduction problem (4.4)–(4.5). Indeed, the integral of their costs is equal to the infimal
value of the cost.

Remark 6.2. The result of this section establishes the existence of an optimal
solution to the order reduction problem (4.4)–(4.5) which is constant over [0, 1]. The
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case may be, however, that the minimization problem has more than one solution. In
such a case, any measurable function (y(t), µ(t)) which solves (4.4)–(4.5) pointwise
can be regarded as a solution to the order reduction problem. In turn, such a solution
would, in a manner similar to the above construction, yield near optimal solutions,
which are not nearly constant, to the original singular perturbations problem.

Remark 6.3. The probability measure in the optimal pair (ȳ, µ̄(ȳ)) as established
in the proof may be a general one. However, since it needs only to satisfy the two
scalar equalities g(ȳ, µ̄(ȳ)) = 0 and c(ȳ, µ̄(ȳ)) = val(OR), it follows from standard
arguments (see, e.g., Berkovitz [7]) that, for the same fast state ȳ, there exists an
optimal probability measure which is supported on three points in Rk.

7. Proof of Theorem 3.1. We proceed along the reasoning of the proof of
Theorem 4.1 in the preceding section but with the appropriate modifications.

Let uε(·) be the uniformly bounded family of near optimal controls for ε small
guaranteed by Assumption 2.1(iv). Let (xε(·), yε(·)) be the resulting trajectories of
the slow and fast variables. The assumption implies, in particular, that the pairs
(yε(·), uε(·)) are uniformly bounded. We fix a subsequence εi such that

lim inf
ε→0

val(ε) = lim
εi→0

val(εi).(7.1)

We refer now to the construction preceding Lemma 5.3 in section 5, with (yi(·), ui(·))
being (yεi(·), uεi(·)). We may also choose the sequence such that the sequence xεi(·)
converges uniformly on [0, 1], say, to x0(·), and that (yi(·), ui(·)) converges in the sense
of relaxed controls, say, to η(·), as defined in (5.12). The limit (x0(·), η(·)) constitutes
an admissible relaxed trajectory as described in section 3. The continuity of the cost
functional together with Assumption 2.1(iv) and (7.1) imply that

lim inf
ε→0

val(ε) =

∫ 1

0

∫
R×Rk

c(x0(t), y, u)η(t)(dy × du)dt.(7.2)

Let η1(t) be the marginal of η(t) on R, and let µ(t, ·) be the disintegration of η(t)
with respect to η1(t), as was described in section 5. Then, for every fixed t,∫

R×Rk

c(x0(t), y, u)η(t)(dy × du) =
∫
R

∫
Rk

c(x0(t), y, u)µ(t, y)(du)η
1(t)(dy).(7.3)

The right-hand side of (7.3) can be written as
∫
R
c(x0(t), y, µ(t, y))η

1(t)(dy). In view of
Lemma 5.3, each triplet (x0(t), y, µ(t, y)) in the latter integral satisfies g(x0(t), y, µ(t, y))
= 0; namely, it solves the algebraic equation in (3.2) for η1(t)-almost every y. In par-
ticular, the measure η1(t) can be interpreted as a measure on the graph of the pairs
(y, µ(y)), and, as such, it constitutes a relaxation of admissible controls in V (x0(t));
see (3.4). The equalities in (7.1), (7.2), and (7.3) imply now that

lim inf
ε→0

val(ε) ≥ val(ROR).(7.4)

This verifies one direction of claim (i) in Theorem 3.1. (Notice that we verified (7.4)
with the value ROR only; this is unlike the case in Theorem 4.1, where equality
with the value OR was established. Example 8.7 shows that (7.4) may not hold with
val(OR).)

All of the values of (xε(·), yε(·), uε(·)) are in one compact set, say, D̄, and the
trajectories xε(·) form a compact family. Since the function g(x, y, u) is continuous, it
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follows that the family of admissible pairs {(x, v) : v ∈ V (x)}, which are supported in
the natural sense in D̄, is compact. The continuity of c(x, y, u) implies, therefore, that,
among the admissible relaxed solutions (x(·), ν(·)), there exists a minimizer of the cost
functional. Let (x̄(·), ν̄(·)) be this minimizer. We show later that this minimizer is
an optimal solution of the reduced-order problem (3.1)–(3.3), with the relaxation as
described in section 3.

At this point, we ignore the optimality property of (x̄(·), ν̄(·)) and the fact that
it is supported on D̄, and we regard it as a general admissible relaxed solution. We
now construct the family uε(·) promised in claim (iii) of the theorem.

Each ν̄(t) is a probability measure on pairs (y, µ(y)), which satisfy g((x̄(t), y, µ(y)))
= 0. Recall the notion of the effective distribution of such probability measures,
namely, N(ν) as defined in (3.8).

Consider for t fixed the differential equation

dy

ds
= g(x̄(t), y, u).(7.5)

Claim 7.1. The distribution N(ν̄(t)) can be approximated up to an arbitrarily
desired approximation by the distribution of solutions (y(·), u(·)) to the differential
equation (7.5) on some interval [0, S].

The proof provided here follows standard considerations (see, e.g., Warga [17]),
employing the controllability in Assumption 2.1(iii) and the fact that ν̄(t) is a proba-
bility measure on pairs which make the right-hand side of (7.5) equal to 0. (Without
this property, the construction may not be possible; see Remark 7.2.) We can first
approximate ν̄(t) by a probability measure supported on a finite number of points,
say, (y1, µ1), . . . , (yr, µr), with weights p1, . . . , pr (see also Remark 7.3). Then on sub-
sequent intervals we use the following strategy. At the beginning of the jth interval,
we use the controllability to steer the trajectory to yj . Then, for most of the interval,
we use an arbitrarily close control approximation to the relaxed control µj(yj). The
fact that g(x̄(t), yj , µj) = 0 implies that the solution y(·) will stay close to yj on the
rest of the interval. Now we take the lengths of these intervals in proportion to the
weights pj , and the claim is proved

Notice that if, instead of (7.5), we use the original singularly perturbed equation
in (3.2) and set the initial time to be t, the preceding construction will take place
on the interval [t, t + εS]. If t is chosen as a Lebesgue point of N(ν(·)), we get
an approximation of the latter on a small interval. Given the relaxed trajectory
(x̄(·), ν̄(·)) and using the fact that the measure valued component is measurable (hence
almost all its points are Lebesgue points), we can construct a piecewise approximation
to the effective distribution N(ν̄(t)). Since the functions f and c are continuous
and the measures have uniformly bounded support, the continuous dependence with
respect to relaxed controls implies that the resulting slow trajectories will be uniformly
close to x̄(·). This verifies claim (iii) in Theorem 3.1.

The preceding construction implies, in particular, that

lim sup val(ε) ≤ val(ROR),(7.6)

and, together with (7.4), claim (i) of the theorem is complete.
Recall that the specific trajectory (x̄(·), ν̄(·)) was optimal only among those ad-

missible relaxed controls supported on D̄. However, the construction verifying claim
(iii) of the theorem together with (7.2) imply that costR(x̄(·), ν̄(·)) is less than or
equal to val(ROR). In particular, the pair (x̄(·), ν̄(·)) is actually optimal for the order
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reduction problem (3.1)–(3.3). Hence claim (ii) of the theorem is verified as well. This
completes the proof of Theorem 3.1

Remark 7.2. The approximation claimed in Claim 7.1 depends on the fact that
the pairs (y, µ(y)) satisfy the algebraic equation in the order reduction system. Con-
trollability itself does not imply existence of an approximation to a given relaxed
control, as the fast variable will not stay close to a constant on the long interval.

Remark 7.3. Along the reasoning of the argument in Remark 6.3, we note that the
effective probability measure in the optimal admissible relaxed solution (x̄(·), ν̄(·)), as
established in the proof, may be a general one. However, since at each t only the values
g(x̄(t), ν̄(t)), c(x̄(t), ν̄(t)), and f(x̄(t), ν̄(t)) count, it follows from standard arguments
(see, e.g., Berkovitz [7]) that an optimal relaxed control ν̄(t) exists which, for each
t, is supported on n + 3 points. These points are of the form (y, µ), where µ is a
probability measure on Rk. For each y in the n+ 3 points in the support, the values
of g(x̄(t), y, µ), c(x̄(t), y, µ), and f(x̄(t), y, µ) can be generated by n+ 3 points in Rk.
All in all, an optimal relaxed control can be found which, for each t, is supported on
(n+ 3)2 points in Rk.

8. Extensions, examples, and remarks. In this section, we collect some re-
marks and examples concerning possible and impossible extensions of the main results.

Remark 8.1. It is clear that the choice of [0, 1] as the integration domain in the
problem is for convenience only, as any finite time interval will do. The restriction
to a time-invariant equation is also done for convenience. If the cost and the right-
hand side of (1.2) were also functions of t, we could add the time variable to the slow
dynamics via the standard equation dt

dt = 1 and reduce the problem to a time-invariant
one. Since no restrictions were put on the dimensionality of the slow variable, the
results follow. The linear structure of the space Rk of controls is not used. It is enough
to assume that u ∈ U , where U is a locally compact metric space (e.g., a closed, not
necessarily convex, subset of Rk). A bounded set in U is then a set with a compact
closure.

Remark 8.2. A particular case is where the dynamics does not depend on the u
variable. Our result implies then that, when the variable y is one-dimensional, replac-
ing the differential equation for the fast variable by the algebraic equation depicts the
limit behavior of the solutions as ε → 0. This particular observation follows easily
from the approach displayed in Artstein and Vigodner [5]. In fact, what is proved
there is that bounded fast solutions converge, as ε→ 0, to invariant measures of the
fast equation (for a fixed slow state). It is easy to see that invariant measures of a
one-dimensional equation are supported on equilibria.

Example 8.3. Arguments for using relaxed controls in the order reduction problem
can be displayed along the reasoning of the traditional justification of relaxation. For
instance, suppose that, in (4.1)–(4.3), c(y, u) = y2 + (1 − |u|)2, g(y, u) = u, and
y(0) = 0. Then, already for the original singularly perturbed equation, the only
optimal solution is a relaxed one, namely, the constant measure equally distributed
over {−1, 1}. The next example is more telling.

Example 8.4. We display here an example where ordinary solutions for the per-
turbed equations exist, but their limit is not easily captured by the order reduction
method. (Yet it can be interpreted along other methods suggested in the literature.)
Furthermore, without relaxing the controls, the order reduction does not provide a
solution at all. We also point out the solution yielded by the order reduction equation
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with relaxation.

Consider the problem (4.1)–(4.3) with c(y, u) = 0 when y ∈ [−2, 2] and |u| = 1,
and c(y, u) > 0 otherwise. Also, let g(y, u) = u and y(0) = 0. It is easy to figure out
an optimal control for each fixed ε. Indeed, the control function uε(·) should alternate
between the values +1 and −1, with the switching occurring when the function yε(·)
(which is the integral of ε−1uε(·)) reaches the values +2 and −2, respectively. The
limit, as ε → 0, of these solutions can be described in the language of invariant
measures and limit occupational measures, as developed in Artstein [2], Artstein and
Gaitsgory [3], [4], Gaitsgory and Leizarowitz [12], and Vigodner [16]. Indeed, the limit
of the trajectories (yε(·), uε(·)) is an appropriate measure over [−2, 2] × {−1, 1}. No
single element in the support of this measure satisfies the algebraic equation in the
order reduction system. In particular, this solution cannot be captured by the order
reduction method. The present paper guarantees, however, that there exists a relaxed
optimal solution of the order reduction system, for instance, the probability measure
distributed equally on {−1, 1} applied to any stationary fast state in [−2, 2].

Example 8.5. The need for relaxation of the stationary fast dynamics in (1.1)–
(1.3) in order to obtain an optimal solution can be derived from standard arguments.
For instance, consider the problem with scalar variables, where the cost is c(x, y, u) =
x2 + (|y| − 1)2, and the equations are determined by f(x, y, u) = y and g(x, y, u) = u.
It is clear that an optimal solution to the reduced-order problem employs the measure
on the y variable which is distributed equally on y = 1 and y = −1. This example
does not demonstrate the need of relaxation in depicting the limit of the values, as
here val(OR) = val(ROR). This need is demonstrated later.

Remark 8.6. Notice that, unlike in the differential equations (1.2), the control
(be it ordinary or relaxed) in the order reduction may not determine the dynamics;
namely, given µ, the algebraic equation in (3.2) may have more than one solution. In
particular, in the approximation, one has to specify how to drive the solution to the
desired equilibrium or how to generate the chattering needed (e.g., in the preceding
example) for the relaxed control approximation. In many applications, however, fixing
the control determines the limit stationary state. See Kokotovic, Khalil, and O’Reilly
[14]. One example for such a phenomenon is when g(x, y, u) = −α(x)y+ h(x, u) with
α(x) positive.

Example 8.7. We provide an example for val(ROR) strictly less than val(OR).
It is a variant of known examples where using relaxed controls may strictly lower the
cost. Consider the system with scalar variables where the cost is given by c(x, y, u) =
x2 + (|y| − 1)2 + u2, the equations are determined by dx

dt = y and εdydt = x + h(u)
with initial conditions x(0) = 0, y(0) = 0, and where h(u) is defined by h(u) = 0
for u ∈ [−10, 10], h(u) = u − 10 for u > 10, and h(u) = u + 10 for u < 10. The
reduced equation (which in this example is independent of y) is 0 = x + h(u). A
direct inspection reveals the optimal relaxed solution of the order reduction form.
Indeed, the pairs (y, u) = (1, 0) and (y, u) = (−1, 0) are both admissible solutions
of the algebraic equation, and relaxing these states with equal probabilities yields a
trajectory with x(t) = 0 for every t and zero cost. In particular, val(ROR) = 0. The
conditions of the main result hold, and hence this relaxed optimal trajectory can be
approximated by near optimal solutions of the original system.

If, however, we consider first trajectories generated by the solutions (y, µ) of the
algebraic equation 0 = x+h(u), we see that, for x �= 0, the only way to get a solution
is to apply controls with absolute value greater than or equal to 10. Since, without
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the relaxation of the stationary limits of the fast dynamics, the state x = 0 is not a
solution, we deduce that val(OR) ≥ 100.

Remark 8.8. We wish to point out that the relaxation of the order reduction
system plays a role beyond guaranteeing existence of an optimal solution. Indeed,
when val(OR) is strictly greater than val(ROR), there is no way to generate near
optimal solutions to the perturbed system with the aid of nonrelaxed solutions of the
order reduction system. As in the previous example, ordinary trajectories of the order
reduction system cannot approximate optimal relaxed solutions. It is interesting to
note that ordinary solutions of the perturbed system are able to approximate optimal
relaxed solutions of the order reduction system.

The discrepancy between val(OR) and val(ROR) stems from the fact that the
relaxation of the differential inclusion (3.6), which is determined by the set valued
map with values V (x), yields strictly lower values. Standard conditions are available
in the literature, ensuring that this discrepancy does not occur. Since the case where
one may operate with the order reduction problem (3.1)–(3.3) without alluding to
relaxation may be of interest, we display conditions which guarantee that. To this
end, consider the set valued map in the extended space as follows:

V̂ (x) = {(c(x, v), f(x, v)) : v ∈ V (x)}.(8.1)

For a positive number b, let V̂b(x) be the set of pairs (c(x, v), f(x, v)) in V̂ (x) such
that v is supported on the b-ball in Rm × Rk. Distance between sets is taken as the
Hausdorff distance.

Proposition 8.9. Let b be a bound on the sequence of near optimal trajectories
guaranteed in Assumption 2.1(iv). Suppose that the mapping x→ V̂b(x) is a Lipschitz
function of x. Then val(OR)=val(ROR). Furthermore, if the sets V̂b(x) are all convex
sets, then an optimal solution to the order reduction problem can be found which does
not use relaxation of the fast state variable.

Proof. As is evident from the structure, the result alludes only to the struc-
ture of the differential inclusion. Hence the arguments go back to the fundamental
observations of Filippov [9]. See Berkovitz [7, III.4 and IV.4].

Example 8.10. Conditions for the fulfillment of the properties listed in the previ-
ous result, thus guaranteeing that the order reduction system can be analyzed without
the relaxation of the fast variable, can be demonstrated for large classes of equations.
For instance, it is easy to verify that the Lipschitz property is satisfied when all of the
functions involved are Lipschitz, and the equation for the fast variable is of the form
g(x, y, u) = h(x, y) + β(x)u, with β(x) not equal to 0. Indeed, the pairs (y, u) partic-
ipating in the generation of V̂ (x) are related by a Lipschitz factor. In the particular
case where g(x, y, u) = a(x)y + β(x)u, with a(x) �= 0 and β(x) �= 0 (here u and β(x)
may be k-dimensional), the set valued function V̂ (x) can be computed directly. In-
deed, V̂ (x) = {(c(x, −1

a(x)β(x)µ, µ), f(x,
−1
a(x)β(x)µ, µ)) : µ is a relaxed control}. Since

V̂b(x) is generated by controls in a bounded set, it is easy to see that, in this particu-
lar case, if the functions f , c, β, and a (note that a is continuous and a(x) �= 0) are
Lipschitz, then V̂b(x) is Lipschitz continuous.
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1. Introduction. In a previous paper [23] we considered the stabilization prob-
lem for standard control systems. In particular, we proved that if a control system is
globally asymptotically controllable, then one can associate to it a control-Lyapunov
function which is semiconcave outside the origin. The goal of this article is to show
the utility of the semiconcavity of such functions in the construction of stabilizing
feedbacks.

We consider a standard control system of the general form ẋ = f(x, u) which
is globally asymptotically controllable, our objective being to design a feedback law
u : R

n → U such that the origin of the closed-loop system ẋ = f(x, u(x)) is globally
asymptotically stable. Unfortunately, as pointed out by Sontag and Sussmann [28]
and by Brockett [7], a continuous stabilizing feedback fails to exist in general. In
addition to that, a smooth Lyapunov function may not exist either. As a matter of
fact, although smooth Lyapunov-like techniques have been successfully used in many
problems in control theory, it was shown by many authors (see Artstein [5] for the
affine case, and more recently Clarke, Ledyaev, and Stern [11] for the general case)
that there is no hope of obtaining a smooth Lyapunov function in the general case
of globally asymptotically controllable systems. (The existence of such a function is
indeed equivalent to that of a robust stabilizing feedback; see [17, 21].) These facts lead
us to consider nonsmooth control-Lyapunov functions and particularly semiconcave
control-Lyapunov functions; we proved the existence of such a function in our previous
article [23]. This article builds on this result to derive a useful and direct construction
of stabilizing feedbacks. In fact, the semiconcavity of the control-Lyapunov function
allows us to give an explicit formula for the design of the stabilizing feedbacks. More
particularly, this formula can be used in the context of control systems which are affine
in the control to extend Sontag’s formula [26] to the case of discontinuous feedback
laws. Furthermore, the main result of this paper asserts that when the control system
is affine in the control, we can design a feedback which is continuous on an open
dense set and which stabilizes the closed-loop system in the sense of Carathéodory
solutions. Surprisingly, we show that in this case, under an additional assumption on
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the control-Lyapunov function, all the trajectories of the closed-loop system remain
in the set of continuity for positive times; in other words, the set of singularities of the
stabilized system is repulsive, and hence the feedback law is continuous (even locally
Lipschitz) along the trajectories for t > 0.

Our paper is organized as follows: In section 2 we describe our main results. In
section 3 we present some basic facts about nonsmooth analysis, semiconcavity, and
discontinuous stabilizing feedbacks. In sections 4 and 5, we give the proofs of different
results. Finally, the main theorems are proved in sections 6 and 7.

Throughout this paper, R≥0 denotes the nonnegative reals, ‖ · ‖ a norm on R
n,

B the open ball B(0, 1) := {x : ‖x‖ < 1} in R
n, and B the closure of B.

2. Definitions and statements of the results.

2.1. General control systems. We study systems of the general form

ẋ(t) = f(x(t), u(t)),(2.1)

where the state x(t) takes values in a Euclidean space R
n, the control u(t) takes

values in a given compact metric space U , and f is locally Lipschitz in x uniformly
in u. We distinguish a special element “0” in U and assume that the state x = 0 is
an equilibrium point (i.e., f(0, 0) = 0). We are interested in globally asymptotically
controllable systems, which we proceed to define.

Definition 2.1. The system (2.1) is globally asymptotically controllable (GAC)
if there exists a nondecreasing function

θ̃ : R≥0 → R≥0

such that limr→0+ θ̃(r) = 0, with the property that, for each ξ ∈ R
n, there exist a

control u : R≥0 → U and a corresponding trajectory x(·) : R≥0 → R
n such that

x(0) = ξ,

x(t)→ 0 as t → ∞,

and

sup{‖x(t)‖ : 0 ≤ t < ∞} ≤ θ̃(|ξ|).

This definition of global asymptotic controllability is appropriate under the as-
sumption of compactness of the control set U . When this set is not compact, we
must add some conditions on the open-loop controls which stabilize the initial states;
we refer to the papers of Sontag and Sussmann [29, 30] for a generalization of this
definition to the general case on a noncompact control set.

Remark 2.2. This definition seems weaker than the one given initially in [23].
However, as explained by Sontag and Sussmann in [29, 30], a routine argument in-
volving continuity of trajectories with respect to initial states shows that our different
definitions are indeed equivalent.

Our objective is to design a feedback law u : R
n → U such that the origin of the

closed-loop system (2.1) is globally asymptotically stable; that is, such that the new
system

ẋ(t) = f(x(t), u(x(t)))(2.2)
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is globally asymptotically stable. Our method relies on nonsmooth Lyapunov func-
tions, which we proceed to define; we refer to the next section for the definition of the
proximal subdifferential ∂PV (·).

Definition 2.3. A control-Lyapunov function for the system (2.1) is a contin-
uous function V : R

n → R which is positive definite (i.e., V (0) = 0 and V (x) > 0
for x 
= 0), proper (i.e., V (x) → ∞ when ‖x‖ → ∞), and such that there exists a
positive definite continuous function W : R

n −→ R with the property that, for each
x ∈ R

n \ {0}, we have

∀ζ ∈ ∂PV (x), min
u∈U

〈ζ, f(x, u)〉 ≤ −W (x).(2.3)

The present article is based on the following theorem, which is a refinement of a
result proved in [23]. The regularity of our control-Lyapunov function will be crucial
for the construction of discontinuous stabilizing feedbacks.

Theorem 2.4. If the system (2.1) is GAC, then there exists a control-Lyapunov
function V which is semiconcave on R

n \ {0} and such that

∀x ∈ R
n \ {0}, ∀ζ ∈ ∂PV (x), min

u∈U
〈ζ, f(x, u)〉 ≤ −V (x).(2.4)

This theorem differs from the one given in our previous article [23] in the decrease
condition (2.4). Here, we assert that we can take V as the function W of Definition
2.3. This special form of the infinitesimal decrease condition (2.4) will allow us to
obtain exponential decrease for V (x(t)) and will make it possible to give closed-form
estimates (in terms of V ) on the rate of stabilization.

Now, using the concept of π-trajectories and of Euler trajectories which will be
defined in the next section, we give a general result on the existence of stabilizing
feedbacks; this result was announced in [25].

Theorem 2.5. Assume that the system (2.1) is GAC. Then there exists a
feedback u : R

n → U for which the system ẋ = f(x, u(x)) is globally asymptotically
stabilizable in the sense of π-trajectories and in the Euler sense.

Moreover, if we consider a control-Lyapunov function V for the given system,
then the stabilizing feedback can be designed as follows:

• We set u(0) = 0.
• For each x ∈ R

n \ {0}, we choose arbitrarily ζ ∈ ∂LV (x) and we set

u := u(x) ∈ U, where u(x) is any point in U such that 〈ζ, f(x, u)〉 ≤ −W (x).

Furthermore, if the control-Lyapunov function V is the one given by Theorem 2.4
(i.e., if W = V ), then we have

V (x(t)) ≤ e−tV (x0)(2.5)

for any Euler trajectory starting at x0 ∈ R
n.

The existence of a discontinuous feedback which is stabilizing in the sense of the
π-trajectories is not new; it appeared initially in the article of Clarke et al. [10]. We
refer also to Ancona and Bressan [4], who proved a slightly stronger result in the sense
that their feedback stabilizes the closed-loop system in the sense of Carathéodory;
their proof does not use nonsmooth control-Lyapunov functions. However, here the
consideration of a semiconcave control-Lyapunov function leads to a simple proof and
allows us to give an explicit formula for the design of the feedback. Moreover, we are
able to design some stabilizing feedbacks which are rather regular in the case of affine
systems.
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2.2. Affine control systems. Let us assume now that the control system is
affine in the control, that is,

f(x, u) = f0(x) +

m∑
i=1

uifi(x) ∀(x, u) ∈ R
n × U,(2.6)

where the f0, . . . , fm are locally Lipschitz functions from R
n into R

n and where U is
a strictly convex and compact set of R

m.
Remark 2.6. Instead of assuming the control set U to be strictly convex, we

could make a weaker assumption of convexity. As a matter of fact, if the control
set is supposed to be convex, we can define a subset of it which is strictly convex
and for which the control system (2.6) keeps the same properties of controllability.
Consequently all our results hold in the case of a convex compact control set.

First of all, assuming the knowledge of a control-Lyapunov function, we are able
to give an explicit feedback law; it reduces to Sontag’s formula [26] in the smooth
case.

Theorem 2.7. Assume that V is a control-Lyapunov function for (2.6) and con-
sider any selection ζV (·) of ∂LV (·). Then the feedback control defined by

ui(x) := −φ

(
〈f0(x), ζV (x)〉,

m∑
i=1

〈fi(x), ζV (x)〉2
)
〈fi(x), ζV (x)〉,

where

φ(a, b) =

{
a+

√
a2+b2

b if b 
= 0,
0 if b = 0,

(globally asymptotically) stabilizes the control system (2.6) in the sense of π-trajectories
and in the Euler sense.

Remark 2.8. The feedback given in Theorem 2.7 may not be with values in the
control set U . However, we can project the values u(x) on the unit ball B̄ to get a
stabilizing feedback which is locally bounded.

Furthermore, we can exploit the semiconcavity property more strongly to derive
some regularity properties on the feedback in the case of affine control systems. We
are going to obtain continuity of our discontinuous feedback outside a set of singularity
which will be proved small on account of semiconcavity.

Theorem 2.9. If the control affine system (2.6) is GAC, then there exists a
subset D ⊂ R

n which verifies the following properties:
(i) The set D is an open dense set.
(ii) The complement S of D has Hausdorff dimension no greater than n− 1.
(iii) There exists a feedback u : R

n → U which is continuous on D for which
the closed-loop system (2.6) is globally asymptotically stable in the sense of
Carathéodory; in particular, the Euler trajectories are solutions in the sense
of Carathéodory.

Remark 2.10. As in the paper of Artstein [5, Theorem 5.2], if the system verifies
the small-control property, then the feedback can be chosen to be continuous at the
origin. More precisely, if we assume that there exists a semiconcave control-Lyapunov
function such that for all ε > 0, there exists δ > 0 such that ‖x‖ ≤ δ implies the
existence of u ∈ U with ‖u‖ < ε and satisfying (2.4), then the feedback given by the
previous theorem can be taken to be continuous at the origin.
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We recognize this time in Theorem 2.9 the result of Ancona and Bressan [4] in the
case of control affine systems. As in their case, it turns out from the proof that the
function t �→ f(x(t), u(x(t)) is left-continuous. Let us also remark that we get from
the upper bound on the Hausdorff dimension of S that this set has Lebesgue measure
zero. We refer to Morgan [19] for a survey of the notions of Hausdorff measure and
Hausdorff dimension.

Actually, if we consider a control-Lyapunov function given by Theorem 2.4 we
will see in the proof of Theorem 2.9 that the construction of the set D is based on the
function

ΨV (x) := min
u∈U

max
ζ∈∂V (x)

〈ζ, f(x, u)〉,(2.7)

where ∂V denotes the Clarke’s generalized gradient of V ; see section 3.1 for the
definition. This function is upper semicontinuous on R

n \ {0}; hence if we consider a
continuous function δ : R

n → R, the set

Dδ
V := {x ∈ R

n \ {0} : ΨV (x) < −δ(x)}
is open. In particular, if the control-Lyapunov function V satisfies an additional
assumption concerning the set Dδ

V and the function ΨV , then we can provide a sta-
bilizing feedback which is invariant with respect to Dδ

V . Let us state the result.
Theorem 2.11. Let there be given a GAC control system and a control-Lyapunov

function V as in Theorem 2.4. If there exists a continuous and positive definite func-
tion

δ : R
n → R

such that

∀x ∈ R
n \ {0}, δ(x) < V (x),(2.8)

and

∀x ∈ R
n \ {0}, ΨV (x) ≤ −δ(x) =⇒ x ∈ Dδ

V ,(2.9)

then we have the following:
(i) The set Dδ

V is an open dense set and Dδ
V ∪ {0} is path-connected.

(ii) The complement SV of Dδ
V has Hausdorff dimension no greater than n− 1.

(iii) There exists a feedback u : R
n → U which is smooth on Dδ

V for which the
closed-loop system (2.6) is globally asymptotically stable in the sense of Cara-
théodory. Moreover, for any Carathéodory solution x(·) of this system, we
have

x(t) ∈ Dδ
V ∀t > 0.(2.10)

In particular, the Euler trajectories are solutions in the sense of Carathéodory.
Remark 2.12. Let us note that if there exists a positive definite and continuous

function δ such that

∀x ∈ R
n, ΨV (x) < 0 =⇒ ΨV (x) ≤ −δ(x),

then the function δ
2 satisfies (2.8) and (2.9).

We stress that the property (2.10) implies the following facts: For each state
x0 ∈ R

n, for any Carathéodory solution of the closed-loop system starting at x0, the
following hold:
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• If x0 = 0, then x(t) = 0 for all t ≥ 0.
• If x0 ∈ Dδ

V , then x(t) ∈ Dδ
V ∪ {0} for all t ≥ 0; and consequently

ẋ(t) = f(x(t), u(x(t))) ∀t ≥ 0 such that (s.t.) x(t) 
= 0.
• If x0 /∈ Dδ

V ∪ {0}, then x(t) ∈ Dδ
V ∪ {0} for all t > 0; and consequently

ẋ(t) = f(x(t), u(x(t))) ∀t > 0 s.t. x(t) 
= 0.
To summarize our results, we have shown that under the additional assumptions

(2.8) and (2.9), there exists a feedback which stabilizes our closed-loop system in the
sense of Carathéodory, and moreover its Carathéodory trajectories are solutions in
the classical sense for positive times whenever x(t) 
= 0. Let’s also emphasize that the
conclusions of Theorem 2.11 imply some topological properties for the set Dδ

V . As a
matter of fact, the set Dδ

V ∪ {0} is invariant with respect to a locally Lipschitz vector
field (since the functions f0, f1, . . . , fm are locally Lipschitz), which is asymptotically
stabilizing to the origin; therefore it is contractible.

We present in the two following sections two simple examples where the hypothe-
ses (2.8) and (2.9) of Theorem 2.11 are fulfilled.

2.3. One-dimensional systems. Let us assume that the control system is of
the form

ẋ = ug(x),(2.11)

where the control u belongs to the interval [a, b] and g is a locally Lipschitz vector
field on R

n. In this case, the condition (2.9) is always ensured. Let us consider a
semiconcave control-Lyapunov V for the system (2.11) and set

DV := {x ∈ R
n \ {0} : ΨV (x) < 0},

where

∀x ∈ Rn, ΨV (x) := min
u∈U

max
ζ∈∂V (x)

〈ζ, f(x, u)〉.

We have the following.
Lemma 2.13. For any x ∈ DV ,

ΨV (x) ≤ −V (x).

Proof. Let x ∈ DV . Thus ΨV (x) < 0, and there exists u ∈ [a, b] such that
∀ζ ∈ ∂V (x), u〈ζ, g(x)〉 < 0.(2.12)

Without loss of generality we treat the case where u > 0.
We know by assumption on V that for each ζ ∈ ∂LV (x), there exists u(ζ) ∈ [a, b]

such that

u(ζ)〈ζ, g(x)〉 ≤ −V (x).

Since ∂LV (x) ⊂ ∂V (x), we deduce immediately from (2.12) that u(ζ) > 0 and that
Ψ(x) ≤ −V (x).

From this lemma and Remark 2.12 we deduce that the conclusions of Theorem
2.11 apply in the case of one-dimensional systems. We add that we will clearly define
the shape of the set of singularities (i.e., SV the complement of DV ) in the forthcoming
paper [22].

Remark 2.14. Actually, it is not difficult to see that the system (2.11) is GAC
and locally stabilizable by a continuous feedback if and only if it is globally stabilizable
by a smooth feedback.
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2.4. The nonholonomic integrator. The nonholonomic integrator control
system

ẋ1 = u1,
ẋ2 = u2,
ẋ3 = x1u2 − x2u1

(2.13)

appeared in [7] as an example of a nonlinear control system which does not satisfy
Brockett’s condition and cannot be stabilized with continuous feedback. It was shown
in [16] that the nonsmooth function

V = max

{√
x2

1 + x2
2, |x3| −

√
x2

1 + x2
2

}
(2.14)

is a control-Lyapunov function for the nonholonomic integrator system (2.13). As
before,

ΨV (x) := min
u∈U

max
ζ∈∂V (x)

〈ζ, (u1, u2, x1u2 − x2u1)
t〉,

and we remark that ΨV (x) = 0 on the set

S :=
{
x ∈ R

n : x2
1 + x2

2 = 0
}
.

In addition, the function V is differentiable outside S, and thus by the results given
in [16] we get that for any x ∈ DV ,

ΨV (x) ≤ − V (x)√
4 + V (x)2

=: δ(x).

Theorem 2.11 and Remark 2.12 now imply the existence of a stabilizing feedback
satisfying the properties given in its statement.

2.5. A counterexample. We give in this section for every Euclidean space R
n

with n ≥ 2 an example of a control affine system which is GAC and which does not
verify the conditions (2.8) and (2.9) for any control-Lyapunov function V and any
continuous positive definite function δ, and for which the conclusions of Theorem
2.11 do not hold.

Let n ≥ 2 and x0 ∈ Rn \ 3B be fixed. There exists a locally Lipschitz vector field
on R

n such that

f0(x) =

{ −x if x ∈ B,
x− x0 if 1

4 ≤ ‖x− x0‖ ≤ 1
2 .

Let us also define two auxiliary functions g0 and g1. We set for any x ∈ R
n,

g0(x) := max{0, 1− dK1(x)},
where dK1(·) denotes the distance function corresponding to the set

K1 := B
⋃(

x0 +
1

2
B

)
\
(
x0 +

1

4
B

)
.

Then we set for any x ∈ R
n, g1(x) := dK2(x) with

K2 :=
1

2
B
⋃

A ⊂ K1,
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where A denotes the annulus A =
(
x0 +

7
16B

) \ (x0 +
5
16B

)
.

We now present the dynamics which will form our counterexample; we consider
the following control system:

ẋ = f(x, u) := g0(x)f0(x) + g1(x)u, (x, u) ∈ R
n ×B.(2.15)

Let us notice the following facts:

f(x, u) = f0(x) if (x, u) ∈ K2 ×B

and

f(x, u) = g1(x)u if (x, u) ∈ (Rn \ (K1 +B)
)×B.

It is straightforward to show that this affine control system is GAC; let us notice that
this is true since we are in a dimension greater than 2. Now, let us assume that there
exists an open dense set D of R

n which is invariant with respect to some smooth
(on D) stabilizing feedback k(·) and such that its complement S := (Rn \ {0}) \ D is
repulsive (see (2.10)).

First, since our dynamics reduce to f0 around the origin, we can assume that
0 ∈ D and hence that D is contractible. On the other hand, the control system (2.15)
coincides with the dynamical system ẋ = f0(x) on the interior of A. Consequently,
by repulsivity the set S cannot intersect int(A); hence we deduce that S meets the
ball x0 +

5
16B. (If the vector field f(·, k(·)) were continuous on this ball, it would

have an equilibrium on it by Brouwer’s theorem; as a matter of fact the ball would
be invariant under the dynamic ẋ = −f(x, k(x)).) In other words, there exists a
nonempty compact set K such that

K ⊂ x0 +
3

8
B ⊂ x0 +

7

16
B

and

K ∩ D 
= ∅.
This means that we can write our set D as follows:

D =

(
D
⋃

x0 +
7

16
B

)
\K.

In fact, we can see D as an open set minus a compact subset of itself. Such a set can’t
be contractible (we refer to algebraic topology for the proof of this result).

In particular, this shows by Theorem 2.11 that the control system defined above
does not possess a semiconcave (outside the origin) control-Lyapunov function V
(with, for instance, W = V ) and a continuous positive definite function verifying
(2.8) and (2.9).

3. Complementary definitions.

3.1. Some facts in nonsmooth analysis. We recall briefly some notions of
nonsmooth analysis which are essential for this article. We first define ∂PV (x) as the
proximal subdifferential of V at x where the function V : R

n → R is assumed to be
locally Lipschitz: ζ belongs to ∂PV (x) if and only if there exists σ and η > 0 such
that

V (y)− V (x) + σ‖y − x‖2 ≥ 〈ζ, y − x〉 ∀y ∈ x+ ηB.(3.1)
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We further state that this object can be empty at some points. Nevertheless it can
be proved that the proximal subdifferential is nonempty on a dense set of R

n. Such
a property leads us to define the limiting subdifferential and the generalized gradient
which will be nonempty at every point. For all x in R

n, the limiting subdifferential
of V at x is defined as follows:

∂LV (x) := {lim ζk : xk → x, ζk ∈ ∂PV (xk)} .(3.2)

Remark 3.1. Of course, by the construction of the limiting subdifferential and
by continuity of f(·, ·), the property (2.4) given in Definition 2.3 is equivalent to the
following one:

∀x ∈ R
n \ {0}, ∀ζ ∈ ∂LV (x), min

u∈U
〈ζ, f(x, u)〉 ≤ −W (x).(3.3)

Finally, we derive the generalized gradient of Clarke as follows:

∂V (x) := co ∂LV (x),(3.4)

where coA denotes the convex hull of the set A.
It is important to note that in our case of a locally Lipschitz function, the defini-

tion of the generalized gradient coincides with the following one based on Rademacher’s
theorem:

∂V (x) := co{lim∇V (xk) : xk → x, xk ∈ Df \N},(3.5)

where Df denotes the set of differentiability of f and N is any set of Lebesgue measure
zero in R

n.
Moreover, we stress that there exist complete calculi of proximal subdifferentials

and generalized gradients, ones that extend all theorems of the usual smooth calculus;
our principal references for this theory are the books of Clarke [8] and Clarke et al.
[12].

3.2. Results on semiconcave functions. We recall in this subsection some
basic properties of the semiconcave functions. Let us first recall this definition; we
assume in this section that Ω is a given open subset of R

n.
Definition 3.2. Let g : Ω −→ R be a continuous function on Ω; it is said to be

semiconcave on Ω if for any point x0 ∈ Ω there exist ρ,C > 0 such that

g(x) + g(y)− 2g
(
x+ y

2

)
≤ C‖x− y‖2(3.6)

for all x, y ∈ x0 + ρB.
The property (3.6) amounts to the concavity of x �→ g(x) − 2C‖x‖2, as is eas-

ily checked. Hence, a semiconcave function g can be seen locally as the sum of a
concave function and a smooth function. In particular, this implies that the semi-
concave functions are locally Lipschitz. We know different examples of semiconcave
functions. Concave functions are of course semiconcave. Another class of semiconcave
functions is that of C1 functions with locally Lipschitz gradient. We can in fact give a
characterization of the semiconcavity property of a function g by using the proximal
superdifferentials defined as follows:

∂P g(x) := −∂P g(x),(3.7)
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or, equivalently, ζ ∈ ∂P g(x) if and only if there exists σ and η > 0 such that

g(y)− g(x)− σ‖y − x‖2 ≤ 〈ζ, y − x〉 ∀y ∈ x+ ηB.(3.8)

This analytic definition enables us to give a characterization of semiconcavity; we
refer to [24] for the proof.

Proposition 3.3. A function g : Ω→ R is semiconcave if and only if σ and η of
(3.8) can be chosen uniform on the compact sets of Ω. Moreover, the superdifferential
and the generalized gradients coincide on Ω.

Remark 3.4. We can in fact relate the semiconcavity property of a given func-
tion to some geometric properties of its epigraph; we refer to [24] for such results.
Furthermore we can define the semiconcavity property in a more general setting such
that semiconcave functions keep the same behavior of concave functions; hence we
can relate their differentiability properties to the ones of concave functions (see, for
instance, [32]).

Since the semiconcave functions are locally Lipschitz, we get by Rademacher’s
theorem that they are differentiable almost everywhere. Actually, since they are
locally the sum of a semiconcave function and a smooth function, we can state posi-
tively by Alexandroff’s theorem (see [2, 14]) that the semiconcave functions are twice
differentiable almost everywhere.

A study has been devoted to the set of nondifferentiability of such functions.
Alberti, Ambrosio, and Cannarsa [1] were able to provide some upper bounds on the
dimension of singular sets of semiconcave functions.

Let g : Ω→ R be a semiconcave function. Define

Σk(g) := {x ∈ Ω : dim(∂g(x)) = k},
where k ∈ [0, n] is an integer. Clearly, Σ0(g) represents the set of differentiability of
u, and moreover

Ω =

n⋃
k=0

Σk(g).(3.9)

We can evaluate the size of these sets.
Proposition 3.5. For any integer k ∈ [0, n], the set Σk(g) has Hausdorff di-

mension ≤ n− k.
We refer to [1] (see also [3]) for the proof and again to the book of Morgan [19]

for a serious survey of the Hausdorff dimension.
Finally, Alberti, Ambrosio, and Cannarsa made some useful links between the

Bouligand tangent cones of some subsets of the Σk(g)’s and the generalized gradients
of g. Let us define for any α > 0

Σkα(f) :=
{
x ∈ Ω : ∃Bk

α ⊂ ∂f(x) with diam(Bk
α) = 2α

}
,

where Bk
α denotes a ball of dimension k with diameter α. For any set S ⊂ R

n, we
shall denote by S⊥ the set defined as follows:

S⊥ := {p ∈ R
n : q �→ 〈q, p〉 is constant on S}.

We have the following result.
Proposition 3.6. The sets Σkα(g) are closed sets, and

TBΣk
α(g)(x) ⊂ [∂f(x)]

⊥ ∀x ∈ Σkα(f) \ Σk+1
α (f).

We again refer to the paper of Alberti, Ambrosio, and Cannarsa for the proof.
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3.3. Discontinuous stabilizing feedbacks. As it has been explained before,
there do not exist robust stabilizing feedbacks in general. To overcome this difficulty,
we describe a concept of solution of the general Cauchy problem

ẋ = f(x, u(x)), x(0) = x0,(3.10)

where the feedback u : R
n → U is not assumed to be continuous. This concept

of solutions for differential equations with discontinuous right-hand side, inspired by
the theory of differential games, has been used in the fundamental article of Clarke
et al. [10] (see also [9]) to produce discontinuous stabilizing feedbacks; it provides an
alternative approach to those developed by Sussmann [31] and Coron [13] (see also
Pomet [20]).

Let π = {ti}i≥0 be a partition of [0,∞), by which we mean a countable, strictly
increasing sequence ti with t0 = 0 such that ti → ∞ as i → ∞. The diameter of π,
denoted diam(π), is defined as supi≥0(ti+1 − ti). Given an initial condition x0, the
π-trajectory x(·) corresponding to π is defined in a step-by-step fashion as follows.
Between t0 and t1, x(·) is a classical solution of the differential equation

ẋ(t) = f(x(t), u(x0)), x(0) = x0, t0 ≤ t ≤ t1.

(Of course in general we do not have uniqueness of the solution, nor is there necessarily
even one solution.) We then set x1 := x(t1) and restart the system with control
value u(x1):

ẋ(t) = f(x(t), u(x1)), x(t1) = x1, t1 ≤ t ≤ t2,

and so on in this fashion. This resulting trajectory x is a physically meaningful one
that corresponds to a natural sampling procedure and piecewise constant controls;
this kind of solution, called a system sampling solution, is due to Krasovskii and
Subbotin (see [15]). We proceed now to give the definition of the global asymptotic
stabilization associated to this concept.

Definition 3.7. The system (2.1) is globally asymptotically stable in the sense of
π-trajectories if there exist a function M : R>0 −→ R>0 such that limR↓0 M(R) = 0
and two functions T, δ : R>0 × R>0 −→ R≥0 with the following property:

For any 0 < r < R, for any partition π with diam(π) ≤ δ(r,R), and for each
initial state x0 such that ‖x0‖ ≤ R, the corresponding π-trajectory x(·) is well-defined
and satisfies the following:

(1) for all t ≥ 0, ‖x(t)‖ ≤ M(R);
(2) for all t ≥ T (r,R), ‖x(t)‖ ≤ r.
Remark 3.8. This definition is equivalent to another one given by Sontag in

[27]. In that paper, it was required that there exist a function β ∈ KL so that the
following property held: For each 0 < ε < K, there exists a δ = δ(ε,K) > 0 such that,
for every sampling schedule π with diam(π) < δ, and for each initial state x0 with
‖x0‖ ≤ K, the corresponding π-trajectory x(·) of (2.1) is well-defined and satisfies

‖xπ(t)‖ ≤ max{β(K, t), ε} ∀t ≥ 0.

We can define from the concept of π-trajectories the notion of Euler trajecto-
ries. As presented in [25], we call an Euler solution of (2.2) any uniform limit of
π-trajectories of this system with diam(π) → 0. Moreover, we will say that the
closed-loop system (2.2) is globally asymptotically stable in the Euler sense (or that
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the feedback u stabilizes in the Euler sense) if the two properties given in Definition
2.1 are satisfied for any Euler solutions.

We also recall briefly for the convenience of the reader that a function x(·) :
[0,∞) → R

n is called a Carathéodory solution (or trajectory) of our closed-loop
system if it satisfies

ẋ(t) = f(x(t), u(x(t)) a.e. ∀t ≥ 0.

We will say in that case that the closed-loop system is stabilizing in the sense of
Carathéodory.

4. Proof of Theorem 2.4. We can invoke the main result of [23] to get a
control-Lyapunov function V0 which is semiconcave on R

n \{0}. We begin by showing
that there exists a smooth function γ : (0,∞)→ (0,∞) which satisfies

min
u∈U

〈ζ, f(x, u)〉 ≤ −γ(V0(x)) ∀x ∈ R
n \ {0}, ∀ζ ∈ ∂PV0(x).(4.1)

We use the method given by Clarke, Ledyaev, and Stern in [11]. We set for all v > 0,

γ(v) := min{W (x);x ∈ Γ(v)},
where

Γ(v) := {x ∈ R
n;V0(x) = v}.

It is not difficult to show that the multifunction Γ is locally Lipschitz, which implies
that the function γ is locally Lipschitz on (0,∞) and verifies (4.1). Moreover, we can
approximate γ by a smooth function γ̃ such that

0 < γ̃ ≤ γ.

Finally, without loss of generality we can suppose that γ is smooth and verifies (4.1).
Now, we set

Ψ(t) :=

∫ t

1

1

γ(s)
ds.(4.2)

This new function from (0,∞) into R is increasing, smooth, and verifies the three
following properties:

Ψ′(t) =
1

γ(t)
∀t > 0,(4.3)

lim sup
t↓0

Ψ(t) ≤ 0,(4.4)

and

lim inf
t→∞ Ψ(t) ≥ 0.(4.5)

We are now able to define a new control-Lyapunov function V1. We set

V1(x) :=

{
V0(x)e

cΨ(V0(x)) if x 
= 0,
0 if x = 0.

(4.6)
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By (4.4) and (4.5) and the properties of V0, this new function is obviously proper,
continuous at the origin, and locally Lipschitz on R

n \{0}. We now want to make the
link between the proximal subdifferentials of V1 and the proximal subdifferentials of
V0; for that, we give the following lemma.

Lemma 4.1. Let there be given two functions f : Ω → R and F : R → R. If we
assume that f is positive and locally Lipschitz on the open set Ω and that F is a C2,
positive, and increasing (F ′ > 0) function, then for all x ∈ Ω,

∂P [fF (f)](x) = [F (f(x)) + f(x)F ′(f(x))]∂P f(x).

The same formula holds for the proximal superdifferential. Moreover, if the function
f is taken to be semiconcave, then the new function fF (f) is semiconcave as well.

Proof. Let us consider x ∈ R
n and ζ ∈ ∂P [fF (f)](x); then by (3.1), there exists

σ ≥ 0 such that

f(y)F (f(y))− f(x)F (f(x)) + σ‖y − x‖2 ≥ 〈ζ, y − x〉(4.7)

whenever y is in a neighborhood of x. The function X → XF (X) is C2, so we have by
Taylor’s formula that there exists a constant C such that for all Y in a neighborhood
of X,

Y F (Y )−XF (X) = F (X) +XF ′(X)(Y −X) +
C

2
‖Y −X‖2 + o(‖Y −X‖2).

We get for Y = f(y) and X = f(x) that f(y)F (f(y))− f(x)F (f(x)) is equal to

[F (f(x)) + f(x)F ′(f(x))][f(y)− f(x)] +
C

2
‖f(y)− f(x)‖2 + h,

where h = o(‖f(y)− f(x)‖2).
We set D := F (f(x)) + f(x)F ′(f(x)); by the assumptions on f and F , D > 0,

and so we can divide by D. On the other hand, f being locally Lipschitz, we deduce
that there exists a constant σ ≥ 0 such that

f(y)

D
− f(x)

D
+ σ‖y − x‖2 ≤

〈
ζ

D
, y − x

〉
(4.8)

whenever y is in a neighborhood of x; and then by the characterization (3.1) we get

∂P f [F (f)](x) ⊂ [F (f(x)) + f(x)F ′(f(x))]∂P f(x).

This proves one inclusion; the other is left to the reader. Of course, for the case of
the proximal superdifferential, a similar proof is valid.

It remains to show the conservation of semiconcavity. If we assume that f is
semiconcave, then by using Proposition 3.3 and following the same proof as above,
we show that the different σ remain uniform on the compact sets of Ω.

We now turn back to the proof of Theorem 2.4; the lemma implies immediately
that for all x ∈ R

n \ {0} and all ζ ∈ ∂PV1(x) ⊂ ∂LV1(x),

min
u∈U

〈ζ, f(x, u)〉 ≤ −γ(V0(x))[e
Ψ(V0(x)) + cΨ′(V0(x))V0(x)e

Ψ(V0(x))]

≤ −V1(x)

[
γ(V0(x))

V0(x)
+ cγ(V0(x))ψ

′(V0(x))

]

≤ −V1(x)

[
γ(V0(x))

V0(x)
+ c

]
by (4.3)

≤ −cV1(x).
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On the other hand, as the initial function V0 was semiconcave on R
n \ {0}, we have

by Lemma 4.1 that the new function V1 is semiconcave; the proof of Theorem 2.4 is
complete.

5. Proof of Theorems 2.5 and 2.7. We will treat only the case where the
control-Lyapunov function is that given by Theorem 2.4. The general case of a control-
Lyapunov function related to a function W is left to the reader.

Let V be the semiconcave Lyapunov function given by Theorem 2.4 and two
positive constants r < R. We set

MR := max{V (x) : ‖x‖ ≤ R} and M(R) := max{‖y‖ : V (y) ≤ MR}.

Obviously, the function M(·) is nondecreasing and verifies

lim
R↓0

M(R) = 0.

We also set two constants depending on r:

mr := min{V (x) : ‖x‖ ≥ r} and m r
2
:= min

{
V (x) : ‖x‖ ≥ r

2

}
;

we can say by definition that if V (x) ≤ m r
2

2 , then x ∈ r
2B. On the other hand,

the Proposition 3.3 allows us to consider σ := σ( r2 , R) and δ uniform on the set

A := {x : m r
2

2 ≤ V (x) ≤ MR} ⊂ R
n \ {0}.

We get that for all x ∈ A, all y ∈ A, and all ζ ∈ ∂LV (x),

−V (y) + V (x) + σ‖y − x‖2 ≥ 〈−ζ, y − x〉.(5.1)

From now on, we denote by Mf the upper bound of f on RB × U , by Lf the
Lipschitz constant of f on the same set, by mV the minimum of V , and by LV the
Lipschitz constant of V on A. Let us consider a π-trajectory x(·) associated to a
partition π = {0 = t0 < t1 < · · · } and to nodes xi := x(ti) with x0 ∈ A. We pick ζ0
belonging to ∂LV (x0). For any t ∈ [t0, t1], we can compute by (5.1)

V (x(t))− V (x0) ≤ 〈ζ0, x(t)− x0〉+ σ‖x(t)− x0‖2

≤
〈
ζ0,

∫ t

t0

f(x(s), u(x0))ds

〉
+ σ‖x(t)− x0‖2

≤ 〈ζ0, (t− t0)f(x0, u(x0))〉 · · ·

+

〈
ζ0,

∫ t

t0

[f(x(s), u(x0))− f(x0, u(x0))]ds

〉
+ σ‖x(t)− x0‖2

≤ −(t− t0)V (x0) + ‖ζ0‖Lf max
s∈[t0,t1]

‖x(s)− x0‖(t− t0) · · ·

+σ‖x(t)− x0‖2

≤ −(t− t0)V (x0) + LV LfMf (t− t0)
2 + σM2

f (t− t0)
2

≤ (t− t0)
[−mV + (LfLVMf + σM2

f )(t− t0)
]
.

More generally, we have for all t ∈ [ti, ti+1],

V (x(t))− V (xi) ≤ −(t− ti)V (xi) + [LV LfMf + σM2
f ](t− ti)

2.(5.2)



SEMICONCAVITY AND DISCONTINUOUS FEEDBACKS 673

We get that for any n and for all t ∈ [tn−1, tn],

V (x(t))− V (x0) ≤
n−2∑
i=0

[−(ti+1 − ti)V (xi) + (LV LfMf + σM2
f )(ti+1 − ti)

2] · · ·

− (t− tn−1)V (tn−1) + (LfLVMf + σM2
f )(t− tn−1)

2

≤ (t− t0)[−mV + (LfLVMf + σM2
f )diam(π)].(5.3)

We deduce that if we set

δ(r,R) := min

{
mV

2(LfLVMf + σM2
f )

,
mr −m r

2

2LVMf

}
,

we obtain from (5.3) that for every π-trajectory x(·) starting at x0 and such that
diam(π) ≤ δ(r,R), we have

∀t ≥ 0, V (x(t))− V (x0) ≤ −mV

2
(t− t0).(5.4)

That means that the π-trajectory remains in {x : V (x) ≤ V (x0)}, which is included
in M(R)B, and that for t ≥ T (r,R) :=

2MR−m r
2

mV
,

V (x(t)) ≤ V (x0)− mV

2
t ≤ m r

2

2
;

that is, x(t) ∈ r
2B. There is a possible danger! The work done above is valid only

when we stay in the set A. But as δ(r,R) ≤ mr−m r
2

2LVMf
, there exists a first step i0

for which
m r

2

2 ≤ V (xi0) ≤ mr

2 , and by the same computation as above, the set{x : V (x) ≤ V (xi0)} is invariant, that is,

∀t ≥ ti0 , x(t) ∈ {x : V (x) ≤ V (xi0)} ⊂ rB.

This completes the proof for the case of π-trajectories.

We get from this proof (more especially from (5.2) and a convergence result of a
Riemann’s sums) that for any Euler trajectory of (2.2), we have that

V (x(t))− V (x(s)) ≤ −
∫ t

s

V (x(y))dy ∀0 ≤ s ≤ t.(5.5)

Gronwall’s lemma now brings a proof of the property (2.4).

We now make the proof of Theorem 2.7.

Proof. As in the statement of Theorem 2.5, the formula given above considers for
all x a limiting subgradient ζV (x) and a function u(·) satisfying

〈ζV (x), f(x, u(x))〉 ≤ −V (x) ∀x ∈ R
n \ {0}.

This construction agrees with the one given in the statement of Theorem 2.5; the
result follows.
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6. Proof of Theorem 2.9. Theorem 2.9 requires a more subtle proof; we will
need the following lemma and refer to the book of Clarke et al. [12] or to [24] for the
proof.

Lemma 6.1. Let f : R
n → R be a locally Lipschitz function and x ∈ R

n; if
∂P f(x) and ∂P f(x) are nonempty, then

∂P f(x) = ∂P f(x) = ∂f(x) = {∇f(x)}.
We know by Theorem 2.4 and Remark 3.1 that

∀x ∈ R
n \ {0}, max

ζ∈∂LV (x)
min
u∈U

〈ζ, f(x, u)〉 ≤ −V (x) < 0.(6.1)

We set the function Ψ : Rn −→ R as follows:

∀x ∈ R
n, Ψ(x) := min

u∈U
max

ζ∈∂V (x)
〈ζ, f(x, u)〉.

Lemma 6.2. The function Ψ is upper semicontinuous.
Proof. Since the function ζ �→ 〈ζ, f(x, u)〉 is upper continuous and the function f

is continuous, we deduce that the function

x �→ max
ζ∈∂V (x)

〈ζ, f(x, u)〉

is upper semicontinuous. To conclude, we know that a minimum of upper semicon-
tinuous functions is upper semicontinuous.

We define now the following sets:

D :=

{
x ∈ R

n \ {0} s.t. Ψ(x) < −V (x)

2

}
and S = R

n \ D.

Lemma 6.3. The set D is an open dense set of R
n and

H− dimS ≤ n− 1.
Proof. Since the multivalued mapping x �→ ∂V (x) has a closed graph, the set

D is obviously open. On the other hand, by the density theorem [12, Theorem 3.1],
the proximal subdifferential ∂PV (x) is nonempty on a dense set. Consequently, by
the semiconcavity of V , both proximal sub- and superdifferentials are nonempty on
this set; it implies that (by Lemma 6.1) ∂PV (x) = ∂LV (x) = {∇V (x)} on a dense
subset of R

n. So, we conclude that the min-max and the max-min of (6.1) and of the
definition of the set D coincide on an open dense set of Rn; that means that D contains
this set. Consequently D is an open dense set of R

n. Moreover, the complement S of
D is included in ∪k=1,...,nS

k(V ); therefore we get the upper bound on the Hausdorff
dimension of S by Proposition 3.5 given in section 3.2.

We define the following multifunction on D:

∀x ∈ D, G(x) :=

{
u ∈ U : ∀ζ ∈ ∂V (x), 〈ζ, f(x, u)〉 ≤ −V (x)

2

}
.

Lemma 6.4. The multifunction G has nonempty closed convex values and is lower
semicontinuous on D.

Proof. Since the system is affine in the control, the multifunction G has nonempty
closed convex values. We show now that G is lower semicontinuous on D (we refer to
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[6] for a task about semicontinuity of multivalued functions). We then have to prove
that for any sequence (xn)n of points in D converging to x ∈ D, and for any z ∈ G(x),
there exists a sequence (zn)n of points in G(xn) with limit z.

Let (xn)n be a sequence in D converging to x ∈ D, and let y = f(x, u0) in G(x).
We set, for all n,

zn := f(xn, u0).

From now on, we denote byM1 the Lipschitz constant of V , byM2 the upper bound of
f(·, u0), and byM3 the Lipschitz constant of f(·, u0) in a neighborhood of x containing
all the xn (without loss of generality we can assume this condition), and on the other
hand we denote by β(A,B) the Hausdorff distance between the sets A and B (see
[6]). Two cases appear.

1. maxζ∈∂V (x)〈ζ, y〉 < −V (x)
2 .

We fix n and we choose ζn ∈ ∂V (xn); so we have

〈ζn, zn〉 = 〈ζ, zn〉+ 〈ζn − ζ, zn〉 (where ζ := proj∂V (x)(ζn))

≤ 〈ζ, y〉+M1‖zn − y‖+M2β(∂V (xn), ∂V (x))

< −V (x)

2
+M1‖zn − y‖+M2β(∂V (xn), ∂V (x))

< −V (xn)

2
+

M3

2
‖xn − x‖+M3‖xn − x‖+M2β(∂V (xn), ∂V (x)).

Hence, for n sufficiently high, zn ∈ G(xn), and the sequence (zn)n converges
to y = f(x, u0) by continuity of f .

2. maxζ∈∂V (x)〈ζ, y〉 = −V (x)
2 .

We know by assumption that since x ∈ D there exists u1 ∈ U such that

∀ζ ∈ ∂V (x), 〈ζ, f(x, u1)〉 < −V (x)

2
.

Consequently, we can express y = f(x, u0) as a limit of

yp = tpy + (1− tp)f(x, u1)

(when tp ↑ 1) such that maxζ∈∂V (x)〈ζ, yp〉 < −V (x)
2 . On the other hand, by

the first case each yp is the limit of some sequence (z
n
p )n; we conclude by a

diagonal process.
We conclude that G is a lower semicontinuous multifunction on the set D.

Returning to the proof of our theorem, we can apply the well-known selection
theorem of Michael [18, 6] to deduce the existence of a continuous selection u of G
on D.

Let us now set E as the set defined by

E :=
{
x ∈ R

n \ {0} s.t. Ψ(x) = −V (x)

2

}
.

Lemma 6.5. For each x in E, there exists a unique f(x, u) ∈ U such that

max
ζ∈∂CV (x)

〈ζ, f(x, u)〉 = −V (x)

2
.
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Proof. This is due to the assumption of strict convexity on the set of control U . If
f0(x) 
= 0 we leave it to the reader to prove that, modifying the dynamics if necessary,
the lemma holds.

We are now able to complete the construction of our feedback u(·). We set for each
x ∈ E , u(x) := u, where u is the u of Lemma 6.5. Moreover, for each x ∈ S \ E \ {0},
we set u(x) := u, where u verifies

∃ζ ∈ ∂LV (x), 〈ζ, f(x, u)〉 ≤ −V (x).

We have defined our feedback on all the space (of course, we set u(0) = 0). Let us
now prove the rest of the theorem. Consider the closed-loop system

ẋ = f0(x) +

m∑
i=1

ui(x)fi(x)(6.2)

and show that it is globally asymptotically stable with respect to the Carathéodory
solutions. Let us first show that the property (2.10) holds for Euler trajectories.

Lemma 6.6. For any Euler trajectory x(·) of (6.2), we have

Ψ(x(t)) ≤ −V (x(t))

2
∀t > 0 s.t. x(t) 
= 0.(6.3)

Moreover

ẋ(t) = f(x(t), u(x(t))) a.e. t > 0.(6.4)

Proof. Let us consider x0 ∈ R
n \ {0} and x(·) is an Euler trajectory of (6.2) with

x(0) = x0. Obviously, if x0 = 0, then since f(0, u(0)) = 0 all the Euler solutions of
(6.2) starting at x0 = 0 will stay at the origin; then the property (6.4) holds. Let us
now assume that x0 
= 0.

Let t0 be fixed in (0,∞); there exists σ > 0 such that for any ζ ∈ ∂PV (x(t0)), we
have that

−V (y) + V (x(t0)) + σ‖y − x(t0)‖2 ≥ 〈−ζ, y − x(t0)〉

whenever y is in a neighborhood of x(t0). We deduce that for some s < t0 and close
to t0, we have

V (x(t0))− V (x(s)) + σ‖x(s)− x(t0)‖2 ≥ 〈ζ, x(t0)− x(s)〉.

This implies

〈ζ, x(t0)− x(s)〉 ≤ V (x(t0))− V (x(s)) + σ‖x(s)− x(t0)‖2(6.5)

≤ −
∫ t0

s

V (x(y))

2
dy + σ‖x(s)− x(t0)‖2 by (5.5).

Now, by convexity of f(x(t), U) (since f is affine in the control) there exists a sequence
(sn)n and u0 in U such that

lim
n→∞

x(t0)− x(sn)

t0 − sn
= f(x(t0), u0).(6.6)
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Consequently, passing to the limit for the sequence (sn)n, we obtain

〈ζ, f(x(t0), u0)〉 ≤ −V (x(t0))

2
.

We can repeat this argument for all ζ ∈ ∂PV (x(t0)), that is,

∀ζ ∈ ∂PV (x(t0)), 〈ζ, f(x(t0), u0)〉 ≤ −V (x(t0))

2
.

Since ∂PV (x(t0) = ∂V (x(t0)), that means that

Ψ(x(t0)) ≤ −V (x(t0))

2
.

Hence, we deduce that for any t > 0, (6.3) is satisfied and

x(t) ∈ D ∪ E .
Two cases appear. If x(t) ∈ D, then by continuity of u(·) in a neighborhood of x(t),
we have ẋ(t) = f(x(t)), u(x(t)).

Otherwise, x(t) ∈ E . In this case, Lemma 6.5 asserts that the set of limits of the
form (6.6) is a singleton. Thus, we deduce that the function x(·) is left-derivable on
(0,∞) with derivate f(x(t), u(x(t))).

Now, since the trajectory x(·) is locally Lipschitz on [0,∞), Rademacher’s theorem
asserts that it is derivable almost everywhere. Then we conclude that this derivate
coincides with f(x(t), u(x(t))) almost everywhere; consequently, the Euler trajectories
are solutions in the sense of Carathéodory.

Consider now the case of solutions in the sense of Carathéodory. Let x0 
= 0 and
let x(·) be a Carathéodory solution of (6.2) starting at x0. Hence, we have a set N of
measure zero on [0,∞) such that

ẋ(t) = f(x(t), u(x(t))) ∀t ∈ [0,∞) \N.(6.7)

We have by the mean value inequality (see [12, Exercise 2.7(d), p. 122]) that for any
0 ≤ t < t′, there exists zt,t′ ∈ [x(t), x(t′)] and ζt,t′ ∈ ∂LV (zt,t′) such that

V (x(t′))− V (x(t)) ≤ 〈ζt,t′ , x(t′)− x(t)〉.(6.8)

Now by setting the function θ : R≥0 → R, θ(t) := V (x(t)), it means that for any
t, t′ ≥ 0

θ(t′)− θ(t) ≤ 〈ζt,t′ , x(t′)− x(t)〉.(6.9)

Since the function f is locally bounded, the function θ is locally Lipschitz and hence
by Rademacher’s theorem differentiable outside a set of measure zero N ′. Therefore,
for all t ∈ [0,∞) \N ∪N ′, we obtain by passing to the limit in (6.9)

θ′(t) ≤ 〈ζ, ẋ(t)〉 = 〈ζ, f(x(t), u(x(t)))〉,
where ζ ∈ ∂LV (x(t)).

Lemma 6.7. The Carathéodory trajectory x(·) does not belong to S \ E almost
everywhere:

x(t) /∈ S \ E a.e. t ≥ 0.
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The proof is based on the properties on the sets Sk(V ) given in section 3.2 and
is postponed to the end of this section.

By Lemma 6.7 there exists a third set N0 of measure zero such that

x(t) ∈ D ∀t ∈ [0,∞) \N0.

Thus we get by construction of u that for all t ∈ [0,∞) \N ∪N ′ ∪N0,

θ′(t) ≤ −V (x(t))

2
.

Therefore, we deduce by the characterization given in section 3.1 that for any t ≥ 0

∂θ(t) ⊂
(
−∞,−V (x(t))

2

]
.

We deduce that the function t �→ θ(t)+
∫ t
0
V (x(s))

2 ds is nonincreasing, and consequently

∀0 ≤ s ≤ t, V (x(t))− V (x(s)) ≤ −
∫ t

s

V (x(y))

2
dy.(6.10)

Now if we fix t0 > 0, and if we take ζ ∈ ∂PV (x(t0)), we get by (6.5) and (6.10) that

〈ζ, x(t0)− x(s)〉 ≤ −
∫ t0

s

V (x(y))

2
dy + σ‖x(s)− x(t0)‖2.

Then we deduce as in the case of Euler trajectory that for all t > 0,

x(t) ∈ D ∪ E .
Now, Gronwall’s lemma easily gives

∀t > 0, V (x(t)) ≤ e−
t
2 v(x0)

for any Euler trajectory and any Carathéodory trajectory starting at x0. We get that
the closed-loop system (6.2) is globally asymptotically stable.

It remains to prove Lemma 6.7.
Proof. Assume that the conclusion is false. Then there would exist a subset H of

[0,∞) of positive measure such that x(·) is differentiable in H and

x(t) ∈ S \ E ∀t ∈ H.

On the other hand by (3.9), we can write

S \ E =
n⋃
k=1

Σk(V ) ∩ S \ E

=

n⋃
k=1

⋃
p∈{1,2,...}

Σk1
p
(V ) ∩ S \ E .

Thus there exists a couple (k, p) for which

x(t) ∈ Σk1
p
(V ) ∩ S \ E ⊂ Σk1

p
(V )
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on a set of positive measure H ′ ⊂ H. This implies that there exists a t0 ∈ H ′ such
that

ẋ(t0) = f(x(t0), u(x(t0))) ∈ TBΣk
1
p

(V )(x(t0)).

Hence we deduce by Proposition 3.6 that

∀ζ ∈ ∂V (x), 〈ζ, f(x(t0), u(x(t0)))〉 = −V (x(t0)).

This last inequality implies that x(t0) ∈ D; we get a contradiction.
7. Proof of Theorem 2.11. Let us recall that

Dδ
V := {x ∈ R

n \ {0} : ΨV (x) < −δ(x)} .(7.1)

Since the function ΨV is upper semicontinuous, the set Dδ
V is open, and since δ < V

on R
n \ {0}, by the same proof as before (see proof of Theorem 2.9) it is dense.

Furthermore, by hypothesis (2.9), it is straightforward to show that there exists a
continuous positive definite function ε : R

n → R such that

∀x ∈ Dδ
V , δ(x) + ε(x) < V (x)

and

∀x ∈ Dδ
V , ΨV (x) ≤ −δ(x)− ε(x).

This implies, by the same proof as for Theorem 2.9 (replacing the term V (x)
2 by

δ(x) + ε(x)), that Dδ
V is open dense and that there exists a continuous function

u : Dδ
V → U

such that for any x ∈ Dδ
V ,

∀ζ ∈ ∂V (x), 〈ζ, f(x, u(x))〉 ≤ −δ(x)− ε(x).

Now, we claim that there exists a function

u : Dδ
V → U,

which is smooth and such that

∀x ∈ Dδ
V , ‖u(x)− u(x)‖ ≤ ε(x)

KV (x)
∑m
i=1 Mi

,

where KV (x) denotes the Lipschitz constant of the function V on the ball B(x, ‖x‖2 )

and where the Mi’s are the upper bounds of the functions fi’s on the ball 2‖x‖B.
Such a function brings that for any x ∈ Dδ

V and for any ζ ∈ ∂V (x),〈
ζ, f0(x) +

m∑
i=1

ui(x)fi(x)

〉
≤ −δ(x)− ε(x) + ‖ζ‖‖u(x)− u(x)‖

m∑
i=1

‖fi(x)‖

≤ −δ(x)− ε(x) +KV (x)

m∑
i=1

Mi‖u(x)− u(x)‖

≤ −δ(x).
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Finally, considering a Carathéodory solution x(·) of

ẋ = f0(x) +

m∑
i=1

ui(x)fi(x),

starting at x0 ∈ R
n we get that for any t0 > 0 such that x(t0) 
= 0,

ΨV (x(t0)) ≤ −δ(x(t0)).

This means by (2.9) that the trajectory x(·) stays in Dδ
V for positive times. Theorem

2.11 is proved.

Acknowledgments. The author is grateful to Francis Clarke for comments and
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REFERENCES

[1] G. Alberti, L. Ambrosio, and P. Cannarsa, On the singularities of convex functions,
Manuscripta Math., 76 (1992), pp. 421–435.

[2] A.D. Alexandroff, Almost everywhere existence of the second differential of a convex function
and some properties of convex surfaces connected with it, Leningrad State Univ. Annals
[Uchenye Zapiski] Math. Ser., 6 (1939), pp. 3–35.

[3] L. Ambrosio, P. Cannarsa, and H.M. Soner, On the propagation of singularities of semi-
convex functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 20 (1993), pp. 597–616.

[4] F. Ancona and A. Bressan, Patchy vector fields and asymptotic stabilization, ESAIM Control
Optim. Calc. Var., 4 (1999), pp. 445–471.

[5] Z. Artstein, Stabilization with relaxed controls, Nonlinear Anal., 7 (1983), pp. 1163–1173.
[6] J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser Boston, Boston, 1990.
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DYNKIN GAMES VIA DIRICHLET FORMS AND
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Abstract. We consider a zero-sum game of optimal stopping in which each of the opponents
has the right to stop a one-dimensional diffusion process. There are two types of costs. The first is
accumulated continuously at the rate H(Xt), where Xt is the current position of the process. The
second is a cost associated with the stopping of the process. It is given by the function f1(x) for the
first player and the function f2(x) for the second player, where x is the position of the process when
the stopping option is exercised.

We study the solution of the free boundary problem associated with this game via Dirichlet forms
on the appropriate functional space. Integrating the value function of the game, we get a solution
to another free boundary problem which yields the optimal return function for a singular stochastic
control problem.

Key words. Dynkin game, Dirichlet form, free boundary problem, singular stochastic control
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1. Introduction. The reflecting diffusion processes are interesting objects to
be studied from a variety of different points of view. In particular, the reflecting
Brownian motion on a one-dimensional interval was characterized as a solution of a
singular control problem [7, 16]. More specifically, let (wt, P ) be a one-dimensional
standard Brownian motion starting at the origin and let

Xt = x + σwt + µt + A
(1)
t −A

(2)
t , x ∈ R,(1.1)

where σ �= 0, µ are constants, and S = (A
(1)
t , A

(2)
t ) is a pair of nonanticipating

increasing processes. S represents a strategy under which the cost function

kx(S) = E

(∫ ∞

0

e−αth(Xt)dt +

∫ ∞

0

e−αt(rdA(1)
t + �dA

(2)
t )

)
(1.2)

is to be minimized. Here, α, r, � are preassigned positive constants and h(x) is a given
convex function taking its minimum at the origin. It was then shown by Taksar [16]
that there exists an optimal strategy S̃ such that

W (x) = min
S

kx(S) = kx(S̃)

and that S̃ is actually equal to (�at , �
b
t), where �a, �b are local times at points a, b for

uniquely determined a, b, a < 0 < b. Thus the corresponding optimal process (1.1) is
the reflecting diffusion on the closed interval [a, b]. The proof in [16] was carried out
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by solving a related free boundary problem by making use of a solution of an optimal
stopping game problem, which had been formulated by Gusein-Zade [6].

The purpose of the present paper is to extend those results in [16] by replacing
the process x + σwt + µt appearing in (1.1) on the one hand and constant costs r, �
appearing in (1.2) on the other, with a more general diffusion process governed by
variable C1-coefficients σ(x), µ(x) and with variable costs f1(x), f2(x), respectively.
To this end, we shall employ the Dynkin optimal stopping game and its Dirichlet form
characterization due to Zabczyk [18]. As will be explained in section 2, the value
function of the Dynkin game for a general symmetric Hunt process was identified in
[18] with the solution of a certain variational inequality in a regular Dirichlet space
setting. Such an identification had been established by Nagai [14] for a one-sided
optimal stopping problem. This sort of an analytic characterization of the stopping
game was missing in [6], making the usage of [6] less simple.

We can then proceed along almost the same lines as in [16] in getting the solution
of our singular control problem. However, it is more useful to rewrite the infinitesimal

generator 1
2σ(x)2 d2

dx2 + µ(x) d
dx of the controlled diffusion in the Feller canonical form

d
dm

d
ds . The conditions on the data h, f1, f2 will be stated in terms of the intrinsic

quantities s and m.
In section 3, we shall apply the Dynkin game description of the solution V of a

variational inequality presented in [18] to a one-dimensional diffusion with generator
d
ds

d
dm in showing that an integral function W of V with respect to ds is a solution

of a certain free boundary problem involving the operator d
dm

d
ds , which will then

be identified in section 4 with the optimal return function of our singular control of
the (σ, µ)-diffusion. The admissible processes Xt to be optimized will be formulated
in section 4 by SDE variants of the identity (1.1), and the optimal process will be
shown to be the reflecting (σ, µ)-diffusion on the interval specified in the free boundary
problem.

We emphasize that our Dirichlet form approach automatically guarantees the
quasi continuity (actually the absolute continuity in the present one-dimensional ap-
plication) of the value function V , which, combined with the saddle point characteri-
zation of V , readily implies that its integral function W is the classical solution of the
free boundary problem. As a result we get a classical solution to the one-dimensional
singular stochastic control problem as opposed to the viscosity solution guaranteed
by a general theory (see [3]).

A slight extension of [16] has been considered by Kawabata [11], where the costs
r, � were still kept constant, however, and the method of [18] was not utilized.

In a recent paper [10], Karatzas and Wang obtained the same relation as in our
case between the value functions of a Dynkin game and a control problem of general
bounded variation processes. The method in [10] is more direct and pathwise, but
the admissible process to be optimized is purely of bounded variation and the leading
martingale part as in our case is absent.

In what follows, Ck(I) (resp., Ck0 (I)) will denote the space of k-times continuously
differentiable functions (resp., with compact support) on an interval I ⊂ R, k = 1, 2.

2. Dynkin games via Dirichlet forms. Let X be a locally compact separable
metric space and m be a positive Radon measure on X with full support. L2(X;m)
denotes the real L2-space with inner product (·, ·). We consider a Dirichlet form (E ,F)
on L2(X;m). By definition, E is a closed symmetric form with domain F dense in
L2(X;m) such that the unit contraction operates on it:

u ∈ F =⇒ v = 0 ∨ u ∧ 1 ∈ F , E(v, v) ≤ E(u, u).
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Recall that a closed symmetric form is a Dirichlet form if and only if the associated
L2-semigroup {Tt, t > 0} is Markovian in the sense that

0 ≤ f ≤ 1, f ∈ L2 =⇒ 0 ≤ Ttf ≤ 1.

We let Eα(u, v) = E(u, v) + α(u, v) for α > 0. We assume that the Dirichlet form
(E ,F) is regular in the sense that F ∩C0(X) is E1-dense in F and uniformly dense in
C0(X), where C0(X) denotes the space of continuous functions on X with compact
support. There exists then a Hunt process (a right continuous, quasi-left continuous
strong Markov process) M = (Xt, Px) on X such that

ptf(x) = Ex(f(Xt)), x ∈ X,
is a version of Ttf for all f ∈ C0(X) [5].

In what follows, basic notions and relations concerning the regular Dirichlet form
(E ,F) and the associated Hunt process M shall be taken from [5]. In particular, the
L2-resolvent {Gα, α > 0} associated with the Dirichlet form (E ,F) satisfies

Gαf ∈ F , Eα(Gαf, v) = (f, v) ∀f ∈ L2(X;m), ∀v ∈ F ,
and further the resolvent {Rα α > 0} of the Hunt process M defined by

Rαf(x) = Ex

(∫ ∞

0

e−αtf(Xt)dt

)
, x ∈ X,

is a quasi-continuous modification of Gαf for any Borel function f ∈ L2(X;m). For
v ∈ F , ṽ will denote a quasi-continuous modification of v.

Given α > 0, H ∈ L2(X;m), and f1, f2 ∈ F with −f1 ≤ f2, we let

K = {u ∈ F : −f1 ≤ u ≤ f2, m-a.e.}.(2.1)

One looks for a solution V ∈ K of the inequality

Eα(V, u− V ) ≥ (H,u− V ) ∀u ∈ K.(2.2)

Such a variational inequality arises in various contexts and goes back to Stampacchia
[15].

Proposition 2.1. There exists a unique function V ∈ K satisfying (2.2).
Proof. This is a well-known fact, but we reproduce a proof given by Nagai [14]

in a way convenient for later use. First consider the special case that H = 0. We can
then see the equivalence of the following inequalities holding for V ∈ K:

Eα(V, u− V ) ≥ 0 ∀u ∈ K,(2.3)

Eα(V, V ) ≤ Eα(u, u) ∀u ∈ K.(2.4)

In fact, (2.3) readily implies (2.4) by the Schwarz inequality. Conversely, suppose
(2.4). Take any u ∈ K and put w = u− V . Since K is convex,

V + εw = (1− ε)V + εu ∈ K ∀ε ∈ (0, 1).

Equation (2.4) then leads us to

Eα(V, V ) ≤ Eα(V + εw, V + εw)
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and 2Eα(V,w) + εEα(w,w) ≥ 0. We get (2.3) by letting ε ↓ 0.
Now (2.4) (and equivalently (2.3)) has a unique solution V ∈ K by virtue of the

closedness of the convex set K and the parallelogram law (see, for instance, the proof
of [5, Lemma 2.1.2]).

Next consider a general H ∈ L2(X;m). By making use of the L2-resolvent Gα,
we can rewrite the inequality (2.2) as

Eα(V −GαH, (u−GαH)− (V −GαH)) ≥ 0

in concluding that the solution V of (2.1) and (2.2) is related to the solution V 0 of

K0 = {u ∈ F : −h1 ≤ u ≤ h2, m-a.e.}, h1 = f1 + GαH, h2 = f2 −GαH,

(2.5)

V 0 ∈ K0, Eα(V 0, u− V 0) ≥ 0 ∀u ∈ K0(2.6)

by the relation

V = V 0 + GαH.(2.7)

Zabczyk has related the solution of the variational inequality (2.2) to the value
function of an optimal stopping game (called a Dynkin game after [2]) for the associ-
ated Hunt process M = (Xt, Px) in the following manner [18, Theorem 1].

Theorem 2.1 (Zabczyk). For any Borel function H ∈ L2(X;m) and for any
f1, f2 ∈ F with −f1 ≤ f2, we put

Jx(τ, σ) = Ex

(∫ τ∧σ

0

e−αtH(Xt)dt

)

+ Ex

(
e−α(τ∧σ)(−Iσ≤τ f̃1(Xσ) + Iτ<σ f̃2(Xτ ))

)
(2.8)

for x ∈ X and for finite stopping times τ, σ. Then the solution of (2.1) and (2.2)
admits as its quasi-continuous version the value function of the game

V (x) = inf
τ

sup
σ
Jx(τ, σ) = sup

σ
inf
τ
Jx(τ, σ), x ∈ X \N,(2.9)

where N is some properly exceptional set with respect to M.
Furthermore if we let

E1 = {x ∈ X −N : V (x) = −f̃1(x)}, E2 = {x ∈ X −N : V (x) = f̃2(x)},
then the hitting times τ̂ = σE2 , σ̂ = σE1 are the saddle point of the game:

Jx(τ̂ , σ) ≤ Jx(τ̂ , σ̂) ≤ Jx(τ, σ̂)(2.10)

for any x ∈ X −N and for any stopping times τ, σ. In particular

V (x) = Jx(τ̂ , σ̂) ∀x ∈ X \N.(2.11)

Actually this theorem was shown in [18] only when H = 0. However, on account
of the proof of Proposition 2.1, the statements of Theorem 2.1 for a general Borel
function H ∈ L2(X;m) can be reduced to this special case. In fact, by what was
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proved in [18], the solution of (2.5) and (2.6) admits a quasi-continuous version given
by

V 0(x) = inf
τ

sup
σ
J0
x(τ, σ) = sup

σ
inf
τ
J0
x(τ, σ), x ∈ X \N,

where N is some properly exceptional set and

J0
x(τ, σ) = Ex

(
e−α(τ∧σ)(−Iσ≤τ h̃1(Xσ) + Iτ<σh̃2(Xτ ))

)
,

h̃1 = f̃1 + RαH, h̃2 = f̃2 −RαH.

In view of (2.7), the solution of (2.1) and (2.2) then admits a quasi-continuous version

V (x) = V 0(x) + RαH(x), x ∈ X \N,
which in turn can be seen to satisfy the identity (2.9), because the Dynkin formula

RαH(x)− Ex

(
e−α(τ∧σ)RαH(Xτ∧σ)

)
= Ex

(∫ τ∧σ

0

e−αtH(Xt)dt

)

leads us to

J0
x(τ, σ) + RαH(x) = Jx(τ, σ).

The second statement of Theorem 2.1 is also an immediate consequence of that for
V 0 and J0.

We refer to [18] for related literature prior to [18].

3. One-dimensional Dynkin game and free boundary problems. When
the underlying space X is one-dimensional, the solution V of the variational inequality
(2.1), (2.2) can be described as a solution of a certain free boundary problem. The
proof can be carried out using primarily its Dynkin game description (2.9) and (2.10).

More specifically, let ṡ(x) and ṁ(x) be strictly positive C1-functions on R. Denote
the one-dimensional Lebesgue measure by dx and the measures ṡ(x)dx, ṁ(x)dx by
ds, dm, respectively. We assume that both −∞ and ∞ are natural (neither exit nor
entrance) boundaries of R with respect to s,m in Feller’s sense [9]:∫

−∞<y<x<−1

ds(x)dm(y) =∞,

∫
−∞<y<x<−1

dm(x)ds(y) =∞,∫
1<x<y<∞

ds(x)dm(y) =∞,

∫
1<x<y<∞

dm(x)ds(y) =∞.(3.1)

For A > 0, we let

F = H1((−A,A); dx)

= {u ∈ L2((−A,A); dx) : u is absolutely continuous, u′ ∈ L2((−A,A); dx)},(3.2)

E(u, v) =

∫ A

−A
u′(x)v′(x)

1

ṁ(x)
dx, u, v ∈ F .(3.3)

We can and shall regard (E ,F) as a regular local Dirichlet form on L2([−A,A]; ds).
The associated Hunt process M = (Xt, Px) on the closed interval [−A,A] is a con-
servative diffusion process, namely, a strong Markov process with continuous sample
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paths and infinite life time, and actually it is a reflecting barrier diffusion on [−A,A]
with infinitesimal generator d

ds
d
dm . Since F is the ordinary Sobolev space H1(−A,A)

on the one-dimensional interval (−A,A) and the metric E1 on it is equivalent to the
square root of the Dirichlet integral plus L2-norm, we see that each one point set
{x} ⊂ [−A,A] has a positive capacity, the quasi continuity reduces to the ordinary
continuity, and M admits no nonempty exceptional set [5, Example 2.1.2].

We now let V (x), x ∈ [−A,A], be the solution of the variational inequality (2.1),
(2.2) for the present Dirichlet form (E ,F) on L2([−A,A]; ds) under the following
assumptions on the data H, f1, f2.

Assumption 3.1. H(x) is a continuous function on R such that

H(0) = 0, H(x) is strictly increasing, H(x)→ ±∞ as x→ ±∞.

f1, f2 are C2-functions with 0 < f1, f2 ≤M for some M > 0 and

f ′
1(x) ≥ 0, x ∈ R,

d

ds

d

dm
f1 −H is strictly decreasing on (−∞, 0),

f ′
2(x) ≤ 0, x ∈ R,

d

ds

d

dm
f2 + H is strictly increasing on (0,∞).

Remark 3.1. (i) The assumptions for f1, f2 are trivially satisfied by f1 = r, f2 = �
positive constant functions.

(ii) In the next section, we shall be concerned with controls of a diffusion with
generator d

dm
d
ds , a diffusion with scale ds, and speed measure dm in the sense of Feller

[9]. For that purpose, we need to consider in the first part of this section a diffusion
with the roles of ds and dm being interchanged.

Lemma 3.1. There exists A > 0 such that the diffusion M = (Xt, Px) on [−A,A]
associated with the Dirichlet form (3.2), (3.3) satisfies

Eξ1

(∫ σ0∧σ−A

0

e−αtH(Xt)dt

)
< −2M, Eξ2

(∫ σ0∧σA

0

e−αtH(Xt)dt

)
> 2M(3.4)

for some ξ1 ∈ (−A, 0) and ξ2 ∈ (0, A). Here σx denotes the hitting time of the one
point set {x}.

Proof. For an open interval I ⊂ R, we denote by D
I the absorbing diffusion on

I with infinitesimal generator d
ds · d

dm and by RIα its resolvent operator. By virtue of
the condition (3.1), D

R is conservative and its α-order hitting probability Ex
(
e−ασc

)
for any fixed point c tends to zero as x→ ±∞ [9]. Hence, by Dynkin’s formula,

lim
x→−∞R(−∞,c)

α 1(x) =
1

α
, lim

x→∞R(d,∞)
α 1(x) =

1

α
(3.5)

for any c and d. By Assumption 3.1, we can take ξ < 0 such that

H(x) < −4αM ∀x ≤ ξ.

By (3.5), R
(−∞,ξ)
α 1(ξ1) > 1/(2α) for some ξ1 < ξ. Since R

(−A,ξ)
α 1(ξ1) increases to

R
(−∞,ξ)
α 1(ξ1) as A → ∞, we have R

(−A,ξ)
α 1(ξ1) > 1/(2α) for a sufficiently large A

with −A < ξ1.
For such A, let M be the diffusion on [−A,A] governed by the Dirichlet form

(3.2), (3.3). Since the process obtained from M by killing at time σ0 ∧ σ−A coincides
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with D
(−A,0), the first expectation appearing in (3.4) equals R

(−A,0)
α H(ξ1), which in

turn is not greater than

R(−A,ξ)
α H(ξ1) ≤ −4αM ·R(−A,ξ)

α 1(ξ1) < −2M,

proving the first inequality in (3.4). The second one can be shown in the same
way.

In what follows, we shall work with A > 0 for which (3.4) is satisfied.
Theorem 3.1. There exist unique a, b such that −A < a < 0 < b < A and

−f1(x) < V (x) < f2(x), x ∈ (a, b),(3.6)

V (x) = −f1(x), x ∈ [−A, a], V (x) = f2(x), x ∈ [b, A],(3.7)

V ′(a) = −f ′
1(a), V ′(b) = f ′

2(b).(3.8)

Furthermore V is C1 on (−A,A), C2 on (a, b) and

αV (x)− d

ds

d

dm
V (x) = H(x) ∀x ∈ [a, b]

> H(x) ∀x ∈ (−A, a)

< H(x) ∀x ∈ (b, A).(3.9)

The theorem is divided into three propositions.
Proposition 3.1. (i) −f1(0) < V (0) < f2(0).
(ii) V (x) > −f1(x) for x > 0 and V (x) < f2(x) for x < 0.
(iii) Let

E1 = {x ∈ [−A,A] : V (x) = −f1(x)}, E2 = {x ∈ [−A,A] : V (x) = f2(x)}(3.10)

and a = supE1, b = inf E2. Then

−A < a < 0 < b < A.

(iv) If

−f1(x) < V (x) < f2(x), β < x < γ,

for some interval (β, γ) ⊂ (−A,A), then V is C2 on (β, γ) and(
α− d

ds

d

dm

)
V (x) = H(x)(3.11)

for x ∈ (β, γ). In particular, this equation holds for x ∈ (a, b).
(v) If, for some β ∈ (−A, 0),

−f1(x) < V (x), −A ≤ x < β,

then V is C2 on (−A, β), V satisfies (3.11) on (−A, β), and V ′(−A) = 0.
(vi) If, for some γ ∈ (0, A),

V (x) < f2(x), γ < x ≤ A,
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then V is C2 on (γ,A), V satisfies (3.11) on (γ,A), and V ′(A) = 0.
Proof. Denote by σE the hitting time of the diffusion M for a set E. The hitting

time for the one point set {x} is simply denoted by σx. We let σ̂ = σE1 , τ̂ = σE2 be
the hitting times for the sets E1, E2 defined by (3.10).

(i) We give the proof of the first inequality. The second one can be proved
similarly. We have from (2.10) and (2.11) (the exceptional set N is now empty, as
was explained in the paragraph below (3.3)) that, for any positive ε < A,

V (0) ≥ J0(τ̂ , σ−ε) = E0

(∫ τ̂∧σ−ε

0

e−αtH(Xt)dt

)

− f1(−ε)E0

(
e−ασ−ε ;σ−ε < τ̂

)
+ E0

(
e−ατ̂f2(Xτ̂ );σ−ε ≥ τ̂

)
≥ H(−ε)E0

(∫ σ−ε

0

e−αtdt
)
− f1(0)E0

(
e−ασ−ε

)
= −f1(0) +

(
f1(0) +

H(−ε)
α

)(
1− E0(e−ασ−ε)

)
,

which is greater than −f1(0) for sufficiently small ε > 0.
(ii) For x > 0,

V (x) ≥ Jx(τ̂ , σ0) = Ex

(∫ τ̂∧σ0

0

e−αtH(Xt)dt

)

− f1(0)Ex
(
e−ασ0 ;σ0 < τ̂

)
+ Ex

(
e−ατ̂f2(Xτ̂ );σ0 ≥ τ̂

)
≥ −f1(0)Ex

(
e−ασ0

)
> −f1(0) ≥ −f1(x).

The second inequality can be proved similarly.
(iii) Suppose that V (x) > −f1(x) for any x ∈ (−A, 0). Then, by (i) and (ii),

Px(σ̂ ≥ σ−A) = 1 for all x. Further Px(τ̂ > σ0) = 1 for any x < 0. Hence

Px(σ̂ ∧ τ̂ ≥ σ−A ∧ σ0) = 1 ∀x < 0,

which implies that the function V (x) = Jx(τ̂ , σ̂) is H-α-harmonic on (−A, 0) in the
sense that, for x ∈ (−A, 0),

V (x) = Ex

(∫ σ0∧σ−A

0

e−αtH(Xt)dt

)
+ Ex

(
e−α(σ0∧σ−A)V (Xσ0∧σ−A

)
)
.(3.12)

Since V (x) ≤M for any x ∈ [−A,A], we get from the above and (3.4)

V (ξ1) < −2M + M = −M,

a contradiction. Hence −A < a < 0. The second inequality can be proved similarly.
(iv) As in the proof of (iii), V is then H-α-harmonic on the interval (β, γ) in

the sense that the identity (3.12) with σ0 ∧ σ−A being replaced by σβ ∧ σγ holds for
x ∈ (β, γ), which is equivalent to the validity of the following equation [5, section 4.3,
section 4.4]:

Eα(V, v) = (H, v) ∀v ∈ C1
0 ((β, γ)).(3.13)

Since H is continuous, this equation in turn implies that V is C2 on (β, γ), and an
integration by parts yields (3.11) on the same interval.
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(v) In this case, the identity (3.12) with σ0∧σ−A being replaced by σβ∧σ−A holds
for x ∈ [−A, β), which is equivalent to the validity of (3.13) for any v ∈ C1

0 ([−A, β)).
Again, an integration by parts gives the validity of (3.11) on (−A, β) together with
the stated boundary condition.

(vi) is analogous to (v).
Before proceeding further, we prepare some notation. For ξ ∈ (−A,A) and ε > 0,

we denote by τξ,ε the first exit time from the interval Iξ,ε = (ξ − ε, ξ + ε), namely,
τξ,ε = σ[−A,A]\Iξ,ε . We then set

h−α (ξ, ε) = Eξ
(
e−ατξ,ε ;σξ−ε < σξ+ε

)
,

h+
α (ξ, ε) = Eξ

(
e−ατξ,ε ;σξ−ε ≥ σξ+ε

)
,

gα(ξ, ε) = 1− Eξ
(
e−ατξ,ε

)
.

Lemma 3.2.

lim
ε↓0

h±α (ξ, ε) =
1

2
.

gα(ξ, ε) = o(ε) as ε ↓ 0.

Proof. The first identity for α = 0 is evident because

h−0 (ξ, ε) =

∫ ξ+ε
ξ

ṁ(x)dx∫ ξ+ε
ξ−ε ṁ(x)dx

.(3.14)

Let u be a C2-function vanishing at −A and A such that

d

ds

d

dm
u(x) = −1, x ∈ (ξ − ε, ξ + ε).

By Dynkin’s formula applied to the 0-order resolvent of the process obtained from M
by killing at time σ−A ∧ σA,

Eξ(τξ,ε) = u(ξ)− h−0 (ξ, ε)u(ξ − ε)− h+
0 (ξ, ε)u(ξ + ε),

which combined with (3.14) leads us to Eξ(τξ,ε) = o(ε).
The rest of the proof is obvious since

gα(ξ, ε) = αEξ

(∫ τξ,ε

0

e−αtdt
)
≤ αEξ(τξ,ε).

Proposition 3.2. (i) V ′(a) = −f ′
1(a) and V ′(x) is right continuous at a.

(ii) V ′(b) = f ′
2(b) and V ′(x) is left continuous at b.

Proof. We give the proof of (i) only. The proof of (ii) is analogous. Take any ε > 0
with (a− ε, a + ε) ⊂ (−A, 0). Let θt be the shift operator on the probability space Ω
for M, that is, Xs(θtω) = Xs+t(ω) for all ω ∈ Ω (cf. [5]). If we let σ = τa,ε + σ̂ ◦ θτa,ε ,
then

τ̂ ∧ σ = τa,ε + (τ̂ ∧ σ̂) ◦ θτa,ε ,

because τ̂ = τa,ε + τ̂ ◦ θτa,ε
. Hence we have

V (a) ≥ Ja(τ̂ , σ) = Ea

(∫ τa,ε

0

e−αtH(Xt)dt

)
+ h−α (a, ε)V (a− ε) + h+

α (a, ε)V (a + ε)
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and

h−α (a, ε)V (a− ε) + h+
α (a, ε)V (a + ε)− Ea

(
e−ατa,ε

)
V (a)

≤ gα(a, ε)V (a)− Ea

(∫ τa,ε

0

e−αtH(Xt)dt

)
≤
(
V (a)− H(a− ε)

α

)
gα(a, ε).

Therefore

h+
α (a, ε)(−f1(a + ε) + f1(a)) ≤ h+

α (a, ε)(V (a + ε)− V (a))

≤ h−α (a, ε)(V (a)− V (a− ε)) +

(
V (a)− H(a− ε)

α

)
gα(a, ε)

≤ h−α (a, ε)(−f1(a) + f1(a− ε)) +

(
V (a)− H(a− ε)

α

)
gα(a, ε).

By dividing each side of the above inequality by ε and letting ε→ 0, we get from the
previous lemma the desired inequality

−D+f1(a) ≤ D+V (a) ≤ D−V (a) ≤ −D−f1(a),

yielding the first half of (i). Since V ′(x) is easily seen to have the right limit at x = a
by virtue of Proposition 3.1(iv), it is right continuous at a as well.

Proposition 3.3. Let E1, E2 be the sets defined by (3.10).
(i) E1 = [−A, a] and(

α− d

ds

d

dm

)
f1(x) > H(x) ∀x ∈ [−A, a).

(ii) E2 = [b, A] and(
α− d

ds

d

dm

)
f2(x) < H(x) ∀x ∈ (b, A].

Proof. We give the proof of (i) only. (ii) can be proved similarly. Putting x = a+ε
in (3.11) and letting ε ↓ 0, we get

αV (a)− d+

ds

dV

dm
(a) = H(a),(3.15)

where d+
ds denotes the right derivative. On the other hand,

d+

ds

dV

dm
(a) ≥ − d

ds

d f1

dm
(a).(3.16)

In fact, the function F (x) = V (x) + f1(x) satisfies F (x) ≥ 0, F (a) = 0, and further
F ′(a) = 0, F ′(x) is right continuous at a by the preceding proposition. Taylor’s
theorem applies and

0 ≤ F (a + ε)

ε2
= F ′′(a + θε)→ d+

dx
F ′(a) as ε ↓ 0.

Hence

d+

ds

dF

dm
(a) =

1

ṡ(a)ṁ(a)

d+

dx
F ′(a)− ṁ′(a)

ṡ(a)ṁ(a)2
F ′(a) =

1

ṡ(a)ṁ(a)

d+

dx
F ′(a) ≥ 0.
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Now (3.15), (3.16), and Assumption 3.1 lead us to the inequality

−
(
α− d

ds

d

dm

)
f1(x) > H(x) ∀x ∈ [−A, a).(3.17)

Turning to the proof of E1 = [−A, a] by reduction to a contradiction, we as-
sume that there exists x0 ∈ [−A, a) such that V (x0) > −f1(x0). Then we have two
possibilities:

(I) There exists β, γ ∈ E1 such that −A ≤ β < x0 < γ ≤ a and V (x) > −f1(x)
for all x ∈ (β, γ).

(II) There exists β ∈ E1 such that −A < x0 < β and V (x) > −f1(x) for all
x ∈ [−A, β).

Suppose case (I) occurs. By combining Proposition 3.1(iv) with (3.17), we then
see that the function F = −f1 − V satisfies(

α− d

ds

d

dm

)
F (x) > 0(3.18)

for any x ∈ (β, γ). Since F (β) = F (γ) = 0, an integration by parts yields

Eα(F, v) ≥ 0(3.19)

for any v ∈ C1
0 ((β, γ)) such that v ≥ 0. This means that (the restriction to (β, γ)

of) F is α-excessive with respect to the part of the Dirichlet form (E ,F) on the
interval (β, γ) (see [5, Lemma 2.2.1, Theorem 4.4.3]). In particular, F (x0) ≥ 0, a
contradiction.

Suppose case (II) occurs. On account of Proposition 3.1(v), (3.17), and Assump-
tion 3.1, we see then that the function F satisfies inequality (3.18) holding for any
x ∈ (−A, β) as well as the inequality F ′(−A) ≤ 0. Therefore, an integration by parts
leads us to the inequality (3.19) holding for any v ∈ C1

0 ([−A, β)) such that v ≥ 0. F
is then α-excessive with respect to the part of (E ,F) on the interval [−A, β), again
arriving at the contradiction F (x0) ≥ 0.

By the preceding three propositions, the proof of Theorem 3.1 is complete.
The function V of Theorem 3.1 (the solution of (2.1), (2.2) for the Dirichlet form

(3.3) on L2([−A,A], ds) under the Assumption 3.1 for the data (H, f1, f2)) gives rise
to a solution of another type of free boundary problem stated below. Let us first
extend the function V to whole R by setting

V (x) = −f1(x), x < −A, V (x) = f2(x), x > A.(3.20)

In view of Assumption 3.1, we see that the extended function V still satisfies the first
inequality of (3.9) on (−∞, a) and the second inequality on (b,∞).

We then let, for x ∈ R,

h(x) =

∫ x

0

H(y)ṡ(y)dy + C,(3.21)

where C is an arbitrarily taken fixed constant. We further let

W (x) =

∫ x

a

V (y)ṡ(y)dy +
1

α

(
−f

′
1(a)

ṁ(a)
+ h(a)

)
.(3.22)



DYNKIN GAMES AND SINGULAR CONTROLS 693

Theorem 3.2. W ∈ C2(R) and there exist a, b with a < 0 < b such that

αW (x)− d

dm

d

ds
W (x) = h(x), a < x < b

< h(x), x < a or x > b,(3.23)

−f1 <
d

ds
W < f2 on (a, b),(3.24)

d

ds
W = −f1 on (−∞, a],

d

ds
W = f2 on [b,∞),(3.25)

d

dx

d

ds
W (a) = −f ′

1(a),
d

dx

d

ds
W (b) = f ′

2(b).(3.26)

Proof. For the function

U(x) = αW (x)− d

dm

d

ds
W (x)− h(x),

we have

1

ṡ(x)
U ′(x) = αV (x)− d

ds

d

dm
V (x)−H(x).

Consider a, b of Theorem 3.1. Then, by Theorem 3.1 and the remark made before the
statement of Theorem 3.2,

U(a) = 0; U ′(x) > 0, x < a; U ′(x) = 0, x ∈ (a, b); U ′(x) < 0, x > b,

which implies (3.23). The rest of the proof is obvious.

4. A singular control of the (σ, µ)-diffusion. Let σ(x) and µ(x) be C1-
functions on R with σ(x) �= 0 for all x ∈ R. We are concerned with a diffusion on R

with infinitesimal generator

Lu(x) =
1

2
σ(x)2

d2u

dx2
(x) + µ(x)

du

dx
(x),(4.1)

which can be converted into the Feller canonical form d
dm

du
ds (x) by setting

ṡ(x) = exp

(
−
∫ x

0

2µ(y)

σ(y)2
dy

)
, ṁ(x) =

2

σ(x)2
exp

(∫ x

0

2µ(y)

σ(y)2
dy

)
,(4.2)

and ds(x) = ṡ(x)dx, dm(x) = ṁ(x)dx. We assume that −∞ and ∞ are natural
boundaries with respect to the operator (4.1) in the sense that condition (3.1) is
satisfied by ṡ, ṁ of (4.2). Since ṡ, ṁ of (4.2) are strictly positive C1-functions, all
results of section 3 apply.

Throughout this section, we fix σ(x), µ(x) as above and ṡ(x), ṁ(x) are understood
to be defined by (4.2). We call a triplet (S,X,A) admissible policy or just admissible
if the following conditions are satisfied:

(A.1) S is a compact interval of R.
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(A.2) There is a filtered measurable space (Ω, {Ft}t≥0) subject to usual conditions
and probability measures {Px}x∈S on it such that

X = {Xt}t≥0 is an {Ft}-adapted right continuous process, and
A = {At}t≥0 is an {Ft}-adapted right continuous process of bounded variation

satisfying

Ex

(∫ ∞

0−
e−αtdA(1)

t

)
<∞, Ex

(∫ ∞

0−
e−αtdA(2)

t

)
<∞, ∀x ∈ S,(4.3)

where A(1) and A(2) are two {Ft}-adapted right continuous increasing processes for

which At = A
(1)
t −A(2)

t is the minimal decomposition of the bounded variation process
A into a difference of two increasing processes.

(A.3) There is an {Ft}-adapted standard Brownian motion {wt}t≥0 starting at
the origin under Px for any x ∈ S such that the stochastic differential equation

Xt = x +

∫ t

0

σ(Xs)dws +

∫ t

0

µ(Xs)ds + A
(1)
t −A

(2)
t , t ≥ 0,(4.4)

holds Px-a.s. for each x ∈ S, and further

Px(Xt ∈ S ∀t ≥ 0) = 1 ∀x ∈ S.(4.5)

We denote by A the totality of admissible triplets (S,X,A). In what follows
we will always represent A in terms of A(1) and A(2) and thus write (S,X,A) and
(S,X,A(1), A(2)) interchangeably.

Remark 4.1. (i) The probability space Ω with the filtration {Ft} in (A.2) is not
fixed a priori. It is a part of an admissible policy. The filtration {Ft} is assumed to
be right continuous and F0 is assumed to contain every Ω-set which is Px-negligible
for any x ∈ S.

(ii) We shall use the notation

∆A
(i)
t = A

(i)
t −A

(i)
t−, t ≥ 0, i = 1, 2,

∆Xt = Xt −Xt−, ∆u(X)t = u(Xt)− u(Xt−), t ≥ 0.

Note that, due to the fact that A(1) and A(2) represent the minimal decomposition

of A into two increasing processes, ∆A
(1)
t ∆A

(2)
t = 0 for each t ≥ 0. By convention,

we let

wt = 0, A
(i)
t = 0 ∀t < 0, i = 1, 2,

so that

∆A
(i)
0 = A

(i)
0 , i = 1, 2, X0− = x Px-a.s. ∀x ∈ S.

Further we define the continuous part of A(i) by

A
(i),c
t = A

(i)
t −

∑
0≤s≤t

∆A(i)
s , t ≥ 0, i = 1, 2.

(iii) The integrals in t in (4.3) involve the possible jump at 0 so that they are the

sum of the integrals over (0,∞) and A
(i)
0 , i = 1, 2.
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Proposition 4.1. Let (S,X,A(1), A(2)) ∈ A. Then, for any u ∈ C2(R), the
following identity holds:

u(x) = Ex

[∫ ∞

0

e−αt
(
α− d

dm

d

ds

)
u(Xt)dt

]

+ Ex

[∫ ∞

0

e−αt
(
−du
ds

(Xt)ṡ(Xt)dA
(1),c
t +

du

ds
(Xt)ṡ(Xt)dA

(2),c
t

)]

− Ex


 ∑

0≤t<∞
e−αt∆u(X)t


 , x ∈ S.(4.6)

All expectations in the right side of (4.6) exist and are finite.
Proof. By a generalized Ito formula ([13, p. 278]; see also [7, section 4]) applied

to the semimartingale (4.4), we have

e−αtu(Xt) = u(X0)− α

∫ t

0

e−αsu(Xs)ds +

∫ t

0

e−αsu′(Xs)σ(Xs)dws

+

∫ t

0

e−αsu′(Xs)µ(Xs)ds +

∫ t

0

e−αsu′(Xs)(dA
(1),c
s − dA(2),c

s )

+
1

2

∫ t

0

e−αsu′′(Xs)σ(Xs)
2ds +

∑
0<s≤t

e−αs∆u(X)s.(4.7)

Rewrite the sum of two terms in the right side of (4.7) as

u(X0) +
∑

0<s≤t
e−αs∆u(X)s = u(X0−) +

∑
0≤s≤t

e−αs∆u(X)s,

then take the expectation of the both sides of (4.7) with respect to Px and let t→∞
to get the identity (4.6).

Lemma 4.1. If (S,X,A(1), A(2)) ∈ A, then both A(1) and A(2) are nontrivial in
the sense that, for each T > 0,

Px(A
(i)
t = A

(i)
0 ∀t ∈ [0, T )) = 0 ∀x ∈ S, i = 1, 2.(4.8)

Proof. Since S is compact, the integrand of the first integral of the right-hand
side of (4.4) is bounded and is bounded away from zero, while the integrand of the
second is bounded. If both A(1), A(2) were trivial, the process Xt satisfying (4.4)
hits therefore any point of R almost surely as the Brownian motion does [8, pp. 85,
pp. 437], a contradiction. If either A(1) or A(2) is trivial, the path of Xt cannot be
concentrated on a compact set, again a contradiction.

Proposition 4.2. For any finite β1 < β2, there exists ([β1, β2], X,A(1), A(2)) ∈
A such that

A
(i)
t =

∫ t

0

I{βi}(Xs)dA
(i)
s ∀t ≥ 0, Px-a.s. ∀x ∈ [β1, β2], i = 1, 2.(4.9)

Such Xt and A
(i)
t , i = 1, 2, are necessarily continuous in t ≥ 0, Px-a.s. for any

x ∈ [β1, β2]. Furthermore, the Px-law of such (X,A(1), A(2)) is unique for any x ∈
[β1, β2].
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Proof. Equation (4.4) subjected to the conditions (4.5) and (4.9) is called the
Skorohod equation for [β1, β2].

Since σ, µ are C1-functions, the existence and uniqueness of (X,A(1), A(2)) satis-
fying (4.9) and all admissibility conditions except for the integrability (4.3) follow from
Tanaka [17, Theorem 4.1], where the unique existence of the strong solution of the Sko-
rohod equation with Lipschitz continuous coefficients for a multidimensional convex
domain was proved. It was also shown in [17] that the solution is necessarily continu-
ous. The integrability (4.3) is then an automatic consequence of (4.7) applied to the
C2-function u such that u′(β1) = 1, u′(β2) = 0 (resp., u′(β1) = 0, u′(β2) = 1).

The triple (X,A(1), A(2)) of Proportion 4.2 is called a reflecting (σ, µ)-diffusion
on the interval [β1, β2].

We are now in the position to formulate our main theorem about a singular control
problem for the admissible family A.

Let h, f1, f2 be functions on R satisfying the following conditions.
Assumption 4.1. h(x) is a C1-function on R such that

h′(0) = 0,
dh

ds
(x) is strictly increasing,

dh

ds
(x)→ ±∞ as x→ ±∞.

f1, f2 are C2-functions with 0 < f1, f2 ≤M for some M > 0 and

f ′
1(x) ≥ 0, x ∈ R,

d

ds

d

dm
f1 − dh

ds
is strictly decreasing on (−∞, 0),

f ′
2(x) ≤ 0, x ∈ R,

d

ds

d

dm
f2 +

dh

ds
is strictly increasing on (0,∞).

We note that h can be then expressed as (3.21) via a function H satisfying the
condition of Assumption 3.1, and further f1, f2 satisfy the condition of Assumption 3.1
for this function H. Therefore Theorem 3.2 applies to the present functions h, f1, f2.

For each (S,X,A(1), A(2)) ∈ A, the cost function kx is defined, for x ∈ S, by

kx(S,X,A(1), A(2)) = Ex

(∫ ∞

0

e−αth(Xt)dt

)

+ Ex

[∫ ∞

0

e−αt
(
f1(Xt)ṡ(Xt)dA

(1),c
t + f2(Xt)ṡ(Xt)dA

(2),c
t

)]

+ Ex


 ∑

0≤t<∞
e−αt

(∫ Xt−+∆A
(1)
t

Xt−
f1(y)ds(y) +

∫ Xt−

Xt−−∆A
(2)
t

f2(y)ds(y)

)
 .(4.10)

Some remarks about the cost structure are due at this point. The first inte-
gral

∫∞
0

e−αth(Xt)dt in (4.10) represents the so-called holding cost associated with
the position of the controlled process Xt. Other integrals represent the control cost,
which is associated with the “efforts” to change the position of the controlled pro-
cess. The cost associated with each of the control functionals A(i), i = 1, 2, is
proportional to the displacement caused by each of these functionals; however, the
coefficient of the proportionality is a function of the position of the control pro-
cess and is equal to f1(x)ṡ(x) if the controlled process is at the point x. Thus if
A(i) is a continuous functional, we can write an approximation to the control cost

as
∑
j e

−αtjfi(Xtj )ṡ(Xtj )δA
(i)
j , where δA

(i)
j is an increment of A(i) on the interval
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[tj , tj+1]. In a limit one gets
∫∞
0

e−αtfi(Xt)ṡ(Xt)dA
(i)
t . When the control functional

has a discontinuity at the point t, which results in a jump of the control process, then
we represent this jump as if the real clock is stopped while a new clock is turned on,
and the controlled process is moving uniformly in the new time clock up or down from

Xt− to Xt = Xt− + ∆A
(i)
t . In such a representation the control cost of this displace-

ment is equal to
∫Xt−+∆A

(i)
t

Xt−
fi(y)ṡ(y)dy, which corresponds to the last two terms in

the right-hand side of (4.10). The same expression in the right-hand side of (4.10)
would have been obtained as a limit if we had started with continuous functionals
A(i) and then had approximated by them (via a monotone pointwise convergence)
discontinuous control functionals.

Of course, when fi(x)ṡ(x) is equal to a constant ri, the control cost associated

with the functional A(i) can be written as
∫∞
0

e−αtridA
(i)
t , without a need to have

a special expression associated with the discontinuities of A(i). This was the case
treated in [16]. We extend kx outside the closed interval S denoted by [�1, �2] as

kx(S,X,A(1), A(2)) = k�1(S,X,A(1), A(2)) +

∫ �1

x

f1(y)ds(y), x < �1,

= k�2(S,X,A(1), A(2)) +

∫ x

�2

f2(y)ds(y), x > �2.(4.11)

Our problem is to find the function

W ∗(x) = inf
(S,X,A(1),A(2))∈A

kx(S,X,A(1), A(2)), x ∈ R,(4.12)

called the optimal return function, and to find an optimal admissible quadruple
(S,X,A(1), A(2)) ∈ A such that

W ∗(x) = kx(S,X,A(1), A(2)) ∀x ∈ R.

The solution will be provided by the function W , the values a, b appearing in Theorem
3.2, and the reflecting (σ, µ)-diffusion on [a, b] appearing in Proposition 4.2.

Here we introduce a subfamily A0 of A by

A0 = {(S,X,A(1), A(2)) ∈ A : A
(i)
0 = 0, Px-a.s. ∀x ∈ S, i = 1, 2}.

The reflecting (σ, µ)-diffusion on a compact interval appearing in Proposition 4.2 is a
member of A0.

Theorem 4.1. Under Assumption 4.1 for functions h, f1, f2, let W,a, b be the
function and values in Theorem 3.2. Then

(i) W (x) ≤ kx(S,X,A(1), A(2)) for all x ∈ R for any (S,X,A(1), A(2)) ∈ A.
(ii) W (x) = kx(S,X,A(1), A(2)) for all x ∈ R for (S,X,A(1), A(2)) ∈ A0

if and only if

S = [a, b], (X,A(1), A(2)) is the reflecting (σ, µ)-diffusion on the interval [a, b].

(4.13)

Proof. (i) Take any (S,X,A(1), A(2)) ∈ A. Subtracting from (4.10) the identity
(4.6) for u = W , we have

kx(S,X,A(1), A(2))−W (x) = Ex(I1 + I2 + I3 + I4), x ∈ S,(4.14)
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where

I1 =

∫ ∞

0

e−αt
{(

d

dm

d

ds
− α

)
W (Xt) + h(Xt)

}
dt,

I2 =

∫ ∞

0

e−αt
{
dW

ds
(Xt) + f1(Xt)

}
ṡ(Xt)dA

(1),c
t ,

I3 =

∫ ∞

0

e−αt
{
−dW

ds
(Xt) + f2(Xt)

}
ṡ(Xt)dA

(2),c
t ,

I4 =
∑

0≤t<∞
e−αt

(
∆W (X)t +

∫ Xt−+∆A
(i)
t

Xt−
f1(y)ds(y) +

∫ Xt−

Xt−−∆A
(2)
t

f2(y)ds(y)

)
.

The integrands I1, I2, I3 are nonnegative by virtue of Theorem 3.2. To see that
I4 is nonnegative, let

Γ+ = {t ≥ 0 : ∆A
(1)
t > 0}, Γ− = {t ≥ 0 : ∆A

(2)
t > 0}.

Since Γ+ ∩ Γ− = φ by Remark 4.1, we have for t ∈ Γ+,

∆Xt = ∆A
(1)
t , ∆W (X)t = W (Xt− + ∆A

(1)
t )−W (Xt−),

and consequently the sum in I4, taken over all t ∈ Γ+, equals

∫ Xt−+∆A
(1)
t

Xt−

(
dW

ds
(y) + f1(y)

)
ds(y).

We have a similar expression for t ∈ Γ− and eventually get

I4 =
∑
t∈Γ+

e−αt
∫ Xt

Xt−

(
dW

ds
(y) + f1(y)

)
ds(y) +

∑
t∈Γ−

e−αt
∫ Xt−

Xt

(
−dW

ds
(y) + f2(y)

)
ds(y),

(4.15)

which is nonnegative by Theorem 3.2.
We have seen that kx ≥ W (x), x ∈ S. This inequality extends to R by the

definition (4.11) and Theorem 3.2.
(ii) Suppose kx(S,X,A(1), A(2)) = W (x) for all x ∈ S for some (S,X,A(1), A(2)) ∈

A0. Then all Px-expectations of I1, I2, I3, I4 must vanish for any x ∈ S. Notice further

that X0 = x, Px-a.s. for all x ∈ S, because A
(i)
0 = 0, Px-a.s. for all x ∈ S, i = 1, 2.

We let S = [β, γ].
Suppose that β < a (resp., b < γ). Then Ex(I1) > 0 for x ∈ (β, a) (resp., (b, γ))

by (3.23) and the right continuity of Xt. Therefore we have that [β, γ] ⊂ [a, b].
In view of Lemma 4.1, both A(1), A(2) are nontrivial. If a < β (resp., γ < b),

then dW
ds +f1

(
resp., − dW

ds + f2

)
is strictly positive on S by (3.24), (3.25), and hence

either I2 or the first sum of (4.15) (resp., either I3 or the second sum of (4.15)) has a
positive Px-expectation for any x ∈ S. We have proven that S = [a, b].
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Then, by virtue of (3.24), we see that Xt or, equivalently, A
(i)
t i = 1, 2, must

be continuous in t ≥ 0, Px-a.s. for any x ∈ S in order to make the expectation
of I4 expressed as (4.15) to be zero. Finally, using (3.24) and (3.25), we see that
A(i) = A(i),c, i = 1, 2, must satisfy the relations (4.9) for β1 = a, β2 = b in order to
make both expectations of I2, I3 to be zero. This means that (X,A(1), A(2)) must be
the reflecting (σ, µ)-diffusion on the interval [a, b].

Conversely, the cost function kx of the reflecting (σ, µ)-diffusion on the interval
[a, b] is obviously identical with W (x) on R in view of (4.14).

Corollary 4.1. Under Assumption 4.1 for functions h, f1, f2, the solution W ∈
C2(R), and the values a, b (a < b) of the free boundary problem (3.23), (3.24), and
(3.25) are unique. The solution W (x), x ∈ R, coincides with the optimal return
function W ∗(x) given by (4.12).

Proof. In the proof of Theorem 4.1, we have seen that any function W satisfying
(3.23), (3.24), and (3.25) for some a, b (a < b) coincides with the function defined by
(4.12). Further this function determines a, b uniquely according to (3.23).
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Abstract. Robust filtering of linear time-invariant discrete-time uncertain systems is investi-
gated through a new parameter dependent Lyapunov matrix procedure. Its main interest relies on
the fact that the Lyapunov matrix used in stability checking does not appear in any multiplicative
term with the uncertain matrices of the dynamic model. We show how to use such an approach
to determine high performance H2 robust filters by solving a linear problem constrained by linear
matrix inequalities (LMIs). The results encompass the previous works in the quadratic Lyapunov
setting. Numerical examples illustrate the theoretical results.

Key words. linear systems, discrete-time systems, parameter uncertainty, filtering, parameter
dependent Lyapunov functions, linear matrix inequalities
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1. Introduction. Filtering is a very important issue in systems diagnosis, sur-
veillance, and control. The problem, which amounts to extracting the information
from the measured output to provide an estimate of the state (or a linear combination
of the state), has been addressed in the stochastic as well as in the deterministic
framework. Seminal works in this domain are the ones of Kalman and Luenberger
(see [1, 10] for a complete discussion).

As a dual of the control design problem, the development of robust filters closely
follows the same design steps. For linear uncertain systems, the problem can be
stated as the minimization of an appropriate bound on a transfer function between an
exogenous noise and the estimation error. There have been several contributions using
H2 and H∞ norms as criteria for filter determination under parameter uncertainty.
In the unstructured norm bounded uncertainty case, one can cite [9, 11, 13]. The
structured case, which is a bit more complex, has also received some attention in
both continuous-time [5, 8] and discrete-time [6, 7] contexts. These approaches are
based on the quadratic stability concept, where a single Lyapunov matrix is used
for the estimation error norm evaluation over the whole uncertainty domain. If we
consider time-invariant uncertain systems, this assumption reveals to be, in fact, a
hard constraint, implying a significant degree of sufficiency to these results. In fact,
all results based on quadratic stability can also be applied to arbitrarily fast time-
variant uncertainties.

In this paper, we use a new stability condition for discrete-time uncertain sys-
tems which enables the determination of parameter dependent Lyapunov matrices.
This stability condition, which was first introduced in [3], provides results which go
beyond the ones attainable by the quadratic approach for time-invariant parameter
uncertainty. It is expressed as a linear matrix inequality (LMI) and exhibits a kind
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of separation property between the Lyapunov matrices and the uncertain dynamic
matrices. Here we show how the given condition can be extended to provide optimal
performance in terms of an H2 norm guaranteed cost problem. Furthermore, we show
how to parametrize linear filters so that the synthesis of robust filters can be cast as an
LMI optimization problem. We prove that our results encompass the results obtained
on the quadratic stability framework [6, 7] and, consequently, reduce to the classical
Kalman filter in the absence of uncertainty. The filtering results are generalized to
cope with structure constraints such as decentralization.

The outline of the paper is as follows. In section 2, we formulate the problem
to be solved. In section 3, we summarize the existent results on robust stability and
robust filtering. Then we introduce the new stability and performance conditions in
section 4 and illustrate its features with a numerical example. The robust H2 filtering
problem is developed in section 5 and extended to cope with structural constraints in
section 6. Several numerical examples illustrate the results in section 7, enlightening
the efficiency of the proposed approach by comparing the given results to the existent
ones. The paper finishes with some concluding words.

The notation used throughout is as follows. Capital letters denote matrices, and
small letters denote vectors. For scalars, we use small Greek letters. For matrices or
vectors, (′) indicates transposition. For symmetric matrices, X > 0 (≥ 0) indicates
that X is positive definite (nonnegative definite). For square matrices, trace(X)
denotes the trace function ofX being equal to the sum of its eigenvalues. For a transfer
function T (ζ) analytic outside the unit circle, ‖T (ζ)‖2 denotes the standard H2 norm.
Finally, for the sake of easing the notation of partitioned symmetric matrices, the
symbol (•)′ generically denotes each of its symmetric blocks.

2. Problem statement and definitions. Let us consider the linear time-
invariant discrete-time system

x(k + 1) = Ax(k) +Bw(k),(1)

y(k) = Cx(k) +Dw(k),(2)

z(k) = Lx(k),(3)

where x ∈ Rn is the state, w ∈ Rm is a white noise input with zero mean and identity
covariance matrix, y ∈ Rr is the measured output, and z ∈ Rs is the vector to be
estimated. All matrices are of compatible dimension. We assume that matrix L is
known and that the time-invariant parameters gathered in the matrix

M :=

[
A B
C D

]
(4)

are unknown but belong to the convex polyhedron

M :=

{
M(ξ) =

N∑
i=1

ξiMi,

N∑
i=1

ξi = 1, ξi ≥ 0
}
.(5)

The robust H2 filtering problem considered here is to design an estimate ẑ of z
given by ẑ = F · y. The filter F is supposed to be a linear, finite dimensional, and
causal operator. We characterize F by the generic element given in the form of a
linear time-invariant operator with minimum state space realization

x̂(k + 1) = Af x̂(k) +Bfy(k),(6)

ẑ(k) = Cf x̂(k),(7)
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where the matrices Af ∈ Rn×n, Bf ∈ Rn×r, and Cf ∈ Rs×n are to be determined
and define the filter transfer function

Tf (ζ) = Cf (ζI −Af )
−1

Bf .(8)

Moreover, it is considered that the initial condition of system (1)–(3) as well as the
initial condition of the filter (6)–(7) are both zero.

The connection of the filter and the system yields, for each element in the set
M, a linear system described by the transfer function from the noise input w to the
estimation error e := z − ẑ,

TM (ζ) := C̃
(
ζI − Ã

)−1

B̃,(9)

where matrices Ã, B̃, and C̃ of compatible dimensions are given by

Ã :=

[
A 0

BfC Af

]
, B̃ :=

[
B

BfD

]
, C̃ :=

[
L −Cf

]
.(10)

With respect to the transfer function TM (ζ), it is possible to determine the quan-
tity ‖TM (ζ)‖2, called the H2 norm of TM (ζ), that represents a measure of the energy
appearing in the output due to the noisy input. Our aim is to solve the problem

inf
F
sup
M∈M

‖TM (ζ)‖22.(11)

Since this problem is very hard to solve, many authors proceed by minimizing an
available upper bound to the indicated supremum. In [6, 7], this problem is solved
using the concept of quadratic stability to be discussed in the next section.

3. Previous results on robust stability and filtering. As stated before, the
robust filtering problem (11) is very difficult, and many authors address the filtering
problem by replacing the supremum overM by an appropriate upper bound. One of
the most used upper bounds is based on the concept of quadratic stability, which we
briefly review in the next paragraphs.

Consider the following linear time-invariant discrete-time system defined by its
transfer function

T (ζ) := C(ζI −A)−1B,(12)

where the triplet (A,B,C) is composed by matrices of compatible and known dimen-
sions. We are interested in the study of the stability of linear time-invariant systems
in the form (12), where the matrices A and B are uncertain. More specifically, we are
interested in systems whose uncertain parameters, gathered in the matrix

M :=
[
A B

]
,(13)

belong to the convex polyhedron M previously defined in (5). Our objective is to
characterize whenever the setM defines only stable systems, in which case we sayM
is Schur, and to determine whether, for a given µ > 0, it is true that the upper bound

sup
M∈M

‖TM (ζ)‖22 < µ(14)
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holds. As in the previous section, the subscript included in the notation of the transfer
function defined in (12) indicates the dependence of T (ζ) onM ∈M. The next lemma
provides an answer to these questions expressed in terms of well-known sufficient
conditions for robust (quadratic) stability and performance.

Lemma 3.1. The following statements are true:

(a) The set M is Schur if there exists a symmetric matrix P of compatible di-
mension satisfying the LMI

[
P AiP
(•)′ P

]
> 0(15)

for all i = 1, . . . , N .
(b) For any given µ > 0, the inequality ‖TM (ζ)‖22 < µ holds for all M ∈ M if

there exist symmetric matrices P and W of compatible dimensions satisfying
the LMI

trace(W ) < µ,

[
W CP
(•)′ P

]
> 0,


 P AiP Bi
(•)′ P 0
(•)′ (•)′ I


 > 0(16)

for all i = 1, . . . , N .

Proof. See [7].

The above lemma deserves some comments. First, keeping P constant and in-
dependent of the index i is essential to obtain the results. This is on the origin of
the quadratic stability [2] concept, largely used in robust stability studies of uncer-
tain systems. The main drawback associated with this fact is that a single Lyapunov
matrix P must work for all matrices in the uncertain domainM, which ensures the
stability of all time-variant systems in the domain. This condition is often too con-
servative if used with time-invariant systems. The same reasoning can be used for
the robust performance provided in part (b). Indeed, it is expected that the use of a
single matrix P introduces a significant degree of conservativeness to the estimation
of the worst performance attained for some M ∈ M. A measure of this gap may be
obtained by calculating the minimum value of µ given by the optimal solution to the
convex programming problem

µq := min{µ : s.t. (16)}(17)

as compared to supM∈M ‖TM (ζ)‖22. This fact will be illustrated in the examples.
Using Lemma 3.1, the following set of robust filters with guaranteed quadratic

performance has been established in [6, 7] as the discrete-time counterpart of the
continuous-time robust filter design introduced in [5].

Lemma 3.2. Let µ > 0 be given. The estimation error transfer function satisfies
the inequality ‖TM (ζ)‖22 < µ for all M ∈ M provided that the robust filter transfer
function is given by

Tf (ζ) := HR−1
(
ζI −QR−1

)−1
F,(18)

where R := Z − Y and matrices Q, H, and F and the symmetric matrices Y , Z, and
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W satisfy the LMI

trace(W ) < µ,(19) 
 W L−H L
(•)′ Z Z
(•)′ (•)′ Y


 > 0,(20)




Z Z ZAi ZAi ZBi
(•)′ Y Y Ai + FCi +Q Y Ai + FCi Y Bi + FDi

(•)′ (•)′ Z Z 0
(•)′ (•)′ (•)′ Y 0
(•)′ (•)′ (•)′ (•)′ I


 > 0(21)

for all i = 1, . . . , N .

Proof. See [7].

From this theorem, it is clear that a near optimal solution to the design prob-
lem (11) is readily calculated from the optimal solution to the convex programming
problem

µQ := min{µ : s.t. (19)− (21)},(22)

which provides the best filter when a quadratic guaranteed upper bound to the worst
error performance is adopted. It is worth mentioning that, for N = 1, the system un-
der consideration is completely known, and, in this case, (22) generates the celebrated
Kalman filter (see [7] for details).

4. Parameter dependent robust stability. This section presents the main
results of this paper related to robust stability and performance of uncertain discrete-
time systems. The following theorem constitutes an extension of the stability test
recently introduced in [3] and will be used as a basis for the development of the new
filter design procedure to be introduced in section 5.

Theorem 4.1. The following statements are true:

(a) The set M is Schur if there exist symmetric matrices Pi, i = 1, . . . , N , and
a matrix G of compatible dimensions satisfying the LMI[

Pi AiG
(•)′ G+G′ − Pi

]
> 0(23)

for all i = 1, . . . , N .
(b) For any given µ > 0, the inequality ‖TM (ζ)‖22 < µ holds for all M ∈ M

if there exist symmetric matrices Pi, Wi, i = 1, . . . , N , and a matrix G of
compatible dimensions satisfying the LMI

trace(Wi) < µ,

[
Wi CG
(•)′ G+G′ − Pi

]
> 0,


 Pi AiG Bi
(•)′ G+G′ − Pi 0
(•)′ (•)′ I


 > 0

(24)

for all i = 1, . . . , N .

Proof. We prove part (a) by assuming that (23) holds for all i = 1, . . . , N and
calculating the convex combination of inequality (23). That is, we first multiply each
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inequality in (23) by the uncertain parameter ξi > 0 and then evaluate the sum from
i = 1, . . . , N so as to obtain[

P (ξ) A(ξ)G
(•)′ G+G′ − P (ξ)

]
> 0.

From this inequality, we first conclude that G + G′ > P (ξ) > 0, where P (ξ) :=∑N
i=1 ξiPi. Since P (ξ) > 0, the inequality (P (ξ) − G)′P (ξ)−1(P (ξ) − G) ≥ 0 is true

for all values of the uncertain parameter ξ so that G′P (ξ)−1G ≥ G + G′ − P (ξ).
Replacing this in the above inequality, we get[

P (ξ) A(ξ)G
(•)′ G′P (ξ)−1G

]
≥
[
P (ξ) A(ξ)G
(•)′ G+G′ − P (ξ)

]
> 0.

Finally, if we multiply the first inequality above by T (ξ) = diag
[
I,G−1P (ξ)

]
on the

right and by T (ξ)′ on the left, we recover[
P (ξ) A(ξ)P (ξ)
(•)′ P (ξ)

]
> 0,

which lets us conclude that the setM is Schur.
In order to prove part (b), we manipulate the third inequality in (24) following

the same steps as in the proof of part (a) so as to obtain
 P (ξ) A(ξ)P (ξ) B(ξ)
(•)′ P (ξ) 0
(•)′ (•)′ I


 > 0,

which lets us conclude that

‖TM (ζ)‖22 ≤ trace (CP (ξ)C ′) ∀ M ∈M.(25)

Then, taking the convex combination of the first and the second inequalities in (24)
with respect to the uncertain parameters, we get

trace (CP (ξ)C ′) = trace
[
CG

(
G′P (ξ)−1G

)−1
G′C ′

]
≤ trace [CG (G+G′ − P (ξ)−1

)
G′C ′]

≤ trace
(

N∑
i=1

ξiWi

)

≤ max
i=1,... ,N

trace (Wi)

< µ,

which, together with (25), concludes the proof of part (b).
Part (a) of the above theorem first appeared in [3]. Theorem 4.1 represents

some important contributions. First, it contains the quadratic stability result as a
particular case. Notice that, if we aggregate to the LMI (23) and (24) the additional
linear constraints

G = G′ = P, Pi = P, i = 1, . . . , N,(26)
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then we exactly recover Lemma 3.1. Second, it generalizes the concept of quadratic
stability and quadratic robust performance of uncertain systems to cope with param-
eter dependent Lyapunov functions. As indicated in the proof, the stability of the
family of matricesM(ξ) =

∑N
i=1 ξiMi is tested by the parameter dependent Lyapunov

function

v(x) = x′
(

N∑
i=1

ξiPi

)
x.(27)

From part (b), it is possible to determine an upper bound to the H2 norm of
TM (ζ) by solving the following convex programming problem:

µp := min {µ : s.t. (24)} .(28)

Notice that µp ≤ µq since the inequality (24) reduces to (16) with the additional
constraints (26) and Wi =W , i = 1, . . . , N . In practice, the value of µp is much less
that µq since the number of free variables in the problem (28) is much bigger than
the number of free variables in the quadratic robust performance design problem (17).
This behavior will be illustrated by the numerical examples provided in section 7.

The fact that µp ≤ µq will guarantee that the robust filters to be designed in the
next section always perform better (no worse) than the ones obtained by the filtering
design procedures based on the concept of quadratic stability [7]. Unfortunately,
it is hard to quantify how much improvement can be obtained. Nevertheless, the
introduced analysis conditions can indeed coincide with the actual robust stability
analysis in some examples (see [3] and [4]).

5. A new robust filtering procedure. At this point, after the analysis results
presented in the last section, we turn to the following question: Is it possible to provide
a numerically attractive procedure to synthesize a filter that takes advantage of the
new robust stability and performance conditions provided in Theorem 4.1? This is
the goal of this section. Applying the result given in Theorem 4.1 to the estimation
error transfer function (9), we have that, for a given µ > 0, the robust filter under
consideration is such that ‖TM (ζ)‖22 < µ, provided that the inequalities

trace(Wi) < µ,

[
Wi C̃iG̃

(•)′ G̃+ G̃′ − P̃i

]
> 0,


 P̃i ÃiG̃ B̃i
(•)′ G̃+ G̃′ − P̃i 0
(•)′ (•)′ I


 > 0(29)

hold for all i = 1, . . . , N . More precisely, we are interested in investigating whether it
is possible to convert the nonlinear matrix inequality in terms of the filter parameters
in (29) into an LMI. If this goal is accomplished, the robust H2 filter design problem
turns out to be a convex programming problem which can be solved by efficient
numerical algorithms.

To this end, we proceed by partitioning G̃ and its inverse as

G̃ :=

[
Z−1 ?
U ?

]
, G̃−1 :=

[
Y ?
V ?

]
,(30)

where Z, U , Y , V , and “?” denote matrices in Rn×n. Notice that, given the quadruple
(Z,U, Y, V ), we can always calculate blocks “?” in order to have G̃G̃−1 = I. Also
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notice that no additional constraints like symmetry or definiteness are present. From
this partition of matrix G̃, we introduce the one-to-one change of variables[

Af Bf
Cf 0

]
:=

[
V ′ 0
0 I

]−1 [
Q F
H 0

] [
UZ 0
0 I

]−1

,(31)

where the existence of the indicated inverses will be proven in what follows. Denoting
R := V ′UZ, the next theorem gives a solution, expressed in terms of an LMI, to the
robust H2 filtering problem previously stated.

Theorem 5.1. Let µ > 0 be given. The estimation error transfer function
satisfies the inequality ‖TM (ζ)‖22 < µ for all M ∈ M, provided that the robust filter
transfer function is given by

Tf (ζ) := HR−1
(
ζI −QR−1

)−1
F,(32)

where matrices Q, H, F , R, Z, Y and Wi =W ′
i , Pi = P ′

i , Si = S′
i, Ji, i = 1, . . . , N ,

satisfy the LMI

trace(Wi) < µ,(33) 
 Wi L−H L
(•)′ Z + Z ′ − Pi Z ′ + Y +R′ − Ji
(•)′ (•)′ Y + Y ′ − Si


 > 0,(34)




Pi Ji Z ′Ai Z ′Ai Z ′Bi
(•)′ Si Y ′Ai + FCi +Q Y ′Ai + FCi Y ′Bi + FDi

(•)′ (•)′ Z + Z ′ − Pi Z ′ + Y +R′ − Ji 0
(•)′ (•)′ (•)′ Y + Y ′ − Si 0
(•)′ (•)′ (•)′ (•)′ I


 > 0.(35)

Furthermore, (29) holds for some filter if and only if the inequalities (33)–(35) are
feasible.

Proof. Let us first suppose that (29) is feasible. We can partition matrix G̃
as indicated in (30) and assume that matrices U and V are nonsingular. We can
do that because, given singular matrices U and V , we can always slightly perturb
them, keeping feasibility due to the fact that all inequalities are strict. Furthermore,
G̃+G̃′ > P̃i > 0 ensures that G̃

−1 and Z exist, and, consequently, relation (31) defines
a one-to-one transformation. So, defining the square and nonsingular matrices

T̃ :=

[
Z Y
0 V

]
, T̃ ′P̃iT̃ :=

[
Pi Ji
(•)′ Si

]
,

it can be verified that the second inequality in (29), multiplied on the left by the full
rank matrix T ′ := diag[I, T̃ ′] and to the right by T , provides the LMI (34). Further-
more, doing the same to the third inequality in (29) with matrix T := diag[T̃ , T̃ , I],
we get the LMI (35), which, together with the first inequality in (29), implies that all
inequalities (33)–(35) are feasible. In addition, since R is also a nonsingular matrix,
we get

Tf (ζ) = Cf (ζI −Af )
−1

Bf

= HZ−1U−1
(
ζI − V −TQZ−1U−1

)−1
V −TF

= HR−1
(
ζI −QR−1

)−1
F.
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For the converse, let us suppose that the LMIs (33)–(35) are feasible. First, notice
that [

Z + Z ′ Z ′ + Y +R′

(•)′ Y + Y ′

]
>

[
Pi Ji
(•)′ Si

]
> 0,

which, multiplied on the left by T =
[
I −I ] and on the right by T ′, implies that

R + R′ > 0 so that R is a nonsingular matrix. The same inequality implies that
Z + Z ′ > 0 and, consequently, that Z is also nonsingular. From the definition R =
V ′UZ, the regularity of matrices U and V holds. Consequently, transformation (31)
provides a filter satisfying (29).

It is important to compare the result of Theorem 5.1 with that of Lemma 3.2. The
optimal guaranteed H2 cost robust filter, provided using a single Lyapunov function,
i.e., the quadratic optimal filter, is recovered by imposing on the inequalities (33)–(35)
the additional constraints

Z = Z ′, Y = Y ′, R = Z − Y,(36)

Wi =W,

[
Pi Ji
(•)′ Si

]
=

[
Z Z
(•)′ Y

]
, i = 1, . . . , N,(37)

as a consequence, and, following the same steps as in [7], it is worth noticing that the
previous result also contains as a particular case the celebrated Kalman filter when
N = 1. It is important to remark (see the illustrative examples) that the main issue of
this paper is to provide a way to relax the constraints (36)–(37). As illustrated in the
previous section, this fact enables us to get smaller guaranteed costs when compared
with all other available design procedures based on a single and hence parameter
independent Lyapunov function.

Finally, a suboptimal robust filter is readily obtained from

µP := min {µ : s.t. (33)− (35)} ,(38)

which is still an LMI optimal filtering problem. Notice that it is possible to show that
µP ≤ µQ holds, where µQ is given by (22).

6. Decentralized filtering. As in [6, 7], another interesting point of the design
procedure provided in this paper concerns the filter structure. In signal and systems
estimation, when the overall system is described by a number of units coupled together
by means of an interconnection network, it is of interest to know whether it is possible
to connect local filters in order to estimate the local state variables [12]. The model
is given by (1)–(3), where B, C, D, and L are block diagonal matrices. The goal is
to determine a filter as (6)–(7) with a state space representation (see (32)), where

Cf = HR−1, Af = QR−1, Bf = F(39)

are block diagonal matrices of compatible dimensions. If possible, the filter can be
split into a set of local filters acting on each subsystem level. Recalling that the
inverse of a block diagonal matrix is also a block diagonal matrix and that the product
of block diagonal matrices is a block diagonal matrix, (39) reveals that our goal is
accomplished, provided that we include in the H2 filtering design problem (34)–(35)
the following additional constraints: Matrices H, R, Q, and F are block diagonal.
Fortunately, this corresponds to constrain some entries of those matrices to be equal
to zero, and so convexity is preserved. Also notice that, on the contrary to what
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happens in [6, 7], the Lyapunov matrices Pi, Si, and Ji must not present a block
diagonal structure. Another surprising feature is that none of the submatrices of G̃
and its inverse given in (30) must be block diagonal—a direct consequence of the extra
degrees of freedom introduced with the new stability condition.

7. Illustrative examples. In this section, we solve the proposed robust filter
design problem for several systems in the form (1)–(3). This example is taken from [7],
and the results are compared with the ones given by the design procedures in [11] and
in [7]. We have a discrete-time system with matrices

B =

[
1 0 0
0 1 0

]
, C =

[
1 0

]
, D =

[
0 0

√
2
]
, L =

[
1 1

]
and a nominal matrix A = A0 given by

A0 =

[
0.9 0.1
0.01 0.9

]
.

For this nominal system, the Kalman optimal filter FK is associated with the
minimum H2 cost equal to 8.0759 and is given by the minimal state space realization

AK =

[
0.4427 0.1000
−0.1615 0.9000

]
, BK =

[
0.4573
0.1715

]
, CK =

[
1 1

]
.

The first robust filter design we propose copes with the structured uncertainty
defined through A = A0 +∆A for

∆A =

[
0 0.06α

0.05β 0

]
=

[
0.06 0
0 0.05

] [
α 0
0 β

] [
0 1
1 0

]
,

where |α| ≤ 1 and |β| ≤ 1. This is a two-block structured uncertainty which can be
exactly described by the set M. Although the filter design procedure given in [11]
cannot be directly applied to this problem without introducing some conservativeness,
we take the best solution it provides without imposing the diagonal structure on the
uncertainty parameters for the sake of comparison. This solution is obtained for a
parameter ε = 1.5264e − 04 and provides a suboptimal guaranteed cost H2 filter FS

with minimal state space realization

AS =

[
0.0335 0.1014
−0.2551 0.9117

]
, BS =

[
0.8667
0.2652

]
, CS =

[
1 1

]
.

Using the result of [7] (Lemma 3.2) with N = 4 matrices corresponding to the extreme
points of the uncertain domain, we get the optimal quadratic guaranteed cost H2 filter
FQ given by

AQ =

[
0.0826 −0.0768
−0.0002 0.8543

]
, BQ =

[ −0.0413
0.0001

]
, CQ =

[ −29.8415 −70.1868 ] .
Finally, for the same set of vertices, Theorem 5.1 provides the optimal filter FP:

AP =

[ −0.1312 0.0842
−0.0073 0.8352

]
, BP =

[ −0.1151
−0.0007

]
, CP =

[ −14.7625 −41.3592 ] .
Table 1 shows, for each filter, the value of the H2 guaranteed H2 cost µ as well as

the supremum of ‖TM (ζ)‖22 with respect to the matrix M ∈ M, calculated by brute
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Table 1
Filter performance: Multiblock uncertainty.

Filter FK FS FQ FP
µ — 129.7915 100.0278 44.0039

supM∈M ‖TM (ζ)‖22 49.4994 38.2183 30.0664 15.4506

Table 2
Filter performance: One-block uncertainty.

Filter FK FO FQ FP
N = 2 — — 9.6796 8.8499
N = 4 — — 13.0219 11.5307
N = 8 — — 13.0446 11.6053
µ — 13.0446 13.0446 11.6053

supM∈M ‖TM (ζ)‖22 13.0036 11.8655 11.8655 11.5980

force. As in [7], the Kalman filter, which is optimal for the nominal system, is the
worst under parametric uncertainty. The filters of [11] and [7] are both suboptimal
with respect to the guaranteed cost—the first one because of the structure of the
uncertainty and the second one because of the quadratic stability assumption. It is
interesting to observe that the filter determined from Theorem 5.1 is approximately
50% better than the best obtained by the existent procedures with respect to guaran-
teed H2 cost as well as with respect to the true worst case value of the H2 estimation
cost.

As a second design, we consider the same uncertain system given before, but we
change the uncertainty description to

∆A =

[
0 0.06α
0 0.05β

]
=

[
0.06 0
0 0.05

] [
α
β

] [
0 1

]
,

where the uncertain parameters are such that α2 + β2 ≤ 1. With respect to this
one-block unstructured uncertainty, the results of [11] provide the optimal quadratic
guaranteed H2 cost filter FO:

AO =

[
0.3521 0.1069
−0.2211 0.9400

]
, BO =

[
0.5479
0.2311

]
, CO =

[
1 1

]
.

Although this uncertainty domain cannot be exactly represented by the polytopic
domainM, we proceed as in [7] by approximating the ellipsoidal uncertainty domain
by the polyhedron associated with the extreme matrices[

αi
βi

]
=

[
cos(2πi/N)
sin(2πi/N)

]
, i = 1, . . . , N.

Table 2 shows that, with N = 8, the quadratic filter FQ given by Lemma 3.2 is
associated with the same guaranteed cost as FO. Applying Theorem 5.1, it is possible
to go even further. Notice that the optimal parameter dependent filter FP,

AP =

[
0.4491 0.0758
0.0006 0.9008

]
, BP =

[ −0.2360
−0.0013

]
, CP =

[ −3.2370 −8.5027 ] ,
is associated with a guaranteed cost which virtually matches the actual worst case
performance.
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8. Conclusion. The robust filtering problem for linear time-invariant discrete-
time uncertain systems has been addressed in this paper using parameter dependent
Lyapunov functions when convex polytopic uncertainty is present on the dynamic,
input, and output matrices. The work is based on a new robust stability condition,
which presents a separation between the Lyapunov matrix and the matrices of the
dynamic model.

We have shown how to determine optimal H2 guaranteed cost filters by solving
a linear problem constrained by an LMI. The results encompass most of the results
available in the literature to date which are based on the quadratic stability frame-
work. We have also shown how to extend the results to cope with decentralized
filtering without assuming a block diagonal Lyapunov matrix structure. Some nu-
merical examples have been solved, illustrating the superiority of the results for the
design of filters for time-invariant uncertain systems.
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Abstract. This paper is devoted to the optimal design problem of periodic surfaces. Solutions to
elliptic partial differential equations occurring in oscillating domains exhibit boundary layer behavior,
and we intend to control the first order correctors. Using a mathematical framework derived from
the homogenization techniques, the existence of an optimal boundary layer control is proved.
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1. Introduction. The importance of understanding the physics of nonhomoge-
neous media in view of strategic industrial applications is now well established, and
the progress in both mathematical models and numerical simulation methods has led
to their effective use in industry (see the pioneering works of [Tar86], [Koh86] among
many others). These days, software which computes and optimizes microstructured
materials is widely available for commercial use. In contrast, the problem of optimal
design of coatings is less studied; yet there are many industrial fields where rough sur-
faces play a central role: acoustic shields, thermal radiators, shark-skin wrapping of
planes, or, as reported by Friedman [Liu97], the epithaxial growth of VLSI chips, and
the tiled surface covering the space shuttle, as reported by Achdou, Pironneau, and
Valentin [AY98]. There is also an obvious advantage in dealing with rough surfaces
when, for example, aesthetic or functionality criteria impose a prescribed macroscopic
outline of the boundary, allowing only for microscopic engraving of the surface.

The present paper is concerned with the optimal design of the shape of the waving
to obtain a prescribed gradient profile. The mathematical approaches developed here,
namely, the transport-homogenization technique and bounding of the unit-cell, are
motivated by two reasons. The first is that homogenization, just as in the “volume”
case, avoids the meshing of the very small structure of the boundary, which would be
very expensive from the computational viewpoint.

The second reason is that the transport technique (see, e.g., [MF76], [Sok]) avoids
successive meshing of the unit-cell since the varying cell is the image of a fixed one,
and the control variable is simply the underlying mapping, just as is widely used in the
shell optimization theory; refer to [Che87], for example, for a comprehensive survey.

Let us notice that since the geometry of the oscillating boundary is intended to
vary during the optimization process, effective boundary conditions, though usually
considered, are not well suited for our purpose. Effective boundary conditions lead to
a problem stated in the whole domain, with more accurate conditions which involve
the shape of the oscillations. However, a change in the shape then implies that one
must redo computations in the whole domain, which could be very expensive. From

∗Received by the editors April 22, 1999; accepted for publication (in revised form) March 7, 2002;
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the physical point of view, effective conditions are a macroscopic interpretation which
could be achieved as soon as the boundary layer optimization process is finished.

The paper is organized as follows. In section 2 the potential flow in an oscillating
domain is presented. Then the mathematical setting for an asymptotic analysis and
convergence results are outlined. We set in section 3 the optimal design framework.
Finally, in section 4 weak convergence of the states and the existence of an optimum
are proved.

2. The potential fluid flow. The potential fluid flow model is a linear ap-
proximation for the general nonlinear fluid mechanics when the fluid is inviscid, in-
compressible, and assumed to be permanent and irrotational. Then one can define
a potential U related to the flow velocity �V by �V = �∇U . The potential function U
solves the classical Laplace equation with suitable boundary conditions, generally slip
conditions, and free-surface conditions.

Many industrial applications related to computational fluid dynamics efficiently
use this approximate model, sometimes as a preamble to the simulation of the Navier–
Stokes or Euler equations. Good examples of such industries are the shipbuilding, the
offshore station designing, and, more generally, the marine technology industries.

Our intention is to use this model as an example to illustrate the general problem
of finding smart coatings in order to control the boundary velocity profile. We exhibit
boundary layer terms which depend on the shape of the waving and are correctors to
the velocity profile. They are used in order to minimize the distance to a prescribed
profile.

Let us consider a bounded area occupied by a potential fluid. A part of the
boundary of this domain is waved with small periodic oscillations. Within the os-
cillating domain, an open bounded set with Lipschitz boundary, denoted by Ωε (see
Figure 2.1), we consider the following Laplace problem:


−∆Uε = 0 in Ωε,
∂νUε = 0 over Γε,
∂νUε = g over ΓN ,

Uε = 0 over ΓD.

(2.1)

The function g describes the normal velocity of the incident flow through the part
ΓN of the boundary. It is assumed to be smooth enough, i.e., g ∈ H

1
2 (ΓN ) and fulfills

the classical compatibility condition.
Setting H(Ωε) =

{
v ∈ H1(Ωε), v = 0 over ΓD

}
, it is then well known that for any

ε > 0, there exists a unique Uε ∈ H(Ωε) solution to the variational problem derived
from (2.1): ∫

Ωε

∇Uε.∇v dΩε =

∫
ΓN

gv dΓ ∀v ∈ H(Ωε).(2.2)

2.1. The general setting for a two-scale boundary layer approach. In
the following, Ω ⊂ R

N is an open bounded set with a C1-piecewise boundary. We
focus our attention on a selected part on this boundary, denoted by Γ0.

We assume without loss of generality that the boundary Γ0 is plane, union of small
cells homothetic (with a ratio ε) to a unit-cell period denoted Y ′. Given a positive
small enough real number ε and an arbitrary positive real L > 1, we define the strip
Bε as the one obtained by normal inward increasing of the boundary Γ0: Bε = Γ0×
]0, Lε[. The unit-cell is defined as G = Y ′× ]0, L[.
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Fig. 2.1. The oscillating domain and the physical configuration.

Given a Y ′-periodic function, �ψ : Y ′ → R
N , such that �ψ|∂Y ′ = 0 (in order to

avoid creating fissures) and a positive (small) real number ε, we define an oscillating

perturbation �ψε of the boundary Γ0 by

�ψε : (x
′, 0) ∈ Γ0 → �ψ(x′/ε) ∈ R

N .

In order to define the oscillating domain Ωε, one usually applies a harmonic
extension �Vε of �ψε on the reference domain Ω. The oscillating domain Ωε is then
defined as the image of the reference domain Ω through the mapping Tε = I + ε�Vε. It
is clear from the definition of Ωε that the image of Γ0 through Tε is now an oscillating
boundary, which we denote by Γε. Moreover, in order to properly apply the two-scale
boundary layer technique as presented in section 2.1, we choose perturbation fields
�Vε which vanish outside the strip Sγ = Γ0× ]0, γε[ with γ � L. Here the width L is
intended to be large while γ is of order of the unit, e.g., γ = 1.

In the present paper, we explicitly consider as perturbations the mappings of the
form

�Vε(x
′, xn) = �ψ(x′/ε)F (xn/ε),(2.3)

where F is a smooth mollifier such as F (t) = exp( −t
γ−t ), 0 ≤ t ≤ γ.

We shall see in the third section of this paper (the setting of the optimal de-

sign framework) that the functions �ψ should be Lipschitz, with derivatives not only
bounded but also of bounded variation.

Now, we come back to the potential flow example. The perturbation field �Vε
waves the selected portion Γ0, yielding Γε, while it does not affect the remaining parts
ΓD and ΓN of the boundary.

Our aim being to set the model problem in a domain which does not depend on
the parameter ε, we define the reference Sobolev space by

H(Ω) =
{
v ∈ H1(Ω), v = 0 over ΓD

}
.
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Then, from the definition and regularity (algebraic and topological) properties of

the mapping Tε = I + ε�Vε , the natural norms over the spaces H(Ω) and H(Ωε) are
equivalent. Setting uε = Uε ◦ Tε, we get the following transported problem:

Find uε ∈ H(Ω) such that ∀v ∈ H(Ω),∫
Ω

(Aε∇uε).∇v dx =

∫
ΓN

gv dΓ,(2.4)

where

Aε = (DTε)
−1(DTε)

−T |det(DTε)|.(2.5)

It is an easy exercise to check that the operator associated to the diffusion matrix1

Aε is continuous, bounded, and H(Ω)-elliptic (assuming that �ψ belongs to the unit-
ball of W 1,∞(Y ′) ). On the other hand, the use of the explicit fields given by (2.3)
shows that Aε depends only on the variable y = x/ε. Then we define the y′-periodic
operator A(y) as the restriction of Aε(x/ε) to the cell G, i.e.,

A(y) = Aε(x/ε).(2.6)

2.2. The convergence results. Since the frequency and the amplitude of the
oscillations are of the same order, only near-boundary effects occur (boundary layers).
Far from the boundary, the solution behaves as if it doesn’t see the oscillations.

Then the natural limit problem in our case is simply the one without oscillations
at all (�ψ = 0), and it is expected that the difference between the nonoscillating
solution and the oscillating one is a term which concentrates near the boundary. This
fact is expressed by the strong convergence in the H1-norm of the oscillating solution
to the nonoscillating one (which implies that the difference terms are necessarily
concentrating near the boundary).

Following [Con98] (in our case, the cell G is bounded), let us define the space

L2(Γ0;C#(G)) =
{
v(x′, y); x′ ∈ Γ0, y = (y′, yn) ∈ G; v(., y) ∈ L2(Γ0);

v(x′, .) ∈ C(G)), periodic w.r.t. y′
}
.

Definition 2.1. Let (uε)ε>0 be a sequence in L2(Ω). It is said to two-scale
converge in the sense of boundary layers on Γ0 if there exists a function u0(x

′, y) ∈
L2(Γ0 ×G) such that

lim
ε→0

1

ε

∫
Bε

uε(x)v
(
x′,

x

ε

)
dx =

1

|Y ′|
∫

Γ0×G
u0(x

′, y)v(x′, y)dx′ dy

for any v ∈ L2(Γ0;C#(G)) .
Let C∞

# (G) (respectively, C
∞
0#(G)) be the space of smooth functions in G which

are Y ′-periodic in y′ and have a support in yN ∈ [0, 1] (respectively, in yN ∈ [0, 1[).
The space H1

#(G) (respectively, H
1
0#(G)) is the Sobolev space obtained by completion

of C∞
# (G) (respectively, C

∞
0#(G)) with respect to the H1(G)-norm.

Let then consider the nonoscillating solution u, which solves the following prob-
lem:

1We shall henceforth identify the second order linear elliptic operators and their associated dif-
fusion matrices.
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Find u ∈ H(Ω) such that ∀v ∈ H(Ω),∫
Ω

∇u.∇v dx =

∫
ΓN

gv dΓ.(2.7)

The asymptotic analysis results presented below are quite classical (generally in
the case of semi-infinite unit-strip G); see especially the works of [Lio81], [Lan77],
[Cas96], [ole92], [Ami96], and [All99].

The limit equation for the two-scale boundary layer u1 is obtained by application
of the two-scale convergence to (2.4) using test functions concentrating on the strip
Bε (hence, vanishing over the Neumann boundary ΓN ). It is stated as follows: Find
u1(x

′, y) ∈ L2(Γ0; H1
#(G)/R) such that for any v ∈ L2(Γ0; H1

0#(G)),

1

|Y ′|
∫

Γ0×G
A∇yu1∇yv dx′dy = − 1

|Y ′|
∫

Γ0×G
A∇u|Γ0∇yv dx′dy.(2.8)

Note that the assumptions on Ω and on the flow inlet g are enough to allow us to
consider the trace ∇u|Γ0 in L2(Γ0).

The equation above is ill-posed due to the lack in boundary conditions. Indeed,
u1(x

′, y) is the sum of a unique first order corrector c1 ∈ H1
0#(G) and a first order

“tail” term t1(x
′, y) whose gradient dies exponentially with respect to L. Let us pose

u1(x
′, y) = c1(x

′, y) + t1(x
′, y) with c1 and t1 solutions to the following equations:

• Find c1(x
′, y) ∈ L2(Γ0; H1

0#(G)) such that for any v ∈ L2(Γ0; H1
0#(G)),

1

|Y ′|
∫

Γ0×G
A∇yc1∇yv dx′dy = − 1

|Y ′|
∫

Γ0×G
A∇u|Γ0∇yv dx′dy.(2.9)

• Find t1(x
′, y) ∈ L2(Γ0; H1

#(G)/R) such that for any v ∈ L2(Γ0; H1
0#(G)),

1

|Y ′|
∫

Γ0×G
A∇yt1∇yv dx′dy = 0.(2.10)

Theorem 2.2. The two following statements hold:
(i) There exist two positive constants β and C1 independent from the width L
such that

‖t1‖L2(Γ0; H1
#

(G)/R) ≤ C1 exp(−βL).(2.11)

(ii) There exists a positive constant C2 independent from L such that

lim
ε→0

1√
ε
‖uε(x)− u(x)− εc1(x

′, x/ε)‖H1(Ω) ≤ C2 exp(−βL/2).(2.12)

Moreover, the constant β > 0 depends only on the operator A and on the boundary
Γ0.

Let us remark again that from the corrector equation (2.9) and Theorem 2.2, the
trace of the gradient of u (i.e., the profile of u) over the boundary Γ0 is a source for the
generation of the boundary layer term c1 when the boundary is waved. The gradient
near the oscillating boundary is then approximated (in the two-scale boundary layer
sense) by the initial profile of the nonoscillating u plus the correcting gradient of c1.
It is then very tempting to see c1 and, more precisely, the periodic oscillation shape
as boundary layer controls and pose the question, How can we design the waving in
order to get a prescribed behavior of the solutions near the oscillating boundary? The
remainder of this paper intends to answer this question.
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3. The optimal design framework. To optimize the shape of the oscillations,
there are mainly two methods. The first one consists of deriving an effective boundary
condition (wall law), which depends on the roughness and on the cell functions but
not explicitly on the boundary layer corrector. One obtains a new unknown defined
in the whole domain Ω. If one seeks only the control of near-boundary effects with
varying roughness, this approach is too expensive.

The second method is as follows: From the corrector convergence theorem of
the previous section, it can be easily seen that if one computes the solution u of the
nonoscillating domain and then fits the local behavior by controlling the corrector c1,
then the computational cost is slightly reduced. Effective law approach requires us to
redo computations in the whole domain when the shape of oscillations varies, as well
as the updating of the cell functions. Only the latter is needed in the case of control
with c1.

On the other hand, a drawback of rectification techniques such as the present
homotopy one is that one obtains equations with the geometry described by a dis-
tributed parameter, which needs to be smoother than naturally expected. The need
for midsurfaces of bounded third derivatives in the theory of shells is a good example.
In the present case, it comes out from the proof of existence of minima that the shape
of the oscillations should have a derivative with bounded variations, i.e., belong to the
space BV (Y ′;RN ); see [Giu84] for a general presentation.

A simple way to avoid the use of such a space is to consider oscillations of bounded
second derivatives, although then shapes with corners, such as saw-teeth ones, are for-
bidden. By working in the space with derivatives in BV , the latter shape is allowed;
but again lower-scale oscillations (microstructures in the microstructure) are not al-
lowed (since one obtains shapes with second derivatives which are infinite sums of
Dirac measures, and this is not a Radon measure).

As usual in optimal design theory, the model which we intend to control is re-
stated, carefully underlying the dependence on the control variable.

Henceforth, the following notation will be used:
• The Banach space of controls is

W =
{
φ ∈W 1,∞(Y ′; R

N ),
(
Djφi

) ∈ BV (Y ′), φ|∂Y ′ = 0
}
,

where (
Djφi

)
=
(
Dy′φ

)
ij
, 1 ≤ i ≤ N, 1 ≤ j ≤ N − 1,

is the Jacobian matrix of φ.
• The set of admissible shapes (vector-valued, with arrow notation omitted) is

Φl = {φ ∈W, ‖φ‖W ≤ l} ,
where the role of the upper bound l > 0 is twofold: from the mathematical
viewpoint, it states that the norm of φ must be small enough to ensure that
the waved boundary is still Lipschitz; from the practical viewpoint, it states
that the amount of material used in the waving (or engraving) is limited.
• The Hilbert space of (corrector) state variables is

V = L2(Γ0, H
1
0#(G)).

In the definition (2.6) of the y′-periodic diffusion operator, we underline the depen-
dence on the control variable ψ and denote the operator by A(ψ)(y).
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Then, the energy and source functionals are defined by

e :Φl × V × V → R, e(ψ; c, v) =

∫
Γ0×G

A(ψ)∇yc∇yv dx′dy,(3.1)

S : Φl × V → R, S(ψ; v) = −
∫

Γ0×G
A(ψ)∇u|Γ0∇yv dx′dy.(3.2)

Then the following is the state equation: for a given ψ ∈ Φl, find c(ψ) ∈ V such that

∀v ∈ V e(ψ; c(ψ), v) = S(ψ; v).(3.3)

Then, in order to state the optimal design problem, the observation functional is
defined by

J :Φl × V→ R,(3.4)

(ψ; v)→ J(ψ; v) =

∫
Γ0×G

g(x′, y, ψ, ξ(ψ; v)) dx′dy,(3.5)

where the auxiliary variable ξ is defined by

ξ(ψ; v)(x′, y) = (ξ1, ξ2) = (Dy′ψ(y
′),∇yv(x′, y)),(3.6)

where Dy′ψ is the Jacobian matrix of the vector ψ, and the function g defined over
Γ0 × G × R

N × R
N×N is a Carathéodory integrand (i.e., measurable with respect to

(x′, y) and continuous with respect to (ψ, ξ)).
We point out that in the present study, the integrand of interest to us is the one

considered for the control of the velocity profile over Γ0, i.e.,

g(x′, y, ψ, ξ) = |ξ2 − τ |2,
where τ ∈ L2(Γ0) is a fixed desirable profile. It is quite well known that the observation
associated to this integrand is lower semicontinuous. The above presentation as well
as the standard growth condition below (obviously fulfilled by g) are presented for
the sake of generality.

We assume that the integrand g is convex with respect to ξ and satisfies the

standard growth condition: ∀r∈R, ∃ar∈(L1(Γ0 ×G))
N(N−1)×(L2(Γ0 ×G))

N

, and br∈
L1(Γ0 ×G) such that

inf
|ψ|≤r

g(x′, y, ψ, ξ) ≥ 〈ar(x′, y), ξ 〉RN(N−1)×RN + br(x
′, y).(3.7)

The assumptions above are made to ensure that the observation J is lower semi-
continuous, a necessary preamble to the proof of existence of minima. These assump-
tions are quite general and are fulfilled by a very large class of integrands g classically
used in the shape optimization problems.

The cost function is then defined over the set Φl by

j(ψ) = J(ψ; c(ψ)),

where c(ψ) ∈ V is the solution to the state equation (3.3).
Finally, the optimal design problem is stated as follows:

Find ψ ∈ Φl such that j(ψ) = inf
φ∈Φl

j(φ).(3.8)

Now, after a complete setting of the optimization problem, we face in the next
section the question of existence of a solution to the problem (3.8).
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4. Existence of an optimum. Since the set of admissible shapes Φl is com-
pact for the weak-. topology of W 1,∞(Y ′, R

N ), it is well known that a sufficient
condition for the existence of a minimum is that the cost function j should satisfy the
lower semicontinuity requirement with respect to the same topology, the latter being
generally proved in two steps:

1. First, prove the lower semicontinuity of the observation J(., .) with respect
to its two arguments.

2. Then prove the weak convergence of the state variable, i.e., c(ψn)⇀ c(ψ) in
V , whenever ψn ⇀� ψ in Φl.

Thus, one has

j(ψ) = J(ψ; c(ψ)) ≤ lim inf
n→+∞ J(ψn; c(ψn)) = lim inf

n→+∞ j(ψn).(4.1)

4.1. Weak lower semicontinuity of the observation J . Mainly due to the
assumptions made on the integrand g, the lower semicontinuity of J is proved by
means of the following theorem; see, e.g., [Dac89, Theorem 3.4].

Theorem 4.1. Let Ω be an open bounded subset of R
(N−1) × R

N , and let

g : Ω× R
N × R

N×N �→ R ∪ {+∞}
be a Carathéodory integrand satisfying the growth condition

g(x, s, ξ) ≥ 〈a(x), ξ 〉RN(N−1)×RN + b(x)(4.2)

for almost every x ∈ Ω and ∀(s, ξ) ∈ R
N × R

N×N , with a ∈ (Lq′(Ω))N×N (q′ is the
conjugate of q) and b ∈ L1(Ω).

Assume that g(x, s, .) is convex and that{
sk → s in (Lp(Ω))N ,

ξk ⇀ ξ in (Lq(Ω))N×N .
(4.3)

Then the functional

J (s, ξ) =
∫

Ω

g(x, s(x), ξ(x))dx

is lower semicontinuous, i.e.,

J (s, ξ) ≤ lim inf
k→∞

J (sk, ξk).

The theorem above is immediately applicable to our problem if we set


Ω = Γ0 ×G, x = (x′, y);

s(x) = ψ(y′) ∈ Φl, ξ(ψ, v) = (Dy′ψ,∇yv) (refer to (3.4)–(3.6));

J(ψ, v) = J (s, ξ(ψ, v));

(4.4)

and the convergences are to be understood in the weak-. sense whenever the L∞-
topology is involved. Indeed, if we consider a sequence (ψk, vk) such that{

ψk ⇀� ψ in W,
vk ⇀ v in V,

(4.5)
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then the weak convergence ξk ⇀ ξ must be understood as a product of weak-. times
weak convergences; more precisely,{

(ξk)1 ⇀� (ξ)1 in L∞(Y ′),
(ξk)2 ⇀ (ξ)2 in L2(Γ0;L

2(G)).
(4.6)

On the other hand, the embedding of W onto C(Y ′) is compact, so that

ψk → ψ in C(Y ′).

Hence, we have the strong convergence of the sequence (sk) = (ψk). Moreover, there
exists a constant C such that for any ψ ∈ Φl,

sup
y′∈Y ′

|ψ(y′)| ≤ C;

then, thanks to the standard growth condition (3.7), one can take a = aC and b = bC
in order to fulfill the condition (4.2). Hence, one can apply Theorem 4.1, which yields

J(ψ, v) = J (s, ξ(ψ, v)) ≤ lim inf
k→∞

J (sk, ξk) = lim inf
k→∞

J(ψk, vk),

i.e., the functional J is weakly lower semicontinuous over Φl × V .

4.2. Weak continuity of the state variable. Our aim now is to show that
c(ψn)⇀ c(ψ) in V for all sequences (ψn) such that ψn ⇀� ψ in Φl.

The weak continuity holds with trivial proof if we restrict the space of controls
(and the admissible set) to W 2,∞(Y ′; R

N ). In this case, for any kind of oscillations,
we have a strong convergence of A(ψn) to A(ψ) in L∞(Y ′), yielding immediately that
c(ψn) ⇀ c(ψ) in V . In the general case, the weak convergence of states is proved by
means of the G-convergence theory. Briefly, a sequence An of elliptic operators is said
to G-converge to an elliptic operator A if, for any given right-hand side f , one has
A−
n 1f ⇀ A−1f ; see, e.g., [G.93].
Recall that the diffusion matrix A(ψ) is given by

A(ψ) = (I +DyV )
−1(I +DyV )

−T |det(I +DyV )|,
where the perturbation field V that is considered is the following:

�V (y′, yN ) = ψ(y′)F (yN )(4.7)

with F (t) = exp( −t
γ−t ), 0 ≤ t ≤ γ.

On the other hand, the matrix norm of the Jacobian DyV is upperbounded by
the norm of ψ in W 1,∞(Y ′). It is then a simple linear algebra exercise to show that
the set {

A(ψ), ψ ∈ Φl with l < 1
}

is uniformly bounded and equicoercive (in the usual sense of bounded elliptic opera-
tors) with respect to the design variable ψ.

All the ingredients are then ready for the application of the G-convergence of
elliptic operators. It is straightforward to show that the sequence (A(ψn))G-converges
to a limit AG, and that c(ψn) ⇀ c

G
in V . Then if one proves that AG is equal to

(A(ψ)), this will immediately yield that c
G
= c(ψ).
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The equality AG = (A(ψ)) is in fact a byproduct of the strong convergence (see
[KO94, p. 150]) of the sequence (A(ψn)) to (A(ψ)) in L2(Y ′), as will be proved below.

Let us first give an explicit formula for the matrix (A(ψ)), for example, in the
two-dimensional case (here ψ = (ψ1, ψ2)):

A(ψ) = 1
(1+ψ′

1F )(1+ψ′
2F )−ψ1F ′ψ′

2F

×

 (1 + ψ2F

′)2 + (ψ1F
′)2 −ψ′

2F (1 + ψ2F
′)− ψ1F

′(1 + ψ′
1F )

−ψ′
2F (1 + ψ2F

′)− ψ1F
′(1 + ψ′

1F ) (1 + ψ′
1F )

2 + (ψ′
2F )

2


 .

(4.8)

The notation ψ′
1 stands for the derivative with respect to y′ ∈ [0, 1].

Let us then consider a minimizing sequence (ψn) such that ψn ⇀� ψ in Φl. For
the sake of clarity, we shall use scalar notation, although the involved functions and
sequences are vector-valued. (The prime signed (ψ)′ stands of course for the Jacobian
matrix of ψ.)

Due to the compact embedding of the space W 1,∞(Y ′; R
N ) onto the space of

continuous functions C(Y ′), one has

ψn → ψ in C(Y ′).(4.9)

Then, this time using the compactness of the embedding of BV (Y ′) onto the space
L1(Y ′), we get

(ψn)
′ → (ψ)′ in L1(Y ′).

As the derivatives of the ψn’s belong also to L∞(Y ′), it is straightforward to show
that the strong convergence indeed holds in Lp(Y ′) for any 1 ≤ p < +∞. A careful
examination of the structure of A(ψ) easily shows that the whole (A(ψn)) converges
to A(ψ) in L2(Y ′). The conclusion holds of course in any dimension.

Theorem 4.2. Under the general setting and assumptions of section 3, the opti-
mal design problem

Find ψ ∈ Φl such that j(ψ) = inf
φ∈Φl

j(φ)

has a solution φ ∈ Φl.
In order to implement a numerical simulation, the use of descent algorithms in

order to achieve numerical computation of the optimum generally requires the user to
supply a gradient subroutine. Classically, the fast computation of the gradient is done
by means of the adjoint state method, provided that the quantities which depend
on the control variable are differentiable. Since we are in a classical linear elliptic
framework, it is well known that the state control, the energy, and the cost function are
differentiable as soon as the user prescribed observation is. For reference, see [O.84],
[Ven78], and [Has96]. Let us remark that the local nature of the considered controls
allow for parallel processing of several oscillating parts of the domain, provided that
the boundary layers are not sufficiently close to each other to interact.

As a short conclusion, it must be kept in mind that the techniques of boundary
layer control introduced in this paper apply only to potential flows, which do not de-
velop genuine boundary layers as they are inviscid by definition. While the techniques
applied here could be adapted to the Stokes model with rather minimal effort, this
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is not the case when studying the more realistic Navier–Stokes flows, which develop
physical boundary layers directly related to the Reynolds number. The interaction
between the Reynolds boundary layers and those due to the waving of the boundary
is a complex physical phenomenon, and we refer to [AY98] for a good investigation of
the subject.

REFERENCES

[AY98] Y. Achdou, O. Pironneau, and F. Valentin, Effective boundary conditions for laminar
flows overs periodic rough boundaries, J. Comput. Phys., 147 (1998), pp. 187–218.

[All99] G. Allaire and M. Amar, Boundary layer tails in periodic homogenization, ESAIM Con-
trol Optim. Calc. Var., 4 (1999), pp. 209–243.

[Con98] G. Allaire and C. Conca, Boundary layers in the homogenization of a spectral problem
in fluid-solid structures, SIAM J. Math. Anal., 29 (1998), pp. 343–379.

[Ami96] Y. Amirat and J. Simon, Influence de la rugosite en hydrodynamique laminaire (Influence
of rugosity in laminar hydrodynamics), C. R. Acad. Sci. Paris Sér. I Math., 323 (1996),
pp. 313–318.

[Cas96] J. Casado-Diaz and I. Gayte, A general compactness result and its application to the
two-scale convergence of almost periodic functions, C. R. Acad. Sci. Paris Sér. I Math.,
323 (1996), pp. 329–334.

[Che87] D. Chenais, Optimal design of midsurface of shells: Differentiability proof and sensitivity
computation, Appl. Math. Optim., 16 (1987), pp. 93–133.

[Dac89] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin,
1989.

[G.93] G. Del Maso, An Introduction to Γ-Convergence, Birkhäuser, Basel, 1993.
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Abstract. This paper deals with Borel state and action spaces zero-sum semi-Markov games
under the expected long run average payoff criterion. The transition probabilities are assumed to
satisfy some generalized geometric ergodicity conditions. The main result states that the optimality
equation has a solution, which is approximated by the solutions of some ε-perturbed semi-Markov
games. As a corollary, the existence of value and average optimal strategies for the players is estab-
lished.
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1. Introduction and the model. This paper deals with zero-sum undiscounted
semi-Markov games in Borel spaces satisfying some stochastic stability conditions that
imply so-called w-geometric ergodicity of the Markov chains induced by stationary
strategies of the players [14, 15]. Assumptions of this type have recently been used
in many papers on stochastic control [7, 8, 9] and Markov games [3, 10, 12, 20]. Such
an approach enables us to consider unbounded payoffs, which is important from the
point of view of many applications, e.g., to queueing models, networks [3], etc.

The main objective in this paper is to prove that the optimality equation for games
under consideration has a solution. Our method of proof relies on considering some
ε-perturbations of the transition structure of the game. Each ε-perturbed game can
be solved by a natural iterative procedure. The solution to the optimality equation
for the original game can be shown as a limit of some modifications of solutions for
the ε-perturbed models as ε → 0. This method of proof is essentially different from
those used in the theory of Markov games [10, 12] based on the “vanishing discount
factor approach.”

There are few papers on Borel state space semi-Markov games [19]. The results,
provided in [19] concern correlated equilibria in a class of strongly ergodic games
with bounded payoffs and transition probabilities dominated by some probability
measure on the state space. A predecessor of our paper is the article of Lal and Sinha
[13]. They considered a countable state space model with bounded payoff function
and much stronger ergodicity properties of the transition law. Their approach, by
discounted games, allows only for bounded solutions to the optimality equation.

As noted by Cavazos-Cadena [5], under the same ergodicity assumptions as in
[13], the players can restrict attention to some finite subset of the state space. This
essentially reduces many interesting applications of stochastic games. Our paper is a
considerable generalization of Lal and Sinha’s paper [13] to Borel state spaces with
unbounded costs. At the same time, our proof is based on different ideas, developed
recently in [11].
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We consider zero-sum semi-Markov games (SMG) with Borel state and action
spaces. By a Borel space we mean a nonempty Borel subset of a complete separable
metric space, endowed with the σ-algebra B(X) of all its Borel subsets.

A zero-sum SMG is described by the following objects:
(i) X is the set of states for the game and is assumed to be a Borel space.
(ii) A and B are the action spaces for players 1 and 2, respectively, and are also

assumed to be Borel spaces.
(iii) KA and KB are nonempty Borel subsets of X×A and X×B, respectively.

We assume that for each x ∈ X, the nonempty x-section

A(x) := {a ∈ A : (x, a) ∈ KA}
of KA represents the set of actions available to player 1 in the state x. Anal-
ogously, we define B(x) for each x ∈ X. Define

K := {(x, a, b) : x ∈ X, a ∈ A(x), and b ∈ B(x)}.
It follows from [17] that K is a Borel subset of X×A×B.

(iv) q is a Borel measurable transition probability from K to X called the law
of motion among states. If x is a state at some stage of the game and the
players select actions a ∈ A(x) and b ∈ B(x), then q(·|x, a, b) is the probability
distribution of the next state of the game.

(v) Q(·|x, a, b) is a distribution function of random variables tn+1 := Tn+1 − Tn
and represents the distribution of the holding (or sojourn) times; Tn is the
nth jump time of the process when it is in the state xn−1 and the actions are
an−1 ∈ A(xn−1), bn−1 ∈ B(xn−1) (n = 0, 1, . . . and T0 := 0).

(vi) r1(xn, an, bn) is the reward function for player 1 (cost function for player
2) incurred at time Tn in state xn by the control actions an ∈ A(xn) and
bn ∈ B(xn).

(vii) r2(xn, an, bn) denotes the reward rate for player 1 (cost rate for player 2)
during the interval [Tn, Tn+1).

Throughout the remainder of this paper, R (resp., R+) stands for the set of real
(resp., nonnegative real) numbers. By P (D) we will denote the space of all probability
measures on the Borel space D, equipped with the weak topology and the Borel σ-
algebra.

Let Hn be the space of admissible histories up to the nth transition, i.e.,

Hn := (K×R+)
n×X, where H0 := X.

An element of Hn is called a partial history of the game process and

hn := (x0, a0, b0, t1, . . . , xn−1, an−1, bn−1, tn, xn).

A randomized strategy π for player 1 is a sequence π = (π1, π2, . . .), where each πn
is a conditional probability πn(·|hn) on X, given the entire history hn of the game up
to its nth stage such that πn(A(xn)|hn) = 1. (Of course, if n = 0, then h0 = x0.) The
class of all strategies for player 1 will be denoted by Π. Let F be the set of all Borel
measurable transition probabilities f from X to A such that f(x) ∈ P (A(x)) for each
x ∈ X. It is well known that F is nonempty and every f ∈ F can be identified with a
Borel measurable mapping from X into P (A) [4]. A stationary strategy for player 1 is
a sequence π = (f, f, . . .) where f ∈ F . It can be identified with the mapping f ∈ F .
Similarly, we define the set Γ (G) of all strategies (stationary strategies) for player 2.
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Let ((X × A × B × R+)
∞,F) be the measurable space, where F denotes the

corresponding product σ-algebra. Due to the theorem of C. Ionescu Tulcea (see
Proposition V.1.1 in [16] or Chapter 7 in [4]), for each initial state x ∈ X and strategies
π ∈ Π, γ ∈ Γ there exists a probability measure Pπγx on F such that for all A′ ∈ B(A),
B′ ∈ B(B), X ′ ∈ B(X), and hn = (x0, a0, b0, t1, . . . , xn−1, an−1, bn−1, tn, xn) in Hn,
n = 0, 1, . . .,

Pπγx (x0 = x) = 1,

Pπγx (an ∈ A′|hn) = πn(A
′|hn),

Pπγx (bn ∈ B′|hn) = γn(B
′|hn),

Pπγx (xn+1 ∈ X ′|hn, an, bn, tn+1) = q(X ′|xn, an, bn),

and

Pπγx (tn+1 ≤ t|hn, an, bn) = Q(t|xn, an, bn), t ≥ 0.

By Eπγx we denote the expectation operator with respect to the probability mea-
sure Pπγx .

Let τ(x, a, b) denote the mean holding time. When the process is in state x and
the actions a ∈ A(x), b ∈ B(x) are chosen, then

τ(x, a, b) :=

∫ ∞

0

tQ(dt|x, a, b).

The expected average reward per unit time to player 1 is defined as

J(x, π, γ) := lim inf
n→∞

Eπγx

(∑n−1
k=0 [r1(xk, ak, bk) + (Tk+1 − Tk)r2(xk, ak, bk)]

)
Eπγx (Tn)

.

Making use of the properties of the conditional expectation, the last definition
can be rewritten in the form

J(x, π, γ) = lim inf
n→∞

Eπγx

(∑n−1
k=0 r(xk, ak, bk)

)
Eπγx

(∑n−1
k=0 τ(xk, ak, bk)

) ,
where

r(x, a, b) := r1(x, a, b) + τ(x, a, b)r2(x, a, b)

for every (x, a, b) ∈ K.
In section 2, we make assumptions under which the expected average reward

considered in this paper is well defined.
For any initial state x ∈ X, we put

L(x) := sup
π∈Π

inf
γ∈Γ

J(x, π, γ) and U(x) := inf
γ∈Γ

sup
π∈Π

J(x, π, γ).(1)
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Then L (U) is called the lower (upper) value of the average payoff semi-Markov game.
It is always true that L(x) ≤ U(x) for x ∈ X. If L(x) = U(x) for all x ∈ X, then this
common function is called the value of the stochastic game and is denoted by V .

A strategy π∗ ∈ Π is called optimal for player 1 in the average payoff stochastic
game if

inf
γ∈Γ

J(x, π∗, γ) = V (x)

for all x ∈ X. Similarly, a strategy γ∗ ∈ Γ is called optimal for player 2 in the average
payoff stochastic game if

sup
π∈Π

J(x, π, γ∗) = V (x)

for all x ∈ X.
Let x ∈ X, ν ∈ P (A(x)), and ρ ∈ P (B(x)). For any Borel measurable function

v : X ×A×B → R, we put

v(x, ν, ρ) :=

∫
B(x)

∫
A(x)

v(x, a, b)ν(da)ρ(db),

provided that this integral exists. Further, for convenience we set

v(x, f, g) := v(x, f(x), g(x)),

where f ∈ F and g ∈ G.
2. The assumptions. We are now ready to formulate our basic assumptions.
C1. For each x ∈ X, the sets A(x) and B(x) are nonempty and compact.
C2. For each (x, a, b) ∈ K, r(x, ·, b) is upper semicontinuous on A(x), and r(x, a, ·)

is lower semicontinuous on B(x).
C3. For each (x, a, b) ∈ K and every set D ∈ B(X), the function q(D|x, ·, b) is

continuous on A(x), while q(D|x, a, ·) is continuous on B(x).
C4. For each (x, a, b) ∈ K, τ(x, ·, b) is continuous on A(x), and τ(x, a, ·) is con-

tinuous on B(x). Moreover, there exist positive constants m and M such
that

m ≤ τ(x, a, b) ≤M
for all (x, a, b) ∈ K.

C5. (a) There exist a constant L > 0 and a Borel measurable function w : X →
R such that w(x) ≥ 1 for each x ∈ X and |r(x, a, b)| ≤ Lw(x) for each
(x, a, b) ∈ K.
(b) For each (x, a, b) ∈ K, the functions∫

w(y)q(dy|y, ·, b) and

∫
w(y)q(dy|x, a, ·)

are continuous on A(x) and B(x), respectively.
C6. (a) There exists a set C ∈ B(X) such that for some λ ∈ (0, 1) and η > 0, we

have ∫
w(y)q(dy|x, a, b) ≤ λw(x) + η1C(x)

for each (x, a, b) ∈ K. Here 1C is the characteristic function of the set C and
w is the function introduced in C5(a).
(b) The function w is bounded on C.
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C7. There exist a δ ∈ (0, 1) and a probability measure ζfg, concentrated on the
Borel set C, associated with a pair of stationary strategies (f, g) ∈ F × G
such that

q(D|x, f, g) ≥ δζfg(D)

for each Borel set D ⊂ C and x ∈ C.
Remark 1. Assumptions C1–C4 are standard, while C5(a) allows for unbounded

payoffs. Conditions C6 and C7 imply that for every f ∈ F and g ∈ G, the correspond-
ing Markov chain is ψfg-irreducible for some σ-finite measure ψfg on X (see Theorem
11.3.4 and Chapter 9 in [14]). The ψfg-irreducibility means that if ψfg(D) > 0 for
some set D ∈ B(X), then the chance that the Markov chain (starting at any x ∈ X
and induced by f ∈ F and g ∈ G) ever enters D is positive. Lal and Sinha [13]
employed much stronger ergodicity conditions for countable state space games, which
correspond to C6–C7 with a bounded function w. The main disadvantage of such an
approach is that the solution to the optimality (Bellman) equation is bounded. This
fact excludes many interesting applications, even in the one-player case (i.e., dynamic
programming); see [1, 2, 3, 5, 21].

The set C in C7 is called a small set, while C6 is called the drift inequality [14].
Such conditions and related ones are extensively used in the theory of Markov control
processes and Markov games [8, 9, 11, 12, 18, 20].

Assume that the function w in C5 is fixed. For a Borel measurable function
u : X → R, we define the weighted norm as

‖u‖w := sup
x∈X
|u(x)|
w(x)

.

We write L∞
w to denote the Banach space of all Borel measurable functions u for

which ‖u‖w is finite.

The following result is basic for this paper.

Lemma 1. Assume that C6 and C7 hold. Then for every f ∈ F and g ∈ G, we
have the following:

(a) The state process {xn} is a positive recurrent aperiodic Markov chain with the
unique invariant probability measure, denoted by πfg.

(b)

∫
w(x)πfg(dx) <∞.

(c) {xn} is w-uniformly ergodic, i.e., there exist θ > 0 and α ∈ (0, 1) such that∣∣∣∣
∫
u(y)qn(dy|x, f, g)−

∫
u(y)πfg(dy)

∣∣∣∣ ≤ w(x)‖u‖wθαn
for every u ∈ L∞

w and x ∈ X, n ≥ 1. Here qn(·|x, f, g) denotes the n-stage transition
probability induced by q and strategies f , g.

For a proof of (a) and (b) consult Theorem 11.3.4 and p. 116 in [14]. Part (c)
follows from Theorem 2.3 in [15].

A conclusion to Lemma 1 is that for each f ∈ F and g ∈ G the expected average
payoff is independent of the initial state:

J(f, g) := J(x, f, g) =

∫
r(y, f, g)πfg(dy)∫
τ(y, f, g)πfg(dy)

.
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The following lemma is a consequence of our assumptions. It shows in particular
how to obtain a solution to the Poisson equation associated with an arbitrary pair of
strategies in F ×G. For a detailed discussion, see [8, 10].

Lemma 2. Suppose that assumptions C5–C7 are satisfied. Then for each pair of
stationary strategies (f, g) ∈ F ×G,

(a) the function hfg defined on X as

hfg(x) := Efgx

( ∞∑
n=0

[r(xn, an, bn)− J(f, g)τ(xn, an, bn)]
)

belongs to L∞
w ;

(b) the pair (J(f, g), hfg) is the unique solution to the equation

J(f, g)τ(x, f, g) + hfg(x) = r(x, f, g) +

∫
hfg(y)q(dy|x, f, g)

that satisfies the condition ∫
hfg(y)πfg(dy) = 0.

The following auxiliary result follows easily from assumption C6(a) by induction.
Lemma 3. Let C6(a) hold and let {xn} denote the state space process under

arbitrarily fixed strategies π ∈ Π and γ ∈ Γ. Then for each initial state x ∈ X, any
function u ∈ L∞

w and n ≥ 1, we obtain

Eπγx |u(xn)| ≤ ‖u‖w
(
λnw(x) + η

n−1∑
k=0

λk

)
≤ ‖u‖w

(
w(x) +

η

1− λ
)

and

lim sup
n→∞

Eπγx |u(xn)| ≤ ‖u‖w
η

1− λ.

This lemma and conditions C4–C7 guarantee, for example, that the expected
payoff introduced in section 1 is well defined.

We will also make use of the following fact, which follows easily from Proposition
10.1 in [22].

Lemma 4. Let W1 be a compact metric space, and let W2 be a nonempty set. Let
{vn} be a nonincreasing sequence of functions vn :W1 ×W2 → R such that vn(·, w2)
is upper semicontinuous on W1 for each n ≥ 1 and w2 ∈W2. Then

inf
w2∈W2

max
w1∈W1

lim
n→∞ vn(w1, w2) = lim

n→∞ inf
w2∈W2

max
w1∈W1

vn(w1, w2).

3. The main results. Let ε ∈ (0, 1) and δs be the probability measure concen-
trated at some fixed state s ∈ X. Put

qε(·|x, a, b) := (1− ε)q(·|x, a, b) + εδs(·)

for any (x, a, b) ∈ K.
The SMG with q replaced by qε is referred to as the ε-perturbed game (say,

ε-perturbed SMG).
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Let

ε0 :=
1− λ

2[w(s)− λ]

and 0 < ε ≤ ε0. Then from C6(a), it follows that qε also satisfies the drift inequality
with λ replaced by (λ + 1)/2 < 1, η > 0 and the same small set C. Therefore from
[15], we infer that for any u ∈ L∞

w it holds that∣∣∣∣
∫
u(y)qnε (dy|x, f, g)−

∫
u(y)πεfg(dy)

∣∣∣∣ ≤ w(x)‖u‖wθ1αn1(2)

and α1 and θ1 do not depend on ε. Thus a counterpart of Lemma 1 holds for the
state process induced by any f ∈ F , g ∈ G, and qε. Consequently, for any f ∈ F ,
g ∈ G, we have

Jε(f, g) := Jε(x, f, g) =

∫
r(y, f, g)πεfg(dy)∫
τ(y, f, g)πεfg(dy)

for all x ∈ X. Here Jε(x, f, g) stands for the expected average payoff in the ε-
perturbed SMG.

Proposition 1. Under our assumptions C1–C7, there exists a positive constant
d such that

sup
g∈G

sup
f∈F
|J(f, g)− Jε(f, g)| ≤ εd(3)

for ε ∈ (0, ε0). Constant d is expressed only by the constants used in assumptions
C4–C7.

The above result has been established in our article [11]. It is worth pointing out
that inequality (3) gives the rate of convergence between two expected payoffs: in the
ε-perturbed and in the original SMG. Proposition 1 will play an important role in
the proof of our main results.

Let ε ∈ (0, ε1), where ε1 := (1− λ)/(2w(s) + 1− λ). Define

p(·|x, a, b) := qε(·|x, a, b)− τ(x, a, b)ε

M
δs(·)

for any (x, a, b) ∈ K. Clearly, p is a transition subprobability measure.
Let T : L∞

w → L∞
w be the mapping defined by

(Tu)(x) = min
ρ∈P (B(x))

max
ν∈P (A(x))

[
r(x, ν, ρ) +

∫
u(y)p(dy|x, ν, ρ)

]
,(4)

where x ∈ X. Under our assumptions C1–C5 the operator T is well defined, and by
Fan’s theorem [6], we also have

(Tu)(x) = max
ν∈P (A(x))

min
ρ∈P (B(x))

[
r(x, ν, ρ) +

∫
u(y)p(dy|x, ν, ρ)

]
(5)

for each x ∈ X.
Our first result deals with the optimality equation for the ε-perturbed SMGs.
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Theorem 1. Assume C1 through C7 and that ε ∈ (0, ε1). Then there exists a
fixed point lε ∈ L∞

w of T , i.e.,

lε(x) = (T lε)(x)(6)

for every x ∈ X. Moreover,

Vε = εlε(s)/M(7)

is the value of the ε-perturbed SMG.
Let f and g be maxmin and minmax stationary strategies, respectively, obtained

on the right-hand side in (6) (see also (4), (5)). From Lemma 2, Theorem 1, and the
dynamic programming methods [8, 11], we conclude that

Vε = Jε(f, g)

= sup
π∈Π

inf
γ∈Γ

Jε(x, π, γ) = inf
γ∈Γ

sup
π∈Π

Jε(x, π, γ)

= sup
π∈Π

Jε(x, π, g) = inf
γ∈Γ

Jε(x, f, γ)

for every x ∈ X.
The following assertion concerns the optimality equation for the original SMG.
Theorem 2. Assume C1–C7. Then there exists a constant V , which is the value

of the original SMG, and a function h ∈ L∞
w unique up to an additive constant such

that

h(x) = min
ρ∈P (B(x))

max
ν∈P (A(x))

[
r(x, ν, ρ) +

∫
h(y)q(dy|x, ν, ρ)− V τ(x, ν, ρ)

]

= max
ν∈P (A(x))

min
ρ∈P (B(x))

[
r(x, ν, ρ) +

∫
h(y)q(dy|x, ν, ρ)− V τ(x, ν, ρ)

]

for each x ∈ X. Moreover, there exist f0 ∈ F and g0 ∈ G such that

h(x) = r(x, f0, g0) +

∫
h(y)q(dy|x, f0, g0)− V τ(x, f0, g0)

= max
ν∈P (A(x))

[
r(x, ν, g0) +

∫
h(y)q(dy|x, ν, g0)− V τ(x, ν, g0)

]

= min
ρ∈P (B(x))

[
r(x, f0, ρ) +

∫
h(y)q(dy|x, f0, ρ)− V τ(x, f0, ρ)

]

for each x ∈ X.
The above result implies, by the dynamic programming arguments [11], that

V = J(f0, g0)

= sup
π∈Π

inf
γ∈Γ

J(x, π, γ) = inf
γ∈Γ

sup
π∈Π

J(x, π, γ)

= sup
π∈Π

J(x, π, g) = inf
γ∈Γ

J(x, f, γ)

for every x ∈ X. Together with (3), the remarks lead to the following.
Corollary 1. Let f ∈ F , g ∈ G be the maxmin and minmax Borel measurable

stationary strategies on the right side of (6). Then f and g are 2dε-optimal strategies
in the original SMG.
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Remark 2. As already mentioned, the constant d can be computed using only the
primitive data given in our assumptions (C4–C6) and an interesting result of Meyn
and Tweedie [15]. In view of this, Corollary 1 is of some importance. In order to
find almost optimal strategies for the players in the SMG, it is enough to solve the ε-
perturbed SMG by iterative procedure. In this way we get the fixed point lε of operator
T (see the proof of Theorem 1).

Corollary 2. From Proposition 1, it follows that

V = lim
ε→0

Vε = lim
ε→0

εlε(s)

M

exists. Moreover, V is a part of the solution to the optimality equation (see the proof
of Theorem 2).

4. The proofs.
Proof of Theorem 1. First we show that the operator T has a fixed point. Let

ε ∈ (0, ε1). Using C6(a), it is easy to establish the drift inequality for p:∫
w(y)p(dy|x, a, b) ≤ (1− ε)

(
1 + λ

2
w(x) + η1C(x)

)
.(8)

Let Eπγx denote the expectation operator with respect to the measure induced by the
transition subprobability measure p and any strategies π ∈ Π and γ ∈ Γ. Likewise in
Lemma 3, one can easily prove by induction using (8) that for any u ∈ L∞

w , it holds
that

Eπγx (|u(xn)|) ≤ (1− ε)nw(x)N1

for some constant N1.
Put u0(·) ≡ 0 and define

ln(x) := inf
γ∈Γ

sup
π∈Π
Eπγx

(
n−1∑
k=0

r(xk, ak, bk)

)
.

Using minmax measurable selection theorems [17] and backward induction, one can
show that

ln(x) = (Tnu0)(x)

for every x ∈ X. Now, note that under C5(a) there exists a constant N2 such that
for any natural n, N (n > N), we have

|ln(x)− lN (x)| ≤ sup
π∈Π

sup
γ∈Γ

∣∣∣∣∣Eπγx
(
n−1∑
k=0

r(xk, ak, bk)

)
− Eπγx

(
N−1∑
k=0

r(xk, ak, bk)

)∣∣∣∣∣
≤ sup
π∈Π

sup
γ∈Γ
Eπγx

(
n−1∑
k=N

|r(xk, ak, bk)|
)

≤
n−1∑
k=N

(1− ε)kw(x)N2

≤ (1− ε)N
ε

w(x)N2.



732 ANNA JAŚKIEWICZ

This implies that {ln} is a Cauchy sequence in L∞
w . Put

lε(x) := lim
n→∞ ln(x), x ∈ X.

Note that lε ∈ L∞
w and

sup
x∈X
|ln(x)− lε(x)|

w(x)
−→ 0 when n→∞.(9)

For n ≥ 2 it holds that

ln(x) = (Tnu0)(x) = (T ln−1)(x).

It only remains to prove that T ln−1 → T lε when n→∞. We have

|(T ln)(x)− (T lε)(x)| ≤ ε|ln(s)− lε(s)|+ ε

M
max
a∈A(x)

max
b∈B(x)

τ(x, a, b)|ln(s)− lε(s)|

+(1− ε) max
a∈A(x)

max
b∈B(x)

∫ |ln(y)− lε(y)|
w(y)

w(y)q(dy|x, a, b).

Now from C1, C5(b), C4, and (9), we obtain that T ln → T lε as n→∞. Hence lε is
the fixed point of T .

The proof is completed by showing that Vε (defined as in (7)) is the value of game
for ε-perturbed SMG. In order to prove it, note that for every ν ∈ P (A(x)) we have

lε(x) ≥ r(x, ν, g) +
∫
lε(y)qε(dy|x, ν, g)− τ(x, ν, g)Vε,

where g is a minmax stationary strategy for player 2 in (6) (see also (4)). If k ≥ 1,
then ∫

lε(y)qε(dy|xk, ν, g) = r(xk, ν, g)− τ(xk, ν, g)Vε

+

∫
lε(y)qε(dy|xk, ν, g)

− r(xk, ν, g) + τ(xk, ν, g)Vε

≤ lε(xk)− r(xk, ν, g) + τ(xk, ν, g)Vε.

Iterating this inequality, we easily get

VεE
πg
x

(
n−1∑
k=0

τ(xk, ak, bk)

)
≥ Eπgx lε(xn−1)− lε(x) +Eπgx

(
n−1∑
k=0

r(xk, ak, bk)

)
.(10)

Dividing both sides of (10) by Eπgx

(∑n−1
k=0 τ(xk, ak, bk)

)
, using condition C4 and

Lemma 3, and taking lim inf as n→∞, we obtain

Vε ≥ sup
π∈Π

Jε(x, π, g) ≥ Uε(x),(11)

where Uε(x) is the upper value for ε-perturbed SMGs. On the other hand, if we now
take the maxmin stationary strategy f ∈ F for player 1, it holds that

lε(x) ≤ r(x, f, ρ) +
∫
lε(y)qε(dy|x, f, ρ)− τ(x, f, ρ)Vε
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for every ρ ∈ P (B(x)). For k ≥ 1, we get∫
lε(y)qε(dy|xk, f, ρ) = r(xk, f, ρ)− τ(xk, f, ρ)Vε

+

∫
lε(y)qε(dy|xk, f, ρ)

− r(xk, ν, g) + τ(xk, f, ρ)Vε

≥ lε(xk)− r(xk, f, ρ) + τ(xk, f, ρ)Vε.

Along similar lines as above, we obtain

Vε ≥ inf
γ∈Γ

Jε(x, f, γ) ≥ Lε(x),(12)

where Lε(x) is the lower value for ε-perturbed SMGs. Finally, from (11) and (12) we
infer

Vε = inf
γ∈Γ

Jε(x, f, γ) = Lε(x) = sup
π∈Π

Jε(x, π, g) = Uε(x)

for every x ∈ X. This completes the proof.
The proof of Theorem 2 contains a solution to the Bellman equation of the original

SMG. Although Vε tends to V , the sequence of the fixed points of T need not
converge to any solution to the optimality equation, because the sequence {lε} can be
unbounded. By an appropriate modification of this sequence, we will obtain a new
one, which is bounded in L∞

w and can be used for constructing the solution to the
optimality equation. In order to emphasize the main points, the proof is divided into
four steps.

Proof of Theorem 2.
Step 1. First we modify the sequence {lε} in order to make it uniformly bounded

in the space L∞
w . Let f ∈ F , g ∈ G be the maxmin and minmax strategies on the

right side of (6), respectively. From (6) we have

lε(x) = r(x, f, g) +

∫
lε(y)p(dy|x, f, g)(13)

= r(x, f, g) +

∫
lε(y)qε(dy|x, f, g)− ε

M
τ(x, f, g)lε(s).

Define

zε(x, f, g) := r(x, f, g)− ε

M
lε(s)τ(x, f, g).(14)

Put

hε(x) := Efgx

( ∞∑
n=0

zε(xn, an, bn)

)
,(15)

where Efgx is the expectation operator with respect to the probability measure on
(Ω,F) induced by f , g, and qε. Clearly,

|zε(x, f, g)| ≤ w(x)N3(16)
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for some constant N3, f ∈ F , g ∈ G, and ε ∈ (0, ε1). From (14) and (7), we conclude
that ∫

zε(x, f, g)π
ε
fg(dx) = 0.(17)

Under our assumptions it follows from (15), (17), and the Markov property that

hε(x) = zε(x, f, g) +

∫
hε(y)qε(dy|x, f, g).(18)

Recall that the drift inequality is satisfied by qε with λ replaced by (λ+1)/2. Therefore
using (2), C5(a), (17), and (16), we infer that there exists some constant N4 for which

|hε(x)| ≤ w(x)N4(19)

for all x ∈ X and ε ∈ (0, ε1).
Subtracting (13) from (18), it follows that

wε(x) =

∫
wε(y)qε(dy|x, f, g),

with wε(x) = lε(x)− hε(x). Hence

wε(x) =

∫
wε(y)π

ε
fg(dy) = N5,

where N5 is some constant. Thus hε(x) = lε(x) − N5 for all x ∈ X and for every
ε ∈ (0, ε1). Consequently, one can replace lε(x) in (6) by hε(x) and obtain

hε(x) = max
ν∈P (A(x))

min
ρ∈P (B(x))

[
r(x, ν, ρ)− ε

M
lε(s)τ(x, ν, ρ) +

∫
hε(y)qε(dy|x, ν, ρ)

]

= min
ρ∈P (B(x))

max
ν∈P (A(x))

[
r(x, ν, ρ)− ε

M
lε(s)τ(x, ν, ρ) +

∫
hε(y)qε(dy|x, ν, ρ)

]
(20)

= r(x, f, g)− ε

M
lε(s)τ(x, f, g) +

∫
hε(y)qε(dy|x, f, g).

Step 2. The second part of our proof starts with showing that V (see Corollary
2) is indeed the value of the original SMG and the players have optimal stationary
strategies.

Fix x ∈ X and choose any sequence {εn}n≥2 converging to zero. For every
ν ∈ P (A(x)) there exists a sequence {ρεn} (abbreviated {ρn}) (independent on ν)
that attains minimum on the right side of inequality (20), i.e.,

hεn(x) = min
ρ∈P (B(x))

max
ν∈P (A(x))

[
r(x, ν, ρ) +

∫
hεn(y)qεn(dy|x, ν, ρ)− τ(x, ν, ρ)Vεn

]

= max
ν∈P (A(x))

[
r(x, ν, ρn) +

∫
hεn(y)qεn(dy|x, ν, ρn)− τ(x, ν, ρn)Vεn

]
(21)

≥ r(x, ν, ρn) +
∫
hεn(y)qεn(dy|x, ν, ρn)− τ(x, ν, ρn)Vεn .

Since (19) holds, we can take the lim inf on both sides in (21) as n→∞. By Corollary
2, we put V = limn→∞ Vεn . The set P (B(x)) is compact when endowed with the weak
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topology. Hence there exists a subsequence {n(k)} of {n} such that {ρn(k)} converges
weakly to some ρx ∈ P (B(x)), and simultaneously h∗(x) := lim infn→∞ hεn(x) =
limk→∞ hεn(k)

(x). From (21), Fatou’s lemma for varying probability measures (see [8]
or [18, Lemma 4]), we obtain

h∗(x) = lim inf
n→∞ hεn(x) ≥ lim inf

n→∞

(
r(x, ν, ρn) +

∫
hεn(y)qεn(dy|x, ν, ρn)− τ(x, ν, ρn)Vεn

)

= lim inf
k→∞

(
r(x, ν, ρn(k)) +

∫
hεn(k)

(y)qεn(k)
(dy|x, ν, ρn(k))− τ(x, ν, ρn(k))Vεn(k)

)

≥ r(x, ν, ρx) +
∫

lim inf
k→∞

hεn(k)
(y)q(dy|x, ν, ρx)− τ(x, ν, ρx)V

≥ r(x, ν, ρx) +
∫
h∗(y)q(dy|x, ν, ρx)− τ(x, ν, ρx)V.

Because the last inequality holds for every ν ∈ P (A(x)), we therefore get in the
obvious manner

h∗(x) ≥ min
ρ∈P (B(x))

max
ν∈P (A(x))

[
r(x, ν, ρ) +

∫
h∗(y)q(dy|x, ν, ρ)− τ(x, ν, ρ)V

]
(22)

for each x ∈ X. By (22) and minmax measurable selection theorem [17], there exists
some g∗ ∈ G such that

h∗(x) ≥ r(x, ν, g∗) +
∫
h∗(y)q(dy|x, ν, g∗)− τ(x, ν, g∗)V.

From dynamic programming [11], it follows that

V ≥ sup
π∈Π

J(x, π, g∗) ≥ U(x).(23)

On the other hand, it is easily seen from (20) that for each ρ ∈ P (B(x)) there exists
a sequence {νεn} (abbreviated {νn}) (independent on ρ) such that

hεn(x) ≤ r(x, νn, ρ) +
∫
hεn(y)qεn(dy|x, νn, ρ)− τ(x, νn, ρ)Vεn .

Taking lim sup as n→∞, we conclude

h∗(x) ≤ max
ν∈P (A(x))

min
ρ∈P (B(x))

[
r(x, ν, ρ) +

∫
h∗(y)q(dy|x, ν, ρ)− τ(x, ν, ρ)V

]
,(24)

where h∗(x) := lim supn→∞ hεn(x). Let f∗ ∈ F be the maxmin strategy in (24).
Applying similar arguments, we infer

V ≤ inf
γ∈Γ

J(x, f∗, γ) ≤ L(x)(25)

for each x ∈ X. Consequently, combining (23) and (25) we get

V = inf
γ∈Γ

J(x, f∗, γ) = sup
π∈Π

J(x, π, g∗) = L(x) = U(x),

which is the desired conclusion.
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Step 3. Now we are left with the task of finding a solution to the optimality
equation of the original SMG. Define

r̂(x, a, b) := r(x, a, b)− V τ(x, a, b)
for every (x, a, b) ∈ K. Because V is the value of game in the original SMG and
(f∗, g∗) is the pair of the optimal stationary strategies, therefore

Jr̂(f
∗, g∗) :=

∫
r̂(y, f∗, g∗)πf∗g∗(dy) = 0.(26)

From Lemma 2 there exists a function hf∗g∗ ∈ L∞
w such that

hf∗g∗(x) = r̂(x, f∗, g∗) +
∫
hf∗g∗(y)q(dy|x, f∗, g∗)(27)

and

hf∗g∗(x) = Ef
∗g∗
x

( ∞∑
k=0

r̂(xk, ak, bk)

)

for all x ∈ X. It is evident that

h∗(x) ≥ r̂(x, f∗, g∗) +
∫
h∗(y)q(dy|x, f∗, g∗)(28)

and

h∗(x) ≤ r̂(x, f∗, g∗) +
∫
h∗(y)q(dy|x, f∗, g∗)(29)

for every x ∈ X. If we now subtract (28) from (27), (29) from (27), we get

h∗(x)− hf∗g∗(x) ≥
∫

(h∗(y)− hf∗g∗(y)) q(dy|x, f∗, g∗)

and

h∗(x)− hf∗g∗(x) ≤
∫

(h∗(y)− hf∗g∗(y)) q(dy|x, f∗, g∗).

Iterating these inequalities and taking the limit as n→∞, we obtain by Lemma 1

h∗(x)− hf∗g∗(x) ≥
∫

(h∗(y)− hf∗g∗(y))πf∗g∗(dy)

and

h∗(x)− hf∗g∗(x) ≤
∫

(h∗(y)− hf∗g∗(y))πf∗g∗(dy).

These inequalities hold for every x ∈ X; therefore

h∗(x)− hf∗g∗(x) = inf
x∈X

(h∗(x)− hf∗g∗(x)) = d1 for a.e. πf∗g∗

and

h∗(x)− hf∗g∗(x) = sup
x∈X

(h∗(x)− hf∗g∗(x)) = d2 for a.e. πf∗g∗ .
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Thus (see also [8, 10]) there exist Borel sets X1 ⊂ X and X2 ⊂ X such that
πf∗g∗(X1) = 1 and πf∗g∗(X2) = 1, on which the above equalities are true, respectively.
Moreover, πf∗g∗(X1 ∩X2) = 1. By Proposition 4.2.3 and Theorem 10.4.9 in [14], the
Markov chain induced by f∗, g∗, and q has an absorbing Borel set Z ⊂ X1 ∩X2, that
is, q(Z|x, f∗, g∗) = 1 for all x ∈ Z.

Now we show that the optimality equation holds on the set Z. Let x ∈ Z.
Substituting hf∗g∗(x) + d1 for h∗(x) in (22) and hf∗g∗(x) + d2 for h∗(x) in (24), we
easily get

hf∗g∗(x) ≥ max
ν∈P (A(x))

[
r̂(x, ν, g∗) +

∫
hf∗g∗(y)q(dy|x, ν, g∗

]
,

hf∗g∗(x) ≤ min
ρ∈P (B(x))

[
r̂(x, f∗, ρ) +

∫
hf∗g∗(y)q(dy|x, f∗, ρ)

]
.

Combining these inequalities with (27), we have

hf∗g∗(x) = r̂(x, f∗, g∗) +
∫
hf∗g∗(y)q(dy|x, f∗, g∗)

= max
ν∈P (A(x))

[
r̂(x, ν, g∗) +

∫
hf∗g∗(y)q(dy|x, ν, g∗

]

= min
ρ∈P (B(x))

[
r̂(x, f∗, ρ) +

∫
hf∗g∗(y)q(dy|x, f∗, ρ)

]

for all x ∈ Z, which gives the assertion on the Borel absorbing set Z.
In order to obtain this equation for each x ∈ X, we improve h∗ on the set X \Z.

For this, we define inductively a sequence of Borel measurable functions hk ∈ L∞
w and

some sequences {fk}, {gk} of stationary strategies for players 1 and 2, respectively.
Let h0 := h∗, f0 := f∗, and g0 := g∗. Suppose that h0, . . . , hk, f0, . . . , fk, and
g0, . . . , gk have been defined. Let

hk+1(x) := min
ρ∈P (B(x))

max
ν∈P (A(x))

[
r̂(x, ν, ρ) +

∫
hk(y)q(dy|x, ν, ρ)

]
(30)

for each x /∈ Z and hk+1(x) := h∗(x) for every x ∈ Z. By Fan’s minmax theorem [6],
we have

hk+1(x) = max
ν∈P (A(x))

min
ρ∈P (B(x))

[
r̂(x, ν, ρ) +

∫
hk(y)q(dy|x, ν, ρ)

]
.(31)

Put fk+1(x) := f∗(x) and gk+1(x) := g∗(x) for x ∈ Z. Let fk+1 and gk+1 be any
maxmin and minmax Borel measurable stationary strategies of the players obtained
for the right-hand sides in (31) and (30), defined on the set X \ Z [17]. From our
construction and the optimality equation on the set Z, it follows that

hk+1(x) = min
ρ∈P (B(x))

max
ν∈P (A(x))

[
r̂(x, ν, ρ) +

∫
hk(y)q(dy|x, ν, ρ)

]
(32)

for each x ∈ X. By C5(a) and C6(a), every hk belongs to L∞
w . Using (22), it is easy

to see that the sequence {hk} is nonincreasing. Since Z is absorbing for the Markov
chain induced by f∗, g∗ this set is absorbing as well for the Markov chain induced by
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any fk, gk constructed above. Consequently, we infer that πfkgk = πf∗g∗ for every k
and thus by (26),

Jr̂(fk, gk) = Jr̂(f
∗, g∗) = 0 and

∫
hk(y)πfkgk(dy) =

∫
h∗(y)πf∗g∗(dy).(33)

We shall prove that limk→∞ hk(x) exists and belongs to L∞
w . For this, we show

that there exists a constant ξ such that

hk(x) ≥ ξw(x)(34)

for every k and x ∈ X. Note that

hk(x) ≥ hk+1(x) = r̂(x, fk, gk) +

∫
hk(y)q(dy|x, fk, gk)

for every k and x ∈ X. Iterating this inequality, we obtain

hk(x) ≥ Efkgkx

(
n−1∑
m=0

r̂(xm, am, bm)

)
+

∫
hk(y)q

n(dy|x, fk, gk)(35)

for every n ≥ 1 and x ∈ X. Using (33), we conclude from (35) that

hk(x) ≥ Efkgkx

( ∞∑
m=0

[r̂(xm, am, bm)− Jr̂(fk, gk)]
)

+

∫
h∗(y)πf∗g∗(dy)(36)

for every x ∈ X. Now (34) follows from (36), Lemma 1 (with f = fk and g = gk),
and the fact that h∗ ∈ L∞

w . Taking the limit in (32) as k → ∞ on both sides, using
the monotone convergence theorem, and using Lemma 4, we now easily obtain the
optimality equation with the function h(x) := limk→∞ hk(x) and the constant V .
The Borel measurable maxmin and minmax strategies that satisfy our assertion can
be obtained by applying Fan’s minmax theorem [6] and an appropriate measurable
selection theorem [17].

Step 4. The uniqueness of the solution to the Bellman equation can be concluded
from the proof in the Markov case [12] by taking the payoff function r(x, a, b) −
V τ(x, a, b), where (x, a, b) ∈ K.

Remark 3. In our proof we have taken into account the function h∗ as our point
of departure and have defined the nonincreasing sequence {hk} as in (30). But it is
possible to define inductively the nondecreasing sequence {hk} as follows:

hk+1(x) := max
ν∈P (A(x))

min
ρ∈P (B(x))

[
r̂(x, ν, ρ) +

∫
hk(y)q(dy|x, ν, ρ)

]

with h0 := h∗ (recall (24)). This sequence can also be used to construct the solution
to the optimality equation. A simple modification of the proof of Theorem 2 (Step 3)
yields an upper bound for the sequence {hk}. More precisely, one can prove that there
exists a positive constant ξ such that

hk(x) ≤ ξw(x)
for all x ∈ X. Then the solution to the optimality equation is the function h(x) =
limk→∞ hk(x) := supk≥1 hk(x).
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Abstract. We present a sensitivity and adjoint calculus for the control of entropy solutions
of scalar conservation laws with controlled initial data and source term. The sensitivity analysis
is based on shift-variations which are the sum of a standard variation and suitable corrections by
weighted indicator functions approximating the movement of the shock locations. Based on a first
order approximation by shift-variations in L1 we introduce the concept of shift-differentiability,
which is applicable to operators having functions with moving discontinuities as images and implies
differentiability for a large class of tracking-type functionals. In the main part of the paper we
show that entropy solutions are generically shift-differentiable at almost all times t > 0 with respect
to the control. Hereby we admit shift-variations for the initial data which allows us to use the
shift-differentiability result repeatedly over time slabs. This is useful for the design of optimization
methods with time domain decomposition. Our analysis, especially of the shock sensitivity, combines
structural results by using generalized characteristics and an adjoint argument. Our adjoint-based
shock sensitivity analysis does not require us to restrict the richness of the shock structure a priori and
admits shock generation points. The analysis is based on stability results for the adjoint transport
equation with discontinuous coefficients satisfying a one-sided Lipschitz condition. As a further main
result we derive and justify an adjoint representation for the derivative of a large class of tracking-type
functionals.

Key words. optimal control, scalar conservation law, shock sensitivity, adjoint state, Fréchet
differentiability
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1. Introduction. This paper is concerned with the development of a sensitivity
and adjoint calculus for the optimal control of entropy solutions of scalar conserva-
tion laws with source terms: Consider the Cauchy problem for an inhomogeneous
conservation law

∂ty + ∂xf(y) = g(t, x, y, u1), (t, x) ∈ ΩT
def
= ]0, T [× R,

y(0, x) = u0(x), x ∈ R,
(1.1)

where the flux f : R −→ R is twice continuously differentiable, u = (u0, u1) ∈
L∞(R)× L∞(ΩT )m

def
= U is the control, and g : ΩT × R× R

m → R satisfies a growth
condition

(A1) g ∈ L∞(ΩT ;C0,1
loc (R× R

m)) and ∀ Mu > 0 there are C1, C2 > 0 with

g(t, x, y, u1) sgn(y) ≤ C1 + C2 |y| ∀ (t, x, y, u1) ∈ ΩT × R× [−Mu,Mu]m.

Then one can show (e.g., [18, 25]) that (1.1) admits for all u ∈ U a unique entropy
solution y = y(u) ∈ L∞(ΩT ) ∩ C([0, T ];L1

loc(R)). It is well known that in general
weak solutions of (1.1) develop discontinuities after finite time and that uniqueness
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holds only in the class of entropy solutions. We recall that for given u ∈ U a function
y = y(u) ∈ L∞(ΩT ) is an entropy solution to (1.1) in the sense of Kružkov [18] if it
satisfies the entropy inequality

∂tη(y) + ∂xq(y) ≤ η′(y)g(t, x, y, u1) in D′(ΩT )

for all convex functions (entropies) η : R −→ R with corresponding entropy fluxes
q(y) =

∫ y
0
η′(s) f ′(s) ds and the initial condition in the sense

ess lim
t→0+

‖y(t, ·)− u0‖1,K dτ = 0 ∀ K ⊂⊂ R.

The aim of this paper is to develop and justify—without a priori assumptions on
the shock structure—a sensitivity calculus for the control-to-state mapping u −→
y(u) that yields in particular the differentiability and a formula for the derivative of
objective functionals

J(y(u)) =

∫ b

a

φ(y(t̄, ·;u), yd) dx(1.2)

with data yd ∈ BV ([a, b]), φ ∈ C1,1
loc (R2), and t̄ ∈ ]0, T ]. Moreover, we will derive an

adjoint formula for the gradient of (1.2). The adjoint equation is a transport equation
with source term and its coefficient is discontinuous along shock curves, which requires
a careful definition of the adjoint state as a reversible solution to ensure uniqueness
and stability. These results are useful for the design of gradient-based methods for
the solution of control problems of the type

(P) min J̃(y(u), u)
def
= J(y(u)) + R(u) subject to u ∈ Uad, y(u) solves (1.1).

In [25] we have derived results on the existence of optimal solutions for (P) and the
convergence of discretized approximations for the multidimensional case. For example,
(P) has an optimal solution if Uad is bounded in L∞(R)×L∞(ΩT )m and compact in
L1

loc(R)×L1
loc(ΩT )m and if J̃ : C([0, T ];Lrloc(R))×(Uad ⊂ Lrloc(R)×Lrloc(ΩT )m) −→ R

is sequentially lower semicontinuous for some r ∈ [1,∞[. Moreover, for the present
one-dimensional case existence results without compactness assumption on Uad were
obtained in [25] using compensated compactness.

The state equation (1.1) is a useful model for the study of control problems
involving flows with shocks. In particular, it is shown in [10] that the steady flow
of an inviscid fluid in a duct governed by the Euler equations can be reduced to
determining the velocity y as a steady state solution of (1.1) for f(y) = y + 2γ̄H/y,
g(x, y, u1) = u1γ̄(y − 2H/y), where H is the total enthalpy, γ̄ = (γ − 1)/(γ + 1)
with the gas constant γ > 1, and the design variable u1 = ∂xA/A, A(x) being the
cross-sectional area of the duct. Moreover, it is noted in [10] that the corresponding
time-dependent problem (1.1) captures some essential features of the time-dependent
Euler equations and is therefore a suitable model problem for the study of unsteady
duct flows with shocks. Since the flow over a transonic airfoil is qualitatively similar
to one-dimensional duct flows, the study of the differentiability properties of (1.1)–
(1.2) is thus useful to gain insight into the optimal design of airfoils under unsteady
flow conditions. In particular, the sensitivity of flows with shocks with respect to
time-dependent changes of the geometry is of practical importance for the control of
systems with fluid-structure coupling, e.g., the fluttering problem of airfoils.

In this work we give a rigorous sensitivity analysis and adjoint calculus for solu-
tions of (1.1) with shocks and thereby provide an analytical framework for the study
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and numerical solution of optimal control problems governed by hyperbolic balance
laws (1.1). The following are main features of our approach:

• We derive a sensitivity calculus based on shift-variations that implies the
Fréchet differentiability for objective functionals (1.2).

• We give and rigorously justify a gradient representation for objective func-
tionals (1.2) by using an appropriately defined adjoint state.

• The shock structure does not have to be restricted a priori, and shock gener-
ation points are allowed.

• We admit nonentropy-admissible initial data and allow shift-variations of the
initial data that move shock locations.

The crucial part is the analysis of the shock sensitivities. In our approach we derive
the differentiability of a shock position xs at time t̄ by analyzing the smoothness
properties of the functional u −→ ∫ xs+ε

xs−ε y(t̄, x;u) dx with the help of an adjoint cal-
culus for ε→ 0. The adjoint argument is mainly based on the stability of the adjoint
equation with respect to its coefficients. Then the properties of u −→ xs(u) follow
from basic stability properties of the shock that we derive a priori by using the theory
of generalized characteristics. An advantage of this method lies in the fact that the
shock structure of the solution does not have to be restricted a priori. In particular,
shock generation points are allowed. This approach can, at least in a formal manner,
also be applied to hyperbolic systems and gives the correct shock sensitivity if the
necessary stability properties of the shock and the adjoint equation actually hold.

It can be shown (see, e.g., [25] for the problem at hand) that the mapping u ∈
U −→ y(u) ∈ C([0, T ];L1

loc(R)) is locally Lipschitz, but very simple examples show
that this mapping is in general not directionally differentiable if y(u) contains shocks,
even if L∞ is replaced by C∞ in the definition of U . This is caused by the fact
that a variation of u results in a shift of the shocks, which cannot be approximated
appropriately in the linear structure of L1

loc . Consider, for example, the following
family of Riemann problems for the inviscid Burgers equation:

∂tyε + ∂x
y2
ε

2
= 0, yε(0, x) = u0(x) + εδu0(x)

def
=

{
1 + ε if x ≤ 0,

−1 if x > 0.

The solution has a shock ηε emanating from (0, 0) with shock speed

η̇ε(t) =
[(yε(t, ηε(t)))

2/2]

[yε(t, ηε(t))]
=

ε

2
,

according to the jump condition, where [h(t, x)] = h(t, x−) − h(t, x+) denotes the
jump of h(t, ·) across x. Thus, we have ηε(t) = ε

2 t and the corresponding entropy
solution

yε =

{
1 + ε if x ≤ tε/2,

−1 if x > tε/2.

Of course, the Lipschitz continuous map ε −→ yε(t, ·) ∈ L1
loc(R) is not differentiable,

since the difference quotient only converges in a weaker topology—for example, weakly
in the space Mloc(R) of locally bounded Borel measures. In fact, ε −→ yε(t, ·) ∈
Mloc(R) is differentiable in the weak topology and we have, for example, at ε = 0

d

dε
yε(t, ·)|ε=0 ε = 1{x<η0(t)} ε + [y0(t, η0(t))]δη0(t)

t

2
ε,(1.3)
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where 1I denotes the indicator function of a set I, i.e., 1I(x) = 1 if x ∈ I, 1I(x) = 0
else, and δx denotes the Dirac measure located at x. Hereby, t2 ε is a linear (in this case,
exact) approximation of the actual shock shift ηε(t)−η0(t). Note, however, that a dif-
ferentiability result in the weak topology of Mloc(R) is not strong enough to derive the
differentiability of the functional (1.2) without additional structural information. To
get a first order approximation in L1

loc , we have to leave the linear structure of L1
loc in

order to allow for an accurate approximation of the shock movement. A natural way to
achieve this is to replace the singular (second) part of the measure (1.3) by the function
sgn( t2ε)[y0(t, η0(t))]1I(η0(t),η0(t)+ t

2 ε)
, where I(a, b)

def
= [min{a, b},max{a, b}] and sgn(·)

is the sign function. We thereby obtain a first order approximation of yε(t)− y0(t) in
L1

loc by the shift-variation

S
η0(t)
y0(t)

(
1{x<η0(t)}ε,

t

2
ε

)
def
= 1{x<η0(t)} ε + sgn

(
t

2
ε

)
[y0(t, η0(t))]1I(η0(t),η0(t)+ t

2 ε)
.

In this paper we will develop a sensitivity calculus based on shift-variations for the
mapping u −→ y(t̄, ·;u), t̄ ∈ [0, T ], defined in (1.1) in the case f ′′ ≥ mf ′′ > 0. Let
piecewise C1 initial data u0 ∈ PC1(R;x1, . . . ;xN ) and u1 ∈ L∞(0, T ;C1(R)m) be
given. Using the theory of generalized characteristics [8] we will show that for a given
interval I and time t̄ > 0 the following situation is generic: y(t̄, ·;u) has on I finitely
many shocks at x̄1 < · · · < x̄K , the shock locations depend differentiable on u, and
the states connected by the shocks vary differentiable in the strong topology of L1.
From this we will deduce that the variation y(t̄, ·;u+δu)−y(t̄, ·;u) allows a first order
approximation by a shift-variation of the form

S
(x̄k)
y(t̄,·;u)(δy, s̄)

def
= δy +

∑
k

[y(t̄, x̄k;u)] sgn(s̄k)1I(x̄k,x̄k+s̄k),(1.4)

where (δy, s̄) depends linearly on δu, x̄k are the shock locations,

[y(t̄, x̄k;u)] = y(t̄, x̄k−;u)− y(t̄, x̄k+;u)

denotes the jump across the shock, I(x̄k, x̄k+ s̄k) is the interval enclosed by the argu-
ments, 1I(x̄k,x̄k+s̄k) is its indicator function, and s̄k is a linear approximation of the
shock shift. To mimic the behavior of y(·;u) at later times, it is natural to go one
step further and to admit shift-variations already for the initial data. Roughly speak-
ing, we will in particular show that for (u0, u1) as above, W

def
= PC1(R;x1, . . . , xN )×

L∞(0, T ;C1(R)m)× R
N and for a.a. t̄ the mapping

(w0, w1, σ) ∈W −→ y(t̄, ·;u0 + S(xi)
u0

(w0, σ), u1 + w1) ∈ L1(I)(1.5)

is shift differentiable with respect to (w0, w1, σ) at 0 in the sense that its variation
admits a first order approximation by a shift-variation of the form (1.4), where (δy, s̄)
depends linearly on δw0, δw1, and s = δσ. Hereby, δy can be obtained as the trace
δY (t̄) of a function δY that is the piecewise solution of the linearization of (1.1)
outside of the shock set, and s̄k can be obtained by an adjoint formula. We admit
shift-variations of the initial data since this allows us to use the shift-differentiability
result repeatedly over time slabs. This is helpful for the design of optimization al-
gorithms with time domain decomposition for the solution of (P). By introducing a
general concept of shift-differentiability we will be able to derive results on the Fréchet
differentiability of tracking-type functionals of the form (1.2) as long as the discon-
tinuities of yd and y(t̄, ·;u) do not coincide. If yd and y(t̄, ·;u) share discontinuities
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we will still obtain directional differentiability. For objective functionals of the form
(1.2) we will derive a gradient representation via an adjoint state. The proper defini-
tion of the adjoint state requires an extension of the concept of reversible solutions of
backward transport equations with discontinuous coefficients introduced in [1] to the
case

∂tp + f ′(y)∂xp = −gy(t, x, y, u1) p, (t, x) ∈ Ωt̄
def
= ]0, t̄[× R,

p(t̄, x) = pt̄(x), x ∈ R,
(1.6)

with linear source term, where pt̄ are suitable end data.
The results of this paper can be straightforwardly extended to identification prob-

lems for the flux f , where f is the control. Identification problems of this type are
considered by James and Sepúlveda [17]. The differentiability of the objective func-
tion for the hyperbolic case was left open. The techniques of the present paper can
be used to obtain a sensitivity and adjoint calculus for flux identification as well.

In recent years several results on sensitivities and adjoints for hyperbolic con-
servation laws were obtained by other authors [1, 2, 3, 4, 5, 6, 12, 13], but most
results assume a priori knowledge of the shock structure (usually one shock separat-
ing smooth states) or are restricted to the conservative case g ≡ 0. The conservative
case admits special techniques, since the characteristics are straight lines and the so-
lution can be represented by the integral formula of Lax [19]. Bouchut and James
apply in [2] their existence and stability results of [1] for measure-valued duality so-
lutions of linear conservation laws with discontinuous coefficients to derive for the
case g ≡ 0, f ′′ > 0 that u0 ∈ L∞ −→ y(·;u) ∈ C([0, T ];Mloc(R)–w∗) is direc-
tionally differentiable at an entropy-admissible u0 where the space Mloc(R) of local
Borel measures is equipped with the usual weak topology. Note that this topology
is too weak to derive directly differentiability results for (1.2) without using addi-
tional structural information. Godlewski and Raviart study in [12] (see also [13])
the linearized stability of multidimensional hyperbolic systems of conservation laws
for perturbations of the initial data of a base solution with a one-dimensional shock.
They define measure solutions for the linearized equations with singular part along
the shock and construct numerical schemes for the solution of the linearized problem.
For the conservative scalar problem with Riemann initial data, it is shown that the
linearization coincides with the first order expansion in C([0, T ];Mloc(R)–w∗) of [2].
In this paper we give further justification of this linearization process for more gen-
eral situations. Bouchut and James develop in [1] existence and stability results for
transport equations with discontinuous coefficients satisfying a one-sided Lipschitz
condition that will be extended in the present work for the analysis of the adjoint
equation (1.6). Previous results on the adjoint equation were obtained in the con-
text of uniqueness results in [7, 16, 20, 21] and of error estimates for approximate
solutions in [24]. In [20] adjoint equations for a class of systems of conservation laws
are considered. An extension of our approach to systems seems to be possible by
building on this work. In [3] a new differential structure on the space BV obtained
by horizontal shifts of the points of the graph is introduced, and it is shown that in
the case g ≡ 0, f ′′ > 0 the flow u0 ∈ L∞ −→ y(t, ·;u) generated by (1.1) is generically
differentiable with respect to (w.r.t.) this structure. The analysis uses the integral
formula of Lax. Bressan and Marson [4] use generalized tangent vectors to develop a
variational calculus for piecewise Lipschitz solutions of systems of conservation laws.
Using our notation (1.4), they show that for piecewise Lipschitz initial data uε0, ε ≥ 0,

such that uε0 − u0 = S
(xi)
u0 (εδu0, εs) + o(ε) in L1

loc , the corresponding solutions yε
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satisfy yε(t̄, ·)− y(t̄, ·) = S
(x̄k)
y(t̄,·)(εδy, εs̄) + o(ε) in L1

loc if t̄ is so small that yε remains

piecewise Lipschitz on [0, t̄]. While this result applies to systems, it considers only
directional variations and requires the structural assumption of piecewise Lipschitz
solutions, which is not needed in the present paper. Especially the analysis of the
shock sensitivity differs significantly from our approach, since in [4] the linearized
Rankine–Hugoniot jump condition, together with the linearized state equation, is
used to derive an ODE for the shock sensitivity, while we use an adjoint formula
which reduces the necessary structural information on the history of the shock as
far as possible. Moreover, we develop an adjoint calculus that gives a gradient rep-
resentation for objective functionals (1.2). Cliff, Heinkenschloss, and Shenoy study
in [5, 6] design problems for one-dimensional steady duct flow. By introducing the
single shock location as additional state variable and transforming the space variable
such that the shock location is fixed, Fréchet differentiability is shown. Optimality
conditions are derived and an adjoint-based gradient representation of the objective
function is given. Finally, numerical results for the application of an SQP method to
the discretized problem are reported.

This paper is organized as follows. In section 2 we introduce the concept of shift-
differentiability for operators having discontinuous functions with moving discontinu-
ities as images, which is based on a first order approximation by shift-variations (1.4).
Moreover, we will show that the superposition (1.2) of a shift-differentiable operator
u −→ y(t̄, ·;u) and a tracking-type functional is Fréchet differentiable if yd, y(t̄, ·;u)
do not share discontinuities and is otherwise directionally differentiable. In section 3
we state the main results of the paper. In section 3.1 we state in Theorem 3.2 a shift-
differentiability result for entropy solutions of (1.1) w.r.t. the controls, more precisely
of the control-state-mapping (1.5), if a nondegeneracy assumption holds for all shocks
at the observation time t̄. In Theorem 3.4 we give a formula for the corresponding
shift-derivative. Moreover, we sketch the main line of the proofs. Theorem 3.8 shows
that the required nondegeneracy assumption holds for all shocks at a.a. times t̄ > 0
if u0 ∈ PC2 and u1 ∈ L∞(0, T ;C2

loc). In section 3.2 the results of section 3.1 and
the general shift-differentiability calculus are combined to obtain in Theorem 3.9 and
Corollary 3.10 the differentiability of tracking-type functionals u → J(u) in (1.2).
In section 3.3 we finally state a convenient adjoint-based gradient representation for
the derivative of these objective functionals w.r.t. the inner product of L2; see The-
orem 3.11. The proofs of these main results are prepared in sections 4–8 and finally
carried out in section 9. Section 4 provides the necessary stability results and collects
structural results of [8] provided by the theory of generalized characteristics. We use
this to derive basic differentiability results for the solution along generalized charac-
teristics. In section 5 continuity points are analyzed that are not shock generation
points. In sections 5.1 and 5.2 we study continuity points in the exterior and interior
of rarefaction waves. In section 5.3 continuity points are analyzed that are located
on characteristics emanating from points where discontinuities are produced under
shift-variations, and section 5.4 studies points on the boundary of rarefaction waves.
In section 6 the stability of shocks and the differentiability of the shock location at
a time t̄ > 0 are shown under a nondegeneracy assumption. The proof of the latter
is carried out in section 8, since it requires stability results for the adjoint equation,
which are provided in section 7. In section 9 we prove the main results already stated
in section 3 by combining the results of the previous sections. Conclusions and future
work are presented in section 10. The appendix contains a proof of the results in
section 7 on the adjoint equation.
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Notations. For Lebesgue-measurable S ⊂ R
n the norm of the Lebesgue-spaces

Lr(S), 1 ≤ r ≤ ∞, is denoted by ‖ · ‖r,S . In the case S = R
n we write ‖ · ‖r. By (·, ·)2,S

we denote the inner product on L2(S). For an interval I ⊂ R the space of functions
v ∈ L1(I) with bounded variation |v|var is denoted by BV (I). For open S ⊂ R

n we
mean by Ck(S), k ∈ N0, the space of functions with continuous, bounded derivatives
on S up to order k equipped with the usual norm ‖v‖Ck(S) =

∑
|β|≤k ‖Dβv‖∞,S .

Ck(Scl) is the subspace of functions in Ck(S) that admit a continuous extension of
the first k derivatives to Scl. Moreover, we write C(S) instead of C0(S). Ck,α(Scl),
0 < α ≤ 1, is the usual Hölder space. For closed I ⊃ [a, b], a < b, we denote by
PCk(I;x1, . . . , xN ) the space of piecewise Ck-functions v with possible discontinuities
at a < x1 < · · · < xN < b; more precisely v|Ii ∈ Ck(Icli ), i = 0, . . . , N , with
Ii = ]xi, xi+1[, i = 1, . . . , N − 1, I0 = I ∩{x < x1}, IN = I ∩{x > xN}. It is endowed

with the norm ‖v‖PCk(I;x1,...,xn) =
∑N
i=0 ‖v‖Ck(Icli ). The indicator function of a set I

is denoted by 1I , i.e., 1I(x) = 1 if x ∈ I and 1I(x) = 0 else.

2. Shift-differentiability. In this section we introduce a concept of shift-dif-
ferentiability that yields an extension of classical differentiability to operators u −→
y(u) ∈ L1

loc(R) having functions with moving discontinuities as images. It is based on
shift-variations that are the sum of a standard variation and suitably scaled indicator
functions approximating the actual shift of discontinuities. The interesting point is
that the shift-differentiability of an operator implies under quite general circumstances
the Fréchet differentiability of tracking-type functionals analogously to (1.2).

2.1. Shift-variations and shift-differentiability of operators. As moti-
vated in the introduction we define shift-variations as follows.

Definition 2.1. Let I = [a, b], a < b, and let w ∈ BV (I). Given a < x1 < x2 <
· · · < xN < b, we call (δw, s) ∈ L1(I)×R

N a generalized variation of w and associate

with it the shift-variation S
(xi)
w (δw, s) ∈ L1(R) of w by

S(xi)
w (δw, s)(x)

def
= δw(x) +

N∑
i=1

[w(xi)]+ sgn(si)1I(xi,xi+si)(x),

where [w(xi)]+
def
= max {0, w(xi−)− w(xi+)} and I(α, β)

def
= [min{α, β},max{α, β}] for

α, β ∈ R.
The restriction that only down-jumps are shifted is motivated by the fact that

entropy solutions of (1.1) satisfy Oleinik’s entropy condition y(t, x−) ≥ y(t, x+) for
all x ∈ R and a.a. t ∈ ]0, T ]; see section 4.1.

We call an operator shift-differentiable if its actual variation admits a first order
approximation in L1

loc by a shift-variation. The following definition states this more
precisely.

Definition 2.2. Let U be a real Banach space and I = [a, b], a < b. For an open
subset D ⊂ U let u ∈ D −→ y(u) ∈ L∞(R) be locally bounded. Moreover, let ū ∈ D
with y(ū) ∈ BV (I). We say that y is shift-differentiable at ū if there are a < x̄1 <
x̄2 < · · · < x̄K < b and a bounded linear operator Ts(ū) = Dsy(ū) ∈ L(U,Lr(I)×R

K),
r ∈ ]1,∞], such that

lim
u→ū

‖y(u)− y(ū)− S
(x̄k)
y(ū)(Ts(ū) · (u− ū))‖

1,I

‖u− ū‖U
= 0.

We say that y is continuously shift-differentiable at ū if y is shift-differentiable in a
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neighborhood of ū and if the corresponding Ts(u), x̄k(u), k = 1, . . . ,K, as well as
y(u)(x̄k(u)±), are continuous at ū.

2.2. Differentiability after composition with cost functionals. The prop-
erty of shift-differentiability is strong enough that it implies the Fréchet differentia-
bility of functionals of the form

J(y(u))
def
=

∫ b

a

φ(y(u)(x), yd(x)) dx(2.1)

under quite moderate assumptions on φ and yd.
Lemma 2.3. Let u −→ y(u) be shift-differentiable in ū according to Definition 2.2.

Moreover, let yd ∈ L∞(I) be approximately continuous at x̄1, . . . , x̄K . Then for any
function φ ∈ C1,1

loc (R2) the functional u ∈ U −→ J(y(u)) given by (2.1) is Fréchet
differentiable at ū, and with (δy, s̄)

def
= Ts(ū) · δu, ȳ def

= y(ū) one has

duJ(ȳ) · δu = (φy(ȳ, yd), δy)2,I

+

K∑
k=1

∫ 1

0

φy(ȳ(x̄k+) + τ [ȳ(x̄k)], yd(x̄k))dτ [ȳ(x̄k)]+s̄k.
(2.2)

If y is continuously shift-differentiable at ū and yd is continuous in a neighborhood of
x̄1, . . . , x̄K , then u −→ J(y(u)) is continuously Fréchet differentiable at ū.

If at least one x̄k is an approximate discontinuity of yd, then J(y(u)) is still
directionally differentiable, and with (δy, s̄) = Ts(ū) · δu the directional derivative
δu(J(y(ū)); δu) is given by (2.2) if yd(x̄k) is replaced by yd(x̄k + 0 · sgn(s̄k)).

Proof. Obviously, it is sufficient to consider the case K = 1. We set x̄ = x̄1. Let
B ⊂ U be a bounded neighborhood of 0 such that ū+B ⊂ D. Then ‖y(ū + δu)‖∞ ≤
My for all δu ∈ B by Definition 2.2. In what follows we will frequently use the
abbreviation u = ū+ δu for δu ∈ B. Moreover, we will write y, ȳ instead of y(u), y(ū)
and set (δy, s̄) = Ts(ū) · δu. Finally, we reduce B such that x̄ + s̄ ∈ I for δu ∈ B.

Since y(u) is shift-differentiable in ū, we have for all δu ∈ B

‖y − ȳ‖1 ≤ o(‖δu‖U ) + ‖Sx̄ȳ (δy, s̄)‖
1
≤ o(‖δu‖U ) + ‖δy‖1 + 2My|s̄| ≤ C1‖δu‖U .(2.3)

Let L be a Lipschitz constant of φy w.r.t. y on [−My,My]× [−‖yd‖∞, ‖yd‖∞]. Set

φ̄y(δu)
def
=

∫ 1

0

φy(τ ȳ + (1− τ)y, yd) dτ.

Then we have ‖φ̄y(δu)‖∞ ≤ C2 for all δu ∈ B with a constant C2 > 0 and

|J(y)− J(ȳ)− (φ̄y(δu), Sx̄ȳ (δy, s̄))
2,I
| ≤ ‖φ̄y(δu)‖∞‖y − ȳ − Sx̄ȳ (δy, s̄)‖

1
= o(‖δu‖U ).

To compare the last term on the left-hand side with (2.2) we note that

(φ̄y(δu), Sx̄ȳ (δy, s̄))
2,I

= (φ̄y(δu), δy)2,I + [ȳ(x̄)]+ sgn(s̄)(φ̄y(δu),1I(x̄,x̄+s̄))2,(2.4)

where we use x̄ + s̄ ∈ I. For the first term we have with 1/r + 1/r′ = 1 the estimate

‖φ̄y(δu)δy − φy(ȳ, yd)δy‖1 ≤ ‖φ̄y(δu)− φy(ȳ, yd)‖r′‖δy‖r
≤ L‖y − ȳ‖r′‖Ts(ū)‖‖δu‖U = o(‖δu‖U ),

(2.5)
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since the first factor tends to zero by interpolation using (2.3) and the L∞-bound.
If [ȳ(x̄)]+ = 0, then the second term in (2.4) vanishes, and since Sx̄ȳ (δy, s̄) = δy

in this case, the proof is complete. Otherwise, we have [ȳ(x̄)]+ = [ȳ(x̄)]. To approxi-
mate the second term in (2.4) we observe that with δȳ

def
= max {min {δy, 2My} ,−2My}

obviously

‖y − ȳ − Sx̄ȳ (δȳ, s̄)‖
1

= o(‖δu‖U )

also holds. Since the function on the left-hand side has a uniform L∞-bound, we
obtain with the local Lipschitz continuity of φy∥∥∥∥φ̄y(δu)−

∫ 1

0

φy(ȳ + τSx̄ȳ (δȳ, s̄), yd) dτ

∥∥∥∥
1

= o(‖δu‖U ).(2.6)

This yields for the last factor of the last term in (2.4)

(φ̄y(δu),1I(x̄,x̄+s̄))2 =
(∫ 1

0
φy(ȳ + τSx̄ȳ (δȳ, s̄), yd)dτ,1I(x̄,x̄+s̄)

)
2

+ o(‖δu‖U ).

Finally, we have

I1
def
=

∣∣∣∣(∫ 1

0
φy(ȳ + τSx̄ȳ (δȳ, s̄), yd)dτ,1I(x̄,x̄+s̄)

)
2
− |s̄|

∫ 1

0

φy(ȳ(x̄+) + τ [ȳ(x̄)], yd(x̄))dτ

∣∣∣∣
=

∣∣∣∣
∫ x̄+s̄

x̄

∫ 1

0

(φy(ȳ + τ [ȳ(x̄)] sgn(s̄) + τδȳ, yd)− φy(ȳ(x̄±)± τ [ȳ(x̄)], yd(x̄))) dτdx

∣∣∣∣ .
Since the arguments of φy are bounded, we get with a Lipschitz constant L

I1 ≤ L

(
‖δȳ‖1,I(x̄,x̄+s̄) + |s̄|

∣∣∣∣1s̄
∫ x̄+s̄

x̄

(|ȳ − ȳ(x̄ + 0 sgn(s̄))|+ |yd − yd(x̄)|) dx

∣∣∣∣
)

≤ L‖δy‖r|s̄|1/r
′
+ o(|s̄|) = o(‖δu‖U ).

(2.7)

Hereby we have used that yd is approximately continuous in x̄ and y(ū) ∈ BV (I).
Now the Fréchet differentiability of J(y(u)) and (2.2) follow by combining (2.4)–(2.7).

Now assume that yd is continuous in a neighborhood of x̄1, . . . , x̄K and that y
is continuously shift-differentiable in ū. Then J is Fréchet differentiable in a neigh-
borhood D′ of ū by the previous arguments. By assumption, u ∈ D′ −→ x̄k(u) and
u ∈ D′ −→ y(u)(x̄k(u)±) are continuous at ū. Hence, the operator in the second
term of (2.2) with y, x̄k(u) instead of ȳ, x̄k acting on s̄ is obviously continuous at ū.
Moreover, we have for all δy ∈ Lr(I) and u ∈ D′ with a local Lipschitz constant L
of φy

(φy(y(u), yd)− φy(y(ū), yd), δy)2,I ≤ L‖y(u)− y(ū)‖r′,I‖δy‖r,I .

The first factor tends to zero by interpolating (2.3) and the L∞-bound. Combining the
continuity in (δy, s̄) ∈ Lr(I)×R

K with the continuity of u −→ Ts(u) ∈ L(U,Lr(I)×
R
K) at ū now yields the continuity of duJ(y(u)) at ū.

Finally, if yd has an approximate discontinuity in x̄ and yd(x̄) is replaced by
yd(x̄+ 0 · sgn(s̄)), then the directional differentiability can be shown exactly as above
by fixing δu and taking εδu instead of δu. In fact, the only crucial point is the estimate
for the resulting expression I1. As in (2.7) we obtain I1 = o(ε).
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In the following sections we will analyze the control-to-state mapping u −→
y(t, ·;u) implicitly defined by (1.1). As a main result we will show that (1.5) is in gen-
eral shift-differentiable. Then we obtain immediately the differentiability properties
of objective functionals (1.2) by using Lemma 2.3.

3. Statement of the main results. In this section we state the main results
of this paper. The proofs will be prepared and carried out in the remaining sections.

3.1. Shift-differentiability of entropy solutions. As outlined in the intro-
duction our first main result is a shift-differentiability result for entropy solutions
y = y(·;u) of

∂ty + ∂xf(y) = g(t, x, y, u1), (t, x) ∈ ΩT
def
= ]0, T [× R,

y(0, x) = u0(x), x ∈ R,
(1.1)

w.r.t. the control u = (u0, u1) if the initial data u0 are varied by a shift-variation and u1

by a conventional additive variation. After this result is shown, we obtain immediately
differentiability properties of objective functionals (1.2) by using Lemma 2.3.

More precisely, let u0 ∈ PC1(R;x1, . . . , xN ), x1 < x2 < · · · < xN , and u1 ∈
L∞(0, T ;C1(R)m) be given and fix some t̄ ∈ ]0, T ]. For

W
def
= PC1(R;x1, . . . , xN )× L∞(0, T ;C1(R)m)× R

N

consider the mapping

(w0, w1, σ) ∈W −→ y(t̄, ·;u0 + S(xi)
u0

(w0, σ), u1 + w1) ∈ L1(a, b)(3.1)

for some a < b.
Remark 3.1. Of course, (3.1) includes the simpler case

(û0, û1) ∈ PC1(R;x1, . . . , xN )× L∞(0, T ;C1(R)m) −→ y(t̄, ·; û0, û1),

where the initial shocks are not shifted.
We will show (see Theorem 3.2 below) that the mapping (3.1) is continuously

shift-differentiable in a sufficiently small neighborhood of (0, 0, 0) if at time t̄ a non-
degeneracy condition is satisfied at the shock locations. We will moreover show in
Theorem 3.8 that this nondegeneracy condition for the shocks at time t̄ holds at a.a.
t̄ if u0 ∈ PC2(R;x1, . . . , xN ) and u1 ∈ L∞(0, T ;C2

loc(R)m). For a precise statement
of the theorems we need the following additional assumptions on f and g.

Assumptions:
(A2) (A1) holds, f is twice continuously differentiable, g ∈ L∞(0, T ;C1

loc(R×R×
R
m)), and g is Lipschitz continuous w.r.t. x.

(A3) f ′′ ≥ mf ′′ > 0 for some mf ′′ > 0.
(A4) g is affine linear w.r.t. y.

We have the following result on the shift-differentiability of (3.1).
Theorem 3.2 (shift-differentiability of entropy solutions). Let (A2)–(A4) hold.

Let u0 ∈ PC1(R;x1, . . . , xN ) with x1 < · · · < xN , and let u1 ∈ L∞(0, T ;C1(R)m). For
u = (u0, u1) let y(u) ∈ L∞(ΩT ) ∩ C([0, T ];L1

loc(R)) be the entropy solution of (1.1).
Finally, let I = [a, b], a < b, and t̄ ∈ ]0, T ] such that y(t̄, ·;u) has no shock generation
points on I and finitely many nondegenerate shocks on I at a < x̄1 < · · · < x̄K < b
that are not shock interaction points; see Definition 6.1. Finally, let

W
def
= PC1(R;x1, . . . , xN )× L∞(0, T ;C1(R)m)× R

N ,

‖(w0, w1, σ)‖W def
= ‖w0‖PC1(R;x1,...,xN ) + ‖w1‖L∞(0,t̄;C1(R)) + ‖σ‖2
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and consider the mapping

(w0, w1, σ) ∈W −→ y(t̄, ·;u0 + S(xi)
u0

(w0, σ), u1 + w1)|I ∈ L1(I).(3.2)

Then the following hold:
(i) If all xi, i = 1, . . . , N , are discontinuities of u0, i.e., u0(xi−) �= u0(xi+),

then the mapping (3.2) is continuously shift-differentiable on a neighborhood
{‖(w, σ)‖W < ρ} for ρ > 0 sufficiently small, and the shift-derivative Ts(0) =
Dsy(t̄;u) satisfies Ts(0) ∈ L(W,PC(I; x̄1, . . . , x̄K)× R

K).
(ii) If some xi, i = 1, . . . , N , are continuity points of u0, then the mapping

(3.2) is at least shift-differentiable w.r.t. (w0, w1, σ) at (0, 0, 0), and the shift-
derivative Ts(0) = Dsy(t̄;u) satisfies Ts(0) ∈ L(W,PC(I; x̃1, . . . , x̃K̃)×R

K),
where x̃1 < · · · < x̃K̃ contain in addition to x̄1, . . . , x̄K all continuity points
in I for which the backward characteristic meets the line t = 0 in a continuity
point xi, i = 1, . . . , N , of u0.

Remark 3.3. Several comments on the used terminology are in order:
• By “characteristics” we mean generalized characteristics in the sense of Dafer-
mos [8]; see section 4.2.

• The nondegeneracy of a shock at (t̄, x̄k) is a nondegeneracy condition on the
dependence of forward characteristics on their starting point (0, z) that start
close to footpoints (0, z∓) of the minimal and maximal backward characteristic
through (t̄, x̄k). See Definition 6.1 below.

The next theorem states a formula for the shift-derivative of entropy solutions
ensured by Theorem 3.2.

Theorem 3.4 (formula for the shift-derivative). Let the assumptions of Theorem
3.2 hold. Then the shift derivative (δyt̄, s̄) = Ts(0) · (δw0, δw1, s) ensured by Theorem
3.2 is given as follows: With x̄0

def
= a, x̄K+1

def
= b, denote by ξ∓k the minimal/maximal

backward characteristic through (t̄, x̄k), k = 0, . . . ,K + 1, by Sk the domain confined
by ξ+

k and ξ−k+1, k = 0, . . . ,K, and by Dk the domain confined by ξ−k and ξ+
k , k =

1, . . . ,K.
Let δY on all Sk be the broad solution of the linearized equation

∂tδY + ∂x(f ′(y)δY ) = gy(t, x, y, u1)δY + gu1(t, x, y, u1)δw1(3.3)

with initial conditions

δY (0, ·) =

{
δw0 on (Sclk ∩ {t = 0}) \ {xi : 1 ≤ i ≤ N} ,
0 on (Sclk ∩ {t = 0}) ∩ {xi : 1 ≤ i ≤ N} ,(3.4)

respectively; see Remarks 5.4 and 5.9 below. Moreover, let pk, k = 1, . . . ,K, be the
reversible solution pk = p (cf. Definition 7.5) of the adjoint equation

∂tp + f ′(y)∂xp = −gy(t, x, y, u1)p, p(t̄, ·) = pt̄(3.5)

for the end data (we recall that [y(t̄, x̄k;u)]
def
= y(t̄, x̄k−;u)− y(t̄, x̄k+;u)).

pt̄ =
1

[y(t̄, x̄k;u)]
1{x=x̄k}(·).(3.6)

Then (δyt̄, s̄) = Ts(0) · (δw0, δw1, s) is given by

δyt̄ = δY (t̄, ·),(3.7)

s̄k = (pkgu1(·, y, u1), δw1)2,Ωt̄
+ (pk(0, ·), δw0)2 +

N∑
i=1

pk(0, xi)[u0(xi)]+si.(3.8)
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Hereby, the adjoint states pk for the shock sensitivity s̄k of x̄k have the disjoint sup-
ports Dcl

k and coincide on Dcl
k with the reversible solution of (3.5) for the constant

end data 1/[y(t̄, x̄k;u)].
Remark 3.5.
• Broad solutions of the linearized equation (3.4) are defined as the solution of
the characteristic equation along each generalized characteristic. We discuss
this issue in detail in section 5; see Lemmas 5.1, 5.6 and Remarks 5.4, 5.9.
This leads to a piecewise definition outside the shock set. In general, these
patches yield together not a weak solution of (3.4) on all of Ωt̄, since the
jump condition across the shocks, which must hold for weak solutions of the
linear conservation law (3.4), is in general not satisfied. To compensate the
incompatibility across shocks, a measure part has to be added on the shock
set. Appropriate global weak solutions of (3.4) are measure-valued duality
solutions. For details we refer to the author’s habilitation thesis [26]. In [26]
we extend results of Bouchut and James [1] in several respects that are of
importance for weak sensitivities in optimal control. See also Remark 3.7.

• The adjoint equation (3.5) is a transport equation with discontinuous coef-
ficient. Since solutions of (3.5)–(3.6) are in general not unique, we extend
ideas of [1] and consider appropriate reversible solutions that enjoy unique-
ness and stability. We will introduce the necessary facts on reversible solutions
in section 7. For a detailed study we refer to our recent works [27, 26].

For the proof of Theorems 3.2 and 3.4 we will use structural properties of entropy
solutions obtained by a careful application of Dafermos’ theory of generalized char-
acteristics [8] together with an adjoint-based analysis of the shock sensitivities. The
necessary results on the structure of entropy solutions will be developed in sections 4–
6. The adjoint-based analysis of the shock sensitivities will be carried out in sections
7–8. Using these results, the proof of Theorems 3.2 and 3.4 is then given in section 9.

The main line of the proof is as follows: With the abbreviation

us(w, σ) = (u0 + S(xi)
u0

(w0, σ), u1 + w1)

we can write the control-to-state-mapping (3.2) as

(w, σ) ∈W −→ y(t̄, ·;us(w, σ)).(3.9)

Under the assumptions of Theorem 3.2 (which is a generic situation; see Theorem 3.8)
we show that the mapping (3.9) has the following properties: on any compact subset
J ⊂ I \ {x̄1, . . . , x̄K} the mapping (3.2) is Fréchet differentiable in (0, 0) as a map to
Lr(J), r ∈ [1,∞), and even to L∞(J\E) if E is an open neighborhood of points on the
boundary of rarefaction waves (where we include forward characteristics emanating
from a point (0, xi), 1 ≤ i ≤ N , where u0 is continuous); see section 5. Hereby the
derivative is given by d(w,σ)y(t̄, ·;u) · (δw, s) = δyt̄|J , where δyt̄ = δY (t̄, ·) with the
broad solution δY of the linearized equation (3.3)–(3.4). Moreover, we show in section
6 that there are neighborhoods Jk of any shock position x̄k, such that for a suitable
neighborhood Wρ

def
= {‖(w, σ)‖W < ρ} the shock is stable in the sense that

(w, σ) ∈Wρ −→ y(t̄, ·;us(w, σ)) ∈ PC0,1(Jk; x̄k(u
s(w, σ)))

is bounded, the shock location x̄k(u
s(w, σ)) depends Lipschitz continuously on (w, σ),

and left and right states are stable on Wρ in the sense that

‖y(t̄, ·;us(w, σ))− y(t̄, ·;u)‖∞,Jk\I(x̄k,x̄k(us(w,σ))) ≤ Lk ‖(w, σ)‖w,σ;
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see Lemma 6.2 and Corollary 6.5 in section 6. Moreover, we show by an adjoint
argument in sections 6–8 that the shock location depends Fréchet differentiably on
(w, σ), and the shock sensitivity is given by d(w,σ)x̄k(u)·(δw, s) = s̄k, with s̄k according
to the adjoint formula (3.8); see Lemma 6.4. If this is shown, then it is straightforward
to show the shift-differentiability of (3.9); see section 9.

To show these properties of (3.9) we use the theory of generalized characteristics
[8] together with an adjoint argument for the analysis of the shock sensitivity as fol-
lows: the theory of generalized characteristics yields that entropy solutions have an
at most countable number of shock curves and are continuous on the complement; see
section 4, in particular Proposition 4.2. In continuity points (t̄, x̄) the solution coin-
cides with the solution of the classical characteristic equation, i.e., with the solution
(ζ, v)(·; z, ω, u1) of the characteristic equation

ζ̇(t) = f ′(v(t)), ζ(0; z, ω, u1) = z,

v̇(t) = g(t, ζ(t), v(t), u1(t, ζ(t))), v(0; z, ω, u1) = ω,

one has with some z̄ > 0

x̄ = ζ(t̄; z̄, u0(z̄), u1), y(t̄, x̄;u) = v(t̄; z̄, u0(z̄), u1)(3.10)

if (t̄, x̄) is not on a rarefaction wave; otherwise, with some ω̄ ∈ [u0(z̄−), u0(z̄+)],

x̄ = ζ(t̄; z̄, ω̄, u1), y(t̄, x̄;u) = v(t̄; z̄, ω̄, u1).(3.11)

In shock points the same holds for the left and right states y(t̄, x̄∓;u), respectively.
If (t̄, x̄) is a continuity point that is no shock generation point and not located on
a rarefaction wave or on a forward characteristic emanating from a point (0, xi),
1 ≤ xi ≤ N , where u0 is continuous, then the representation (3.10) is valid on a
neighborhood and the first equation in (3.10) can be solved for z̄, yielding with the
second by the implicit function theorem the differentiability of

(w, σ) ∈Wρ −→ y(·;us(w, σ)) ∈ Lr(J(x̄))(3.12)

with a neighborhood J(x̄) of x̄ for r = ∞ and ρ > 0 small enough; see Lemmas 5.1 and
5.5 of section 5.1 (Case Cc). If (t̄, x̄) is a continuity point in the interior of a rarefaction
wave, the same holds by solving in the first equation of (3.11) for ω̄ and inserting it
in the second; see Lemmas 5.6 and 5.10 of section 5.2 (Case Rc). If (t̄, x̄) is on the
boundary of a rarefaction wave (Case RBc), then (3.2) is Fréchet differentiable for all
r ∈ [1,∞); see Lemma 5.12 in section 5.4. If (t̄, x̄) is a point on a forward characteristic
emanating from a point (0, xi), 1 ≤ xi ≤ N , where u0 is continuous (Case CBc), then
(3.2) is Fréchet differentiable in (0, 0) for all r ∈ [1,∞); see Lemma 5.11 in section
5.3. Moreover, by (3.10) or (3.11) and the implicit function theorem, it is not difficult
to show that the derivative of (3.9) is given by d(w,σ)y · (δw, s) = δY (t̄, ·)|J(x̄), where
δY is the broad solution of the linearized equation (3.3)–(3.4); see Lemmas 5.1 and
5.6 and Remarks 5.4 and 5.9 in section 5.

Now consider an observation time t̄ such that y(t̄, ·;u) has only nondegenerate
shocks and no shock generation points on I = [a, b] (see Theorem 3.8) with continuity
points a, b. Then one can show that y(t̄, ·;u) has on I finitely many shocks at positions
a < x̄1 < · · · < x̄K < b. The previous considerations show already that (3.9) maps
Fréchet differentiable to L1(J). It remains to analyze the shock positions. Using the
theory of generalized characteristics we show in section 6 that the shocks are stable
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in the above sense; see Lemma 6.2 and Corollary 6.5. To show the differentiability
of the shock position stated in Lemma 6.4 and Corollary 6.5, we apply in section 8
an adjoint argument: Let x̄k = x̄k(u) be a shock position and set ũ

def
= us(w, σ). We

use the abbreviations ỹ = y(·; ũ), y = y(·;u), ∆y
def
= ỹ − y, and δu

def
= ũ − u. With an

ε-neighborhood Jε = ]x̂−, x̂+[
def
= ]x̄k − ε, x̄k + ε[ the stability properties of the shock

yield

1

[y(t̄, x̄k)]

∫ x̂+

x̂−
∆y(t̄, x) dx = x̄k(ũ)− x̄k + O((ε + ‖(w, σ)‖W )‖(w, σ)‖W ).(3.13)

Therefore, in order to obtain the shock sensitivity we compute the derivative of the
functional on the left-hand side by adjoint-based techniques and then take the limit
ε → 0. Our adjoint approach uses first an averaged adjoint equation to avoid a
linearization of the conservation law at shocks and then uses stability properties of
the averaged equation to derive the actual adjoint equation: The difference of (1.1)
for ỹ and y yields

∂t∆y + ∂x(ã∆y) = b̃∆y + g(t, x, y, ũ1)− g(t, x, y, u1)(3.14)

with the averaged coefficients

ã(t, x)
def
=

∫ 1

0

f ′(y(t, x) + τ∆y(t, x)) dτ, b̃(t, x)
def
=

∫ 1

0

gy(·, y(t, x) + τ∆y(t, x), ũ1) dτ.

Denote by Dε the domain confined by the backward characteristics through (t̄, x̂∓).
Multiplying (3.14) by a sufficiently regular test function p̃ with p̃(t̄, ·) ≡ 1/[y(t̄, x̄k)]
and integrating by parts on Dε yields

(p̃(t̄, ·),∆y(t̄, ·))2,Jε = (p̃(0, ·), δu0)2,Dcl
ε ∩{t=0} + (∂tp̃ + ã∂xp̃ + b̃p̃,∆y)2,Dε

+ (p̃, gu1(·, y, u1)δu1)2,Dε
+ o(‖(w, σ)‖W ).

The left-hand side is identical to the left-hand side of (3.13). The remainder term
contains boundary terms along the characteristics that can be estimated by the sta-
bility properties of the solution and a distributed term from the Taylor expansion of
g w.r.t. u1. Now we choose p̃ as the solution of the averaged adjoint equation

∂tp̃ + ã∂xp̃ = −b̃p̃, p̃(t̄, ·) = pt̄,(3.15)

pt̄ ≡ 1/[y(t̄, x̄k;u)].

Then we obtain the duality relation

(pt̄,∆y(t̄, ·))2,Jε = (p̃(0, ·), δu0)2,Dcl
ε ∩{t=0} + (p̃, gu1

(·, y, u1)δu1)2,Dε

+ o(‖(w, σ)‖W ).
(3.16)

We will show in section 7 that a special class of reversible solutions of this transport
equation with discontinuous coefficient is stable w.r.t. ã, b̃, sufficiently regular for the
above calculations, and that p̃ converges in an appropriate space to the reversible
solution pk = p of the limit adjoint equation (3.5) for end data 1/[y(t̄, x̄k;u)]. Using
these stability properties, we can take the limit (δw, s) → 0 and then ε→ 0 in (3.16)
and deduce quite immediately (3.8) (at least formally, but we will justify the limit
transition). Hereby, we use the following convenient fact: by prescribing just the point
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data (3.6) we can achieve that the adjoint state pk has exactly the desired support
D = D0, and thus the integration domain D is automatically provided by pk. Note
moreover, that the limit transition in (p̃(0, ·), δu0)2,Dcl

ε ∩{t=0} leads to the last two

terms in (3.8), since δu0 = δw0 + S
(xi)
u0 (δw0, s) is a shift-variation.

Remark 3.6. We note that the duality relation (3.16) with reversible solutions
p̃ of (3.15) holds also if Jε is replaced by any other interval J = ]x̂−, x̂+[ with con-
tinuity points x̂∓ and if Dε is replaced by the domain D confined by the backward
characteristics through (t̄, x̂∓), i.e.,

(pt̄,∆y(t̄, ·))2,J = (p̃(0, ·), δu0)2,Dcl∩{t=0} + (p̃, gu1(·, y, u1)δu1)2,D

+ o(‖(w, σ)‖W ).
(3.17)

This holds first for Lipschitz continuous end data pt̄, but (3.16) extends to all end
data pt̄ that are the limit of a boundedly everywhere convergent sequence of Lipschitz-
functions; see Theorem 7.11. We will use this to get a gradient representation for
tracking-type functionals (1.2).

If D lies between neighbored shocks, then it contains only continuity points, and
the limit transition in (3.17) yields the classical duality relation

(pt̄, δY (t̄, ·))2,J = (p(0, ·), δu0)2,Dcl∩{t=0} + (p, gu1
(·, y, u1)δu1)2,D,(3.18)

where δY is the solution of the linearized equations (3.3)–(3.4) and p is the reversible
solution of the adjoint equation (3.5). See also Remark 3.13.

Remark 3.7. By requiring the duality relation (3.18) for all t̄ ∈ (0, T ] and
end data pt̄ ∈ C0,1

c (R), one can define a measure solution (duality solution) of the
linearized state equation (3.3) on all of ΩT . The linearization of the initial shift-

variation δu0 leads then to the initial measure δw0 +
∑N
i=1[u0(xi)]+siδ(· − xi), with

δ(·) denoting the Dirac measure at 0. By taking the limit in (3.16) one can show
that this is the correct “weak” linearization of (1.1) in the space of measures. This
concept was introduced in [1, 2] for the case without a source term. For the present
case see the author’s habilitation thesis [26]. As already mentioned, the topology of
measures is too weak to obtain directly differentiability results for tracking-functionals
(1.2). Therefore we show shift-differentiability.

Our next result concerns the nondegeneracy assumptions of Theorems 3.2 and
3.4. They require that at the observation time t̄ on I = [a, b] there are no shock
generation points, no shock interaction points, and only finitely many shocks that
are all nondegenerate. In general, this situation holds very likely at a given time t̄,
since the number of shock interaction points and shock generation points is at most
countable and degeneracy of a shock is—in contrast to nondegeneracy—not stable
under perturbations. In fact, under slightly stronger regularity assumptions on u0

and u1 we are able to show that the situation assumed in Theorems 3.2 and 3.4 holds
actually for a.a. t̄ ∈ (0, T ].

Theorem 3.8 (nondegeneracy of shocks holds for a.a. t̄ ∈ (0, T ]). Let (A2)–(A3)
hold and assume in addition that f is C3 and g ∈ L∞(0, T ;C2

loc(R×R×R
m)). If u0 ∈

PC2(R;x1, . . . , xN ), u1 ∈ L∞(0, T ;C2
loc(R)m), then the assumptions of Theorem 3.2

hold for a.a. t̄ ∈ ]0, T ].
The proof again uses generalized characteristics and is carried out in section 9.

3.2. Differentiability of tracking-type functionals. Using Lemma 2.3 and
Theorem 3.2 we get the Fréchet differentiability of a large class of tracking-type func-
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tionals (1.2), i.e.,

J(y(u)) =

∫ b

a

φ(y(t̄, ·;u), yd) dx.(1.2)

We have the following result.
Theorem 3.9 (differentiability of tracking-type functionals). Let the assump-

tions of Theorem 3.2 hold and let J(y(t̄, ·;u)) be defined as in (1.2) with φ ∈ C1,1
loc (R2)

and yd ∈ L∞(I) being approximately continuous in x̄1, . . . , x̄K . Then the functional

(w0, w1, σ) ∈W −→ J(y(t̄, ·;u0 + S(xi)
u0

(w0, σ), u1 + w1))(3.19)

has the following differentiability properties:
(i) The functional (3.19) is Fréchet differentiable at (0, 0, 0). The application of

the derivative to a direction (δw0, δw1, s) ∈W is given by (2.2), i.e.,

d(w,σ)J(y) · (δw0, δw1, s) = (φy(y(t̄, ·), yd), δyt̄)2,I

+

K∑
k=1

∫ 1

0

φy(y(t̄, x̄k+) + τ [y(t̄, x̄k)], yd(x̄k))dτ [y(t̄, x̄k)]+s̄k,
(3.20)

where y = y(·;u) is the entropy solution of (1.1) and δyt̄, s̄k are given by
(3.7) and (3.8) in Theorem 3.4.

(ii) If in addition yd is continuous in a neighborhood of x̄1, . . . , x̄K and if x1, . . . , xN
are discontinuities of u0, then the functional (3.19) is continuously Fréchet
differentiable on {‖(w, σ)‖W < ρ} for ρ > 0 sufficiently small.

Proof. The theorem follows directly from Lemma 2.3 and Theorem 3.2.
By inserting the shock sensitivities (3.8) in the second part of (3.20) and superim-

posing suitable multiples of the solutions pk = p of (3.5)–(3.6) we can rewrite (3.20)
more conveniently, as follows.

Corollary 3.10. Under the assumptions of Theorem 3.9 the formula (3.20) can
equivalently be rewritten as

d(w,σ)J(y) · (δw0, δw1, s) = (φy(y(t̄, ·), yd), δyt̄)2,I

+ (pgu1(·, y, u1), δw1)2,Ωt̄
+ (p(0, ·), δw0)2 +

N∑
i=1

p(0, xi)[u0(xi)]+si,
(3.21)

where y = y(·;u) is the entropy solution of (1.1), δyt̄ is given by (3.7) in Theorem 3.4,
and p is the reversible solution (cf. Definition 7.5) of the adjoint equation

∂tp + f ′(y)∂xp = −gy(t, x, y, u1)p, p(t̄, ·) = pt̄(3.22)

with end data

pt̄(x) =

{ ∫ 1

0
φy(y(t̄, x+) + τ [y(t̄, x)], yd(x)) dτ if x ∈ {x̄1, . . . , x̄K},

0 else.
(3.23)

Proof. The proof follows by inserting (3.8) in (3.20) and from the observation

that the function p =
∑
k

∫ 1

0
φy(y(t̄, x̄k+) + τ [y(t̄, x̄k)], yd(x̄k)) dτ [y(t̄, xk)]+ pk with

pk from (3.5)–(3.6) is the reversible solution of (3.22) for data (3.23).
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3.3. Adjoint calculus for tracking-type functionals. Although the shift-
differential is very useful for analytical purposes, the derivative of tracking-type func-
tionals (1.2), (3.19) can more conveniently be computed via an adjoint-based for-
mula, which yields also a gradient representation for (3.19) w.r.t. the scalar product
of L2(R)× L2(Ωt̄)

m × R
N .

In fact, by using a duality relation (3.18) (see Remark 3.6) between the solution δY
of the variational equation (3.3), and the reversible solution p of the adjoint equation
(3.22) for end data pt̄ = φy(y(t̄, ·), yd)1{x/∈{x̄1,...,x̄K}}, we will be able to obtain also an
adjoint-based formula for the first term of (3.21). This leads to the following result.

Theorem 3.11 (gradient representation for tracking-type functionals). Let the
assumptions of Theorem 3.9 hold and let yd be PC1. Then

d(w,σ)J(y) · (δw0, δw1, s) = (pgu1(·, y, u1), δw1)2,Ωt̄

+ (p(0, ·), δw0)2 +

N∑
i=1

p(0, xi)[u0(xi)]+si,
(3.24)

where p is the reversible solution (cf. Definition 7.5) of the adjoint equation

∂tp + f ′(y)∂xp = −gy(t, x, y, u1)p, p(t̄, ·) = pt̄,(3.25)

pt̄(x) = φ̄y(x)
def
=

{ ∫ 1

0
φy(y(t̄, x+) + τ [y(t̄, x)], yd(x)) dτ, x ∈ I,

0 else.
(3.26)

Thus, the gradient representation of J w.r.t. the scalar product of the Hilbert space
L2(R)× L2(Ωt̄)

m × R
N is given by

∇(w,σ)J(y) =


 p(0, ·)

p gu1
(·, y, u1)

(p(0, xi)[u0(xi)]+)1≤i≤N


 .(3.27)

With the domains Sk, Dk from Theorem 3.2 holds p|Dk
∈ C0,1(Dk ∩ {t > τ}) for

all τ > 0. Moreover p|Sk
is piecewise C0,1 on Sk ∩ {t > τ} for all τ > 0 with

discontinuities along the backward characteristics emanating from discontinuities of
yd. This remains true for τ = 0 on all Dk, Sk that contain no rarefaction wave.

The proof of this theorem is given in section 9.
Remark 3.12.
• The restriction to source terms g that are affine linear w.r.t. y can be dropped
without major changes in our analysis if the stability results of Theorem 7.10
below for the adjoint equation (1.6) can be extended to a discontinuous zeroth
order coefficient gy(t, x, y, u1). See Remark 8.1.

• By Theorem 3.8 nondegeneracy for all shocks at time t̄ holds for a.a. t̄ under
slightly stronger regularity assumptions on (u0, u1). In this sense, the case of
nondegenerate shocks at the observation time t̄ is a generic situation.

Remark 3.13. Once the shift-differentiability of (3.9) is shown, one could also
use the duality relation (3.17) with p̃ being a reversible solution of the averaged adjoint
equation (3.15) with end data (3.26) and then take the limit to deduce the gradient
formula (3.24). For this approach and a detailed analysis of the adjoint equation see
the follow-up paper [27]. In the present paper it is most straightforward to use the
duality relation (3.18) to deduce (3.24) from (3.21).

In the next section we start by collecting several structural results of Dafermos
[8] that will form the basis of our analysis.
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4. Stability and structure of entropy solutions. Our aim is to derive a
shift-differentiability result for entropy solutions y = y(·;u) of

∂ty + ∂xf(y) = g(t, x, y, u1), (t, x) ∈ ΩT
def
= ]0, T [× R,

y(0, x) = u0(x), x ∈ R,
(1.1)

w.r.t. the control u = (u0, u1), where we consider shift-variations of the initial data
u0 and conventional variations of u1. As explained in section 3.1, we fix u0 ∈
PC1(R;x1, . . . , xN ), x1 < x2 < · · · < xN , u1 ∈ L∞(0, T ;C1(R)m), an observation
time t̄ ∈ (0, T ] and consider the mapping

(w0, w1, σ) ∈W −→ y(t̄, ·;u0 + S(xi)
u0

(w0, σ), u1 + w1) ∈ L1(a, b)

for some a < b, where W = PC1(R;x1, . . . , xN )× L∞(0, T ;C1(R)m)× R
N .

Our analysis is based on the theory of generalized characteristics introduced in [8]
to obtain structural information on the solution combined with a duality argument
using the adjoint equation to (1.1). This approach has the advantage that we need
not restrict a priori the class of considered entropy solutions. Thus, the results apply
to solutions with very complicated structure.

In order to ensure the existence of essentially bounded entropy solutions and to
allow the application of the theory of generalized characteristics, we make the following
assumptions that we have already introduced in section 3.

Assumptions:
(A2) (A1) holds, f is twice continuously differentiable, g ∈ L∞(0, T ;C1

loc(R×R×
R
m)), and g is Lipschitz continuous w.r.t. x.

(A3) f ′′ ≥ mf ′′ > 0 for some mf ′′ > 0.
In the next subsection we summarize existence and stability results for entropy so-

lutions of (1.1). In section 4.2 we collect from [8] the necessary results on the structure
of solutions provided by the theory generalized characteristics. These ingredients will
be used in sections 5–8 to prepare the proof in section 9 of the shift-differentiability
result and the other main results that we have stated in section 3.

4.1. Basic properties of entropy solutions. We recall the following exis-
tence, uniqueness, and stability properties of the state equation (1.1); see, e.g., [25]
and [21].

Theorem 4.1. Let (A1) hold. Then for all u = (u0, u1) ∈ L∞(R)×L∞(ΩT )m
def
= U

there exists a unique entropy solution y = y(u) ∈ L∞(ΩT ). After modification on a
set of measure zero, one has y ∈ C([0, T ];L1(−R,R)) for all R > 0. Let Mu > 0 and
Uad = {u ∈ U : ‖u0‖∞ ≤Mu, ‖u1‖∞ ≤Mu}. Then there are My > 0 and Ly > 0
such that for all u, û ∈ Uad the corresponding solutions y, ŷ satisfy

(i) ‖y(t, ·)‖∞ ≤My,
(ii) ‖y(t, ·)− ŷ(t, ·)‖1,[a,b] ≤ Ly(‖u0 − û0‖1,It + ‖u1 − û1‖1,[0,t]×It)

for all t ∈ [0, T ], a < b, where It = [a− tMf ′ , b+ tMf ′ ] with Mf ′ = max|y|≤My
|f ′(y)|.

Moreover, let (A2), (A3) hold and set Ûad = {u ∈ Uad : ‖u1‖L∞(0,T ;C1) ≤Mu}.
Then there exists a constant Mcr > 0 such that for all u ∈ Ûad and all t ∈ ]0, T ] with
E = Mcrmf ′′ Oleinik’s entropy condition

∂xy(t, ·) ≤ 1

(1− e−Et)/Mcr + e−Et/M
(4.1)

holds in the sense of distributions whenever M ∈ [Mcr,∞] is such that ∂xu0 ≤M in
the sense of distributions. In particular, y(t, ·) ∈ BVloc(R) for all t ∈ ]0, T ].
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Proof. For the first part, see, e.g., [25]. The Oleinik entropy condition in this
form can be deduced by a straightforward extension of the proof in [23] to the inho-
mogeneous case; see also [21].

Since for all u ∈ Uad the corresponding solutions y = y(u) of (1.1) satisfy ‖y‖∞ ≤
My, we may modify g for |y| > My in such a way that g satisfies instead of the weaker
growth condition in (A1) a global Lipschitz condition w.r.t. y. To study y(u) for
u ∈ Uad we may therefore assume that instead of (A2) the following holds.

Assumption:
(A2′) (A2) is satisfied and g is globally Lipschitz w.r.t. y.

By this modification of g we can achieve also that the backward solutions of the
characteristic equations associated with (1.1) remain bounded for all end data and
not only for end data obtained from bounded forward solutions. Since we will always
deal with bounded entropy solutions, we will assume without restriction that (A2′)
holds.

4.2. Generalized characteristics and the structure of solutions. We as-
sume throughout this section that (A2), (A3) hold and consider controls u ∈ Ûad with
Ûad from Theorem 4.1. Hence, we may assume without restriction that (A2′) is also
satisfied.

Let u = (u0, u1) ∈ Ûad be given. Then by Theorem 4.1 (1.1) has a unique entropy
solution y = y(u) ∈ L∞(ΩT )∩C([0, T ];L1

loc(R)) with y(t, ·) ∈ BVloc(R), t ∈ ]0, T ] and
‖y‖∞ ≤My. Hence, y admits left and right limits w.r.t. x for all t ∈ ]0, T ]. Moreover,
by (4.1) each discontinuity is admissible, i.e.,

y(t, x−) ≥ y(t, x+) ∀ t ∈ ]0, T ] and ∀ x ∈ R.

These properties allow the application of the theory of generalized characteristics [8].
For notational convenience we consider the representative for y with y(t, x) = y(t, x−).
A Lipschitz continuous curve x = ξ(t) defined on t ∈ [a, b] ⊂ [0, T ] is a (generalized)
characteristic if the differential inclusion holds:

ξ̇(t) ∈ [f ′(y(t, ξ(t)+)), f ′(y(t, ξ(t)−))] a.e. on [a, b].

The local existence of a characteristic through any (t̄, x̄) ∈ ΩT follows from [9]; see
also [8]. Assumption (A1) ensures that ‖y‖∞ ≤ My. Thus, characteristics cannot
escape and exist on the whole interval [0, T ]. Hence, we can always set [a, b] = [0, T ].
Since y is a weak solution of (1.1), it can be deduced [8] that the following actually
holds:

ξ̇(t) =




f ′(y(t, ξ(t))) if y(t, ξ(t)−) = y(t, ξ(t)+),

[f(y(t, ξ(t)))]

[y(t, ξ(t))]
if y(t, ξ(t)−) �= y(t, ξ(t)+)

a.e. on [0,T].

A characteristic is called genuine on [a, b] if y(t, ξ(t)+) = y(t, ξ(t)−) for a.a. t ∈ [a, b].
The study of generalized characteristics in [8] together with the a priori bound

‖y‖∞ ≤My yields the following structure of y.

Proposition 4.2 (structure of entropy solutions [8]). Let u = (u0, u1) ∈ Ûad
with u0 ∈ BVloc(R) and denote by y = y(u) the representative of the entropy solution
of (1.1) with y(t, x) = y(t, x−). Then the following holds:

For each fixed (t̄, x̄) ∈ ΩT the one-sided limits y(t̄, x̄±) exist and satisfy the
entropy condition y(t̄, x̄−) ≥ y(t̄, x̄+). Moreover, the minimal and maximal back-
ward characteristics ξ∓(t) through (t̄, x̄) are genuine, i.e., y(t, ξ∓(t)−) = y(t, ξ∓(t)+),
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t ∈ ]0, t̄[. Moreover, for any genuine characteristic ξ(t) on [0, t̄] one has (with our
convention for the choice of y)

ξ(t) = ζ(t), t ∈ [0, t̄], y(t, ξ(t)) = v(t), t ∈ ]0, t̄[, u0(ξ(0)−) ≤ v(0) ≤ u0(ξ(0)+),
(4.2)

y(t̄, ξ(t̄)−) ≥ v(t̄) ≥ y(t̄, ξ(t̄)+),

where (ζ, v) solves the classical characteristic equations

ζ̇(t) = f ′(v(t)),

v̇(t) = g(t, ζ(t), v(t), u1(t, ζ(t))).
(4.3)

In particular, two different genuine characteristics may intersect only at their end
points. Finally, if ξ is the minimal characteristic ξ− or the maximal characteristic
ξ+ through (t̄, x̄), then (4.2) holds with the solution (ζ, v) of (4.3) for the initial values

(ζ(t̄), v(t̄)) =

{
(x̄, y(t̄, x̄−)) if ξ = ξ−,
(x̄, y(t̄, x̄+)) if ξ = ξ+.

(4.4)

We remark that for any minimal or maximal backward characteristic ξ∓(t) the
point z = ξ∓(0) is a continuity point of u0 or a nonentropy-admissible discontinuity,
i.e., u0(z−) < u0(z+); cf. (4.2).

Denote for u1 ∈ L∞(0, T ;C1(R)m) and z, w ∈ R by (ζ(·; z, w, u1), v(·; z, w, u1))
the solution of (4.3) with

ζ(0; z, w, u1) = z, v(0; z, w, u1) = w.(4.5)

Let (t̄, x̄) ∈ ΩT be a point of continuity of y w.r.t. x. Then y is by [8] continuous at
(t̄, x̄) and the backward characteristic ξ through (t̄, x̄) is unique and genuine. More-
over, z̄ = ξ(0) is a continuity point of u0 or u0(z̄−) < u0(z̄+). In the first case we
have

x̄ = ζ(t̄; z̄, u0(z̄), u1),(4.6)

y(t̄, x̄) = v(t̄; z̄, u0(z̄), u1).(4.7)

In the second case (t̄, x̄) lies on a rarefaction wave, i.e.,

x̄ = ζ(t̄; z̄, w̄, u1),(4.8)

y(t̄, x̄) = v(t̄; z̄, w̄, u1)(4.9)

with some w̄ ∈ [u0(z̄−), u0(z̄+)].
To study the smoothness of (t, x, û) −→ y(t, x; û) in a suitable neighborhood of

(t̄, x̄, u) we will show that (4.6) can locally be solved for z̄ (or (4.8) for w̄) as long as
(t̄, x̄) is not a shock generation point yielding with (4.7) (or (4.9)) an expression for y.

We begin by stating smoothness properties of the functions on the right-hand
side in (4.8) and (4.9). The following result on ordinary differential equations will be
useful.

Proposition 4.3. Let h(t,X, U) ∈ L∞(0, T ;C1
loc(Rn×R

m)n) and Lipschitz w.r.t.
X. Set H̄

def
= {(Z,U) ∈ R

n×L∞(0, T ;C1(Rn)m) : ‖U‖L∞(0,T ;C1(Rn)) < M} for some
M > 0. Then for all (Z,U) ∈ H̄ there exists a unique solution X = X(·;Z,U) ∈
C0,1([0, T ])n of

Ẋ(t) = h(t,X(t), U(t,X(t))), X(0) = Z,
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and the mapping (Z,U) ∈ (H̄, ‖ · ‖
Rn×L2(0,T ;Ci(Rn)m)) −→ X(·;Z,U) ∈ C([0, T ])n

is Lipschitz continuous for i = 0 and continuously Fréchet differentiable for i =
1. Moreover, (t, Z) ∈ [0, T ] × R

n → X(t;Z,U) is Lipschitz continuous for U ∈
L∞(0, T ;C1(Rn)m). Finally, for any closed set S ⊂ R

r the mapping

(Z,U) ∈ C(S)× L∞(0, T ;C1(Rn)m) −→ X(·;Z(·), U) ∈ C([0, T ]× S)n

is continuously Fréchet differentiable.
The proof is standard and can, for example, be obtained by a refinement of the

analysis in the appendix of [22] using the fact that the Nemyckii operator

(Z,U) ∈ L∞(0, T )× (L∞(0, T ;C1(R)), ‖ · ‖L2(0,T ;C1(R))) −→ U(·, Z(·)) ∈ L2(0, T )

is continuously Fréchet differentiable. Since the remainder term in the first order
expansion of (Z,U) −→ X(·;Z,U) can be estimated uniformly for all Z in a compact
set, the last assertion follows immediately. We omit the technical details.

Now we obtain the following properties for solutions of (4.3).
Lemma 4.4. Let (A2) hold and denote for (z, w, u1) ∈ R×R×L∞(0, T ;C1(R)m)

by (ζ, v)(·; z, w, u1) the solution of (4.3) for initial data (4.5). Let Mw,Mu > 0 be
given and

Hi
def
= R

2 × L2(0, T ;Ci(R)m), i = 0, 1,

H
def
= {(z, w, u1) ∈ H1 : |w| < Mw, ‖u1‖L∞(0,T ;C1(R)) < Mu}.

Then the mapping

(z, w, u1) ∈ (H, ‖ · ‖Hi
) −→ (ζ, v)(·; z, w, u1) ∈ C([0, T ])2(4.10)

is Lipschitz continuous for i = 0 and continuously Fréchet differentiable for i = 1,
and on H the right-hand side is uniformly Lipschitz w.r.t. t. Moreover, with δν =
(δz, δw, δu1) one has

d(z,w,u1)(ζ, v)(·; z, w, u1) · δν = (δζ, δv)(·; z, w, u1; δν),(4.11)

where (δζ, δv) = (δζ, δv)(·; z, w, u1; δz, δw, δu1) solves the linearized equation

δ̇ζ = f ′′(v) δv,

δ̇v = gx(:) δζ + gy(:) δv + gu1(:) (∂xu1(t, ζ)δζ + δu1(t, ζ)),

δζ(0) = δz, δv(0) = δw,

(4.12)

with (:) = (t, ζ, v, u1(t, ζ)). The Fréchet derivative (4.11) can be continuously extended
to L(H0, C([0, T ])) uniformly bounded on bounded subsets of H. Finally, for any
closed S ⊂ ΩclT and any bounded interval J the mapping

(z, u0, u1) ∈ C(S;J)× C1(J)× L∞(0, T ;C1(R)m)

−→ (ζ, v)(·t; z(·), u0(z(·)), u1) ∈ C(S)2
(4.13)

is continuously Fréchet differentiable, where ·t denotes the projection (t, x) −→ t. If
(A2′) holds, then the same statements are true for backward solutions of (4.3).

Proof. We can apply Proposition 4.3 if an a priori bound for v in (4.3) is known,
since this ensures with (A2) that the right-hand side in (4.3) admits a Lipschitz
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constant w.r.t. (ζ, v, u1) for all (ζ, v, u1) of interest. To derive such a bound we use
(A1) and get constants C1, C2 > 0 with d

dt |v(t)| ≤ C1 + C2|v(t)|, t ∈ ]0, T [. Since
|v(0)| = |w| ≤Mw, the Gronwall lemma yields

|v(t)| ≤ (Mw + C1T )eC2T , t ∈ [0, T ].

Now the proof can be obtained by using Proposition 4.3.
The fact that (4.11) can be continuously extended to L(H0, C([0, T ])) is obvious

from the properties of (4.12). The differentiability of (4.13) follows from Proposi-
tion 4.3, since the Nemyckii operator

(z, u0) ∈ C(S;J)× C1(J) −→ u0(z(·)) ∈ C(S)

is continuously Fréchet differentiable.
If (A2′) is satisfied, then we have the stronger growth estimate |g(t, x, y, u1)| ≤

C1 + C2|y| and the above arguments can be applied to backward solutions.
To ensure backward stability of solutions to (4.3) for all end data—not only the

relevant ones obtained from forward solutions—it will be convenient to assume (A2′)
instead of (A2), which may be done without restriction by our considerations at the
end of section 4.1.

4.3. Classification of continuity points. For the following analysis of the
structure of entropy solutions we assume that u0 ∈ PC1(R;x1, . . . , xN ), x1 < · · · <
xN , and u1 ∈ L∞(0, T ;C1(R)m).

For further reference we distinguish several cases for continuity points (t̄, x̄). We
denote the genuine backward characteristic through (t̄, x̄) by ξ and set z̄ = ξ(0). We
now consider the following cases.

Case C. Let (t̄, x̄) be a continuity point of y = y(u) such that z̄ �= xi, i =
1, . . . , N . Since u0 ∈ PC1(R;x1, . . . , xN ), there is an interval J containing z̄ such
that u0|J ∈ C1(J). Now

(z, u0, u1) ∈ J×C1(J)×L∞(0, T ;C1(R)m) −→ (ζ, v)(·; z, u0(z), u1) ∈ C([0, T ])2
(4.14)

is continuously Fréchet differentiable by Lemma 4.4. Hence, d
dz ζ(t; z, u0(z), u1) exists

and is continuous on (t, z) ∈ [0, T ] × J . Since genuine characteristics may intersect
only at their end points and contain only continuity points, it is obvious that [8]

d

dz
ζ(t; z, u0(z), u1)|z=z̄ ≥ 0, 0 ≤ t ≤ t̄.(4.15)

Moreover, if (t̄, x̄) is not an element of the shock set, i.e., if the unique forward
characteristic is genuine until some t̄ + τ , τ > 0, then there is β > 0 with

d

dz
ζ(t; z, u0(z), u1)|z=z̄ ≥ β > 0, 0 ≤ t ≤ t̄.(4.16)

In fact, we have

d

dz
ζ(t; z, u0(z), u1)|z=z̄ = δζ(t; z̄, u0(z̄), u1; 1, u′

0(z̄), 0)(4.17)

with δζ given by (4.12). Moreover, all points on the genuine backward characteristic
ζ(t) = ζ(t; z̄, u0(z̄), u1) are continuity points. Assume that δζ(t̃) = 0 for the right-
hand side of (4.17) holds at some t̃ ∈ [0, t̄]. Then δζ̇(t̃) �= 0, since otherwise, by the
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first line in (4.12), δv(t̃) = 0. This is impossible because the unique backward solution
of (4.12) would vanish in contradiction to the initial values. From (4.15) we thus have
δζ̇(t̃) < 0, and therefore d

dz ζ(t; z, u0(z), u1)|z=z̄ < 0 for small t > t̃. Hence, the unique
forward characteristic through (t̃, ζ(t̃)) cannot be genuine, since the unique candidate
ζ(t) = ζ(t; z̄, u0(z̄), u1) is not admissible by (4.15). Since the left-hand side of (4.16)
is continuous on [0, t̄], (4.16) must hold for some β > 0.

Case CB. (t̄, x̄) is a continuity point, z̄ = xi, and u0 is continuous at z̄. In
this case by the same arguments the one-sided derivatives must satisfy (4.15) and in
addition (4.16) if (t̄, x̄) is not in the shock set.

Cases R, RB. If (t̄, x̄) is a continuity point and z̄ = xi with u0(z̄−) < u0(z̄+),
then three (essentially two) cases can occur.

Case R. All backward characteristics through (t̄, x) with x in a small neighbor-
hood of x̄ meet t = 0 in z̄. Then similar arguments as above show that with w̄
from (4.8)

d

dw
ζ(t; z̄, w, u1)|w=w̄ ≥ 0, 0 ≤ t ≤ t̄,(4.18)

holds, and if (t̄, x) is not a point of the shock set, there is β > 0 with

d

dw
ζ(t; z̄, w, u1)|w=w̄ ≥ βt > 0, 0 < t ≤ t̄.(4.19)

Case RB. (t̄, x̄) lies on the left or right boundary of a rarefaction wave. In this
case the one-sided derivatives satisfy (4.15) and (4.18) (and moreover (4.16) and (4.19)
if (t̄, x) is not a shock generation point), respectively.

Finally, it will be convenient to indicate that one of the above cases holds and the
point is not in the shock set (i.e., not a shock generation point), which means that
the unique forward characteristic remains genuine at least until some t̄ + τ , τ > 0.

Case Cc, CBc, Rc, or RBc. If (t̄, x̄) is of type C and (4.16) holds, then we call
(t̄, x̄) of type Cc. If (t̄, x̄) is of type CB and (4.16) holds for the one-sided derivatives,
then we call (t̄, x̄) of type CBc. Similarly, if (t̄, x̄) is of type R and (4.19) holds, then
we call (t̄, x̄) of type Rc. If (t̄, x̄) is of type RB and (4.16), respectively, (4.19), holds
for the one-sided derivatives (see Case RB above), then we call (t̄, x̄) of type RBc.

4.4. Classification of shock points. Now let (t̄, x̄) be a shock point located on
the shock curve η(t). We know from [8] and section 4.2 that the minimal and maximal
backward characteristics ξ∓(t) through (t̄, x̄) are genuine with initial condition (4.4).
Thus, if we set z̄∓ = ξ∓(0) we can classify the left and right states of the shock
exactly as continuity points before, depending on whether or not z̄∓ = xi for some
i. Moreover, the corresponding equations (4.6), (4.7) or (4.8), (4.9) hold with z̄∓ and
y(t̄, x̄∓) instead of z̄, y(t̄, x̄). In particular, the following cases will be important.

Case CcCc. The extreme backward characteristics ξ∓ through (t̄, x̄) have the
same properties as the backward characteristic through a continuity point of type Cc,
i.e., we have z̄∓ = ξ∓(0) �= xi, i = 1, . . . , N , and (4.16) holds for ξ∓ in z̄ = z̄∓.

Case RcRc. The extreme backward characteristics ξ∓ through (t̄, x̄) have the
same properties as the backward characteristic through a continuity point of type
Rc; i.e., with z̄∓ = ξ∓(0), u0(z̄−) < u0(z̄+) holds for z̄ = z̄∓, (4.8)–(4.9) hold
with (x̄, z̄) = (x̄∓, z̄∓), w̄ = w̄∓ ∈ (u0(z̄−), u0(z̄+)), and (4.19) holds for ξ∓ with
(z̄, w̄) = (z̄∓, w̄∓).

Cases CcRc, RcCc. In Case CcRc the minimal backward characteristic ξ− has
the properties as in Case Cc, the maximal characteristic ξ+ has the properties as in
Case Rc. The converse is true in Case RcCc.
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5. Differentiability at continuity points. We start by analyzing the differ-
entiability properties w.r.t. the control at continuity points that are not shock gener-
ation points and that are moreover not located on the boundary of a rarefaction wave
(Case Cc or Rc).

5.1. Differentiability in continuity points of class Cc. We study first Case
Cc; i.e., (t̄, x̄) satisfies Case C and is not a shock generation point. By continuity
there are z− < z̄ < z+ such that

u0 ∈ C1(J),
d

dz
ζ(t; z, u0(z), u1) ≥ β > 0 ∀ t ∈ [0, t̄], ∀ z ∈ ]z− − ρ, z+ + ρ[

def
= J

(5.1)

for some β, ρ > 0. This allows us to solve (4.6) locally for z̄ yielding with (4.7) a local
regularity result for y.

5.1.1. Solution of the characteristic equations. We have the following re-
sult on the solvability of (4.6) and the resulting properties of y according to (4.7).

Lemma 5.1. Let (A2)–(A3) hold, let u = (u0, u1) ∈ PC1(R;x1, . . . , xN ) ×
L∞(0, T ;C1(R)m), and let (5.1) hold for some β, ρ > 0. Then there is τ > 0 and a
neighborhood

V ⊂ C1(J)× L∞(0, T ;C1(R)m)

of u = (u0, u1) such that

d

dz
ζ(t; z, û0(z), û1) ≥ β

2
> 0 ∀ (t, z) ∈ [0, t̄ + τ ]× J, ∀ û ∈ V.(5.2)

Moreover, for all û ∈ V and all (t, x) in the stripe

S = S(τ)
def
= {(t, x) : t ∈ [0, t̄ + τ ], x ∈ [ξ−(t), ξ+(t)]} ,

where ξ∓(t) = ζ(t; z∓, u0(z∓), u1), the equation

x = ζ(t; z, û0(z), û1)(5.3)

has in J a unique solution z = Z(t, x, û). Set

Y (t, x, û)
def
= v(t;Z(t, x, û), û0(Z(t, x, û)), û1).(5.4)

Then Z(·, û), Y (·, û) ∈ C0,1(S). The mappings

(x, û) ∈ ]ξ−(t), ξ+(t)[× V −→ (Z, Y )(t, x, û), t ∈ [0, t̄ + τ [ ,(5.5)

û ∈ V −→ (Z, Y )(·, û) ∈ C(S)2(5.6)

are continuously Fréchet differentiable. The derivatives of (5.5) are

d(x,u)Z(t, x, û) · (δx, δu) =
δx− δζ(t; z, û0(z), û1; 0, δu0(z), δu1)

δζ(t; z, û0(z), û1; 1, û′
0(z), 0)

,(5.7)

d(x,u)Y (t, x, û) · (δx, δu) = δv(t; z, û0(z), û1; 1, û′
0(z), 0) d(x,u)Z(t, x, û) · (δx, δu)

+ δv(t; z, û0(z), û1; 0, δu0(z), δu1),

(5.8)
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where z = Z(t, x, û) and (δζ, δv) are given by (4.12). The derivative of (5.6) is

du(Z, Y )(·, û) · δu = d(x,u)(Z, Y )(·, û) · (0, δu).(5.9)

Notation 5.2. Given t̄, z−, z+ satisfying (5.1), it will be convenient to indicate
by

(Y,Z, V, S(τ), J) = YC(u, t̄, [z−, z+])

that the open interval J ⊃ [z−, z+], the stripe S = S(τ), the neighborhood V , and the
functions Y,Z are obtained by applying Lemma 5.1.

Remark 5.3. By construction, Y (·, û) ∈ C0,1(S) is an S classical solution of
(1.1) for the control û ∈ V .

Remark 5.4. It is not difficult to show that δY = duY (·, u) · δu ∈ C(S) is the
unique broad solution (i.e., solution along characteristics) of the linearized equation

∂tδY + ∂x(f ′(Y )δY ) = gy(t, x, Y, u1)δY + gu1(t, x, Y, u1)δu1, (t, x) ∈ S,

δY (0, x) = δu0(x), x ∈ [z−, z+],
(5.10)

where Y = Y (·, u). By Remark 5.3 and the differentiability of (5.6) we see from

∂tY (·; û) + ∂xf(Y (·; û)) = g(t, x, Y (·; û), û1)

with û = u + σδu by applying test functions p ∈ C1(S), integrating by parts, and
taking the derivative in σ = 0 that δY is also a weak solution of (5.10). Even more,
for any domain D ⊂ S with Lipschitz boundary and any p ∈ C0,1(D), one has

(p (n1 + n2f
′(Y )), δY )2,∂D

= (∂tp + f ′(Y )∂xp + gy(t, x, Y, u1)p, δY )2,D + (p gu1(t, x, Y, u1), δu1)2,D,
(5.11)

where (n1, n2)T is the unit outer normal of D. In section 9.3 we will choose p as
a solution of the adjoint equation (3.25)–(3.26) to obtain from (3.21) the gradient
representation (3.24) for tracking-type functionals (1.2), (3.19).

Proof of Lemma 5.1. Let (û0, û1) ∈ C1(J)×L∞(0, T ;C1(R)m). We have already
observed that Lemma 4.4 implies the continuous Fréchet differentiability of (4.14).
Thus, we deduce from (5.1) by continuity that (5.2) holds with a sufficiently small
neighborhood V ⊂ C1(J) × L∞(0, T ;C1(R)m) of u and τ > 0 small enough. Hence,
for all t ∈ [0, t̄ + τ ] and û ∈ V the mapping

z ∈ J −→ ζ(t; z, û0(z), û1)

is strictly monotone increasing and ]ζ(t; z−, û0(z−), û1) − βρ/2, ζ(t; z+, û0(z+), û1) +
βρ/2[ is contained in its image. Hence, for sufficiently small V and τ we get by con-
tinuity that [ξ−(t), ξ+(t)] is contained in the image for all t ∈ [0, t̄ + τ ] and all û ∈ V .
As a consequence, for all (t, x) ∈ S and all û ∈ V there exists exactly one solution
z = Z(t, x, û) ∈ J of (5.3). Since Z(t, x, û) ∈ J for all considered x, û, we conclude
from (5.2), (5.3) and the continuous Fréchet differentiability of (4.14) by the implicit
function theorem that the first component of (5.5) is continuously Fréchet differen-
tiable. By (5.4) and the continuous differentiability of (4.14) the second component
in (5.5) is also continuously Fréchet differentiable. The formula (5.7) is an immedi-
ate consequence of the implicit function theorem, and (5.8) follows from (5.4). The
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Lipschitz continuity of Z(·, û) follows directly from (5.2) and the Lipschitz continuity
of (5.3) w.r.t. t, x. Now the Lipschitz continuity of Y (·, û) is clear by (5.4) and the
Lipschitz continuity of v(t; z, w, û1) w.r.t. t, z, w.

To show the differentiability of (5.6) we observe that for all û ∈ V the function
Z(·, û) is in C(S;J) and satisfies F (Z(·, û), û) = 0 with the operator

F : (z, û0, û1) ∈ C(S;J)× C1(J)× L∞(0, T ;C1(R)m)

−→ (ζ(·t; z(·), û0(z(·)), û1)− ·x) ∈ C(S),

where ·t, ·x denote the projections on the t- and x-components, respectively. F is
continuously Fréchet differentiable by Lemma 4.4, and we have obviously

dzF (z, û) · δz =

(
(t, x) −→ d

dz̃
ζ(t; z̃, û0(z̃), û1)|z̃=z(t,x)δz(t, x)

)
.

By (5.2) we get that (dzF (z, û))−1 exists and is bounded for all z ∈ C(S;J) and all
û ∈ V . Hence, the first component of (5.6) is continuously Fréchet differentiable by
the implicit function theorem, and now by (5.4) and Lemma 4.4 the second is also.
The formula (5.9) is obvious. The properties of these mappings follow directly from
Lemma 4.4.

5.1.2. Differentiability result in continuity points of type Cc. We are
now able to characterize the properties of y in continuity points of class Cc.

Lemma 5.5 (differentiability properties in continuity points of class Cc). Let
(A2)–(A3) hold and let u = (u0, u1) ∈ PC1(R;x1, . . . , xN ) × L∞(0, T ;C1(R)m). Let
(t̄, x̄) ∈ ΩT be a point of continuity of y = y(·;u) of class C c, i.e., outside the shock
set such that z̄ �= xi, 1 ≤ i ≤ N , holds for z̄ given by (4.6). Then the following hold:

(i) There is a maximal nonempty open interval I such that {t̄} × I does not
contain points of the shock set and that all backward characteristics through
(t̄, x), x ∈ I, meet t = 0 not in xi, i = 1, . . . , N . y(t̄, ·;u) is continuously
differentiable on I.

(ii) Let Î = ]x−, x+[ be an arbitrary interval with closure in I, denote by ξ∓ the
genuine backward characteristics through (t̄, x∓), and set z∓ = ξ∓(0). Then
there are β > 0, ρ > 0 such that (5.1) is satisfied. Using Notation 5.2 let
(Y,Z, V, S(τ), J) = YC(u, t̄, [z−, z+]) be obtained according to Lemma 5.1.
Given M∞ > 0 there are R > 0, ν > 0 such that after a possible reduction of
τ and V the following holds:

y(t, x; û) = Y (t, x, û0|J , û1) ∀ (t, x) ∈ S, ∀ û ∈ V̂ , where

V̂
def
= {(û0, û1) ∈ L∞(R)× L∞(0, T ;C1(R)m) : (û0|J , û1) ∈ V,

‖û0 − u0‖∞,R\J < M∞, ‖û0 − u0‖1,[−R,R]\J < ν}.

Hence, the differentiability results of Lemma 5.1 for Y carry over to y|S.
Proof. (i) (t̄, x̄) is of class Cc, since z̄ �= xi, i = 1, . . . , N , and (t̄, x̄) is a continuity

point outside the shock set. Hence, we know that (4.16) holds for some β > 0, and
we find z− < z̄ < z+, ρ > 0 such that (5.1) is satisfied. Therefore, Lemma 5.1
is applicable, yielding (Y,Z, V, S(τ), J) = YC(u, t̄, [z−, z+]); see Notation 5.2. Then
clearly u0 ∈ C1(J), i = 1, . . . , N . By the above-mentioned results of [8] we have (cf.
(4.6), (4.7))

y(t̄, x̄;u) = Y (t̄, x̄, u).
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Now x −→ y(t̄, x;u) is continuous outside a countable set and the identities (4.6),
(4.7) with x̃, z̃ instead of x̄, z̄ hold for all continuity points (t̄, x̃). Using the backward
stability of (4.3) according to Lemma 4.4 we see that z̃ → z̄ for continuity points x̃
with x̃ → x̄. Hence, for all continuity points x̃ ∈ ]ξ−(t̄), ξ+(t̄)[ with z̃ ∈ J we must
have z̃ = Z(t̄, x̃, u) and thus

y(t̄, x;u) = Y (t̄, x, u)

for all x ∈ Ī
def
= ]x̄−, x̄+[, where Ī is sufficiently small with x̄ ∈ Ī, Ī ⊂ ]ξ−(t̄), ξ+(t̄)[

(first for the dense set of continuity points x = x̃ ∈ Ī and thus for all x ∈ Ī by
our convention y(t, x) = y(t, x−) for the choice of y). This shows that y(t̄, ·;u) is
continuously differentiable on Ī �= ∅. Moreover {t̄} × Ī does not contain points of the
shock set, since (5.1) holds, and all backward characteristics starting in {t̄} × Ī meet
t = 0 not in xi, i = 1, . . . , N . Hence, there exists a maximal open nonempty interval
I with the asserted properties.

(ii) Let Î
def
= ]x−, x+[ �= ∅ be arbitrary with closure in I. Now for any point

x̄ ∈ [x−, x+] we can argue as above and find an interval-neighborhood Ī with the
above properties. Taking a finite covering, we get the following: Denote by ξ∓ the
genuine backward characteristics through (t̄, x∓); set z∓ = ξ∓(0). By the finite cov-
ering, we obtain ρ > 0 and β > 0 such that (5.1) holds. Hence, Lemma 5.1 yields
(Y,Z, V, S(τ), J) = YC(u, t̄, [z−, z+]). Then we have from the proof of (i) that

y(t̄, x;u) = Y (t̄, x, u)

for all x ∈ Î. We show also that y(·;u) = Y (·, u) on S = S(τ) after a possible
reduction of τ > 0. In fact, (t̄, x∓) are continuity points of y(·;u), since y(t̄, ·;u) is
continuous at x∓; cf. [8]. Hence, by (5.1) and [8, Lem. 5.2], (t̄, x∓) are not shock
generation points, i.e., the genuine characteristics ξ∓ remain genuine until t̄+ τ after
a possible reduction of τ > 0. Now take any (t, x) ∈ S. The extreme backward
characteristics through (t, x) are genuine and may not intersect ξ∓. Hence, they stay
in S and must thus coincide with ζ(·;Z(t, x, u), u0(Z(t, x, u)), u1), which yields

y(t, x;u) = Y (t, x, u) ∀ (t, x) ∈ S.

Since Î
def
= ]x−, x+[ was an arbitrary interval with closure in I, the same arguments

apply to Ĩ = ]x− − 3η, x+ + 3η[ for η > 0 small enough, yielding, after a possible
reduction of τ , that

y(t, x;u) = Y (t, x, u) ∀ (t, x) ∈ S̃, Z(t, x, u) ∈ J ∀ (t, x) ∈ S̃

holds, where S̃ = S̃(τ) is confined by the genuine backward characteristics ξ̃∓ through
(t̄, x∓ ∓ 3η). We can clearly choose τ > 0 small enough such that with t̃ = t̄ + τ the
inequalities ξ̃−(t̃) < ξ−(t̃) − 2η and ξ̃+(t̃) > ξ+(t̃) + 2η hold. Now let M∞ > 0 be
given. We will show that there are R > 0, ν > 0 such that after a possible reduction
of V and τ > 0

y(t, x; û) = Y (t, x; û) ∀ (t, x) ∈ S, ∀ û ∈ V̂(5.12)

holds with V̂ defined in (ii). To this purpose we note that independent of ν,R there is
M > 0 such that ‖û0‖∞ < M and ‖û1‖∞ < M for all û ∈ V̂ . Thus, by Theorem 4.1(i)

there is My > 0 with ‖y(.; û)‖∞ ≤My for all û ∈ V̂ , and we can thus for convenience
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assume (A2′) instead of (A2), ensuring with Lemma 4.4 the local Lipschitz stability

of backward characteristics. Thus, if we denote by (ζ t̃, vt̃)(t;x,w, u1) the backward

solution of (4.3) with (ζ t̃, vt̃)(t̃;x,w, u1) = (x,w), we can reduce V and find ε > 0
such that

ζ t̃(0;x,w, û1) ∈ J, ζ t̃(t;x,w, û1)

{
< ξ−(t) if x ∈ [ξ̃−(t̃), ξ−(t̃)− η],

> ξ+(t) if x ∈ [ξ+(t̃) + η, ξ̃+(t̃)],
t ∈ [0, t̃],

(5.13)

whenever û ∈ V̂ , |w − y(t̃, x;u)| ≤ ε. Now we have for IR = [−R,R] with sufficiently
large R > 0 by Theorem 4.1(ii) the local L1-stability estimate

‖y(t̃, ·; û)− y(t̃, ·;u)‖1,[ξ̃−(t̃),ξ̃+(t̃)] ≤ C (‖û0 − u0‖1,IR + ‖û1 − u1‖1,[0,T ]×IR)(5.14)

for all û ∈ V̂ with C only depending on f, g, u, V,M∞. From (5.14) and the definition
of V̂ we deduce that for ν > 0 small enough

ess inf
x∈I(ξ̃∓(t̃),ξ∓(t̃)∓η)

|y(t̃, ·; û)− y(t̃, ·;u)| < Cν

η
≤ ε(5.15)

whenever û ∈ V̂ . Since y(t̃, ·; û) ∈ BVloc(R), we obtain by combining (5.13) and (5.15)
that for any û ∈ V̂ we can find continuity points x̂∓ ∈ I(ξ̃∓(t̃), ξ∓(t̃)∓ η) of y(t̃, ·; û)

such that the genuine backward characteristics ξ̂∓(t) = ζ t̃(t; x̂∓, y(t̃, x̂∓; û), û1) sat-

isfy (5.13) with x = x̂∓, w = y(t̃, x̂∓; û), respectively. Since ξ̂∓(0) ∈ J , we must

have ξ̂∓(0) = Z(t̃, x̂∓, û) and therefore y(t̃, x̂∓; û) = Y (t̃, x̂∓, û). Now any genuine
backward characteristic ξ of y(·; û) through (t, x) ∈ S may not leave the area con-

fined by the genuine characteristics ξ̂∓. Therefore, ξ(0) ∈ J and ξ must by Lemma
5.1 coincide with the unique genuine forward characteristic starting in Z(t, x, û) and,
consequently, y(t, x; û) = Y (t, x, û). Thus, (5.12) is proven.

5.2. Differentiability in the interior of rarefaction waves (Case Rc).
In a second step, we look at continuity points of class Rc, i.e., located outside the
shock set in the interior of a rarefaction wave. Then (4.8), (4.9) hold with z̄ = xi,
u0(z̄−) < u0(z̄+) for some i ∈ {1, . . . , N} and some w̄ ∈ ]u0(z̄−), u0(z̄+)[. Moreover,
we obtain from (4.19) by continuity w− < w̄ < w+ and β, ρ > 0 with

d

dw
ζ(t; z̄, w, u1) ≥ βt > 0 ∀ t ∈ ]0, t̄], ∀w ∈ ]w− − ρ,w+ + ρ[

def
= Jw.(5.16)

Then we can locally solve (4.8) yielding with (4.9) a representation for rarefaction
waves.

5.2.1. Solution of the characteristic equations. The following lemma is a
counterpart of Lemma 5.1 for the solution of (4.8) w.r.t. w̄ and the resulting properties
of y in (4.9).

Lemma 5.6. Let assumptions (A2)–(A3) hold, let (u0, u1) ∈ PC1(R;x1, . . . , xN )×
L∞(0, T ;C1(R)m), and let (5.16) hold for some β, ρ > 0. Then there is τ > 0 and a
neighborhood V1 ⊂ L∞(0, T ;C1(R)m) of u1 such that

d

dw
ζ(t; z̄, w, û1) ≥ β

2
t > 0 ∀ (t, w) ∈ ]0, t̄ + τ ]× Jw, ∀ û1 ∈ V1.(5.17)
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Moreover, for all û1 ∈ V1 and all (t, x) in the stripe

S
def
= {(t, x) : t ∈ ]0, t̄ + τ ], x ∈ [ξ−(t), ξ+(t)]} , ξ∓(t) = ζ(t; z̄, w∓, u1),

the equation

x = ζ(t; z̄, w, û1)(5.18)

has in Jw a unique solution w = W (t, x, û1). Set

Yr(t, x, û1)
def
= v(t; z̄,W (t, x, û1), û1).(5.19)

Then W (·, û1), Yr(·, û1) ∈ C0,1(S ∩ {t ≥ t̃}) for any t̃ ∈ ]0, t̄[ and the mappings

(x, û1) ∈ ]ξ−(t), ξ+(t)[× V1 −→ (W,Yr)(t, x, û1), t ∈ ]t̃, t̄ + τ [ ,(5.20)

û1 ∈ V1 −→ (W,Yr)(·, û1) ∈ C(S ∩ {t ≥ t̃
}

)2(5.21)

are continuously Fréchet differentiable. The derivatives of (5.20) are

d(x,u1)W (t, x, û1) · (δx, δu1) =
δx− δζ(t; z̄, w, û1; 0, 0, δu1)

δζ(t; z̄, w, û1; 0, 1, 0)
,(5.22)

d(x,u1)Yr(t, x, û1) · (δx, δu1) = δv(t; z̄, w, û1; 0, 1, 0) d(x,u1)W (t, x, û1) · (δx, δu1)

+ δv(t; z̄, w, û1; 0, 0, δu1),

(5.23)

where w = W (t, x, û1) and (δζ, δv) are given by (4.12). The derivative of (5.21) is

du1(W,Yr)(·, û1) · δu1 = d(x,u1)(W,Yr)(·, û1) · (0, δu1).(5.24)

Finally, there is C > 0 such that

|du1
(W,Yr)(·, û1) · δu1| ≤ C t ‖δu1‖L∞(0,T ;C(R)) in S,

which allows a continuous extension to (0, z̄) by the value 0.
Proof. Except for the last assertion the proof is very similar to the one of Lemma

5.1 and therefore omitted. For the last statement we observe that with a generic con-
stant C an application of Gronwall’s lemma to (4.12) yields |δv(t; z̄, w, û1; 0, 0, δu1)| ≤
C t ‖δu1‖L∞(0,T ;C(R)) and then |δζ(t; z̄, w, û1; 0, 0, δu1)| ≤ C t2 ‖δu1‖L∞(0,T ;C(R)) by

the first equation in (4.12). Using this together with (5.17) in (5.22), (5.23) gives the
asserted bound.

Notation 5.7. Given t̄, z̄, w−, w+ satisfying (5.16) for some β, ρ > 0, we indicate
by

(Yr,W, V1, S(τ), Jw) = YR(u, t̄, z̄, [w−, w+])

that the open interval Jw ⊃ [w−, w+], the stripe S = S(τ), the neighborhood V1, and
the functions Yr, Z are obtained by applying Lemma 5.6.

Remark 5.8. By construction, Yr(·, û1) ∈ C0,1(S ∩ {t > t̃}) is for any t̃ ∈ ]0, t̄[
on S ∩ {t > t̃} a classical solution of (1.1) for the control û1 ∈ V1.

Remark 5.9. It can easily be verified that δY = du1Yr(·, u1) · δu1 ∈ C(S) is a
broad solution of the linearized equation

∂tδY + ∂x(f ′(Yr)δY ) = gy(t, x, Yr, û1)δY + gu1(t, x, Yr, û1)δu1, (t, x) ∈ S,

lim
(t,x)∈S,t→0

δY (t, x) = 0.
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Moreover, using the same arguments as in Remark 5.4, δY is also a weak solution,
and for every domain D ⊂ S with Lipschitz boundary and any p ∈ C(D) with p ∈
C0,1(D∩{t ≥ t̃}) for all t̃ ∈ ]0, t̄[, the identity (5.11) holds. This follows by integrating
by parts over D ∩ {t > t̃} and letting t̃→ 0.

5.2.2. Differentiability result in continuity points of type Rc. Using
Lemma 5.6 we obtain the following regularity result at continuity points that are
located on the interior of a rarefaction wave.

Lemma 5.10 (differentiability properties in continuity points of class Rc). Let
(A2)–(A3) hold and let u = (u0, u1) ∈ PC1(R;x1, . . . , xN ) × L∞(0, T ;C1(R)m). Let
(t̄, x̄) ∈ ΩT be a point of continuity of y = y(·;u) outside the shock set such that with
z̄, w̄ in (4.8), (4.9), u0(z̄−) < w̄ < u0(z̄+) holds. Then the following statements are
true:

(i) There is a maximal nonempty open interval I such that {t̄} × I does not
contain points of the shock set and such that all backward characteristics
through (t̄, x), x ∈ I, meet t = 0 in z̄. y(t̄, ·;u) is continuously differentiable
on I.

(ii) Let J be an arbitrary neighborhood of z̄. Let Î = ]x−, x+[ be an arbitrary
interval with closure in I, and denote by ξ∓ the genuine backward character-
istics through (t̄, x∓) and by w∓ ∈ ]u0(z̄−), u0(z̄+)[ the corresponding values
of w̄ in (4.8), (4.9). Then there are β > 0, ρ > 0 such that (5.16) is sat-
isfied. Using Notation 5.7 let (Yr,W, V1, S(τ), Jw) = YR(u, t̄, z̄, [w−, w+]) be
obtained according to Lemma 5.6. Given M∞ > 0 and t̃ ∈ ]0, t̄[ there are
R > 0, ν > 0 such that after a possible reduction of τ and V1 the following
holds:

y(t, x; û) = Yr(t, x, û1) ∀ (t, x) ∈ S ∩ {t ≥ t̃
}
, ∀ û ∈ V̂ , where

V̂
def
= {(û0, û1) ∈ L∞(R)×L∞(0, T ;C1(R)m) : û1 ∈ V1, ‖û0 − u0‖∞,R\J < M∞,

‖û0 − u0‖∞,J < ν, ‖û0 − u0‖1,[−R,R]\J < ν}.

Hence, the differentiability properties of Yr according to Lemma 5.6 hold also
for y|S.

Proof. The proof is very similar to the proof of Lemma 5.5, and we only sketch
the differences. One has to use (4.19) instead of (4.16) to obtain the applicability of
Lemma 5.6. Then by backward stability all characteristics ξ starting in continuity
points (t̄, x̃) close to (t̄, x̄) must hit t = 0 in z̄, since y(t, ξ(t)) converges for t → 0,
x̃ → x̄ to w̄ ∈ ]u0(z̄−), u0(z̄+)[. Now by Lemma 5.6 the same arguments as in the
proof of Lemma 5.5 can be used. Finally, one shows with the L1-stability estimate
that for sufficiently small ν > 0, τ > 0 and V1 also the backward characteristics of
y(·; û), û ∈ V̂ , through (t̂, x̂) ∈ S ∩ {t ≥ t̃

}
must hit t = 0 in z̄.

Before we proceed to the more involved analysis of shock points in section 6, we
consider continuity points of class CBc and continuity points of class RBc, i.e., on the
boundary of a rarefaction wave.

5.3. Differentiability in continuity points of class CBc. Next we consider
the situation of continuity points (t̄, x̄) of class CBc, i.e., outside of the shock set
such that the backward characteristic ξ through (t̄, x̄) meets t = 0 in a point z̄ = xi,
i ∈ {1, . . . , N}, where u0 is continuous. Then u0 is not necessarily differentiable at
z̄ = xi, and a shift-variation of u0 can create a discontinuity at xi, since it allows
locally a variation in PC1(J ;xi) with an interval J containing xi. Therefore, the
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entropy solution y(·; û) for varied controls û can develop a shock or rarefaction wave
arbitrarily close to (t̄, x̄).

We have observed in section 4.3 that the one-sided derivatives in z̄ satisfy (4.16).
Thus, if we define the C1-prolongations

u−
0

def
= u0|{z<z̄} + (u0(z̄−) + u′

0(z̄−)(· − z̄))|{z≥z̄},
u+

0
def
= u0|{z>z̄} + (u0(z̄+) + u′

0(z̄+)(· − z̄))|{z≤z̄},
(5.25)

then there are z− < z̄ < z+, ρ, β > 0 such that (5.1) holds for u∓
0 instead of u0. Thus,

Lemma 5.1 is applicable for u∓
0 instead of u0, yielding with Notation 5.2

(Y∓, Z∓, V∓, S∓(τ), J) =YC(u∓
0 , u1, [z−, z+]).

Now it is obvious from Lemma 5.1 and (5.25) that for δ > 0 small enough and

V = {û = (û0, û1) ∈ V : ‖û− u‖V < δ} , V def
= PC1(J ; z̄)× L∞(0, T ;C1(R)m)

(5.26)

that the mappings

û ∈ V −→ (Z∓, Y∓)(·, û∓
0 , û1) ∈ C(S∓)(5.27)

are continuously differentiable. The next lemma shows that piecing together Y∓ along
ξ yields a first order approximation of y(·, û) in u for û ∈ V .

Lemma 5.11 (differentiability properties in continuity points of class CBc). Let
(A2)–(A3) hold and let (t̄, x̄) be a continuity point of y(·;u) of type CBc, i.e., outside
of the shock set such that the backward characteristic ξ through (t̄, x̄) meets t = 0
in a continuity point z̄ = xi, i ∈ {1, . . . , N}, of u0. As explained above, define
the prolongations u∓

0 in (5.25) and let z− < z̄ < z+ be close enough to z̄ such that
Lemma 5.1 can be applied for u∓

0 , yielding with Notation 5.2 (Y∓, Z∓, V∓, S∓(τ), J) =
YC(u∓

0 , u1, [z−, z+]). Finally, let V,V be defined as in (5.26) with δ > 0 small enough.
Then the mapping

û ∈ V −→ ỹ(·; û) ∈ C(S− ∩ {x ≤ ξ(t)}) ∩ C(S+ ∩ {x > ξ(t)}),

ỹ(t, x; û)
def
=

{
Y−(t, x, û−

0 |J , û1), (t, x) ∈ S− ∩ {x ≤ ξ(t)} ,
Y+(t, x, û+

0 |J , û1), (t, x) ∈ S+ ∩ {x > ξ(t)}
(5.28)

is continuously Fréchet differentiable.
For any M∞ > 0 there are R > 0, ν > 0 and a neighborhood Î = ]x−, x+[ of x̄

such that with

V̂
def
= {(û0, û1) ∈ L∞(R)×L∞(0, T ;C1(R)m) : (û0|J , û1) ∈ V,

‖û0 − u0‖∞,R\J < M∞, ‖û0 − u0‖1,[−R,R]\J < ν},

where V is given in (5.26), for all r ∈ [1,∞[

lim
û∈V̂

‖û−u‖V→0

‖y(t̄, ·; û)− ỹ(t̄, ·; û)‖r,Î
‖û− u‖V

= 0

holds. In particular, û ∈ (V̂ , ‖ · ‖V) −→ y(t̄, ·; û) ∈ Lr(Î) is Fréchet differentiable
at u.
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Proof. The construction of J , V , Z∓, and Y∓ was already justified above. Set
J∓ = J ∩ {∓(z − z̄) > 0}. Moreover, since (5.27) are continuously Fréchet differ-
entiable, the same is true for (5.28). Since (t̄, x) is a continuity point outside the
shock set, we know that (5.1) holds on an interval J containing z̄ for u0 (and also
for u∓

0 instead of u0), and we obtain, as at the beginning of the proof of Lemma 5.5,
x− < x̄ < x+ such that

y(t̄, x;u) = ỹ(t̄, x;u) ∀x ∈ Î
def
= ]x−, x+[.

Given M∞ > 0 and ε > 0 we thus find by Lemma 5.5(ii) R > 0 and ν > 0 such that
after a possible reduction of δ (and hence V in (5.26)) one has

y(t̄, x; û) = ỹ(t̄, x; û) ∀x ∈ Î \ [x̄− ε/2, x̄ + ε/2], ∀ û ∈ V̂ .(5.29)

Hereby we have used the fact that û0|J∓ = û∓
0 |J∓ . One easily sees that R > 0

and ν > 0 can be chosen independent of ε > 0. In particular, for ε > 0 small
enough the genuine backward characteristics ξ̂∓ of y(·; û) through (t̄, x̄ ∓ ε) satisfy

ξ̂∓(0) = Z∓(t̄, x̄ ∓ ε, û) ∈ J , and thus ξ(0) ∈ J holds for all genuine backward
characteristics ξ through (t̄, x), |x − x̄| ≤ ε. Let x be an arbitrary continuity point
with |x− x̄| ≤ ε and set z = ξ(0). Then we obviously have

|y(t̄, x; û)− y(t̄, x;u)| ≤ |v(t̄; z, û0(z), û1)− v(t̄; z, u0(z), u1)|
+ Lx|ζ(t̄; z, û0(z), û1)− ζ(t̄; z, u0(z), u1)|

≤ (1 + Lx)L(|û0(z)− u0(z)|+ ‖û1 − u1‖L∞(0,T ;C(R))),

where Lx is a Lipschitz constant of y(t̄, ·;u) on Î, and L is a Lipschitz constant of
v; cf. Lemma 4.4. Moreover, y(t̄, x;u) coincides with Y−(t̄, x, u−

0 , u1) if x < x̄ and
with Y+(t̄, x, u+

0 , u1) if x > x̄. Thus, using the local Lipschitz continuity of (5.27), we
obtain with a constant LY > 0

|ỹ(t̄, x; û)− y(t̄, x;u)| ≤ max
(|Y∓(t̄, x, û∓

0 , û1)− Y∓(t̄, x, u∓
0 , u1)|) ≤ LY ‖û− u‖V .

This together gives, for r ∈ [1,∞[,

‖y(t̄, ·; û)− ỹ(t̄, ·; û)‖r,Î ≤ C ε1/r ‖û− u‖V
with C > 0 independent of û ∈ V̂ and ε. In view of (5.29) the proof is complete by
letting ε tend to zero.

5.4. Differentiability on the boundary of rarefaction waves (Case RBc).
Finally, we consider continuity points (t̄, x̄) of class RBc, i.e., outside the shock set and
on the boundary of a rarefaction wave. If (t̄, x̄) is for concreteness on the left boundary
of a rarefaction wave, then the backward characteristic meets t = 0 in a discontinuity
z̄ = xi of u0 with u0(xi−) < u0(xi+), and (4.8), (4.9) hold with w̄ = u0(xi−). Finally
(4.16) holds for the left-sided, (4.19) for the right-sided derivative, respectively. Hence,
using Notation 5.7 we get

(Yr,W, V1, S+(τ), Jw) = YR(u, t̄, z̄, [w−, w+])

by Lemma 5.6 for suitable w− < w̄ < w+ and with Notation 5.2

(Y−, Z−, V−, S−(τ), J) = YC(u−
0 , u1, [z−, z+])
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by Lemma 5.1 for suitable z− < z̄ < z+, where u−
0 is the C1-prolongation (5.25). For

V according to (5.26) with δ > 0 small enough we can achieve that û ∈ V implies
û1 ∈ V1 and (û−

0 , û1) ∈ V−. Now it is obvious that Y−(·, û) and Yr(·, û1) can be glued

together continuously along the forward characteristic ξ̂(t)
def
= ζ(t; z̄, û0(z̄−), û1) for all

û ∈ V , yielding a classical solution on (S− ∩ {x ≤ ξ̂(t)}) ∪ (S+ ∩ {x > ξ̂(t)}). The
next lemma shows that this function coincides locally with y(·; û).

Lemma 5.12 (differentiability properties in continuity points of class RBc). Let
(A2)–(A3) hold and let (t̄, x̄) be a continuity point of y(·;u) outside the shock set
on the boundary of a rarefaction wave (Case RBc), i.e., the backward characteristic
meets t = 0 in z̄ = xi with u0(z̄−) < u0(z̄+), and (4.8), (4.9) hold with w̄ = u0(z̄−)
or w̄ = u0(z̄+).

Given M∞ > 0 there are δ > 0, R > 0, and ν > 0 such that, with V according to
(5.26) and Ṽ as in Lemma 5.11, the following holds:

ξ̂
def
= ζ(·; z̄, û(z̄−), û1) is on [0, t̄] for all û ∈ V̂ a genuine forward characteristic of

y(·; û) through (0, z̄). Furthermore:
(i) If w̄ = u0(z̄−), then let (Y−, Z−, V−, S−(τ), J) = YC(u−

0 , u1, [z−, z+]) as
well as (Yr,W, V1, S+(τ), Jw) = YR(u, t̄, z̄, [w−, w+]) be defined as explained
above. Then there is a neighborhood Î = ]x−, x+[ of x̄ such that for all û ∈ V̂

y(t̄, x; û)
def
=

{
Y−(t̄, x, û−

0 , û1), x ∈ ]x−, ξ̂(t̄)[ ,

Yr(t̄, x, û1), x ∈ ]ξ̂(t̄), x+[
(5.30)

holds. If V̂ is equipped with the norm

‖(û0, û1)‖V def
= ‖û0‖C1(J−) + ‖û1‖L∞(0,T ;C1(R)),

where J−
def
= J ∩ {z < z̄}, then

û ∈ (V̂ , ‖ · ‖V) −→ y(t̄, ·; û) ∈ Lr(Î)(5.31)

is continuously Fréchet differentiable for all r ∈ [1,∞[ with derivative

duy(t̄, ·; û) · (δu0, δu1) = 1]x−,ξ̂(t̄)[(duY−(t̄, ·, û−
0 , û1) · (δu0|J− , δu1))

+ 1]ξ̂(t̄),x+[(du1Yr(t̄, ·, û1) · δu1).

(ii) If w̄ = u0(z̄+), a completely analogous result holds with left state Yr and right
state Y+ obtained from (Y+, Z+, V+, S+(τ), J) = YC(u+

0 , u1, [z−, z+]).
Proof. We only sketch the proof, since it is similar to the proof of Lemma 5.11.

First, we obtain that (5.30) holds for u and an appropriate neighborhood Î of x̄. For
given M∞ > 0 and ε > 0, we conclude, by applying Lemmas 5.5 and 5.10, that (5.30)
holds also on Î ∩ {|x − x̄| > ε/2} for all û ∈ V̂ with V̂ as in Lemma 5.11 and V as
in (5.26). Hence, y(t̄, x; û) for x ∈ [x̄ − ε, x̄ + ε] depends only on the values of û0 on

J−. But gluing together Y−(·, û) and Yr(·, û1) along ξ̂ yields a classical solution that
is compatible with the initial data û0|J− and coincides with y(·; û) along all genuine

backward characteristics through (t̄, x), x ∈ Î \ [x̄− ε, x̄ + ε]. Hence, (5.30) holds by
the uniqueness of entropy solutions.

From (5.30) the continuous differentiability of (5.31) is obvious, since by Lem-
mas 5.1 and 5.6 the mappings û ∈ (V̂ , ‖ · ‖V) −→ (Y−(t̄, ·; û−

0 , û1), Yr(t̄, ·; û1)) ∈ C(Î)2

are continuously Fréchet differentiable, the functions on the right remain bounded in
C1(Î) on V̂ , and ξ̂(t̄) depends Lipschitz continuously on û. The formula for the
derivative is obvious.
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6. Stability of shocks and differentiability of shock position. We turn
now to the study of points (t̄, x̄) in the shock set. Hereby, the following nondegeneracy
of shocks will be important.

Definition 6.1 (nondegeneracy of shocks). Let u0 ∈ PC1(R;x1, . . . , xn). A
point (t̄, x̄) ∈ ΩclT of the shock set is called nondegenerate if (t̄, x̄) is not a shock
interaction point and moreover is of type C cC c, RcRc, C cRc, or RcC c according to
section 4.4.

We will show that for a nondegenerate shock point (t̄, x̄) the following holds for
quite general variations (û0, û1) of (u0, u1):

• The shock is stable and separates states that coincide locally with represen-
tations Y or Yr obtained by Lemma 5.1 or 5.6, respectively.

Moreover, if g(t, x, y, u) is affine linear w.r.t. y, then the following hold:
• The shock position depends Fréchet differentiably on (û0, û1).
• The sensitivity of the shock position w.r.t. (û0, û1) can be explicitly computed

by the adjoint formula (3.8).

6.1. Stability and structure of shocks. The nonlinear stability of shock
waves for a single convex conservation law (i.e., f ′′ > 0, g ≡ 0) under variations
of the initial data in the Schwartz space S was shown by Golubitsky and Schaeffer
[14]. However, there seem to be no results in the literature on the nonlinear stability
of shocks under perturbations of initial data and source term that are directly appli-
cable in our framework. In the following lemma we give a stability result of shock
waves based on generalized characteristics that fits our purposes.

For concreteness we consider a shock point (t̄, x̄) of class CcCc (see section 4.4).
Lemma 6.2 (stability of nondegenerate shocks of type CcCc). Let (A2)–(A3)

hold, let u = (u0, u1) ∈ PC1(R;x1, . . . , xN )×L∞(0, T ;C1(R)m), and let (t̄, x̄) ∈ ΩT be
a point of discontinuity of y(.;u) on a shock curve η(t). Denote by ξ∓(t) the minimal
and maximal backward characteristic through (t̄, x̄) and set z̄∓ = ξ∓(0). Assume that
(t̄, x̄) is a nondegenerate shock point of class C cC c according to Definition 6.1, i.e.,
(t̄, x̄) is not a shock interaction point, z̄∓ �= xi, 1 ≤ i ≤ N , and (4.16) holds with
z̄ = z̄∓ for some β > 0. Then there are z∓− < z̄∓ < z∓+ , ρ > 0, and β > 0 such that
(5.1) holds.

Using Notation 5.2 let (Y∓, Z∓, V∓, S∓(τ), J∓) = YC(u, t̄, [z∓− , z∓+ ]) be obtained by
Lemma 5.1 with z−∓ , z

+
∓ close enough to z̄∓, respectively. After a possible reduction

of V∓, τ > 0 there is a neighborhood I = ]x−, x+[ of x̄ such that the following hold:
(i) y(·;u) is locally given by

y(t, x;u) =

{
Y−(t, x, u), (t, x) ∈ S− ∩ {x < η(t)} ,
Y+(t, x, u), (t, x) ∈ S+ ∩ {x > η(t)} .

(ii) Let M∞ > 0 be given. Then there are R > 0, ν > 0 such that for

V̂ = {(û0, û1) ∈ L∞(R)×L∞(0, T ;C1(R)m) : (û0, û1) ∈ V− ∩ V+,

‖û0‖∞ < M∞, ‖û0 − u0‖1,[−R,R] < ν}
equipped with the norm

‖(û0, û1)‖V def
= ‖û0‖C1(J−∪J+) + ‖û0‖1,[z̄−,z̄+] + ‖û1‖L∞(0,T ;C1(R)),

there is a Lipschitz continuous function

xs : û ∈ (V̂ , ‖ · ‖V) −→ xs(û)(6.1)
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with xs(u) = x̄ such that for all û = (û0, û1) ∈ V̂ the following holds:

y(t̄, x; û) =

{
Y−(t̄, x, û0|J− , û1), x ∈ ]x−, xs(û)[ ,
Y+(t̄, x, û0|J+ , û1), x ∈ ]xs(û), x+[ .

(6.2)

Hereby, û ∈ (V̂ , ‖ · ‖V) −→ Y∓(t̄, ·, û0|J∓ , û1) ∈ C(I) are continuously Fréchet
differentiable.

Remark 6.3. We note that all results so far require only (A2)–(A3) but not
(A4). See also Remark 8.1.

Proof. (t̄, x̄) is a point of discontinuity on a shock curve η. Thus, we have by
Oleinik’s entropy condition (4.1) that y(t̄, η(t̄)−;u) > y(t̄, η(t̄)+;u). Since (4.16) holds
for z̄ = z̄∓ we obtain by continuity β > 0, J∓ such that (5.1) holds. Now Lemma 5.1
yields (Y∓, Z∓, V∓, S∓(τ), J∓) = YC(u, t̄, [z∓− , z∓+ ]) as asserted. By Lemma 5.1 and

the definition of V̂ in (ii)

(û0, û1) ∈ (V̂ , ‖ · ‖V) −→ Y∓(t̄, ·, û0|J∓ , û1) ∈ C(I)

are obviously continuously Fréchet differentiable.
(i) Since (t̄, x̄) is not a shock interaction point, we know from [8] that t̄ is a con-

tinuity point of t −→ y(t, η(t)±;u). Then by [8, Thm. 4.5] (t̄, x̄) is a continuity point
of y(·;u) relative to the sets L− = {(t, x) : x < η(t)}, L+ = {(t, x) : x > η(t)}, the
limit being y(t̄, η(t̄)∓;u). The extreme backward characteristics ξ∓(t) through (t̄, x̄)
satisfy (4.3) and ξ∓(0) = z̄∓ ∈ J∓. Using the backward stability of solutions of (4.3)
we find δ > 0 such that the genuine backward characteristic through any continuity
point in Q∓

def
= L∓ ∩ {‖(t, x)− (t̄, x̄)‖∞ ≤ δ} meets t = 0 in J∓, respectively. Hence,

we must have y(t, x;u) = Y∓(t, x, u) for any continuity point in Q∓, and since the
continuity points are dense, for all points in Q∓ by our convention y(t, x) = y(t, x−).
The same is clearly true on the domain covered by these backward characteristics.
Possibly after reducing τ > 0 and choosing z−∓ , z+

∓ closer to z̄∓, respectively, we
achieve that S∓ ∩L∓ is covered by the backward characteristics through Q∓. Hence,
(i) is proven.

(ii) For notational convenience we write y instead of y(·;u). By the definition of
S∓ it is clear that for sufficiently small τ > 0, σ > 0 and x∓ = x̄∓ σ one has

Q
def
= ]t̄− τ, t̄ + τ [× ]x−, x+[ ⊂ S− ∩ S+.

Set I
def
= ]x−, x+[. As in the proof of Lemma 5.5 there is My > 0 with ‖y(·; û)‖∞ ≤My

for all û ∈ V̂ , and we may choose My such that in addition |Y∓(·, û)| ≤My on S∓.
By continuity, we may reduce τ such that for some ∆ > 0

y(t, η(t)−)− y(t, η(t)+) ≥ 2∆ > 0 ∀ t ∈ ]t̄− τ, t̄ + τ [.

Since f ′′ ≥ mf ′′ > 0, we have for |t− t̄| < τ

η̇(t) =
f(y(t, η(t)−))− f(y(t, η(t)+))

y(t, η(t)−)− y(t, η(t)+)

{ ≤ f ′(y(t, η(t)−))−mf ′′∆,
≥ f ′(y(t, η(t)+)) + mf ′′∆.

In particular, η̇(t) is continuous in t̄, and we may reduce V∓, ν, τ , σ such that with
ε > 0 the following hold:

f ′(Y−(t, x, û)) ≥ max
|t−t̄|<τ

η̇(t) + ε,(6.3)

Y−(t, x, û)− Y+(t, x, û) ≥ ∆(6.4)
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for all (t, x, û) ∈ Q× V̂ . Finally, reduce τ > 0 such that η(t) ∈ I and

|η̇(t)− max
|t−t̄|<τ

η̇(t)| < mf ′′ε

8Mf ′′
=: ε̂(6.5)

for all t, |t− t̄| < τ , where Mf ′′
def
= sup|y|≤My

f ′′(y).
The following property of genuine backward characteristics will be crucial: Let

ζ(t) be a backward characteristic such that

|ζ(t̂)− η(t̂)| < δ, ζ̇(t̂) < η̇(t̂)− 2ε̂ for some t̂ ∈ [t̄− τ/2, t̄].(6.6)

From (4.3) we get a constant M > 0 with

|ζ̈(t)| ≤M,

and we can reduce τ > 0 such that Mτ < ε̂/2. Then

ζ(t)− η(t) > δ for t = t̄− τ if δ < ε̂τ/8.

In fact, by using (6.5) we get the following with s = min|t−t̄|<τ η̇(t) and t = t̄− τ :

ζ(t)− η(t) ≥ ζ(t̂)− η(t̂) + (s− ζ̇(t̂))(t̂− t)− M
2 (t̂− t)2

≥ −δ + (s− η̇(t̂) + 2ε̂)(t̂− t)− M
2 (t̂− t)2

≥ −δ + (−ε̂ + 2ε̂−Mτ)
τ

2
≥ ε̂τ

4
− δ > δ.

Fix these τ and δ and set Qδ
def
= Q ∩ {(t, x) : |x− η(t)| < δ}. Using a finite covering

of (Qcl ∩ L∓) \ Qδ with the stripes S obtained by Lemma 5.5 for varying t, we may
reduce V∓, ν such that for all û ∈ V̂

y(t, x; û) = Y∓(t, x, û0|J∓ , û1) ∀ (t, x) ∈ (Q ∩ L∓) \Qδ,(6.7)

respectively. For the rest of the proof it is convenient to set Y∓(·, û) = Y∓(·, û0|J∓ , û1)

for û ∈ V̂ on S∓.
Assume that (6.2) does not hold for all û ∈ V̂ . Then there is û ∈ V̂ and without

restriction a continuity point x̂, |x̂ − x̄| < δ with y(t̄, x̂; û) �= Y∓(t̄, x̂, û) and thus

ξ̂(0) < inf J+ for the genuine backward characteristic ξ̂ through (t̄, x̂). For convenience
we set ŷ

def
= y(·; û). Let x̃ be the infimum of these x̂. (t̄, x̃) cannot be a continuity point,

since otherwise by continuity ξ̃(0) ∈ J− for the backward characteristic ξ̃ through
(t̄, x̃), and thus by Lemma 5.5 ŷ(t̄, x) = Y−(t̄, x, û) for x close enough to x̃, which is
a contradiction. Thus, (t̄, x̃) lies on a shock. We set η̃(t̄) = x̃. By construction the
maximal backward characteristic ξ̃+ through (t̄, x̃) satisfies sup J− < ξ̃+(0) < inf J+.
Since genuine characteristics may intersect only at their end points, we have by (6.7)
necessarily that (t, ξ̃+(t)) ∈ Qδ for t̄ − τ < t ≤ t̄. Moreover, it is obvious from
supJ− < ξ̃+(0) < inf J+ that ŷ(t, ξ̃+(t)) �= Y∓(t, ξ̃+(t), û) for t̄ − τ < t ≤ t̄. Thus,
we find as above for all these t a discontinuity point η̃(t) with left state Y−(t, η̃(t), û).
Now the unique forward characteristic through (t−τ, η̃(t−τ)) must be a shock, and it
must coincide with η̃, since every (t, η̃(t)) lies on a shock with left state Y−(t, η̃(t), û)
and therefore cannot be a shock generation point. Hence, η̃(t) is a shock with left
state Y−(t, η̃(t), û), and we must have |η̃(t) − η(t)| < δ for t̄ − τ < t ≤ t̄, because η̃
may not enter the domain of continuity. Hence, there must exist t̂ ∈ [t̄− τ/2, t̄] with

˙̃η(t̂) ≤ max
|t−t̄|<τ

η̇(t) + ε̂(6.8)
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because ε̂τ/2 > 2δ by the choice of δ. Set y∓ = ŷ(t̂, η̃(t)∓). We show that necessarily
f ′(y+) ≤ s − 2ε̂ with s = min|t−t̄|<τ η̇(t) as defined above. If not, then we have
by (6.3)

h
def
= f ′(y−)− f ′(y+) ≥ s + ε− (s− 2ε̂) ≥ ε + 2ε̂ > ε.

Moreover, y− − y+ ≥ h
Mf′′ , and thus with f ′′ ≥ mf ′′ and (6.5)

˙̃η(t̂) =
f(y−)− f(y+)

y− − y+
≥ f ′(y+) +

mf ′′h

2Mf ′′
> s− 2ε̂ +

mf ′′h

2Mf ′′
> max

|t−t̄|<τ
η̇(t)− 3ε̂ + 4ε̂.

This contradicts (6.8). We conclude that the maximal backward characteristic ζ
through (t̂, η̃(t̂)) satisfies the scenario (6.6), since ζ̇(t̂) = f ′(y+) ≤ s − 2ε̂. Therefore,
it would hold ζ(t̂ − τ) − η(t̂ − τ) > δ. This is a contradiction, since then ζ would
intersect ξ̃+. Hence, the assumption was wrong and (6.2) is shown.

It remains to show that û ∈ (V̂ , ‖ · ‖V)) → xs(û) is Lipschitz. But this follows
directly from (6.2), (6.4) and the L1-stability according to Theorem 4.1(ii). The
continuous differentiability of û −→ Y∓(t̄, ·, û) ∈ C(I) was already shown at the
beginning of the proof.

Very similar results can be obtained if left and/or right states are rarefaction
waves, i.e., in the Cases CcRc, RcCc, RcRc. See Corollary 6.5 below.

6.2. Differentiability of the shock position and an adjoint formula. We
come now to the key point of our analysis. In this subsection we state a differentiability
result for the shock position xs of Lemma 6.2 and derive an explicit formula for
the derivative by using an appropriate adjoint state. The advantage of the adjoint
approach lies in the fact that we do not have to impose regularity assumptions on y
for t < t̄.

Lemma 6.4 (differentiability of shock position and adjoint formula, Case CcCc).
With the assumptions and notations of Lemma 6.2 let J0 = ]z̄−, z̄+[ \ (J− ∪ J+) and
let Js ⊂ J0 be an open set that contains only down-jumps of u0. Finally, let J ⊂ Js
be an open set with Jcl ⊂ Js and set Jr = J0 \ J . Define with V̂ from Lemma 6.2

Ṽ
def
= {(û0, û1) ∈ V̂ : ∂x(û0 − u0)|Js ≤ML}

for some fixed ML > 0 equipped with the norm

‖(û0, û1)‖Ṽ
def
= ‖û0‖C1(J−∪J+) + ‖û0‖∞,Jr + ‖û0‖1,J + ‖û1‖L∞(0,T ;C1(R)).

Then the following hold:
(i) Assume that (A4) holds, i.e., g is affine linear w.r.t. y. Then the shock

position

xs : û ∈ (Ṽ , ‖ · ‖Ṽ) −→ xs(û)

is continuously Fréchet differentiable and

duxs(û) · (δu0, δu1) = (p(0, ·), δu0)2 + (p gu1(·, ŷ, û1), δu1)2,Ωt̄
,(6.9)

where p is the reversible solution of the adjoint equation

∂tp + f ′(ŷ)∂xp = −gy(t, x, ŷ, û1)p, p(t̄, ·) = pt̄,(6.10)

p(t̄, ·) =
1

[y(t̄, xs(û); û)]
1{x=xs(û)}(·).(6.11)
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Denoting by ξ̂∓ the minimal/maximal backward characteristic of ŷ = y(·; û)
through (t̄, xs(û)) and by D the domain confined by them, one has p = p̂1Dcl(·),
where p̂ ∈ C0,1

loc ((0, t̄)×R) is the reversible solution of (6.10) for the constant
end data p̂(t̄, ·) = 1/[y(t̄, xs(û); û)].

(ii) If g does not depend on y, then the same holds for xs : û ∈ (V̂ , ‖ · ‖V) →
xs(û) in (6.1), and the reversible solution of equation (6.10) is simply p =
1/[y(t̄, xs(û); û)]1Dcl(·).

The proof of this lemma will be postponed to section 8, since part (i) requires an
existence and stability result for backward transport equations of the form (6.10) that
will be provided in the following section. The essential feature of the adjoint equation
is that the coefficient f ′(ŷ) is discontinuous but satisfies by f ′′ > 0 and Oleinik’s
entropy condition (4.1) a one-sided Lipschitz condition of the form

∂xf
′(ŷ(t, ·)) ≤ C

t + 1/M
, t ∈ ]0, T [ ,

where M ∈ [Mcr,∞] is such that ∂xû0 ≤M .
If the left and/or right state of the shock is a rarefaction wave, then an analogue

of Lemmas 6.2 and 6.4 holds.
Corollary 6.5 (differentiability of shock position, Cases RcCc, CcRc, RcRc).

Let (t̄, x̄) be of class RcC c, i.e., with the notations of Lemmas 6.2 and 6.4 z̄− = xi,
i ∈ {1, . . . , N}, holds, u0(xi−) < w̄ < u0(xi+) with w̄ according to (4.8), and (4.19)
holds for the left-sided derivative with z̄ = z̄−, while the right state is as in Lemmas 6.2
and 6.4.

Using Notation 5.7 let (Y−,W, V1, S−(τ), Jw) = YR(u, t̄, z̄−, [w−, w+]) according
to Lemma 5.6 with appropriate w− < w̄ < w+. Then the results of Lemmas 6.2
and 6.4 remain true if we set J− = ∅ and define V− for an arbitrary open interval J
containing z̄− and ν > 0 sufficiently small as

V−
def
= {û0 ∈ L∞(J) : ‖û0 − u0‖∞ < ν} × V1.

An analogue result holds if the right state is a rarefaction wave, i.e., z̄+ = xi,
u0(xi−) < w̄ < u0(xi+).

7. The adjoint equation. We consider the backward problem for a transport
equation

∂tp + a∂xp = −bp, p(T, ·) = pT(7.1)

with b ∈ L∞(0, T ;C0,1(R)) and a ∈ L∞(ΩT ) satisfying the one-sided Lipschitz condi-
tion

ax(t, ·) ≤ α(t), α ∈ L1(0, T ),(7.2)

or at least the weakened one-sided Lipschitz condition

ax(t, ·) ≤ α(t), α ∈ L1(σ, T ) ∀σ ∈ (0, T ).(7.3)

The latter case is appropriate by Oleinik’s entropy condition (4.1) if we want to
consider the adjoint equation for solutions with rarefaction waves (generated by up-
jumps of u0). It is well known [7] that under this one-sided Lipschitz condition on a
for any pT ∈ Lip(R) there exists a Lipschitz continuous solution to (7.1) which is not
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necessarily unique. For the case b ≡ 0 the stability of p w.r.t. a for the special class
of reversible solutions was extensively studied by Bouchut and James in the recent
paper [1]. We will use the results of [1] to study the stability w.r.t. a and b. Due to
space limitations we will restrict ourselves to summarizing the definition of reversible
solutions for (7.1) and the necessary existence, stability, and regularity properties.1 A
detailed analysis is given in the follow-up paper [27]. Our results extend the stability
results in [1] to the case b �= 0, which is not straightforward, since the definition of
reversible solutions in [1] cannot be directly used.

Denote by Lh the space of Lipschitz continuous solutions to

∂tp + a∂xp = 0, (t, x) ∈ ΩT .(7.4)

We recall the following definition of [1].
Definition 7.1. p ∈ Lh is called a reversible solution of (7.4) if there exist

p1, p2 ∈ Lh such that ∂xp1 ≥ 0, ∂xp2 ≥ 0, and p = p1 − p2.
Then the following holds [1].
Theorem 7.2. Let a ∈ L∞(ΩT ) satisfy the one-sided Lipschitz condition (7.2),

i.e., ax(t, ·) ≤ α(t) with α ∈ L1(0, T ). Then for any pT ∈ Lip(R) there exists a unique
reversible solution p ∈ C0,1

loc (ΩclT ) of (7.4) with p(T, ·) = pT . Moreover,

‖p(t, ·)‖∞,I ≤ ‖pT ‖∞,J , ‖∂xp(t, ·)‖∞,I ≤ e
∫ T
t
α‖∂xpT ‖∞,J

with I = ]x1, x2[, J = ]x1 − ‖a‖∞(T − t), x2 + ‖a‖∞(T − t)[.
This concept of reversible solution is not directly extendible to the case b �= 0.

However, a natural extension can be obtained by using the generalized backward flow
associated with a defined in [1].

Definition 7.3. Let Db =
{

(s, t) ∈ R
2 : 0 ≤ t ≤ s ≤ T

}
. Then the generalized

backward flow X : Db × R −→ R is defined by the requirement that for any s ∈ ]0, T ]
X(s; ·, ·) is the unique reversible solution to

∂tX + a∂xX = 0, (t, x) ∈ ]0, s[× R, X(s; s, x) = x, x ∈ R.

Moreover, we set X(0; 0, x) = x.
One can show [1] that ∂xX ≥ 0 and x −→ X(s; t, x) is surjective for all (s, t) ∈ Db

and that for all 0 ≤ t ≤ σ ≤ s ≤ T and x ∈ R the composition formula

X(s;σ,X(σ; t, x)) = X(s; t, x)(7.5)

is satisfied. Moreover, for all (t, x) ∈ ΩT the following holds [1]:

∂sX(s; t, x) ∈ [a(s,X(s; t, x)+), a(s,X(s; t, x)−)] for a.a. s ∈ ]t, T [.(7.6)

Note that by the one-sided Lipschitz condition ∂xa(t, ·) ≤ α(t), α ∈ L1(0, T ), the
following holds: a(t, ·) ∈ BVloc(R) for a.a. t. Thus the left- and right-sided limits in
(7.6) exist.

Remark 7.4. Since X(t; t, x) = x, X(·; t, x) is by (7.6) the unique forward
characteristic through (t, x) in the sense of Filippov. Thus, if y is the entropy solution
of (1.1) and a = f ′(y), then X(·; t, x) is the generalized forward characteristic through
(t, x).

1For convenience, the proofs are added in the appendix.
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Finally, it is shown in [1] that for b ≡ 0 the reversible solution of (7.1) is given by
p(t, x) = pT (X(T ; t, x)) and is thus the broad solution along the generalized charac-
teristics. This leads us to the following definition of reversible solutions for (7.1).

Definition 7.5. Denote by B(R) the Banach space of bounded functions equipped
with the sup-norm and let

BLip(R)
def
=

{
w ∈ B(R) :

w is the pointwise everywhere limit of a sequence

(wn) in C0,1(R), (wn) bounded in C(R) ∩H1,1
loc (R)

}
.

Let a ∈ L∞(ΩT ), ∂xa(t, ·) ≤ α(t), α ∈ L1(0, T ), and b ∈ L∞(0, T ;C0,1(R)). Then a
reversible solution of (7.1) is defined as follows. For any z ∈ R define p(t,X(t; 0, z))
as a solution of

p(T,X(T ; 0, z)) = pT (X(T ; 0, z)),
d
dtp(t,X(t; 0, z)) = −b(t,X(t; 0, z)) p(t,X(t; 0, z)), t ∈ [0, T ].

(7.7)

If it holds only that α ∈ L1(σ, T ) for all σ > 0, then we define p first on the domains
(σ, T )× R and then on ΩT by exhaustion.

Remark 7.6. Since by (7.5) with x = X(s; 0, z), X(t; s, x) = X(t; 0, z) holds for
s ≤ t ≤ T , then (7.7) implies that for all 0 ≤ s < T and x ∈ R

p(T,X(T ; s, x)) = pT (X(T ; s, x)),
d
dtp(t,X(t; s, x)) = −b(t,X(t; s, x))p(t,X(t; s, x)), t ∈ [s, T ].

(7.8)

With (7.6) this shows that the value of p(s, x) depends only on the values of a and b
in the triangle {(t, z) ∈ ΩT : t ∈ [s, T ], z ∈ [x− ‖a‖∞(t− s), x + ‖a‖∞(t− s)]}.

With this definition of reversible solutions we have the following existence and
uniqueness result under the strong one-sided Lipschitz condition (7.2).

Theorem 7.7. Let a ∈ L∞(ΩT ), ∂xa(t, ·) ≤ α(t) with α ∈ L1(0, T ), and b ∈
L∞(0, T ;C0,1(R)). Then for all pT ∈ C0,1(R) there exists a unique reversible solution
p of (7.1). Moreover, p ∈ C0,1(ΩT ) and p solves (7.1) a.e. on ΩT .

Furthermore, for all t ∈ [0, T ], z1 < z2, and 0 ≤ t1 < t2 ≤ T , the following hold
with I = [z1, z2], J = [z1 − ‖a‖∞(T − t), z2 + ‖a‖∞(T − t)]:

‖p(t, ·)‖∞,I ≤ ‖pT ‖∞,Je‖b‖∞(T−t),(7.9)

‖p(t2, ·)− p(t1, ·)‖1,I ≤ (t2 − t1)C,(7.10)

where C depends only on I, ‖pT ‖H1,1(J), ‖a‖∞,[0,T ]×J , ‖b‖L∞(0,T ;C0,1(J)). Finally, one

has p ∈ H1,1(]0, T [×I), where ‖p‖H1,1(]0,T [×I) does not depend on α.
The proof can be obtained by using the properties of the backward flow X. A

detailed analysis can be found in the follow-up paper [27].2

A key point for our analysis is the following stability result.
Theorem 7.8. Let (an) be a bounded sequence in L∞(ΩT ) with an → a in

L∞(ΩT )-weak∗, ∂xa(t, ·) ≤ α(t), α ∈ L1(0, T ), and ∂xan(t, ·) ≤ αn(t), (αn) bounded
in L1(0, T ). Let (bn) be a bounded sequence in L∞(0, T ;C0,1(R)) with bn → b in
L∞(0, T ;Cloc(R)), b ∈ L∞(0, T ;C0,1(R)). Finally, let pTn be bounded in C0,1(R) with
pTn → pT in Cloc(R). Then the reversible solutions pn of

∂tpn + an∂xpn = −bnpn, pn(T, ·) = pTn

2For convenience, a proof can be found in the appendix.
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converge for any R > 0 in C([0, T ]× [−R,R]) to the reversible solution p of (7.1).
The proof can be obtained by using the following stability result of [1]: if X and

Xn denote the backward flows according to Definition 7.3 for a and an, respectively,
then by [1] Xn → X in C(Db × [−R,R]) for any R > 0. Again, the details can be
found in the follow-up paper [27] and a proof can be found in the appendix.

Remark 7.9. Theorem 7.8 shows in particular that reversible solutions are stable
w.r.t. smoothing of the coefficients and data by convolution with an averaging kernel.

By Oleinik’s entropy condition (4.1) the case α(t) = C/t is of special interest if
the initial data contain an up-jump. Then merely α ∈ L1(σ, T ) for σ > 0 (cf. the
weakened one-sided Lipschitz condition (7.3)) and Theorem 7.7 is only applicable on
]σ, T [×R, σ > 0, instead of ΩT . For σ → 0+ this yields the definition of p on the open
set ΩT . Moreover, we see from (7.9)–(7.10) that p ∈ H1,1(]0, T [×]−R,R[)∩L∞(ΩT )∩
C0,1(]0, T ];L1

loc(R)) for all R > 0 and thus admits an L1-trace p(0, ·) ∈ L∞(ΩT ) with

p(t, ·) → p(0, ·) as t→ 0+ in Lrloc(R) for all r ∈ [1,∞[. Finally, p ∈ L∞(0, T ;H1,1
loc (R)),

and thus p(0, ·) ∈ BVloc(R). So we have the following extension of Theorem 7.8.
Theorem 7.10. Let the assumptions of Theorem 7.8 hold with the relaxation that

α, αn are only uniformly bounded in L1(σ, T ) for each fixed σ > 0. Then there exist
unique reversible solutions p, pn ∈ C0,1

loc (ΩT )∩C0,1(]0, T ];L1
loc(R)) satisfying (7.8) for

all s ∈ ]0, T [. Moreover, (7.9)–(7.10) hold, p, pn are uniformly bounded in L∞(ΩT ) ∩
H1,1(ΩT )∩C0,1(]0, T ];L1

loc(R)) and can thus be extended to C0,1([0, T ];L1
loc(R)). The

traces p(0, ·), pn(0, ·) at t = 0 are uniformly bounded in L∞(R) ∩ BVloc(R). Finally,
pn → p in Cloc(ΩT ) ∩ C([0, T ];Lrloc(R)) for all r ∈ [1,∞[.

Proof. The statements are immediately clear by Theorems 7.7 and 7.8, Remark
7.6, and the previous considerations.

It will be useful for our adjoint calculus to extend reversible solutions to the
case where pT ∈ BLip(R) with BLip(R) as in Definition 7.5. Note that Definition 7.5
covers this case and makes perfect sense. The following theorem shows that the
corresponding broad solutions are pointwise limits of Lipschitz backward solutions if
pT is in BLip(R).

Theorem 7.11. Let a, b be as in Theorem 7.10. Then for pT ∈ BLip(R) the
corresponding reversible solution p according to Definition 7.5 is unique, and p ∈
B(ΩT ) and satisfies (7.9). If pTn ∈ C0,1(R) is a sequence, bounded in C(R)∩H1,1

loc (R),
that converges boundedly everywhere to pT , then the corresponding reversible solutions
pn according to Theorem 7.7 converge boundedly everywhere to p.

The proof follows easily by the definition of reversible solutions as broad solutions;
see [27].

8. Differentiability of shock position: Proof of Lemma 6.4. We are now
in the position to prove Lemma 6.4.

Proof of Lemma 6.4. We prove (i) and will easily deduce (ii). Throughout the
proof we will use the notations of Lemma 6.2.

Let û ∈ Ṽ be fixed and ũ ∈ Ṽ be arbitrary. In the following we write ŷ and ỹ
instead of y(·; û) and y(·; ũ) and set ∆y

def
= ỹ − ŷ, δu = ũ− û.

For all sufficiently small ε > 0 one has

x̂∓
def
= xs(û)∓ ε ∈ ]x−, x+[(8.1)

with x∓ as in Lemma 6.2. Our proof is based on the observation that∫ x̂+

x̂−
∆y(t̄, x) dx = (xs(ũ)− xs(û)) [ŷ(t̄, x̂s)] + O((ε + ‖δu‖V)‖δu‖V).(8.2)
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In fact, let x̂s = xs(û) and xs,∓
def
= min/max{xs(û), xs(ũ)}, respectively. Since obvi-

ously [ŷ(t̄, x̂s)] = Y−(t̄, x̂s, û)− Y+(t̄, x̂s, û), we obtain by Lemma 6.2(ii)

∫ x̂+

x̂−
∆y(t̄, x) dx− (xs(ũ)− xs(û)) [ŷ(t̄, x̂s)]

=

∫ xs,−

x̂s−ε
(Y−(t̄, x, ũ)− Y−(t̄, x, û)) dx +

∫ x̂s+ε

xs,+

(Y+(t̄, x, ũ)− Y+(t̄, x, û)) dx

+

∫ x̂s

xs,−
(Y−(t̄, x̂s, û)− Y−(t̄, x, û) + Y+(t̄, x, ũ)− Y+(t̄, x̂s, û)) dx

+

∫ xs,+

x̂s

(Y+(t̄, x̂s, û)− Y+(t̄, x, û) + Y−(t̄, x, ũ)− Y−(t̄, x̂s, û)) dx

def
= R1 + R2 + R3 + R4.

Using the Lipschitz continuity of Y∓ w.r.t. ũ (cf. Lemma 5.1), we get

|R1 + R2| ≤ εC‖δu‖V
with C independent of ε. Since xs in (6.1) is Lipschitz by Lemma 6.2 and there is by
Lemma 5.1 also a uniform Lipschitz constant of Y∓ w.r.t. x for all ũ ∈ Ṽ , we have

|R3 + R4| ≤ C‖δu‖2V
with C not depending on ε.

Main line of the proof. The main line of the proof for the analysis of the
shock sensitivity is therefore to compute the derivative of the special functional∫ x̂+

x̂−
∆y(t̄, x) dx appearing on the left-hand side of (8.2) with x̂∓ according to (8.1) by

adjoint-based techniques and then to take the limit ε → 0. See also the proof sketch
in section 3.1.

To this end we compute the left-hand side of (8.2) by using an adjoint equation
with “averaged” coefficients and then using the stability w.r.t. the coefficients to derive
the actual adjoint equation for the shock sensitivity.

The difference of (1.1) for ỹ and ŷ yields

∂t∆y + ∂x(f(ỹ)− f(ŷ)) = g(t, x, ỹ, ũ1)− g(t, x, ŷ, û1).(8.3)

We now define the functions

a
def
= f ′(ŷ), ã(t, x)

def
=

∫ 1

0

f ′(ŷ(t, x) + τ∆y(t, x)) dτ,(8.4)

b̃
def
= gy(·, ũ1), b

def
= gy(·, û1).(8.5)

Then by the definition of ã, b̃ and since g is affine linear in y, we can rewrite (8.3) as

∂t∆y + ∂x(ã∆y) = b̃∆y + g(t, x, ŷ, ũ1)− g(t, x, ŷ, û1).(8.6)

Let p̃ be a test function satisfying

p̃ ∈ C0,1([σ, t̄]× [−R,R]) ∩ C([0, t̄];L2
loc(R)) ∀σ > 0, R > 0.(8.7)
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Denote by ζ̂∓ the genuine backward characteristic of ŷ = y(·; û) through (t̄, x̂∓). Then
by (8.1) and Lemma 6.2 one has with the minimal/maximal backward characteristics

ξ̂∓ through x̂s

ζ̂∓(0) ∈ J∓ and ζ̂−(t) ≤ ξ̂−(t) ≤ ξ̂+(t) ≤ ζ̂+(t) ∀ t ∈ [0, t̄].

By Lemma 5.5 there are δ > 0 and η > 0 such that ỹ = Y∓(·, ũ) on {(t, x) : t ∈
[0, t̄], |x− ζ̂∓(t)| < δ} if ‖δu‖Ṽ ≤ η.

Denote by Dε the domain between ζ̂∓ for t ∈ [0, t̄]. Oleinik’s entropy condition
(4.1) implies ỹ, ŷ ∈ BV ([σ, t̄] × [−R,R]) for all σ > 0 and R > 0; see Theorem 4.1.
Hence, the same is true for ∆y, ã∆y. Therefore, if we multiply (8.6) by p̃ satisfying

(8.7) and integrate over the domain Dε ∩ {t ≥ σ} between ζ̂∓ for t ∈ [σ, t̄] we may
apply integration by parts (first for p̃ in C1 (see [11]) but then for p̃ satisfying (8.7) by
a density argument in C ∩H1,1). Now ∆y(σ, ·) → δu0 and p̃(σ, ·) → p̃(0, ·) in L2

loc(R)
as σ → 0+ by the initial condition and (8.7). Therefore, the integration by parts can

be extended until σ = 0, i.e., over all of Dε. Since d
dt ζ̂∓(t) = f ′(ŷ(t, ζ̂∓(t))) this gives

∫ x̂+

x̂−
p̃(t̄, x)∆y(t̄, x) dx

=

∫ ζ̂+(0)

ζ̂−(0)

p̃(0, x)δu0(x) dx +

∫ t̄

0

∫ ζ̂+(t)

ζ̂−(t)

∆y (∂tp̃ + ã∂xp̃ + b̃p̃) dxdt

+

∫ t̄

0

∫ ζ̂+(t)

ζ̂−(t)

p̃ (g(t, x, ŷ, ũ1)− g(t, x, ŷ, û1)) dxdt

+

∫ t̄

0

p̃(t, ζ̂−(t)) (−f ′(ŷ)∆y + f(ỹ)− f(ŷ))(t, ζ̂−(t)) dt

+

∫ t̄

0

p̃(t, ζ̂+(t)) (f ′(ŷ)∆y − f(ỹ) + f(ŷ))(t, ζ̂+(t)) dt

def
= I1 + I2 + I3 + I4 + I5.

(8.8)

Our aim is to choose p̃ as a reversible solution of the “averaged” adjoint equation

∂tp̃ + ã∂xp̃ = −b̃p̃, p̃(t̄, ·) = pt̄ ≡ 1/[y(t̄, xs(û); û)].(8.9)

In the following, we justify that p̃ exists and satisfies (8.7), and we study p̃ for ũ→ û.
From the stability estimates of Theorem 4.1 we know that ‖ỹ‖∞ ≤ My for all

ũ ∈ Ṽ and

‖∆y‖1,loc → 0 as ‖δu‖Ṽ → 0.

Hence, we have ã ∈ L∞(Ωt̄) uniformly bounded and

ã→ f ′(ŷ)
def
= a in L1

loc(Ωt̄) and in L∞(Ωt̄)-weak∗ as ‖δu‖Ṽ → 0.(8.10)

Moreover, since f ′′ > 0 we get by Oleinik’s entropy condition (4.1) that there exists
a constant C > 0 with

∂xã(t, ·), ∂xa(t, ·) ≤ C

t
.(8.11)
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By assumption (A4), the coefficients b̃, b in (8.5) do not depend on y, and we have
b̃, b ∈ L∞(0, T ;C0,1(R)) by (A2).

Thus, (8.9) has by Theorem 7.10 a unique reversible solution p̃ satisfying (8.7) (p̃ ∈
C([0, T ];L2

loc(R)) follows from p̃ ∈ C([0, T ];L1
loc(R))∩L∞(ΩT )). Denote moreover by

p the reversible solution of (6.10) (i.e., of (8.9) with a, b instead of ã, b̃), which exists
for the same reasons by Theorem 7.10.

Let Mu > 0 such that ‖ũ1‖∞ ≤Mu for all ũ ∈ Ṽ . By (A2) and (A4) gy admits a
Lipschitz constant Lg′ for u1 on [−Mu,Mu]m and thus

‖b̃− b‖L∞(0,T ;C(R)) ≤ Lg′‖δu1‖∞ ≤ Lg′‖δu‖Ṽ .

Thus, we obtain with (8.10) by Theorem 7.10 that the reversible solutions p̃ of (8.9)
and p of (6.10) satisfy for all σ > 0, R > 0

p̃, p ∈ C0,1([σ, t̄]× [−R,R])(8.12)

and for all r ∈ [1,∞)

p̃→ p in C([σ, t̄]× [−R,R]) ∩ C([0, t̄];Lr(−R,R)) as ‖δu‖Ṽ → 0.(8.13)

We show that even

‖p̃(0, ·)− p(0, ·)‖C(J) → 0 as ‖δu‖Ṽ → 0.(8.14)

In fact, since u0 has only admissible discontinuities (down-jumps) on Js, there is by
the definition of Ṽ some M0 > 0 with ∂xũ0|Js ≤ M0 in the sense of distributions for
all ũ ∈ Ṽ . Since J has its closure in Js, there exists ρ > 0 such that J2ρ ⊂ Js for the
2ρ-neighborhood J2ρ of J . Moreover, ‖ã‖∞ ≤Ma for Ma = sup|y|≤My

|f ′(y)| and all

ũ ∈ Ṽ . Thus, there is σ0 > 0 such that

Kp
def
= {(t, x) ∈ [0, t̄]× R : dist(x, J) ≤Mat} ⊂ ([0, σ]× Jρ) ∪ ([σ, t̄]× R)

for all σ ∈ ]0, σ0]. The propagation speed of ỹ is uniformly bounded by Ma for
all ũ ∈ Ṽ . Hence, there is σ ∈ ]0, σ0] such that ỹ|[0,σ]×Jρ does only depend on
(ũ0|Js , ũ1). Smoothing ũ0 outside Js thus yields by (4.1) that ∂xỹ|[0,σ]×Jρ ≤ M1 for
some M1 > 0 and thus ∂xã|[0,σ]×Jρ ≤ M2. Together with (8.11) we have, possibly
after increasing M2,

∂xã|Kp ≤M2.

By Remark 7.6, p̃|Kp depends only on the values of ã, b̃ on Kp. Thus, by Theorem 7.8

p̃→ p in C(Kp) as ‖δu‖Ṽ → 0,

which implies (8.14).
We now consider the terms I1, . . . , I5 in (8.8). Since p̃ solves (8.9) a.e. by The-

orem 7.10, we have I2 = 0. Moreover, (7.9) yields Mp > 0 with ‖p̃‖∞ ≤ Mp for all

ũ ∈ Ṽ , and we obtain by Lemma 5.1

|I4/5| ≤
∫ t̄

0

MpMf ′′ |∆y(t, ζ̂∓(t))|2 dt ≤ t̄MpMf ′′‖Y∓(·; ũ)− Y∓(·; û)‖2∞,S∓≤ C‖δu‖2V
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with C independent of ε. Moreover, we have with (A2) and the dominated convergence
theorem

‖g(·, ŷ, ũ1)− g(·, ŷ, û1)− gu1(·, ŷ, û1)δu1‖1,Dε
= o(‖δu1‖∞)

independently of ε. Therefore,∣∣∣∣I3 −
∫
Dε

p gu1
(t, x, ŷ, û1)δu1 d(t, x)

∣∣∣∣ ≤ ‖p‖∞o(‖δu1‖∞) + C‖p̃− p‖1,Dε
‖δu1‖∞

with C independent of ε. From the backward stability of genuine backward charac-
teristics we find Lζ > 0 independent of ε with |ζ̂∓(t) − ξ̂∓(t)| ≤ Lζε for all t ∈ [0, t̄].
Thus, we obtain with the last inequality∣∣∣∣∣I3 −

∫ t̄

0

∫ ξ̂+(t)

ξ̂−(t)

p gu1
(t, x, ŷ, û1)δu1 dxdt

∣∣∣∣∣ ≤ C(ε + ‖p̃− p‖1,Dε
)‖δu‖V + o(‖δu‖V)

for some C > 0 independent of ε. Moreover, since ξ̂∓(0), ζ̂∓(0) ∈ J∓∣∣∣∣∣I1 −
∫ ξ̂+(0)

ξ̂−(0)

p δu0 dx

∣∣∣∣∣ ≤ (Lζε‖p̃(0, ·)‖∞ + ‖(p̃− p)(0, ·)‖1,Jr∪J−∪J+
)‖δu0‖∞,Jr∪J−∪J+

+ ‖(p̃− p)(0, ·)‖∞,J‖δu0‖1,J
≤ C(ε + ‖(p̃− p)(0, ·)‖1,Jr∪J−∪J+

+ ‖(p̃− p)(0, ·)‖∞,J)‖δu‖Ṽ .
Using the estimates for I1, . . . , I5, R1, . . . , R4 together with (8.13), (8.14), the Fréchet
differentiability of xs : (Ṽ , ‖ · ‖Ṽ) −→ R is obvious and the adjoint formula (6.9) is

shown with p1Dcl(·) instead of p, where D = D0 is the domain between ξ̂∓, 0 ≤ t ≤ t̄.
But it is obvious from Definition 7.5 that p1Dcl(·) is nothing else but the reversible
solution of (6.10) for the initial data (6.10), i.e., pt̄ = 1/[y(t̄, xs(û); û)]1{x=xs(û)}(·),
since then p has automatically the support Dcl, and coincides on Dcl with the re-
versible solution for the end data pt̄ ≡ 1/[y(t̄, xs(û); û)]. In fact, p is by Definition 7.5
and Remark 7.4 transported along the backward characteristics.

The derivative is also continuous. In fact, denote by p̃ now the reversible solution
of (8.9) with p̃t̄ = 1/[ỹ(t̄, xs(ũ))], ã = f ′(ỹ), b̃ = gy(·, ũ1). Then we already know that

p̃t̄ → pt̄ in C(R) as ‖δu‖Ṽ → 0 and ã, b̃ have the same properties as above. Thus,
we obtain again that (8.13), (8.14) hold. Together with the Lipschitz continuity of

û ∈ (Ṽ , ‖ · ‖Ṽ) −→ ξ̂∓(·) ∈ C([0, T ]) and the definition of ‖.‖Ṽ this shows immediately
that the derivative of xs is continuous.

(ii) In this case the adjoint equation has no source term and (8.9) as well as (6.10)
have both the reversible solutions p̃ = p ≡ 1/[y(t̄, xs(û); û)]. Taking (Ṽ , ‖ · ‖Ṽ) instead

of (V̂ , ‖.‖V) was only necessary to ensure (8.12)–(8.14), which are now trivial. The
proof is now exactly as before but less technical since p̃ = p = const.

Remark 8.1. If g is not affine linear w.r.t. y, then the mean value coefficient b̃
in (8.5) has the form

b̃ =

∫ 1

0

gy(·, ŷ(t, x+) + τ∆y(t, x), ũ1) dτ,(8.15)

where we define ∆y(t, x) everywhere by setting

∆y(t, x) = max (ỹ(t, x−)− ŷ(t, x+), ỹ(t, x+)− ŷ(t, x−)) .(8.16)



SENSITIVITIES AND ADJOINTS FOR CONSERVATION LAWS 785

Then b̃ is discontinuous at shocks of ŷ and ỹ. Nevertheless, we can again define
solutions of the “averaged” adjoint equation (8.9) along the characteristics as in Defi-
nition 7.5. But now the definition of the limit coefficient b at the shocks is important,
since it influences the value of the adjoint state on the domain covered by backward
characteristics emanating from both sides of the shock. Since the backward character-
istics corresponding to the mean value coefficient ã propagate close to a shock of ŷ in
the area between the shock fronts of ŷ, the limit coefficient b in the adjoint equation
has to be defined by

b =

∫ 1

0

gy(·, ŷ(t, x+) + τ [ŷ(t, x)], ũ1) dτ.

One can now show by the results of sections 4–8 that b̃→ b in all continuity points of
ŷ and in all nondegenerate shock points. The limit coefficient b is discontinuous, but
the singular parts of ∂xb̃, ∂xb have densities w.r.t. ∂xã, ∂xa, respectively. We believe
that this allows us to derive at least a bound for p̃, p in H1,2.

We briefly sketch how a stability result can be obtained in the case of a piecewise
Lipschitz continuous solution with a nondegenerate shock η̂: then we know that the
shock is stable and also ỹ has a shock η̃ that connects uniformly varying Lipschitz
continuous states. Denote the area between the shock fronts η̂ and η̃ by S. Generalized
backward characteristics of the averaged equation cannot enter S from outside. Thus
they start in {t̄}× I(η̂, η̃) and leave at some point (s, η̂(s)) or (s, η̃(s)). They define a
Lipschitz continuous function p̃|S that converges uniformly to p(t, η̂(t)), the reversible
solution of the limit equation along the shock. In particular, p̃(t, η̂(t)), p̃(t, η̃(t)) →
p(t, η̂(t)) uniformly. Outside of S, p̃ is obtained by integrating along the characteristics
starting from the Lipschitz continuous boundary data p̃(t, η̂(t)), p̃(t, η̃(t)), and pt̄(x),
x /∈ I(η̂, η̃), respectively. Thus, p̃ is Lipschitz continuous and converges uniformly to p,
since p is obtained by integrating along the characteristics starting from the boundary
data p(t, η̂(t)), pt̄(x) that are the uniform limit of the boundary data of p̃.

A complete study of the adjoint equation in the general case is in progress. We
emphasize that our analysis extends to general source terms as soon as the stability
of the adjoint state is established.

Remark 8.2. The applied techniques for the shock sensitivity analysis are quite
universal and can formally be extended to systems. The domain Dε must then be
chosen between the fastest characteristic field through x̂− and the slowest through x̂+

corresponding to the mean value Jacobian ã. Then similar arguments can be used
if appropriate stability properties of shock, state, and adjoint equation hold. The
appropriate adjoint state must be stable w.r.t. the coefficients. This is an interesting
and challenging topic for future research.

9. Proof of the main results. In this section we will use the results of the
previous sections to prove the main results of this section that we have already stated
in section 3.

9.1. Shift-differentiability of entropy solutions. In this subsection we will
prove the shift-differentiability result for entropy solutions stated in Theorem 3.2 as
well as the formula for the shift derivative given in Theorem 3.4.

Proof of Theorem 3.2 and Theorem 3.4. The proof has three parts. We consider
first shock points then continuity points.

Step 1. We show first the shift-differentiability in a neighborhood of a shock
point. Set y = y(·;u). By assumption, y(t̄, ·) contains on I finitely many shocks
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at x̄1, . . . , x̄K satisfying the assumptions of Lemma 6.2 or Corollary 6.5. Let us for
concreteness assume that x̄k is of type CcCc, i.e., satisfies the scenario of Lemma 6.2.
The case where left and/or right states lie on a rarefaction wave can be treated very
similarly using Corollary 6.5.

Thus, for x̄ = x̄k Lemmas 6.2 and 6.4 are applicable. We denote by ξ∓ the
extreme backward characteristics through (t̄, x̄) and by Dk the confined domain. We
verify that with the notation of Lemma 6.2 for ‖(w, σ)‖W < ρ, ρ > 0 sufficiently
small, one has

us
def
= (u0 + ws0, u1 + w1) ∈ V̂ , ‖(ws0, w1)‖V ≤ C ‖(w, σ)‖W for ws0

def
= S(xi)

u0
(w0, σ).

(9.1)

In fact, there is ρ > 0 with ws0|J∓ = w0|J∓ whenever ‖σ‖2 < ρ, and for all R > 0

‖S(xi)
u0

(w0, σ)‖
1,[−R,R]

≤ 2R‖w0‖∞ + 2‖y(t̄, ·;u)‖∞‖σ‖1 ≤ C ‖(w, σ)‖W .

Hence, for sufficiently small ρ > 0, (9.1) is obvious and Lemma 6.2 holds for û = us

according to (9.1) if ‖(w, σ)‖W < ρ. As a consequence, y(t̄, ·;us) has in a neighborhood

Î = ]x−, x+[ of x̄ the form (6.2), and the shock position xs(u
s) in (6.1) depends by

(9.1) and Lemma 6.2(ii) Lipschitz continuously on (w, σ) ∈W .
We now show that (w, σ) ∈ W → xs(u

s) is Fréchet differentiable at 0 by apply-

ing the differentiability result of Lemma 6.4(i). Since S
(xi)
u0 (w0, σ) can create small

additional up-jumps, it will be useful to introduce the slight modification

S̃(xi)
u0

(w0, σ)(x)
def
= w0(x) +

N∑
i=1

[(u0 + w0)(xi), u0(xi)]+ sgn(σi)1I(xi,xi+σi)(x),

where

[(u0 + w0)(xi), u0(xi)]+
def
=

{
[(u0 + w0)(xi)]+ if [u0(xi)]+ > 0,

0 else.

Now choose the open sets Js and J ⊂ Js in Lemma 6.4(i) such that J and Js contain
all down-jumps of u0 between J− and J+. Then we have for ‖(w, σ)‖W < ρ, ρ > 0

sufficiently small, in addition to (9.1), that with Ṽ , Ṽ from Lemma 6.4

(u0 + w̃s0, u1 + w1) ∈ Ṽ

‖(w̃s0, w1)‖Ṽ ≤ C ‖(w, σ)‖W

}
for w̃s0

def
= S̃(xi)

u0
(w0, σ).(9.2)

In fact, since S̃
(xi)
u0 (w0, σ) shifts only down-jumps without creating additional jumps,

there are ML > 0, ρ > 0 such that ‖(w, σ)‖W < ρ implies w̃s0|J∓∪Jr = w0|J∓∪Jr and
∂x(u0 + w̃s0)|Js ≤ML.

We are now in the position to show that (w, σ) ∈ W −→ xs(u
s) is Fréchet

differentiable at 0. Consider (δw, s) ∈W with ‖(δw, s)‖W < ρ and set

û = (u0 + δws0, u1 + δw1), ũ = (u0 + δw̃s0, u1 + δw1)

with

δws0 = S(xi)
u0

(δw0, s), δw̃s0 = S
(xi)
u0+δw0

(δw0, s).(9.3)
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Then for ‖(δw, s)‖W < ρ, and by using (9.2), Lemma 6.4(i) yields

|xs(ũ)− xs(u)− duxs(u) · (δw̃s0, δw1)| = o(‖δw, s‖W ).

Moreover, by (9.3) it holds that

‖δw̃s0 − δws0‖1 ≤ ‖(δw̃s0, δw1)− (δws0, δw1)‖V ≤
N∑
i=1

|[δw0(xi)]| |si| ≤ C ‖(δw, s)‖2W

and thus by the Lipschitz continuity of (6.1) also that

|xs(û)− xs(u)− duxs(u)(δws0, δw1)| = o(‖(δw, s)‖W ),

where we utilize that by Lemma 6.4, and by (6.9) with the reversible solution p of
(6.10)–(6.11), it holds that

|duxs(u) · (δw̃s0 − δws0, 0)| ≤ ‖p(0, ·)‖∞‖δw̃s0 − δws0‖1 = o(‖(δw, s)‖W ).

Finally, we have again by Lemma 6.4 with s̄k according to (3.8) that

|duxs(u) · (δws0, δw1)− s̄k| ≤
N∑
i=1

[u0(xi)]+

∣∣∣∣
∫ xi+si

xi

|p(0, x)− p(0, xi)| dx
∣∣∣∣ = o(‖s‖2),

where we have used that p(0, x) is continuous in all down-jumps xi; cf. (8.14) and recall
that p vanishes in a neighborhood of the remaining down-jumps, since supp p = Dcl

k .
This concludes the proof that

(w0, w1, σ) ∈W −→ xs(u
s)(9.4)

is Fréchet differentiable in 0 with derivative (3.8). We can now show that

(w0, w1, σ) ∈W −→ y(t̄, ·;us)|Î(9.5)

is shift-differentiable at 0. We know that (6.2) holds on ‖(w, σ)‖W < ρ. Hereby, the

mappings ū ∈ (V̂ , ‖ · ‖V) −→ Y∓(t̄, ·, ū0|J∓, ū1) ∈ C(Î) are continuously differentiable.
We have already observed that ws0|J∓ = w0|J∓ on ‖(w, σ)‖W < ρ and deduce directly
from (9.1) that

(w0, w1, σ) ∈W −→ Y∓(t̄, ·, us0|J∓ , us1) ∈ C(Î)(9.6)

are continuously differentiable on ‖(w, σ)‖W < ρ. According to Remark 5.4

δY∓
def
= (duY∓(·, u) · (δw0|J∓ , δw1))|S∓(9.7)

are on S∓ broad solutions of the variational equation (3.3) and satisfy on J∓ =
Scl∓ ∩ {t = 0} the initial condition (3.4). Now set

δyt̄ = δY−(t̄, ·)|]x−,xs(u)[ + δY+(t̄, ·)|]xs(u),x+[(9.8)

as claimed in (3.7). With

ỹ(t̄, ·) def
= Y−(t̄, ·, û)|]x−,x̄[ + Y+(t̄, ·, û)|]x̄,x+[, ŷ(t̄, ·) = y(t̄, ·; û)
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we get by (9.7), (9.8) that ‖ỹ(t̄, ·)− y(t̄, ·)− δy‖∞,Î = o(‖δw, s‖W ) and thus

‖ŷ(t̄, ·)− y(t̄, ·)− S
(x̄k)
y(t̄,·)(δy

t̄, s̄)‖
1,Î

= ‖ŷ(t̄, ·)− ỹ(t̄, ·)− sgn(s̄k)[y(t̄, x̄)]+1I(x̄,x̄+s̄k)‖1,Î + o(‖δw, s‖W ).
(9.9)

Using (6.2) and the definition of ỹ, we obtain

ŷ(t̄, ·)|Î − ỹ(t̄, ·)|Î = sgn(xs(û)− x̄)(Y−(t̄, ·, û)− Y+(t̄, ·, û))1I(x̄,xs(û)),(9.10)

and since Y∓(t̄, ·, ·) are Lipschitz continuous at (x̄, u) by Lemma 5.1, we have

‖Y−(t̄, ·, û)− Y+(t̄, ·, û)− [y(t̄, x̄)]‖∞,I(x̄,xs(û)) = O(‖(δw, s)‖W ).(9.11)

Oleinik’s entropy condition yields [y(t̄, x̄)] = [y(t̄, x̄)]+, and thus we have by (9.10)
and (9.11)

‖ŷ(t̄, ·)− ỹ(t̄, ·)− sgn(s̄k)[y(t̄, x̄)]+1I(x̄,x̄+s̄k)‖1,Î
= [y(t̄, x̄)]+|x̄ + s̄k − xs(û)|+ O(‖(δw, s)‖2W ) = o(‖(δw, s)‖W ).

Inserting this in (9.9) yields the shift-differentiability of (9.5) on Î with (δyt̄|Î , s̄k) =
Ts,Î(0) · (δw, s) according to (3.7), (3.8). As mentioned above shock points with a

rarefaction wave as left and/or right states can be treated similarly as in Corollary 6.5.
Step 2. We show that (9.5) is even continuously shift-differentiable on {‖(w, σ)‖W

< ρ} for sufficiently small ρ > 0. In fact, on {‖(w, σ)‖W < ρ} the function on the right-
hand side of (9.5) is of the form (6.2). Fix an arbitrary (w, σ) ∈ W , ‖(w, σ)‖W < ρ
and consider the corresponding control

(us0, u
s
1) = us

def
= (u0 + S(xi)

u0
(w0, σ), u1 + w1).(9.12)

Then us0 is again piecewise C1, and us1 has the same regularity as u1. Moreover,

u0 + S(xi)
u0

(w0 + δw0, σ + s) = us0 + S
(xi+σi)
us

0
(δw0, s);

i.e., varying (δw, s) produces a shift-variation of us0. Thus, the arguments of Step 1
show that (9.5) is also shift-differentiable at (w, σ). As above, the shift-derivative
(δyt̄,s|Î , s̄s) = Ts,Î(w, σ) · (δw, s) on Î is given by (3.7), (3.8) with u, y, xi replaced by

us, y(.;us), xsi = xi + σi. Consequently, it suffices to show the continuity of the shift-
derivative in 0. The continuity of (9.4) and (9.6) implies the continuity of (w, σ) −→
y(t̄, xs(u

s)±;us) for us according to (9.12). It remains to show that (w, σ) ∈ W −→
Ts,Î(w, σ) ∈ L(W,Lr(Î)× R) is continuous for some r > 1. Since (9.4) is continuous

and (9.6) are continuously Fréchet differentiable, it is obvious from (9.7), (9.8) with us

instead of u that the mapping (w, σ) ∈ W −→ δyt̄,s|Î ∈ Lr(Î) depends continuously
on (w, σ) ∈W in a neighborhood of 0 for all r ∈ ]1,∞[.

We denote again the extreme backward characteristics of y through (t̄, xs(u))
by ξ∓, the confined domain by Dk, and the extreme backward characteristics of
ys

def
= y(·;us) through (t̄, xs(u

s)) by ξs∓. With Ik
def
= Dcl

k ∩ {t = 0} we obtain by (3.8)

|s̄sk − s̄k| ≤ ‖ps(0, ·)− p(0, ·)‖1,Ik‖δw0‖∞,Ik + (‖ξ− − ξs−‖∞,[0,t̄] + ‖ξ+ − ξs+‖∞,[0,t̄])
· (‖ps(0, ·)‖∞,J−∪J+

‖δw0‖∞,J−∪J+
+ ‖ps gu1(·, ys, us1)‖∞,Ωt̄

‖δw1‖∞,Ωt̄
)

+ ‖ps gu1
(·, ys, us1)− p gu1

(·, y, u1)‖1,Dk
‖w1‖∞,Dk

+
∑
xi∈Ik

(|[us0(xsi )]+ − [u0(xi)]+||ps(0, xsi )|+ |[u0(xi)]+||ps(0, xsi )− p(0, xi)|) |si|,
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where p is the reversible solution of (3.5) and ps is the reversible solution of (3.5) for
ys instead of y and xs(u

s) instead of x̄k = xs(u). We deduce that

sup
‖(δw,s)‖W =1

|s̄sk − s̄k| → 0 as ‖(w, σ)‖W → 0

from the following observations. By (6.2) and the continuity of (9.4), (9.6) it follows
that ‖ξs∓ − ξ∓‖∞,[0,t̄] → 0 as ‖(w, σ)‖W → 0. Moreover, ys is bounded in L∞ with

ys → y in L1
loc(ΩT ), and exactly the same arguments as in the proof of Lemma 6.4(i)

show with Theorem 7.10 that for all τ > 0, R > 0 we have ps, p ∈ C0,1([τ, t̄]× [−R,R])
and for all r ∈ [1,∞[

ps → p in C([τ, t̄]× [−R,R]) ∩ C([0, t̄];Lrloc(R)) as ‖(w, σ)‖W → 0.

In particular, we obtain ‖ps gu1(·, ys, us1)− p gu1(·, y, u1)‖1,Dk
→ 0 by the Lebesgue

dominated convergence theorem and a subsequence-subsequence argument, since gu1

is by (A2) a Carathéodory function. To estimate the sum in the last term we observe
that [us0(xi + σi)] = [u0(xi)] for ‖σ‖2 small enough. We still have to show that
|ps(0, xi+σi)−p(0, xi)| → 0 if [u0(xi)]+ �= 0. Recall that ps(0, ·), p(0, ·) are continuous
in the admissible discontinuities xi+σi, xi of us0 and u0; cf. (8.14). Fix an arbitrarily
small τ > 0. We know that p(τ, ·) ∈ C0,1

loc (R) and that ‖ps(τ, ·)− p(τ, ·)‖C([−R,R]) →
0. Let η, ηs be the shocks of y, ys emanating from xi and xi + σi, respectively.
Clearly, for all τ > 0 sufficiently small y(τ, ·) satisfies the framework of Lemma 6.2
in a neighborhood of η(τ). Hence, we know from the first part of the proof that
ηs(τ) → η(τ) as ‖(w, σ)‖W → 0. p(t, η(t)) and ps(t, ηs(t)) satisfy by Remarks 7.4 and
7.6 an ordinary differential equation of the form (7.8). We thus obtain

|ps(0, xsi )− p(0, xi)| ≤ |ps(τ, ηs(τ))− p(τ, η(τ))|
+ τ ‖p gu1(·, y, u1)− ps gu1

(·, ys, us1)‖∞,Dk
,

and the right-hand side becomes arbitrarily small for τ and ‖(w, σ)‖W sufficiently
small.

Step 3. It remains to consider the continuity points. Since y(t̄, ·;u) contains no
shock generation points, all continuity points satisfy the scenario of Lemma 5.5, 5.10,
5.11, or 5.12, respectively, corresponding to the Cases Cc, Rc, CBc, and RBc. In Case
Cc there are by Lemma 5.5(ii) Î = ]x−, x+[  x̄ and z− < z̄ < z+ such that for
(Y,Z, V, S, J) = YC(u, t̄, [z−, z+]) obtained by Lemma 5.1 it holds that

y(t̄, ·; û)|Î = Y (t̄, ·; û0|J , û1)|Î(9.13)

for all û ∈ V̂ with V̂ defined in Lemma 5.5(ii). Hereby, xi /∈ J , i = 1, . . . , N . Let
M∞ > 0 be chosen large enough in the definition of V̂ . Then we find ρ > 0 such that
on {‖(w, σ)‖W < ρ} with us in (9.1), us0|J = (u0 +w0)|J ∈ C1(J) holds, and moreover

us ∈ V̂ . Hence, (9.13) holds on {‖(w, σ)‖W < ρ}, and it follows by Lemma 5.1 that

(w, σ) ∈W −→ y(t̄, ·;us)|Î ∈ C(Î)(9.14)

is continuously Fréchet differentiable on {‖(w, σ)‖W < ρ}. From Lemma 5.1 we have
with Remark 5.4 that

δY
def
= (duY (·, u)(δw0|J , δw1))|S
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is the broad solution of the linearized state equation (3.3) on S for initial data (3.4).
Hence, the derivative of (9.14) in 0 is given by (3.7).

In Case CBc Lemma 5.11 can be applied. Then z̄ = xi and u0 is continuous (but
not necessarily differentiable) in xi. Let Î = ]x−, x+[  x̄, J with z̄ = ξ(0) ∈ J , and
let S∓, Y∓, and V̂ be given according to Lemma 5.11. Then for ρ > 0 sufficiently
small we have us ∈ V̂ on {‖(w, σ)‖W < ρ}, since us0|J = (u0 + w0)|J ∈ PC1(J ; z̄).
Hence,

(w, σ) ∈W −→ y(t̄, ·;us) ∈ Lr(Î)(9.15)

is by Lemma 5.11 Fréchet differentiable at 0 for all r ∈ [1,∞[, and the derivative
coincides with the derivative of (w, σ) ∈ W −→ ỹ(t̄, ·;us) ∈ Lr(Î), where ỹ is defined
in (5.28). Using (5.28), the derivative of (9.15) is thus clearly

duỹ(t̄, ·;u) · (δw0|J , δw1) = δY−(t̄, ·)|]x−,x̄[ + δY+(t̄, ·)|]x̄,x+[
def
= δyt̄,(9.16)

where with S∓,ξ
def
= S∓ ∩ {∓(x − ξ(t)) > 0} and the prolongations u∓

0 and w∓
0 as

in (5.25),

δY∓ = (duY∓(·;u∓
0 |J , u1) · (δw∓

0 |J , δw1))|S∓,ξ
.

Since ξ is a genuine forward characteristic of y(·, u) through (0, z̄), it is clear that δY∓
depend in S∓,ξ only on the values of u0, δw0 on J ∩ {∓(x− z̄) > 0}, respectively, and
are thus by Remark 5.4 on S∓,ξ broad solutions of the linearized state equation (3.3)

for initial values (3.4). Hence, (9.16) is exactly (3.7) on Î.
If x̄ is a continuity point on a rarefaction wave (Case Rc) or on the boundary of a

rarefaction wave (Case RBc), then Lemma 5.10 or 5.12 is applicable. Now the Fréchet
differentiability of (9.14) or (9.15) can be proven completely analogous. In Case Rc

(9.14) is continuously Fréchet differentiable on {‖(w, σ)‖W < ρ}, ρ > 0 small enough;
in Case RBc at least (9.15) is continuously Fréchet differentiable for all r ∈ [1,∞[. On
the rarefaction wave the broad solution δY of (3.3) in (3.7) is now defined according
to Remark 5.9 and thus satisfies the initial condition (3.4).

Now combining the shift-differentiability of (9.5) in a neighborhood of a shock
point and the Fréchet differentiability of (9.14) or (9.15), respectively, in a neighbor-
hood of continuity points, the shift-differentiability of (3.2) in 0 is obvious by selecting
a finite covering of I. Moreover, we have shown that (δyt̄, s̄) = Ts(0) · (δw, s) is ac-
tually given by (3.7), (3.8). By using the local properties of the derivatives according
to Lemmas 5.1 and 5.6 we conclude that Ts(0) ∈ L(W,PC(I; x̃1, . . . , x̃K̃)×R

K) with
(x̃k) comprising the shock locations and the points of class CBc.

Consider finally the case that u0(xi−) �= u0(xi+) for all xi. Then the scenario of
Lemma 5.11, i.e., Case CBc, does not occur. We have seen that (9.5) is continuously
shift-differentiable and (9.14) in Cases Cc, Rc, or at least (9.15) for all r ∈ [1,∞[
in Case RBc are continuously Fréchet differentiable on {‖(w, σ)‖W < ρ}, ρ > 0 suf-
ficiently small. Hence, we obtain in fact continuous shift-differentiability of (3.2) on
{‖(w, σ)‖W < ρ} by choosing a finite covering of I by intervals Î.

Remark 9.1. At the boundary of a rarefaction wave and along the backward
characteristic through points (t̄, x̄) of class CBc, the broad solutions of the linearized
equation according to Remark 5.4 or 5.9 cannot be pieced together continuously. Nev-
ertheless, the obtained broad solution is a weak solution across the jump, since obvi-
ously the jump condition is satisfied.
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Remark 9.2. We have already mentioned in Remark 3.5 that weak solutions δY
of the variational equation (5.10) can be defined on all of Ωt̄. However, since the broad
solutions to both sides of a shock do not in general satisfy the jump condition across
shocks, δY is a measure with singular part at shocks. This reflects the fact that the
mapping u → y(t, ·;u) is at best differentiable in Mloc(R)–w∗. For the conservative
case (i.e., gy ≡ 0, gu1

≡ 0) the concept of duality solutions introduced in [1] yields
solutions of this type; see also [12]. An analysis of duality solutions for the general
variational equation (5.10) can be found in the author’s habilitation thesis [26]. See
also Remark 3.7.

9.2. Differentiability of tracking-type functionals (proof of Theorem 3.9
and Corollary 3.10). Now since Theorems 3.2 and 3.4 are proven, also the dif-
ferentiability results for tracking-type functionals (1.2), (3.19) in Theorem 3.9, and
Corollary 3.10 in section 3.2 are shown. (Relying on Theorems 3.2 and 3.4 we have
already proven them in section 3.2 by using Lemma 2.3.)

9.3. Adjoint calculus for tracking-type functionals (proof of Theorem
3.11). We are finally in the position to justify the adjoint-based gradient representa-
tion for tracking-type functionals (1.2), (3.19) stated in Theorem 3.11.

Proof of Theorem 3.11. The differentiability of J in (1.2), (3.19) is a direct
consequence of Theorem 3.9. It remains to justify (3.24). We will show that (3.24)
follows from (3.21).

We use the following notation: p denotes the reversible solution of (3.25)–(3.26)
according to Theorem 7.11, which appears in (3.24). p̃ denotes the reversible solution
of (3.25) for end data (3.23); then (3.21) holds with p̃ instead of p, i.e.,

d(w,σ)J(y) · (δw0, δw1, s) = (φy(y(t̄, ·), yd), δyt̄)2,I

+ (p̃gu1
(·, y, u1), δw1)2,Ωt̄

+ (p̃(0, ·), δw0)2 +

N∑
i=1

p̃(0, xi)[u0(xi)]+si.
(9.17)

Let Dk and Sk be defined as in Theorem 3.4. p and p̃ are by Definition 7.5 and
Remark 7.4 transported along the backward characteristics. Hence, the values of
the end data pt̄ and p̃t̄ on an interval [x−, x+] determine the values of p and p̃ in
the domain confined by the minimal/maximal backward characteristic through x∓,
respectively. Thus, p vanishes outside the domain confined by the genuine backward
characteristics through the continuity points (t̄, a) and (t̄, b).

Moreover, p and p̃ coincide on each domain Dcl
k and supp p̃ ⊂ ⋃kDcl

k . Therefore,
using the solution p for end data (3.26) we can rewrite (9.17) in the form

d(w,σ)J(y) · (δw, s) = (pt̄, δyt̄)2,I +

N∑
i=1

p(0, xi)[u0(xi)]+si

+

K∑
k=1

(
(p gu1(·, y, u1), δw1)2,Dk

+ (p(0, ·), δw0)2,Ik

)
,

(9.18)

where Ik
def
= Dcl

k ∩ {t = 0}, k = 1, . . . ,K. For the second term we have used that all
down-jumps xi are contained in the union of Ik, k = 1, . . . ,K.

We still have to rewrite the first expression on the right-hand side by means
of the adjoint state. Fix an arbitrary stripe Sk. Since y is continuous on Sk, all
characteristics are genuine. If Sk contains backward characteristics emanating at t = t̄
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from the finitely many discontinuities of yd in I or forward characteristics emanating
from (0, xi) with u0(xi−) = u0(xi+), these characteristics divide Sk in finitely many
substripes. Consider one of these substripes S. Then there are x− < x+ such that S is
the domain confined by the maximal/minimal backward characteristic through (t̄, x∓),
respectively, and Remark 5.4 applies with Y = y(·;u) outside of rarefaction waves, and
Remark 5.9 applies with Yr = y(·;u) inside of rarefaction waves. By the choice of S we
have y(t̄, .), yd ∈ C0,1(]x−, x+[), and thus the function pt̄ in (3.26) is in C0,1(]x−, x+[).
Since the reversible solution p of (3.25) depends on S only on pt̄|]x−,x+[, we conclude
exactly as in the proof of Lemma 6.4 that p|S ∈ C0,1(S ∩ {t > τ}) ∩C([0, t̄], L2

loc(R))
for all τ > 0. Remarks 5.4 and 5.9 thus yield (5.11) for D = S ∩ {t > τ}. Since the
L2-traces of p and y exist at t = 0 and p|S satisfies (3.25) a.e. by Theorem 7.7, (5.11)
gives for τ → 0

(pt̄, δyt̄)2,]x−,x+[ = (p(0, ·), δw0)2,Scl∩{t=0} + (p gu1
(t, x, Y, u1), δw1)2,S ;

see (3.18) and Remark 3.6. The boundary terms along the confining characteristics
ξ∓ drop out, since the outer normal (n1, n2)T is a multiple of (f ′(y(t, ξ∓(t))),−1)T .
Summing over all stripes S and inserting the result in (9.18) yields (3.24).

We already know from Theorem 7.10 that for all τ > 0, p|Dk
∈ C0,1(Dk∩{t > τ})

holds and that p|Sk
is piecewise C0,1 on Sk ∩ {t > τ} with discontinuities along the

backward characteristics emanating from discontinuities of yd and that the same holds
for τ = 0 whenever Sk or Dk contains no rarefaction wave.

9.4. Nondegeneracy of shocks (proof of Theorem 3.8). We finally show
that the nondegeneracy assumptions of Theorem 3.2 hold for a.a. t̄ ∈ [0, T ] under
slightly stronger smoothness assumptions on (u0, u1).

Proof of Theorem 3.8. By [8, Lem. 4.1, Cor. 4.2] the set of shocks is at most
countable, and for each shock η the functions t → y(t, η(t)∓) are continuous outside
of an at most countable set. Thus, for all except countably many times t̄ ∈ ]0, T [ for all
shocks η the functions t → y(t, η(t)∓) are continuous at t̄ and the extreme backward
characteristics through (t̄, η(t̄)) do not propagate at the boundary of a rarefaction
wave or reach t = 0 in one of the points xi, i = 1, . . . , N , where u0 is continuous.
Denote by B ⊂ ]0, T [ the set of all t̄ having this property. Fix some t̄ ∈ B. If all
shocks satisfy the framework of Lemma 6.2 or Corollary 6.5, i.e., are nondegenerate
according to Definition 6.1, then y(t̄, ·) has obviously only finitely many shocks on
each compact interval I and Theorem 3.2 is applicable.

Now assume that there exists a shock η and a set R ⊂ B with outer measure
µ∗(R) > 0 such that η for all t̄ ∈ R does not satisfy the framework of Lemma 6.2 or
Corollary 6.5. Fix an arbitrary density point t̂ ∈ R of R w.r.t. µ∗.

Assume for concreteness that η has no rarefaction wave as left or right state at
time t̂. Since t → y(t, η(t)∓) are continuous at t̂, the left or right state is also not
a rarefaction wave for all times t in a sufficiently close neighborhood S of t̂, and
since t̂ ∈ R is a density point of R, we may reduce R such that R = R ∩ S. By
assumption, (4.19) must be violated for all t̄ ∈ R with z̄ being one of the intersection
points z∓ = ξ∓(0; t̄, η(t̄)) of the minimal or maximal backward characteristic of y
through (t̄, η(t̄)) with {t = 0}. Without restriction assume that for all t̄ ∈ R (4.19)
is violated on the left side of the shock, i.e., z(t̄)

def
= z̄ = ξ−(0; t̄, η(t̄)). Then with

F (t, z)
def
= d

dz ζ(t; z, u0(z), u1) we must have

F (t̄, z(t̄)) = 0, F (t, z(t̄)) > 0, 0 ≤ t < t̄ ∀ t̄ ∈ R.(9.19)
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Since genuine backward characteristics may not intersect, the mapping t ∈ S → z(t)
is strictly monotone decreasing and thus almost everywhere differentiable. Without
restriction, we may thus reduce R such that z(t) is differentiable in all t̄ ∈ R and still
µ∗(R) > 0. Now let t̃ ∈ R be a density point of R w.r.t. µ∗ and set z̃ = z(t̃). Since
F (t, z) = δζ(t; z, u0(z), u1; 1, u′

0(z), 0) we obtain from (4.12) that F is continuously
differentiable w.r.t. t, and since u0 is C2 in a neighborhood of z̃ we conclude by using
Lemma 4.4 and applying Proposition 4.3 to (4.12) that (t, z) → ζ(t; z, u0(z), u1) is C2

in a neighborhood Q of (t̃, z̃). Moreover, we know from section 4.3 that ∂tF (t̃, z̃) �= 0
and hence by (9.19) that ∂tF (t̃, z̃) < 0; cf. also [8, Lem. 5.5]. Since t̃ ∈ R is a
density point of R, there exists a strictly monotone increasing sequence (tk) ⊂ R
with tk ↗ t̃. By the continuity of t → y(t, η(t)−) in t̃ and the stability of genuine
backward characteristics we have z(tk) ↘ z(t̃) = z̃ as k → ∞ and thus eventually
(tk, z(tk)) ∈ Q. Now we get by (9.19) and ∂tF (t̃, z̃) < 0

0 = lim
k→∞

F (tk, z(tk))− F (t̃, z(t̃))

tk − t̃
= ∂tF (t̃, z̃) + ∂zF (t̃, z̃)ż(t̃) < ∂zF (t̃, z̃)ż(t̃)

and deduce from ż(t̃) ≤ 0 that ∂zF (t̃, z̃) = d2

dz2 ζ(t̃; z, u0(z), u1)|z=z̃ < 0. Hence, we
obtain from z(tk) ↘ z(t̃) = z̃ that for all sufficiently large k

ζ(t̃; z(tk), u0(z(tk)), u1) < ζ(t̃; z(t̃), u0(z(t̃)), u1) = η(t̃),

i.e., the continuation of the genuine characteristic through (tk, η(tk)) intersects the
genuine backward characteristic through (t̃, η(t̃)) at some time t ∈ ]tk, t̃[ and must
thus intersect the shock η a second time on ]tk, t̃[. This is impossible, since the angle
between the genuine backward characteristics and η is bounded away from zero inde-
pendently of k, and also the curvature of the continuation of the characteristics is uni-
formly bounded. Hence, the assumption was wrong and the hypotheses of Lemma 6.2
cannot be violated on a set of nonzero measure. Applying a similar argument in the
case of a rarefaction wave as left or right state concludes the proof.

10. Conclusions and future work. We have presented a sensitivity calculus
for entropy solutions of hyperbolic conservation laws with source terms that is based
on a first order approximation by shift-variations. The obtained shift-differentiability
result for the control-to-state mapping implies differentiability properties for a large
class of tracking-type functionals. For this class of functionals we have derived a
gradient representation by using the adjoint state. Hereby, the adjoint state is the
unique reversible solution of a transport equation with discontinuous coefficient that
guarantees uniqueness only for the class of reversible solutions. These results can
be used to state optimality conditions for the optimal control of flows with shocks
and provide an analytical justification for the use of gradient-based methods. In
particular, it turns out that the numerical scheme used to compute the adjoint state
should converge to the reversible solution in order to be consistent with the original
problem. Since we allow shift-variations of the initial data, the shift-differentiability
result can be repeatedly used over time slabs. We plan to exploit this in the design
and analysis of a class of SQP methods with time domain decomposition.

Our analysis uses structural results for the state and the stability of reversible
solutions of the adjoint equation with respect to its coefficients. This approach can
formally be extended to systems and multidimensional problems and yields a correct
sensitivity and adjoint calculus if the necessary stability properties of state and adjoint
state actually hold.
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The results of section 7 on the adjoint equation are discussed in detail in the follow-
up paper [27]; see also the author’s habilitation thesis [26]. In [26] we also extend the
results of [1] on duality solutions for the corresponding forward problem to the case
with source term, which yields the correct linearization of the state equation.

We plan to use the adjoint calculus of this paper for the formulation of optimality
conditions and the analysis of gradient-based methods for the optimal control of flows
with shocks. For the numerical approximation we have started to analyze which
schemes for the discretization of the state equation lead to numerical adjoint schemes
that converge to the correct reversible adjoint state, thus yielding consistent gradient
approximations. First results on the discretization of backward transport equations
with discontinuous coefficients and the corresponding conservative forward problem
were obtained for the case without source term by Gosse and James in the very recent
paper [15]. By extending these results, we have recently [26] obtained convergence
results for discrete adjoints and the corresponding gradient approximations.

Appendix. Analysis of the adjoint equation. For convenience we present
proofs of the existence and stability results for the adjoint equation that we stated
in section 7. For a detailed analysis we refer to our recent works [27, 26]. In [26] we
consider also measure solutions for the corresponding conservative forward problem
with source term.

One can show [1] that the generalized backward flow X satisfies

‖∂sX‖∞, ◦Db×R
≤ ‖a‖∞, ‖∂tX‖∞×R,

◦
Db

≤ ‖a‖∞e
∫ T
0
α, ‖∂xX(s; t, ·)‖∞ ≤ e

∫ s
t
α,

(A.1)

where (s, t) ∈ Db in the last inequality. Moreover,

∂s∂xX(s; t, x) ≤ α(s)∂xX(s; t, x) for a.a. s ∈ ]0, T [(A.2)

on
◦
Db ×R. Thus, for arbitrary z1 < z2 and 0 ≤ t ≤ σ ≤ s ≤ T

X(s; t, z2)−X(s; t, z1) ≤ X(σ; t, z2)−X(σ; t, z1) +

∫ s

σ

α(τ)(X(τ ; t, z2)−X(τ ; t, z1))dτ,

and hence

X(s; t, z2)−X(s; t, z1) ≤ (X(σ; t, z2)−X(σ; t, z1))e
∫ s
σ
α ∀ t ≤ σ ≤ s ≤ T.(A.3)

Proof of Theorem 7.7. We show first that p is well defined. Let (t, x) ∈ ΩT be
arbitrary. Since z −→ X(t; 0, z) is surjective, there is z ∈ R with x = X(t; 0, z).
Now (7.7) defines the values of p on the curve (s,X(s; 0, z)), t ≤ s ≤ T . If z is not
unique, then we get for all z̃ with x = X(t; 0, z̃) by (A.3) X(s; 0, z̃) = X(s; 0, z) for
all s ∈ [t, T ]. Hence, the definition does not depend on the choice of z. As a simple
consequence of (A.1) and (7.7) we get (7.9). Hence, there exists a unique p ∈ L∞(ΩT )
satisfying (7.7). We show that p is Lipschitz continuous. Let z1 < z2 be arbitrary.
Then ∆p(t)

def
= p(t,X(t; 0, z2)) − p(t,X(t; 0, z1)) satisfies ∆p(T ) = pT (X(T ; 0, z2)) −

pT (X(T ; 0, z1)) and

d
dt∆p(t) = −b(t,X(t; 0, z2))∆p(t)− (b(t,X(t; 0, z2))− b(t,X(t; 0, z1)))p(t,X(t; 0, z1)).
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Thus, setting I(t) = [X(t; 0, z1), X(t; 0, z2)] we get for all τ ∈ [0, T ]

|∆p(τ)| ≤
∫ T

τ

‖b(s)‖∞,I(s)|∆p(s)| ds + |pT (X(T ; 0, z2))− pT (X(T ; 0, z1))|

+

∫ T

τ

‖p(s)‖∞,I(s)|b(s,X(s; 0, z2))− b(s,X(s; 0, z1))| ds.
(A.4)

Hence, we have by (A.3) with ∆X(t)
def
= X(t; 0, z2)−X(t; 0, z1)

|∆p(τ)| ≤
(
‖∂xpT ‖∞ + ‖b‖L1(0,T ;C0,1)‖p‖∞

)
e
∫ T
τ
α∆X(τ) + ‖b‖∞

∫ T

τ

|∆p(s)| ds

and by the Gronwall lemma for all t ∈ [0, T ]

|∆p(t)| ≤ ∆X(t)
(
‖∂xpT ‖∞ + ‖b‖L1(0,T ;C0,1)‖p‖∞

)
e(T−t)‖b‖∞+

∫ T
t
α.

This yields a uniform bound for ‖∂xp‖∞. Finally, let z ∈ R and t1, t2 ∈ [0, T ], t1 < t2,
be arbitrary; then by (A.1)

|p(t2, X(t1; 0, z))− p(t1, X(t1; 0, z))|
≤ |p(t2, X(t2; 0, z))− p(t1, X(t1; 0, z))|+ |p(t2, X(t2; 0, z))− p(t2, X(t1; 0, z))|
≤ (‖b‖∞‖p‖∞ + ‖a‖∞‖∂xp‖∞)|t2 − t1|.

(A.5)

Hence, p ∈ C0,1(ΩT ). Finally, p solves (7.1) a.e. in ΩT . In fact, for a.a. (t, x) =
(t,X(t; 0, z)) in ΩT the Lipschitz-function p is differentiable. Moreover, since a(t, ·) ∈
BVloc(R) for a.a. t by the one-sided Lipschitz condition, we have a(t, x−) = a(t, x+)
for a.a. (t, x) ∈ ΩT , and thus from (7.6) we have that

∂sX(t; 0, z) = a(t,X(t; 0, z))

for a.a. (t, x) = (t,X(t; 0, z)). Now the chain rule yields with (7.7) that (7.1) is
satisfied for all of these (t, x).

Since for w ∈ C0,1(R), |w|var = ‖∂xw‖1 holds, we obtain by summing (A.4) for
suitable z0

1 < z0
2 = z1

1 < z1
2 = · · · that for all 0 ≤ t ≤ τ ≤ T

‖∂xp(τ)‖1,I(τ) ≤
∫ T

τ

‖b(s)‖∞,I(s)‖∂xp(s)‖1,I(s) ds + ‖∂xpT ‖1,I(T )

+

∫ T

τ

‖p(s)‖∞,I(s)‖∂xb(s)‖1,I(s) ds.

With I = I(t) and J = [X(t; 0, z1)−‖a‖∞(T − t), X(t; 0, z2) + ‖a‖∞(T − t)], we have
by (A.1) that I(s) ⊂ J , t ≤ s ≤ T , and by the Gronwall lemma it follows that

‖∂xp(t)‖1,I ≤ (‖∂xpT ‖1,J + ‖∂xb‖1,[t,T ]×J‖p‖∞,[t,T ]×J)e(T−t)‖b‖∞,[0,T ]×J .(A.6)

Since p solves (7.1) a.e. in ΩT , we get for arbitrary 0 < t1 < t2 < T and with |I|
denoting the length of I

‖∂tp‖1,[t1,t2]×I ≤ ‖bp‖1,[t1,t2]×I + ‖a‖∞,[t1,t2]×I‖∂xp‖1,[t1,t2]×I
≤ (t2 − t1)(|I|‖bp‖∞,[t1,t2]×I + ‖a‖∞,[t1,t2]×I‖∂xp‖L∞(t1,t2;L1(I))).

(A.7)
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Now (7.10) and the asserted properties of the constant C follow directly from (7.9),
(A.6), and (A.7). Moreover, we see that p ∈ H1,1(]0, T [×I) with norm not depending
on α.

Proof of Theorem 7.8. Denote by X and Xn the backward flows according to
Definition 7.3 for a and an, respectively. By [1] it holds that Xn → X in C(Db ×
[−R,R]) for any R > 0. By the definition of reversible solutions we have for all z ∈ R

pn(T,Xn(T ; 0, z)) = pTn (Xn(T ; 0, z)),
d
dtpn(t,Xn(t; 0, z)) = −(bnpn)(t,Xn(t; 0, z)).

For the reversible solution p of (7.1), equation (7.7) holds. Fix some R > 0 and
consider an arbitrary (t, x) ∈ [0, T ] × [−R,R]. Then there exist z, zn ∈ R with
x = X(t; 0, z) = Xn(t; 0, zn), and we have X(s; 0, z), Xn(s; 0, zn) ∈ [R −MaT,R +
MaT ]

def
= J according to (A.1) for all s ∈ [t, T ] with an upper bound Ma for ‖an‖∞

and ‖a‖∞. Since X(s; t, x) = X(s; 0, z) and Xn(s; t, x) = Xn(s; 0, z) by (7.5), we have

pn(T,Xn(T ; t, x)) = pTn (Xn(T ; t, x)),
d
dspn(s,Xn(s; t, x)) = −(bnpn)(s,Xn(s; t, x)), s ∈ ]t, T [ ,

and the same holds with p,X, pT , b instead of pn, Xn, p
T
n , bn. Therefore, the difference

∆pn(s)
def
= p(s,X(s; t, x))− pn(s,Xn(s; t, x)) satisfies

|∆pn(T )| = |pT (X(T ; t, x))− pTn (Xn(T ; t, x))|
≤ ‖pT − pTn‖C(J) + ‖∂xpT ‖∞,J‖X −Xn‖C(Db×J)

and for s ∈ ]t, T [

d
ds∆pn(s) = (bn(s,Xn(s; t, x))− b(s,X(s; t, x)))p(s,X(s; t, x))

− bn(s,Xn(s; t, x))∆pn(s).

Thus, we get with JT
def
= [0, T ]× J

|∆pn(s)| ≤ T‖p‖C(JT )(‖bn − b‖L∞(0,T ;C(J)) + ‖∂xb‖∞,JT ‖X −Xn‖C(Db×J))

+ |∆pn(T )|+
∫ T

s

‖bn‖L∞(0,T ;C(J))|∆pn(τ)| dτ,

and we deduce by the Gronwall lemma that

lim
n→∞ ‖p− pn‖C([0,T ]×[−R,R]) = 0.
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[16] D. Hoff, The sharp form of Olĕınik’s entropy condition in several space variables, Trans.
Amer. Math. Soc., 276 (1983), pp. 707–714.
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Abstract. We present some results concerning the controllability of a quasi-linear parabolic
equation (with linear principal part) in a bounded domain of R

N with Dirichlet boundary conditions.
We analyze the controllability problem with distributed controls (supported on a small open subset)
and boundary controls (supported on a small part of the boundary). We prove that the system is
null and approximately controllable at any time if the nonlinear term f(y,∇y) grows slower than

|y| log3/2(1+ |y|+ |∇y|)+ |∇y| log1/2(1+ |y|+ |∇y|) at infinity (generally, in this case, in the absence
of control, blow-up occurs). The proofs use global Carleman estimates, parabolic regularity, and the
fixed point method.

Key words. controllability, parabolic equations, nonlinear gradient terms
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1. Introduction and main results. Let Ω ⊂ R
N be a bounded connected

open set with boundary ∂Ω of class C2. Let O ⊂ Ω be a nonempty open subset,
let γ ⊂ ∂Ω be a nonempty relative open subset of the boundary, and assume that
T > 0. We will use the following notation: Q = Ω× (0, T ), Σ = ∂Ω× (0, T ). For any
p ∈ [1,+∞], we will denote by ‖ · ‖p the usual norm in Lp(Q).

We will consider parabolic systems of the form


∂ty −∆y + f(y,∇y) = v1O in Q,
y = 0 on Σ,
y(x, 0) = y0(x) in Ω

(1)

and 


∂ty −∆y + f(y,∇y) = 0 in Q,
y = v1γ on Σ,
y(x, 0) = y0(x) in Ω,

(2)

where y0 and v are given in appropriate spaces. In (1) and (2),

f : R× R
N → R

is a locally Lipschitz-continuous function and 1O and 1γ denote the characteristic
functions of the setsO and γ, respectively. We will assume that y0 ∈W 1,∞(Ω)∩H1

0 (Ω)
(for simplicity), v ∈ L∞(O × (0, T )) in (1), and v ∈ L∞(γ × (0, T )) in (2).
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‡Dpto. Matemática Aplicada, Universidad Complutense, 28040 Madrid, Spain (zuazua@eucmax.

sim.ucm.es).

798



CONTROLLABILITY OF PARABOLIC SYSTEMS 799

The main goal of this paper is to analyze the controllability properties of (1)
and (2). It will be said that (1) (resp., (2)) is null-controllable at time T if, for
each y0 ∈ W 1,∞(Ω) ∩ H1

0 (Ω) (resp., y0 ∈ W 1,∞(Ω) ∩ V , where V is given below
by (10)), there exists v ∈ L∞(O × (0, T )) (resp., v ∈ L∞(γ × (0, T ))) such that
the corresponding initial boundary problem (1) (resp., (2)) admits a solution y ∈
C0([0, T ];L2(Ω)) satisfying

y(x, T ) = 0 in Ω.(3)

On the other hand, it will be said that (1) (resp., (2)) is approximately controllable
in L2(Ω) at time T if, for any y0 ∈ W 1,∞(Ω) ∩ H1

0 (Ω) (resp., y0 ∈ W 1,∞(Ω) ∩ V ),
any yd ∈ L2(Ω), and any ε > 0, there exists a control v ∈ L∞(O × (0, T )) (resp.,
v ∈ L∞(γ × (0, T ))) such that the corresponding initial boundary problem (1) (resp.,
(2)) possesses a solution y ∈ C0([0, T ];L2(Ω)), with

‖y(·, T )− yd‖L2 ≤ ε.(4)

The controllability of linear and semilinear parabolic systems has been analyzed
in several recent papers. Among them, let us mention [I], [FI], [F], [B], [AB], and
[FZ2] in what concerns null controllability and [FPZ], [Z2], and [FZ2] for approximate
controllability.

This paper generalizes all previous results, in particular those in [FZ2], where the
nonlinear term is assumed to be of the form f(y).

Notice that, under the hypothesis above, we can write

f(s, p) = f(0, 0) + g(s, p)s+G(s, p) · p ∀(s, p) ∈ R× R
N(5)

for some L∞
loc functions g and G. These are respectively given by

g(s, p) =

∫ 1

0

∂f

∂s
(λs, λp) dλ, Gi(s, p) =

∫ 1

0

∂f

∂pi
(λs, λp) dλ for 1 ≤ i ≤ N.

Our first result is the following one.
Theorem 1.1. Assume that f is locally Lipschitz-continuous, f(0, 0) = 0 and

lim
|(s,p)|→∞

|g(s, p)|
log3/2(1 + |s|+ |p|) = 0, lim

|(s,p)|→∞
|G(s, p)|

log1/2(1 + |s|+ |p|) = 0.(6)

Then (1) is null-controllable at any time T > 0.
Remark 1.1. This result generalizes at least two cases that have been studied

exhaustively before. First, the case of a globally Lipschitz-continuous function f , i.e.,
when g ∈ L∞(R × R

N ) and G ∈ L∞(R × R
N )N . In this case, f is a function with

sublinear behavior at infinity, and the proof of the corresponding controllability result
is easier (cf. [IY]). Second, the case where G ≡ 0 and g = g(s) satisfies g(0) = 0 and

lim
|s|→∞

|g(s)|
log3/2(1 + |s|) = 0.(7)

The proof is again easier (cf. [FZ2]).
Remark 1.2. In [FZ2], it is proved that, for each β > 2, there exist functions

f = f(s) with f(0) = 0 and

|f(s)| ∼ |s| logβ (1 + |s|) as |s| → ∞(8)
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such that (1) is not null-controllable for all T > 0. In view of Theorem 1.1, we see
that when f satisfies (8) with 3/2 ≤ β ≤ 2, the null controllability problem of (1) is
an open question.

Remark 1.3. Theorem 1.1 says in particular that, under assumption (6), for
each y0 there exists a control v such that (1) possesses a solution globally defined in
[0, T ]. This claim is not true for any right-hand side and any y0 ∈W 1,∞(Ω)∩H1

0 (Ω),
since we are in the range in which blow-up may occur (for instance, see [CH]).

A consequence of Theorem 1.1 is the approximate controllability of (1). In this
case, f(0, 0) will not be necessarily 0 and we will assume that f verifies (5) and (9),
a condition slightly different from (6). Thus, our second main result is the following.

Theorem 1.2. Let T > 0. Assume that f : R × R
N → R is locally Lipschitz-

continuous and verifies


lim
|(s,p)|→∞

1

log3/2(1 + |s|+ |p|)

∣∣∣∣
∫ 1

0

∂f

∂s
(s0 + λs, p0 + λp) dλ

∣∣∣∣ = 0,

lim
|(s,p)|→∞

1

log1/2(1 + |s|+ |p|)

∣∣∣∣
∫ 1

0

∂f

∂pi
(s0 + λs, p0 + λp) dλ

∣∣∣∣ = 0
(9)

uniformly in (s0, p0) ∈ K for every compact set K ⊂ R × R
N . Then (1) is approxi-

mately controllable at time T .
Remark 1.4. It will be seen in section 4 that, for systems like (1), the approxi-

mate controllability result is actually a consequence of the exact controllability to the
trajectories in C0([0, T ];W 1,∞(Ω)).

Remark 1.5. Again, Theorem 1.2 generalizes two known results. First, the case
where f is globally Lipschitz-continuous, i.e., the case in which ∂f/∂s and ∂f/∂pi
( 1 ≤ i ≤ N) are uniformly bounded (cf. [Z2]). On the other hand, Theorem 1.2 is
also a generalization of the approximate controllability result in [FZ2], where G ≡ 0,
g = g(s), and (7) is satisfied.

In the first draft of this paper (and also in the approximate controllability results in
[FZ2]), an additional assumption was imposed in Theorem 1.2, namely, the existence
of a globally defined solution y∗ corresponding to appropriate data y∗0 and v∗. But
one of the referees provided an argument that shows that this hypothesis is in fact
unnecessary (see the proof of Theorem 1.2 in section 4).

Remark 1.6. In particular, (9) holds whenever ∂f/∂s and ∂f/∂pi (1 ≤ i ≤ N)
satisfy

lim
|(s,p)|→∞

∣∣∣∣∂f∂s (s, p)
∣∣∣∣

log3/2 (1 + |s|+ |p|) = 0, lim
|(s,p)|→∞

∣∣∣∣ ∂f∂pi (s, p)
∣∣∣∣

log1/2 (1 + |s|+ |p|) = 0.

On the other hand, the assumptions (9) can be easily interpreted when f = f(s).
Indeed, in this case they simply read as follows:


lim

|s|→∞
1

log3/2(1 + |s|)

∣∣∣∣
∫ 1

0

f ′(s0 + λs) dλ

∣∣∣∣ = 0
uniformly in s0 ∈ K for every compact set K ⊂ R.

The arguments in [FZ2] show that this is equivalent to (7) and also to

lim
|s|→∞

1

log3/2 (1 + |s|)

∫ 1

0

f ′(λs) dλ = 0.
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Remark 1.7. It is proved in [FZ2] that, for each β > 2, there exists a function
f = f(s) satisfying (8) such that the corresponding system (1) is not approximately
controllable for all T > 0. As in the case of null controllability, for f satisfying (8)
with 3/2 ≤ β ≤ 2, the approximate controllability of (1) is an open question.

We can establish similar results for (2) under hypotheses of the same kind for f
and y0. More precisely, let us introduce the Hilbert space

V = { z ∈ H1(Ω) : z = 0 on ∂Ω \ γ }.(10)

One has the following.
Theorem 1.3. Let T > 0. Assume that the assumptions in Theorem 1.1 are

satisfied. Then (2) is null-controllable at any time T > 0.
Theorem 1.4. Let T > 0. Assume that f is locally Lipschitz-continuous and

verifies (9). Then (2) is approximately controllable at time T .
Remark 1.8. In the proofs of the previous controllability results, we will con-

struct controls satisfying the appropriate properties. These controls are smooth. In
particular, they will be such that the associated solutions of (1) and (2) belong to
C0([0, T ];W 1,∞(Ω)), a space where we can ensure uniqueness.

The rest of this paper is organized as follows. Section 2 is devoted to proving
some technical lemmas we will use below. In section 3, we will prove Theorem 1.1. In
section 4, we will give the proof of the approximate controllability result for system
(1) (Theorem 1.2). Finally, the proofs of Theorems 1.3 and 1.4 will be sketched in
section 5.

2. Some technical results. Before giving the proofs of the theorems above, we
have to present some technical results.

Let us consider the linear problem


∂ty −∆y +B · ∇y + ay = F in Q,
y = 0 on Σ,
y(x, 0) = y0(x) in Ω,

(11)

where y0 and F are given, a ∈ L∞(Q), and B ∈ L∞(Q)N . One has the following
lemma, whose proof is essentially given in [LSU].

Lemma 2.1. Assume that F ∈ Lq(Q) with q > N + 2, y0 ∈ W 2,p(Ω) ∩ H1
0 (Ω)

with p > N , a ∈ L∞(Q), and B ∈ L∞(Q)N . Then the solution y of (11) satisfies{
y ∈ Lq(0, T ;W 2,β(Ω)), ∂ty ∈ Lq(0, T ;Lβ(Ω)),
with β = min (p, q) > N

(12)

and {
‖y‖Lq(0,T ;W 2,β) + ‖∂ty‖Lq(0,T ;Lβ)

≤ C(Ω, T, ‖a‖∞, ‖B‖∞) (‖y0‖W 2,p + ‖F‖q) .
(13)

Furthermore, we also have y ∈ C0([0, T ];W 1,∞(Ω)) and

‖y‖C0([0,T ];W 1,∞) ≤M(Ω, T, ‖a‖∞, ‖B‖∞) (‖y0‖W 2,p + ‖F‖q) ,(14)

where 


M(Ω, T, ‖a‖∞, ‖B‖∞)
= exp

[
M0

(
1 + T + (T + T 1/2)‖a‖∞ + (T + T 1/2)‖B‖2∞

)](15)
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and M0 is a positive constant depending only on Ω.
For the reader’s convenience, we have sketched the proof of this result in the

appendix.
We will also recall a global Carleman inequality from [IY] for the linear problem


−∂tϕ−∆ϕ = F0 +

N∑
i=1

∂Fi
∂xi

in Q,

ϕ = 0 on Σ,
ϕ(x, T ) = ϕT (x) in Ω,

(16)

where F0, Fi ∈ L2(Q) (1 ≤ i ≤ N) and ϕT ∈ L2(Ω). One has the following.
Lemma 2.2. There exists a smooth function α0 = α0(x) that is defined and

strictly positive for x ∈ Ω, and there exist positive constants C0 and σ0 (only depending
on Ω and O) such that

s3
∫∫

Q

e−2sαt−3(T − t)−3|ϕ|2 ≤ C0

(
s3
∫∫

O×(0,T )

e−2sαt−3(T − t)−3|ϕ|2

+

∫∫
Q

e−2sα|F0|2 + s2
N∑
i=1

∫∫
Q

e−2sαt−2(T − t)−2|Fi|2
)(17)

for all s ≥ s0 = σ0(T+T
2), where ϕ is the solution of (16) associated to ϕT ∈ L2(Ω).

In (17), the function α = α(x, t) is given by

α(x, t) =
α0(x)

t(T − t) .

Remark 2.1. The inequality (17) is based on a similar Carleman inequality for
the heat equation with a right-hand side in L2(Q). The precise way s0 depends on T
has been analyzed in [FZ1] and is essential in our analysis.

In what follows, unless otherwise specified, C will stand for a generic positive
constant depending only on Ω and O, whose value can change from line to line. Let
us introduce the following (adjoint) system:


−∂tq −∆q −∇ · (qB) + aq = 0 in Q,
q = 0 on Σ,
q(x, T ) = qT (x) in Ω,

(18)

where qT ∈ L2(Ω). Arguing as in [FZ1], we can deduce from the Carleman estimates
(17) an observability inequality for (18), as follows.

Theorem 2.3. For any a ∈ L∞(Q), B ∈ L∞(Q)N , and qT ∈ L2(Ω), one has

‖q(·, 0)‖2L2 ≤ exp [C B(T, ‖a‖∞, ‖B‖∞)]
∫∫

O×(0,T )

|q|2,(19)

where

B(T, ‖a‖∞, ‖B‖∞) = 1 + 1

T
+ T‖a‖∞ + ‖a‖2/3∞ + (1 + T )‖B‖2∞

and q is the solution to the corresponding system (18).
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Proof. Let a, B, and qT be given and let q be the solution to (18). Let us first
see that∫∫

Ω×(T/4,3T/4)

|q|2 ≤ exp
[
C

(
1 +

1

T
+ ‖a‖2/3∞ + ‖B‖2∞

)]∫∫
O×(0,T )

|q|2 .(20)

We can write (17) for ϕ = q. This gives

s3
∫∫

Q

e−2sαt−3(T − t)−3|q|2 ≤ C0

(
s3
∫∫

O×(0,T )

e−2sαt−3(T − t)−3|q|2

+

∫∫
Q

e−2sα|aq|2 + s2
∫∫

Q

e−2sαt−2(T − t)−2|Bq|2
)(21)

for all s ≥ s0. We can estimate the terms on the right as follows:∫∫
Q

e−2sα|aq|2 ≤ 2−6T 6‖a‖2∞
∫∫

Q

e−2sαt−3(T − t)−3|q|2

and ∫∫
Q

e−2sαt−2(T − t)−2|Bq|2 ≤ 2−2T 2‖B‖2∞
∫∫

Q

e−2sαt−3(T − t)−3|q|2.

Thus, we deduce from (21) that∫∫
Q

e−2sαt−3(T − t)−3|q|2 ≤ C

∫∫
O×(0,T )

e−2sαt−3(T − t)−3|q|2,(22)

provided

s ≥ s1 = max
(
s0, 2

−4/3C
1/3
0 T 2‖a‖2/3∞ , C0T

2‖B‖2∞
)
.

On the other hand, it can be easily verified that

e−2sαt−3(T − t)−3 ≤ 26T−6 exp
(−CsT−2

) ∀(x, t) ∈ Q(23)

and

e−2sαt−3(T − t)−3 ≥
(
16

3

)3

T−6 exp
(−CsT−2

) ∀(x, t) ∈ Ω× [T/4, 3T/4](24)

whenever

s ≥ s2 = max

(
s1, 3T

2

(
8min
x∈Ω

α0(x)

)−1
)
.

Analyzing the definitions of s1 and s2, we see that s2 ≤ s3, where s3 is of the
form

s3 = σ3

(
T + T 2 + T 2‖a‖2/3∞ + T 2‖B‖2∞

)
and σ3 depends only on Ω and O. From now on, we fix s, with s = s3. Taking into
account (23) and (24) and coming back to (22) (written for s = s3), we deduce that
(20) is satisfied for any solution q of (18).
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Let us now prove that

‖q(·, T/4)‖22 ≤ exp
[
C

(
1

T
+ T‖a‖∞ + T‖B‖2∞

)]∫∫
Ω×(T/4,3T/4)

|q|2.(25)

Multiplying (18) by q and integrating in Ω, we obtain

−1
2

d

dt

∫
Ω

|q|2 dx+
∫

Ω

|∇q|2 dx = −
∫

Ω

qB · ∇q dx−
∫

Ω

a|q|2 dx ∀t ≥ 0.

Thus,

− d

dt

∫
Ω

|q|2 dx+
∫

Ω

|∇q|2 dx ≤ (‖B‖2∞ + 2‖a‖∞
) ∫

Ω

|q|2 dx

and

d

dt

(
exp

(
(2‖a‖∞ + ‖B‖2∞)t

) ∫
Ω

|q|2 dx
)
≥ 0(26)

for all t ≥ 0. Integrating this inequality with respect to the time variable in [T/4, t],
where t ∈ [T/4, 3T/4], we obtain



∫
Ω

|q(x, t)|2 dx ≥ exp [(2‖a‖∞ + ‖B‖2∞
)
(T/4− t)] ∫

Ω

|q(x, T/4)|2 dx

≥ exp
[
−
(
‖a‖∞ +

1

2
‖B‖2∞

)
T

] ∫
Ω

|q(x, T/4)|2 dx
(27)

for all t ∈ [T/4, 3T/4]. Integrating (27) again with respect to t, we find that
T

2

∫
Ω

|q(x, T/4)|2 dx ≤ exp
[(
‖a‖∞ +

1

2
‖B‖2∞

)
T

] ∫∫
Ω×(T/4,3T/4)

|q(x, t)|2,(28)

whence we easily deduce (25).
Finally, let us prove that∫

Ω

|q(x, 0)|2 dx ≤ exp [CT (‖a‖∞ + ‖B‖2∞
)] ∫

Ω

|q(x, T/4)|2 dx.(29)

This, together with (25) and (20), will lead to the desired observability estimate (19).
To prove (29), it suffices to integrate (26) in the time interval [0, T/4]. Indeed,

we find at once that∫
Ω

|q(x, 0)|2 dx ≤ exp
[(
2‖a‖∞ + ‖B‖2∞

) T
4

] ∫
Ω

|q(x, T/4)|2 dx

and thus (29) holds. This completes the proof of Theorem 2.3.
In fact, for the analysis of the controllability of (1) and (2), where f is not

necessarily globally Lipschitz-continuous, we need a refined version of the observability
inequality (19). This is furnished by the following result.

Theorem 2.4. For any a ∈ L∞(Ω), B ∈ L∞(Ω)N , and qT ∈ L2(Ω), one has

‖q(·, 0)‖2L2 ≤ exp [C K (T, ‖a‖∞, ‖B‖∞)]
(∫∫

O×(0,T )

|q|
)2

,(30)
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where

K (T, ‖a‖∞, ‖B‖∞) = 1 + 1

T
+ T + (T + T 1/2)‖a‖∞ + ‖a‖2/3∞ + (1 + T )‖B‖2∞.(31)

Proof. Let O′ be a nonempty open set such that O′ ⊂⊂ O. From Theorem 2.3
applied to O′ and the time interval [T/4, 3T/4], we deduce that

‖q(·, T/4)‖2L2 ≤ exp [CK ′(T, ‖a‖∞, ‖B‖∞)]
∫∫

O′×(T/4,3T/4)

|q|2,(32)

where q is the solution of (18) associated to qT ∈ L2(Ω), K ′(T, ‖a‖∞, ‖B‖∞) is given
by

K ′(T, ‖a‖∞, ‖B‖∞) = 1 + 1

T
+ T‖a‖∞ + ‖a‖2/3∞ + (1 + T ) ‖B‖2∞,

and C is a new positive constant depending only on O′ (i.e., on O) and Ω. Using
(26), we obtain∫

Ω

|q(x, 0)|2 dx ≤ exp
[
T

4

(
2‖a‖∞ + ‖B‖2∞

)] ∫
Ω

|q(x, T/4)|2 dx,

and combining this with (32), we find that

‖q(·, 0)‖2L2 ≤ exp [CK ′(T, ‖a‖∞, ‖B‖∞)]
∫∫

O′×(T/4,3T/4)

|q|2.(33)

At this point, we are going to use a technical result, related to the regularizing
effect of the heat equation, whose proof will be given below.

Lemma 2.5. Let Oi, Ti, ri, and γi (i = 0, 1) be given, with

O′ ⊂ O0 ⊂⊂ O1 ⊂ O, 0 ≤ T1 < T0 < T/2, 1 ≤ r1 < r0 <∞,

1 ≤ γ1 < γ0 <∞, 1

γ1
− 1

γ0
+
N

2

(
1

r1
− 1

r0

)
<
1

2
.

Then


(∫ T−T0

T0

(∫
O0

|q|r0 dx
)γ0/r0

dt

)1/γ0

≤ C TλH(T, T0, T1, ‖a‖∞, ‖B‖∞)
(∫ T−T1

T1

(∫
O1

|q|r1 dx
)γ1/r1

dt

)1/γ1
(34)

for all qT ∈ L2(Ω), with C = C(Ω,Oi, ri, γi, N), λ = λ(ri, γi, N), and


H(T, T0, T1, ‖a‖∞, ‖B‖∞)

= 1 +
T 1/2

T0 − T1
+ T 1/2(1 + ‖a‖∞) + (1 + T 1/2)‖B‖∞.

(35)

We will now apply this lemma together with (33). To this end, let us set r0 =
γ0 = 2 and let us introduce the numbers γi and ri, given by the equalities

1

γi
=
1

ri
=
1

2
+

i

2(N + 2)
, 1 ≤ i ≤ N + 2.
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It is immediate that γN+1 > 1, rN+1 > 1, and γN+2 = rN+2 = 1. Now, let us set
δ = T/4(N + 2). Accordingly,

[T/4− (N + 2)δ, 3T/4 + (N + 2)δ] = [0, T ].

Let us also introduce a family of open sets Oi such that
O′ = O0 ⊂⊂ O1 ⊂⊂ O2 ⊂⊂ · · · ⊂⊂ ON+1 ⊂⊂ ON+2 = O.

For 0 ≤ i ≤ N + 1, we can use inequality (34) with O0, O1, T0, T1, r0, r1, γ0, and
γ1, respectively, replaced by Oi,Oi+1, T/4− iδ, T/4− (i+1)δ, ri, ri+1, γi, and γi+1.
The whole set of these inequalities gives

(∫∫
O′×(T/4,3T/4)

|q|2
)1/2

≤ CTαH(T, ‖a‖∞, ‖B‖∞)β
(∫∫

O×(0,T )

|q|
)
,(36)

where β = N+2 and α is the sum of the exponents λi. If we now combine the inequal-
ities (33) and (36), we obtain (30). This completes the proof of Theorem 2.4.

Proof of Lemma 2.5. Let ρ1 and ρ2 be functions in D(O1) and D((T1, T − T1)),
respectively, such that

ρ1 ≡ 1 in O0, ρ2 ≡ 1 in (T0, T − T0),

and 0 ≤ ρ1 , ρ2 ≤ 1. Let us put ρ(x, t) = ρ1(x)ρ2(t) and u = ρq, where q is the
solution to (18) associated to qT ∈ L2(Ω). Obviously,

suppu ⊂ O1 × (T1, T − T1)

and

−∂tu−∆u = −aρq +∇ · (ρqB)− (∂tρ+∆ρ)q − 2∇ρ · ∇q − (∇ρ ·B)q in Q,

u = 0 on Σ,

u(x, T ) = 0 in Ω.

In order to clarify the computations, let us put ũ(x, t) = u(x, T − t) for (x, t) ∈ Q. In
a similar way, let us introduce the functions ã, B̃, ρ̃, and q̃. We then have


∂tũ−∆ũ = F in Q,

ũ = 0 on Σ,

ũ(x, 0) = 0 in Ω,

where F is given by

F = −ãρ̃q̃ +∇ · (ρ̃q̃B̃) + (∂tρ̃−∆ρ̃)q̃ − 2∇ρ̃ · ∇q̃ − (∇ρ̃ · B̃)q̃.
Let us denote by {S(t) : t ≥ 0} the semigroup generated by the heat equation with
Dirichlet boundary conditions. Then one has

ũ(·, t) =
∫ t

0

S(t− s)F (·, s) ds,(37)

where the integral can be understood, for instance, in Lr0(Ω).
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Thanks to the regularizing effect of the heat equation, taking Lr0-norms in (37),
we obtain the following for t ∈ (T1, T − T1):

‖ũ(·, t)‖Lr0 ≤ C

[
(‖B‖∞ + 1)

∫ t

T1

(t− s)−N
2

(
1
r1

− 1
r0

)
− 1

2 ‖q̃(·, s)‖Lr1 (O1)ds

+

(
1 +

1

T0 − T1
+ ‖a‖∞ + ‖B‖∞

)∫ t

T1

(t− s)−N
2

(
1
r1

− 1
r0

)
‖q̃(·, s)‖Lr1 (O1)ds

]
.

(38)

Here, C is a positive constant depending on O0 and O1. This gives

‖ũ(·, t)‖Lr0 ≤ C H

∫ t

T1

(t− s)−N
2

(
1
r1

− 1
r0

)
− 1

2 ‖q̃(·, s)‖Lr1 (O1)ds(39)

for all t ∈ (T1, T − T1), where H = H(T, T0, T1, ‖a‖∞, ‖B‖∞) is given by (35). Due
to the assumption

N

2

(
1

r1
− 1

r0

)
+
1

γ1
− 1

γ0
<
1

2

we can apply Young’s inequality to (39) and estimate the Lγ0(0, T ;Lr0(Ω))-norm of
ũ as follows:(∫ T−T1

T1

‖ũ(·, t)‖γ0Lr0 dt

)1/γ0

≤ C HTλ

(∫ T−T1

T1

‖ũ(·, t)‖γ1Lr1 (O1)
dt

)1/γ1

.(40)

Here, C is a new positive constant only depending on Ω, Oi , ri , and γi , and N and
H are given by (35) and

λ = −
[
N

2

(
1

r1
− 1

r0

)
+
1

γ1
− 1

γ0

]
+
1

2
.

Inequality (34) is directly obtained from (40). This completes the proof of Lem-
ma 2.5.

Remark 2.2. As an easy consequence of Theorem 2.4 and (30), we can also
deduce for each r ∈ (1,∞) an observability inequality in Lr(O × (0, T )):

‖q(·, 0)‖2L2 ≤ exp [CrK (T, ‖a‖∞, ‖B‖∞)]
(∫∫

O×(0,T )

|q|r
) 2

r

(41)

for any a ∈ L∞(Ω), B ∈ L∞(Ω)N , and qT ∈ L2(Ω). In (41), K (T, ‖a‖∞, ‖B‖∞) is
given by (31) and Cr only depends on Ω, O, and r.
3. Proof of the null controllability result. This section is devoted to proving

Theorem 1.1. Using Theorem 2.4, we will first establish a null controllability result
for a similar linear heat equation with controls in L∞(O × (0, T )). We will then
apply a fixed point argument to obtain the desired result. The structure of the proof
(the controllability of a similar linear system together with a fixed point argument) is
rather general. It was introduced in [Z1] in the context of the boundary controllability
of the semilinear wave equation. For other results proved in a similar way, see, for
instance, [FPZ] and [FI].
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3.1. A null controllability result for a linear problem. We will consider
the linear system 


∂ty −∆y +B · ∇y + ay = v1O in Q,
y = 0 on Σ,
y(x, 0) = y0(x) in Ω,

(42)

where a ∈ L∞(Q), B ∈ L∞(Q)N , and y0 ∈ L2(Ω) are given. The following holds.
Theorem 3.1. Assume that T > 0, a ∈ L∞(Q), B ∈ L∞(Q)N , and y0 ∈ L2(Ω).

Then there exists a control v̂ ∈ L∞(O × (0, T )) such that the corresponding solution
of (42) satisfies

ŷ(x, T ) = 0 in Ω.(43)

Furthermore, v̂ can be chosen in such a way that

‖v̂‖L∞(O×(0,T )) ≤ exp [C K (T, ‖a‖∞, ‖B‖∞)] ‖y0‖L2 ,(44)

where K(T, ‖a‖∞, ‖B‖∞) is given by (31).
Proof. For every ε > 0, let us consider the functional Jε, with

Jε(qT ) =
1

2

(∫∫
O×(0,T )

|q|
)2

+ ε‖qT ‖L2 +

∫
Ω

q(x, 0) y0(x) dx ∀qT ∈ L2(Ω).(45)

Here, q is the solution of (18) associated to qT ∈ L2(Ω).
It is easy to see that Jε is a continuous and strictly convex functional in L

2(Ω).
Furthermore, from (22), it is immediate to deduce the following unique continuation
property for (18): If q = 0 in O × (0, T ), then q ≡ 0.

Thus, arguing as in [FPZ], we also see that

lim inf
‖qT ‖L2→∞

Jε(qT )

‖qT ‖L2

≥ ε

and, therefore, Jε achieves its minimum at a unique point q̂εT ∈ L2(Ω).
Let q̂ε be the solution of (18) associated to q̂

ε
T . Taking v = v̂ε in (42) with

v̂ε ∈ (sgn q̂ε)
(∫

O×(0,T )

|q̂ε|
)
1O(46)

and arguing as in [FPZ], we see that the associated solution ŷε satisfies

‖ŷε(·, T )‖L2 ≤ ε.(47)

It is not difficult to see that

‖v̂ε‖L∞(O×(0,T )) =

∫∫
O×(0,T )

|q̂ε| ≤ exp [C K (T, ‖a‖∞, ‖B‖∞)] ‖y0‖L2(48)

for all ε > 0. Indeed, the fact that

‖v̂ε‖L∞(O×(0,T )) =

∫∫
O×(0,T )

|q̂ε|
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is implied by (46). On the other hand, since

Jε(q̂
ε
T ) ≤ Jε(0) = 0,

we see from (45) that

1

2

(∫∫
O×(0,T )

|q̂ε|
)2

≤ −
∫

Ω

q̂ε(x, 0)y0(x) dx ≤ ‖q̂ε(·, 0)‖L2‖y0‖L2 .

In view of (30), (48) holds.
Since v̂ε is uniformly bounded in L∞(O × (0, T )), at least for an appropriate

subsequence we must have

v̂ε → v̂ weakly-∗ in L∞(O × (0, T )),(49)

where v̂ ∈ L∞(O × (0, T )) satisfies (44). Accordingly,
ŷε(T )→ ŷ(T ) in L2(Ω),

where ŷ is the solution of (42) associated to v̂. Since we have (47) for all ε > 0, (43)
is satisfied. This ends the proof.

3.2. Proof of Theorem 1.1. We are now ready to prove Theorem 1.1. First,
observe that we can assume in this theorem that y0 ∈W 2,p(Ω)∩H1

0 (Ω), with p > N .
Indeed, it suffices to set v = 0 for t ∈ [0, δ] and to work in the time interval [δ, T ],
looking at y(·, δ) as the initial state.

As we said above, a fixed point argument will be used. For convenience, it will
be assumed in a first step that g and G are continuous.

3.2.1. The case in which g and G are continuous. Let y0 be given in
W 2,p(Ω) ∩H1

0 (Ω) with p > N . We will assume that

g ∈ C0(R× R
N ), G ∈ C0(R× R

N )N ,(50)

and (6) is satisfied. It is then clear that, for each ε > 0, there exists Cε > 0 such that

|g(s, p)|2/3 + |G(s, p)|2 ≤ Cε + ε log(1 + |s|+ |p|) ∀(s, p) ∈ R× R
N .(51)

Let us set Z = C0([0, T ];W 1,∞(Ω)) and let R > 0 be a constant whose value
will be determined below. We will use the truncation functions TR : R �→ R and
TR : R

N �→ R
N , given as follows:

TR(s) =

{
s if |s| ≤ R,

R sgn (s) otherwise

and

TR(p) = (TR(pi))1≤i≤N ∀p ∈ R
N .

For each z ∈ Z, we will consider the corresponding linear systems


∂ty −∆y +G (TR(z),TR(∇z)) · ∇y + g (TR(z),TR(∇z)) y = v1O in Q,
y = 0 on Σ,
y(x, 0) = y0(x) in Ω.

(52)
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We are going to associate to z a family U(z) of L∞-controls which serve to drive the
solutions to zero. Observe that (52) is of the form (42) with{

a = az = g (TR(z),TR(∇z)) ∈ L∞(Q),

B = Bz = G (TR(z),TR(∇z)) ∈ L∞(Q)N .
(53)

Consequently, we can apply Theorem 3.1 to (52). In fact, we are going to apply this
result in an adequate (eventually smaller) time interval (0, Tz), where

Tz = min
{
T, ‖g (TR(z),TR(∇z)) ‖−2/3

∞ , ‖g (TR(z),TR(∇z)) ‖−1/3
∞

}
.(54)

This is a key point in our proof that will lead to appropriate estimates (this idea is
taken from [FZ2]).

From Theorem 3.1, we directly deduce the existence of a control v̂z ∈ L∞(O ×
(0, Tz)) such that the solution of (52) in Ω× (0, Tz) with v = v̂z satisfies

ŷz(x, Tz) = 0 in Ω

and, moreover,

‖v̂z‖L∞(O×(0,Tz)) ≤ exp [C K(Tz, ‖az‖∞, ‖Bz‖∞)] ‖y0‖L2 .

(K is given by (31) and az and Bz are given by (53).)
Let ṽz and ỹz be the extensions by zero of v̂z and ŷz to the whole cylinder

Q = Ω× (0, T ). It is clear that ỹz is the corresponding solution of (52) associated to
ṽz and

ỹz(x, T ) = 0 in Ω.(55)

From the definition of Tz, we see that

‖ṽz‖L∞(O×(0,T )) ≤ exp
[
C
(
1 + ‖az‖2/3∞ + ‖Bz‖2∞

)]
‖y0‖L2 ,(56)

where the positive constant C now depends on Ω, O, and T .
On the other hand, from (50) and Lemma 2.1, we obtain that

ŷz ∈ C0([0, Tz];W
1,∞(Ω))

and

‖ŷz‖C0([0,Tz ];W 1,∞) ≤M(Ω, Tz, ‖az‖∞, ‖Bz‖∞)
(‖y0‖W 2,p + ‖v̂z‖L∞(O×(0,Tz))

)
(M is given by (15)). Taking into account once again the definition of Tz, the estimate
(56), and the definition of ỹz, we find that ỹz ∈ Z and

‖ỹz‖Z ≤ exp
[
C
(
1 + ‖az‖2/3∞ + ‖Bz‖2∞

)]
‖y0‖W 2,p ,(57)

where (again) C = C(Ω,O, T ).
The estimates (56) and (57) can be written in the form

‖ṽz‖L∞(O×(0,T )) ≤ C1(Ω,O, T, z)‖y0‖L2(58)
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and

‖ỹz‖Z ≤ C1(Ω,O, T, z)‖y0‖W 2,p ,(59)

where

C1(Ω,O, T, z) = exp
[
C
(
1 + ‖az‖2/3∞ + ‖Bz‖2∞

)]
.(60)

For any given v ∈ L∞(O × (0, T )), let yv ∈ Z be the solution of (52) in Q with
right-hand side v. (In order to simplify the notation, we omit the dependence on z.)
With this notation in mind, let us now set for each z ∈ Z
U(z) =

{
v ∈ L∞(O × (0, T )) : yv(T ) = 0, ‖v‖L∞(O×(0,T )) ≤ C1(Ω,O, T, z)‖y0‖L2

}
and

Λ(z) = {yv : v ∈ U(z), ‖yv‖Z ≤ C1(Ω,O, T, z)‖y0‖W 2,p} .(61)

In this way, we have been able to introduce a set-valued mapping on Z

z �→ Λ(z).

We will prove that this mapping possesses at least one fixed point y. We will also
prove that, for some R, every fixed point of Λ verifies

‖y‖Z ≤ R.(62)

Of course, this will imply the existence of a control v ∈ L∞(O× (0, T )) such that (1)
has a solution satisfying (3).

Let us see that Kakutani’s fixed point theorem can be applied to Λ. (For the
statement and proof of this result, see [A, Chapter 9, pp. 119–126].) First, from (58)
and (59), we deduce that Λ(z) is, for every z ∈ Z, a nonempty set. Moreover, it is
easy to check that Λ(z) is a uniformly bounded closed convex subset of Z. Owing to
the regularity hypothesis on y0 and Lemma 2.1, we have (12) (here β = p) and the
estimate

‖y‖L∞(0,T ;W 2,p) + ‖∂ty‖L∞(0,T ;Lp) ≤ C(Ω,O, T,R, ‖y0‖W 2,p)

(where C(Ω,O, T,R, ‖y0‖W 2,p) is independent of z) for any y ∈ Λ(z). Since p > N , we
can apply well-known compactness results and conclude that there exists a compact
set K ⊂ Z (which depends on R) such that

Λ(z) ⊂ K ∀z ∈ Z(63)

(for instance, see [S]).
Let us now prove that the mapping z �→ Λ(z) is upper hemicontinuous, i.e., that

the real-valued function

z ∈ Z �→ sup
y∈Λ(z)

〈µ, y〉

is upper semicontinuous for each bounded linear form µ ∈ Z ′. In other words, let us
see that

Bα,µ =

{
z ∈ Z : sup

y∈Λ(z)

〈µ, y〉 ≥ α

}
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is a closed set of Z for every α ∈ R and every µ ∈ Z ′. Thus, let {zn} be a sequence
in Bα,µ such that zn → z in Z. Our aim is to prove that z ∈ Bα,µ. In view of the
continuity hypothesis on g and G, we have

g(TR(zn),TR(∇zn))→ g(TR(z),TR(∇z)) in L∞(Q)

and

G(TR(zn),TR(∇zn))→ G(TR(z),TR(∇z)) in L∞(Q)N .

Since all sets Λ(zn) are compact and satisfy (63), we deduce that

α ≤ sup
y∈Λ(zn)

〈µ, y〉 = 〈µ, yn〉(64)

for some yn ∈ Λ(zn). From the definitions of Λ(zn) and U(zn), there must exist
vn ∈ L∞(O × (0, T )) such that

∂tyn −∆yn +G (TR(zn),TR(∇zn)) · ∇yn + g (TR(zn),TR(∇zn)) yn = vn1O

in Q. Furthermore,

‖vn‖L∞(O×(0,T )) ≤ C1(Ω,O, T, zn)‖y0‖L2

and

‖yn‖Z ≤ C1(Ω,O, T, zn)‖y0‖W 2,p ,

whence yn (resp., vn) is uniformly bounded in Z (resp., L∞(O × (0, T ))). Therefore,
we can write the following at least for a subsequence:

yn → ŷ strongly in Z

(recall that (63) is satisfied) and

vn → v̂ weakly-∗ in L∞(O × (0, T )).

Now, it is not difficult to check that


∂tŷ −∆ŷ +G (TR(z),TR(∇z)) · ∇ŷ + g (TR(z),TR(∇z)) ŷ = v̂1O in Q,
ŷ = 0 on Σ,
ŷ(x, 0) = y0(x), ŷ(x, T ) = 0 in Ω,

i.e., that v̂ ∈ U(z) and ŷ ∈ Λ(z). Consequently, we can take limits in (64) and deduce
that

α ≤ 〈µ, ŷ〉 ≤ sup
y∈Λ(z)

〈µ, y〉,

that is to say, z ∈ Bα,µ . This proves that z �→ Λ(z) is upper hemicontinuous.
As a consequence, for any fixed R > 0 Kakutani’s theorem can be applied, ensur-

ing the existence of a fixed point of Λ. As we said above, we will finish the proof by
showing that we can choose R > 0 in such a way that any fixed point of Λ satisfies
(62). It is just here where the assumptions (6) (in fact (51)) will be used.
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Thus, let y be a fixed point of Λ associated to the control v ∈ U(y). Then (59),
(60), and (51) lead to the estimates

‖y‖Z ≤ exp
(
C
(
1 + ‖g(TR(y),TR(∇y))‖2/3∞ + ‖G(TR(y),TR(∇y))‖2∞

))
‖y0‖W 2,p

≤ exp (C (1 + Cε + ε log (1 + 2R))) ‖y0‖W 2,p

= exp (C (1 + Cε))(1 + 2R)
Cε‖y0‖W 2,p ,

where C = C(Ω,O, T ). Taking ε = 1/(2C), we find that
‖y‖Z ≤ C(1 + 2R)1/2‖y0‖W 2,p ,

whence (62) holds whenever R is large enough (depending on Ω, O, T , g, and G). We
have then proved Theorem 1.1 in the case of smooth data.

3.2.2. The general case. Let us now suppose that f is a locally Lipschitz-
continuous function satisfying assumption (5) (with f(0, 0) = 0) and (6). Let us in-
troduce a function ρ ∈ D(R × R

N ) such that ρ ≥ 0 in R × R
N , supp ρ ⊂ B(0, 1),

and ∫∫
R×RN

ρ(s, p) ds dp = 1.

We consider the functions ρn, gn, and Gn (n ≥ 1), with
ρn(s, p) = nN+1ρ(ns, np) ∀(s, p) ∈ R× R

N ,

gn = ρn ∗ g, Gn = ρn ∗G.
Then it is not difficult to check that the following properties of gn and Gn hold:

1. gn ∈ C0(R× R
N ) and Gn ∈ C0(R× R

N )N for all n ≥ 1.
2. If we put fn(s, p) = gn(s, p)s+Gn(s, p) · p for all (s, p) ∈ R× R

N , then

fn → f uniformly in the compact sets of R× R
N .

3. For any given M > 0, there exists C(M) > 0 such that

sup
|(s,p)|≤M

(|gn(s, p)|+ |Gn(s, p)|) ≤ C(M) ∀n ≥ 1.

4. The functions gn and Gn verify (6) uniformly in n, that is to say, for any
ε > 0, there exists M(ε) > 0 such that{

|gn(s, p)| ≤ ε log3/2(1 + |s|+ |p|),
|Gn(s, p)| ≤ ε log1/2(1 + |s|+ |p|)

(65)

whenever |(s, p)| ≥M(ε) for all n ≥ 1.
For every n, we can argue as in section 3.2.1 and find a control vn ∈ L∞(O×(0, T ))

such that the system


∂tyn −∆yn + fn(yn,∇yn) = vn1O in Q,

yn = 0 on Σ,

yn(x, 0) = y0(x) in Ω

(66)
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possesses at least one solution yn ∈ Z satisfying

yn(x, T ) = 0 in Ω.

From the properties satisfied by gn and Gn, and thanks to the estimates obtained in
section 3.2.1, we deduce that

‖vn‖L∞(O×(0,T )) ≤ C and ‖yn‖Z ≤ C

for all n ≥ 1. In fact, in view of Lemma 2.1 we have yn ∈ K for all n, where K is a
fixed compact set in Z. Accordingly, we can assume that, at least for a subsequence,

vn → v weakly-∗ in L∞(O × (0, T ))

and

yn → y strongly in Z.

Hence, passing to the limit in (66), we find a control v ∈ L∞(O × (0, T )) such that
(1) possesses a solution y satisfying (3). This ends the proof of Theorem 1.1.

Remark 3.1. Analyzing the proof of Theorem 1.1, we deduce that the null con-
trollability result remains valid if we change (6) by the following assumptions:

lim sup
|(s,p)|→∞

|g(s, p)|
log3/2(1 + |s|+ |p|) ≤ l1 <∞, lim sup

|(s,p)|→∞

|G(s, p)|
log1/2(1 + |s|+ |p|) ≤ l2 <∞,

where l1 and l2 are positive and sufficiently small (depending only on Ω and O).
Remark 3.2. In Theorem 1.1, we can consider as well a more general nonlinear

term of the form f(x, t; s, p), with (x, t) ∈ Q and (s, p) ∈ R × R
N . The assumptions

on f have to be the following in this case:

1. f(x, t; 0, 0) = 0 for all (x, t) ∈ Q,
2. f(·; s, p) ∈ L∞(Q) for all (s, p) ∈ R× R

N ,
3. f(x, t; ·) is locally Lipschitz-continuous for (x, t) a.e. in Q, with Lipschitz

constants independent of (x, t) in the bounded sets of R× R
N ,

4. f(·; s, p) = g(·; s, p)s+G(·; s, p) · p for all (s, p) ∈ R× R
N , with

lim
|(s,p)|→∞

|g(x, t; s, p)|
log3/2(1 + |s|+ |p|) = 0, lim

|(s,p)|→∞
|G(x, t; s, p)|

log1/2(1 + |s|+ |p|) = 0

uniformly in (x, t) ∈ Q.
Remark 3.3. Adapting the arguments used in the proof of Theorem 1.1, we can

deduce a local null controllability result for (1) with a general nonlinear term f(s, p)
satisfying f(0, 0) = 0. To be precise, if f is given, there exists δ = δ(Ω,O, T, f) > 0
such that for every y0 ∈ W 2,p(Ω) ∩ H1

0 (Ω) (p > N) with ‖y0‖W 2,p ≤ δ, a control
v ∈ L∞(O × (0, T )) can be found such that the corresponding problem has a unique
solution y ∈ L∞(0, T ;W 1,∞(Ω)) which satisfies

y(x, T ) = 0 in Ω.
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4. Proof of the approximate controllability result. In this section we will
prove Theorem 1.2. Let us fix T > 0, ε > 0, y0 ∈ W 1,∞(Ω) ∩ H1

0 (Ω), and yd ∈
W 2,p(Ω)∩H1

0 (Ω) with p > N (for instance). Obviously, it will be sufficient to consider
final data in W 2,p(Ω) ∩ H1

0 (Ω), since this space is dense in L
2(Ω). We will present

the proof in several steps and start with a result concerning the exact controllability
to the trajectories in C0([0, T ];W 1,∞(Ω)).

Lemma 4.1. Assume the hypotheses on f in Theorem 1.2 are satisfied. Let
y0 ∈W 1,∞(Ω)∩H1

0 (Ω) be given and let y∗ be a solution to (1) in C0([0, T ];W 1,∞(Ω))
corresponding to the data

y∗0 ∈W 1,∞(Ω) ∩H1
0 (Ω), v∗ ∈ L∞(O × (0, T )).

There exists a control v ∈ L∞(O × (0, T )) and a state y ∈ C0([0, T ];W 1,∞(Ω)) asso-
ciated to y0 and v such that

y(x, T ) = y∗(x, T ) in Ω.

Proof. Let us put y = y∗+w. We will look for a control u ∈ L∞(O× (0, T )) such
that the solution of


∂tw −∆w + F (x, t;w,∇w) = u1O in Q,

w = 0 on Σ,

w(0) = y0 − y∗0 in Ω

(67)

satisfies

w(x, T ) = 0 in Ω.

Here, F is given by

F (x, t; s, p) = f(y∗(x, t) + s,∇y∗(x, t) + p)− f(y∗(x, t),∇y∗(x, t))

for all (x, t) ∈ Q and (s, p) ∈ R×R
N . The proof of this lemma will be achieved if we

check that such a control u exists.
Notice that

F (x, t; s, p) = g̃(x, t; s, p)s+ G̃(x, t; s, p) · p,

where

g̃(x, t; s, p) =

∫ 1

0

∂f

∂s
(y∗(x, t) + λs,∇y∗(x, t) + λp) dλ

and

G̃i(x, t; s, p) =

∫ 1

0

∂f

∂pi
(y∗(x, t) + λs,∇y∗(x, t) + λp) dλ for 1 ≤ i ≤ N .

Thus, in view of (9) and the fact that y∗ ∈ C0([0, T ];W 1,∞(Ω)), it is clear that F
satisfies the assumptions of Remark 3.2. This is sufficient to ensure that u exists.
This completes the proof of this lemma.

Now, we argue as follows:
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• There exists δ0 > 0, depending only on Ω, yd, and f , such that the system


∂tw −∆w + f(w,∇w) = 0 in Ω× (0, δ0),
w = 0 on ∂Ω× (0, δ0),
w(x, 0) = yd(x) in Ω

(68)

has exactly one solution w ∈ C0([0, δ0];W
1,∞(Ω)) also satisfying

w(·, t) ∈W 2,p(Ω) ∩H1
0 (Ω) ∀t ∈ [0, δ0].(69)

Obviously, we can associate to ε a parameter δ1 ∈ (0, δ0] (small enough) such that
‖w(·, t)− yd‖L2 ≤ ε ∀t ∈ [0, δ1].(70)

In what follows, we fix δ1 verifying (70).
• There exists v1 ∈ L∞(O × (0, δ1)) such that the corresponding system


∂ty −∆y + f(y,∇y) = v11O in Ω× (0, δ1),
y = 0 on ∂Ω× (0, δ1),
y(x, 0) = y0(x) in Ω

(71)

possesses exactly one solution y1 ∈ C0([0, δ1];W
1,∞(Ω)), with

y1(x, δ1) = w(x, δ1) in Ω.

This is a consequence of Lemma 4.1.
• On the other hand, there exists ṽ ∈ L∞(O × (0, δ1)) such that the system


∂ty −∆y + f(y,∇y) = ṽ1O in Ω× (0, δ1),
y = 0 on ∂Ω× (0, δ1),
y(x, 0) = w(x, δ1) in Ω

(72)

possesses exactly one solution ỹ ∈ C0([0, δ1];W
1,∞(Ω)), with

ỹ(x, δ1) = w(x, δ1) in Ω.

This is again a consequence of Lemma 4.1.
• Assume that T = nδ1 + δ for some integer n ≥ 0 and some δ ∈ [0, δ1). Let us

put Ik = [kδ1, (k + 1)δ1) for 0 ≤ k ≤ n − 1 and In = [nδ1, T ]. We will construct the
control v as follows.

For t ∈ I0, we set v(x, t) = v1(x, t) a.e., where v1 is the control arising in (71).
Then, for 1 ≤ k ≤ n − 1 and t ∈ Ik, we set v(x, t) = ṽ(x, t − kδ1), where ṽ is the
control in (72).

If δ = 0, we have constructed in this way a control v ∈ L∞(O× (0, T )) such that
the associate state y satisfies

y(x, T ) = w(x, δ1) in Ω.(73)

In view of (70), (4) is satisfied.
If δ ∈ (0, δ1), then we complete the definition of v by setting v(x, t) = v̂(x, t−nδ1)

for all t ∈ In. Here, v̂ ∈ L∞(O × (0, δ)) is a control such that the system


∂ty −∆y + f(y,∇y) = v̂1O in Ω× (0, δ),
y = 0 on ∂Ω× (0, δ),
y(x, 0) = w(x, δ1) in Ω

(74)
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possesses exactly one solution ŷ ∈ C0([0, δ];W 1,∞(Ω)) satisfying

ŷ(x, δ) = w(x, δ) in Ω.

(Once more, the existence of v̂ is implied by Lemma 4.1.) Now, the state y associated
to y0 and v satisfies

y(x, T ) = w(x, δ) in Ω.(75)

Again, taking (70) into account, we see that (4) is satisfied in this case.
This completes the proof of Theorem 1.2.

5. Sketch of the proofs of the boundary controllability results. We de-
vote this section to sketching briefly the proofs of Theorems 1.3 and 1.4. Both results
are implied by the results established in the case of internal controllability.

For instance, let us refer to the proof of Theorem 1.3. Let us assume, for simplicity,
that y0 ∈ W 2,p(Ω) ∩ V for some p > N (recall that V is given by (10)). We have
assumed that f : R×R

N �→ R is a locally Lipschitz-continuous function that satisfies
f(0, 0) = 0 and (6). Let D be a bounded open set with boundary ∂D of class C2

such that Ω ⊂ D and ∂Ω ∩D = γ. Let O be an open subset of D \Ω. There exists a
function ỹ0 ∈W 2,p(D) ∩H1

0 (D) such that ỹ0 = y0 in Ω and

‖ỹ0‖W 2,p(D) ≤ C ‖y0‖W 2,p(Ω),

where C is a positive constant depending only on Ω and D.
Let ṽ ∈ L∞(O × (0, T )) be a control, furnished by Theorem 1.1, such that


∂tỹ −∆ỹ + f(ỹ,∇ỹ) = ṽ1O in D × (0, T ),
ỹ = 0 on ∂D × (0, T ),
ỹ(x, 0) = ỹ0(x) in D

possesses exactly one solution ỹ ∈ C0([0, T ];W 1,∞(D)) with

ỹ(x, T ) = 0 in D.

Let v be the trace of ỹ on γ × (0, T ). Then v ∈ L∞(γ × (0, T )), and the restriction to
Ω× (0, T ) of ỹ solves the corresponding system (2). This proves Theorem 1.3.

In order to prove Theorem 1.4, it suffices to argue in a similar way.

Appendix. Proof of Lemma 2.1. The statement (12) and the inequality (13)
are proved in [LSU, Theorem 9.1, p. 342]. The inequality (14) is not explicitly proved
in [LSU], but it can be deduced (in several ways) from other results of this book. One
of the arguments is as follows.

From Theorem 16.3 in [LSU] (p. 412), we deduce the inequalities

‖S(t)ϕ‖Lγ ≤ Ct−
N
2 ( 1

r− 1
γ )‖ϕ‖Lr

and

‖S(t)ϕ‖W 1,γ ≤ Ct−
N
2 ( 1

r− 1
γ )− 1

2 ‖ϕ‖Lr ,

which hold for all t > 0 and r, γ ∈ [1,∞] with γ ≥ r. Here, S(t) is the semigroup
generated by the heat equation with Dirichlet boundary conditions. With these in-
equalities in mind, one can prove the following.
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Lemma A.1. Let y be the solution of (11). If y ∈ L∞(0, T ;W 1,r(Ω)) with
r ≤ 2N , then

y ∈ L∞(0, T ;W 1,γ(Ω)), where γ =



(
1

r
− 1

2N

)−1

if r < 2N,

∞ if r = 2N

(76)

and {
‖y‖L∞(0,T ;W 1,γ) ≤ eC(1+T ) (‖y0‖W 2,p + ‖F‖q)

+ eC(1+T 1/2‖B‖2
∞+T 1/2‖a‖∞)‖y‖L∞(0,T ;W 1,r).

Proof. The solution y of (11) can be written in the form y(t) = z(t)− w(t), with

z(t) = S(t)y0 +

∫ t

0

S(t− s)F (s) ds

and

w(t) =

∫ t

0

S(t− s) [ay +B · ∇y] (s) ds.

Since y0 ∈ W 2,p(Ω) with p > N and F ∈ Lq(Q) with q > N + 2, it is not difficult to
see that z ∈ L∞(0, T ;W 1,∞(Ω)) and

‖z‖L∞(0,T ;W 1,∞) ≤ C‖y0‖W 2,p +
C

α(q)
Tα(q)‖F‖q ≤ eCq(1+T ) (‖y0‖W 2,p + ‖F‖q) ,

where

α(q) =
q − (N + 2)

2(q − 1) .

On the other hand, the usual Sobolev imbeddings give y ∈ L∞(0, T ;Lγ(Ω)) (γ is given
in (76)). Moreover, we can write the following for all t > 0:


‖w(·, t)‖W 1,γ≤ C

∫ t

0

(t− s)−1/2‖(ay)(·, s)‖Lγ ds

+ C

∫ t

0

(t− s)−1/4‖(B · ∇y)(·, s)‖Lr ds.

We can now apply Young’s inequality to obtain

‖w‖L∞(W 1,γ) ≤ C
(
T 1/2‖a‖∞ + T 1/4‖B‖∞

)
‖y‖L∞(0,T ;W 1,r).

This completes the proof of Lemma A.1.
We are now ready to prove (14). Since y0 ∈ H1

0 (Ω) and F ∈ L2(Q), the classical
energy estimates give

y ∈ L∞(0, T ;H1
0 (Ω)) ∩ L2(0, T ;H2(Ω)),

with

‖y‖L∞(0,T ;H1
0 ) + ‖y‖L2(0,T ;H2) ≤ eC(1+T+(T+T 1/2)‖a‖∞+T‖B‖2

∞) (‖y0‖W 2,p + ‖F‖q) .
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We can now apply Lemma A.1 with r = 2 and obtain y ∈ L∞(0, T ;W 1,r1(Ω)), where

1

r1
=
1

2
− 1

2N

and { ‖y‖L∞(0,T ;W 1,r1 ) ≤ eC(1+T ) (‖y0‖W 2,p + ‖F‖q)
+ eC(1+T 1/2‖B‖2

∞+T 1/2‖a‖∞)‖y‖L∞(0,T ;H1
0 ).

Combining the last two inequalities, we obtain

‖y‖L∞(0,T ;W 1,r1 ) ≤ eC(1+T+(T+T 1/2)‖a‖∞+(T+T 1/2)‖B‖2
∞) (‖y0‖W 2,p + ‖F‖q) .

We can repeat this process for i = 2, . . . , N , with

ri =

(
1

2
− i

2N

)−1

for i ≤ N − 1 and rN =∞.

Obviously, this leads to (14).

Acknowledgments. The authors thank the referees for their interesting com-
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Abstract. This paper deals with a functional equation in a zero sum continuous game. The
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1. Introduction. In this paper, we have considered a multistage allocation pro-
cess where some decisions are made to maximize and some to minimize. This type
of situation occurs in the theory of games. Consider a two-person zero sum game
in which both players A and B choose from a continuous domain. Suppose the real
numbers x and y are treated as resource or state variables of A and B, respectively; A
allocates a certain quantity u of his resource x, 0 ≤ u ≤ x, and B allocates a certain
quantity v of his resource y, 0 ≤ v ≤ y. u and v are treated as decision variables. S
is the state space, and D is the decision space.

As a result of the above allocations, A receives a payoff R(x, y, u, v), and B receives
a payoff −R(x, y;u, v), where R : S × D → R and R is the set of real numbers.
In addition to these payoffs, there is an alternation to their resources. x becomes
T (x, y, u, v) and y becomes T ′(x, y;u, v), where T , T ′ : S × D → R. We assume
that the R, T , and T ′ are continuous functions of x, y, u, and v. Bhakta and Mitra
[2] proved some existence theorems in game theory through a dynamic programming
approach. The functional equation (by Bellman [1, Chapter x]) we shall consider is

f(x, y) : Max
G

Min
G

⌊∫
u

∫
v

[R(x, y;u, v) + h(x, y;u, v)f(T, T ′)]dG(u)dG′(v)
⌋

= Max
G

Min
G

[−−−−−−],(1)

where T = T (x, y;u, v) and T ′ = T ′(x, y;u, v). To simplify our notation, we write the
above equation as

f(x, y) : Max
G

Min
G

F (x, y; f ;G,G′)

= Max
G

Min
G

[−−−−−−],

where F (x, y;u, v) =
∫
u

∫
v
[R(x, y;u, v) + h(x, y;u, v)f(T, T ′)]dG(u)dG′(v) and G and

G′ are the distribution functions for A and B, respectively. To prove the existence of
the solution of (1), we use the following preliminary lemmas.
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2. Some preliminary lemmas.
Lemma 2.1. If, for i = 1, 2,

Ψi(x, y) : Max
G

Min
G

⌊∫
u

∫
v

[R(x, y;u, v) + h(x, y;u, v)f(T, T ′)]dG(u)dG′(v)
⌋

= Max
G

Min
G

[−−−−−−],

then |Ψ1(x, y) − Ψ2(x, y)| ≤ MaxuMaxv[|(x, y;u, v)| |f1(T, T ′) − f2(T, T ′)|], where T
and T ′ are defined as in section 1.

Proof. To simplify, we denote

Ψi(x, y) : Max
G

Min
G′

F (x, y; fi;G,G
′)

= Max
G′

Min
G

[−−−−−−].

Let Gi, G
′
i be a pair of functions yielding the optimal value of Ψi(x, y) for i = 1, 2.

Then Ψ1(x, y) = F (x, y; f1;G1, G
′
2 ≥ F (x, y; f1;G2, G

′
1) and Ψ1(x, y) ≤

F (x, y; f1;G1, G
′
2).

Again, Ψ2(x, y) = F (x, y; f2;G2, G
′
2) ≥ F (x, y; f2;G1, G

′
2) and Ψ2(x, y) ≤

F (x, y; f2;G2, G
′
1).

Combining these inequalities, we get∫
u

∫
v

[h(x, y;u, v)(f1(T, T
′)− f2(T, T ′))]dG2(u)dG

′
1(v)

≤ Ψ1(x, y)−Ψ2(x, y)

≤
∫
u

∫
v

[h(x, y;u, v)(f1(T, T
′)− f2(T, T ′))]dG1(u)dG

′
2(v).

This implies that

|Ψ1(x, y)−Ψ2(x, y)| ≤ Max
u

Max
v

[|h(x, y;u, v)| |f1(T, T ′)− f2(T, T ′)|].

Lemma 2.2. Let 〈M,ρ〉 be a complete metric space. A is a mapping from M into
itself. If the following conditions hold, then A has a unique fixed point.

(i) For any x, y ∈ M , ρ(Ax,Ay) ≤ φ(ρ(x, y)), where φ : [0,∞) → [0,∞) is
nondecreasing continuous on the right and φ(r) < r for r > 0.

(ii) For every x ∈ M , there is a positive number k such that ρ(x,Anx) ≤ k for
all n.

Lemma 2.3. Let 〈M,ρ〉 be a complete metric space, and let A be a mapping
of M into itself. Suppose that, for all x, y in M , ρ(Ax,Ay) ≤ φ(ρ(x, y)), where
φ : [0,∞) → [0,∞) is nondecreasing, and, for every positive number r, the series∑
φn(r) is convergent. Then A has a unique fixed point.
Lemma 2.2 is an extension of Brauer’s fixed-point theorem [3], and the proof of

Lemma 2.3 is in light of [4, Theorem 3.2, p. 12], which is easy and straightforward.

3. Solution of the functional equation.
Theorem 3.1. The functional equation (1) possesses unique bounded solution on

S under the following conditions:
(i) R and h are bounded;
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(ii) MaxuMaxv[|h(x, y;u, v)| |f1(T, T ′) − f2(T, T ′)|] ≤ φ(MaxuMaxv[|f1(T, T ′) −
f2(T, T

′)|]),
where φ : [0,∞) → [0,∞) is nondecreasing and continuous on the right such that
φ(r) < r for r > 0.

Proof. Let B(S) be the set of all real valued bounded functions on S. For Ψ1,
Ψ2 ∈ B(S), let

ρ(Ψ1,Ψ2) = Max
u

Max
v

[|Ψ1(x, y)−Ψ2(x, y)|] .

Then ρ is a metric on B(S) and 〈B(S), ρ〉 is a complete metric space. Let A be any
function defined on B(S) by Ag = Ψ for any g ∈ B(S),

Ψ(x, y) : Max
G

Min
G′

⌊∫
u

∫
v

[R(x, y;u, v) + h(x, y;u, v)g(T, T ′)] dG(u)dG′(v)
⌋

= Min
G′

Max
G

[−−−−−−].

Since R, h, and g are bounded, Ψ is also bounded, and Ψ ∈ B(S). Hence A : B(S)→
B(S). For Ψ1Ψ2 ∈ B(S), let

Ψi(x, y) : Max
G

Min
G′

⌊∫
u

∫
v

[R(x, y;u, v) + h(x, y;u, v)gi(T, T
′)]dG(u)dG′(v)

⌋

Min
G′

Max
G

[−−−−−−].

Let Gi, G
′
i be the distribution functions yielding Ψi(x, y) for i = 1, 2. Then, using

Lemma 2.1 and condition (ii), we have

|Ψ1(x, y)−Ψ2(x, y)| ≤ φ
(
Max
u

Max
v
[|g1(T, T ′)− g2(T, T ′)]

)
= φ(ρ(g1, g2)),

i.e., ρ(Ag1, Ag2) ≤ φ(ρ(g1, g2)). Let Ang = gn for g ∈ B(S), where

gn(x, y) : Max
G

Min
G′

[∫
u

∫
v

[R(x, y;u, v) + h(x, y;u, v)gn−1(T, T
′)]dG(u)dG′(v)

]

= Min
G′

Max
G

[−−−−−−]

for n = 2, 3, . . . , and

g1(x, y) : Max
G

Min
G′

[∫
u

∫
v

R(x, y;u, v)dG(u)dG′(v)
]

= Min
G′

Max
G

[−−−−−−].

Since R, h, and g are all bounded functions, |R(x, y;u, v)| ≤ λ1, |h(x, y;u, v)gn(T, T ′)|
≤ λ2, and |g(x, y)| ≤ λ3 for all (x, y) ∈ S, (u, v) ∈ D, g(T, T ′) ∈ R, where λ1, λ2, λ3

are constants. This yields that |gn(x, y)| ≤ λ1 + λ2λ3 for all (x, y) ∈ S. Now
|g(x, y)− gn(x, y)| ≤ |g(x, y)|+ |gn(x, y)| ≤ λ1 + λ2λ3 + λ3 = λ for all n.

So ρ(g, gn) = ρ(g,Ang) ≤ λ for all n. Therefore, by Lemma 2.2, the mapping A has
a unique fixed point; i.e., the functional equation (1) has a unique bounded solution
on S.
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Theorem 3.2. Let h: S × D → R be such that |h(x, y;u, v)| ≤ a < 1 for all
(x, y) ∈ S, (u, v) ∈ D is bounded, and condition (ii) of Theorem 3.1 is satisfied. Then
the functional equation (1) possesses a unique bounded solution on S.

Proof. Let φ : [0,∞) → [0,∞) be defined by φ(r) = ar, r > 0. Then φ is
nondecreasing and continuous on the right. Also

∑
φn(r) = r

∑
an. Since a < 1,∑

φn(r) is convergent for a very positive number r. Proceeding as in Theorem 3.1
and using Lemma 2.1, we have

ρ(Ag1, Ag2) = ρ(Ψ1,Ψ2) ≤ Max
u

Max
v
[|h(x, y;u, v)| |g1(x, y)− g2(x, y)|]

≤ φ
(
Max
u

Max
v
[|g1(x, y)− g2(x, y)|]

)
= φ(ρ(g1, g2)).

Hence, by Lemma 2.3 the functional equation (1) possesses a unique bounded
solution on S.

Theorem 3.3. Suppose the following conditions hold:
(i) |f(T, T ′)| ≤ ‖(T, T ′)‖ ≤ φ(‖(x, y)‖) for all (x, y) ∈ S, where φ: [0,∞] →

[0,∞) is nondecreasing, and, for every positive number r,
∑
φn(r) is conver-

gent.
(ii) 0 ≤ R(x, y;u, v) ≤ ‖(x, y)‖ for all (u, v) ∈ D.
(iii) 0 ≤ h(x, y;u, v)f(T, T ′) ≤ 1f(T, T ′)|.

Then the functional equation (1) possesses a unique solution on S.
Proof. Let {fn} be a sequence of functions defined on S by

f0(x, y) : Max
G

Min
G′

[∫
u

∫
v

R(x, y;u, v)dG(u)dG′(v)
]

= Min
G′

Max
G

[−−−−−−].

and

fn+1(x, y) : Max
G

Min
G′

⌊∫
u

∫
v

R(x, y;u, v) + h(x, y;u, v)fn(T, T
′)dG(u)dG′(v)

⌋

= Min
G′

Max
G

[−−−−−−].

By (ii), f0(x, y) ≥ 0 for all (x, y) ∈ S.

f1(x, y) : Max
G

Min
G′

⌊∫
u

∫
v

R(x, y;u, v) + h(x, y;u, v)f0(T, T
′)dG(u)dG′(v)

⌋

= Min
G′

Max
G

[−−−−−−]

≥ f0(x, y).
Let fn(x, y) ≥ fn−1(x, y).

Then

fn+1(x, y) : Max
G

Min
G′

F (x, y; fn;G,G
′)

= Min
G′

Max
G

[−−−−−−].
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As in Lemma 2.1, if G1, G
′
1 and G2, G

′
2 yield the value of fn+1(x, y) and fn(x, y), we

get

fn+1(x, y)− fn(x, y) ≥
∫
u

∫
v

h(x, y;u, v)[fn(T, T
′)− fn−1(T, T

′)]dG′
2(u)dG

′
1(v) ≥ 0;

i.e., fn+1(x, y) ≥ fn(x, y) for all n. Thus {fn(x, y)} is a monotonically increasing
sequence. To show that {fn(x, y)} is bounded above, let (x, y) ∈ S and r be a
positive number such that ‖(x, y)‖ = r. Since 0 ≤ R(x, y;u, v) ≤ ‖(x, y)‖ for all
(u, v) ∈ D, 0 ≤ f0(x, y) ≤ ‖(x, y)‖. Again,

0 ≤ f1(x, y) ≤ R(x, y;u, v) + h(x, y;u, v)f0(T, T
′)

≤ ‖(x, y)‖+ |f0(T, T ′)|
≤ ‖(x, y)‖+ ‖(T, T ′)‖.

Thus 0 ≤ f1(x, y) ≤ ‖(x, y)‖+ φ(‖(x, y)‖). Next
0 ≤ f2(x, y) ≤ R(x, y;u, v) + h(x, y;u, v)f1(T, T

′)

≤ ‖(x, y)‖+ |f1(T, T ′)|
≤ ‖(x, y)‖+ ‖(T, T ′)‖+ φ(‖(T, T ′)‖)
≤ ‖(x, y)‖+ φ‖(x, y)‖) + φ2(‖(x, y)‖);

i.e., 0 ≤ f2(x, y) ≤ r+φ(r)+φ2(r). Proceeding in this way, we obtain 0 ≤ fn(x, y) ≤∑
φn(r). Since

∑
φn(r) is convergent, {fn(x, y)} is bounded hence convergent.

Let f̄(x, y) = limn→∞ fn(x, y).
Next show that f̄(x, y) is the solution of the functional equation (1). Since fn is

increasing and f̄ is its limit, fn+1(x, y) ≤ f̄(x, y); i.e.,

Max
G

Min
G′

[∫
u

∫
v

R(x, y;u, v) + h(x, y;u, v)fn(T, T
′)dG(u)dG′(v)

]
≤ f̄(x, y).

Letting n→∞,

Max
G

Min
G′

[∫
u

∫
v

R(x, y;u, v) + h(x, y;u, v)f̄(T, T ′)dG(u)dG′(v)
]
≤ f̄(x, y).(2)

For any (x, y) ∈ S, (u, v) ∈ D, and any positive integer n, we have

fn(x, y) ≤ Max
G

Min
G′

[∫
u

∫
v

R(x, y;u, v) + h(x, y;u, v)f̄(T, T ′)dG(u)dG′(v)
]
.

Letting n→∞,

f̄(x, y) ≤ Max
G

Min
G′

[∫
u

∫
v

R(x, y;u, v) + h(x, y;u, v)f̄(T, T ′)dG(u)dG′(v)
]
.(3)

From (2) and (3),

f̄(x, y) ≤ Max
G

Min
G′

[∫
u

∫
v

R(x, y;u, v) + h(x, y;u, v)f̄(T, T ′)dG(u)dG′(v)
]

= Min
G′

Max
G

[−−−−−−].

If we let Ax = T (x, y;u, v) and Ay = T ′(x, y;u, v), then ‖(Ax,Ay)‖ = ‖(T, T ′)‖ ≤
φ(‖(x, y)‖), and the above solution is unique by Lemma 2.3.
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4. Conclusion (effective of the solution). In a multistage allocation process,
the functional equation discussed above has some importance in game theory. We have
established the existence of its solution under several assumptions that this infinite
process admits a value to both of the players. The solution is effective if it gives
sufficient information to the players to obtain this value. Suppose that G, G′ yield
the value of the game. Then the corresponding solution becomes effective if A uses a
distribution function G(u); whatever B may use, A can guarantee himself a return of
at least f(x, y). At this fixed strategy, A’s return will be at worst determined by the
functional equation

F (x, y) ≤ Min
G′

[∫
u

∫
v

R(x, y;u, v) + h(x, y;u, v)F (T, T ′)dG(u)dG′(v)
]
.

Under the assumptions of our theorems, the above equation has a unique solution,
and the solution is obtained by the successive approximation of the functions

F0(x, y) = Min
G′

∫
u

∫
v

R(x, y;u, v)dG(u)dG′(v),

Fn+1(x, y) = Min
G′

[∫
u

∫
v

R(x, y;u, v) + h(x, y;u, v)fn(T, T
′)dG(u)dG′(v)

]
.

It is clear that F = f1 and Fn+1 = fn+1. Thus F (x, y) = limn→∞ Fn = limn→∞ fn =
f(x, y).

Hence the solution is effective. A similar result holds if B uses a distribution
function G′(v), whatever A may use.
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Abstract. In this paper we study a singularly perturbed zero-sum dynamic game with full
information. We introduce the upper (lower) value function of the dynamic game, in which the
minimizer (maximizer) can be guaranteed if at the beginning of each interval his move (the choice
of decision) precedes the move of the maximizer (minimizer). We show that when the singular
perturbations parameter tends to zero, the upper (lower) value function of the dynamic game has
a limit which coincides with a viscosity solution of a Hamilton–Jacobi–Isaacs-type equation. Two
examples are given to demonstrate the potential of the proposed technique.

Key words. discrete time games, Hamilton–Jacobi–Isaacs equations, singularly perturbed sys-
tems, value functions, viscosity solutions

AMS subject classifications. 91A25, 91A50, 49L25
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1. Introduction. Singularly perturbed control systems (SPCS) evolving in a
discrete time scale arise in many applications as well as in the construction of the
difference approximations of SPCS evolving in continuous time. Despite this, discrete
time SPCS were studied in the literature much less intensively than their continuous
time counterparts. A reason for such a discrepancy might be the fact that a common
approach to SPCS was one based on the boundary layer method [25, 30, 31], which
is not easy to adapt to deal with the discrete time SPCS.

Recently, a number of averaging-type methods allowing one to treat general SPCS
in continuous time were developed (see, e.g., [1, 2, 8, 9, 10, 11, 16, 18, 32]). These
methods are much more adaptable to the discrete time scale. For example, a full
analogy between the averaging procedures in problems of optimal control of SPCS
evolving in continuous and discrete times was established in [17].

In this paper, we extend a similar analogy by showing that the results about
averaging in singularly perturbed (SP) zero-sum differential games obtained in [12]
have their counterparts in a discrete time setting. More specifically, we will show
that the upper and lower values of an SP dynamic (discrete time) game with full
information converge (as the SP parameter tends to zero) to the viscosity solutions
of some Hamilton–Jacobi-type equations, with Hamiltonians being the limit averages
of the upper and (respectively) lower value functions of a certain associated “fast”
discrete time game. This result leads, in particular, to a very important conclusion
that states that if the limit averages of the upper and lower values of the associated
fast game coincide, then the limits of the upper and lower values of the original discrete
time SP game coincide too and, thus, the latter has value in the limit as the singular
perturbations parameter tends to zero.
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An important issue in the theory of SPCS is a justification of a so-called reduction
technique approach (RTA). According to this approach the fast variables are replaced
by their steady states obtained with “frozen” slow variables and controls, and the slow
dynamics is approximated by the corresponding reduced order system. Although the
RTA may fail to provide a proper approximation for the SPCS in a general case
[9, 10, 11], its application was very successful in many important special cases (see
[15, 24, 22, 23, 28, 29] and the references therein). In the differential game context
the efficiency of the RTA was established for SP linear quadratic games in [14, 21]
and for the SP H∞ problem with linear dynamics in [26, 27].

The general averaging approach that we develop in this paper allows us to verify
applicability of the RTA in SP discrete time games. This point is illustrated by a
special example with linear fast variables and controls dynamics.

It should be mentioned that the motivation for the study in this paper stems from
the work of [7] and [12]. In [7], the differential game and its properties were studied,
but by discretizing the continuous time systems and using a discrete approach. By
looking at the behavior of small time intervals (tending to zero), the solution to
the differential game was thus provided. While stimulated by the work of [7], the
continuous time counterpart of this paper was investigated in [12]. Both the results
obtained in [12] and in this paper were encouraged by the pioneering work of [7], but
emphasis is laid on the impact of singular perturbations and its asymptotic behavior.
By the results in [7] and [12], the PDE (2.24) would be helpful to solve discrete time
games by looking at the discrete instant behavior. As we mention in Remark 4.3,
Theorem 4.1 is asymptotic in nature. Our emphasis is to establish the convergence of
the upper and lower values of the singularly perturbed dynamic game to the viscosity
solutions of corresponding limited Hamilton–Jacobi–Isaacs (LHJI) equations.

This paper is organized as follows. In section 2, we describe our main results
without going into technical details. In section 3, these results are illustrated by a
consideration of a special class of SP discrete time games and two examples, one
of which illustrates an applicability of RTA. In section 4, we introduce our main
assumptions and establish one theorem about the convergence of the upper and lower
value functions of an SP discrete time zero-sum game to the viscosity solutions of the
corresponding LHJI equations (defined in section 2). Assumptions 4.4, 4.5, and 4.6
are verified in section 5.

Notation. Throughout this paper Rn and Rn×m denote, respectively, the n-
dimensional Euclidean space and the set of all n×m real matrices. ‖ · ‖ will refer
to the L∞ norm in the finite-dimensional space. That is, for q ∈ Rk and A ∈ Rn×k,
‖q‖ = maxi=1,2,...,k |qi| and ‖A‖ = max‖q‖=1 ‖Aq‖. �x� stands for the greatest integer
which is smaller than or equal to x.

2. Problem formulation and preliminaries.

2.1. Singularly perturbed discrete time game. Consider a discrete time
system

z(k + 1) = z(k) + εf1 (z(k), y(k), uk, vk) ,(2.1)

y(k + 1) = y(k) + f2 (z(k), y(k), uk, vk)(2.2)

for k = l, l + 1, . . . , Nε − 1 with Nε
def
= �Tε � and

z(l) = z, y(l) = y,(2.3)
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where l = 0, 1, . . . , Nε − 1. Here ε is a small positive parameter, T > 0 defines the
final time, and f1(·) and f2(·) are maps from Rm × Rn × Rp × Rq to Rm and Rn,
respectively.

The appearance of the small parameter in the right-hand side of (2.1) implies
that the rate of change of the z-components of the phase vector is of the order ε and,
thus, this component can be considered to be slow with respect to the y-components
changing with the rate O(1). The number of discrete moments of time in which the
phase vector changes its values according to (2.1)–(2.2) has the order 1

ε . Hence, the
slow components z may have significant (not tending with ε to zero) deviations from
their initial values. Systems allowing similar properties on a continuous time scale
are commonly called singularly perturbed (SP). Adopting this terminology, we shall
call (2.1)–(2.2) a singularly perturbed discrete time (SPDT) system.

Assume that there are two controllers in our system, one responsible for the choice
of uk (maximizer) and the other for the choice of vk (minimizer). The controls are
chosen to satisfy the inclusions

uk ∈ U, vk ∈ V, k = l, l + 1, . . . , Nε − 1,(2.4)

where U and V are given compact subsets of Rp and Rq, respectively. Motivated by
the results in [7], we consider a sequence, l = 0, 1, . . . , Nε − 1, of the dynamic games
each starting at the moment l and consisting of Nε − l steps. The strategies of the
players are defined in these games as follows:

Let Γll and ∆
l
l be any vectors in U and V . Let Γll+k and ∆

l
l+k be any maps:

Γll+k : (U × V )× (U × V )× · · · × (U × V )︸ ︷︷ ︸
k

→ U,

∆ll+k : (U × V )× (U × V )× · · · × (U × V )︸ ︷︷ ︸
k

→ V

with k = 1, . . . , Nε − l − 1.
The vector

Γl =
(
Γll, . . . ,Γ

l
Nε−1

)
is called a strategy for the maximizer in the game starting at the moment l, while the
vector

∆l =
(
∆ll, . . . , ∆lNε−1

)
is called a strategy for the minimizer in the game starting at the moment l.

Given any pair (Γl,∆l) one can uniquely construct the control sequences

ul = (uk, k = l, . . . , Nε − 1), vl = (vk, k = l, . . . , Nε − 1)

with ul
def
= Γll, vl

def
= ∆ll and

uk = Γ
l
k (ul, vl, . . . , uk−1, vk−1) ,(2.5)

vk = ∆
l
k (ul, vl, . . . , uk−1, vk−1)(2.6)

for k = l + 1, . . . , Nε − 1. This pair of control sequences is called the outcome of
(Γl,∆l).
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Let (Γl,∆l) be a pair of strategies of the players in the game starting at the
moment l, let (ul, vl) = {(uk, vk), k = l, l + 1, . . . , Nε − 1} be its outcome, and let
(z(k), y(k)) be the corresponding solution of (2.1)–(2.2). Define the payoff of the
game by the equation

Pε(l, z, y,Γ
l,∆l) = Pε(l, z, y, u

l, vl)
def
= G(z(Nε)) + ε

Nε−1∑
k=l

Φ (z(k), y(k), uk, vk) ,

l = 0, 1, . . . , Nε − 1,(2.7)

where G : Rm → R1,Φ : Rm ×Rn ×Rp ×Rq → R1.
Define the upper and lower value functions of the SPDT game as follows:

Bup
ε (l, z, y) = inf

∆l
l

sup
Γl
l

. . . inf
∆l

Nε−1

sup
Γl
Nε−1

Pε (l, z, y,Γ
l,∆l), l = 0, 1, . . . , Nε − 1(2.8)

Blo
ε (l, z, y) = sup

Γl
l

inf
∆l

l

. . . sup
Γl
Nε−1

inf
∆l

Nε−1

Pε(l, z, y,Γ
l,∆l), l = 0, 1, . . . , Nε − 1,(2.9)

and also take

Bup
ε (Nε, z, y) = Blo

ε (Nε, z, y) = G(z).(2.10)

Given any l, z, and y, Bup
ε (l, z, y) is the value of the payoff functional (2.7) which the

v-player (the minimizer) can be guaranteed if at the beginning of each interval k his
move (the choice of ∆k) precedes the move of the u-player (the choice of Γk), whereas
Blo
ε (l, z, y) is the value which the u-player (the maximizer) can be guaranteed if at

the beginning of each interval his move precedes the move of the minimizer.
Notice that using an argument similar to that in [7], one can show that

Bup(lo)
ε (l, z, y) also allows the following representations:

Bup
ε (l, z, y) = inf

vl
sup
ul

. . . inf
vNε−1

sup
uNε−1

Pε(l, z, y, u
l, vl),(2.11)

Blo
ε (l, z, y) = sup

ul

inf
vl

. . . sup
uNε−1

inf
vNε−1

Pε(l, z, y, u
l, vl),(2.12)

where the sups and infs are sought over ul ∈ U and vl ∈ V and (ul, vl) = (uk, vk), k =
l, l + 1, . . . , Nε − 1.

Definition 2.1. We shall say that the SPDT game has value in the limit if
corresponding to any compact set D1 × P1 ⊂ Rm × Rn there exists a function µ(ε)
tending to zero as ε tends to zero such that∣∣Bup

ε (l, z, y)−Blo
ε (l, z, y)

∣∣ ≤ µ(ε) ∀l = 0, 1, . . . , Nε − 1, (z, y) ∈ D1 × P1.(2.13)

2.2. Associated fast discrete time game. Consider a system

ỹ(k + 1) = ỹ(k) + f2(z, ỹ(k), ũk, ṽk), ỹ(0) = y, z = constant,

k = 0, 1, . . . , N − 1,(2.14)

where N is a positive integer number. In contrast to (2.2), z here is a vector of
constant parameters. System (2.14) is called an associated system.

Let Γ̃0 and ∆̃0 be any functions in U and V and let Γ̃j and ∆̃j be any map from

(U × V )× · · · × (U × V )︸ ︷︷ ︸
j
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into U and V , respectively, for j = 1, . . . , N − 1. The vectors
Γ̃ = (Γ̃0, . . . , Γ̃N−1), ∆̃ = (∆̃0, . . . , ∆̃N−1)

are called strategies for ũ- and ṽ-players in the associated fast discrete time (AFDT)
game, respectively. Similar to (2.5)–(2.6), given a pair (Γ̃, ∆̃), one can construct the
corresponding outcome, that is, the sequence of control pairs

(ũ, ṽ) = (ũk, ṽk), k = 0, 1, . . . , N − 1,
with

ũk ∈ U, ṽk ∈ V, k = 0, 1, . . . , N − 1,(2.15)

and thus determine the solution yz = ỹz(k) of (2.14).
Define the payoff of the AFDT game corresponding to the pair (Γ̃, ∆̃) by the

equation

Q(z, λ,N, y, Γ̃, ∆̃) = Q(z, λ,N, y, ũ, ṽ)

def
= N−1

N−1∑
k=0

[
Φ (z, ỹz(k), ũk, ṽk) + λT f1 (z, ỹz(k), ũk, ṽk)

]
,(2.16)

where Φ is the same as in the payoff functional (2.7), f1(·) is the function defining the
slow subsystem (2.1), and z ∈ Rm and λ ∈ Rm are vectors of constant parameters.
The upper and lower value functions of the AFDT game are defined by the following
equations:

Rup(z, λ,N, y) = inf
∆̃0

sup
Γ̃0

. . . inf
∆̃N−1

sup
Γ̃N−1

Q(z, λ,N, y, Γ̃, ∆̃),(2.17)

Rlo(z, λ,N, y) = sup
Γ̃0

inf
∆̃0

. . . sup
Γ̃N−1

inf
∆̃N−1

Q(z, λ,N, y, Γ̃, ∆̃).(2.18)

Similar to (2.11) and (2.12), Rup(lo)(z, λ,N, y) allows the representations [7]

Rup(z, λ,N, y) = inf
ṽ0

sup
ũ0

. . . inf
ṽN−1

sup
ũN−1

Q(z, λ,N, y, ũ, ṽ),(2.19)

Rlo(z, λ,N, y) = sup
ũ0

inf
ṽ0

. . . sup
ũN−1

inf
ṽN−1

Q(z, λ,N, y, ũ, ṽ),(2.20)

where the sups and infs are sought over ũj ∈ U and ṽj ∈ V .
In what follows we shall use the following assumption about the upper and lower

value functions of the AFDT game.
Assumption 2.1. There exist the limits

lim
N→∞

Rup(z, λ,N, y)
def
= Rup(z, λ),(2.21)

lim
N→∞

Rlo(z, λ,N, y)
def
= Rlo(z, λ)(2.22)

which do not depend on the initial values y in (2.14).
Remark 2.1. Assumption 2.1 is a discrete-time counterpart of the one introduced

in [12]. Note that from a control theory point of view, if a system is controllable, then
it is possible to drive the system from any initial state to any specified state within a
certain time. Consequently, the limit behavior of the upper and lower value functions
of the AFDT game should not depend upon the initial state y.

We shall say that the AFDT game has value in the limit if

Rup(z, λ) = Rlo(z, λ)
def
= R(z, λ) ∀(z, λ) ∈ Rm ×Rm.(2.23)
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2.3. LHJI equations for the SPDT game. Let us consider the Hamilton–
Jacobi-type equations

−∂B(t, z)

∂t
+H

(
z,

∂B(t, z)

∂z

)
= 0, (t, z) ∈ [0, T )×Rm,(2.24)

with Hamiltonians H(z, λ) being equal to −Rup(z, λ), −Rlo(z, λ), or −R(z, λ) in the
case in which (2.23) is true. These equations will be referred to as LHJI equations for
the SPDT game. Let us denote by Bup(t, z), Blo(t, z), B(t, z) the viscosity solutions
of these equations which satisfy the boundary condition

B(T, z) = G(z) ∀z ∈ Rm.(2.25)

In the following sections it will be shown that the upper and lower value functions of
the SPDT game, Bup

ε (l, z) and Blo
ε (l, z), converge to Bup(t, z) and Blo(t, z), respec-

tively, as ε tends to zero. This will imply in particular that if the AFDT game has the
value in the limit, that is, (2.23) is true, then both Bup

ε (t, z) and Blo
ε (t, z) converge to

B(t, z) as ε tends to zero, and thus the SPDT game has the value in the limit as well.
As in SP differential games, the above results can be considered to be a justi-

fication of a decomposition of the SPDT game into the AFDT game, allowing one
to describe an asymptotically optimal behavior of the players if the slow parameters
are fixed and the LHJI equations are responsible for a “near-optimality” of the slow
dynamics.

Notice that for some classes of dynamic games (see the examples in section 3) the
SPDT and AFDT games can be interpreted as in the Isaacs equations [19] for some
specially constructed “slow” differential games.

3. Special case. To illustrate the results mentioned above let us consider a
special case. Let

yT = (yT1 , yT2 ), fT2 (z, y, u, v) =
(
fT21(z, y1, u), f

T
22(z, y2, v)

)
,(3.1)

yT (0) = (yT10, y
T
20), yi ∈ Rni , f2i ∈ Rni , n1 + n2 = n,(3.2)

f1(z, y, u, v) = f10(z) + f11(z, y1, u) + f12(z, y2, v),(3.3)

Φ(z, y, u, v) = Φ1(z, y1, u) + Φ2(z, y2, v).(3.4)

It can be easily shown that under the above assumptions about the structure of the
SPDT game, the AFDT game is equivalent to two optimal control problems:

sup
uk∈U

{
N−1

N−1∑
k=0

[
Φ1 (z, y1(k), uk) + λT f11 (z, y1(k), uk)

]
∣∣∣∣ y1(k + 1) = y1(k) + f21(z, y1(k), uk), y1(0) = y10

}
def
= r1(z, λ,N, y10)(3.5)

and

inf
vk∈V

{
N−1

N−1∑
k=0

[
Φ2 (z, y2(k), vk) + λT f12 (z, y2(k), vk)

]
∣∣∣∣ y2(k + 1) = y2(k) + f22(z, y2(k), vk), y2(0) = y20

}
def
= r2(z, λ,N, y20) .(3.6)
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It can be shown, in particular, that

Rup(z, λ,N, y) = Rlo(z, λ,N, y)

= λT f10(z) + r1(z, λ,N, y10) + r2(z, λ,N, y20),(3.7)

which implies that

Rup(z, λ) = Rlo(z, λ) = R(z, λ) = λT f10(z) + r1(z, λ) + r2(z, λ),(3.8)

where ri(z, λ) is the limit of ri(z, λ,N, yi0) as N tends to infinity, i = 1, 2.
Example 3.1. Assume in addition to (3.1)–(3.4) that

f11(z, y1, u) = L1(z)y1 + C1(z)u,

f12(z, y2, v) = L2(z)y2 + C2(z)v,

f21(z, y1, u) = I1(z) + J1(z)y1 +K1(z)u,

f22(z, y2, v) = I2(z) + J2(z)y2 +K2(z)v,

where Ci, Ii, Ji,Ki, and Li are matrix functions of appropriate dimensions, with Ji(z),
i = 1, 2, is nonsingular and the eigenvalues of Ji(z) + I, i = 1, 2, are inside the unit
circle for any z ∈ Rm. The latter condition ensures, in particular, the fulfillment of
Assumption 2.1 (see Remark 4.4 below). Assume that Φ1(z, y1, u) is concave in (y1, u)
and Φ2(z, y2, v) is convex in (y2, v) and also that U and V are convex compact sets.
Similar to the example in [11, p. 892], it can be shown that

r1(z, λ) = max
u

{
Φ1 (z, ψ1(z, u), u) + λT f11(z, ψ1(z, u), u) | u ∈ U

}
,(3.9)

r2(z, λ) = min
v

{
Φ2 (z, ψ2(z, v), v) + λT f12(z, ψ2(z, v), v) | v ∈ V

}
,(3.10)

where y1 = ψ1(z, u) and y2 = ψ2(z, v) are the roots of the equations

f21(z, y1, u) = 0, f22(z, y2, v) = 0.

That is,

ψ1(z, u)
def
= − (J1(z))

−1
(I1(z) +K1(z)u) ,(3.11)

ψ2(z, v)
def
= − (J2(z))

−1
(I2(z) +K2(z)v) .(3.12)

It is easy to see that the LHJI equation (2.24) with

H(z, λ) = − (λT f10(z) + r1(z, λ) + r2(z, λ)
)
,

where ri(z, λ), i = 1, 2, are defined by (3.9)–(3.12), coincides with the Isaacs equation
for the “slow” differential game with the dynamics described by the equation

ż = f10(z) + f11(z, ψ1(z, u), u) + f12(z, ψ2(z, v), v),

with the payoff function being

∫ T

0

[
Φ1 (z, ψ1(z, u), u) + Φ2 (z, ψ2(z, v), v)

]
dt.
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Notice that this game is similar to a game which would be obtained if one uses an
RTA to an SP control system

ż(t) = f1(z(t), y(t), u(t), v(t)),

εẏ(t) = f2(z(t), y(t), u(t), v(t)),

u(t) ∈ U, v(t) ∈ V, ∀t ∈ [0, T ],

evolving on a continuous time scale (see [12, 14, 21] for more details).
Example 3.2. Assume that f1i, f2i,Φi, i = 1, 2, in (3.1)–(3.4) do not depend on z

and f10(z) = Az, G(z) = CT z, where A ∈ Rm×m is a constant matrix and C ∈ Rm

is a constant vector.
The optimal values of (3.5), (3.6) do not depend on z in this case. Let us denote

by r1(λ), r2(λ) the limits of these values as N tends to infinity. By (3.8),

Rup(z, λ) = Rlo(z, λ) = R(z, λ) = λTAz + r1(λ) + r2(λ).

The LHJI equation (2.24) and the boundary conditions (2.25) in this case take the
form

∂B(t, z)

∂t
+

(
∂B(t, z)

∂z

)T
Az + r1

(
∂B(t, z)

∂z

)
+ r2

(
∂B(t, z)

∂z

)
= 0,

B(T, z) = CT z.(3.13)

It can be verified via a direct substitution that the solution of (3.13) allows an explicit
representation

B(t, z) = λT (t)z +

∫ T

t

[
r1 (λ(θ)) + r2 (λ(θ))

]
dθ,

where λ(t) is the solution of the system

λ̇(θ) = −ATλ(θ), λ(T ) = C.

Notice that (3.13) is the Isaacs equation for the dynamic game with the payoff func-
tional CT z(T ) and the dynamics described by the equation

z(k + 1) = Az(k) + w1(k) + w2(k), z(l) = z,

where the maximizer chooses w(θ) ∈W1 and the minimizer chooses w2(θ) ∈W2. W1

and W2 are convex compact sets defined by their supporting functions,

max
w∈W1

{λTw} = r1(λ), min
w∈W2

{λTw} = r2(λ).

4. Convergence of the upper and lower value functions of the SPDT
game. Before presenting our main results in this paper, we introduce the following
assumptions.

Assumption 4.1. All the functions used in the definitions of the SPDT and AFDT
games in section 2 are continuous on Rm ×Rn ×U × V × [0, T ], and they also satisfy
the local Lipschitz conditions in (z, y).

Assumption 4.2. Corresponding to any compact set D × P ⊂ Rm × Rn, there
exists a compact set D1×P1 ∈ Rm×Rn such that if the initial values (z, y) ∈ D×P ,
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then all the solutions of (2.1)–(2.2) obtained with different control functions satisfying
(2.4) do not leave D1 × P1.

Assumption 4.3. Corresponding to any compact set D × P ∈ Rm × Rn, there
exists a compact set P1 ∈ Rn such that if z ∈ D and the vector of initial values y ∈ P ,
then the solutions of (2.14) obtained with different control functions satisfying (2.15)
do not leave P1.

Remark 4.1. It is worthwhile to mention that Assumptions 4.2 and 4.3 might be
replaced by some equivalent conditions with the help of the viability theory [3], which
may provide another way to verify the correctness of these two assumptions.

Assumption 4.4. Assumption 2.1 is true and the convergence in (2.21) and (2.22)
is uniform with respect to (z, λ, y) from any compact subset of Rm×Rm×Rn. That is,
corresponding to any compact set D×Λ×P ∈ Rm×Rm×Rn, there exists a function
γ(N) tending to zero as N tends to infinity such that for any (z, λ, y) ∈ D × Λ× P ,∣∣∣Rup(lo)(z, λ,N, y)−Rup(lo)(z, λ)

∣∣∣ ≤ γ(N).(4.1)

Assumption 4.5. Corresponding to any compact set D×Λ×P ⊂ Rm×Rm×Rn,
there exists a monotone function ν(α) satisfying

lim
α→0

ν(α) = 0(4.2)

such that∣∣∣Rup(lo)(z1, λ)−Rup(lo)(z2, λ)
∣∣∣ ≤ ν(‖z1 − z2‖) ∀zi ∈ D, i = 1, 2.(4.3)

Remark 4.2. Notice that we used (originally to establish our main result; see
Theorem 4.1 below) a much stronger assumption (see Assumption 4.5 in [13]) which
is similar to the corresponding assumption in [12] for continuous time differential
games. It was noted by Artstein that this assumption can be replaced by a weaker
one (similar to Assumption 4.5 above) in optimal control setting. The replacement
of the assumption by a weaker one leads to changes in the proof (with respect to the
one shown in [13]). We introduce these changes using some ideas suggested in [1].

Assumption 4.6. Corresponding to any compact set [0, T ] ×D1 × P1 ⊂ [0, T ] ×
Rm × Rn, there exist a constant L > 0 and continuous functions ω1(α) and ω2(α)
tending to zero as α tends to zero such that for any (l1, z1, y1) and (l2, z2, y2) ∈
[0, T ]×D1 × P1,∣∣∣Bup(lo)

ε (l1, z1, y1)−Bup(lo)
ε (l2, z2, y2)

∣∣∣ ≤ εL|l1 − l2|+ ω1(|z1 − z2|) + ω2(ε)

with

Bup(lo)
ε (Nε, z, y) = G(z) ∀(z, y) ∈ Rm ×Rn.(4.4)

Notice that Assumptions 4.4, 4.5, and, particularly, 4.6 imposed on the upper
and lower value functions of SPDT games are hard to verify in a general case. In
Remark 4.4 below we shall provide some sufficient conditions for these assumptions
to be satisfied.

Now, we are ready to formulate the main result of this paper.
Theorem 4.1. Let Assumptions 4.1–4.3 and 4.4–4.6 be satisfied. Then there

exists a function µ(ε) tending to zero as ε tends to zero such that∣∣∣Bup(lo)
ε (l, z, y)−Bup(lo)(lε, z)

∣∣∣ ≤ µ(ε), l = 0, 1, . . . , Nε − 1,(4.5)
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with the convergence being uniform on any compact subset of Rm × Rn with l =
0, 1, . . . , Nε − 1.

From Theorem 4.1, the following corollary immediately follows.
Corollary 4.2. If the AFDT game has value in the limit, that is, (2.23) is

true and the LHJI equation (2.24) with H(z, λ) = −R(z, λ) has the unique viscosity
solution B(t, z), then the SPDT game has value in the limit as well, and∣∣∣∣Bup

ε (l, z, y)−B(lε, z)

∣∣∣∣ ≤ µ(ε), l = 0, 1, 2, . . . , Nε − 1,∣∣∣∣Blo
ε (l, z, y)−B(lε, z)

∣∣∣∣ ≤ µ(ε), l = 0, 1, 2, . . . , Nε − 1.

Remark 4.3. An upper semicontinuous function X(t, z) is called a viscosity sub-
solution of (2.24) if

−∂x(t̄, z̄)

∂t
+H

(
z̄,

∂x(t̄, z̄)

∂z

)
≤ 0

for any (t̄, z̄) ∈ [0, T )×Rm and for each function x(t, z) which has continuous partial
derivatives on [0, T )×Rm and satisfies the conditions x(t̄, z̄) = X(t̄, z̄) and x(t, z) ≥
X(t, z) in some neighborhood of (t̄, z̄).

A lower semicontinuous function X(t, z) is called a viscosity supersolution of
(2.24) if

−∂x(t̄, z̄)

∂t
+H

(
z̄,

∂x(t̄, z̄)

∂z

)
≥ 0

for any (t̄, z̄) ∈ [0, T )×Rm and for each function x(t, z) which has continuous partial
derivatives on [0, T ) × Rm and which satisfies the conditions x(t̄, z̄) = X(t̄, z̄) and
x(t, z) ≤ X(t, z) in some neighborhood of (t̄, z̄). A function X(t, z) which is both a
viscosity sub- and a supersolution is called a viscosity solution of (2.24).

As shown in a number of works (see [5] and the references therein), upper and
lower values of a differential game coincide with the viscosity solutions of the corre-
sponding Hamilton–Jacobi–Isaacs equations. In contrast to these results, Theorem
4.1 is of an asymptotic nature. We establish the convergence of the upper and lower
values of the SP dynamic game to the viscosity solutions of LHJI equations which do
not explicitly include a part of phase variables representing the fast motions.

Remark 4.4. Similar to Theorems 6.1 and 7.1 in [12], it can be established that
Assumptions 4.4, 4.5, and 4.6 will be satisfied if the following assumption is true.

Assumption 4.7. Corresponding to any compact set D ⊂ Rm there exists a
sequence ξ(k) tending to zero as k tends to infinity such that for any z ∈ D the
solutions of (2.14), ỹiz(k), i = 1, 2, obtained with arbitrary initial conditions ỹiz(0) =
yi, i = 1, 2, and any control pairs (ũk, ṽk) ∈ U × V satisfy the inequality

‖ỹ1
z(k)− ỹ2

z(k)‖ ≤ ξ(k)‖y1 − y2‖.
It should be remarked that Assumption 4.7 is of stability type, which was used

in [9]. The difference between the solutions of (2.14) induced by a difference in the
initial values is decreasing to zero as time tends to infinity. Also, it is easy to see
that this assumption is satisfied if the function f2(·) in the right-hand side of (2.2) is
presented in the form

f2(z, y, u, v) = q(z, y) + p(u, v)



836 PENG SHI

and g(z, y)
def
= y+q(z, y) defines a contractive operator. More precisely, if correspond-

ing to any compact set D ⊂ Rm there exists a constant αD ∈ (0, 1) such that for any
y1 and y2 in Rn

‖g(z, y2)− g(z, y1)‖ ≤ αD‖y2 − y1‖ ∀z ∈ D,

then Assumption 4.7 is satisfied with ξ(k) = αkD.
Proof of Theorem 4.1. Let tl = lε, l = 0, 1, . . . , Nε = �Tε �. For any t ∈ [0, T ], we

define

B̄up(lo)
ε (t, z, y)

=



(1− t−tl

tl+1−tl )B
up(lo)
ε (l, z, y) + (t−tl)

tl+1−tlB
up(lo)
ε (l + 1, z, y),

t ∈ [tl, tl+1], l = 0, 1, . . . , Nε − 1;
B
up(lo)
ε (Nε, z, y) = G(z), t ∈ [tNε , T ].

(4.6)

Notice that B̄
up(lo)
ε (t, z, y) is defined in [0, T ] × Rm × Rn and is continuous in t for

t ∈ [0, T ].
Also note that if l1 ≤ l2 < Nε − 1, then for any (t1, z1, y1) and (t2, z2, y2) ∈

[0, T ]×Rm ×Rn and t1 ∈ [tl1 , tl1+1], t2 ∈ [tl2 , tl2+1] one has∣∣∣B̄up(lo)
ε (t1, z1, y1)− B̄up(lo)

ε (t2, z2, y2)
∣∣∣

≤
∣∣∣B̄up(lo)

ε (t1, z1, y1)− B̄up(lo)
ε (t2, z1, y1)

∣∣∣+ ∣∣∣B̄up(lo)
ε (t2, z1, y1)− B̄up(lo)

ε (t2, z2, y2)
∣∣∣ .

(4.7)

Using the expressions (4.6) and Assumption 4.6, one can evaluate the first and second
terms in the right-hand side of (4.7) as follows:∣∣∣B̄up(lo)

ε (t1, z1, y1)− B̄up(lo)
ε (t2, z1, y1)

∣∣∣
≤
∣∣∣B̄up(lo)

ε (t1, z1, y1)− B̄up(lo)
ε (tl1 , z1, y1)

∣∣∣
+
∣∣∣B̄up(lo)

ε (tl1 , z1, y1)− B̄up(lo)
ε (tl2 , z1, y1)

∣∣∣
+
∣∣∣B̄up(lo)

ε (tl2 , z1, y1)− B̄up(lo)
ε (t2, z1, y1)

∣∣∣
≤ t1 − tl1

tl1+1 − tl1

∣∣∣Bup(lo)
ε (l1 + 1, z1, y1)−Bup(lo)

ε (l1, z1, y1)
∣∣∣

+
∣∣∣Bup(lo)

ε (l1, z1, y1)−Bup(lo)
ε (l2, z1, y1)

∣∣∣
+

t2 − tl2
tl2+1 − tl2

∣∣∣Bup(lo)
ε (l2 + 1, z1, y1)−Bup(lo)

ε (l2, z1, y1)
∣∣∣

≤ 4εL+ 3ω2(ε) + 2εL|t1 − t2|(4.8)

and ∣∣∣B̄up(lo)
ε (t2, z1, y1)− B̄up(lo)

ε (t2, z2, y2)
∣∣∣

≤
∣∣∣B̄up(lo)

ε (t2, z1, y1)− B̄up(lo)
ε (tl2 , z1, y1)

∣∣∣
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+
∣∣∣B̄up(lo)

ε (tl2 , z1, y1)− B̄up(lo)
ε (t2, z2, y2)

∣∣∣
≤ t2 − tl2

tl2+1 − tl2

∣∣∣Bup(lo)
ε (l2 + 1, z1, y1)−Bup(lo)

ε (l2, z1, y1)
∣∣∣

+
∣∣∣B̄up(lo)

ε (tl2 , z1, y1)− B̄up(lo)
ε (tl2 , z2, y2)

∣∣∣
+
∣∣∣B̄up(lo)

ε (tl2 , z2, y2)− B̄up(lo)
ε (t2, z2, y2)

∣∣∣
≤ t2 − tl2

tl2+1 − tl2

∣∣∣Bup(lo)
ε (l2 + 1, z1, y1)−Bup(lo)

ε (l2, z1, y1)
∣∣∣

+
∣∣∣Bup(lo)

ε (l2, z1, y1)−Bup(lo)
ε (l2, z2, y2)

∣∣∣
+

t2 − tl2
tl2+1 − tl2

∣∣∣Bup(lo)
ε (l2 + 1, z2, y2)−Bup(lo)

ε (l2, z2, y2)
∣∣∣

≤ 2εL+ ω1(|z1 − z2|) + 3ω2(ε).(4.9)

Substituting (4.8) and (4.9) back into (4.7), one obtains∣∣∣B̄up(lo)
ε (t1, z1, y1)− B̄up(lo)

ε (t2, z2, y2)
∣∣∣

≤ 6εL+ ω1(|z1 − z2|) + 6ω2(ε) + εL|t1 − t2|.(4.10)

Let us introduce the notation

B̄up
ε (t, z, 0)

def
= Xε(t, z).

By Assumption 4.6, if (t, z, y) belongs to a compact set [0, T ]×D1 × P1, then∣∣B̄up
ε (t, z, y)−Xε(t, z)

∣∣ ≤ ω2(ε)(4.11)

=⇒ |Bup
ε (l, z, y)−Xε(lε, z)| ≤ ω2(ε) ∀l = 0, 1, . . . , Nε − 1.

Hence, to prove (4.5) it is sufficient to show that

lim
ε→0

Xε(t, z) = Bup(t, z),(4.12)

where the convergence is uniform with respect to (t, z) from any compact subset of
[0, T ] × Rm. For the sake of brevity we shall refer to this sort of convergence as
U -convergence and the corresponding limits will be called U -limits.

From (4.10) and (4.11) it follows that for any (ti, zi) ∈ D1 × P1, i = 1, 2,

|Xε(t1, z1)−Xε(t2, z2)| ≤ 6εL+ ω1(|z1 − z2|) + 6ω2(ε) + εL|t1 − t2|.(4.13)

Before completing the proof of Theorem 4.1, let us recall the following lemma needed
in our derivation.

Lemma 4.3 (see [12]). Given any sequence εi tending to zero, one can find a
subsequence εij = εj of this sequence such that there exists the U -limit

lim
εj→0

Xεj (t, z)
def
= X(t, z).(4.14)

Let us show that any function obtained as U -limit (4.14) coincides with Bup(t, z).
Notice that, by (4.13), any such function X(t, z) is continuous on [0, T ]×Rm and, by
(4.4) and (4.11), it satisfies the condition

X(T, z) = G(z) ∀z ∈ Rm.
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Thus, to show that it coincides with Bup(t, z), it is enough to show that it is a viscosity
solution of (2.24) with H(z, λ) = −Rup(t, z).

Let n(ε) be a function of ε taking positive integer values such that

n(ε) −→∞ and εn(ε) −→ 0 as ε→ 0.(4.15)

For any t̄ ∈ [0, T ) and any ε > 0, there exists l(ε) > 0 such that t̄ ∈ [l(ε)ε, (l(ε) + 1)ε],
where l(ε) = � t̄ε�.

Let (z(k), y(k)) be the solution of (2.1), (2.2) on the interval [εl(ε), εl(ε) + εn(ε)]
obtained with the initial conditions (z(l(ε)), y(l(ε))) = (z̄, ȳ) and with the use of the
control (uk, vk) ∈ U × V , k = l(ε), l(ε) + 1, . . . , l(ε) + n(ε)− 1.

By (4.11),

B̄up
ε (t̄, z̄, ȳ) = Xε(t̄, z̄) +O(ω2(ε)).(4.16)

Using representation (2.11) and the estimate (4.10), one can obtain

B̄up
ε (t̄, z̄, ȳ) = Bup

ε (l(ε), z̄, ȳ) +O(ε)

= inf
vl(ε)

sup
ul(ε)

· · · inf
vl(ε)+n(ε)−1

sup
ul(ε)+n(ε)−1


ε

l(ε)+n(ε)−1∑
k=l(ε)

Φ(z(k), y(k), uk, vk)

+Bup
ε (l(ε) + n(ε), z(l(ε) + n(ε)), y(l(ε) + n(ε)))


+O(ε)

= inf
vl(ε)

sup
ul(ε)

· · · inf
vl(ε)+n(ε)−1

sup
ul(ε)+n(ε)−1


ε

l(ε)+n(ε)−1∑
k=l(ε)

Φ(z(k), y(k), uk, vk)

+ B̄up
ε (tl(ε)+n(ε), z(l(ε) + n(ε)), y(l(ε) + n(ε)))


+O(ε)

= inf
vl(ε)

sup
ul(ε)

· · · inf
vl(ε)+n(ε)−1

sup
ul(ε)+n(ε)−1


ε

l(ε)+n(ε)−1∑
k=l(ε)

Φ(z(k), y(k), uk, vk)

+Xε(tl(ε)+n(ε), z(l(ε) + n(ε)))


+O(ε) +O(ω2(ε)).(4.17)

Let D and P be compact sets such that (t̄, z̄, ȳ) ∈ [0, T ) × D × P . Then, by
Assumption 4.2, (z(l(ε) + n(ε)), y(l(ε) + n(ε))) ∈ D1 × P1, where D1 and P1 are
compact sets in Rm and Rn. Since the convergence in (4.14) is uniform with respect
to (t, z) from any compact subset of [0, T ]×Rm, there exists a function ν̃(εj),

lim
εj→0

ν̃(εj) = 0,(4.18)

such that

∣∣Xεj (t, z)−X(t, z)
∣∣ ≤ ν̃(εj) ∀(t, z) ∈ [0, T ]×D1.
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Using this and (4.11), one obtains from (4.6) with (4.17)

X(t̄, z̄) = inf
vl(εj)

sup
ul(εj)

. . . inf
vl(εj)+n(εj)−1

sup
ul(εj)+n(εj)−1


εj

l(εj)+n(εj)−1∑
k=l(εj)

Φ(z(k), y(k), uk, vk)

+X(tl(εj)+n(εj), z(l(εj) + n(εj)))


+O(µ̃(εj)),(4.19)

where

µ̃(εj) = max{ω2(εj), ν̃(εj), εj}.(4.20)

Now let x(t, z) have continuous partial derivatives and satisfy the conditions x(t̄, z̄) =
X(t̄, z̄) and x(t, z) ≥ X(t, z) for (t, z) in some neighborhood of (t̄, z̄). From (4.19) it
then follows that

x(t̄, z̄) ≤ inf
vl(εj)

sup
ul(εj)

. . . inf
vl(εj)+n(εj)−1

sup
ul(εj)+n(εj)−1


εj

l(εj)+n(εj)−1∑
k=l(εj)

Φ(z(k), y(k), uk, vk)

+x(tl(εj)+n(εj), z(l(εj) + n(εj)))


+O(µ̃(εj)).(4.21)

By definition

z
(
l(εj) + n(εj)

)
= z̄ + εj

l(εj)+n(εj)−1∑
k=l(εj)

f1(z(k), y(k), uk, vk)(4.22)

and

tl(εj)+n(εj) =
(
l(εj) + n(εj)

)
εj = t̄+O(εj) + εjn(εj).

Since the function f1(·) is continuous and its arguments belong to compact sets,
the second term in the right-hand side of (4.22) is of the order O(εjn(εj)). Thus,
substituting (4.22) into (4.21) and using Taylor’s expansion of x(tl(εj)+n(εj), z(l(εj) +
n(εj))) at (t̄, z̄), one obtains

∂x(t̄, z̄)

∂t
+

1

εjn(εj)
inf
vl(εj)

sup
ul(εj)

. . . inf
vl(εj)+n(εj)−1

sup
ul(εj)+n(εj)−1


εj

l(εj)+n(εj)−1∑
k=l(εj)

[
Φ(z(k), y(k), uk, vk)

+

(
∂x(t̄, z̄)

∂z

)T
f1(z(k), y(k), uk, vk)

]
+

O(µ̃(εj))

εjn(εj)
+

o(εjn(εj))

εjn(εj)
≥ 0.

(4.23)

To proceed with the proof, one needs to establish the following.
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Lemma 4.4. Let K(ε) be a function of ε having integer values and satisfying the
conditions

K(ε)→∞ as ε→ 0, K(ε) ≤ 1

2ln(1 + C)
ln
1

ε
,(4.24)

where C is a Lipschitz constant of the function f2 on the compact set containing the
trajectories of (2.1), (2.2), and (2.14) (see Assumptions 4.1–4.3). Let (z(k), y(k)),
k = l, l + 1, . . . , l +K(ε), be the solutions of (2.1), (2.2) obtained with some controls
(uk, vk), k = l, l + 1, . . . , l + K(ε) − 1, and with the initial values (2.3). Let ỹz̄(k),
k = l, l + 1, . . . , l +K(ε), be the solution of the system

ỹz̄(k + 1) = ỹz̄(k) + f2(z̄, ỹz̄, uk, vk)(4.25)

obtained with the same sequence of controls as above, (uk, vk), k = l, l + 1, . . . , l +
K(ε)− 1, and with the initial conditions

ỹz̄(l) = y,(4.26)

the same as in (2.3). Assume that z̄ in (4.25) satisfies the inequality

‖z̄ − z(k)‖ ≤MεK(ε) ∀k = l, l + 1, . . . , l +K(ε)− 1,(4.27)

with some constant M . Then

max
k=l,l+1,...,l+K(ε)

‖y(k)− ỹz̄(k)‖ ≤ γ1(ε),(4.28)

where

γ1(ε)
def
= MεK(ε)(1 + C)K(ε)+1 → 0 as ε→ 0.(4.29)

The fact that γ1(ε) tends to zero follows from the second inequality in (4.24).
Proof. Subtracting (4.25) from (2.2) and using Lipschitz conditions, one obtains

‖yz(k + 1)− ỹz̄(k + 1)‖
≤ ‖yz(k)− ỹz̄(k)‖+ C (‖z(k)− z̄‖+ ‖yz(k)− ỹz̄(k)‖)
≤ CMεK(ε) + (1 + C)‖yz(k)− ỹz̄(k)‖,

which implies

‖y(k)− ỹz̄(k)‖
≤MεK(ε)(1 + C)k+1−l

≤MεK(ε)(1 + C)K(ε)+1 ∀k = l, l + 1, . . . , l +K(ε).

This justifies (4.28).
Corollary 4.5. Let φ(z, y, u, v) satisfy Lipschitz conditions in z and y. Then∣∣∣∣∣∣

1

K(ε)

l+K(ε)−1∑
k=l

φ(z(k), y(k), uk, vk)− 1

K(ε)

l+K(ε)−1∑
k=l

φ(z̄, ỹz̄(k), uk, vk)

∣∣∣∣∣∣
≤ C1K(ε) (MεK(ε) + γ1(ε))

def
= γ2(ε),(4.30)
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where C1 is a Lipschitz constant of φ.
Notice that, by (4.29), (4.24),

γ2(ε)→ 0 as ε→ 0.(4.31)

Returning to the proof of the main theorem let us define

n(εj) = r(εj)K(εj) +K(εj)(4.32)

with

r(εj) =

⌊
(µ̃(εj))

1/2

εjK(εj)

⌋
.(4.33)

Notice that

εjn(εj)→ 0 as εj → 0.(4.34)

Denoting for the brevity

Φ(z, y, u, v)−
(
∂x(t̄, z̄)

∂z

)T
f1(z, y, u, v)

def
= φ(z, y, u, v),(4.35)

let us rewrite the second term in (4.23) as follows:

1

n(εj)
inf sup · · · inf sup︸ ︷︷ ︸

n(εj)

l(εj)+n(εj)−1∑
k=l(εj)

φ(z(k), y(k), uk, vk)

=
1

r(εj) + 1


 inf sup · · · inf sup︸ ︷︷ ︸

K(εj)

1

K(εj)



l(εj)+K(εj)−1∑

k=l(εj)

φ(z(k), y(k), uk, vk)

+ inf sup · · · inf sup︸ ︷︷ ︸
K(εj)


 1

K(εj)

l(εj)+2K(εj)−1∑
k=l(εj)+K(εj)

φ(z(k), y(k), uk, vk) + · · ·

+ inf sup · · · inf sup︸ ︷︷ ︸
K(εj)


 1

K(εj)

l(εj)+r(εj)K(εj)−1∑
k=l(εj)+(r(εj)−1)K(εj)

φ(z(k), y(k), uk, vk)

+ inf sup · · · inf sup︸ ︷︷ ︸
K(εj)


 1

K(εj)

l(εj)+(r(εj)+1)K(εj)−1∑
k=l(εj)+r(εj)K(εj)

φ(z(k), y(k), uk, vk)






 · · ·


︸ ︷︷ ︸

r(εj)+1


 ,

(4.36)

where the inf sups in the right-hand side of (4.36) are taken over the controls included
in the corresponding sums. Let us consider the last sum in the right-hand side of
(4.36). Notice that for any controls

‖z(k)− z̄r‖ ≤MεjK(εj) ∀k = l(εj) + r(εj)K(εj) + 1, . . . , l(εj) + n(εj),(4.37)
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where M is some constant and

z̄r
def
= z(l(εj) + r(εj)K(εj)).

By Lemma 4.4,

‖y(k)− ỹz̄r (k)‖ ≤ γ1(ε) ∀k = l(εj) + r(εj)K(εj) + 1, . . . , l(εj) + (r(εj) + 1)K(εj),

(4.38)

where ỹz̄r (k) is the solution of system (4.25) with z̄ = z̄r and with the initial conditions

ỹz̄r (l(εj) + r(εj)K(εj)) = y(l(εj) + r(εj)K(εj))
def
= ȳr.(4.39)

Estimates (4.37), (4.38) imply the inequality (see Corollary 4.5)∣∣∣∣∣∣
1

K(εj)

l(εj)+(r(εj)+1)K(εj)−1∑
k=l(εj)+r(εj)K(εj)

φ(z(k), y(k), uk, vk)

− 1

K(εj)

l(εj)+(r(εj)+1)K(εj)−1∑
k=l(εj)+r(εj)K(εj)

φ(z̄r, ỹz̄r (k), uk, vk)

∣∣∣∣∣∣(4.40)

≤ γ2(ε).

This inequality is satisfied uniformly with respect to (uk, vk). Hence, the application
of the operations inf sups do not violate the inequality. Thus, the last r(εj) + 1 term
in the right-hand side of (4.38) can be presented in the form

Rup
(
z̄r,

∂x(t̄, z̄)

∂z
,K(εj), ȳr

)
+ θr(εj)+1,(4.41)

with ∣∣θr(εj)+1

∣∣ ≤ γ2(εj).(4.42)

By Assumption 4.4,

Rup
(
z̄r,

∂x(t̄, z̄)

∂z
,K(εj), ȳr

)
= Rup

(
z̄r,

∂x(t̄, z̄)

∂z

)
+ Γr(εj),(4.43)

where ∣∣Γr(εj)∣∣ ≤ γ(K(εj)).(4.44)

Also, by Assumption 4.5,

Rup
(
z̄r,

∂x(t̄, z̄)

∂z

)
= Rup

(
z̄,

∂x(t̄, z̄)

∂z

)
+∆r(εj),(4.45) ∣∣∆r(εj)∣∣ ≤ ν (Mεjn(εj)) ,(4.46)

where the last estimate is obtained on the basis of the fact that

|z̄r − z̄| ≤Mεjr(εj)K(εj) ≤Mεjn(εj).(4.47)
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Summing up, one can conclude that the r(εj) + 1 term in (4.36) is equal to

Rup
(
z̄,

∂x(t̄, z̄)

∂z
,K(εj)

)
+ ηr(εj)+1,(4.48)

with ∣∣ηr(εj)+1

∣∣ ≤ γ2(εj) + γ(K(εj)) + ν (Mεjn(εj)) .(4.49)

As follows from (4.48), the r(εj) + 1 term in (4.36) does not depend (within the
proximity given in (4.49)) on the values of controls (uk, vk) for k < l(εj)+ r(εj)K(εj).
This allows us to obtain a similar estimate for the term r(εj) (next to the last) in the
right-hand side of (4.36). Proceeding in the same way r(εj)+ 1 times, one can obtain
that the second term in (4.23) is equal to

Rup
(
z̄,

∂x(t̄, z̄)

∂z

)
+ η(εj),(4.50)

|η(εj)| ≤ γ2(εj) + γ(K(εj)) + ν (Mεjn(εj)) ,(4.51)

which after the substitution to (4.23) gives

∂x(t̄, z̄)

∂t
+Rup

(
z̄,

∂x(t̄, z̄)

∂z
,K(εj)

)
+O (γ2(εj)) +O (γ(K(εj))

+O (ν (Mεjn(εj))) +
O(µ̃(εj))

εjn(εj)
+

o(εjn(εj))

εjn(εj)
≥ 0.(4.52)

Notice that, by (4.33),

µ̃(εj)

εjn(εj)
≤ µ̃(εj)

εj

1
(µ̃(εj))1/2

εj

= (µ̃(εj))
1/2

.

Taking into account this as well as (4.23) and passing to the limit as εj tends to zero,
one obtains

∂x(t̄, z̄)

∂t
+Rup

(
z̄,

∂x(t̄, z̄)

∂z

)
≥ 0⇒ −∂x(t̄, z̄)

∂t
+H

(
z̄,

∂x(t̄, z̄)

∂z

)
≤ 0.

This establishes that X(t, z) is a viscosity subsolution of (2.24) on [0, T )×Rm. Simi-
larly, taking x(t, z) having continuous partial derivatives and satisfying the conditions
x(t̄, z̄) = X(t̄, z̄) and x(t, z) ≤ X(t, z) in some neighborhood of (t̄, z̄) ∈ [0, T ) × Rm,
one can obtain that

−∂x(t̄, z̄)

∂t
+H

(
z̄,

∂x(t̄, z̄)

∂z

)
≥ 0,

which means that X(t, z) is a viscosity supersolution of (2.24) on [0, T )×Rm. Thus,
X(t, z) is a viscosity solution (2.24) on [0, T ) × Rm and, consequently, it coincides
with Bup(t, z).

This proves that B̄up
ε (t, z, y) U -converges (as ε tends to zero) to Bup(t, z) (since,

otherwise, by Lemma 4.3, one would be able to choose a subsequence εj tending to
zero such that the U -limit (4.14) does not coincide with Bup(t, z)).

Similarly, it is established that B̄lo
ε (t, z, y) U -converges to B̄lo(t, z) as ε tends to

zero.
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Remark 4.5. It should be noted in Theorem 4.1 that, from [6, 20], the continuous
viscosity solutionBup(t, z), (Blo(t, z)) of (2.24) withH(z, λ) = −Rup(z, λ)(−Rlo(z, λ))
satisfying boundary conditions (2.25) is unique. Notice that the Hamiltonians of the
LHJI equations mentioned in the theorems are continuous under the assumptions
made.

Remark 4.6. The conditions that U and V are compact sets introduced in the
definition of the SP game can be replaced by the coercivity-type condition. Namely,
one can assume that corresponding to any compact set D×Λ×P ∈ Rm ×Rm ×Rn,
there exists a constant M such that for any (z, λ, y) ⊂ D × Λ × P, l = 0, 1, . . . , Nε

and N > 0, the upper and lower values (2.8), (2.9) and (2.17), (2.18) are not changed
with the replacement of U and V by

UM = {u|u ∈ U, ‖ u ‖≤M}, VM = {v|v ∈ V, ‖ v ‖≤M}.
Remark 4.7. Note that since the closed-loop strategies are considered in this

paper, in our future studies the connections between SPDT games and positional
differential games would be worth further investigation, in which feedback strategies
would be used (see, for example, [4]). We conjecture that our results (and approach)
will be useful for the readers working in the fields of (SP) positional differential games.

5. Asymptotics of the AFDT game: Verification of assumptions. We
have the following result.

Theorem 5.1. Assumptions 4.1, 4.3, and 4.7 imply Assumption 4.4.
The proof of Theorem 5.1 is based on the following.
Lemma 5.2. Corresponding to any compact set D × Λ × P ⊂ Rm × Rm × Rn,

there exists a constant L and a monotone function γ1(N) tending to zero as N tends
to infinity such that for any (z, λ, y) ∈ D × Λ× P and any yi ∈ P, i = 1, 2,∣∣∣Rup(lo)(z, λ,N, y1)−Rup(lo)(z, λ,N, y2)

∣∣∣ ≤ γ1(N), N = 0, 1, 2, . . . ;(5.1)

∣∣∣Rup(lo)(z, λ, lK, y)−Rup(lo)(z, λ,K, y)
∣∣∣ ≤ γ1(K)

∀K = 0, 1, 2, . . . , l = 0, 1, 2, . . . ;(5.2)

∣∣∣Rup(lo)(z, λ,N1, y)−Rup(lo)(z, λ,N2, y)
∣∣∣ ≤ L

(
1

N1
+

N2 −N1

N2

)
, N2 ≥ N1 ≥ 1.

(5.3)

Proof of Theorem 5.1. We need to show that there exist the limits

lim
K→∞

Rup(lo)(z, λ,K, y)
def
= Rup(lo)(z, λ).(5.4)

By (5.2) and (5.3), for any integers K1 ≥ K0, K2 ≥ K0, and K0 > 0,∣∣∣Rup(lo)(z, λ,K2, y)−Rup(lo)(z, λ,K1, y)
∣∣∣

≤
∣∣∣∣Rup(lo)(z, λ,K2, y)−Rup(lo)

(
z, λ,

⌊
K2

K0

⌋
K0, y

)∣∣∣∣
+

∣∣∣∣Rup(lo)
(
z, λ,

⌊
K2

K0

⌋
K0, y

)
−Rup(lo)(z, λ,K0, y)

∣∣∣∣
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+

∣∣∣∣Rup(lo)(z, λ,K0, y)−Rup(lo)
(
z, λ,

⌊
K1

K0

⌋
K0, y

)∣∣∣∣
+

∣∣∣∣Rup(lo)
(
z, λ,

⌊
K1

K0

⌋
K0, y

)
−Rup(lo)(z, λ,K1, y)

∣∣∣∣
≤ L

(
1

�K2

K0
�K0

+
(K2 − �K2

K0
�K0)

K2

)

+2γ1(K0) + L

(
1

�K1

K0
�K0

+
(K1 − �K1

K0
�K0)

K1

)

≤ 2γ1(K0) +
2L

K0
+

LK0

K1
+

LK0

K2
.

Choosing Ki ≥ K2
0 , i = 1, 2, one obtains

∣∣∣Rup(lo)(z, λ,K2, y)−Rup(lo)(z, λ,K1, y)
∣∣∣ ≤ 2γ1(K0) +

4L

K0
,

which implies the existence of the limits (5.4). Passing to the limit as l tends to
infinity in (5.2) then allows us to obtain∣∣∣Rup(lo)(z, λ)−Rup(lo)(z, λ,K, y)

∣∣∣ ≤ γ1(K).

Note that from (5.1), the above inequalities will hold for any y ∈ P , which estab-
lishes (4.1).

Proof of Lemma 5.2. By Assumption 4.3, the trajectories of (2.14) which started
at y ∈ P do not leave a compact set P1. By Assumption 4.1, the functions Φ and f1

satisfy Lipschitz conditions in z and y on D × P1 with some constant L1. Hence, for
any admissible pair of controls ũk, ṽk∣∣Q(z, λ,N, y1, ũ, ṽ)−Q(z, λ,N, y2, ũ, ṽ)

∣∣
≤ (L1+ ‖ λ ‖ L1)N

−1
N−1∑
k=0

‖ y1
z(k)− y2

z(k) ‖

≤ L1

(
1 + max

λ∈Λ
‖ λ ‖

)(
N−1

N−1∑
k=0

ξ(k)‖y1 − y2‖
)

def
= γ1(N).(5.5)

Notice that from the fact that ξ(k) tends to zero as k tends to infinity, it follows that
γ1(N) tends to zero as N tends to infinity. Also without loss of generality γ1(N)
can be taken to be a monotone function. Inequality (5.5) and representations (2.19),
(2.20) imply (5.1).

Let us verify (5.2). For l = 1 it is obvious. Let us use induction to show that
(5.2) is true for Rup. Assume that for l = r ≥ 1,

|Rup(z, λ, rK, y)−Rup(z, λ,K, y)| ≤ γ1(K),(5.6)

with γ1(N) being a monotone function which tends to zero as N tends to infinity and
which allows (5.1) with yi ∈ P1, i = 1, 2, where P1 is a compact set containing all the
trajectories of (2.14) started in P . Using (2.19) one can write
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Rup(z, λ, (r + 1)K, y) = inf
ṽ0

sup
ũ0

. . . inf
ṽrK−1

sup
ũrK−1

{
1

(r + 1)K

rK−1∑
k=0

q(z, ỹz(k), ũk, ṽk)

+
1

r + 1
Rup(z, λ,K, ỹz(rK))

}
,(5.7)

where q(z, y, u, v)
def
= Φ(z, y, u, v) + λT f1(z, y, u, v) and ỹz(k) is the solution of (2.14)

obtained with a control pair (ũk, ṽk) and with the initial conditions ỹz(0) = y.
By (5.1), ∣∣∣∣ 1

r + 1
Rup(z, λ,K, ỹz(rK))− 1

r + 1
Rup(z, λ,K, y)

∣∣∣∣ ≤ γ1(K)

r + 1
.

Hence,

Rup(z, λ, (r + 1)K, y) ≤ inf
ṽ0

sup
ũ0

. . . inf
ṽrK−1

sup
ũrK−1

{
r

(r + 1)
· 1
rK

rK−1∑
k=0

q(z, ỹz(k), ũk, ṽk)

}

+
1

r + 1
Rup(z, λ,K, y) +

γ1(K)

r + 1

=
r

r + 1
Rup(z, λ, rK, y) +

1

r + 1
Rup(z, λ,K, y) +

γ1(K)

r + 1
(5.8)

and, similarly,

Rup(z, λ, (r + 1)K, y) ≥ r

r + 1
Rup(z, λ, rK, y) +

1

r + 1
Rup(z, λ,K, y)− γ1(K)

r + 1
.

(5.9)

From (5.8) and (5.6) it follows that

Rup(z, λ, (r + 1)K, y) ≤ r

r + 1
(Rup(z, λ,K, y) + γ1(K))

+
1

r + 1
Rup(z, λ,K, y) +

γ1(K)

r + 1
= Rup(z, λ,K, y) + γ1(K).

In the same way, from (5.9) and (5.6) it follows that

Rup(z, λ, (r + 1)K, y) ≥ Rup(z, λ,K, y)− γ1(K).

This completes the proof of (5.2) for Rup. The proof for Rlo is similar.
To prove (5.3) let us notice that for any control pairs (ũk, ṽk) defined on [0, N2]

(N2 ≥ N1 ≥ 1),
|N2Q(z, λ,N2, ũ, ṽ)−N1Q(z, λ,N1, ũ, ṽ)| ≤M (N2 −N1) ,(5.10)

where

M = max

{
|Φ(z, y, u, v)| + ‖ λ ‖‖ f1(z, y, u, v) ‖∣∣∣∣(z, λ, y, u, v) ∈ D × Λ× P1 × U × V

}
,(5.11)
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where P1 is a compact subset of R
n containing all the trajectories of (2.14) which

start in P . On the basis of (5.10), (2.19), and (2.20), it can be easily verified that

|N2R
up(lo)(z, λ,N2, y)−N1R

up(lo)(z, λ,N1, y)| ≤M (N2 −N1) .(5.12)

By (5.11), |Rup(lo)(z, λ,N, y)| ≤ M ∀N ≥ 0, which along with (5.12) allows us to
establish the inequalities∣∣∣Rup(lo)(z, λ,N2, y)−Rup(lo)(z, λ,N1, y)

∣∣∣
≤
∣∣∣Rup(lo)(z, λ,N2, y)−N1N2

−1Rup(lo)(z, λ,N1, y)
∣∣∣

+
∣∣N1N2

−1 − 1∣∣ ∣∣∣Rup(lo)(z, λ,N1, y)
∣∣∣

≤ 2M (N2 −N1)N2
−1,

which implies (5.3), where L can be taken to be equal to 2M .
Theorem 5.3. Assume that all assumptions of Theorem 5.1 are satisfied and

the function ξ(k) in Assumption 4.7 has the form ξ(k) = ξkC, where 0 < ξ < 1 and
C > 0 is a constant. Then Assumptions 4.5 and 4.6 are true.

Proof. It can be worked out essentially following a similar line as in the proof of
the results of Gaitsgory [12] and combining with Lemma 5.4 below.

Lemma 5.4. Let z̃(k) be an arbitrary function belonging to a compact set for
k = 0, 1, . . . , N . Let ũk be an arbitrary admissible control and let ỹ(k) and ỹz(k) be
the solutions of the system

ỹ(k + 1) = ỹ(k) + f2(z̃(k), ỹ(k), ũk), ỹ(0) = y,(5.13)

and the system

ỹz(k + 1) = ỹz(k) + f2(z, ỹz(k), ũk), ỹz(0) = y,(5.14)

respectively (where, in contrast to (5.13), z is constant in (5.14)). Then

max
k=0,1,...,N

‖ỹ(k)− ỹz(k)‖ ≤ C max
k=0,1,...,N

‖z̃(k)− z‖,(5.15)

where C1 > 0 is a constant.
Proof of Lemma 5.4. The proof can be carried out by similar techniques as those

in [9].
Choose a natural number K in such a way that

C1ξ
K def
= δ < 1(5.16)

and define τl = lK, l = 0, 1, . . . , �NK �, τl+1
def
= N .

To continue the proof, we need the following simple proposition.
Proposition 5.5. Let αk ≥ 0, k = τl, τl + 1, . . . , τl+1, satisfy the inequalities

ατl ≤M1∆,(5.17)

αk+1 ≤M2∆+M3

k∑
i=τl

αi,(5.18)
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where Mi, i = 1, 2, 3, are constants and ∆ is a positive parameter. Then there exists
a constant θ such that

αk ≤ θ∆, k = τl, τl + 1, . . . , τl+1.(5.19)

Proof. It can be easily derived by induction.
Returning to the proof of the main lemma, denote by ỹlz(k), k = τl, τl+1, . . . , τl+1,

the solution of (5.14) obtained with the controls ũk and the initial condition

ỹlz(τl) = ỹ(τl).(5.20)

By definition ỹlz(k) satisfies the equation

ỹlz(k + 1) = ỹ(τl) +

k∑
τ=τl

f2

(
z, ỹlz(τ), ũτ

)
.(5.21)

Also, ỹ(k) satisfies the equation

ỹ(k + 1) = ỹ(τl) +

k∑
τ=τl

f2 (z̃, ỹ(τ), ũτ ) .(5.22)

Subtracting (5.21) from (5.22) and using Lipschitz conditions (f2(·) is assumed to
satisfy these conditions in z and y with the constant L), one obtains

‖ỹlz(k + 1)− ỹ(k + 1)‖ ≤ LK∆+ L

k∑
τ=τl

‖ỹlz(τ)− ỹ(τ)‖,(5.23)

where

∆
def
= max

k=0,1,...,N
‖z(k)− z‖.(5.24)

Denoting

‖ỹlz(k)− ỹ(k)‖ def
= αk

and taking

M1 = 0, M2 = LK, M3 = L,

one obtains from Proposition 5.5 that there exists a constant θ1 such that

‖ỹlz(k)− ỹ(k)‖ ≤ θ1∆, k = τl, τl + 1, . . . , τl+1.(5.25)

On the basis of the assumption on ξ(k) in Theorem 5.3, and (5.16) and (5.25), one
can write

‖ỹz(τl+1)− ỹ(τl+1)‖
≤ ‖ỹz(τl+1)− ỹlz(τl+1)‖+ ‖ỹlz(τl+1)− ỹ(τl+1)‖
≤ δ‖ỹz(τl)− ỹlz(τl)‖+ θ1∆

= δ‖ỹz(τl)− ỹ(τl)‖+ θ1∆

≤ δ (δ‖ỹz(τl−1)− ỹ(τl−1)‖+ θ1∆) + θ1∆

......

≤ (δl−1 + δl−2 + · · ·+ 1)θ1∆ ≤ θ1∆

1− δ
.(5.26)
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The solution ỹz(k) of (5.14) satisfies the equation

ỹz(k + 1) = ỹz(k) +

k∑
τ=τl

f2 (z, ỹz(τ), ũτ ) .(5.27)

Subtracting this from (5.22), one obtains, by using (5.26),

‖ỹ(k + 1)− ỹz(k + 1)‖

≤ ‖ỹ(τl)− ỹz(τl)‖+ LK∆+ L

k∑
τ=τl

‖ỹ(τl)− ỹz(τ)‖

≤
[

θ1

1− δ
+ LK

]
∆+ L

k∑
τ=τl

‖ỹ(τl)− ỹz(τ)‖.(5.28)

Denoting

‖ỹ(k)− ỹz(k)‖ = αk

and taking

M1 =
θ1∆

1− δ
, M2 =

θ1

1− δ
+ LK, M3 = L,

one obtains from Proposition 5.5 that there exists a constant θ2 such that

‖ỹ(k)− ỹz(k)‖ ≤ θ2∆, k = τl, τl + 1, . . . , τl+1.(5.29)

Note that the constant θ2 does not depend on l and, hence, (5.29) proves the lemma
with C = θ2.

6. Conclusions. In this paper, the problem of singularly perturbed zero-sum
dynamic games with full information has been investigated. With the aid of an
associated fast game, it has been shown that the upper and lower value functions of
this game have limits as the singular perturbations parameter tends to zero. It has also
been established that these limits coincide with viscosity solutions of some Hamilton–
Jacobi-type equations. Two examples were presented to illustrate the general results.

Acknowledgments. The author would like to express his sincere gratitude and
appreciation to Professor Vladimir Gaitsgory from the University of South Australia
for discussion and encouragement during this work. Also, the author wishes to thank
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Abstract. We develop tools for studying the control of underactuated mechanical systems
that evolve on a configuration space with a principal fiber bundle structure. Taking the viewpoint
of affine connection control systems, we derive reduced formulations of the Levi–Civita and the
nonholonomic affine connections, along with the symmetric product, in the presence of symmetries
and nonholonomic constraints. We note that there are naturally two kinds of connections to be
considered here, affine and principal connections, leading to what we term a “connection within
a connection.” These results are then used to describe controllability tests that are specialized to
simple, underactuated mechanical systems on principal fiber bundles, including the notion of fiber
configuration controllability. We present examples of the use of these tools in studying the planar
rigid body with a variable direction (vectored) thruster and the snakeboard robot.

Key words. nonlinear control, reduction, configuration controllability, symmetric product
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1. Introduction. In the area of control for mechanical systems, there is a newly
emerging body of work that utilizes the special Lagrangian structure of such systems
to help focus the control analysis [5, 6, 8, 12, 20, 21]. This perspective, in which the
dynamics of simple mechanical systems is interpreted using an affine connection, has
led to new insights into both control and motion planning for a number of under-
actuated mechanical systems. In this paper, we study the effect of symmetries and
constraints on the tools that are used in studying affine connection control systems,
namely, the affine connection and the symmetric product.

In studying the controllability of a mechanical system, classical tools from
nonlinear control theory [27] suggest that one compute the closure by the Lie bracket
of all the control inputs and the drift vector field. When the control inputs enter in as
forcing terms for second-order ODEs, such as is the case with forces or torques, this
procedure requires the system to be transformed into a first-order form. The draw-
back of this, however, is that the conversion requires that one treat the velocities as a
part of the state and, more importantly, that the intrinsic structure of the mechanical
system as a second-order Lagrangian system is covered up. However, work by Lewis
and Murray [21] has shown that a proper geometric interpretation of simple mechan-
ical systems can be achieved through the use of the affine connection formalism and
the symmetric product that derives from it.
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Bullo, Leonard, and Lewis later applied these results to underactuated Lagrangian
systems evolving on a Lie group [6, 7]. They took advantage of the special Lie group
structure to derive algorithms for generating the control inputs that lead to motion
along the directions generated through the operation of the symmetric product. This
work serves as a starting point for this paper, in which we explore a generalization
of these ideas to systems that evolve on principal fiber bundles, which are locally the
product of a Lie group and a general smooth manifold.

We also note that there has been extensive work in the area of understanding
the role of symmetries in mechanical systems (see, e.g., [2, 4, 9, 10, 16, 23, 24, 25]
and references therein). We focus on one aspect of such systems, where internal
shape variables play an important role in determining the motion of a system along
a Lie group. Lagrangian reduction provides powerful tools for analyzing mechanical
systems on fiber bundles. Generally (as is the case for our examples), the Lie group
describes the position and orientation of the system, while the remaining variables
constitute an internal shape space. Some examples of the shape variables that result
are the thruster angle of a blimp [35, 36], the leg angle of a robot leg [21], and the
wheel direction angles of a snakeboard [30, 31]. Through a local trivialization, we
can use the internal symmetries of the system to decouple the dynamics into two
parts, vertical and horizontal, and connect them with a mechanical connection (or
constraints) [4, 31]. Likewise, we can apply the same technique to the computation of
covariant derivatives by finding the vertical and horizontal parts and then use the Lie
bracket and symmetric product to take advantage of the geometric structure of the
system, leading to simplified tests of configuration accessibility and controllability.
When nonholonomic constraints are present, the situation is further complicated,
though it was shown by Lewis [20] that one can use a nonholonomic affine connection
that directly extends the controllability results.

Our motivation for studying this class of systems comes from robotics, where it
has been noted that robotic locomotion systems possess this structure—the dynamics
evolve on a product bundle between a Lie group and a general “shape” manifold [15,
28, 31]. This leads us to consider mechanical systems on principal fiber bundles,
in which the motion of the system is generated through a complex interaction of
thrusts/forces and internal changes in the shape or configuration of the robot. There
is an extensive literature studying such systems, including kinematic versions [15],
dynamic systems that evolve purely on Lie groups [6], and dynamic systems with
nonholonomic constraints [28, 30]. An important quantity for such robotic systems
that is highlighted here is the notion of fiber controllability, introduced by Kelly and
Murray [15] for driftless, kinematic systems. The notion of fiber controllability stems
from the fact that, for many robotic systems of this form, one cares only that the robot
be able to control its position and orientation, without regard to the configuration
of its internal shape. Thus the emphasis is on understanding whether a system is
controllable only along the fiber (position and orientation). We extend this notion to
dynamic systems with symmetries living on trivial principal fiber bundles.

The paper is organized as follows. In section 2, we give some background on
simple mechanical control systems and the role of symmetries. In section 3, we study
the reduced version of the Levi–Civita affine connection and hence the symmetric
product for principal fiber bundles. We present the computations in terms of local
forms of the quantities that arise, including the mechanical connection and the locked
inertia tensor, since these allow for a reduced and compact representation. We follow
up this derivation in section 4 with a parallel formulation of the nonholonomic affine
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connection that arises when constraints are present. In section 5, we describe how
these results extend previous notions of configuration controllability to fiber bundles
and introduce a new concept of fiber controllability. In section 6, we demonstrate
the use of these tools in two motivating examples: the underactuated rigid body (or
planar blimp) and the snakeboard. Finally, section 7 is devoted to some concluding
remarks.

2. Background on simple mechanical control systems. In this section, we
describe the geometric framework utilized in the study of mechanical control systems.
We follow [20, 21] in the exposition of affine connection control systems. The reader
is referred to [1, 17] for more details on notions such as principal bundles or affine
connections.

2.1. Affine connection control systems. Let Q be an n-dimensional mani-
fold. We denote by TQ the tangent bundle of Q, by X(Q) the set of vector fields on
Q, and by C∞(Q) the set of smooth functions on Q. A simple mechanical control
system is defined by a tuple (Q,G, V,F), where Q is the manifold of configurations of
the system, G is a Riemannian metric on Q (the kinetic energy metric of the system),
V ∈ C∞(Q) is the potential function, and F = {F 1, . . . , Fm} is a set of m linearly
independent 1-forms on Q, which physically correspond to forces or torques.

The dynamics of simple mechanical control systems is classically described by the
forced Euler–Lagrange equations

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
=

m∑
i=1

ui(t)F
i,(2.1)

where L(q, q̇) = 1
2G(q̇, q̇)− V (q) is the Lagrangian of the system.

Alternatively, one can express the control equations (2.1) using the natural affine
connection associated to the metric G, the Levi–Civita connection. An affine connec-
tion [17] is defined as an assignment

∇ : X(Q)× X(Q) −→ X(Q)
(X,Y ) 
−→ ∇XY,

which is R-bilinear and satisfies ∇fXY = f∇XY and ∇X(fY ) = f∇XY +X(f)Y for
any X, Y ∈ X(Q), f ∈ C∞(Q). In local coordinates,

∇XY =

(
∂Y a

∂qb
Xb + Γa

bcX
bY c

)
∂

∂qa
,

where Γa
bc(q) are the Christoffel symbols of the affine connection defined by

∇ ∂

∂qb

∂

∂qc
= Γa

bc

∂

∂qa
.(2.2)

For simple mechanical control systems, the Levi–Civita connection ∇G associated to
the metric G is determined by the formula

2G(Z,∇XY ) = X(G(Z, Y )) + Y (G(Z,X))− Z(G(Y,X)) + G(X, [Z, Y ])(2.3)

+ G(Y, [Z,X])− G(Z, [Y,X]), X, Y, Z ∈ X(Q).

One can compute the Christoffel symbols of ∇G to be

Γa
bc =

1

2
Gad

(
∂Gdb

∂qc
+

∂Gdc

∂qb
− ∂Gbc

∂qd

)
,
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where (Gad) denotes the inverse matrix of (Gda = G( ∂
∂qd ,

∂
∂qa )). Instead of the input

forces F 1, . . . , Fm, we shall make use of the vector fields Y1, . . . , Ym, defined as Yi =
�G(F i), where �G = �−1

G and �G : TQ −→ T ∗Q is the musical isomorphism given

by �G(X)(Y ) = G(X,Y ). In local coordinates, we have that Y a
i = GabF i

b for each
1 ≤ i ≤ m. Roughly speaking, this corresponds to considering the effect of the
controls on “accelerations” rather than on forces. The control equations (2.1) for the
mechanical system may then be recast as

∇G
ċ(t)ċ(t) = −gradV +

m∑
i=1

ui(t)Yi(c(t)),(2.4)

where gradV = �G(dV ). Observe that we can use a general affine connection in (2.4)
instead of the Levi–Civita connection without changing the structure of the equation.
This is particularly interesting, since nonholonomic mechanical control systems also
give rise to equations of the form of (2.4), as we review in the following [20]. This
observation is actually very powerful, since controllability analyses based on a general
affine connection (cf. section 5) are valid for both unconstrained and constrained
control systems.

A constrained mechanical control system (Q,G, V,F ,D) is a simple mechanical
control system (Q,G, V,F) subject to the constraints given by the (n− l)-dimensional
(nonholonomic) distribution D on Q. In a local description, D can be defined by the
vanishing of l independent constraint functions ωj(q)q̇, 1 ≤ j ≤ l. The application of
Lagrange–d’Alembert’s principle leads to the constrained equations of motion

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
=

m∑
i=1

ui(t)F
i +

l∑
j=1

λjωj ,(2.5)

which, together with the constraint equations ωj(q)q̇ = 0, describe the dynamics
of the nonholonomic system. Here, the λj are the Lagrange multipliers. The term∑l

j=1 λjωj represents the “reaction force” due to the constraints.
The second-order equation (2.5) can alternatively be written as

{ ∇G
ċ(t)ċ(t) = λ(t)− gradV +

∑m
i=1 ui(t)Yi(c(t)),

ċ(t) ∈ Dc(t),
(2.6)

where now λ is seen as a section of D⊥, the G-orthogonal complement to D, along
the curve c. Letting P : TQ −→ D, Q : TQ −→ D⊥ denote the complementary
G-orthogonal projectors, we can define an affine connection

∇XY = ∇G
XY + (∇G

XQ)(Y ) = P(∇G
XY ) +∇G

X(Q(Y )),

such that the nonholonomic control equations (2.6) can be rewritten as

∇ċ(t)ċ(t) = −P(gradV ) +

m∑
i=1

ui(t)P(Yi(c(t))),(2.7)

and where we select the initial velocity in D (cf. [20] for details). Observe that the
inputs Yi act on the system only through their D-component. Indeed, the Lagrange
multiplier λ ∈ D⊥ absorbs their D⊥-components. The connection ∇ is called the
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nonholonomic affine connection [3, 19, 20, 33]. Note that (2.4) and (2.7) have the
same structure.

It can be easily deduced from its definition that ∇ restricts to D; that is,

∇XY = P(∇G
XY ) ∈ D for all Y ∈ D, X ∈ X(Q).

This kind of affine connection, which restricts to a given distribution, has been studied
in [19]. In particular, such a behavior implies that the distribution D is geodesically
invariant; that is, for every geodesic c(t) of ∇ starting from a point in D, ċ(0) ∈ Dc(0),
we have that ċ(t) ∈ Dc(t).

As we shall see later, a key tool in the controllability analysis and description
of mechanical control systems is the symmetric product 〈· : ·〉 associated to an affine
connection ∇ (see [13, 21, 34]). Given X, Y ∈ X(Q), define

〈X : Y 〉 = ∇XY +∇Y X.

The symmetric product characterizes geodesically invariant distributions. Indeed, one
can prove that D is geodesically invariant for the nonholonomic connection if and only
if 〈X : Y 〉 ∈ D for all X, Y ∈ D (see [19]). Recently, Bullo [5] has shown that the
evolution of mechanical control systems when starting from rest can be described by
a series involving repeated symmetric products of the input vector fields, extending
the possibilities of use of the symmetric product to the design of motion control
algorithms.

2.2. Principal fiber bundles. The notion of principal fiber bundles is present
in many locomotion and robotic systems, since they commonly exhibit translational
and rotational symmetries. Examining the configuration space Q, one can observe
that there exists a splitting Q = G×M between variables describing the position and
orientation of the robot, i.e., the pose coordinates g ∈ G, and variables describing the
internal shape of the system, the shape coordinates r ∈ M . This exactly corresponds
to the case of a trivial principal fiber bundle, decomposed into fiber space, G, and
base space, M , respectively.

Geometrically, this situation is described as follows. Assume there is a Lie group
G acting on Q

Φ : G×Q −→ Q
(g, q) 
−→ Φ(g, q) = Φg(q) = gq.

The orbit through a point q is OrbG(q) = {gq | g ∈ G}. We denote by g the Lie
algebra of G. For any element ξ ∈ g, let ξQ denote the corresponding infinitesimal
generator of the group action on Q. Then

Tq(OrbG(q)) = {ξQ(q) | ξ ∈ g}.
If the action Φ is free and proper, we can endow the quotient space Q/G ∼= M with
a manifold structure such that the canonical projection π : Q −→ M is a surjective
submersion. Then we have that Q(M,G, π) is a principal bundle with bundle space Q,
base space M , structure group G, and projection π. Note that the kernel of π∗(= Tπ)
consists of the vertical tangent vectors, i.e., the vectors tangent to the orbits of G in
Q. We denote the bundle of vertical vectors by V, with Vq = Tq(OrbG(q)), q ∈ Q.

Throughout the paper, we will usually deal with general principal fiber bundles,
unless otherwise stated. Locally, one can always trivialize Q and work with Q ⊃
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π−1(U) ≡ G × U , where U ⊂ M is an open subset of M . In the bundle coordinates
(g, r), the projection reads π(g, r) = r, and the Lagrangian L can be written as

L(q, q̇) =
1

2
(ġT ṙT )G

(
ġ
ṙ

)
− V (g, r),

where we note the abuse of notation resulting from changing between ġ as an argument
in TG and as a vector (the same stands for G seen as a bilinear form or as a matrix). In
the remainder of the paper, we will often make use of the same notation for coordinate-
free and matrix formulas. The precise meaning should be clear from the context.

A principal connection on Q(M,G, π) can be defined as a G-invariant distribution
H on Q satisfying TqQ = Hq ⊕ Vq for all q ∈ Q. The subspace Hq of TqQ is called
the horizontal subspace at q determined by the connection.

Alternatively, a principal connection can be characterized by a g-valued 1-form
A on Q satisfying the following conditions:

(i) A(ξQ(q)) = ξ for all ξ ∈ g,
(ii) A((Φg)∗X) = Adg(A(X)) for all X ∈ TQ.

The horizontal subspace at q is then given by Hq = {vq ∈ TqQ | A(vq) = 0}. In
coordinates, using (i) and (ii), we can write

A(g, r, ġ, ṙ) = A(g(e, r, ξ, ṙ)) = AdgA(e, r, ξ, ṙ)

= Adg(A(e, r, ξ, 0) +A(e, r, 0, ṙ)) = Adg(ξ +A(r)ṙ).

Note that A depends only on the shape variables. It is called the local form of the
connection A.

Given a principal connection, we have that every vector v ∈ TqQ can be uniquely
written as v = vhor + vver, with vhor ∈ Hq and vver = A(v)Q(q) ∈ Vq. The curvature
B of the principal connection A is a g-valued 2-form on Q defined as follows: for each
q ∈ Q and u, v ∈ TqQ,

B(u, v) = dA(uhor, vhor) = −A([uhor, vhor]).

The curvature measures the lack of integrability of the horizontal distribution and
plays a fundamental role in the theory of geometric phases (see [17] for a comprehen-
sive treatment). In a local representation, the curvature can be written as

B((gξ, v), (gη, w)) = (B(r)(v, w)) = Ba
αβv

αwβAdgea,

where {ea}k
a=1 is a basis of the Lie algebra g and

Ba
αβ =

∂Aa
α

∂rβ
− ∂Aa

β

∂rα
+ ca

bcA
b
αA

c
β .

The ca
bc are the structure constants of the Lie algebra defined by [eb, ec] = ca

bcea.

An additional derivative operator related to a principal connection will appear
in the derivations below. Let κ be a

⊗
ν g∗-valued function on Q, κ : Q −→⊗

ν g∗.
Define then the derivative of κ along A, Dκ : TQ −→⊗ν g∗, by

Dκ(q̇)(ξ1, . . . , ξν) = dκ(q̇)(ξ1, . . . , ξν) +

ν∑
k=1

κ(q)(ξ1, . . . , adAq̇ξk, . . . , ξν).
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If the mapping κ is G-equivariant, κ(g, r) = Ad∗g−1κloc(r), where κloc(r) = κ(e, r),
meaning

κ(g, r)(ξ1, . . . , ξν) = κloc(r)(Adg−1ξ1, . . . , Adg−1ξν),

then one can see that

Dκ(ġ, ṙ) = Ad∗g−1Dκloc(ṙ).

In bundle coordinates, Dκloc(ṙ)(ξ1, . . . , ξν) = (Dκloc)αa1...aν
ṙαξa1

1 . . . ξaν
ν , where

(Dκloc)αa1...aν =
∂(κloc)a1...aν

∂rα
+

ν∑
k=1

(κloc)a1...dk...aν
Ae

αc
dk
eak

.

2.3. Systems with symmetry. In the reduction of unconstrained mechanical
systems with symmetry, there naturally arises a principal connection called the me-
chanical connection Amech. Assume that the control system (Q,G, V,F) is invariant
under the action of a Lie group G, that is, Φ∗

gG = G, Φ∗
gV = V , and Φ∗

gF
i = F i for

1 ≤ i ≤ m and all g ∈ G. (Note that it may happen that a particular element of
the control system is invariant under the action of a larger Lie group H, G ⊆ H, but
we are considering only Lie groups which leave invariant all the components of the
problem.) The horizontal subspace of the mechanical connection is then given by the
orthogonal complement of the vertical bundle V with respect to the kinetic energy
metric G, H = V⊥. An explicit formula for its associated 1-form is the following.
Define the locked inertia tensor at configuration q ∈ Q, I(q) : g −→ g∗ by

〈I(q)ξ, η〉 = G(ξQ(q), ηQ(q)).

In local coordinates, this can be expressed as I(r, g) = Ad∗g−1I(r)Adg−1 . I(r), the local
form of I, has the interpretation of the inertia of the system when frozen at shape r.
If we further defined the momentum map J : TQ −→ g∗ by 〈J(q̇), ξ〉 = 〈∂L

∂q̇ (q̇), ξQ(q)〉,
then the mechanical connection is just Amech(q̇) = I(q)−1J(q̇).

The invariance of the metric and the potential function implies also that L(g, r, ġ, ṙ)
= L(e, r, g−1ġ, ṙ) = 0(r, ṙ, ξ), where ξ = g−1ġ. The function 0 : TQ/G −→ R is given
by

0(r, ṙ, ξ) =
1

2
(ξT ṙT ) Ĝ

(
ξ
ṙ

)
− V (r),

where Ĝ stands for the reduced metric [28]

Ĝ =

(
I(r) I(r)A(r)

A(r)T I(r) m(r)

)
.(2.8)

Here A denotes the local form of the mechanical connection. This reduced metric is
block diagonalized if we write it in terms of the shape variables (r, ṙ) and the locked
body angular velocity, Ω = ξ +A(r)ṙ. Indeed, one can see that Ĝ takes the form

G̃ =

(
I(r) 0
0 m(r)−AT (r)I(r)A(r)

)
=

(
I(r) 0
0 ∆(r)

)
.

We will see below that the terms I and ∆ play a central role in deriving a local
expression for the Levi–Civita affine connection.
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The study of nonholonomic systems with symmetry has by now many contribu-
tions, starting from the work by Koiller on the kinematic case [16] and going through
the use of the Hamiltonian formalism [2], Lagrangian reduction [4], the geometry
of the tangent bundle [9, 10], and Poisson methods [23], among others. We review
here some of the results found in [4, 28] for such systems which will be relevant for
establishing later the decomposition for the nonholonomic affine connection.

Assume that the constrained mechanical control system is invariant under the ac-
tion of a Lie group G, meaning that both (Q,G, V,F) and the constraint distribution
D are invariant. Assume further that D + V = TQ (the so-called dimension assump-
tion [4]). We are interested in knowing which symmetry directions (i.e., tangent to
the action of the Lie group) are compatible with the constraints. Consequently, we
consider the intersection Sq = Vq ∩ Dq at each q ∈ Q. Since S ⊂ V, we can con-
sider a bundle gD −→ Q whose fiber is given by gq = {ξ ∈ g : ξQ(q) ∈ Sq}. The
nonholonomic momentum map is then defined as

Jnh : TQ −→ gD∗
,

(q, q̇) 
−→ Jnh(q, q̇) : gq → R,
ξq 
−→ 〈∂L

∂q̇ (q̇), ξ
q
Q(q)〉.

This momentum map can be used to “augment” the constraints and provide a prin-
cipal connection on Q −→ Q/G, the so-called nonholonomic principal connection [4].
The horizontal subspace at q ∈ Q of this connection is given by the orthogonal com-
plement of S in the constraint distribution, Hq = S⊥

q ∩ Dq.

Alternatively, let {e1(r), . . . , es(r), es+1(r), . . . , ek(r)} ∈ g be a basis of g such
that the first s elements span g(r,e) and both sets of generators are orthogonal in the
kinetic energy metric restricted to V. Denote by ∂ei

∂rα =
∑k

a=1 γa
iαea a notation which

will be useful later. Define the momentum

pi =

〈
∂0

∂ξ
, ei(r)

〉
, 1 ≤ i ≤ s.

Now consider the map

Asym : TqQ −→ Sq

(q, q̇) 
−→ (Ĩ−1(q)Jnh(q, q̇))Q,

where Ĩ(q) : gD −→ gD∗
is the locked inertia tensor relative to gD. Notice that Asym

maps S onto itself. Additionally, let Akin : TqQ −→ S⊥
q be the orthogonal projection

relative to the kinetic energy metric. The constraints plus the momentum can be
written as

Akin(q)q̇ = 0, Asym(q)q̇ = (Ĩ−1(q)p)Q.

The nonholonomic connection 1-form is then given by

Anh = Akin +Asym.

It is an instructive exercise to verify that Anh indeed satisfies conditions (i) and (ii)
defining a principal connection (cf. section 2.2). This principal connection plays a
fundamental role in the reduction of nonholonomic systems with symmetry [4].
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3. Decomposition of the Levi–Civita connection under symmetry. Given
a mechanical control system with symmetry, it seems reasonable that the controlla-
bility tests can be simplified by taking into account the symmetry properties of the
problem. In order to do that, we will obtain decompositions of the Levi–Civita con-
nection and the nonholonomic affine connection according to the principal fiber bundle
structure of the configuration space Q. This will be the subject of the following two
sections.

Let (Q,G, V,F) be a simple mechanical control system invariant under the action
of a Lie group G. The following simple lemma [14] will be helpful.

Lemma 3.1. The Levi–Civita connection associated to a left-invariant metric H
on the Lie group G is given by

∇H
gξgη =

1

2
g
(
[ξ, η]− �H

(
ad∗ξ�Hη + ad∗η�Hξ

))
,

where gξ stands for (Lg)∗ξ and so on. Consequently, the symmetric product associated
to ∇H takes the form

〈gξ : gη〉H = −g �H
(
ad∗ξ�Hη + ad∗η�Hξ

)
.

Now we come to the main result of this section, where we derive the properties
of the “connection within a connection.” Emphasis is placed on the role of I, A, and
∆ in determining ∇G .

Proposition 3.2. Given G-invariant vector fields on Q, X = (gξ, v) and Y =
(gη, w), with ξ(r), η(r) ∈ g and v, w ∈ TM , the covariant derivative of Y along X
can be expressed as

∇G
XY = g

{( ∇I
ΩΨ

∇∆
v w

)
− 1

2

(
I−1

L

∆−1
S

)}
,(3.1)

where

L = −D(IΩ)(·, w)−D(IΨ)(·, v) + I([Ω,Ψ]− [ξ, η] + ξrw − ηrv −A[v, w])

+ 2 I(A(∇G
XY )M ) ∈ g∗,

S = I(Ω, B(w, ·)) + I(Ψ, B(v, ·)) +DI(·)(Ω,Ψ) ∈ T ∗M,

and Ω = ξ +Av, Ψ = η +Aw, ξr ≡ ∂ξ
∂r , ηr ≡ ∂η

∂r .
Proof. As we have recalled above, the Levi–Civita connection can be characterized

as the unique affine connection verifying (2.3). Let Z be a G-invariant vector field,
Z = (gµ, u). The invariance of the metric implies

G(Z, Y ) = Ĝ ((µ, u) , (η, w)) = G̃ ((Θ, u) , (Ψ, w)) ,

where Θ = µ+Aw. The first three terms in (2.3) can be expanded in a similar way:

X(G(Z, Y )) = X(ΘT IΨ+ uT∆w) = v(ΘT IΨ) + v(uT∆w).

For the remaining ones, we have that

G(X, [Z, Y ]) = G̃ ((Ω, v) , ([µ, η] + ηru− wµr +A[u,w], [u,w]))

= ΩT I[µ, η] + ΩT I(ηru− wµr +A[u,w]) + vT∆[u,w].
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As a result, (2.3) can be written as 2G(Z,∇G
XY ) = 〈(δ, γ), (µ, u)〉, where δ = δ1 + δ2,

γ = γ1 + γ2, and

δ1 = ξT I[·, η] + ηT I[·, ξ]− ·T I[η, ξ],

δ2 = ·T v(IΨ) + ·Tw(IΩ) + (Av)T I[·, η] + (Aw)T I[·, ξ]− ·T I(ξrw − ηrv +A[w, v]),

γ1 = v(·T∆w) + w(·T∆v)− ·(wT∆v) + vT∆[·, w] + wT∆[·, v]− ·T∆[w, v],

γ2 = v((A·)T IΨ) + w((A·)T IΩ)− ·(ΨT IΩ) + ΩT I(ηr ·+A[·, w])

+ ΨT I(ξr ·+A[·, v])− (A·)T I([η, ξ] + ξrw − ηrv +A[w, v]).

On the other hand, we have that

2G(Z,∇G
XY ) = 2 (µT , uT )

(
I IA

AT I m

)(
(∇G

XY )g
(∇G

XY )M

)
.

As both expansions for G(Z,∇G
XY ) are valid for any Z, we can conclude that

2

(
(∇G

XY )g
(∇G

XY )M

)
=

(
I IA

AT I m

)−1(
δ
γ

)
(3.2)

=

(
I−1 +A∆−1AT −A∆−1

−∆−1AT ∆−1

)(
δ
γ

)
.

Noting that δ1 = 2I∇I
ξη (see Lemma 3.1) and γ1 = 2∆∇∆

v w, we can further develop
the right-hand side of (3.2) as

(
I−1 0
0 ∆−1

)(
δ
γ

)
+

(
A∆−1AT −A∆−1

−∆−1AT 0

)(
δ
γ

)

= 2

( ∇I
ξη

∇∆
v w

)
+

(
I−1 0
0 ∆−1

){(
δ2
γ2

)
+

(
IA∆−1AT −IA∆−1

−AT 0

)(
δ
γ

)}
.

In this way, we get(
(∇G

XY )g
(∇G

XY )M

)
=

( ∇I
ξη

∇∆
v w

)
− 1

2

(
I−1 0
0 ∆−1

)(
L
′

S

)
,

where L
′ = −δ2− IA∆−1

S+ IA∆−1γ1 and S = AT δ− γ2. To complete the proof, we
have only to identify these terms in a more geometrical manner, which we do in the
following.

We begin with S. Noting that

Ab
β

∂vβ

∂rα
+

∂ξb

∂rα
− ∂Ωb

∂rα
= −∂Ab

β

∂rα
vβ ,

we can rewrite γ2 as

γ2 = vβAb
α

∂(IΨ)b
∂rβ

+ wβAb
α

∂(IΩ)b
∂rβ

−Ψb ∂Iba

∂rα
Ωa

+(IΨ)b

{
∂Ab

α

∂rβ
− ∂Ab

β

∂rα

}
vβ + (IΩ)b

{
∂Ab

α

∂rβ
− ∂Ab

β

∂rα

}
wβ

−Ab
αIbac

a
deη

dξe −Ab
αIba

{
∂ξa

∂rβ
wβ − ∂ηa

∂rβ
vβ +Aa

β [w, v]β
}

.
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Substituting the latter into the expression for S, one obtains after some computations

−S = (IΨ)b

{
∂Ab

α

∂rβ
− ∂Ab

β

∂rα
+Ac

βE
b
αc

}
vβ + (IΩ)b

{
∂Ab

α

∂rβ
− ∂Ab

β

∂rα
+Ac

βE
b
αc

}
wβ

−Ψb ∂Iba

∂rα
Ωa − ΩdIdbE

b
αeΨ

e −ΨdIdbE
b
αeΩ

e

= −I(Ψ, B(v, ·))− I(Ω, B(w, ·))−DI(·)(Ω,Ψ),

where Eb
αc = cb

dcA
d
α. Now we turn our attention to L

′. Note that

L
′ = IA∆−1(γ1 − S)− δ2

= 2IA

(
∇∆

v w − 1

2
∆−1

S

)
− δ2 = 2IA(∇G

XY )M − δ2.

Moreover, we have

δ2 = vα ∂(IΨ)a
∂rα

+ wα ∂(IΩ)a
∂rα

+Ad
αv

αIdbc
b
aeη

e +Ad
αw

αIdbc
b
aeξ

e

−Iba

{
∂ξb

∂rβ
wβ − ∂ηb

∂rβ
vβ +Ab

β [w, v]β
}

.

Adding and subtracting (IΨ)bE
b
αav

α and (IΩ)bE
b
αaw

α and regrouping, we obtain

δ2 = D(IΨ)(·, v) +D(IΩ)(·, w) + 2I∇I
ΩΨ− 2I∇I

ξη

−I(·, [Ω,Ψ]) + I(·, [ξ, η])− I(·, ξrw − ηrv +A[w, v]).

Finally, we can write

(∇G
XY )g = ∇I

ξη −
1

2
I−1

L
′ = ∇I

ΩΨ− 1

2
I−1

L,

where L is as above.

As a consequence of this proposition, we have the following interesting result.

Corollary 3.3. The symmetric product associated to the Levi–Civita connection
∇G of two G-invariant vector fields, X = (gξ, v) and Y = (gη, w), is given by

〈X : Y 〉G = g

{( 〈Ω : Ψ〉I
〈v : w〉∆

)
−
(

I−1
L

s

∆−1
S

)}
,(3.3)

where

L
s = −D(IΩ)(·, w)−D(IΨ)(·, v) + IA

(〈v : w〉∆ −∆−1
S
) ∈ g∗,

S = I(Ω, B(w, ·)) + I(Ψ, B(v, ·)) +DI(·)(Ω,Ψ) ∈ T ∗M,

and 〈· : ·〉I , 〈· : ·〉∆ denote the symmetric products defined by the Levi–Civita connec-
tions ∇I and ∇∆, respectively.

We shall return to these results in section 6 in computing the symmetric product
in specific examples.
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4. Decomposition of the nonholonomic affine connection under symme-
try. Let (Q,G, V,F ,D) be a constrained mechanical control system invariant under
the action of a Lie group G. As expected, the invariance of the Levi–Civita connection
and the nonholonomic distribution D can be combined to find a decomposition of the
nonholonomic affine connection similar to that of Proposition 3.2.

First, notice that if D is generated by a basis of G-invariant vector fields Xi, 1 ≤
i ≤ n− l, the projector P : TQ −→ D with respect to the orthogonal decomposition
TQ = D ⊕D⊥ is given by

P(Z) =
∑
i,j

CijG(Xi, Z)Xj , Z ∈ X(Q),

where (Cij) is the inverse matrix of (Cij = G(Xi, Xj)). A geometrically revealing
choice of generators of D making use of the exposition in section 2.3 is the following.
Recall that the nonholonomic principal connection Anh induces a decomposition of
the tangent bundle, TQ = H⊕ V. This, in particular, implies that

D = H⊕ S.

On the one hand, we know that S(r,e) = span{e1(r)Q, . . . , es(r)Q}. Furthermore, the

generators of H(r,e) are of the form (−Aṙ, ṙ), where A denotes the local form of Anh.
Hence we have that

D(r,g) = gD(r,e) = g span {(−Aṙ, ṙ) , (ei, 0)} .
For these vector fields, we compute

G (g (ei, 0) , g (ej , 0)) = eT
i Iej = eT

i Ĩej ,

G (g (−A(ṙ), ṙ) , g (ej , 0)) = −(Aṙ)T Iej + (Aṙ)T Iej = (Ãṙ)T Iej = 0,

G (g (−A(ṙ), ṙ) , g (−A(ṙ), ṙ)) = (Aṙ)T IAṙ − (Aṙ)T IAṙ − (Aṙ)T IAṙ + ṙTmṙ

= ṙT (m+ A
T IA− A

T IA−AT IA)ṙ = ṙT ∆̃ṙ,

where Ã = A−A, ∆̃ = m−AT IA+ ÃT IÃ, and we have used the fact that Ãṙ ∈ S⊥.
Hence we can write the matrix C as

C =

(
Ĩ 0

0 ∆̃

)
.

Now we are in a position to prove the following result.
Proposition 4.1. Given G-invariant vector fields, X = (gξ, v) ∈ TQ, Y =

(gη, w) ∈ D on Q, with ξ(r), η(r) ∈ g and v, w ∈ TM , the nonholonomic affine
connection ∇ can be expressed as

∇XY = g

{(
Asym(∇I

Ω̄
Ψ̄)

∇∆̃
v w

)
− 1

2

(
Ĩ−1

L̃ + 2A(∇XY )M
∆̃−1

S̃

)}
,(4.1)

where

L̃ = −D(IΩ̄)(·, w)− D(IΨ̄)(·, v) + I(Ãv, γ·w − [·, η]) + I(Ãw, γ·v − [·, ξ])
+I([Ω̄, Ψ̄]− [ξ, η] + ξrw − ηrv − A[v, w]) ∈ gD

∗
,

S̃ = I(Ψ̄, B(v, ·)) + I(Ω̄, B(w, ·)) + I(Ãw,B(v, ·)) + I(Ãv,B(w, ·))
−D(IΨ̄)(Ã·, v)−D(IΩ̄)(Ã·, w) + DI(·)(Ω̄ + Ãv, Ψ̄ + Ãw)− DI(·)(Ãv, Ãw)

−I([ξ, η], Ã·)− I(ηrv − ξrv, Ã·)− I(A[v, w], Ã·) ∈ T ∗M,
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and D, B denote, respectively, the local forms of the derivative along and the curvature
of the nonholonomic connection Anh and Ω̄ = ξ + Av, Ψ̄ = η + Aw.

Proof. Since Y ∈ D, ∇XY = P(∇G
XY ) =

∑
CijG(Xi,∇G

XY )Xj . We first com-
pute

G (g (ei, 0) ,∇G
XY
)
= eT

i I
{
(∇G

XY )g +A(∇G
XY )M

}
,(4.2)

G (g (−Aṙ, ṙ) ,∇G
XY
)
= (Ãṙ)T I(∇G

XY )g + ṙT (m−AT IA)(∇G
XY )M(4.3)

= (Ãṙ)T I
{
(∇G

XY )g +A(∇G
XY )M

}
+ ṙT∆(∇G

XY )M .

Let us denote (∇G
XY )g +A(∇G

XY )M = ˜∇G
XY for brevity. In terms of Ω̄, Ψ̄ and using

Proposition 3.2, it can be expanded as

˜∇G
XY = ∇I

Ω̄Ψ̄− 1

2
I−1
{
− D(IΩ̄)(·, w)− D(IÃv)(·, w)− D(IΨ̄)(·, v)

− D(IÃw)(·, v)− I(Ãw, [·, Ω̄])− I(Ãv, [·, Ψ̄])

+I([Ω̄, Ψ̄]− [ξ, η] + ξrw − ηrv −A[v, w], ·)
}
.

Before plugging this expression into (4.2), notice that

−D(IÃv)(ei, w)− I(Ãv, [ei, Ψ̄]) = I(Ãv, γiw − [ei, η]),

where we have used the facts that ei ∈ S and Ãv ∈ S⊥. After substituting, we find
that (4.2) can be expressed as G (g (ei, 0) ,∇G

XY
)
= 〈I(∇I

Ω̄
Ψ̄, ·)− 1

2 L̃, ei〉, where
L̃ = −D(IΩ̄)(·, w)− D(IΨ̄)(·, v) + I(Ãv, γ·w − [·, η]) + I(Ãw, γ·v − [·, ξ])

+I([Ω̄, Ψ̄]− [ξ, η], ·)− I(ηrv − ξrw + A[v, w], ·).
On the other hand, it is easy to see that

∆(∇G
XY )M = ∆∇∆

v w − 1

2
S

= ∆̃∇∆̃
v w −D∇D

v w − 1

2
S = ∆̃∇∆̃

v w −
(
D∇D

v w +
1

2
S

)
,

where D = ÃT IÃ and D∇D
v w is a shorthand notation to denote the expression (2.3)

for the symmetric tensor D. Then we can rewrite (4.3) as

ṙT

(
∆̃∇∆̃

v w −
(
D∇D

v w +
1

2
S− ÃT I˜∇G

XY

))
.

Therefore, ∇XY becomes

∇XY = P(∇G
XY ) =

(
g(∇XY )g
(∇XY )M

)
,

with

(∇XY )g = Ĩ−1

{
I(∇I

Ω̄Ψ̄, ·)− 1

2
L̃

}
− A(∇XY )M

= Asym(∇I
Ω̄Ψ̄)− 1

2
Ĩ−1

L̃− A(∇XY )M ,

(∇XY )M = ∇∆̃
v w − ∆̃−1

(
D∇D

v w +
1

2
S− ÃT I˜∇G

XY

)
,
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where we have used the fact that Asym(ζ) ≡ Asym(ζQ(e, r)) = Ĩ−1I(ζ) for ζ ∈ g. To
end the proof, let us write explicitly the terms in (∇XY )M . Adding and subtracting
terms in the expression for 2D∇D

v w, we can find that

2D∇D
v w = vβ ∂Ãa

α

∂rβ
IabÃ

b
γw

γ +D(IÃw)(Ã·, v)− I(Ãv, [Aw, Ã·])

+ wβ ∂Ãa
α

∂rβ
IabÃ

b
γv

γ +D(IÃv)(Ã·, w)− I(Ãw, [Av, Ã·])

− wβvγ
∂Ãa

βIabÃ
b
γ

∂rα
+ ÃT IÃ[v, w]

= D(IÃw)(Ã·, v) +D(IÃv)(Ã·, w) + I(Ãw)B(·, v) + I(Ãw)B(v, ·)
+ I(Ãv)B(·, w) + I(Ãv)B(w, ·)− DI(Ãv, Ãw) + ÃT IÃ[v, w].

On the other hand,

S = I(Ω, B(w, ·)) + I(Ψ, B(v, ·)) +DI(·)(Ω,Ψ)

= I(Ω, B(w, ·)) + I(Ψ, B(v, ·)) + DI(·)(Ω,Ψ) + I(Ω, [Ã·,Ψ]) + I(Ψ, [Ã·,Ω]),

and the term ÃT I˜∇G
XY can be written as

−ÃT I˜∇G
XY = − ÃT I∇I

ΩΨ+
1

2
(−D(IΨ)(Ã·, v)−D(IΩ)(Ã·, w)

+ I([Ω,Ψ]− [ξ, η], Ã·)− I(ηrv − ξrv, Ã·)− ÃT IA[v, w]).

Summing up these terms, we get the expression for S̃ stated in the proposition.
Corollary 4.2. The symmetric product associated to ∇ of two G-invariant

vector fields, X = (gξ, v) ∈ D and Y = (gη, w) ∈ D, is given by

〈X : Y 〉 = g

{(
Asym(〈Ω̄ : Ψ̄〉I)

〈v : w〉∆̃

)
−
(

Ĩ−1
L̃

s
+ A

(
〈v : w〉∆̃ − ∆̃−1

S̃
s
)

∆̃−1
S̃

s

)}
,

(4.4)

where

L̃
s
= −D(IΩ̄)(·, w)− D(IΨ̄)(·, v) + I(Ãv, γ·w − [·, η]) + I(Ãw, γ·v − [·, ξ]) ∈ gD

∗
,

S̃
s
= I(Ψ̄, B(v, ·)) + I(Ω̄, B(w, ·)) + I(Ãw,B(v, ·)) + I(Ãv,B(w, ·))−D(IΨ̄)(Ã·, v)
−D(IΩ̄)(Ã·, w) + DI(·)(Ω̄ + Ãv, Ψ̄ + Ãw)− DI(·)(Ãv, Ãw) ∈ T ∗M,

and 〈· : ·〉∆̃ denotes the symmetric product defined by the Levi–Civita connection ∇∆̃.

5. Controllability analysis. The point in the approach of Lewis and Murray
to simple mechanical control systems is precisely to know what is happening to con-
figurations, rather than to states, since, in many of these systems, configurations may
be controlled but not configurations and velocities at the same time. The basic ques-
tion they pose is “what is the set of configurations that are attainable from a given
configuration starting from rest?”

Consider the control equation

∇ċ(t)ċ(t) =

m∑
i=1

ui(t)Yi(c(t)),(5.1)
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where the affine connection ∇ can be either the Levi–Civita affine connection associ-
ated to a kinetic energy metric or the nonholonomic affine connection for a constrained
system. (Recall that, in the latter case, we select ċ(0) ∈ D and Yi denotes the pro-
jection by P to D of the ith input vector field.) Notice that we are considering now
that V ≡ 0. The absence of the potential makes the picture considerably more clear
while capturing the essential aspects of the analysis. On the other hand, a potential
function could be incorporated to the controllability tests along the lines of [21].

Take q0 ∈ Q, and let U ⊂ Q be a neighborhood of q0. Define

RU
Q(q0, T ) = {q ∈ Q | there exists a solution (c, u) of (5.1) such that

ċ(0) = 0q0
, c(t) ∈ U for t ∈ [0, T ], and ċ(T ) ∈ TqQ} ,

and denote RU
Q(q0,≤ T ) = ∪0≤t≤TRU

Q(q0, t).

We shall focus our attention on the following notions of accessibility and control-
lability [21].

Definition 5.1. The system (5.1) is locally configuration accessible (LCA) at
q0 ∈ Q if there exists T > 0 such that RU

Q(q0,≤ t) contains a nonempty open set of
Q for all neighborhoods U of q0 and all 0 ≤ t ≤ T . If this holds for any q0 ∈ Q, then
the system is called LCA.

Definition 5.2. The system (5.1) is small-time locally configuration controllable
(STLCC) at q0 ∈ Q if there exists T > 0 such that RU

Q(q0,≤ t) contains a nonempty
open set of Q to which q0 belongs for all neighborhoods U of q0 and all 0 ≤ t ≤ T . If
this holds for any q0 ∈ Q, then the system is called STLCC.

Given the input vector fields Y = {Y1, . . . , Ym}, let us denote by Sym(Y) the
distribution obtained by closing the set Y under the symmetric product and by Lie(Y)
the involutive closure of Y. With these ingredients, one can prove the following
theorem.

Theorem 5.3 (see [21]). The control system (5.1) is LCA at q if Lie(Sym(Y))q =
TqQ.

If P is a symmetric product of vector fields in Y, we let γi(P ) denote the number
of occurrences of Yi in P . The degree of P will be γ1(P ) + · · ·+ γm(P ). We say that
P is bad if γi(P ) is even for each 1 ≤ i ≤ m. Otherwise, we say that P is good. The
following theorem gives sufficient conditions for STLCC.

Theorem 5.4. Suppose that the system (5.1) is LCA at q and that every bad sym-
metric product P at q in Y can be written as a linear combination of good symmetric
products at q of lower degree than P . Then it is STLCC at q.

Remark 5.1. This theorem was proved in [21] as an application to mechanical
systems of previous work by Sussmann [32] on general control systems with drift.
There has been some effort in trying to obtain sufficient and necessary conditions
for configuration controllability. A conjecture that remains open is that the system
(5.1) is STLCC at q if and only if there exists a basis of vector fields generating the
input distribution which satisfies the sufficient conditions of the theorem. Lewis [18]
proved the validity of the conjecture for the one-input case. Recently, Cortés and
Mart́ınez [11] have proved that it is also valid for underactuated systems by one
control.

The exposed controllability analysis can be further refined for mechanical con-
trol systems with symmetry, taking into account the results of the previous sections.
Assume that the control system (5.1) is invariant under the action of a Lie group
G. Let us denote by B = {B1, . . . , Bm} the representatives of the input vector fields
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Y = {Y1, . . . , Ym} at g× TM , that is,

Yi(r, g) = gBi(r, e) = g

(
ξi(r)
vi

)
, 1 ≤ i ≤ m.

Due to the invariance of the system, we have that 〈Yi : Yj〉 = 〈gBi : gBj〉 ≡ g〈Bi : Bj〉
for all 1 ≤ i, j ≤ m. The explicit expression in bundle coordinates for this symmetric
product is given by Corollaries 3.3 and 4.2. Note also that the Lie brackets [Yi, Yj ]
can be written as

[Yi, Yj ] ≡ g[Bi, Bj ] = g

(
[ξi, ξj ]g +

∂ξj
∂r vi − ∂ξi

∂r vj

[vi, vj ]M

)
.

As a result, we have the following version of the former results.
Theorem 5.5. Let the control system (5.1) be invariant under the action of a

Lie group G.
(i) The system is LCA at q = (r, g) ∈ OrbG(r, e) if Lie(Sym(B))(r,e) = g×TrM .
(ii) Suppose that the system is LCA at (r, e) and that every bad symmetric prod-

uct P at (r, e) in B can be written as a linear combination of good sym-
metric products at (r, e) of lower degree than P . Then (5.1) is STLCC at
q ∈ OrbG(r, e).

These simplified tests of the accessibility and controllability properties of mechan-
ical control systems under symmetry are indeed quite useful in practical examples,
since they remove completely the dependence on the Lie group elements g ∈ G from
the computations. In examples such as the blimp, the underwater vehicle, the snake-
board, and the roller racer, where symmetry plays an important role, this property
may be a definitive advantage.

An additional important simplification from the computational point of view
stems from the fact that, for many dynamic robotic locomotion systems, the set
of inputs consists of the full tangent bundle of the shape space M . This essentially
corresponds to the observation that the system can adjust its shape as desired. For
such problems, we can state the following result.

Theorem 5.6. Let the control system (5.1) be invariant under the action of
a Lie group G. Additionally assume that the system is fully actuated in the shape
space; i.e., the set of input forces consists of F 1 = dr1, . . . , Fm = drm, where m
now also denotes the dimension of M . Then the locked body angular velocities of
the input vector fields all vanish: Ωi = 0, 1 ≤ i ≤ m. Moreover, in the presence
of nonholonomic constraints, the projections of the input vector fields to D also have
Ω̄i = 0, 1 ≤ i ≤ m.

Proof. It is not difficult to verify that the input vector fields are of the form(−gA∆−1ṙ,∆−1ṙ
)
. Then Ωi = 0 follows. On the other hand, their projections to

the constraint distribution D can be written as (−gA∆̃−1ṙ, ∆̃−1ṙ), which implies that
Ω̄i = 0.

As a consequence of Theorem 5.6, the necessary calculations in the controllability
analysis of the successive symmetric products involving the input vector fields (cf.
Corollary 3.3) or their projections to D (cf. Corollary 4.2) are further simplified. In
fact, for two vector fields X = (gξ, v) and Y = g(η, w) having vanishing associated
locked body angular velocities Ω = 0, Ψ = 0, we have by Corollary 3.3 that

〈X : Y 〉G = g

( −A 〈v : w〉∆
〈v : w〉∆

)
,
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which also has vanishing locked body angular velocity. On the other hand, for two
vector fields X = (gξ, v) ∈ D and Y = g(η, w) ∈ D having Ω̄ = 0, Ψ̄ = 0, respectively,
we have by Corollary 4.2 that

〈X : Y 〉 = g

(
−Ĩ−1

L̃
s − A

(
〈v : w〉∆̃ − ∆̃−1

S̃
s
)

〈v : w〉∆̃ − ∆̃−1
S̃

s

)
,

with L̃
s
= I(Ãv, γ·w−[·, η])+I(Ãw, γ·v−[·, ξ]) and S̃

s
= I(Ãw,B(v, ·))+I(Ãv,B(w, ·)).

Notice also that the tests we have obtained here for principal fiber bundles are
the natural extension of the results developed in [7] for mechanical control systems
on Lie groups. The major difference is that, on Lie groups, G-invariance implies that
the tests are expressed in g in a purely algebraic way, whereas, on principal fiber
bundles, we have to take into account the role of the shape space M , and, therefore,
differentiation is still required.

Another interesting aspect of this kind of mechanical control system is the adap-
tation of the concept of weak controllability for kinematic systems defined in [15]. This
notion essentially means controllability in the fiber, without regard to the intermedi-
ate or final positions of the shape variables. This type of controllability is meaningful
for locomotion systems, where the group elements correspond to positions and ori-
entation (and therefore are the most interesting variables to control), and one really
does not care about the shapes the system is describing. In the following, we discuss
it for the second-order dynamical problems we are considering.

Assume then that we are dealing with a trivial principal fiber bundle; that is,
the decomposition Q = G ×M holds globally. Let V τ denote any subset of Q such
that τ(V τ ) is an open subset of G, where τ : Q ≡ G×M −→ G denotes the natural
projection. Let q0 = (r0, g0) and U ⊂ Q as before. Then we have the following
definitions.

Definition 5.7. The system (5.1) is locally fiber configuration accessible (LFCA)
at q0 ∈ Q if there exists T > 0 such that RU

Q(q0,≤ t) contains a nonempty subset V τ

of Q for all neighborhoods U of q0 and all 0 ≤ t ≤ T . If this holds for any q0 ∈ Q,
then the system is called LFCA.

Definition 5.8. The system (5.1) is small-time locally fiber configuration con-
trollable (STLFCC) at q0 ∈ Q if there exists T > 0 such that RU

Q(q0,≤ t) contains a
nonempty subset V τ of Q such that g0 ∈ τ(V τ ) for all neighborhoods U of q0 and all
0 ≤ t ≤ T . If this holds for any q0 ∈ Q, then the system is called STLFCC.

From the discussion above, one can prove the following theorem.
Theorem 5.9. Let the mechanical control system (5.1) be invariant under G.
(i) The system is LFCA at q = (r, g) if τ∗Lie(Sym(B))(r,e) = g.
(ii) Suppose that the system is LFCA at q and that the projection through τ of

every bad symmetric product P at q in B, τ∗P , can be written as a linear
combination of projections through τ of good symmetric products at q of lower
degree than P . Then (5.1) is STLFCC at q.

Proof. Along the zero section of TQ, q 
−→ 0q, we have that the decomposition
T0q

TQ ≡ TqQ⊕TqQ holds, where the first factor corresponds to configurations and the
second one to velocities. Then, from [21], we know that the accessibility distribution
C corresponding to the full control system (that is, considering as states both the
configurations and the velocities) can be decomposed as C0q = Chor(q)⊕Cver(q), with

Chor(q) = Lie(Sym(Y))q and Cver(q) = Sym(Y)q. If τ∗Lie(Sym(B))(r,e) = g, we can
conclude that TgG ⊂ Chor(q), and hence the system (5.1) is LFCA at q. The other
claim follows from the invariance of the system and Sussmann’s result in [32].
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Fig. 6.1. A planar blimp with rotating thruster.

6. Examples.

6.1. The blimp. Consider a rigid body moving in SE(2) with a thruster to
adjust its pose (see Figure 6.1). The original motivation for this problem is the blimp
system developed by Zhang and Ostrowski [35] restricted to the vertical plane. The
control inputs are the thruster force F 1 and a torque F 2 that actuates its orientation
with respect to the body axis {Xb, Y b}. The acting point of the thruster is assumed
to be located along the body’s long axis, at a distance h from the center of mass.

The configuration of the blimp is determined by a tuple (x, y, θ, γ), where (x, y)
is the position of the center of mass, θ is the orientation of the blimp with respect to
the fixed basis {Xf , Y f}, and γ denotes the orientation of the thrust with respect to
the body basis {Xb, Y b}. The configuration manifold is then Q = SE(2)× S

1.
For simplicity, we assume the thruster is massless. Then the Riemannian metric

of the system is

G = m(dx⊗ dx+ dy ⊗ dy) + (J1 + J2)dθ ⊗ dθ + J2dγ ⊗ dγ + J2(dθ ⊗ dγ + dγ ⊗ dθ),

where m denotes the mass of the blimp, J1 is its moment of inertia, and J2 is the
inertia of the thruster. The Lagrangian of the system is the kinetic energy associated
to this metric; that is,

L =
1

2
m(ẋ2 + ẏ2) +

1

2
J1θ̇

2 +
1

2
J2(γ̇ + θ̇)2.

Finally, the input forces are given by

F 1 = cos(θ + γ)dx+ sin(θ + γ)dy − h sin γdθ, F 2 = dγ.

The corresponding input vector fields can be computed to be

Y1 =
1

m
cos(θ + γ)

∂

∂x
+

1

m
sin(θ + γ)

∂

∂y
− h

J1
sin γ

∂

∂θ
+

h

J1
sin γ

∂

∂γ
,

Y2 = − 1

J1

∂

∂θ
+

J1 + J2

J1J2

∂

∂γ
.

This simple mechanical control system is invariant under the left multiplication of the
Lie group G = SE(2),

Φ : G×Q −→ Q
((a, b, α), (x, y, θ, γ)) 
−→ (x cosα− y sinα+ a, x sinα+ y cosα+ b, θ + α, γ) .
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The reduced representation of the input vector fields at g× TM is given by

B1 =
1

m
cos γ

∂

∂x
+

1

m
sin γ

∂

∂y
− h

J1
sin γ

∂

∂θ
+

h

J1
sin γ

∂

∂γ
,

B2 = − 1

J1

∂

∂θ
+

J1 + J2

J1J2

∂

∂γ
.

Let {ex, ey, eθ} be the canonical basis of the Lie algebra se(2). Given the metric
G, we can readily identify from its reduced form (2.8) the local form of the mechanical
connection and the inertia tensor

I =


 m 0 0

0 m 0
0 0 J1 + J2


 , A =


 0

0
J2

J1+J2


 .

As the shape space is one-dimensional and Bmech is skew-symmetric, we deduce that
Bmech = 0. Some computations yields that DI also vanishes. Consequently, S = 0.
In addition,

D(Iη)(ξ, v) =






m∂η1

∂γ

m∂η2

∂γ

(J1 + J2)
∂η3

∂γ




T

+
mJ2

J1 + J2


 η2

−η1

0




T



 ξ1

ξ2

ξ3


 v.

Note that ∆ = ( J1J2

J1+J2
). Therefore, the Christoffel symbols of ∇∆ vanish and

〈v : w〉∆ =
∂w

∂γ
v +

∂v

∂γ
w.

Summing up, we conclude that L
s in 3.3 for X = (gξ, v), Y = (gη, w) is given by

L
s = −




m
(

∂ξ1

∂γ w + ∂η1

∂γ v
)

m
(

∂ξ2

∂γ w + ∂η2

∂γ v
)

(J1 + J2)
(

∂ξ3

∂γ w + ∂η3

∂γ v
)

− mJ2

J1 + J2


 Ω2w +Ψ2v

−Ω1w −Ψ1v
0


 .

Following Lemma 3.1, we can compute the symmetric product defined by ∇I :

〈Ω : Ψ〉I =


 −Ω2Ψ3 − Ω3Ψ2

Ω1Ψ3 +Ω3Ψ1

0


 .

With these ingredients, we are now ready to perform the controllability analysis along
the lines of section 5. Consider the following symmetric brackets:

〈B1 : B1〉G = h2

J2
1
sin(2γ)




0
0
−1
1


 , 〈B1 : B2〉G =




− 1
mJ2

sin γ
1

mJ2
cos γ

−h(J1+J2)
J2
1J2

cos γ
h(J1+J2)

J2
1J2

cos γ


 ,

〈B2 : B2〉G = 0, 〈B2 : 〈B1 : B1〉G〉G = 2h2

J2
1

J1+J2

J1J2
cos(2γ)




0
0
−1
1


 .
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(x,y)
front wheels

l

ψ

φ
θ

back wheels
−φ

Fig. 6.2. The snakeboard model.

Note that {B1, B2, 〈B1 : B2〉G , 〈B1 : B1〉G , 〈B2 : 〈B1 : B1〉G〉G} span g× TM at every
point (e, r), and hence the system is LCA. However, the bad bracket 〈B1 : B1〉G
is not in general a linear combination of the lower-order good brackets B1 and B2.
Therefore, we can not conclude that the system is STLCC. In any case, at γ = 0,
we have that 〈B1 : B1〉G(e, 0) = 0, and we can assure that the system is STLCC
at (g, 0) for all g ∈ G. However, if we restrict our attention to fiber configuration
controllability, we can see that τ∗〈B1 : B1〉G ∈ span{τ∗B2}, and, therefore, the blimp
is STLFCC. Physically, fiber controllability corresponds to the fact that we can use
the shape torque to control the orientation angle θ to a desired value, but not θ and
γ simultaneously.

6.2. The snakeboard. The snakeboard [22, 28] is a variant of the skateboard in
which the passive wheel assemblies can pivot freely about a vertical axis. By coupling
the twisting of the human torso with the appropriate turning of the wheels (where the
turning is controlled by the rider’s foot movement), the rider can generate a snake-like
locomotion pattern without having to kick off the ground.

A simplified model is shown in Figure 6.2. We assume that the front and rear
wheel axles move through equal and opposite rotations. This is based on the obser-
vations of human snakeboard riders who use roughly the same phase relationship. A
momentum wheel rotates about a vertical axis through the center of mass, simulating
the motion of a human torso.

The position and orientation of the snakeboard is determined by the coordinates
of the center of mass (x, y) and its orientation θ. The shape variables are (ψ, φ),
and so the configuration space is Q = SE(2)× S

1 × S
1. The physical parameters for

the system are the mass of the board, m; the inertia of the rotor, Jr; the inertia of
the wheels about the vertical axes, Jw; and the half-length of the board, l. A key
component of the snakeboard is the use of the rotor inertia to drive the body. To
keep the rotor and body inertias on similar scales, we make the additional simplifying
assumption [4, 30] that the inertias of the system satisfy J + Jr + 2Jw = ml2.

The Riemannian metric of this system is

G = m(dx⊗ dx+ dy ⊗ dy) + (J + Jr + 2Jw)dθ ⊗ dθ

+ Jr(dθ ⊗ dψ + dψ ⊗ dθ) + Jrdψ ⊗ dψ + 2Jwdφ⊗ dφ.

The control torques are assumed to be applied to the rotation of the wheels and the
rotor. Hence we consider

F 1 = dψ, F 2 = dφ.
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Observe that the snakeboard is an example of the type of dynamic locomotion systems
we mentioned earlier, since the set of control inputs fully actuate the shape variables,
span{F 1, F 2} = T ∗M . The corresponding input vector fields via the diffeomorphism
�G are

Y1 = − 1

J + 2Jw

∂

∂θ
+

ml2

Jr(J + 2Jw)

∂

∂ψ
, Y2 =

1

2Jw

∂

∂φ
.

The assumption that the wheels do not slip in the direction of the wheels axles
yields the following two nonholonomic constraints:

− sin(θ + φ)ẋ+ cos(θ + φ)ẏ − l cosφ θ̇ = 0,

− sin(θ − φ)ẋ+ cos(θ − φ)ẏ + l cosφ θ̇ = 0.

A quick set of calculations shows that this constrained mechanical system is invari-
ant under the left multiplication in the Lie group SE(2). The intersection S = V ∩D
can be seen to be one-dimensional. Moreover, we have that S(e,r) = e1Q, where
e1 = l cosφex − sinφeθ. We complete the basis by adding two elements generating
S⊥

(e,r):

e2 = ey, e3 =
1

l
tanφex + eθ.

Taking into account the discussion of the preceding sections, we can identify the
following elements:

I =


 m 0 0

0 m 0
0 0 ml2


 , A =


 0 0

0 0
Jr

ml2 0


 , A =


 − Jr

2ml sin(2φ) 0
0 0

Jr

ml2 sin
2 φ 0


 .

Our choice of generators of D(e,r), following section 2.3, is then

D(r,e) = span

{
∂

∂ψ
+

Jr

ml2
sinφe1,

∂

∂φ
, e1

}
.

The projections to D of the input vector fields under the orthogonal decomposition
TQ = D ⊕D⊥ are

B1 = P(B1) =
ml2

Jr(ml2 − Jr sin
2 φ)

(
∂

∂ψ
+

Jr

ml2
sinφe1

)
,

B2 = P(B2) =
1

2Jw

∂

∂φ
.

For the sake of completeness, we have computed the terms L̃
s ∈ gD and S̃

s
in 4.4

for any G-invariant vector fields X = (gξ, v) and Y = (gη, w), although we already
pointed out in section 5 (cf. Theorem 5.6) that the amount of calculations for the
controllability tests can be made quite lighter, taking into account the fact that Ω̄i = 0
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for Bi, i = 1, 2.

L̃
s
= −

{
ml cosφ

2∑
α=1

(
∂Ψ̄1

∂rα
vα +

∂Ω̄1

∂rα
wα

)
−ml2 sinφ

2∑
α=1

(
∂Ψ̄3

∂rα
vα +

∂Ω̄3

∂rα
wα

)

+ Jr cosφ(v
2w1 + w2v1) +

Jr

2l
sin(2φ) sinφ(w1ξ2 + v1η2)

}
e∗1,

S̃
s
= − J2

r

2ml2
sin(2φ)

(
w1v2 + w2v1

−2v1w1

)
.

The controllability analysis yields the following results at the point 0 = (0, 0, 0, 0, 0):

〈B1 : B1〉(0) = 0, 〈B1 : B2〉(0) = 1
2Jwmlex,

〈B2 : B2〉(0) = 0, [B1,B2](0) =
1

2Jwmlex,

[B2, [B1,B2]](0) = − 1
2J2

wml2 eθ, [B2, [B1, [B2, [B1,B2]]]](0) = − 1
4J3

wm2l3 ey − 1
2J3

wm2l4 eθ.

Note that {B1,B2, 〈B1 : B2〉, [B2, [B1,B2]], [B2, [B1, [B2, [B1,B2]]]]} span g × T(0,0)M ,
and so the system is LCA at (g, 0, 0) for all g ∈ G. Moreover, the bad symmetric
products 〈B1 : B1〉 and 〈B2 : B2〉 vanish at 0, and the remaining ones are either 0 or
in span{B2(0), 〈B1 : B2〉(0)}, and so we can conclude that the snakeboard is STLCC
at (g, 0, 0) for all g ∈ G.

7. Conclusions. We have developed a new set of tools that can be used in the
study of simple mechanical systems evolving on principal fiber bundles. These tools
have direct application to a large class of problems in robotic locomotion. Using the
Lie group symmetries that are associated with an invariant mechanical system on
a principal fiber bundle, we have given an explicit formulation of the affine connec-
tion in terms of the mechanical and nonholonomic connections for unconstrained and
constrained systems, respectively. This formulation can greatly reduce the amount
of computation necessary to derive controllability tests, as was observed during the
analysis of the snakeboard system.

We have defined a new notion of fiber configuration controllability, which can
be used to focus the analysis on the important components of a locomotion system,
namely, the fiber variables of position and orientation. The tools developed in this
paper were applied to two systems—the planar rigid body and the snakeboard robot.

We are currently working on applying these tools to motion planning for such
systems (see [26]). Recent work by Bullo, Leonard, and Lewis [6] suggests an excellent
avenue for applying the affine connection in a motion planning framework. We will
also explore connections of these tools to steering for dynamic systems as, for example,
was done by Ostrowski [29] using the reduced equations for the snakeboard [31].
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[2] L. Bates and J. Śniatycki, Nonholonomic reduction, Rep. Math. Phys., 32 (1992), pp. 99–115.
[3] A. M. Bloch and P. E. Crouch, Newton’s law and integrability of nonholonomic systems,

SIAM J. Control Optim., 36 (1998), pp. 2020–2039.
[4] A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden, and R. M. Murray, Nonholonomic

mechanical systems with symmetry, Arch. Ration. Mech. Anal., 136 (1996), pp. 21–99.
[5] F. Bullo, Series expansions for the evolution of mechanical control systems, SIAM J. Control

Optim., 40 (2001), pp. 166–190.
[6] F. Bullo, N. E. Leonard, and A. D. Lewis, Controllability and motion algorithms for un-

deractuated Lagrangian systems on Lie groups, IEEE Trans. Automat. Control, 45 (2000),
pp. 1437–1454.

[7] F. Bullo and A. D. Lewis, Configuration controllability of mechanical systems on Lie groups,
in Proceedings of the International Symposium on the Mathematical Theory of Networks
and Systems, St. Louis, MO, 1996.

[8] F. Bullo and K. M. Lynch, Kinematic controllability for decoupled trajectory planning in
underactuated mechanical systems, IEEE Trans. Robot. Automat., 17 (2001), pp. 402–412.

[9] F. Cantrijn, M. de León, J. C. Marrero, and D. Mart́ın de Diego, Reduction of nonholo-
nomic mechanical systems with symmetries, Rep. Math. Phys., 42 (1998), pp. 25–45.

[10] J. Cortés and M. de León, Reduction and reconstruction of the dynamics of nonholonomic
systems, J. Phys. A, 32 (1999), pp. 8615–8645.

[11] J. Cortés and S. Mart́ınez, Configuration controllability of mechanical systems underactuated
by one control, SIAM J. Control Optim., submitted.

[12] J. Cortés, S. Mart́ınez, and F. Bullo, On nonlinear controllability and series expansions
for Lagrangian systems with damping, IEEE Trans. Automat. Control, to appear; also
available online from http://motion.csl. uiuc.edu/˜bullo/papers.

[13] P. E. Crouch, Geometric structures in systems theory, Proc. IEE-D, 128 (1981), pp. 242–252.
[14] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New

York, 1978.
[15] S. D. Kelly and R. M. Murray Geometric phases and robotic locomotion, J. Robotic Systems,

12 (1995), pp. 417–431.
[16] J. Koiller, Reduction of some classical non-holonomic systems with symmetry, Arch. Ration.

Mech. Anal., 118 (1992), pp. 113–148.
[17] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Volume I, Interscience

Publishers, Wiley, New York, 1963.
[18] A. D. Lewis, Local configuration controllability for a class of mechanical systems with a single

input, in Proceedings of the 1997 European Control Conference, Brussels, Belgium, 1997.
[19] A. D. Lewis, Affine connections and distributions with applications to nonholonomic mechan-

ics, Rep. Math. Phys., 42 (1998), pp. 135–164.
[20] A. D. Lewis, Simple mechanical control systems with constraints, IEEE Trans. Automat. Con-

trol, 45 (2000), pp. 1420–1436.
[21] A. D. Lewis and R. M. Murray, Configuration controllability of simple mechanical control

systems, SIAM J. Control Optim., 35 (1997), pp. 766–790.
[22] A. D. Lewis, J. P. Ostrowski, R. M. Murray, and J. W. Burdick, Nonholonomic mechan-

ics and locomotion: The snakeboard example, in Proceedings of the IEEE International
Conference on Robotics and Automation, San Diego, CA, 1994, pp. 2391–2397.

[23] C.-M. Marle, Reduction of constrained mechanical systems and stability of relative equilibria,
Comm. Math. Phys., 174 (1995), pp. 295–318.

[24] J. E. Marsden, R. Montgomery, and T. S. Ratiu, Reduction, symmetry and phases in
mechanics, Mem. Amer. Math. Soc., 88 (1990).

[25] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag,
New York, 1994.

[26] S. Mart́ınez and J. Cortés, Motion control algorithms for mechanical systems with symme-
tries, Acta Appl. Math., submitted.

[27] H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control Systems, Springer-
Verlag, New York, 1990.

[28] J. P. Ostrowski, Geometric Perspectives on the Mechanics and Control of Undulatory Loco-
motion, Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 1995.

[29] J. P. Ostrowski, Steering for a class of dynamic nonholonomic systems, IEEE Trans. Au-
tomat. Control, 45 (2000), pp. 1492–1498.

[30] J. P. Ostrowski and J. W. Burdick, Controllability for mechanical systems with symmetries
and constraints, Appl. Math. Comput. Sci., 7 (1997), pp. 305–331.

[31] J. P. Ostrowski and J. W. Burdick, The geometric mechanics of undulatory robotic loco-
motion, Int. J. Robotic Research, 17 (1998), pp. 683–702.
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Abstract. An affine invariant convergence analysis for inexact augmented Lagrangian-SQP
methods is presented. The theory is used for the construction of an accuracy matching between
iteration errors and truncation errors, which arise from the inexact linear system solvers. The
theoretical investigations are illustrated numerically by an optimal control problem for the Burgers
equation.
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1. Introduction. This paper is concerned with an optimization problem of the
following type:

minimize J(x) subject to e(x) = 0,(P)

where J : X → R and e : X → Y are sufficiently smooth functions and X, Y are real
Hilbert spaces. These types of problems occur, for example, in the optimal control of
systems described by partial differential equations. To solve (P) we use the augmented
Lagrangian-SQP (sequential quadratic programming) technique as developed in [11].
In this method the differential equation is treated as an equality constraint, which
is enforced by a Lagrangian term together with a penalty functional. We present an
algorithm which has second-order convergence rate and depends upon a second-order
sufficient optimality condition. In comparison with SQP methods the augmented
Lagrangian-SQP method has the advantage of a more global behavior. For certain
examples we found it to be less sensitive with respect to the starting values, and the
region for second-order convergence rate was reached earlier; see, e.g., [11, 15, 17]. We
shall point out that the penalty term of the augmented Lagrangian functional need
not to be implemented but rather that it can be realized by a first-order Lagrangian
update.

Augmented Lagrangian-SQP methods applied to problem (P) are essentially
Newton-type methods applied to the Kuhn–Tucker equations for an augmented opti-
mization problem. Newton methods and their behavior under different linear trans-
formations were studied by several authors; see [5, 6, 7, 8, 10], for instance. In this
paper, we combine both lines of work and present an affine invariant setting for analy-
sis and implementation of augmented Lagrangian-SQP methods in Hilbert spaces. An
affine invariant convergence theory for inexact augmented Lagrangian-SQP methods
is presented. Then the theoretical results are used for the construction of an accuracy
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matching between iteration errors and truncation errors, which arise from the inexact
linear system solvers.

The paper is organized as follows. In section 2 the augmented Lagrangian-SQP
method is introduced and necessary prerequisites are given. The affine invariance is
introduced in section 3. In section 4 an affine invariant convergence result for the
augmented Lagrangian-SQP method is presented. Two invariant norms for optimal
control problems are analyzed in section 5, and the inexact Lagrangian-SQP method is
studied in section 6. In the last section we report on some numerical experiments done
for an optimal control problem for the Burgers equation, which is a one-dimensional
model for nonlinear convection-diffusion phenomena.

2. The augmented Lagrangian-SQP method. Let us consider the constrained
optimal control problem

minimize J(x) subject to e(x) = 0,(P)

where J : X → R, e : X → Y , and X, Y are real Hilbert spaces. Throughout we do
not distinguish between a functional in the dual space and its Riesz representation
in the Hilbert space. The Hilbert space X × Y is endowed with the Hilbert space
product topology and, for brevity, we set Z = X × Y .

Let us present an example for (P) that illustrates our theoretical investigations
and that is used for the numerical experiments carried out in section 7. For more
details we refer the reader to [18].

Example 2.1. Let Ω denote the interval (0, 1) and set Q = (0, T ) × Ω for given
T > 0. We define the space W (0, T ) by

W (0, T ) =
{
ϕ ∈ L2(0, T ;H1(Ω)) : ϕt ∈ L2(0, T ;H1(Ω)′)

}
,

which is a Hilbert space endowed with the common inner product. For controls
u, v ∈ L2(0, T ) the state y ∈ W (0, T ) is given by the weak solution of the unsteady
Burgers equation with Robin-type boundary conditions, i.e., y satisfies

y(0, ·) = y0 in L2(Ω)(2.1a)

and

〈yt(t, ·), ϕ〉(H1)′,H1 + σ1(t)y(t, 1)ϕ(1)− σ0(t)y(t, 0)ϕ(0)

+

∫
Ω

νyx(t, ·)ϕ′ +
(
y(t, ·)yx(t, ·)− f(t, ·))ϕdx = v(t)ϕ(1)− u(t)ϕ(0)

(2.1b)

for all ϕ ∈ H1(Ω) and t ∈ (0, T ) a.e., where 〈· , ·〉(H1)′,H1 denotes the duality pairing
between H1(Ω) and its dual. We suppose that f ∈ L2(Ω), y0 ∈ L∞(Ω), σ0, σ1 ∈
L∞(0, T ), and ν > 0. Recall that W (0, T ) is continuously embedded into the space of
all continuous functions from [0, T ] into L2(Ω), denoted by C([0, T ];L2(Ω)); see, e.g.,
[3, p. 473]. Therefore, (2.1a) makes sense. With controls u, v we associate the cost of
tracking type

J(y, u, v) =
1

2

∫
Q

|y − z|2 dxdt +
1

2

∫ T

0

α |u|2 + β |v|2 dt,

where z ∈ L2(Q) and α, β > 0 are fixed. Let X = W (0, T ) × L2(0, T ) × L2(0, T ),
Y = L2(0, T ;H1(Ω))× L2(Ω), and x = (y, u, v). We introduce the bounded operator

ẽ : X → L2(0, T ;H1(Ω)′),



AFFINE INVARIANT AUGMENTED LAGRANGIAN-SQP METHODS 877

whose action is defined by

〈ẽ(y, u, v), λ〉L2(0,T ;H1(Ω)′),L2(0,T ;H1(Ω))

=

∫ T

0

〈yt(t, ·), λ(t, ·)〉(H1)′,H1 dt +

∫
Q

(νyxλx + yyxλ− fλ) dxdt

+

∫ T

0

(
(σ1y(·, 1)− v)λ(·, 1)− (σ0y(·, 0)− u)λ(·, 0)

)
dt

for λ ∈ L2(0, T ;H1(Ω)). Define e : X → Y by

e(y, u, v) =
(
(−∆ + I)−1ẽ(y, u, v), y(0, ·)− y0

)
,

where for given g ∈ H1(Ω)′ the mapping (−∆ + I)−1 : H1(Ω)′ → H1(Ω) is the
Neumann solution operator associated with∫

Ω

v′ϕ′ + vϕ dx = 〈g, ϕ〉(H1)′,H1 for all ϕ ∈ H1(Ω).

Now the optimal control problem can be written in the form (P).
For c ≥ 0 the augmented Lagrange functional Lc : Z → R associated with (P) is

defined by

Lc(x, λ) = J(x) + 〈e(x), λ〉Y +
c

2
‖e(x)‖2Y .

The following assumption is rather standard for SQP methods in Hilbert spaces and
is supposed to hold throughout the paper.

Assumption 1. Let x∗ ∈ X be a reference point such that
(a) J and e are twice continuously Fréchet-differentiable, and the mappings J ′′

and e′′ are Lipschitz-continuous in a neighborhood of x∗;
(b) the linearization e′(x∗) of the operator e at x∗ is surjective;
(c) there exists a Lagrange multiplier λ∗ ∈ Y satisfying the first-order necessary

optimality conditions

L′
c(x

∗, λ∗) = 0, e(x∗) = 0 for all c ≥ 0,(2.2)

where the Fréchet-derivative with respect to the variable x is denoted by a
prime; and

(d) there exists a constant κ > 0 such that

〈L′′
0(x∗, λ∗)χ, χ〉X ≥ κ ‖χ‖2X for all χ ∈ ker e′(x∗),

where ker e′(x∗) denotes the kernel or null space of e′(x∗).
Remark 2.2. In the context of Example 2.1 we write x∗ = (y∗, u∗, v∗). It was

proved in [18] that Assumption 1 holds, provided ‖y∗ − z‖L2(Q) is sufficiently small.
The next proposition follows directly from Assumption 1. For a proof we refer

to [12] and [13], for instance.
Proposition 2.3. With Assumption 1 holding, x∗ is a local solution to (P).

Furthermore, there exists a neighborhood of (x∗, λ∗) such that (x∗, λ∗) is the unique
solution of (2.2) in this neighborhood.

The mapping x �→ Lc(x, λ
∗) can be bounded from below by a quadratic func-

tion. This fact is referred to as augmentability of Lc and is formulated in the next
proposition. For a proof we refer the reader to [11].
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Proposition 2.4. There exist a neighborhood Û of x∗ and a constant c̄ ≥ 0 such
that the mapping x �→ L′′

c (x, λ∗) is coercive on the whole space X for all x ∈ Û and
c ≥ c̄.

Remark 2.5. Due to Assumption 1 and Proposition 2.4 there are convex neigh-
borhoods U(x∗) ⊂ X of x∗ and U(λ∗) ⊂ Y of λ∗ such that for all (x, λ) ∈ U =
U(x∗)× U(λ∗)

(a) J(x) and e(x) are twice Fréchet-differentiable, and their second Fréchet-deri-
vatives are Lipschitz-continuous in U(x∗);

(b) e′(x) is surjective;
(c) L′′

0(x, λ) is coercive on the kernel of e′(x);
(d) the point z∗ = (x∗, λ∗) is the unique solution to (2.2) in U ; and
(e) there exist κ̃ > 0 and c̄ ≥ 0 such that

〈L′′
c (x, λ)χ, χ〉X ≥ κ̃ ‖χ‖2X for all χ ∈ X and c ≥ c̄.(2.3)

To shorten notation let us introduce the operator

Fc(x, λ) =

(
L′
c(x, λ)
e(x)

)
for all (x, λ) ∈ U.

Then the first-order necessary optimality conditions (2.2) can be expressed as

Fc(x
∗, λ∗) = 0 for all c ≥ 0.(OS)

To find x∗ numerically we solve (OS) by the Newton method. The Fréchet-derivative
of the operator Fc in U is given by

∇Fc(x, λ) =

(
L′′
c (x, λ) e′(x)�

e′(x) 0

)
,(2.4)

where e′(x)� : Y → X denotes the adjoint of the operator e′(x).
Remark 2.6. With Assumption 1 holding, there exists a constant C > 0 satisfying

‖∇Fc(x, λ)−1‖B(Z) ≤ C for all (x, λ) ∈ U(2.5)

(see, e.g., in [9, p. 114]), where B(Z) denotes the Banach space of all bounded linear
operators on Z.

Now we formulate the augmented Lagrangian-SQP method.
Algorithm 1.
(a) Choose (x0, λ0) ∈ U , c ≥ 0, and put k = 0.
(b) Set λ̃k = λk + ce(xk).
(c) Solve for (∆x,∆λ) the linear system

∇F0(xk, λ̃k)

(
∆x
∆λ

)
= −F0(xk, λ̃k).(2.6)

(d) Set (xk+1, λk+1) = (xk + ∆x, λ̃k + ∆λ), k = k + 1, and go back to (b).
Remark 2.7. Since X and Y are Hilbert spaces, (xk+1, λk+1) can equivalently be

obtained by solving the linear system

∇Fc(xk, λk)

(
∆x
∆λ

)
= −Fc(xk, λk)(2.7)

and setting (xk+1, λk+1) = (xk + ∆x, λk + ∆λ). Equation (2.7) corresponds to a
Newton step applied to (OS). This form of the iteration requires the implementation
of e′(xk)�e′(xk), whereas steps (b) and (c) of Algorithm 1 do not—see [11]. In the
case of Example 2.1 this requires at least one additional solve of the Poisson equation.
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3. Affine invariance. Let B̃ : X → X be an arbitrary isomorphism. We
transform the x variable by x = B̃y. Thus, instead of (P) we study the whole class
of equivalent transformed minimization problems

minimize J(B̃y) subject to e(B̃y) = 0(3.1)

with the transformed solutions B̃y∗ = x∗. Setting

B =

(
B̃ 0
0 I

)
and Gc(y, ξ) = B�Fc(x, λ) with (x, λ) = (B̃y, ξ),

the first-order necessary optimality conditions have the form

Gc(y, ξ) = 0 for all c ≥ 0.(ÔS)

Applying Algorithm 1 to (ÔS) we get an equivalent sequence of transformed iterates.
Theorem 3.1. Suppose that Assumption 1 holds. Let (x0, λ0) ∈ U and (y0, ξ0) =

(B̃−1x0, λ0) be the starting iterates for Algorithm 1 applied to the optimality condi-

tions (OS) and (ÔS), respectively. Then both sequences of iterates are well-defined
and equivalent in the sense of

(B̃yk, ξk) = (xk, λk) for k = 0, 1, . . . .(3.2)

Proof. First note that the Fréchet-derivative of the operator Gc is given by

∇Gc(y, ξ) = B�∇Fc(x, λ)B with (x, λ) = (B̃y, ξ).(3.3)

To prove (3.2) we use an induction argument. By assumption the identity (3.2) holds
for k = 0. Now suppose that (3.2) is satisfied for k ≥ 0. This implies B̃yk = xk and
ξk = λk. Using step (b) of Algorithm 1, it follows that ξ̃k = ξk + ce(B̃yk) = λ̃k.
From (3.3),

∇F0(xk, λ̃k)

(
∆x
∆λ

)
= −F0(xk, λ̃k), and ∇G0(yk, ξ̃k)

(
∆y
∆ξ

)
= −G0(yk, ξ̃k),

we conclude that (∆y,∆ξ) = (B̃−1∆x,∆λ). Utilizing step (d) of Algorithm 1 we get
the desired result.

Due to the previous theorem the augmented Lagrangian-SQP method is invariant
under arbitrary transformations B̃ of the state space X. This nice property should, of
course, be inherited by any convergence theory and termination criteria. In section 4
we develop such an invariant theory.

Example 3.2. The usual local Newton–Mysovskii convergence theory (cf. [14,
p. 412]) is not affine invariant, which leads to an unsatisfactory description of the
domain of local convergence. Consider the optimization problem

min η2 + (ξ + η)3 − ξ − η subject to ξ + 2η = 0(3.4)

with unique solution x∗ = (ξ∗, η∗) = (2/3,−1/3) and associated Lagrange multiplier
λ∗ = −2/3. Note that the Jacobian ∇F0 does not depend on λ here but only on
x = (ξ, η). In the context of Remark 2.5 we choose the neighborhood

U = U(x∗)× U(λ∗) = {(ξ, η) ∈ R
2 : |ξ + η − 1/3| < 0.16

√
2} × R.
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Fig. 3.1. Illustration for Example 3.2. (a) Contour lines of the cost functional, the constraint,
and the areas occupied by the other subplots. (b) Neighborhood U(x∗) (gray) and Kantorovich ball
of theoretically assured convergence (white) for the original problem formulation. (c) U(x∗) and
Kantorovich ball for the “better” formulation. (d) U(x∗) and Kantorovich ball for the “better”
formulation plotted in coordinates of the original formulation.

Defining

α = sup
x∈U(x∗)

‖∇F0(x)−1‖ and β = sup
x,y∈U(x∗),x �=y

‖∇F0(x)−∇F0(y)‖
‖x− y‖2 ,

the Newton–Mysovskii theory essentially guarantees convergence for all starting points
in the Kantorovich region

K :=

{
z ∈ U : ‖∇F0(z)−1F0(z)‖2 ≤ 2

αβ

}
.

Here, ‖·‖ denotes the spectral norm for symmetric matrices and ‖·‖2 is the Euclidean
norm. For our choice of U , resulting in α ≈ 1.945 and β = 12

√
2, a section of

the Kantorovich region at λ = λ∗ is plotted in Figure 3.1(b). A different choice of
coordinates, however, yields a significantly different result. With the transformation

ξ = 2ϑ− φ, η = φ− ϑ,

problem (3.4) can be written as

min(φ− ϑ)2 + ϑ3 − ϑ subject to φ = 0.

For the same neighborhood U , the better constants α ≈ 1.859 and β = 6 result.
Again, a section of the Kantorovich region at λ = λ∗ is shown in Figure 3.1(c).
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Transformed back to (ξ, η) space, Figure 3.1(d) reveals a much larger domain of the-
oretically assured convergence. This “better” formulation of the problem is, however,
not at all evident. In contrast, a convergence theory that is invariant under linear
transformations automatically includes the “best” formulation.

Remark 3.3. The invariance of Newton’s method is not limited to transformations
of type (3.1). In fact, Newton’s method is invariant under arbitrary transformations
of domain and image space; i.e., it behaves exactly the same for AFc(Bz̃) = 0 as for
Fc(z) = 0—see [5]. Because Fc has a special gradient structure in the optimization
context, meaningful transformations are coupled due to the chain rule. Meaningful
transformations result from transformations of the underlying optimization problem,
i.e., transformations of the domain space and the image space of the constraints.
Those are of the type (

B�
1 0

0 B�
2

)
Fc

((
B1 0
0 B2

)(
x̃

λ̃

))
.

For such general transformations there is no possibility of defining a norm in an in-
variant way, since both the domain and the image space of the constraints are trans-
formed independently: B�

2e(B1x̃). For this reason, different types of transformations
have been studied for different problems; see, e.g., [6, 7, 10].

4. Affine invariant convergence theory. To formulate the convergence the-
ory and termination criteria in terms of an appropriate norm, we use a norm that is
invariant under the transformation (3.1).

Definition 4.1. Let z ∈ U . Then the norms ‖ · ‖z : Z → R, z ∈ U , are called
affine invariant for (OS) if

‖∇Fc(z̃)∆z‖z = ‖∇Gc(B−1z̃)B−1∆z‖B−1z for all z̃ ∈ U and ∆z ∈ Z.(4.1)

We call {‖ · ‖z}z∈U a γ-continuous family of invariant norms for (OS) if∣∣‖r‖z+∆z − ‖r‖z
∣∣ ≤ γ ‖∇Fc(z)∆z‖z‖r‖z(4.2)

for every r,∆z ∈ Z and z ∈ U such that z + ∆z ∈ U .
Using affine invariant norms we are able to present an affine invariant convergence

theorem for Algorithm 1.
Theorem 4.2. Assume that Assumption 1 holds and that there are constants

ω ≥ 0, γ ≥ 0, and a γ-continuous family of affine invariant norms {‖ · ‖z}z∈U such
that the operator ∇Fc satisfies

‖(∇Fc(z + s∆z)−∇Fc(z))∆z‖z+η∆z ≤ sω‖∇Fc(z)∆z‖2z(4.3)

for s, η ∈ [0, 1], z ∈ U , and ∆z ∈ Z such that co{z, z + ∆z} ⊂ U , where coA denotes
the convex hull of A. For k ∈ N let hk = ω‖Fc(zk)‖zk and let

L(z) =
{
ζ ∈ U : ‖Fc(ζ)‖ζ ≤

(
1 +

γ

4
‖Fc(z)‖z

)
‖Fc(z)‖z

}
.(4.4)

Suppose that h0 < 2 and that the level set L(z0) is closed. Then the iterates stay in
U and the residuals converge to zero at a rate of

hk+1 ≤ 1

2
h2
k.
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Additionally, we have

‖Fc(zk+1)‖zk ≤ ‖Fc(zk)‖zk .(4.5)

Proof. By induction, assume that L(zk) is closed and that hk < 2 for k ≥ 0. Due
to Remark 2.5 the neighborhood U is assumed to be convex, so that z + η∆z ∈ U for
all η ∈ [0, 1]. From ∇Fc(zk)∆zk = −Fc(zk) we conclude that

Fc(z
k + η∆zk) = Fc(z

k) +

∫ η

0

∇Fc(zk + s∆zk)∆zk ds

= (1− η)Fc(z
k) +

∫ η

0

(∇Fc(zk + s∆zk)−∇Fc(zk))∆zk ds

for all η ∈ [0, 1]. Applying (4.2), (4.3), and hk = ω‖Fc(zk)‖zk , and hk < 2 we obtain

‖Fc(zk + η∆zk)‖zk+η∆zk

≤ (1− η)(1 + ηγ‖Fc(zk)‖zk)‖Fc(zk)‖zk +

∫ η

0

sω‖∇Fc(zk)∆zk‖2zk ds

=
(

(1− η)(1 + ηγ‖Fc(zk)‖zk) +
η2hk

2

)
‖Fc(zk)‖zk

<
(
1 + (η − η2)γ‖Fc(zk)‖zk

)‖Fc(zk)‖zk .

(4.6)

With η ∈ [0, 1],

‖Fc(zk + η∆zk)‖zk+η∆zk ≤
(

1 +
γ

4
‖Fc(zk)‖zk

)
‖Fc(zk)‖zk

holds. If zk + ∆zk �∈ L(zk), there exists an η̄ ∈ [0, 1] such that zk + η̄∆zk ∈ U\L(zk),
i.e.,

‖Fc(zk + η̄∆zk)‖zk+η̄∆zk >
(

1 +
γ

4
‖Fc(zk)‖zk

)
‖Fc(zk)‖zk ,

which is a contradiction. Hence, zk+1 ∈ L(zk) and, inserting η = 1 in (4.6),

‖F (zk+1)‖zk+1 ≤ ω‖Fc(zk)‖2zk/2.

Thus, we have hk+1 ≤ h2
k/2 and L(zk+1) ⊂ L(zk). Since L(zk) is closed, every Cauchy

sequence in L(zk+1) converges to a limit point in L(zk), which is, by (4.4) and the
continuity of the norm, also contained in L(zk+1). Hence, L(zk+1) is closed. Finally,
using η = 1 in (4.6), the result (4.5) is obtained.

Remark 4.3. We choose simplicity over sharpness here. The definition of the
level set L(z) can be sharpened somewhat by a more careful estimate of the term
(γ‖Fc(zk)‖zk − 1)η + (hk/2− γ‖Fc(zk)‖zk)η2.

Theorem 4.2 guarantees that limk→∞ hk = 0. To ensure that zk → z∗ in Z as
k → ∞ we have to require that the canonical norm ‖ · ‖Z on Z can be bounded
appropriately by the affine invariant norms ‖ · ‖z.

Corollary 4.4. If, in addition to the assumptions of Theorem 4.2, there exists
a constant C̃ > 0 such that

‖ζ‖Z ≤ C̃ ‖∇Fc(z)ζ‖z for all ζ ∈ Z and z ∈ U,
then the iterates converge to the solution z∗ = (x∗, λ∗) of (OS).
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Proof. By assumption and Theorem 4.2 we have

‖∆zk‖Z ≤ C̃ ‖Fc(zk)‖zk ≤ C̃

(
h0

2

)k
‖Fc(z0)‖z0 .

Thus, {zk}k∈N is a Cauchy sequence in L(z0) ⊂ U . Since L(z0) is closed, the claim
follows by Remark 2.5(d).

For actual implementation of Algorithm 1 we need a convergence monitor indicat-
ing whether or not the assumptions of Theorem 4.2 may be violated and a termination
criterion deciding whether or not the desired accuracy has been achieved.

From (4.5), a new iterate zk+1 is accepted whenever

‖Fc(zk+1)‖zk < ‖Fc(zk)‖zk .(4.7)

Otherwise, the assumptions of Theorem 4.2 are violated and the iteration is considered
to be nonconvergent. The use of the norm ‖ · ‖zk for both the old and the new iterate
permits an efficient implementation. Since in many cases the norm ‖Fc(zk+1)‖zk is

defined in terms of ∆zk+1 = ∇Fc(zk)−1Fc(z
k+1), the derivative need not be evaluated

at the new iterate. If a factorization of ∇Fc(zk) is available via a direct solver, it can
be reused at negligible cost even if the convergence test fails. If an iterative solver
is used, ∆zk+1 in general provides a good starting point for computing ∆zk+1 such
that the additional cost introduced by the convergence monitor is minor.

The SQP iteration will be terminated with a solution zk+1 as soon as

‖Fc(zk+1)‖zk ≤ TOL ‖Fc(z0)‖z0
with a user-specified tolerance TOL. Again, the use of the norm ‖ · ‖zk allows an
efficient implementation.

5. Invariant norms for optimization problems. What remains to be done
is the construction of a γ-continuous family of invariant norms. In this section we
introduce two different norms.

5.1. First invariant norm. The first norm takes advantage of the parameter c
in the augmented Lagrangian. As we mentioned in Remark 2.5, there exists a c̄ ≥ 0
such that L′′

c (z) is coercive on X for all z ∈ U and c ≥ c̄. Hence, the operator L′′
c (z)−1

belongs to B(Z) for all c ≥ c̄.
Let us introduce the operator Sc : U → B(Z) by

Sc(z) =

(
L′′
c (z) 0
0 I

)
for all z ∈ U and c ≥ 0.(5.1)

Since L′′
c (z) is self-adjoint for all z ∈ U , Sc(z) is self-adjoint as well. Due to (2.3) the

operator Sc(z) is coercive for all z ∈ U and c ≥ c̄. Thus, for all z ∈ U

‖S1/2
c (z) · ‖ =

√
〈Sc(z) · , ·〉Z(5.2)

is a norm on Z for c ≥ c̄.
Proposition 5.1. Let c ≥ c̄. Then for every z ∈ U the mapping

‖r‖z = ‖Sc(z)1/2∇Fc(z)−1r‖ for r ∈ Z(5.3)

defines an affine invariant norm for (2.2).
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Proof. Let z ∈ U be arbitrary. Since ‖S1/2
c (z) ·‖ defines a norm on Z for c ≥ c̄ and

∇Fc(z) is continuously invertible by Remark 2.6, it follows that ‖ · ‖z is a norm on Z.
Now we prove the invariance property (4.1). Let L̃c denote the augmented Lagrangian
associated with the transformed problem (3.1). Then we have L̃′′

c (ζ) = B̃�L′′
c (z)B̃ for

z = Bζ ∈ U . Hence, setting S̃c(ζ) = B�Sc(z)B we get

‖r‖ζ = ‖S̃c(ζ)1/2∇Gc(ζ)−1r‖ for r ∈ Z.
From (3.3) we conclude that

∇Fc(z)−1∇Fc(z̃) = B∇Gc(ζ)−1∇Gc(ζ̃)B−1(5.4)

with z = Bζ, z̃ = Bζ̃ ∈ U . Using (5.3) and (5.4) we obtain

‖∇Fc(z̃)δz‖z = ‖Sc(z)1/2∇Fc(z)−1∇Fc(z̃)δz‖
= ‖Sc(z)1/2B∇Gc(ζ)−1∇Gc(ζ̃)B−1δz‖
= ‖(B�Sc(z)B)1/2∇Gc(ζ)−1∇Gc(ζ̃)B−1δz‖ = ‖∇Gc(ζ̃)B−1δz‖ζ ,

which gives the claim.
In order to show the γ-continuity (4.2) required for Theorem 4.2, we need the

following lemma.
Lemma 5.2. Suppose that c ≥ c̄ and that there exists a constant ω ≥ 0 such that

‖(∇Fc(z + δz)−∇Fc(z))ζ‖z+δz ≤ ω ‖∇Fc(z)δz‖z‖∇Fc(z)ζ‖z(5.5)

for all ζ ∈ Z, z ∈ U , and δz ∈ Z such that z + δz ∈ U . Then we have

‖Sc(z + δz)1/2ζ‖ ≤
√

1 + ω(1 + Ce) ‖∇Fc(x, λ)δz‖z ‖Sc(z)1/2ζ‖,
where

Ce = sup

{
‖e′(x)ξ‖2Y

〈L′′
c (x, λ)ξ, ξ〉X

: (x, λ) ∈ U, ξ ∈ X\{0}
}
> 0.

Proof. Let ζ = (ζ1, ζ2)T ∈ Z and z ∈ U . From (5.1) and (5.2) we infer

‖Sc(z + δz)1/2ζ‖2 = 〈Sc(z + δz)ζ, ζ〉Z
= 〈Sc(z)ζ, ζ〉Z + 〈(Sc(z + δz)− Sc(z))ζ, ζ〉Z(5.6)

≤ ‖Sc(z)1/2ζ‖2 + 〈(L′′
c (z + δz)− L′′

c (z))ζ1, ζ1〉X .
By assumption, Sc(z) is continuously invertible. Utilizing the Lipschitz assump-
tion (5.5), the second additive term on the right-hand side can be estimated as

〈(L′′
c (z + δz)− L′′

c (z))ζ1, ζ1〉X
= 〈(∇Fc(z + δz)−∇Fc(z))(ζ1, 0)T, (ζ1, 0)T〉Z
= 〈∇Fc(z)Sc(z)−1Sc(z)∇Fc(z)−1(∇Fc(z + δz)−∇Fc(z))(ζ1, 0)T, (ζ1, 0)T〉Z
= 〈Sc(z)∇Fc(z)−1(∇Fc(z + δz)−∇Fc(z))(ζ1, 0)T, Sc(z)−1∇Fc(z)(ζ1, 0)T〉Z
≤ ‖Sc(z)1/2∇Fc(z)−1(∇Fc(z + δz)−∇Fc(z))(ζ1, 0)T‖

· ‖Sc(z)−1/2∇Fc(z)(ζ1, 0)T‖
= ‖(∇Fc(z + δz)−∇Fc(z))(ζ1, 0)T‖z‖Sc(z)−1/2∇Fc(z)(ζ1, 0)T‖
≤ ω ‖∇Fc(z)δz‖z ‖∇Fc(z)(ζ1, 0)T‖z ‖Sc(z)−1/2∇Fc(z)(ζ1, 0)T‖
≤ ω ‖∇Fc(z)δz‖z ‖Sc(z)1/2ζ‖ ‖Sc(z)−1/2∇Fc(z)(ζ1, 0)T‖.
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Note that

‖Sc(z)−1/2∇Fc(z)(ζ1, 0)T‖2
= 〈∇Fc(z)(ζ1, 0)T, Sc(z)−1∇Fc(z)(ζ1, 0)T〉Z = 〈L′′

c (z)ζ1, ζ1〉X + ‖e′(x)ζ1‖2Y
≤ (1 + Ce) 〈L′′

c (z)ζ1, ζ1〉X = (1 + Ce) ‖Sc(z)1/2(ζ1, 0)T‖2.
This implies

〈(L′′
c (z + δz)− L′′

c (z))ζ1, ζ1〉X ≤ ω(1 + Ce) ‖∇Fc(z)δz‖z ‖Sc(z)1/2ζ‖2.(5.7)

Inserting (5.7) into (5.6), the claim follows.
Proposition 5.3. Let all hypotheses of Lemma 5.2 be satisfied. Then {‖·‖z}z∈U

is an ω(3 + Ce)/2-continuous family of invariant norms with

‖ζ‖Z ≤
1√
κ̃
‖∇Fc(z)ζ‖z(5.8)

for all ζ ∈ Z and z ∈ U , where κ̃ > 0 was introduced in (2.3).
Proof. From (5.3) it follows that

‖r‖z+δz ≤ ‖Sc(z + δz)1/2∇Fc(z)−1r‖
+ ‖Sc(z + δz)1/2(∇Fc(z + δz)−1 −∇Fc(z)−1)r‖.

We estimate the additive terms on the right-hand side separately. Using Lemma 5.2
we find

‖Sc(z + δz)1/2∇Fc(z)−1r‖ ≤
√

1 + ω(1 + Ce)‖∇Fc(z)δz‖z‖r‖z.

Applying (5.3) and (5.5) we obtain

‖Sc(z + δz)1/2(∇Fc(z + δz)−1 −∇Fc(z)−1)r‖
= ‖Sc(z + δz)1/2∇Fc(z + δz)−1(∇Fc(z)−∇Fc(z + δz))∇Fc(z)−1r‖
= ‖(∇Fc(z)−∇Fc(z + δz))∇Fc(z)−1r‖z+δz ≤ ω ‖∇Fc(z)δz‖z‖r‖z.

Hence, using
√

1 + x ≤ 1 + x/2 for x ≥ 0,

‖r‖z+δz ≤
(

1 +
ω

2
(3 + Ce)‖∇Fc(z)δz‖z

)
‖r‖z,

and it follows that {‖ ·‖z}z∈U is an ω(3+Ce)/2-continuous family of invariant norms.
Finally, from

‖∇Fc(z)ζ‖2z = 〈Sc(z)∇Fc(z)−1∇Fc(z)ζ,∇Fc(z)−1∇Fc(z)ζ〉Z
= 〈Sc(z)ζ, ζ〉Z ≥ κ̃ ‖ζ‖2Z

we infer (5.8).

5.2. Second invariant norm. In section 5.1 we introduced an invariant norm,
provided the augmentation parameter in Algorithm 1 satisfies c ≥ c̄. But in many
applications the constant c̄ is not explicitly known. Thus, L′′

c (x, λ)−1 need not to be
bounded for c ∈ [0, c̄), so that Sc(x, λ) given by (5.1) might be singular. To overcome
these difficulties we define a second invariant norm that is based on a splitting X =
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ker e′(x)⊕ X̄ such that at least the coercivity of L′′
0(x, λ) on ker e′(x) can be utilized.

Even though the thus-defined norm can be used with c = 0, a larger value of c may
improve the global convergence properties—see [16, section 2.3].

To begin with, let us introduce the bounded linear operator Tc(x, λ) : ker e′(x)×
Y → X by

Tc(x, λ) = (L′′
c (x, λ) e′(x)�) for (x, λ) ∈ U and c ≥ 0.

Lemma 5.4. For every (x, λ) ∈ U and c ≥ 0 the operator Tc(x, λ) is an isomor-
phism.

Proof. Let r ∈ X be arbitrary. Then the equation Tc(x, λ)ζ = r for ζ = (ζ1, ζ2)T ∈
ker e′(x)× Y is equivalent to

∇Fc(x, λ)

(
ζ1
ζ2

)
=

(
r
0

)
.(5.9)

Due to Remark 2.6 the operator ∇Fc(x, λ) is continuously invertible for all (x, λ) ∈ U
and c ≥ 0. Thus, ζ is uniquely determined by (5.9), and the claim follows.

We define the bounded linear operator Rc(x, λ) : ker e′(x)× Y → Z as

Rc(x, λ) =

(
L′′
c (x, λ) 0

0 I

)
for (x, λ) ∈ U and c ≥ 0.(5.10)

Note that Rc(x, λ) is coercive and self-adjoint. Next we introduce the invariant norm

‖(r1, r2)T ‖2z = 〈Rc(z)Tc(z)−1r1, Tc(z)−1r1〉Z×Y + ‖r2‖2Y(5.11)

for z ∈ U and (r1, r2)T ∈ Z. To shorten notation, we write ‖Rc(z)1/2Tc(z)−1r1‖2 for
the first additive term.

Proposition 5.5. For every z ∈ U the mapping given by (5.11) is an affine
invariant norm for (OS), which is equivalent to the usual norm on Z.

Proof. Let z ∈ U be arbitrary. Since Rc(z) is coercive and Tc(z) is continuously
invertible, it follows that ‖ · ‖z defines a norm which is indeed equivalent to the usual
norm on Z. Now we prove the invariance property (4.1). For (x, λ) = (B̃y, ξ) ∈ U we
have

(B̃�L′′
c (y, ξ)B̃ B̃�e′(y)�) = B�Tc(x, λ)

(
B 0
0 I

)
.(5.12)

Utilizing (3.3), (5.11), and (5.12) the invariance property follows.
The following proposition guarantees that {‖ · ‖z}z∈U is a γ-continuous family of

invariant norms for (OS).
Proposition 5.6. Suppose that there exists a constant ω ≥ 0 such that

‖(∇Fc(z + δz)−∇Fc(z))ζ‖z+δz ≤ ω ‖∇Fc(z)δz‖z‖∇Fc(z)ζ‖z(5.13)

for all ζ ∈ Z, z ∈ U , and δz ∈ Z such that z + δz ∈ U . Then we have

‖r‖z+δz ≤
(

1 +
3ω

2
‖∇Fc(z)δz‖z

)
‖r‖z.

For the proof of the previous proposition, we will use the following lemmas.
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Lemma 5.7. With the assumption of Proposition 5.6 holding and z = (x, λ), it
follows that

‖Rc(z + δz)1/2ζ‖ ≤
√

1 + ω‖∇Fc(z)δz‖z‖Rc(z)1/2ζ‖

for all ζ ∈ ker e′(x)× Y and c ≥ 0.
Proof. Let z = (x, λ) ∈ U and ζ = (ζ1, ζ2)T ∈ ker e′(x) × Y . Using (5.10)

and (5.11) we obtain

‖Rc(z + δz)1/2ζ‖2 ≤ ‖Rc(z)1/2ζ‖2 + 〈(L′′
c (z + δz)− L′′

c (z))ζ1, ζ1〉X .(5.14)

For all c ≥ 0 the operator Rc(z) is continuously invertible. Furthermore, Rc(z) is
self-adjoint. Thus, applying (5.13) and

∇Fc(z)(ζ1, 0)T = Tc(z)(ζ1, 0)T = Rc(z)(ζ1, 0)T,

we can estimate the second additive term on the right-hand side of (5.14) as

〈(L′′
c (z + δz)− L′′

c (z))ζ1, ζ1〉X
= 〈Tc(z)Rc(z)−1Rc(z)Tc(z)−1(L′′

c (z + δz)− L′′
c (z))ζ1, ζ1〉Z

= 〈Rc(z)Tc(z)−1(L′′
c (z + δz)− L′′

c (z))ζ1, Rc(z)−1Tc(z)�ζ1〉Z×Y
≤ ‖Rc(z)1/2Tc(z)−1(L′′

c (z + δz)− L′′
c (z))ζ1‖ ‖Rc(z)−1/2Tc(z)�ζ1‖

≤ ‖(∇Fc(z + δz)−∇Fc(z))(ζ1, 0)T‖z ‖Rc(z)−1/2Tc(z)�ζ1‖
≤ ω‖∇Fc(z)δz‖z‖∇Fc(z)(ζ1, 0)T‖z‖Rc(z)1/2(ζ1, 0)T‖
= ω ‖∇Fc(z)δz‖z‖Rc(z)1/2ζ‖2.

Inserting this bound in (5.14), the claim follows.
Lemma 5.8. Let the assumptions of Theorem 5.6 be satisfied. Then

‖((Tc(z + δz)− T (z))Tc(z)−1r, 0)T‖z+δz ≤ ω‖∇Fc(z)δz‖z‖(r, 0)T‖z for all r ∈ X.

Proof. For arbitrary r ∈ X we set ζ = (ζ1, ζ2)T = Tc(z)−1r. Using (5.9) and (5.13)
we estimate

‖((Tc(z + δz)− Tc(z))Tc(z)−1r, 0)T‖z+δz
≤ ‖(∇Fc(z + δz)−∇Fc(z))(ζ1, ζ2)T‖z+δz ≤ ω ‖∇Fc(z)δz‖z‖∇Fc(z)(ζ1, ζ2)T‖z
= ω ‖∇Fc(z)δz‖z‖(r, 0)T‖z,

so that the claim follows.
Proof of Proposition 5.6. Let z, z + δz ∈ U . Utilizing (5.11) and Lemmas 5.7 and

5.8 we find

‖(r1, 0)T‖z+δz = ‖Rc(z + δz)1/2Tc(z + δz)−1r1‖
≤ ‖Rc(z + δz)1/2Tc(z)−1r1‖+ ‖Rc(z + δz)1/2(Tc(z + δz)−1 − Tc(z)−1)r1‖
≤√1 + ω‖∇Fc(z)δz‖z‖(r1, 0)T‖z + ‖((Tc(z)− Tc(z + δz))Tc(z)−1r1, 0)T‖z+δz
≤√1 + ω‖∇Fc(z)δz‖z‖(r1, 0)T‖z + ω‖∇Fc(z)δz‖z‖(r1, 0)T‖z
≤
(

1 +
3ω

2
‖∇Fc(z)δz‖z

)
‖(r1, 0)T‖z,
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ξ

η

Fig. 5.1. Illustration for Examples 3.2 and 5.10. Neighborhood U(x∗) (gray) and affine invari-
ant domain of theoretically assured convergence (white).

and therefore

‖r‖2z+δz = ‖(r1, 0)T‖2z+δz + ‖r2‖2

≤
(

1 +
3ω

2
‖∇Fc(z)δz‖z

)2

‖(r1, 0)T‖2z + ‖r2‖2

≤
(

1 +
3ω

2
‖∇Fc(z)δz‖z

)
‖r‖2z.

Hence, {‖ · ‖z}z∈U is a 3ω/2-continuous family of invariant norms.
Remark 5.9. Note that the Lipschitz constant of the second norm does not involve

Ce and hence is independent of the choice of c. In contrast, choosing c too small may
lead to a large Lipschitz constant of the first norm and thus can affect the algorithm.

Example 5.10. Let us return to Example 3.2. Using the second norm with c = 0,
the theoretically assured, affine invariant domain of convergence is shown in Figure 5.1,
to be compared with Figures 3.1(b) and (d). Its shape and size is clearly more
similar to the noninvariant domain of convergence for the “better” formulation and,
by definition, does not change when the coordinates change.

5.3. Computational efficiency. The affine invariance of the two norms devel-
oped in the previous sections does not come free: the evaluation of the norms is more
involved than the evaluation of some standard norm.

Nevertheless, the computational overhead of the first norm defined in section 5.1
is almost negligible, since it can in general be implemented by one additional matrix
vector multiplication. It requires, however, a sufficiently large parameter c.

On the other hand, the second norm defined in section 5.2 works for arbitrary
c ≥ 0 but requires one additional system solve with the same Jacobian but different
right-hand side. In the case in which a factorization of the matrix is available, the
computational overhead is negligible—compare the CPU times of the exact Newton
method in section 7. If, however, the system is solved iteratively, the additional system
solve may incur a substantial cost, in which case the first norm should be preferred.

5.4. Connection to the optimization problem. When solving optimization
problems of type (P), feasibility e(x) = 0 and optimality are the relevant quan-
tities. This is well reflected by the proposed norms ‖ · ‖z. Let z = (x, λ) and
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∆z = (∆x,∆λ)T = −∇Fc(z)−1Fc(z). Using Taylor’s theorem (see [19, p. 148]) and
the continuity of L′′

0 , we obtain for the first norm

‖Fc(z)‖2z = 〈Sc(z)∆z,∆z〉Z
= 〈L′′

c (z)∆x,∆x〉X + ‖∆λ‖2Y
= 〈L′′

0(z)∆x,∆x〉X + c‖e′(x)∆x‖2Y + ‖∆λ‖2Y
= 〈L′′

0(z∗)∆x,∆x〉X + o(‖z∗ − z‖2Z) + c‖e′(x)∆x‖2Y + ‖∆λ‖2Y
= 2(L0(z)− L0(z∗)) + o(‖z∗ − z‖2Z) + c‖e(x)‖2Y + ‖∆λ‖2Y
= 2
(
J(x)− J(x∗)− 〈λ, e(x)〉Y

)
+ c‖e(x)‖2Y + ‖∆λ‖2Y + o(‖z∗ − z‖2Z).

The second norm is based on the partitioning Fc(x, λ) = (L′
c(x, λ), e(x))T and

correspondingly on a splitting of the Newton correction into an optimizing direction
∇Fc(x, λ)(ζ1, ζ2)T = −(L′

c(x, λ), 0)T tangential to the constraints manifold and a
feasibility direction ∇Fc(x, λ)(ξ1, ξ2)T = −(0, e(x))T. Since e′(x)ζ1 = 0, we have for
z = (x, λ)

‖Fc(z)‖2z = 〈L′′
c (z)ζ1, ζ1〉X + ‖ζ2‖2Y + ‖e(x)‖2Y

= 〈L′′
0(z)ζ1, ζ1〉X + ‖ζ2‖2Y + ‖e(x)‖2Y

= 〈L′′
0(z∗)ζ1, ζ1〉X + o(‖z∗ − z‖2Z) + ‖ζ2‖2Y + ‖e(x)‖2Y

= 2(L0(z)− L0(z∗)) + ‖ζ2‖2Y + ‖e(x)‖2Y + o(‖z∗ − z‖2Z)

= 2
(
J(x)− J(x∗)− 〈λ, e(x)〉Y

)
+ ‖e(x)‖2Y + ‖ζ2‖2Y + o(‖z∗ − z‖2Z).

Recall that ∆λ = ζ2 + ξ2. Thus, in the proximity of the solution, both affine
invariant norms measure the quantities we are interested in when solving optimization
problems, in addition to the error in the Lagrange multiplier and the optimizing
direction’s Lagrange multiplier component, respectively.

6. Inexact augmented Lagrangian-SQP methods. Taking into account dis-
cretization errors or truncation errors resulting from iterative solution of linear sys-
tems, we have to consider inexact Newton methods, where an inner residual remains:

∇Fc(zk)δzk = −Fc(zk) + rk,(6.1)

zk+1 = zk + δzk.

Such inexact Newton methods have been studied in a nonaffine invariant setting by
Dembo, Eisenstat, and Steihaug [4] and Bank and Rose [1].

With slightly stronger assumptions than before and a suitable control of the inner
residual, a similar convergence theory can be established as in section 4.

Note that exact affine invariance is preserved only in the case in which the inner
iteration is affine invariant, too.

Theorem 6.1. Assume that Assumption 1 holds and that there are constants
ω ≥ 0, γ ≥ 0, and a γ-continuous family of affine invariant norms {‖ · ‖z}z∈U such
that the operator ∇Fc satisfies

‖(∇Fc(z + sδz)−∇Fc(z))δz‖z+ηδz ≤ ωs‖∇Fc(z)δz‖2z(6.2)

for s, η ∈ [0, 1], z ∈ U , and δz ∈ Z such that z + δz ∈ U . Choose some 0 < Θ < 1
and define the level sets

L(z) =
{
ζ ∈ U : ‖Fc(ζ)‖ζ ≤

(
1 +

γΘ

2ω

)
‖Fc(z)‖z

}
.
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Suppose that z0 ∈ U and that L(z0) is closed. If the inner residual rk resulting from
the inexact solution of the Newton correction (6.1) is bounded by

‖rk‖zk ≤ δk ‖Fc(zk)‖zk ,(6.3)

where

(1 + γ‖∇Fc(zk)δzk‖zk)δk + (1 + δk)
ω

2
‖∇Fc(zk)δzk‖zk ≤ Θ,(6.4)

then the iterates stay in U and the residuals converge to zero as k →∞ at a rate of

‖Fc(zk+1)‖zk+1 ≤ Θ‖Fc(zk)‖zk .(6.5)

Proof. Analogously to the proof of Theorem 4.2, one obtains

Fc(z
k + ηδzk) = (1− η)Fc(z

k) + ηrk +

∫ η

0

(∇Fc(zk + sδzk)−∇Fc(zk))δzk ds(6.6)

for all η ∈ [0, 1]. Using (6.6), (6.2), (4.2), and (6.3), we find for φ ∈ [0, 1]

‖Fc(zk + ηδzk)‖zk+φδzk

≤ (1− η)‖Fc(zk)‖zk+φδzk + η‖rk‖zk+φδzk +

∫ η

0

sω‖∇Fc(zk)δzk‖2zk ds
≤ (1 + γφ‖∇Fc(zk)δzk‖zk)

(
(1− η)‖Fc(zk)‖zk + η‖rk‖zk

)
+
ωη2

2
‖∇Fc(zk)δzk‖2zk

≤ (1 + γφ‖∇Fc(zk)δzk‖zk)(1− η + δkη)‖Fc(zk)‖zk)

+
ωη2

2
‖∇Fc(zk)δzk‖2zk .

(6.7)

From (6.1) and (6.3) we have

(1− δk)‖Fc(zk)‖zk ≤ ‖∇Fc(zk)δzk‖zk = ‖Fc(zk)− rk‖zk ≤ (1 + δk)‖Fc(zk)‖zk
(6.8)

and thus, setting φ = η in (6.7) and χ = γ‖∇Fc(zk)δzk‖zk and using (6.4), it follows
that

‖Fc(zk + ηδzk)‖zk+ηδzk

‖Fc(zk)‖zk
≤ (1 + γη‖∇Fc(zk)δzk‖zk)(1− η + δkη) + (1 + δk)

ωη2

2
‖∇Fc(zk)δzk‖zk

≤ (1 + ηχ)(1− η) + (1 + ηχ)δkη + (1 + δk)
ωη2

2
‖∇Fc(zk)δzk‖zk

≤ (1 + ηχ)(1− η) + ηΘ

≤ 1− η(1−Θ) + η(1− η)χ.

(6.9)
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From (6.4) we have ‖∇Fc(zk)δzk‖zk ≤ 2Θ/ω. Since 1−Θ > 0, we conclude that

‖Fc(zk + ηδzk)‖zk+ηδzk ≤
(

1 +
γΘ

2ω

)
‖Fc(zk)‖zk .(6.10)

If zk+1 �∈ U , then there is some η∗ ∈ [0, 1] such that co{zk, zk + ηδzk} ⊂ U
for η ∈ [0, η∗) and zk + η∗δzk �∈ L(zk), i.e., ‖Fc(zk + η∗δzk)‖zk+η∗δzk > (1 +
γΘ/(2ω))‖Fc(zk)‖zk , which contradicts (6.10). Thus, zk+1 ∈ U . Furthermore, in-
serting η = 1 into (6.9) yields

‖Fc(zk+1)‖zk+1 ≤ Θ‖Fc(zk)‖zk ,

and therefore L(zk+1) ⊂ L(zk) is closed.
The next corollary follows analogously as Corollary 4.4.
Corollary 6.2. If, in addition to the assumptions of Theorem 6.1, there exists

a constant Ĉ > 0 such that

‖ζ‖Z ≤ Ĉ‖∇Fc(z)ζ‖z
for all ζ ∈ Z and z ∈ U , then the iterates converge to the solution z∗ = (x∗, λ∗)
of (OS).

For actual implementation of an inexact Newton method following Theorem 6.1,
we need to satisfy the accuracy requirement (6.4). Thus, we need not only an error
estimator for the inner iteration computing δk but also easily computable estimates
[ω] and [γ] for the Lipschitz constants ω and γ in case no suitable theoretical values
can be derived. Setting η = 1 in (6.6), we readily obtain

‖Fc(zk+1)− rk‖zk ≤
ω

2
‖∇Fc(zk)δzk‖2zk

and hence a lower bound

2 ‖Fc(zk+1)− rk‖zk
‖∇Fc(zk)δzk‖2

zk
≤ ω.

Unfortunately, the norms involve solutions of Newton-type systems and therefore
cannot be computed exactly. Assuming the relative accuracy of evaluating the norms
are δ̂k and δ̃k, respectively, we define the actually computable estimate

[ω]k = 2
1− δ̂k

(1 + δ̃k)2
‖Fc(zk+1)− rk‖zk
‖∇Fc(zk)δzk‖2

zk
≤ ω.

We would like to select a δk such that the accuracy matching condition (6.4) is
satisfied. Unfortunately, due to the local sampling of the global Lipschitz constant
ω and the inexact computation of the norms, the estimate [ω]k is possibly too small,
translating into a possibly too large tolerance for the inexact Newton correction. In
order to compensate for that, we introduce a safety factor ρ < 1 and require the
approximate accuracy matching condition

(1 + [γ]k‖∇Fc(zk)δzk‖zk)δk + (1 + δk)
[ω]k

2
‖∇Fc(zk)δzk‖zk ≤ ρΘ(6.11)
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to hold. An obvious choice for ρ would be (1 − δ̂k)/(1 + δ̃k). From Propositions 5.3
and 5.6 we infer that γ is of the same order of magnitude as ω. Thus we take the
estimate

[γ]k = 3[ω]k/2,

currently ignoring Ce when using the first norm.

Again, the convergence monitor (4.7) can be used to detect nonconvergence. In
the inexact setting, however, the convergence monitor may also fail due to δk chosen
too large. Therefore, whenever (4.7) is violated and a reduction of δk is promising
(e.g., (1 + ([γ]k + [ω]k/2)‖∇Fc(zk)δzk‖zk)δk ≥ [ω]k/10‖∇Fc(zk)δzk‖zk), the Newton
correction should be recomputed with reduced δk.

Remark 6.3. If an inner iteration is used for approximately solving the Newton
equation (6.1) which provides the orthogonality relation (δzk,∆zk − δzk)zk = 0 in a
scalar product (·, ·)zk that induces the affine invariant norm, the estimate (6.11) can
be tightened by substituting (1 + δk)2 by 1 + δ2

k. Furthermore, the norm ‖∆zk‖zk
of the exact Newton correction is computationally available, which permits the con-
struction of algorithms that are robust even for large inaccuracies δk. The application
of a conjugate gradient method that is confined to the null space of the linearized
constraints [2] to augmented Lagrangian-SQP methods can be the focus of future
research.

7. Numerical experiments. This section is devoted to presenting numerical
tests for Example 2.1 that illustrate the theoretical investigations of the previous
sections. To solve (P) we apply the so-called optimize-then-discretize approach: we
compute an approximate solution by discretizing Algorithm 1, i.e., by discretizing the
associated system (2.6). In the context of Example 2.1 we have xk = (yk, uk, vk), δx =
(δy, δu, δv) ∈W (0, T )×L2(0, T )×L2(0, T ). To reduce the size of the system we take
advantage of a relationship between the SQP steps δu, δv for the controls and the
SQP step δλ for the Lagrange multiplier. In fact, from

∂2L0

∂u2
(xk, λ̃k)δu +

∂e

∂u
(xk)�δλ = −∂L0

∂u
(xk, λ̃k),

∂2L0

∂v2
(xk, λ̃k)δv +

∂e

∂v
(xk)�δλ = −∂L0

∂v
(xk, λ̃k)

we infer that

δu = − 1

α

(
λ̃k(·, 0)− λk(·, 0) + δλ(·, 0)

)
in (0, T ),

δv =
1

β

(
λ̃k(·, 1)− λk(·, 1) + δλ(·, 1)

)
in (0, T ),

(7.1)

where λ̃k = λk+ce(xk) by step (b) of Algorithm 1. Inserting (7.1) into (2.6) we obtain
a system only in the unknowns (δy, δλ). Note that the second Fréchet-derivative of
the Lagrangian is given by

〈L′′
0(xk, λ̃k)ζ, ξ〉X =

∫
Q

ζ1ξ1
(
1 + 2λ̃k

)
dx +

∫ T

0

αζ2ξ2 + βζ3ξ3 dt
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for ζ = (ζ1, ζ2, ζ3), ξ = (ξ1, ξ2, ξ3) ∈ X. The solution (δy, δu, δv, δλ) of (2.6) is
computed as follows: First we solve

yt − νyxx + (yky)x = −ek in Q,

νyx(·, 0) + σ0y(·, 0) +
λ(·, 0)

α
=

1

α

(
λk(·, 0)− λ̃k(·, 0)

)
in (0, T ),

νyx(·, 1) + σ1y(·, 1)− λ(·, 1)

β
=

1

β

(
λ̃k(·, 1)− λk(·, 1)

)
in (0, T ),

y(0, ·) = 0 in Ω,

(1− λ̃kx)y − λt − νλxx − ykλx = yk − z in Q,

νλx(·, 0) + (y(·, 0) + σ0)λ(·, 0) = 0 in (0, T ),

νλx(·, 1) + (y(·, 1) + σ1)λ(·, 1) = 0 in (0, T ),

λ(T, ·) = 0 in Ω,

(7.2)

where ek = ykt − νykxx + ykykx − f , and set δy = y and δλ = λ. Then we obtain δu and
δv from (7.1). For more details we refer the reader to [18].

For the time integration we use the backward Euler scheme while the spatial
variable is approximated by piecewise linear finite elements. The programs were
written in MATLAB, version 5.3, and executed on a Pentium III 550 MHz personal
computer.

Run 7.1 (Neumann control). In the first example we choose T = 1, ν = 0.1,
σ0 = σ1 = 0, f = 0, and

y0 =

{
1 in (0, 0.5],
0 otherwise.

The grid is given by

xi =
i

50
for i = 0, . . . , 50 and tj =

jT

50
for j = 0, . . . , 50.

To solve (2.1) for u = v = 0 we apply the Newton method at each time step. The
algorithm needs one second CPU time. The value of the cost functional is 0.081.

Now we turn to the optimal control problem. We choose α = β = 0.01, and the
desired state is z(t, ·) = y0 for t ∈ (0, T ). In view of the choice of z and the nonlinear
convection term yyx in (2.1b) we can interpret this problem as determining u in such
a way that it counteracts the uncontrolled dynamics which smooths the discontinuity
at x = 0.5 and transports it to the left as t increases. The discretization of (7.2) leads
to an indefinite system,

Hk

(
δy
δλ

)
= rk with Hk =

(
Ak (Bk)T

Bk Ck

)
.(7.3)

As starting values for Algorithm 1 we take y0 = 0, u0 = v0 = 0, and λ0 = 0.
(i) First we solve (7.3) by an LU -factorization (MATLAB routine lu) so that the

theory of section 4 applies. According to section 4 we stop the SQP iteration if

‖Fc(zk+1)‖zk ≤ 10−3 · ‖Fc(z0)‖z0 .(7.4)
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Fig. 7.1. Run 7.1: residuum t �→ ‖y(t, ·)− z(t, ·)‖L2(Ω) and optimal controls.

In case ‖Fc(z0)‖z0 is very large, the factor 10−3 on the right-hand side of (7.4) might
be too big. To avoid this situation Algorithm 1 is terminated if (7.4) and, in addition,

‖Fc(zk+1)‖zk < 10−3

hold. The augmented Lagrangian-SQP method stops after four iterations. The CPU
times for different values of c can be found in Tables 7.6 and 7.7. Let us mention that
for c = 0.1 the algorithm needs 102.7 seconds and for c = 1 we observe divergence
of Algorithm 1. As it was proved in [15] the set of admissible starting values reduces
whenever c enlarges. The value of the cost functional is 0.041. In Figure 7.1 the
residuum t �→ ‖y(t, ·) − z(t, ·)‖L2(Ω) for the solution of (2.1) for u = v = 0 as well
as for the optimal state is plotted. Furthermore, the optimal controls are presented.
The decay of ‖Fc(zk+1)‖zk , k = 0, . . . , 3, for the first invariant norm given by (5.3)
and for different values of c is shown in Table 7.1. Recall that the invariant norm is
defined only for c ≥ c̄. Unfortunately, the constant c̄ ≥ 0 is unknown. We proceed as
follows: Choose a fixed value for c and compute

[κ]k =
〈L′′

c (xk, λk)δx, δx〉X
‖δx‖2X

in each level of the SQP iteration. Whenever [κ]k is greater than zero, we have
coercivity in the direction of the SQP step. Otherwise, c needs to be increased. In

Table 7.1
Run 7.1(i): decay of ‖Fc(zk+1)‖zk for the first norm.

c = 0 c = 10−3 c = 10−2

‖Fc(z0)‖z0 4.636278 4.630344 4.642807

‖Fc(z1)‖z0 1.635481 1.625800 1.581022

‖Fc(z2)‖z1 0.210650 0.202490 0.184842

‖Fc(z3)‖z2 0.003625 0.003234 0.002663

‖Fc(z4)‖z3 0.000002 0.000001 0.000001
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Table 7.2
Run 7.1(i): values of [κ]k for different c.

c = 0 c = 10−3 c = 10−2
[κ]0 0.020 0.020 0.020
[κ]1 0.019 0.019 0.020
[κ]2 0.004 0.023 0.024
[κ]3 0.021 0.022 0.025

Table 7.3
Run 7.1(i): decay of ‖Fc(zk+1)‖zk for the second norm.

‖F0(z0)‖z0 ‖F0(z1)‖z0 ‖F0(z2)‖z1 ‖F0(z3)‖z2 ‖F0(z4)‖z3

26.77865 4.91492 0.63812 0.0105 0.00002

Table 7.2 we present the values for [κ]k. We observed numerically that [κ]k is positive
for k = 0, . . . , 3. Moreover, [κ]k increased if c increased.

Next we tested the second norm introduced in (5.11) for c = 0. Again, the
augmented Lagrangian-SQP method stops after four iterations and needs 97.4 seconds
CPU time. Thus, both invariant norms lead to a similar performance of Algorithm 1.
The decay of ‖Fc(zk+1)‖zk can be found in Table 7.3.

(ii) Now we solve (7.3) by an inexact generalized minimum residual (GMRES)
method (MATLAB routine gmres). For a preconditioner for the GMRES method we
took an incomplete LU -factorization of the matrix

D =

(
I PT

P 0

)
(7.5)

by utilizing the MATLAB function luinc(D,1e-03). Here, the matrix P is the
discretization of the heat operator yt − νyxx with the homogeneous Robin bound-
ary conditions νyx(·, 0) + σ0y(·, 0) = νyx(·, 1) + σ1y(·, 1) = 0 in (0, T ). The same
preconditioner is used for all Newton steps.

We chose Θk = 0.6 for all k. In section 6 we introduced estimators for the
constants ω and γ, denoted by [ω]k and [γ]k, respectively. Thus, for k ≥ 0 we
calculate [ω]k and [γ]k, and then we determine δk+1 as follows:

δk+1 = Θk;

while (1 + [γ]k‖∇Fc(zk)δzk‖zk)δk+1 + (1 + δk+1)
[ω]k

2
‖∇Fc(zk)δzk‖zk > ρkΘk do

δk+1 =
δk+1

2
;

end (while);

where ρk = (1 + δ̂k)/(1 + δ̃k) for all k ≥ 0. For the first norm ‖∇Fc(zk)δzk‖zk is
already determined by the computation of the previous Newton correction. Thus we
have δ̃k = δk, but in the case of the second norm, ‖∇Fc(zk)δzk‖zk has to be calculated

with a given tolerance δ̃k. In our tests we take δ̃k = δ̂k for all k ≥ 0. As starting
values we choose δ0 = 10−10 and δ̂0 = δ0. We test four strategies for the choice of δ̂k
for k ≥ 1: δ̂k = 0.1, δ̂k = 0.01, δ̂k = 0.001, and δ̂k = δk. It turns out that for δ̂k = 0.1
we obtain the best performance with respect to CPU times. Hence, in the following
test examples we take δk = 0.1 for k ≥ 1.
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Table 7.4
Run 7.1(ii): decay of ‖Fc(zk)‖zk for the first norm with Θk = 0.5.

c = 0 c = 10−3 c = 10−2

‖Fc(z0)‖z0 4.63628 4.70140 5.50174

‖Fc(z1)‖z1 1.24009 1.27674 1.29441

‖Fc(z2)‖z2 0.07190 0.20773 0.18324

‖Fc(z3)‖z3 0.01348 0.01451 0.01102

‖Fc(z4)‖z4 0.00524 0.00548 0.00739

‖Fc(z5)‖z5 0.00217 0.00218 0.00004

‖Fc(z6)‖z6 0.00121 0.00077 —

‖Fc(z7)‖z7 0.00033 — —

Table 7.5
Run 7.1(ii): values of [ω]k for Θk = 0.5.

c = 0 c = 10−3 c = 10−2
[ω]0 1.35e–01 1.29e–01 1.18e–01
[ω]1 2.40e–01 2.20e–01 3.03e–01
[ω]2 1.16e–01 1.23e–01 6.20e–01
[ω]3 1.12e–01 1.19e+00 5.27e+01
[ω]4 7.12e–02 3.81e+00 1.95e+00
[ω]5 9.91e–02 4.06e+00 —
[ω]6 8.86e–02 — —

Table 7.6
Run 7.1(ii): CPU times in seconds for the first norm.

c = 0 c = 10−3 c = 10−2
exact 97.5 96.8 96.9
inexact, Θk = 0.3 46.8 45.2 47.2
inexact, Θk = 0.4 46.0 46.8 45.0
inexact, Θk = 0.5 47.8 46.7 44.8
inexact, Θk = 0.6 49.3 50.5 47.2
inexact, Θk = 0.7 49.2 52.9 48.7
inexact, Θk = 0.8 47.2 52.6 46.1
inexact, Θk = 0.9 53.0 56.7 46.2
inexact, Θk = Θk−1/2, Θ0 = 0.9 42.7 42.6 45.4

The decay of ‖F (zk)‖zk is presented in Table 7.4. Algorithm 1 stops after at
most seven iterations. Let us mention that for c ∈ {0, 10−3, 10−2} the estimates [κ]k
for the coercivity constant are positive. In particular, for c = 10−2 the augmented
Lagrangian-SQP method has the best performance. In Table 7.5 the values of the
estimators [ω]k are presented. In Table 7.6 the CPU times for the first norm are
presented. It turns out that the performance of the inexact method does not change
significantly for different values of Θk. Since we have to solve an additional linear
system at each level of the SQP iteration in order to compute the second norm, the
first norm leads to a better performance of the inexact method with respect to the
CPU time. Compared to part (i) the CPU time is reduced by about 50% if one
takes the first norm. In the case of the second norm the reduction is about 45% for
Θk ∈ {0.3, 0.4, 0.5, 0.6, 0.6}; see Table 7.7. Finally we test the inexact method using
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Table 7.7
Run 7.1(ii): CPU times in seconds for both norms and c = 0.

First norm Second norm
exact 97.5 97.4
inexact, Θk = 0.3 46.8 54.5
inexact, Θk = 0.4 46.0 54.0
inexact, Θk = 0.5 47.8 53.9
inexact, Θk = 0.6 49.3 53.9
inexact, Θk = 0.7 49.2 59.6
inexact, Θk = 0.8 47.2 74.4
inexact, Θk = 0.9 53.0 77.0
inexact, Θk = Θk−1/2, Θ0 = 0.9 42.7 51.7
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Fig. 7.2. Run 7.2: optimal state and controls.

decreasing Θk. We choose Θ0 = 0.9 and Θk = Θk−1/2 for k ≥ 1. It turns out that
this strategy speeds up the inexact method for both norms, as can be expected from
the theoretical complexity model developed in [7].

Run 7.2 (Robin control). We choose T = 1, ν = 0.05, σ0(t) = sin(4πt), f = 0,
α = β = 0.01,

σ1 =


 −10 in

(
0,
T

2

)
,

0 otherwise,

and y0 =


 1 in

(
0,

1

2

)
,

0 otherwise.

The desired state was taken to be z(t, ·) = y0 cos(4πt) for t ∈ [0, T ].
(i) First we again solve (7.3) by an LU -factorization. We take the same starting

values and stopping criteria as in Run 7.1. The augmented Lagrangian-SQP method
stops after four iteration and needs 105 seconds CPU time. The discrete optimal
solution is plotted in Figure 7.2. From Table 7.8 it follows that (4.7) is satisfied
numerically. Let us mention that [κ]0, . . . , [κ]3 are positive for c ∈ {0, 10−3, 10−2}.
For the needed CPU times we refer to Tables 7.10 and 7.11.

(ii) Now we solve (7.3) by an inexact GMRES method. For a preconditioner we
take the same as in Run 7.1. We choose Θk = 0.5 for all k. The decay of ‖F (zk)‖zk is
presented in Table 7.9. As in part (i) we find that [κ]k > 0 for all test runs. The needed
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Table 7.8
Run 7.2(i): decay of ‖Fc(zk+1)‖zk for different c.

c = 0 c = 10−3 c = 10−2

‖Fc(z0)‖z0 3.11799 3.12494 3.15978

‖Fc(z1)‖z0 1.25420 1.29953 1.75698

‖Fc(z2)‖z1 0.18289 0.18768 0.26507

‖Fc(z3)‖z2 0.01361 0.00849 0.01200

‖Fc(z4)‖z3 0.00009 0.00003 0.00006

Table 7.9
Run 7.2(ii): decay of ‖Fc(zk)‖zk for Θk = 0.5.

c = 0 c = 10−3 c = 10−2

‖Fc(z0)‖z0 3.117994 3.296494 4.457908

‖Fc(z1)‖z1 1.171467 1.285089 2.181491

‖Fc(z2)‖z2 0.187818 0.199968 0.330048

‖Fc(z3)‖z3 0.012231 0.024343 0.033398

‖Fc(z4)‖z4 0.013299 0.003203 0.001044

‖Fc(z5)‖z5 0.001202 0.002336 0.000132

‖Fc(z6)‖z6 0.000390 0.000441 —

Table 7.10
Run 7.2(ii): CPU times in seconds for the first norm.

c = 0 c = 10−3 c = 10−2
exact 105.1 105.7 105.7
inexact, Θk = 0.3 44.6 43.2 48.5
inexact, Θk = 0.4 43.6 49.9 48.5
inexact, Θk = 0.5 43.0 43.8 50.5
inexact, Θk = 0.6 48.1 45.3 45.5
inexact, Θk = 0.7 44.2 45.3 45.2
inexact, Θk = 0.8 44.5 47.2 45.0
inexact, Θk = 0.9 44.5 45.0 45.2
inexact, Θk = Θk−1/2, Θ0 = 0.9 40.3 40.3 48.2

Table 7.11
Run 7.2(ii): CPU times in seconds for both norms and c = 0.

First norm Second norm
exact 105.1 105.5
inexact, Θk = 0.3 44.6 50.7
inexact, Θk = 0.4 43.6 53.0
inexact, Θk = 0.5 43.0 53.0
inexact, Θk = 0.6 48.1 55.3
inexact, Θk = 0.7 44.2 55.2
inexact, Θk = 0.8 44.5 65.7
inexact, Θk = 0.9 44.5 65.9
inexact, Θk = Θk−1/2, Θ0 = 0.9 40.3 48.0
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CPU times are shown in Tables 7.10 and 7.11. As we can see, the inexact augmented
Lagrangian-SQP method with GMRES is much faster than the exact one using the
LU -factorization. For the first norm the CPU time is reduced by about 55%, and
for the second norm by about 50% for Θk ∈ {0.3, 0.4, 0.5, 0.6, 0.7}. Moreover, for our
example the best choice for c is c = 10−3. For smaller values of Θk the method does
not speed up significantly. As in Run 7.1 we test the inexact method using decreasing
Θk. Again we choose Θ0 = 0.9 and Θk = Θk−1/2 for k ≥ 1. As in Run 7.1, this
strategy speeds up the inexact method significantly for both norms. The reduction is
about 9% compared to the CPU times for fixed Θk; see Table 7.11.
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Abstract. We formulate a robust optimal control problem for a general nonlinear system
with finitely many admissible control settings and with costs assigned to switching of controls. We
formulate the problem both in an L2-gain/dissipative system framework and in a game-theoretic
framework. We show that, under appropriate assumptions, a continuous switching-storage function
is characterized as a viscosity supersolution of the appropriate system of quasi-variational inequalities
(the appropriate generalization of the Hamilton–Jacobi–Bellman–Isaacs equation for this context)
and that the minimal such switching-storage function is equal to the continuous switching lower-
value function for the game. Finally, we show how a prototypical example with one-dimensional
state space can be solved by a direct geometric construction.
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1. Introduction. We consider a state-space system Σsw

ẏ = f(y, a, b),(1.1)

z = h(y, a, b),(1.2)

where y(t) ∈ R
N is the state, a(t) ∈ A is the control input, b(t) ∈ B ⊂ R

M is the
deterministic unknown disturbance, and z(t) ∈ R is the cost function. We assume
that the set A of admissible control values is a finite set, A = {a1, . . . , ar}. The control
signals a(t) are then necessarily piecewise constant with values in A. We normalize
control signals a(t) to be right continuous and refer to the value a(t) as the new
current control and a(t−) as the old current control at time t. We assume that there
is a distinguished input index i0 for which f(0, ai0 , 0) = 0 and h(0, ai0 , 0) = 0 so that
0 is an equilibrium point for the autonomous system induced by setting a(t) = ai0

and b(t) = 0. In addition, we assume that a cost k(ai, aj) ≥ 0 is assigned at each time
instant τn at which the controller switches from the old current control a(τ−n ) = ai

to the new current control a(τn) = aj . For a given old initial control a(0−), the
associated control decision is to choose switching times

0 ≤ τ1 < τ2 < · · · , lim
n→∞ τn =∞,

and controls

a(τ1), a(τ2), a(τ3), . . .
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such that the controller switches from the old current control a(τ−n ) to the new current
control a(τn) 	= a(τ−n ) at time τn, where we set

a(t) =

{
a(0−), t ∈ [0, τ1),
a(τn), t ∈ [τn, τn+1), n = 1, 2, . . . ,

if τ1 > 0 and

a(t) = a(τn), t ∈ [τn, τn+1), n = 1, 2, . . . ,

otherwise. We assume that the state y(·) of (1.1) does not jump at the switching time
τn; i.e., the solution y(·) is assumed to be absolutely continuous. The cost of running
the system up to time T ≥ 0 with initial state y(0) = x, old initial control a(0−) = aj ,
control signal a for t ≥ 0, and disturbance signal b is given by

CT−(x, aj , a, b) =

∫ T

0

h(yx(t, a, b), a(t), b(t)) dt+
∑

τ : 0≤τ<T

k(a(τ−), a(τ)).

We have used the notation yx(·, a, b) for the unique solution of (1.1) corresponding
to the choices of the initial condition y(0) = x, the control a(·), and the disturbance
b(·). In what follows, we will often abbreviate yx(·, a, b) to yx(·) or y(·); the precise
meaning should be clear from the context.

As the running cost h(y(t), a(t), b(t)) + k(a(t−), a(t)), where a(t−) = aj if t = 0,
involves not only the value y(t) of the state along with the value of the control a(t)
and the value of the disturbance b(t) at time t but also the value of the old current
control a(t−), it makes sense to think of the old current control a(t−) at time t as
part of an augmented state vector yaug(t) = (y(t), a(t−)) at time t. This can be done
formally by including a(t−) as part of the state vector, in which case a switching
control problem becomes an impulse control problem (see [10], where problems of this
sort are set in the general framework of hybrid systems). We shall keep the switching-
control formalism here; however, in implementing optimization algorithms, we shall
see that it is natural to consider augmented state-feedback controls (x, aj)→ a(x, aj)
rather than merely state-feedback controls x→ a(x) in order to obtain solutions. We
shall refer to such augmented state-feedback controls (x, aj)→ a(x, aj) ∈ A as simply
switching state-feedback controllers. Note that, while the augmented state is required
to compute the instantaneous running cost at time t, only the (nonaugmented) state
vector y(t) at time t is needed to determine the state trajectory past time t for a given
input signal (a(·), b(·)) past time t.

The precise formulation of our optimal control problem is as follows. First, for
a prescribed attenuation level γ > 0 and a given augmented initial state (x, aj), we
seek an admissible control signal a(·) = ax,j(·) with a(0−) = aj so that

CT−(x, aj , a, b) ≤ γ2

∫ T

0

|b(t)|2 dt+ U j
γ(x)(1.3)

for all locally L2 disturbances b, all positive real numbers T , and some nonnegative-
valued bias function U j

γ(x) with U i0
γ (0) = 0. Note that this inequality corresponds

to an input-output system having L2-gain at most γ, where CT− replaces the L2-
norm of the output signal over the time interval [0, T ], and where the equilibrium
point is taken to be (0, ai0) in the augmented state space. The dissipation inequality
(1.3) then can be viewed as an L2-gain inequality, and our problem can be viewed as
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the analogue of the nonlinear H∞-control problem for systems with switching costs
(see [20]). In the switching state-feedback version of the problem, a(·) is a function
of the current state and the current old control; i.e., one decides what control to
use at time t based on knowledge of the current augmented state (y(t), a(t−)). In the
standard game-theoretic formulation of the problem, a(·) is a nonanticipating function
a(·) = αj

x[b](·) (called a strategy) of the disturbance b depending also on the initial
state x and initial old control value aj ; i.e., for a given augmented initial state (x, aj),
the computation of the control value αj

x[b](t) at time t uses knowledge only of the
past and current values of the disturbance b(·). Second, we ask for the admissible
control a with a(0−) = aj (with whatever information structure) which gives the best
system performance in the sense that the nonnegative functions U j

γ(x) are as small
as possible. A closely related problem formulation is to view the switching-control
system as a game with payoff function

JT−(x, aj , a, b) =

∫
[0,T )

l(yx(t), a
j , a(t), b(t)), a(0−) = aj , j = 1, . . . , r,

where we view l(yx, a
j , a, b) as the measure given by

l(y(t), aj , a(t), b(t)) = [h(y(t), a(t), b(t))− γ2|b(t)|2] dt+ k(a(t−), a(t))δt,

with a(0−) = aj ,

where δt is the unit point-mass distribution at the point t. In this game setting, the
disturbance player seeks to use b(t) and T to maximize the payoff, while the control
player seeks to use the choice of piecewise-constant right-continuous function a(t) to
minimize the payoff. The switching lower value Vγ = (V 1

γ , . . . , V
r
γ ) of this game is

then given by

V j
γ (x) = inf

α
sup
b, T

JT−(x, aj , αj
x[b], b), j = 1, . . . , r,(1.4)

where the supremum is over all nonnegative real numbers T and all locally L2-
disturbance signals b, while the infimum is over all nonanticipating control strategies
b → αj

x[b] depending on the initial augmented state (x, aj). By letting T tend to 0,
we see that each component of the switching lower value Vγ(x) = (V 1

γ (x), . . . , V
r
γ (x))

is nonnegative. Then, by construction, (V 1
γ , . . . , V

r
γ ) gives the smallest possible value

which can satisfy (1.3) (with V j
γ in place of U j

γ) for some nonanticipating strategy

(x, aj , b)→ αj
x[b](·) = a(·).

In the standard theory of nonlinear H∞-control, the notion of storage function
for a dissipative system plays a prominent role (see [20]). For our setting with switch-
ing costs, we say that a nonnegative vector function Sγ = (S1

γ , . . . , S
r
γ) on R

N is
a switching-storage function for the system (1.1)–(1.2) with strategy α if, for all
y(0) = x ∈ R

N , b measurable with values in B and 0 ≤ t1 < t2, the following
inequality holds:

(1.5) Sj(t2)
γ (yx(t2, α

j
x[b], b))− Sj(t1)

γ (yx(t1, α
j
x[b], b))

≤
∫ t2

t1

[γ2|b(s)|2 − h(yx(s), α
j
x[b](s), b(s))] ds

−
∑

t1≤τ<t2

k(αj
x[b](τ

−), αj
x[b](τ))
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(where j(t) is specified by αj
x[b](t

−) = aj(t)). The control problem then is to find
the switching strategy α : (x, aj , b) → αj

x[b](·) which gives the best performance,
as measured by obtaining the minimal possible Sγ(x) = (S1

γ(x), . . . , S
r
γ(x)) as the

associated closed-loop switching-storage function. Note that any switching-storage
function may serve as the vector bias function Uγ = (U1

γ , . . . , U
r
γ ) in the L2-gain

inequality (1.3) if, in addition, Si0
γ (0) = 0. This suggests that the available switching-

storage function (i.e., the minimal possible switching-storage function over all possible
switching strategies) should equal the switching lower-value Vγ (1.4) for the game
described above. We shall see that this is indeed the case with appropriate hypotheses
imposed.

Our main results concerning the robust optimal switching-cost problem are as
follows: Under minimal smoothness assumptions on the problem data and compactness
of the set B, the following hold:

(i) V j
γ (x) ≤ mini �=j{V i

γ (x) + k(aj , ai)}, x ∈ R
N , j = 1, . . . , r.

(ii) If continuous, Vγ is a viscosity solution in R
N of the system of quasi-

variational inequalities (SQVI) defined in section 2 (see (2.5)). (The precise definition
of viscosity subsolution, supersolution, and solution will be given in section 2.)

(iii) If Sγ = (S1
γ , . . . , S

r
γ) is a continuous switching-storage function for some

strategy α, then Sγ is a nonnegative continuous viscosity supersolution of the SQVI
(2.5).

(iv) If Uγ = (U1
γ , . . . , U

r
γ ) is a nonnegative, continuous viscosity supersolution

of the SQVI (2.5) and Uγ has the property (i), then there is a canonical choice of

switching state-feedback control strategy αUγ : (x, aj , b) → αj
Uγ ,x

[b] such that Uγ is
a switching-storage function for the closed-loop system formed by using the strategy
αUγ ; thus

U j
γ(x) ≥ sup

b, T

{∫
[0,T )

l(yx(s), a
j , αj

Uγ ,x
[b](s), b(s))

}
≥ V j

γ (x).

The switching lower-value Vγ , if continuous, is characterized as the minimal, nonneg-
ative continuous viscosity supersolution of (2.5) having property (i) above as well as
the minimal continuous function satisfying property (i), which is a switching-storage
function for the closed-loop system associated with some nonanticipating strategy α.

In the precise formulation of our problem, for technical convenience, we impose the
condition that the disturbance signals b(t) take values in a bounded subset B of R

M ;
hence our setup technically does not include the linear-quadratic case (where f is linear
and h is quadratic). In general, this issue has been a stumbling block for application
of the nonlinear dynamic programming formalism to this class of problems. In [21],
this difficulty was overcome by an ad hoc reparametrization technique, whereby the
general unbounded case was reduced to the bounded case. This would be one approach
to removing the boundedness assumption which we have imposed here; however, see
also Remark 1 in section 3 below.

The usual formulation of the H∞-control problem also involves a stability con-
straint. We also prove that, under appropriate conditions, the closed-loop system
associated with switching strategy αUγ corresponding to the nonnegative continuous
supersolution Uγ of the SQVI is stable. The main idea is to use the supersolution Uγ

as a Lyapunov function for trajectories of the closed-loop system. Related stability
problems for systems with control switching are discussed, e.g., by Branicky in [11].

Infinite-horizon optimal switching-control problems are discussed in [6, Chapter
III, section 4.4] but with a discount factor in the running cost and no disturbance
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term. Differential games with switching strategies and switching costs for the case
of finite horizon problems is discussed in [23], while the case of an infinite horizon
with both control and competing disturbance but with a discount factor in the run-
ning cost is discussed in [24]. These authors, under their various assumptions, were
able to show that the value function is continuous and is the unique solution of the
appropriate system of quasi-variational inequalities. However, our formulation has
no discount factor in the running cost, so the running cost is not guaranteed to be
integrable over the infinite interval [0,∞). This forces the introduction of the ex-
tra “disturbance player” T in (1.4). We establish a dynamic programming principle
(DPP) for this setting and derive from it the appropriate system of quasi-variational
inequalities (SQVI) to be satisfied by Vγ . While elements of our derivation of the
DPP closely follow the known proofs for other cases (see [23], [24]), these proofs do
not carry over directly due to a lack of positive discount factor and the presence of
the extra disturbance player T . Our lower-value function Vγ probably in general is
not continuous and, moreover, cannot be characterized simply as the unique solution
of the SQVI as is the case for finite-horizon problems and problems with a positive
discount factor. Our formulation of the optimal switching-cost problem is a precise
analogue of the standard nonlinear H∞-control problem; our results (particularly the
characterization of the switching lower value as the minimal viscosity supersolution
of the appropriate SQVI) parallel those of Soravia [21] obtained for the standard non-
linear H∞-control problem (see also [13], [22], and [6, Appendix B] for later, closely
related refinements of the nonlinear H∞ results).

Another approach to the derivation of the Hamilton–Jacobi–Bellman–Isaacs
(HJBI) equation satisfied by the value function for a differential game is as an ap-
plication of a comparison principle for the HJBI equation (see [12] or [6]). In [1], this
approach was adapted to provide an alternative derivation of the SQVI satisfied by
the lower-value function for the robust switching-control problem studied here.

In our companion paper [2], we present a parallel analysis for another analogue of
the nonlinear H∞-control problem, namely, a robust stopping-time control problem,
where the only control is a decision as to when to stop the system, and there is
an instantaneous cost for stopping (dependent on the final state) in addition to the
running cost. In this setting, the storage function (or value function if one uses the
game interpretation) is a solution of a single variational inequality rather than a
coupled system of quasi-variational inequalities as is the case here. The results and
general techniques from [2] parallel those of the present paper, but specific details
necessarily differ due to the differences in settings. A connection between the two
problems is explained in Remark 2 in section 3.

More general types of impulse-control problems have been studied in the literature
(see, e.g., [7], [17], [18]) where a general (not necessarily discrete) measure is allowed
to enter both the dynamics and the running cost. Such generality leads to a number of
complications, such as what is meant by a trajectory of the closed-loop system, how
to implement the DPP for discontinuous Hamiltonians, etc. Again, these authors’
formulations focus on a finite horizon or assume a discount factor in the running cost.
Our purpose here is to work out the details for the switching-control analogue of the
standard nonlinear H∞-control problem, where there is an infinite horizon with no
discount factor in the running cost for the simpler situation where the singularities in
the control are simple jumps.

Original motivation for our work arose from the problem of designing a real-time
feedback control for traffic signals at a highway intersection (see [3], [4]), where the
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size of the cost imposed on switching can be used as a tuning parameter to lead
to more desirable types of traffic-light signalization. Also, a positive switching cost
eliminates the chattering present in the solution otherwise.

The paper is organized as follows. In section 2, we discuss assumptions and
definitions. Section 3 presents the main results on the connection between value
functions (and storage functions) with systems of quasi-variational inequalities. Sec-
tion 4 presents stability of the closed-loop switching control system. Finally, section 5
presents an example with one-dimensional state-space, where the value function and
associated robust state-feedback control are explicitly computable; a similar example
for the setting of the robust stopping-time problem is presented in [1].

2. Preliminaries. Let A = {a1, a2, . . . , ar} be a finite set, and let B be a com-
pact subset of R

M containing the origin 0. We consider a general nonlinear system Σsw

(see (1.1)–(1.2)) with a switching-cost function k. We make the following assumptions
on problem data f, h, k:

(A1) f : R
N ×A×B → R

N and h : R
N ×A×B → R are continuous;

(A2) f and h are bounded on B(0, R)×A×B for all R > 0;
(A3) there are moduli ωf and ωh such that

|f(x, a, b)− f(y, a, b)| ≤ ωf (|x− y|, R),
|h(x, a, b)− h(y, a, b)| ≤ ωh(|x− y|, R)

for all x, y ∈ B(0, R), R > 0, a ∈ A, and b ∈ B;
(A4) (f(x, a, b) − f(y, a, b)) · (x − y) ≤ L|x − y|2 for all x, y ∈ R

N , a ∈ A, and
b ∈ B;

(A5) k : A×A→ R and

k(aj , ai) < k(aj , ad) + k(ad, ai),

k(aj , ai) > 0,

k(aj , aj) = 0

for all ad, ai, aj ∈ A, d 	= i 	= j;
(A6) h(x, a, 0) ≥ 0 for all x ∈ R

N , a ∈ A.
The set of admissible controls for our problem is the set

A =

{
a(·) =

∑
i≥1

ai−11[τi−1,τi)(·) | ai ∈ A, ai 	= ai−1 for i ≥ 1,

0 = τ0 ≤ τ1 < τ2 < · · · , τi ↑ ∞
}

consisting of piecewise-constant right-continuous functions on [0,∞) with values in
the control set A, where we denote by τ1, τ2, . . . the points at which control switchings
occur. The set of admissible disturbances is B, which consists of measurable functions
on [0,∞) with values in the set B:

B = {b : [0,∞)→ B | b is measurable on [0,∞)}.

Note that any admissible disturbance b is then locally integrable by the assumption
that the disturbance set B is bounded. A strategy is a map α : R

N × A × B → A



906 J. A. BALL, J. CHUDONG, AND M. V. DAY

with value at (x, aj , b) denoted by αj
x[b](·). The strategy α assigns control function

a(t) = αj
x[b](t) if the augmented initial condition is (x, aj) and the disturbance is b(·).

Thus, if it happens that τ1 > τ0 = 0, then a(t) = a0 = aj for t ∈ [τ0, τ1). Otherwise,
a(t) = a1 	= aj for t ∈ [0, τ2) = [τ1, τ2), and an instantaneous charge of k(aj , a(0)) is
incurred at time 0 in the cost function. A strategy α is said to be nonanticipating if,
for each x ∈ R

N and j ∈ {1, . . . , r}, for any T > 0 and b, b̄ ∈ B, with b(s) = b̄(s) for
all s ≤ T , it follows that αj

x[b](s) = αj
x[b̄](s) for all s ≤ T . We denote by Γ the set of

all nonanticipating strategies:

Γ = {α : R
N ×A× B → A |

αj
x is nonanticipating for each x ∈ R

N and j = 1, . . . , r}.

We consider trajectories of the nonlinear system{
ẏ(t) = f(y(t), a(t), b(t)),
y(0) = x.

(2.1)

Under the assumptions (A1), (A2), and (A4), for given x ∈ R
N , a ∈ A, and b ∈ B,

the solution of (2.1) exists uniquely for all t ≥ 0. We denote by yx(·, a, b) or simply
yx(·) the unique solution of (2.1) corresponding to the choice of the initial condition
x ∈ R

N , the control a(·) ∈ A, and the disturbance b(·) ∈ B. We also have the usual
estimates on the trajectories (see, e.g., [6, pp. 97–99]:

|yx(t, a, b)− yz(t, a, b)| ≤ eLt|x− z|, t > 0,(2.2)

|yx(t, a, b)− x| ≤Mxt, t ∈ [0, 1/Mx],(2.3)

|yx(t, a, b)| ≤ (|x|+
√
2Kt)eKt(2.4)

for all a ∈ A, b ∈ B, where

Mx = max{|f(z, a, b)| | |x− z| ≤ 1, a ∈ A, b ∈ B},
K = L+max{|f(0, a, b)| | a ∈ A, b ∈ B}.

For a specified gain tolerance γ > 0, we define the Hamiltonian function Hj :
R

N × R
N → R by setting

Hj(y, p) = min
b∈B
{−p · f(y, aj , b)− h(y, aj , b) + γ2|b|2}, j = 1, . . . , r.

Note that Hj(y, p) < +∞ for all y, p ∈ R
N by (A2). Under assumptions (A1)–(A4),

one can show that the Hamiltonian Hj is continuous on R
N × R

N and satisfies

|Hj(x, p)−Hj(y, p)| ≤ L|x− y||p|+ ωh(|x− y|, R)
for all p ∈ R

N , x, y ∈ B(0, R), R > 0, and
|Hj(x, p)−Hj(x, q)| ≤ L(|x|+ 1)|p− q| for all x, p, q ∈ R

N .

We now introduce the system of quasi-variational inequalities (SQVI): for j =
1, 2, . . . , r,

max

{
Hj(x,Duj(x)), uj(x)−min

i �=j
{ui(x) + k(aj , ai)}

}
= 0, x ∈ R

N .(2.5)
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Definition 1. A vector function u = (u1, u2, . . . , ur), where uj ∈ C(RN ), is a
viscosity subsolution of the SQVI (2.5) if, for any ϕj ∈ C1(RN ),

max

{
Hj(x0, Dϕ

j(x0)), u
j(x0)−min

i �=j
{ui(x0) + k(aj , ai)}

}
≤ 0, j = 1, 2, . . . , r,

at any local maximum point x0 ∈ R
N of uj − ϕj. Similarly, u is a viscosity superso-

lution of the SQVI (2.5) if, for any ϕj ∈ C1(RN ),

max

{
Hj(x1, Dϕ

j(x1)), u
j(x1)−min

i �=j
{ui(x1) + k(aj , ai)}

}
≥ 0, j = 1, 2, . . . , r,

at any local minimum point x1 ∈ R
N of uj − ϕj. Finally, u is a viscosity solution of

the SQVI (2.5) if it is simultaneously a viscosity sub- and supersolution.

3. Main results. In this section, we show the connection of the lower value
function Vγ = (V 1

γ , . . . , V
r
γ ) (see (1.4)) (and a switching-storage function) with the

SQVI (2.5).
We begin with the application of the DPP to this setting and then derive some

properties of the lower-value vector function Vγ (see (1.4)). We then use these proper-
ties to show that Vγ , if continuous, is a viscosity solution of the SQVI (2.5). Through-
out this section, we assume that Vγ is finite.

Proposition 3.1. Assume (A1)–(A5). Then, for j = 1, 2, . . . , r and x ∈ R
N ,

the lower-value vector function Vγ = (V 1
γ , . . . , V

r
γ ) given by (1.4) satisfies

V j
γ (x) ≤ min

i �=j
{V i

γ (x) + k(aj , ai)}.

Proof. Fix a pair of indices i, j ∈ {1, . . . , r} with i 	= j. For a given x ∈ R
n,

α ∈ Γ, b ∈ B, and T > 0, we have

∫
[0,T )

l(yx(s), a
j , αj

x[b](x), b(s))

= k(aj , αj
x[b](0)) +

∫
[0,T )

l(yx(s), α
j
x[b](0), α

j
x[b](s), b(s)).

Note that there are three cases to consider: (i) αj
x[b](0) = j, (ii) αj

x[b](0) = i,
(iii) αj

x[b](0) 	= j 	= i. If (i) or (ii) occurs, then

∫
[0,T )

l(yx(s), a
j , αj

x[b](x), b(s))

< k(aj , ai) + k(ai, αj
x[b](0)) +

∫
[0,T )

l(yx(s), α
j
x[b](0), α

j
x[b](s), b(s))

= k(aj , ai) +

∫
[0,T )

l(yx(s), a
i, αj

x[b](s), b(s)).(3.1)
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If (iii) occurs, then∫
[0,T )

l(yx(s), a
j , αj

x[b](x), b(s))

= k(aj , αj
x[b](0))− k(ai, αj

x[b](0))

+ k(ai, αj
x[b](0)) +

∫
[0,T )

l(yx(s), α
j
x[b](0), α

j
x[b](s), b(s))

= k(aj , αj
x[b](0))− k(ai, αj

x[b](0)) +

∫
[0,T )

l(yx(s), a
i, αj

x[b](s), b(s))

< k(aj , ai) +

∫
[0,T )

l(yx(s), a
i, αj

x[b](s), b(s)),

(3.2)

where the last inequality follows from (A5). By the definition of V j
γ (x), we have

V j
γ (x) ≤ sup

b∈B,T≥0

∫
[0,T )

l(yx(s), a
j , αj

x[b](s), b(s))

for all α ∈ Γ. Taking the supremum over b ∈ B and T ≥ 0 on the right-hand side of
(3.1) or (3.2) therefore gives

V j
γ (x) ≤ k(aj , ai) + sup

b∈B,T≥0

∫
[0,T )

l(yx(s), a
i, αj

x[b](s), b(s)).(3.3)

Given any strategy α ∈ Γ, we can always find another α̃ ∈ Γ with α̃i
x[b] = αj

x[b] for
each b ∈ B, and, conversely, for any α̃ ∈ Γ, there is an α ∈ Γ so that α̃i

x is determined
by α in this way. Hence, taking the infimum over all α ∈ Γ in the last terms on the
right-hand side of (3.3) leaves us with V i

γ (x). Thus

V j
γ (x) ≤ k(aj , ai) + V i

γ (x).

Since i 	= j is arbitrary, the result follows.
Theorem 3.2 (DPP). Assume (A1)–(A4). Then, for j = 1, 2, . . . , r, t > 0, and

x ∈ R
N , we have

V j
γ (x) = inf

α∈Γ
sup

b∈B, T>0

{∫
[0,t∧T )

l(yx(s, a
j , αj

x[b], b), α
j
x[b](s), b(s))

(3.4)

+ 1[0,T )(t)V
i
γ (yx(t, α

j
x[b], b)) such that α

j
x[b](t

−) = ai

}
,

where

l(y(s), aj , a(s), b(s)) = [h(y(s), a(s), b(s))− γ2|b(s)|2]ds+ k(a(s−), a(s))δs

with a(0−) = aj.
Proof. Fix x ∈ R

N , j ∈ {1, 2, . . . , r}, and t > 0. We denote by ω(x) the right-
hand side of (3.4). Let ε > 0. For any z ∈ R

N and any a� ∈ A, we pick ᾱ ∈ Γ such
that

V �
γ (z) + ε ≥

∫
[0,T )

l(yz(s), a
�, ᾱ�

z[b](s), b(s)) for all b ∈ B, for all T > 0.(3.5)
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We first want to show that ω(x) ≥ V j
γ (x). Choose α̂ ∈ Γ such that

(3.6) ω(x) + ε ≥ sup
b∈B, T≥0

{∫
[0,t∧T )

l(yx(s), a
j , α̂j

x[b](s), b(s))

+ 1[0,T )(t)V
i
γ (yx(t)), α̂

j
x[b](t

−) = ai

}
.

For each b ∈ B and T > 0, choose δ ∈ Γ so that

δjx[b](s) =

{
α̂j
x[b](s), s < t ∧ T,

ᾱi
z[b(·+ t ∧ T )](s− (t ∧ T )), s ≥ t ∧ T,

with z = yx(t∧T, α̂j
x[b], b) and a

i = α̂j
x[b](t∧T ). Clearly, δjx is nonanticipating because

α̂j
x and ᾱi

z are. Note that

yx(s+ t ∧ T, δjx[b], b) = yz(s, ᾱ
i
z[b(·+ t ∧ T )], b(·+ t ∧ T )) for s ≥ 0.

Thus, by the change of variables τ = s+ t ∧ T , we have

(3.7)

∫
[0,T−(t∧T ))

l(yz(s), a
i, ᾱi

z[b(·+ t ∧ T )](s), b(s+ t ∧ T ))

=

∫
[t∧T,T )

l(yx(τ), a
j , δjx[b](τ), b(τ)).

As a consequence of (3.5), (3.6), and (3.7), we have

2ω(x) + 2ε ≥ sup
b∈B, T>0

{∫
[0,t∧T )

l(yx(s), a
j , α̂j

x[b](s), b(s))

+ 1[0,T )(t)

∫
[t∧T,T )

l(yz(s), a
i, ᾱi

z[b](s), b(s))

}

= sup
b∈B, T>0

{∫
[0,T )

l(yx(s), a
j , δjx[b](s), b(s))

}

≥ inf
α∈Γ

sup
b∈B, T>0

{∫
[0,T )

l(yx(s), a
j , αj

x[b](s), b(s))

}

= V j
γ (x).

Since ε > 0 is arbitrary, we conclude that ω(x) ≥ V j
γ (x).

Next we want to show that ω(x) ≤ V j
γ (x). From the definition of ω(x), choose

b1 ∈ B and T1 ≥ 0 such that

ω(x)− ε ≤
∫

[0,T1∧t)

l(yx(s), a
j , ᾱj

x[b1](s), b1(s)) + 1[0,T1)(t)V
i
γ (yx(t)),(3.8)

where ᾱj
x is defined as in (3.5) and ᾱj

x[b1](t
−) = ai for some ai ∈ A. If t ≥ T1, we
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have

ω(x)− ε ≤
∫

[0,T1)

l(yx(s), a
j , ᾱj

x[b1](s), b1(s))

≤ sup
b∈B, T>0

{∫
[0,T )

l(yx(s), a
j , ᾱj

x[b](s), b(s))

}

≤ V j
γ (x) + ε,

where the last inequality follows from (3.5). If t < T1, we have

ω(x)− ε ≤
∫

[0,t)

l(yx(s), ᾱ
j
x[b1](s), b1(s)) + V i

γ (yx(t)).(3.9)

Set z = yx(t, ᾱ
j
x[b1], b1). For each b ∈ B, define b̃ ∈ B by

b̃(s) =

{
b1(s), s < t,
b(s− t), s ≥ t,

and choose α̂ ∈ Γ so that

α̂z[b](s) = ᾱj
x[b̃](s+ t) for s ≥ 0.

By definition of V i
γ , choose b2 ∈ B and T2 > 0 such that

V i
γ (z)− ε ≤

∫
[0,T2)

l(yz(s), a
i, α̂z[b2](s), b2(s)).

Then, by change of variable τ = s+ t, we have

V i
γ (z)− ε ≤

∫
[t,t+T2)

l(yx(τ), a
j , ᾱj

x[b̃2](τ), b̃2(τ)).(3.10)

As a consequence of (3.9) and (3.10), we have

ω(x)− 2ε ≤
∫

[0,t)

l(yx(s), a
j , ᾱj

x[b1](s), b1(s)) +

∫
[t,t+T2)

l(yx(τ), a
j , ᾱj

x[b̃2](τ), b̃2(τ))

=

∫
[0,t+T2)

l(yx(τ), a
j , ᾱj

x[b̃2](τ), b̃2(τ))

≤ sup
b∈B, T>0

{∫
[0,T )

l(yx(τ), a
j , ᾱj

x[b](τ), b(τ))

}

≤ V j
γ (x) + ε,

where the last inequality follows from (3.5). Since ε > 0 is arbitrary, for both cases
we have ω(x) ≤ V j

γ (x) as required.
Corollary 3.3. Assume (A1)–(A4) and (A6). Then, for each j ∈ {1, . . . , r},

x ∈ R
N , and t > 0, we have

V j
γ (x) ≤ sup

b∈B, T>0

{∫ t∧T

0

[h(yx(s), a
j , b(s))− γ2|b(s)|2]ds+ 1[0,T )(t)V

j
γ (yx(t))

}(3.11)

≤ sup
b∈B

∫ t

0

[h(yx(s), a
j , b(s))− γ2|b(s)|2] ds+ V j

γ (yx(t)).(3.12)
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Proof. Fix j ∈ {1, . . . , r}, x ∈ R
N , and t > 0. Define α ∈ Γ by setting αj

x[b](s) =
aj for all s ≥ 0 for each b ∈ B. By Theorem 3.2, we have

V j
γ (x) ≤ sup

b∈B, T>0

{∫ t∧T

0

[h(yx(s), a
j , b(s))− γ2|b(s)|2]ds+ 1[0,T )(t)V

j
γ (yx(t))

}
,

and (3.11) follows.
To prove the second inequality (3.12), consider any b ∈ B and T with 0 < T < t.

Define a new b ∈ B by b(s) = b(s) for s ≤ T and b(s) = 0 for s > T . It follows that
yx(s, a

j , b) = yx(s, a
j , b) for 0 ≤ s ≤ T . For s > T , we have

h(yx(s), a
j , b(s))− γ2|b(s)|2 = h(yx(s), a

j , 0) ≥ 0

(by (A6)). Since we also know that V j
γ (x) ≥ 0 for all x ∈ R

N (take T = 0 in the
definition (1.4)), we get∫ t∧T

0

[h(yx(s), a
j , b(s))− γ2|b(s)|2] ds+ 1[0,T )(t)V

j
γ (yx(t))

≤
∫ t

0

[h(yx(s), a
j , b(s))− γ2|b(s)|2] ds+ V j

γ (yx(t, a
j , b)),

and (3.12) follows as well.
Proposition 3.4. Assume (A1)–(A5). Suppose that, for each j ∈ {1, . . . , r}, V j

is continuous. If V j
γ (x) < mini �=j{V i

γ (x) + k(aj , ai)}, then there exists τ = τx > 0
such that, for 0 < t < τx,

V j
γ (x) = sup

b∈B, T>0

{∫ t∧T

0

[h(yx(s), a
j , b(s))− γ2|b(s)|2]ds+ 1[0,T )(t)V

j
γ (yx(t))

}
.

Proof. We assume V j
γ (x) < mini �=j{V i

γ (x) + k(aj , ai)}. From Corollary 3.3, we
know that, for all t > 0,

V j
γ (x) ≤ sup

b∈B, T>0

{∫ t∧T

0

[h(yx(s), a
j , b(s))− γ2|b(s)|2]ds+ 1[0,T )(t)V

j
γ (yx(t))

}
.

Suppose there is a sequence {tn} with 0 < tn < 1
n for n = 1, 2, . . . such that

V j
γ (x) < sup

b∈B, T>0

{∫ tn∧T

0

[h(yx(s), a
j , b(s))− γ2|b(s)|2]ds+ 1[0,T )(tn)V

j
γ (yx(tn))

}
.

(3.13)

Let w(x, tn) be the right-hand side of (3.13). For each tn, define εn = 1
3 [w(x, tn) −

V j
γ (x)]. As tn → 0 as n → ∞, from (3.13) we see that w(x, tn) → V j

γ (x), and hence
εn → 0 as n→∞. It follows that

V j
γ (x) + εn < w(x, tn)− εn.(3.14)

Choose bn ∈ B and Tn ≥ 0 such that

w(x, tn)− εn ≤
∫ tn∧Tn

0

[h(yx(s), a
j , bn(s))− γ2|bn(s)|2]ds+ 1[0,Tn)(tn)V

j
γ (yx(tn)).

(3.15)
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By Theorem 3.2, choose αn ∈ Γ such that

V j
γ (x) + εn ≥

∫
[0,tn∧Tn]

l(yx(s), a
j , (αn)

j
x[bn](s), bn(s)) + 1[0,Tn)(tn)V

in
γ (yx(tn)),

(3.16)

where (αn)
j
x[bn](t

−
n ) = ain ∈ A. From (3.14), (3.15), and (3.16), we have∫

[0,tn∧Tn)

l(yx(s), a
j , (αn)

j
x[bn](s), bn(s)) + 1[0,Tn)(tn)V

in
γ (yx(tn))

<

∫ tn∧Tn

0

[h(yx(s), a
j , bn(s))− γ2|bn(s)|2]ds+ 1[0,Tn)(tn)V

j
γ (yx(tn)).

(3.17)

This implies that (αn)
j
x[bn] jumps in the interval [0, tn∧Tn]. Without loss of generality,

assume the number of switchings is equal to dn. If tn < Tn for infinitely many n, by
going down to a subsequence we may assume that tn ≤ Tn for all n. From (3.16), we
have

V j
γ (x) ≥ lim sup

n→∞

{∫
[0,tn∧Tn)

l(yx(s), a
j , αj

x,n[bn](s), bn(s))

+ 1[0,Tn)(tn)V
in
γ (yx(tn)), α

j
x,n[bn](t

−
n ) = ain ∈ A

}

= lim sup
n→∞

{∫ tn

0

[h(yx(s), α
j
x,n[bn](s), bn(s))− γ2|bn(s)|2]ds

+

dn∑
m=1

k(am−1, am) + V in
γ (yx(tn)), α

j
x,n[bn](tn) = ain ∈ A

}

= lim sup
n→∞

{
dn∑

m=1

k(am−1, am) + V in
γ (yx(tn)), α

j
x,n[bn](t

−
n ) = ain ∈ A

}
.

By using the continuity of V in
γ and

∑dn

m=1 k(am−1, am) > k(aj , ain), we have

V j
γ (x) ≥ min

i �=j
{V i

γ (x) + k(aj , ai)},

which contradicts one of the assumptions. If tn ≥ Tn for infinitely many n, again
without loss of generality we may assume that tn ≥ Tn for all n. From (3.17), we have

lim inf
n→∞

{∫
[0,Tn]

l(yx(s), a
jαj

x,n[bn](s), bn(s))

}

≤ lim sup
n→∞

{∫ Tn

0

[h(yx(s), a
j , bn(s))− γ2|bn(s)|2]ds

}
,

or, equivalently,

lim inf
n→∞

{∫ Tn

0

[h(yx(s), α
j
x,n[bn](s), bn(s))− γ2|bn(s)|2]ds+

dn∑
m=1

k(am−1, am)

}

≤ lim sup
n→∞

{∫ Tn

0

[h(yx(s), a
j , bn(s))− γ2|bn(s)|2]ds

}
.
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Thus

lim inf
n→∞

{
dn∑

m=1

k(am−1, am)

}
≤ lim sup

n→∞

{∫ Tn

0

h(yx(s), a
j , bn(s))ds

}

− lim inf
n→∞

{∫ Tn

0

h(yx(s), α
j
x,n[bn](s), bn(s))ds

}
,

and in this case Tn → 0 as n→∞. Note that the integral terms tend to 0 uniformly
with respect to bn ∈ B as Tn → 0 by assumption (A2), the uniform estimate (2.3),
and the continuity assumption (A1) on h. Thus we have

lim inf
n→∞

{
dn∑

m=1

k(am−1, am)

}
≤ 0,

which contradicts (A5).
Lemma 3.5. Assume (A1)–(A6) and V j

γ ∈ C(RN ), j = 1, . . . , r. If V j
γ (x) <

mini �=j{V i
γ (x) + k(aj , ai)}, then there exists τ = τx > 0 such that

V j
γ (x) ≥ sup

b∈B

{∫ t

0

[h(yx(s), a
j , b(s))− γ2|b(s)|2]ds+ V j

γ (yx(t))

}
for all t ∈ (0, τx).

Proof. From Proposition 3.4, choose τ = τx > 0 such that, for all t ∈ (0, τ),

V j
γ (x) = sup

b∈B, T>0

{∫ t∧T

0

[h(yx(s), a
j , b(s))− γ2|b(s)|2]ds+ 1[0,T )(t)V

j
γ (yx(t))

}
.

Thus

V j
γ (x) ≥ sup

b∈B, T>t

{∫ t∧T

0

[h(yx(s), a
j , b(s))− γ2|b(s)|2]ds+ 1[0,T )(t)V

j
γ (yx(t))

}

= sup
b∈B

{∫ t

0

[h(yx(s), a
j , b(s))− γ2|b(s)|2]ds+ V j

γ (yx(t))

}
.

Theorem 3.6. Assume (A1)–(A6) and V j
γ ∈ C(RN ), j = 1, . . . , r. Then Vγ is a

viscosity solution of the SQVI (2.5)

max

{
Hj(x,DV j

γ (x)), V
j
γ (x)−min

i �=j
{V i

γ (x) + k(aj , ai)}
}
= 0, x ∈ R

N , j = 1, . . . , r.

(3.18)

Proof. We first show that V j
γ is a viscosity supersolution of the SQVI (3.18). Fix

x0 ∈ R
N and aj ∈ A. Let ϕj ∈ C1(RN ), and x0 is a local minimum of V j

γ − ϕj . We
want to show that

max

{
Hj(x0, Dϕ

j(x0)), V
j
γ (x0)−min

i �=j
{V i

γ (x0) + k(aj , ai)}
}
≥ 0.(3.19)

We have two cases to consider.
Case 1. V j

γ (x0) = mini �=j{V i
γ (x0) + k(aj , ai)}.
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Case 2. V j
γ (x0) < mini �=j{V i

γ (x0) + k(aj , ai)}.
If Case 1 occurs, we have

max

{
Hj(x0, Dϕ

j(x0)), V
j
γ (x0)−min

i �=j
{V i

γ (x0) + k(aj , ai)}
}

≥ V j
γ (x0)−min

i �=j
{V i

γ (x0) + k(aj , ai)}
≥ 0.

If Case 2 occurs, we want to show that Hj(x0, Dϕ
j(x0)) ≥ 0. Fix b ∈ B, and set

b(s) = b for all s ≥ 0. From Lemma 3.5, choose t̄0 > 0 such that, for t ∈ (0, t̄0),

V j
γ (x0)− V j

γ (yx0(t)) ≥
∫ t

0

[h(yx0
(s), aj , b)− γ2|b|2] ds.(3.20)

Since x0 is a local minimum of V j
γ − ϕj , by (2.3) there exists t̂0 > 0 such that

ϕj(x0)− ϕj(yx0(s), a
j , b(s)) ≥ V j

γ (x0)− V j
γ (yx0(s), a

j , b(s)), 0 < s < t̂0.(3.21)

Set t0 = min{t̄0, t̂0}. As a consequence of (3.20) and (3.21), we have

ϕj(x0)− ϕj(yx0(t)) ≥
∫ t

0

[h(yx0
(s), aj , b)− γ2|b|2]ds, 0 < t < t0.(3.22)

Divide both sides by t, and let t→ 0 to get

−Dϕj(x0) · f(x0, a
j , b)− h(x0, a

j , b) + γ2|b|2 ≥ 0.

Since b ∈ B is arbitrary, we have Hj(x0, Dϕ
j(x0)) ≥ 0.

We next show that V j
γ is a viscosity subsolution of the SQVI (3.18). Fix x1 ∈ R

N

and aj ∈ A. Let ϕj ∈ C1(RN ), and x1 is a local maximum of V j
γ − ϕj . We want to

show that

max

{
Hj(x1, Dϕ

j(x1)), V
j
γ (x1)−min

i �=j
{V i

γ (x1) + k(aj , ai)}
}
≤ 0.(3.23)

From Proposition 3.1, V j
γ (x1) ≤ mini �=j{V i

γ (x1) + k(aj , ai)}. Thus we want to show

that Hj(x1, Dϕ
j(x1)) ≤ 0.

Let t > 0 and ε > 0. From (3.12) in Corollary 3.3, we may choose b̂ = b̂t,ε ∈ B
such that

V j
γ (x1) ≤

∫ t

0

[h(yx1
(s), aj , b̂(s))− γ2|b̂(s)|2] ds+ V j

γ (yx1
(t, b̂)) + εt,(3.24)

and hence

V j
γ (x1)− V j

γ (yx1(t, b̂)) ≤
∫ t

0

[h(yx1(s), a
j , b̂(s))− γ2|b̂(s)|2] ds+ εt.(3.25)

Since x1 is a local maximum of V j
γ − ϕj , by (2.3) we may assume that

ϕj(x1)− ϕj(yx1
(s), aj , b̂(s)) ≤ V j

γ (x1)− V j
γ (yx1

(s), aj , b̂(s)), 0 < s ≤ t.(3.26)
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Combine (3.25) and (3.26) to get

ϕj(x1)− ϕj(yx1(t, a
j , b̂(t))) ≤

∫ t

0

[h(yx1(s), a
j , b̂(s))− γ2|b̂(s)|2] ds+ εt.(3.27)

Observe that (2.3) and (A3) imply

|f(yx1(s), a
j , b̂(s))− f(x1, a

j , b̂(s))| ≤ ωf (Mxs, |x|+Mxt0) for 0 < s < t0(3.28)

and

|h(yx(s), aj , b̂(s))− h(x1, a
j , b̂(s))| ≤ ωh(Mx1s, |x|+Mx1

t0) for 0 < s < t0,(3.29)

where t0 does not depend on ε, t, or b̂. By (3.29), the integral on the right-hand side
of (3.27) can be written as∫ t

0

[h(x1, a
j , b̂(s))− γ2|b̂(s)|2] ds+ o(t) as t→ 0.

Thus

ϕj(x1)− ϕj(yx1
(t, aj , b̂(t))) ≤

∫ t

0

[h(x1, a
j , b̂(s))− γ2|b̂(s)|2] ds+ εt+ o(t).(3.30)

Moreover,

ϕj(x1)− ϕj(yx1(t, a
j , b̂)) = −

∫ t

0

d

ds
ϕj(yx1(s, a

j , b̂)) ds

= −
∫ t

0

Dϕj(yx1(s, a
j , b̂)) · f(yx1(s), a

j , b̂(s)) ds

= −
∫ t

0

Dϕj · f(x1, a
j , b̂(s)) ds+ o(t),(3.31)

where we used (2.3), (3.28), and ϕj ∈ C1 in the last equality to estimate the difference
betweenDϕj ·f computed at yx1

(s) and at x1, respectively. Plugging (3.31) into (3.30)
gives∫ t

0

−Dϕj(x1) · f(x1, a
j , b̂(s)) ds ≤

∫ t

0

[h(x1, a
j , b̂(s))− γ2|b̂|2] ds+ εt+ o(t).

Thus ∫ t

0

[−Dϕj(x1) · f(x1, a
j , b̂(s))− h(x1, a

j , b̂(s)) + γ2|b̂(s)|2] ds ≤ εt+ o(t).(3.32)

We estimate the left-hand side of this inequality from below next to get

inf
b∈B
{−Dϕj(x1) · f(x1, a

j , b)− h(x1, a
j , b) + γ2|b|2} · t ≤ εt+ o(t).(3.33)

Divide by t, and pass to the limit as t→ 0 to get

inf
b∈B
{−Dϕj(x) · f(x, aj , b)− h(x, aj , b) + γ2|b|2} ≤ ε.
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Since ε > 0 is arbitrary, we conclude that Hj(x,Dϕj(x)) ≤ 0.
We next give a connection of a switching storage (vector) function with the SQVI

(3.18).
Theorem 3.7. Assume (A1)–(A5), and assume that S = (S1, . . . , Sr) is a con-

tinuous switching-storage function for the closed-loop system formed by the nonantic-
ipating strategy α ∈ Γ. Then S is a viscosity supersolution of SQVI (3.18).

Proof. The proof follows exactly as the proof that the lower-value function V γ

is a viscosity subsolution in the proof of Theorem 3.6 once we verify the following
analogue of Lemma 3.5 for switching-storage functions.

Lemma 3.8. Assume (A1)–(A6), and assume that S = (S1, . . . , Sr) is a con-
tinuous switching-storage function. If Sj(x) < mini �=j{Si(x) + k(aj , ai)}, then there
exists τ = τx > 0 such that

Sj(x) ≥ sup
b∈B

{∫ t

0

[h(yx(s), a
j , b(s))− γ2|b(s)|2]ds+ Sj(yx(t))

}
for all t ∈ (0, τx).

Proof. By the defining condition (1.5) for a storage function (1.5) (with attenua-
tion level γ), we have

(3.34) Sj(x) ≥
∫ t

0

[h(yx(s), α
j
x[b](s), b(s))− γ2|b(s)|2] ds

+
∑

0≤τ<t

k(αj
x[b](τ

−), αj
x[b](τ)) + Sj(t)(yx(t, α

j
x[b], b)).

Due to the assumed boundedness of B and the boundedness of h (see (A2)), it is clear
that, given ε > 0, we may choose τ = τε so that

sup
b∈B

{∫ t

0

[h(yx(s), a
j , b(s))− γ2|b(s)|2]ds

}
> −ε

for all t ∈ [0, τε). We conclude that, for any such t,

Sj(x) ≥ −ε+
∑

0≤τ<t

k(αj
x[b](τ

−), αj
x[b](τ)) + Sj(t)(yx(t, α

j
x[b], b)).(3.35)

If we now choose ε = 1
2 [mini �=j{Si(x)+ k(aj , ai)}−Sj(x)] > 0 and use the continuity

of Sj for each j, the estimate (3.35) in the presence of any jumps in the interval [0, τε)
leads to a contradiction. Since we are now assured that there are no jumps, (3.34)
collapses to

Sj(x) ≥
∫ t

0

[h(yx(s), α
j
x[b](s), b(s))− γ2|b(s)|2] ds+ Sj(yx(t, α

j
x[b], b))

for 0 ≤ t < τε and for all b ∈ B. Taking the supremum of b ∈ B now leads to the
desired result. This concludes the proof of Lemma 3.8 and of Theorem 3.7.

We now proceed to the synthesis of a switching-control strategy achieving the
dissipation inequality for a given viscosity supersolution U = (U1, . . . , Ur) of SQVI
(3.18). Given a continuous nonnegative vector function U = (U1, . . . , Ur) on R

N

satisfying the condition

U j(x) ≤ min
i �=j
{U i(x) + k(aj , ai)} for all x ∈ R

N , j = 1, . . . , r,
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we associate a state-feedback switching strategy αU : (y(t), aj)→ αj(y(t)) by the rule

αj(y(t)) =

{
aj if U j(y(t)) < mini �=j{U i(y(t)) + k(aj , ai)},
a� for any 0 ∈ argmini �=j{U i(y(t)) + k(aj , ai)} otherwise.(3.36)

In other words, the associated feedback switching strategy is as follows: if the current
state is y(t) and the current old control is a(t−) = aj, then set a(t) = αj(y(t)). Such a
strategy can also be expressed as a nonanticipating strategy αU : (x, aj , b)→ αj

U,x[b];

explicitly, for this particular case αU , we have that α
j
U,x[b] is given by

αj
U,x[b](t) =

∑
n≥1

an−11[τn−1,τn)(t) for t ≥ 0(3.37)

and αj
U,x[b](0

−) = a0, where

τ0 = 0, a0 = aj0 = aj ,

and, for n = 1, 2, 3, . . . , τn[b] is the infimum over t > τn−1 for which

U jn−1(yy(τn−1)(t− τn−1, a
jn−1 , b(· − τn−1)))

= min
i �=jn−1

{U i(yy(τn−1)(t− τn−1, a
jn−1 , b(· − τn−1))) + k(ajn−1 , ai)}},

or +∞ if the preceding set is empty; and an = ajn = any al 	= ajn−1 for which

min
i �=jn−1

{U i(yy(τn−1)(τn − τn−1, a
jn−1 , b(· − τn−1))) + k(ajn−1 , ai)}

= U l(yy(τn−1)(τn − τn−1, a
jn−1 , b(· − τn−1))) + k(ajn−1 , al)

if τn < ∞ or undefined if τn = ∞. Note that, if τ1 = τ0 = 0, there is an immediate
switch from a0 to a1 at time 0, and the n = 1 term in (3.37) is vacuous. Moreover, by
(A5), τn > τn−1 for τn−1 <∞, and n > 1. To see this, we assume that τn = τn−1 <∞
for some n > 1. From the definition of τn−1 and τn, we would have

U jn−2(y(τn−1)) = U jn−1(y(τn−1)) + k(ajn−2 , ajn−1)

= U jn(y(τn−1)) + k(ajn−1 , ajn) + k(ajn−2 , ajn−1) (hence jn 	= jn−2)

> U jn(y(τn−1)) + k(ajn−2 , ajn)

≥ min
i �=jn−2

{U i(y(τn−1)) + k(ajn−2 , ai)},

which gives a contradiction. Moreover, as shown in the proof of the next theorem, if
τn < ∞ for all n, it still holds that limn→∞ τn = ∞, so the closed-loop trajectory is
defined for all t > 0.

Theorem 3.9. Assume the following.
(i) (A1)–(A5) hold.
(ii) U = (U1, . . . , Ur) is a nonnegative continuous viscosity supersolution in R

N

of the SQVI (3.18)

max

{
Hj(x,DU j(x)), U j(x)−min

i �=j
{U i(x) + k(aj , ai)}

}
= 0, x ∈ R

N , j = 1, . . . , r.
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(iii) U j(x) ≤ mini �=j{U i(x) + k(aj , ai)}, x ∈ R
N , j ∈ {1, . . . , r}.

Let αU be the state-feedback strategy defined by (3.36) or, equivalently, the nonantici-
pating disturbance-feedback strategy αU defined by (3.37). Then U = (U1, . . . , Ur) is
a storage function for the closed-loop system formed by the strategy αU . In particular,
we have

U j(x) ≥ sup
b∈B, T≥0

{∫
[0,T )

l(yx(s), a
j , αj

U,x[b](s), b(s))

}
≥ V j

γ (x)

for each x ∈ R
N and aj ∈ A. Thus Vγ , if continuous, is characterized as the minimal,

nonnegative continuous viscosity supersolution of the SQVI (3.18) satisfying condition
(iii) as well as the minimal continuous switching-storage function satisfying condition
(iii) for the closed-loop system associated with some nonanticipating strategy αVγ .

Proof. Let αj
U,x[b](t) be the switching strategy defined as in (3.37). We claim that

τn →∞ as n→∞.

If τn = ∞ for some n, then it is trivially true. Otherwise, since we observed just
before the statement of Theorem 3.9 that {τn} is a nondecreasing sequence, it would
follow that

lim
n→∞ τn = T <∞(3.38)

with 0 ≤ τn < T for all n. From (3.38), we have that {τn} is a Cauchy sequence, and
hence for all ν > 0 there is some n such that τn < τn−1 + ν. By the definition of τn,

U jn−1(yx(τn)) = U l(yx(τn)) + k(ajn−1 , al) for some al 	= ajn−1 .(3.39)

(We have written yx(t) for yx(t, α
j
x[b], b).) By definition of τn−1, we have

U jn−2(yx(τn−1)) = U jn−1(yx(τn−1)) + k(ajn−2 , ajn−1).(3.40)

By (iii), we have

U jn−2(yx(τn−1)) ≤ min
i �=jn−2

{U i(yx(τn−1)) + k(ajn−2 , ai)}

≤ U l(yx(τn−1)) + k(ajn−2 , al) if l 	= jn−2,

and hence

U jn−2(yx(τn−1)) ≤ U l(yx(τn−1)) + k(ajn−2 , al)(3.41)

if l 	= jn−2. If l = jn−2, (3.41) holds with equality (by (A5)), and hence (3.41) in fact
holds without restriction. From (3.40) and (3.41), we have

k(ajn−2 , ajn−1)− k(ajn−2 , al) ≤ U l(yx(τn−1))− U jn−1(yx(τn−1)).(3.42)

As a consequence of (3.39) and (3.42), we have

0 < k(ajn−2 , ajn−1) + k(ajn−1 , al)− k(ajn−2 , al)

≤ U l(yx(τn−1))− U l(yx(τn)) + U jn−1(yx(τn))− U jn−1(yx(τn−1))

≤ ωl(ν) + ωjn−1(ν),



ROBUST OPTIMAL SWITCHING CONTROL 919

and hence (by the strict triangle inequality in (A5))

0 < min
i,j,l : i �=j �=l

{
k(ai, aj) + k(aj , al)− k(ai, al)

} ≤ ω�(ν) + ωj(ν),

where, in general, ωj is a modulus of continuity for U j(yx(·)) on the interval [0, T ].
Letting ν tend to zero now leads to a contradiction, and the claim follows.

Hence αj
x[b](t) =

∑
an−11[τn−1,τn)(t) ∈ Γ. Since U is a viscosity supersolution of

the SQVI (3.18), we have Hjn(yx(s), DU
jn(yx(s))) ≥ 0 in the viscosity-solution sense

for τn < s < τn+1. Thus (see [6, section II.5.5])

U jn(yx(s))− U jn(yx(t)) ≥
∫ t

s

[h(yx(s), a
jn , b(s))− γ2|b(s)|2]ds(3.43)

for all b ∈ B, τn < s ≤ t < τn+1. (This argument uses the boundedness of the
disturbance set B.) Letting s→ τ+

n and t→ τ−n+1, we get

U jn(yx(τn))− U jn(yx(τn+1)) ≥
∫ τn+1

τn

[h(yx(s), a
jn , b(s))− γ2|b(s)|2]ds for all b ∈ B.

(3.44)

We also have

U jn(yx(τn+1)) = U jn+1(yx(τn+1)) + k(ajn , ajn+1) for τn+1 <∞.(3.45)

Adding (3.44) over τn ≤ T and using (3.45), we have

U j0(x) ≥
∫ T

0

[h(yx(s), α
j
x[b](s), b(s))− γ2|b(s)|2]ds+

∑
τn≤T

k(an−1, an) + U jn(yx(T ))

≥
∫ T

0

[h(yx(s), α
j
x[b](s), b(s))− γ2|b(s)|2]ds+

∑
τn≤T

k(an−1, an).

Since this inequality holds for arbitrary b ∈ B and T ≥ 0, we have

U j(x) ≥ sup
b∈B, T≥0

{∫
[0,T ]

l(yx(s), a
j , αj

x[b](s), b(s))

}
.

Thus U j(x) ≥ V j
γ (x). By Theorem 3.6, we know that Vγ is a viscosity supersolution of

the SQVI (3.18) if it is continuous. (Note that the proof of the viscosity-supersolution
property of Vγ in Theorem 3.6 does not use the assumption (A6).) Also, Vγ has
the property (iii) by Proposition 3.1. Thus we conclude that, if continuous, Vγ is
the minimal, nonnegative continuous viscosity supersolution of SQVI (3.18) which
satisfies condition (iii)

The first part of Theorem 3.9, already proved, then implies that Vγ is a switching-
storage function. Moreover, if S is any continuous, switching-storage function for
some nonanticipating strategy αVγ , from Theorem 3.7 we see that S is a viscosity
supersolution of the SQVI (3.18). Again, from the first part of this theorem, already
proved, we then see that S ≥ Vγ if S has the property (iii), and hence Vγ is also
the minimal continuous switching-storage function satisfying the condition (iii), as
asserted.
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Remark 1. The proof of Theorem 3.9 required deduction of an integral inequality
(3.43) from knowledge of an inequality of the form H(y(x), DU(y(x)) ≥ 0 holding
in the viscosity sense; the proof of this fact from [6, section II.5.5] ultimately uses
the boundedness of the disturbance set B. However, the paper [13] obtains such
an integral inequality without a boundedness assumption by using other tools of
nonsmooth analysis (e.g., “contingent epiderivative” and viability theory). By using
this alternative nonsmooth framework rather than restricting oneself to “viscosity-
sense supersolutions,” one can get a version of Theorem 3.9 which does not rely on
the boundedness of B.

Remark 2. The results of this section reduce the computation of robust state-
feedback switching strategy α to computing the solution (U = U1, . . . , Ur) (or, more
precisely, the minimal viscosity supersolution) of the SQVI of the form

max

{
Hj(x,DU j(x)), U j(x)−min

i �=j
{U i(x) + k(aj , ai)}

}
= 0, j = 1, . . . , r.

(SQVI)

This leaves open the issue of how one computes such a solution of an SQVI. A con-
nection can be made with the easier problem of solving a single variational inequality
as follows.

If U = (U1, . . . , Ur) (with U j ∈ C(RN ) for j = 1, . . . , r) is the minimal viscosity
supersolution of (SQVI), then each U j can be interpreted as the minimal viscosity
supersolution of the variational inequality (VI)

max{H(x,DU(x)), U(x)− Φ(x)} = 0(VI)

with Hamiltonian H equal to Hj and with stopping cost Φ equal to Φj = mini �=j{U i+
k(aj , ai)}. This suggests defining an iteration map F as follows. Given an r-tuple
U = (U1, . . . , Ur) of nonnegative real-valued functions, define a new r-tuple F (U) =
(F (U)1, . . . , F (U)r) of nonnegative real-valued functions by

F (U)j = the minimal viscosity supersolution of (VI) with H = Hj and Φ = Φj .

Note that U is the minimal viscosity supersolution of (SQVI) if and only if F (U) = U ,
i.e., if and only if U is a fixed point of F . Formally, one can solve the fixed point
problem by guessing a starting point U0 = (U1

0 , . . . , U
r
0 ) and then iterating

Un+1 = F (Un), n = 0, 1, 2, . . . , .

If Un → U∞ and F is continuous, then, from Un+1 = F (Un), one can take the limit
to get U∞ = F (U∞), from which we see that U∞ is a fixed point for F . For finite
horizon problems or problems with a positive discount factor in the running cost,
the connection is a little cleaner; in this situation, one has a uniqueness theorem for
solutions of the relevant SQVI.

A similar remark giving a connection between the impulsive control problem and
the stopping time problem is given in [6, Chapter III, section 4.3], where some con-
vergence results are also given. It would be of interest to develop similar convergence
results for the SQVI associated with an optimal switching-control problem.

4. Stability for switching-control problems. In this section, we show how
the solution of the SQVI (3.18) can be used for stability analysis.
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We consider the system (1.1)–(1.2) with some control strategy α plugged in to
get a closed-loop system with the disturbance signal as the only input:

Σsw

{
ẏ = f(y, αj

x[b], b), y(0) = x, a(0−) = aj ,
z = h(y, αj

x[b], b).

An example of such a strategy α is the canonical strategy αU (see (3.36) or (3.37))
determined by a continuous supersolution of the SQVI (3.18). Moreover, if Vγ =
(V 1

γ , . . . , V
r
γ ) is the vector lower-value function for the associated game as in (1.4) and

we assume that 0 is an equilibrium point for the autonomous system formed from
(1.1)–(1.2) by taking a(s) = ai0 and b(s) = 0 (so f(0, ai0 , 0) = 0 and h(0, ai0 , 0) = 0),
then it is easy to check that V i0

γ (0) = 0. Furthermore, the associated strategy α = αVγ

has the property that

αi0
0 [0] = ai0 ,(4.1)

so 0 is an equilibrium point of the closed-loop system Σsw with α = αVγ
and a(0−) =

ai0 as well. Our goal is to give conditions which guarantee a sort of converse, starting
with any continuous supersolution U of the SQVI (3.18).

We first need a few preliminaries. The following elementary result can be found,
e.g., in [19].

Lemma 4.1. If φ(·) : R → R is a nonnegative, uniformly continuous function
such that

∫∞
0

φ(s) ds <∞, then limt→∞ φ(t) = 0.
We say that the closed-loop switching system Σsw is zero-state observable for

initial control setting aj if whenever h(yx(t), α
j
x[0](t), 0) = 0 for all t ≥ 0, then yx(t) =

yx(t, α
j
x[0], 0) = 0 for all t ≥ 0. We say that the closed-loop system Σsw is zero-state

detectable for initial control setting aj if

lim
t→∞h(yx(t), α

j
x[0](t), 0) = 0 implies that lim

t→∞ yx(t, α
j
x[0], 0) = 0.

The following proposition gives conditions which guarantee that a particular compo-
nent U j of a viscosity supersolution U = (U1, . . . , Ur) is positive-definite, a conclusion
which will be needed as a hypothesis in the stability theorem to follow.

Proposition 4.2. Assume the following:
(i) (A1)–(A6) hold;
(ii) Σsw is zero-state observable for some initial control setting a

j;
(iii) U = (U1, . . . , Ur) is a nonnegative continuous viscosity supersolution of the

SQVI (3.18)

max

{
Hj(x,DU j(x)), U j(x)−min

i �=j
{U i(x) + k(aj , ai)}

}
= 0, x ∈ R

N , j = 1, . . . , r;

(iv) U j(x) ≤ mini �=j{U i(x) + k(aj , ai)}, x ∈ R
N , j = 1, . . . , r.

Then U j(x) > 0 for x 	= 0.
Proof. Let x ∈ R

N . By Theorem 3.9, U is a storage function for Σsw if we use
α = αU given by (3.36) or, equivalently, (3.37). Thus

U j(x) ≥
∫

[0,T )

l(yx(s), a
j , αj

U,x[0](s), 0) ds+ U j(T )(yx(T, α
j
U,x[0], 0))

≥
∫

[0,T )

l(yx(s), a
j , αj

U,x[0](s), 0) ds for all T > 0.
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Since k is nonnegative, we have

U j(x) ≥
∫ T

0

h(yx(s), α
j
x[0](s), 0) ds for all T ≥ 0.

Thus, if U j(x) = 0, then h(yx(s, α
j
x[0], 0), α

j
x[0](s), 0) = 0 for all s ≥ 0 because h is

nonnegative by assumption (A6). Since Σsw is zero-state observable for initial control
setting aj , it follows that yx(s, α

j
x[0], 0) = 0 for all s ≥ 0. Thus x = yx(0, αx[0], 0) = 0.

Since U j is nonnegative, we conclude that, if x 	= 0, then U j(x) > 0.
Proposition 4.3. Assume the following:
(i) (A1)–(A6) hold;
(ii) U = (U1, . . . , Ur) is a nonnegative continuous viscosity supersolution of the

SQVI (3.18)

max

{
Hj(x,DU j(x)), U j(x)−min

i �=j
{U i(x) + k(aj , ai)}

}
= 0, x ∈ R

N , j = 1, . . . , r;

(iii) U j(x) ≤ mini �=j{U i(x) + k(aj , ai)}, x ∈ R
N , j = 1, . . . , r;

(iv) there is an i0 ∈ {1, . . . , r} such that U i0(0) = 0 and U i0(x) > 0 for x 	= 0.
(v) Σsw is zero-state detectable for all initial control settings a

j ∈ A.
Then the strategy αU associated with U as in (3.36) or (3.37) is such that αi0

U,0[0](s) =

ai0 for all s and 0 is an equilibrium point for the system ẏ = f(y, ai0, 0). Moreover,
0 is a globally asymptotically stable equilibrium point for the system Σsw in the sense
that the solution y(t) = yjx(t, α

j
U,x[0], 0) of

ẏ = f(y, αj
U,x[0], 0), y(0) = x,

has the property that

lim
t→∞ yjx(t, α

j
U,x[0], 0) = 0

for all x ∈ R
N and all aj ∈ A.

Proof. Suppose that U i0(0) = 0 and U i0(x) > 0 for x 	= 0. Let T ≥ 0 and x ∈ R
N .

Since U is a storage function for the closed-loop system formed from (1.1)–(1.2) with
α = αU , we have

(4.2) U i0(x) ≥
∫ T

0

h(yx(s), α
i0
x [0](s), 0) ds

+
∑
τ<T

k(αi0
U,x(τ

−), αi0
U,x(τ)) + U j(T )(yx(T, α

i0
U,x[0], 0)).

Since h, k, U are nonnegative and U i0(0) = 0 by our assumptions, substitution of
x = 0 in (4.2) forces ∑

τ<T

k(αi0
U,0[0](τ

−), αi0
U,0[0](τ)) = 0.

This implies that αi0
U,0[0](t) = ai0 for all 0 ≤ t ≤ T . Thus

0 ≤ U j(T )(y0(T, α
i0
U,0[0], 0)) = U i0(y0(T, α

i0
U,0[0], 0)) ≤ U i0(0) = 0.
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By the positive definite property of U i0 , we have y0(T, α
i0
U,0[0], 0) = 0. Since T ≥ 0 is

arbitrary, we conclude that 0 is an equilibrium point of the system ẏ = f(y, ai0 , 0).
Next we want to show that 0 is a globally asymptotically stable equilibrium point

for the closed-loop switching system Σsw with α = αU . Again, from the storage-
function property of U = (U1, . . . , Ur) for the system Σsw with α = αU , we have∫ T

0

h(yx(s), α
j
U,x[0](s), 0) ds ≤ U j(x) <∞ for all T > 0.

Thus limt→∞ h(yx(t), α
j
U,x[0], 0) = 0 by Lemma 4.1. By the detectability assumption

(v), we have limt→∞ yx(t, α
j
U,x[0], 0) = 0 as required.

5. An example. We consider in this section an optimal switching problem with
one-dimensional state space (x ∈ R

1) for which the value function and corresponding
control are explicitly computable via a simple geometric construction. There will be
two controls: a ∈ {1, 2}. The switching cost will be symmetric: k(1, 2) = k(2, 1) =
β > 0. For each a value, we will use a′ = 3−a to denote the other control value. The
system dynamics will be given by

f(y, 1, b) = −y + b; f(y, 2, b) = −µ(y − 1) + b,(5.1)

with output function h taken simply to be the squared state

h(y, a, b) = y2.(5.2)

We use the specific parameter values

µ = 3, β = .4, γ = 2

throughout.
This example satisfies all of our hypotheses except that we take B = R, which is

not compact. Our purpose is to make the SQVI (2.5) more tangible in the context of
the example, to show how the optimal strategy α∗ is determined, and to show how
one might establish its optimality. We note that, even apart from the fact that our
B is not compact, Theorem 3.9 would not by itself imply that our solution V a of the
SQVI is that value of the game (i.e., that α∗ is optimal); an additional argument to
establish the minimality of V a among nonnegative solutions is also necessary. Instead
we will outline a direct proof of the optimality of α∗. Since we are not appealing
to any of the theorems above, the fact that the compactness hypothesis on B is not
satisfied does not pose a problem. (It would be possible to modify the example so
that B = [−M,M ] could be used for some sufficiently large M . For instance, if the
f(y, a, b) were bounded (nonlinear) functions of y, this would be possible. However,
the linear-affine dynamics of (5.1) are simpler to work with, so we have kept them.)

Our task is to construct the appropriate solution of the SQVI (2.5). With just
two control values a, the SQVI reduces to the following: for each a,

V a(x) ≤ β + V a′
(x) for all x,(5.3)

Ha(x,D+V a(x)) ≤ 0 for all x,(5.4)

Ha(x,D−V a(x)) ≥ 0 for those x with V a(x) < β + V a′
(x).(5.5)

Here we have used the standard notation D+V a(x) to refer to the set of all possible
slopes ϕ′(x) of smooth test functions ϕ for which V a − ϕ has a local maximum at x,
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usually called the superdifferential of V a at x. Similarly, the subdifferential D−V a(x)
denotes the set of all ϕ′(x) for smooth test functions ϕ such that V a(x) − ϕ has a
local minimum at x. (See [6, page 29].) At points x where both V 1 and V 2 are
differentiable, (5.3)–(5.5) can be expressed more explicitly as

|V 1(x)− V 2(x)| ≤ β,

together with the following.
1. If V 1(x)− V 2(x) = β, then (V 1)′(x) = (V 2)′(x) =: q(x) (since V 1 − V 2 has

a maximum at x), and

H1(x, q(x)) ≤ 0, H2(x, q(x)) = 0.

2. If V 1(x)− V 2(x) = −β, then, similarly, (V 1)′(x) = (V 2)′(x) =: q(x) and

H1(x, q(x)) = 0, H2(x, q(x)) ≤ 0.

3. If |V 1(x)− V 2(x)| < β, then

H1(x, (V 1)′(x)) = 0, H2(x, (V 2)′(x)) = 0.

Where one or the other of V a is not differentiable, we must revert to (5.3)–(5.5).
However, one of the cases 1–3 above will apply at most x.

The two Hamiltonian functions are

H1(x, p) = px− x2 − 1

4γ2
p2,

H2(x, p) = µp(1− x)− x2 − 1

4γ2
p2.

These are both instances of the general formula

H(x, p) = inf
b
{−(g(x) + b) · p− x2 + γ2b2}(5.6)

= −pg(x)− x2 − 1

4γ2
p2

= (γg(x))2 − x2 −
(

1

2γ
p+ γg(x)

)2

,

where g(x) = −x for a = 1 and g(x) = −µ(x − 1) for a = 2. We are interested in
V ′(x) = p(x) solvingH(x, p(x)) = 0. Provided |x| < γ|g(x)|, the equationH(x, p) = 0
has two distinct real solutions:

−2γ2g(x)± 2γ
√
γ2g(x)2 − x2.

For each a, we need to select an appropriate branch pa(x) of the solution toHa(x, p) =
0. For a = 1, we take

p1(x) = 2ρx,

where ρ = γ2−γ
√
γ2 − 1. Note that, for x < 0, p1(x) is the larger of the two solutions

of H1(x, p) = 0, and so

H1(x, p) ≤ 0 for all p ≥ p1(x), x < 0.(5.7)
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For x > 0, however, p1(x) is the smaller of the two solutions, and so

H1(x, p) ≤ 0 for all p ≤ p1(x), x > 0.(5.8)

For p2(x), we note that H2(x, p) = 0 has no solution for 6
7 < x < 6

5 because, with
g(x) = −µ(x− 1), |x| > γ|g(x)| there. We take

p2(x) =

{
2γ2µ(x− 1)− 2γ

√
γ2µ2(x− 1)2 − x2 for x ≥ 6

5 ,

2γ2µ(x− 1) + 2γ
√
γ2µ2(x− 1)2 − x2 for x ≤ 6

7 .

Let

W 1 = ρx2

and

W 2(x) =

∫
p2(x) dx.

This determinesW 2 up to two constants, one each for (−∞, 6/7) and (6/5,∞). Those
constants are determined uniquely by

W 2(x) = β +W 1(x) for x = 0, 3/2.(5.9)

These are solutions of Ha(x,DW a(x)) = 0. The desired solutions of the SQVI are
given by

V 2(x) =




W 2(x) for x < 0,
β +W 1(x) for 0 ≤ x ≤ x1,
W 2(x) for x1 < x

(5.10)

and

V 1(x) =




β +W 2(x) for x ≤ x2,
W 1(x) for x2 < x < x3,
β +W 2(x) for x3 ≤ x,

(5.11)

where x2 = −1.3175 . . . , x1 = 3/2, x3 = 2.55389 . . . , values whose significance will
emerge below. Graphs are presented in Figure 5.1.

We now outline the verification that V a as defined above do satisfy the SQVI,
leaving many of the details to the interested reader. First, consider 0 < x < x1. Here
V 1 ′(x) = p1(x) so that H1(x, V 1 ′(x)) = 0. Since V 2 = β+V 1, we also have V 2 ′(x) =
p1(x). Case 2 above requires H2(x, p1(x)) ≤ 0, which is true up to x = 3/2 = x1

but not beyond. For x1 < x < x3, we have Ha(x, V a ′(x)) = Ha(x, pa(x)) = 0 for
both a, so all of the necessary derivative conditions are satisfied. Note that (5.9)
ensures that V 2 is continuous at x1. Moreover, H2(x, p1(x)) = 0 at x = x1 because
DW 1(x1) = p1(x1) = p2(x1) = DW 2(x1) there. This means V 2 is C1 at x1. We have
V 1(x) − β < V 2(x) < β + V 1(x) for x1 < x < x3, but at x3 we find V 1(x3) − β =
V 2(x3). (This determines the value of x3.) Next consider x > x3. Here V

2 ′ = p2(x)
so that H2(x, V 2 ′(x)) = 0. Since V 1(x) = β + V 2(x), V 1 ′(x) = V 2 ′(x) = p2(x) and
otherwise case 1 requires only that H1(x, p2(x)) ≤ 0, which does hold. Note that the
choice of x3 makes V 1 continuous at x3, but it is not differentiable there. One finds
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Fig. 5.1. V 1 (solid) and V 2 (dashed).

that D−V 1(x3) = ∅ and D+V 1(x3) is the interval [p
2(x3), p

1(x3)]. By virtue of (5.8),
the viscosity solution requirement H1(x3, D

+V 1(x3)) ≤ 0 is satisfied.
Next consider x2 < x < 0. Here again we have V a ′(x) = pa(x) so that, for both a,

Ha(x, pa(x)) = 0.

We also have V 1(x)−β < V 2(x) < β+V 1(x), but at x2 we find V
1(x2)−β = V 2(x2).

This determines x2 and makes V 1 continuous at x2. For x < x2, we have V 1 ′(x) =
V 2 ′(x) = p2(x) so that case 1 above requires H2(x, p2(x)) = 0 and H1(x, p2(x)) ≤ 0,
both of which are true for x < x2. Note that V

1 is not differentiable at x2. One finds
that D−V 1(x2) = ∅ and D+V 1(x2) is the interval [p

1(x2), p
2(x1)]. By virtue of (5.7),

the viscosity solution requirement H1(x2, D
+V 1(x2)) ≤ 0 is satisfied.

The strategy α∗ associated with our solution (5.10), (5.11) is easy to describe in
state-feedback terms. Define the switching sets

S1 = {x : V 2(x) = β + V 1(x)} = [0, x1],

S2 = {x : V 1(x) = β + V 2(x)} = (−∞, x2] ∪ [x3,∞).

The strategy α∗ will instantly switch from a = 1 to a = 2 whenever y(t) ∈ S2 and
will instantly switch from a = 2 to a = 1 whenever y(t) ∈ S1. We will prove directly
that, in fact, V a

γ = V a and that our strategy α∗ is optimal. To be precise, we shall
show that, for any j and any strategy α ∈ Γ,

V j(y(0)) ≤ sup
b∈B

sup
T>0



∫ T

0

[h(yx(s), α
j
x[b](s), b(s))− γ2|b(s)|2] ds+

∑
τi≤T

k(ai−i, ai)


 .

(5.12)

Moreover, for our strategy α∗, (5.12) will be an equality for all x, j. The key to this
is the existence of a particular “worst case” disturbance, as claimed by the follow-
ing proposition. (This proposition is intended only in the context of the particular
example and the parameter values described above.)
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Proposition 5.1. For any x ∈ R
N , j ∈ {1, 2}, and strategy α ∈ Γ, there exists

a disturbance b∗ = b∗
αj

x
∈ B with the property that

b∗(t) =
1

2γ2
(V αj

x[b∗])(t))′(yx(t, αj
x[b], b))

holds for all but finitely many t in every interval [0, T ].
A proof can be based on the obvious construction. Given α ∈ Γ, an initial control

j, and an initial point x ∈ R
N , consider the solution of

ẏ = f

(
y, j,

1

γ2
(V j)′(y)

)
; y(0) = x.(5.13)

We simply take b∗(t) = (V j)′(y(t)) up until the first time τ1 that the policy αj
x[b

∗]
calls for a switch from a = j to a = j′. For t > τ1, we continue by solving

ẏ = f

(
y, j′,

1

γ2
(V j′)′(y)

)

with initial value y(τ1) as already determined. We take b∗(t) = (V j′)′(y(t)) for τ1 < t
up until the next time τ2 that αj

x[b
∗] calls for a switch from a = j′ to a = j. We

continue this construction iteratively.
A number of observations are needed to justify the construction. One is the

existence of a unique solution to (5.13). For j = 2, the right side is C1, so the solution
is uniquely determined. For j = 1, the right side has discontinuities at x2 and x3, but,
since f(x, 1, 1

γ2 (V
1)′(x)) does not change sign across the discontinuities, the solution

is uniquely determined. Graphs of f(y, a, 1
γ2 (V

a)′(y)) are provided in Figures 5.2

and 5.3 below. (We comment that, although the graphs appear piecewise linear, they
are not. Figure 5.2 is linear only for 0 < x < x1, and Figure 5.3 is linear only for
x2 < x < x3, as inspection of the formulas shows.) One can check that yẏ < 0 for
sufficiently large |y|, which implies that solutions of (5.13) are defined for all t ≥ 0.
Observe also for j = 1 that, for any solution of (5.13), there is at most one value of
t for which y(t) is at one of the discontinuities of (V 1)′ and for which there is any
ambiguity in the specification b∗(t) = (V j)′(y(t)).

The other concern is that the sequence τi of switching times generated by our
construction might have a finite accumulation point: lim τi = s <∞. Our hypotheses
on the strategy α disallow this, however, for the following reason. If it were the case
that lim τi = s <∞, then extend our definition of b∗ in any way to t ≥ s, say, b∗(t) = 0.
By hypothesis, αj

x[b
∗] is an admissible control in A, which means, in particular, that

its switching times τi do not have a finite accumulation point. However, extension
of b∗ for t > s does not alter the switching times τi < s by the nonanticipating
property of α. This would mean that α[b∗] does have an infinite number of switching
times τi < s, which is a contradiction. Finally, by our comments above, on each
interval [τi, τi+1], there is at most a single t value at which b∗(t) = (V αj

x[b∗])′(y(t)) is
ambiguous. Thus there are at most a finite number of such t in any [0, T ].

Consider now any strategy α ∈ Γ, initial position x = y(0), and control setting j,
and let b∗(t) be the disturbance described in the proposition. We will let ai = αj

x[b
∗](t)

denote the control settings on the intervals [τi, τi+1] between consecutive switching
times. In particular, a0 = j. On each interval [τi, τi+1], (5.4) and the fact that b∗(t)
achieves the infimum in (5.6) for x = y(t) and p = (V ai)′(x) imply that (for all but
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Fig. 5.2. Plot of f(x, 2, 1
2γ2 V

2 ′(x)).
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Fig. 5.3. Plot of f(x, 1, 1
2γ2 V

1 ′(x)).

one t)

d

dt
V ai(y(t)) ≥ γ2b∗(t)2 − h(y(t), ai, b

∗(t)).

Thus, for any τi < t ≤ τi+1, we have

V ai(y(t))− V ai(y(τi)) ≥
∫ t

τi

[γ2|b∗(s)|2 − h(s)] ds.

Across a switching time τi, we have from (5.3)

V ai(y(τi))− V ai−1(y(τi)) ≥ −β = −k(ai−1, ai).
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Adding these inequalities over τi ≤ T , we see that

V α[b∗](T )(y(T ))− V α[b∗](0)(y(0)) ≥ −


∫ T

0

[h(s)− γ2|b∗(s)|2] ds+
∑
τi≤T

k(ai−1, ai)


 .

A rearrangement of this gives

V α[b∗](T )(y(T )) +



∫ T

0

[h(s)− γ2|b∗(s)|2] ds+
∑
τi≤T

k(ai−1, ai)


 ≥ V α[b∗](0)(y(0)).

(5.14)

When we consider α∗ specifically, we recognize that

Hai(y(t), (V ai)′(y(t))) = 0

for t between two τi’s, and at τi we have

V ai+1(y(τi))− V ai(y(τi)) = −β = −k(ai+1, ai).

This means that (5.14) is an equality for α∗ specifically.
To finish our optimality argument, we will show that, for α, a general strategy,

initial condition (x, aj), and associated disturbance b∗ = b∗
αj

x
as above, as T →∞ we

must have either y(T )→ 0 and α[b∗](T )→ 1, or else

∫ T

0

[h(s)− γ2|b∗(s)|2] ds+
∑
τi≤T

k(ai−1, ai)→ +∞.(5.15)

In the case of α = α∗ specifically, we will have the former possibility. Since V 1(0) = 0
and is continuous, these facts imply (5.12) as claimed. The verification of these
asserted limiting properties for the case of general α depends on some particular
inequalities for (V a)′(x) as determined by (5.11), (5.10). First, we assert that, for
both a values,

h(y(t), a, b∗(t))− γ2|b∗(t)|2 = |y(t)|2 − 1

4γ2
[(V a)′(y(t))]2 > 0 for x 	= 0.(5.16)

Moreover, |x|2 − 1
4γ2 [(V

a)′(x)2 has a positive lower bound on {x : |x| ≥ ε} for
each ε > 0. Instead of what would be a very tedious algebraic demonstration of
this, we simply offer the graphical demonstration in Figure 5.4. We have plotted
b∗ = 1

2γ (V
a)′(x) (solid lines) and q = x (dashed lines) as functions of x. The validity

of (5.16) is apparent.
The other fact we need is that, for a = 2 and the corresponding disturbance

b∗(t), the state-dynamics do not have an equilibrium at 0. This is easy to see because
at x = 0 we have b∗ = 1

2γ2 (V
2)′(0) = 0, but f(0, 2, b∗) = −µ + b∗. A graph of

f(x, 2, b∗) = −µ(x − 1) + 1
2γ2 (V

2)′(x) is provided in Figure 5.2, where we see the
unique equilibrium just beyond x = 1.

In the case of a = 1, however, ẋ = f(x, 1, 1
2γ2 (V

1)′(x)) has a unique globally
asymptotically stable equilibrium at x = 0, as is evident in Figure 5.3.
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x2 x1 x3 x2 x1 x3

Fig. 5.4. Graphical verification of (5.16) for V 1 ′ (left) and V 2 ′ (right).

We turn then to the verification of the assertion of (5.15) or its alternative: assum-
ing (5.15) to be false, we claim that y(T )→ 0 and α[b∗](T )→ 1. By the nonnegativity
from (5.16), we must have both

∑
τi<∞

k(ai−1, ai) <∞ and

∫ ∞

0

[h(y(s))− γ2|b∗(s)|2] ds <∞.(5.17)

The first of these implies that there are only a finite number of switches; α[b∗](t) = ai
∗

is constant from some time on. It is not possible that i∗ = 2 because, in that case,
y(t) would be converging to the positive equilibrium of Figure 5.2, which implies by
(5.16) that, as t→∞,

h(y(t), ai
∗
, b∗(t))− γ∗|b∗(t)|2 → C > 0.

This contradicts the second part of (5.17). Therefore, i∗ = 1, which shows that
α[b∗](T )→ 1. However, since α[b∗](t) = 1 from some point on, the stability illustrated
in Figure 5.3 means that y(t)→ 0 as claimed. This completes our verification of the
optimality of the strategy α∗.
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method is applicable to any real analytic observable nonlinear system. It is based on the solution
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linearizes the error dynamics. Under very general conditions, the existence and uniqueness of the
solution is proved. Lyapunov’s auxiliary theorem and Siegel’s theorem are obtained as corollaries.
The technique is constructive and yields a method for constructing approximate solutions.
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1. Introduction. We consider the problem of estimating the current state x(t)
of a nonlinear dynamical system, described by a system of first-order differential
equations,

ẋ = f(x),
y = h(x),

(1.1)

from the past observations y(s), s ≤ t. The vector fields f : Rn → Rn and h :
Rn → Rp are assumed to be real analytic functions with f(0) = 0, h(0) = 0. One
technique of constructing an observer is to find a nonlinear change of state and output
coordinates which transforms the system (1.1) into a system with linear output map
and linear dynamics driven by nonlinear output injection. The design of an observer
for such systems is relatively easy [8], [6], [2], and the error dynamics is linear in
the transformed coordinates. Recently Kazantzis and Kravaris proposed a simpler
method [5]. One seeks a change of state coordinates z = θ(x) such that the dynamics
of (1.1) is linear driven by nonlinear output injection

ż = Az − β(y),(1.2)

where A is an n×n matrix and β : Rp → Rn is a real analytic vector field. One does
not have to linearize the output map.

Such a θ must satisfy the following first-order PDE:

∂θ

∂x
(x)f(x) = Aθ(x)− β(h(x)).(1.3)

Using a particular form of the Lyapunov auxiliary theorem [10], Kazantzis and Kra-
varis showed that (1.3) has a unique solution under certain assumptions.
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Theorem [10]. Assume that f : Rn → Rn, h : Rn → Rp, and β : Rp → Rn are
analytic vector fields with f(0) = 0, h(0) = 0, β(0) = 0 and F = ∂f

∂x (0), H = ∂h
∂x (0),

B = ∂β
∂x (0). Let the eigenvalues of F be (λ1, . . . , λn) and the eigenvalues of A be

(µ1, . . . , µn). If
1. 0 does not lie in the convex hull of (λ1, . . . , λn),
2. there do not exist nonnegative integers m1,m2, . . . ,mn not all zero such that∑n

i=1 miλi = µj,
then the first-order PDE (1.3), with initial condition θ(0) = 0, admits a unique ana-
lytic solution θ in a neighborhood of x = 0.

Based on the above theorem, Kazantzis and Kravaris proposed a nonlinear ob-
server design method [5], where the state observer is constructed using the coordinate
transformation z = θ(x) and the output injection β(y).

Kazantzis and Kravaris Theorem [5]. Assume that f, h, θ, β are as in the
above theorem and additionally that

3. θ is a local diffeomorphism,
4. A is Hurwitz.

Then the local state observer for (1.1) given by

˙̂x = f(x̂)−
[
∂θ

∂x̂
(x̂)

]−1

(β(y)− β(h(x̂)))(1.4)

has locally asymptotically stable error dynamics. In z coordinates, the system is given
by (1.2), the observer is

˙̂z = Aẑ − β(y),(1.5)

and the error z̃ = z − ẑ dynamics is

˙̃z = Az̃.(1.6)

One can show that if the conditions of this theorem hold, then (H,F ) is an
observable pair and (A,B) is a controllable pair. On the other hand, if (H,F ) is an
observable pair, then one can choose an invertible T and B so that A = (TF+BH)T−1

satisfies 2, 3, and if the solution of (1.3) exists for some β such that β(0) = 0,
∂β
∂x (0) = B, then θ is a local diffeomorphism. The size of the neighborhood of 0
on which θ is a diffeomorphism varies with the higher derivatives of β, hence the
advantage of allowing them to be different from zero.

The approach of Kazantzis and Kravaris has an advantage over that of Krener and
Respondek [8] and similar attempts to transform the dynamics and output map into
observer form. The former uses the Lyapunov auxiliary theorem, which depends on a
nonresonance condition, assumption 2 above, while the latter depends on integrability
conditions. The nonresonance condition is generically satisfied while the integrability
conditions are generically not satisfied. However, assumption 1 of Kazantzis and
Kravaris is quite restrictive, as it requires the system to be locally asymptotically
stable to the origin in either forward or reverse time. If the system is stable in
forward time, then an observer is not needed, as we know where it is going. If the
system is stable in reverse time, then it is unstable in forward time, so what good is
a local observer?

Assumption 1 requires that the eigenvalues of the linear part of f(x) at the origin
lie in the Poincaré domain, whose definition follows.
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Definition 1. An n-tuple λ = (λ1, . . . , λn) of complex numbers belongs to the
Poincaré domain if the convex hull of (λ1, . . . , λn) does not contain zero. An n-tuple
of complex numbers belongs to the Siegel domain if zero lies in the convex hull of
(λ1, . . . , λn).

Clearly, requiring the spectrum of F to be in the Poincaré domain rules out
many interesting problems, including critical ones where there are eigenvalues on the
imaginary axis [9]. In this paper we extend the observer design method of Kazantzis
and Kravaris to the Siegel domain [1]. We start with a definition.

Definition 2. Given an n× n matrix F with spectrum σ(F ) = λ = (λ1, . . . , λn)
and constants C > 0, ν > 0, we say a complex number µ is of type (C, ν) with
respect to σ(F ) if for any vector m = (m1,m2, . . . ,mn) of nonnegative integers, |m| =∑

mi > 0, we have

|µ−m · λ| ≥ C

|m|ν .(1.7)

Now we are ready to state the main result of this paper.

Main Theorem. Assume that f : Rn → Rn, h : Rn → Rp, and β : Rp → Rn

are analytic vector fields with f(0) = 0, h(0) = 0, β(0) = 0 and F = ∂f
∂x (0), H = ∂h

∂x (0),

B = ∂β
∂y (0). Suppose there exists

1. an invertible n× n matrix T so that TF = AT −BH;
2. a C > 0, ν > 0 such that all the eigenvalues of A are of type (C, ν) with
respect to σ(F ).

Then there exists a unique analytic solution z = θ(x) to the PDE (1.3) locally around
x = 0 with ∂θ

∂x (0) = T , so θ is a local diffeomorphism.

Notes. We have stated this theorem for real analytic functions because we are
applying it to a real analytic system. However, it is true for complex analytic func-
tions, as can be seen from the proof. Assumption 2 implies that the eigenvalues of
A are distinct from those of F . We shall show the following. Assumptions 1 and 2
imply that (H,F ) is an observable pair. On the other hand, if (H,F ) is an observable
pair, then one can let T = I and set the spectrum of A arbitrarily by choice of B.
Almost all complex numbers are of type (C, ν) with respect to σ(F ), so assumption 2
is hardly a restriction on A when (H,F ) is an observable pair. If A is chosen to be
Hurwitz, then the state estimator is given by (1.4) and the error dynamics is locally
asymptotically stable as before. We defer the proof of the main theorem to the next
section.

Converse to the Main Theorem. Consider the class of nonlinear systems
described by the following equation:

ż = g(z),
y = h(z),

(1.8)

where z ∈ Rn, y ∈ Rp, and g, h are continuous vector fields on Rn, Rp, respectively,
with g(0) = 0 and h(0) = 0. If there exists a nonlinear observer

˙̂z = ĝ(ẑ, y)(1.9)

such that the error z̃ = z − ẑ dynamics is linear,

˙̃z = Az̃,(1.10)
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where A is an n× n matrix, then there exists a continuous vector field β : Rp → Rn

such that

g(z) = Az − β(h(z)),(1.11)

ĝ(ẑ, y) = Aẑ − β(y).(1.12)

Proof . The error dynamics is

˙̃z = Az̃ = g(z)− ĝ(ẑ, y).

Assume z = 0. Then

Aẑ = ĝ(ẑ, 0).

Assume z̃ = 0. Then

g(z) = ĝ(z, h(z)).

Define

β(ẑ, y) = ĝ(ẑ, 0)− ĝ(ẑ, y).

Then

Az̃ = g(z)− ĝ(ẑ, y)

= ĝ(z, h(z))− ĝ(ẑ, h(z))

= ĝ(z, 0)− β(z, h(z))− ĝ(ẑ, 0) + β(ẑ, h(z))

= Az − β(z, h(z))−Aẑ + β(ẑ, h(z)).

So

β(z, h(z)) = β(ẑ, h(z)).

But the left side does not depend on ẑ, so neither does the right, and thus

β(ẑ, h(z)) = β(h(z)).

Therefore

ĝ(ẑ, y) = Aẑ − β(y),

g(z) = Az − β(h(z)).

Note. This converse shows that if a system (1.1) admits an observer with linear
error dynamics after a smooth change of coordinates, it is because the PDE (1.3) is
solvable for some smooth θ and continuous β.

The rest of the paper is organized as follows. Section 2.1 discusses the relationship
between the linear part of the nonlinear system (1.1) and the terms of degree 1 of
the solution (1.3). A unique formal solution of (1.3) is given in section 2.2 and this
is shown to be convergent in section 2.3. We also show in section 2.1 that (1.3) has a
unique solution for any choice of the eigenvalues of A except for a set of zero measure
in Cn. Several examples are treated in section 3. Section 4 applies the main result to
the case when the system has inputs.
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2. Solution of the PDE.

2.1. Terms of degree 1. If we focus on the terms of degree 1 in (1.3), we obtain
the equation

TF = AT −BH.(2.1)

We view this as a linear equation for T in terms of given F , H, A, B.
Lemma 1. Equation (2.1) admits a unique solution T if and only if the eigenvalues

of F and A are distinct, that is, σ(F ) ∩ σ(A) = ∅.
Proof. We give the proof when F admits a basis of right eigenvectors, {vj , j =

1, . . . , n}, and A admits a basis of left eigenvectors, {wi, i = 1, . . . , n}. The general
case is similar using bases of generalized eigenvectors. Define an operator F : T �−→
TF − AT on the space of n × n matrices {T}. Let λi be the eigenvalue of F corre-
sponding to the right eigenvector wi, and let µj be the eigenvalue of F corresponding
to left eigenvector vj . Now {vjwi, i, j = 1, . . . , n} is a basis for {T} and

F(vjwi) = (vjwi)F −A(vjwi)

= (λi − µj)v
jwi.

Thus F is invertible if and only if λi − µj �= 0 for all possible i and j. Therefore
FT = −BH admits a unique solution if and only if σ(F ) ∩ σ(A) = ∅.

Lemma 2. Suppose σ(F )∩σ(A) = ∅. If T is invertible, then (H,F ) is observable
and (A,B) is controllable.

Proof. Suppose (H,F ) is not observable. Then there exist λi ∈ σ(F ) and a vector
x ∈ Rn×1, x �= 0, such that Hx = 0 and Fx = λix. Multiply (2.1) by x to obtain

λiTx = TFx = ATx+BHx = ATx.

Since Tx �= 0, this implies that λi ∈ σ(A), a contradiction.
Similarly, suppose (A,B) is not controllable. Then there is µj ∈ σ(A) and a

vector ξ ∈ R1×n such that ξA = µjξ and ξB = 0. Multiply (2.1) by ξ to obtain

ξTF = ξAT + ξBH = µjξT.

Since ξT �= 0, this implies that µj ∈ σ(F ), a contradiction.
Lemma 3. If T is an invertible solution to (2.1), then A is conjugate to F modified

by output injection.
Proof . Since T satisfies equation

TF +BH = AT

and T is invertible, we thus have

T (F + T−1BH)T−1 = A.

Lemma 4. If σ(F ) ∩ σ(A) = ∅ and A is conjugate to F modified by output
injection, then there exists B such that the unique solution to (2.1) is invertible.

Proof. Since A is conjugate to F modified by output injection, there exist an
n× n invertible matrix S and an n× p matrix G such that

S(F +GH)S−1 = A.
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Hence we have SF = AS − SGH. Let B = SG. Then SF = AS − BH, so T = S
according to Lemma 1. Therefore T is invertible.

Loosely speaking, a complex number µ is of type (C, ν) with respect to σ(F ) = λ
if |µ −m · λ| is never zero and does not approach zero too fast as |m| → ∞. If ν is
large enough, then the set of µ’s which are of type (C, ν) for some C > 0 is dense in
the complex plane.

Lemma 5. If C > 0 and ν > n
2 , then

meas
{
µ : µ is not of type (C, ν)

} ≤ k(n, ν)C2,(2.2)

where k(n, ν) is a constant which depends only on n and ν.
If ν > n

2 , then the set of points which are not of type (C, ν) for any C > 0 is a
set of zero measure.

Proof. Clearly, the set {µ : µ is not of type (C, ν)} is
⋃

|m|≥1

Ball

(
m · λ, C

|m|ν
)
,

where Ball(p, r) stands for an open ball in C centered at p ∈ C with radius r. The

measure of the Ball(m ·λ, C
|m|ν ) is

πC2

|m|2ν . There are no more than (d+1)n−1 choices of

m = (m1,m2, . . . ,mn) such that |m| = d. To see this note that each of m1, . . . ,mn−1

must lie between 0 and d, and then mn = d−m1 − · · · −mn−1. Since (d+ 1) ≤ 2d,
we have

meas
⋃

|m|=d
Ball

(
m · λ, C

|m|ν
)
≤ πC2(2d)n−1−2ν .

Therefore, if n− 1− 2ν < −1, then

meas
⋃

|m|>0

Ball

(
m · λ, C

|m|ν
)
≤ πC2

( ∞∑
d=1

(2d)n−1−2ν

)
,

so (2.2) follows.

2.2. The formal solution of the PDE. Assume the hypothesis of the main
theorem holds. We show that there is a unique solution to the PDE (1.3) within the
class of formal power series. It is convenient to assume that F and A are diagonal;
the proof in the general case is similar but much messier. We expand the terms in
power series

f(x) = Fx+ f [2](x) + f [3](x) + · · · ,
β(h(x)) = BHx+ β[2](x) + β[3](x) + · · · ,

θ(x) = Tx+ θ[2](x) + θ[3](x) + · · · ,
where f [d], β[d], and θ[d] are homogeneous polynomial vector fields of degree d in x.
The knowns are f , h, β, T and the unknowns are the higher degree terms θ[2], θ[3], . . . .
The linear terms satisfy (2.1) by the above assumption.

The degree d part of (1.3) is

∂θ[d]

∂x
(x)Fx−Aθ[d](x) = −β̃[d](x),(2.3)
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where

β̃[d](x) = β[d](x) + Tf [d](x) +

d−1∑
j=2

∂θ[j]

∂x
(x)f [d+1−j](x).(2.4)

Let ek denote the kth unit vector in z space and let xm = xm1
1 · · ·xmn

n . Then the
above terms can be expanded as

β̃[d](x) =

n∑
k=1

∑
|m|=d

β̃k,me
kxm,

θ[d](x) =

n∑
k=1

∑
|m|=d

θk,me
kxm,

and we obtain the equations

(µk −m · λ)θk,m = β̃k,m.(2.5)

These equations have unique solutions because m · λ− µk �= 0.
The formal approach yields a method for constructing an observer with approxi-

mately linear error dynamics. Start by choosing a T,A,B satisfying the linear equa-
tion (2.1). Then successively solve (2.3) up to some degree d. At each step β[j] can be
chosen to make θ[j] smaller and thereby try to keep θ(x) close to its globally invertible
linear part Tx. The approximate solution

θ(x) = Tx+ θ[2](x) + θ[3](x) + · · ·+ θ[d](x),

β(y) = By + β[2](y) + β[3](y) + · · ·+ β[d](y)

transforms the system (1.1) into

ż = Az − β(y) +O(x)d+1,

so the observer (1.4) has approximately linearizable error dynamics. The error is
O(x, x̂)d+1. When implementing the method, the matrices F,A need not be diagonal,
but this makes solving (2.3) very easy.

2.3. Convergence of the formal solution. Let |x| = max{|x1|, . . . , |xn|}. We
write

f(x) = Fx+ f̄(x),

β(y) = BHx+ β̄(x),

where AT − TF = BH. We first show that the sequence of PDEs

Aθ2(x)− ∂

∂x
θ2(x)Fx = T f̄(x) + β̄(x),

Aθk(x)− ∂

∂x
θk(x)Fx =

∂

∂x
θk−1(x)f̄(x)

admits a sequence of analytical solutions θ2(x), θ3(x), . . . in some neighborhood of the
origin. Then we show that the sum

Tx+ θ2(x) + θ3(x) + · · ·
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converges to an analytic function which solves (1.3).
We define a positive real function bk : [0, 1)→ [0,∞) to be

bk(q) := max
d∈Z+,d≥k

[
C−1dνq

d
2

]
,

where C > 0 and ν > 0 are given. We start with an important theorem.
Theorem 1. Let P (x) be a real analytic function in |x| < r with P (0) = 0 and

∂P
∂x (0) = 0. Suppose all of the eigenvalues of A are of type (C, ν) with respect to σ(F ).
Then the first-order PDE

Aθ(x)− ∂θ(x)

∂x
Fx = P (x)(2.6)

admits a unique analytic solution θ(x) in |x| < r with θ(0) = 0.
Proof. The analyticity of P (x) implies that P (x) can be expanded into a Taylor

series

P (x) = P [k](x) + P [k+1](x) + · · · for |x| < r

with

P [d](x) =

n∑
j=k

∑
|m|=d

pj,me
jxm,

where k ≥ 2 is the lowest degree of P (x). We assume a series solution

θ(x) = θ[k](x) + θ[k+1](x) + · · ·+ θ[d](x) + · · ·(2.7)

with

θ[d](x) =

n∑
j=1

∑
|m|=d

θj,me
jxm.

If we plug (2.7) into (2.6), then we have

θj,m =
pj,m

µj −m · λ for |m| ≥ k, 1 ≤ j ≤ n.

Since the eigenvalues of A are of type (C, ν) with respect to σ(F ), we have

|θj,m| = | pj,m
µj −m · λ | ≤

|m|ν |pj,m|
C

.

We shall show that (2.7) converges on the closed polydisk |x| ≤ qr for any 0 < q < 1.
Hence (2.7) converges on |x| < r.

Consider a new series

P̂ (x) = P̂ [k](x) + P̂ [k+1](x) + · · ·(2.8)

with

P̂ [d](x) =

n∑
j=k

∑
|m|=d

|m|ν |pj,m|
C

ejxm, d ≥ k.
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We next claim that (2.8) converges in |x| ≤ qr. Let ξ := (qr, qr, . . . , qr). Then

|P̂ [d](x)| ≤ max
1≤j≤n

∑
|m|=d

|m|ν |pj,m|
C

|x|m ≤ max
1≤j≤n

∑
|m|=d

|m|ν |pj,m|
C

|ξ|m

≤ max
1≤j≤n

∑
|m|=d

|m|νC−1q
|m|
2 |pj,m|(√qr)|m|

≤ bk(q) max
1≤j≤n

∑
|m|=d

|pj,m|(√qr)|m|.

Notice that P (x) is an analytic function for |x| < r, so its Taylor series converges
there absolutely, which yields

|P̂ (x)| ≤ bk(q) max
1≤j≤n

∞∑
d=k


 ∑

|m|=d
|pj,m|(√qr)|m|


 < +∞.

Thus (2.7) defines an analytic function θ(x) for |x| < r, which solves (2.6).
From Theorem 1, we immediately have the following corollary.
Corollary 1. Suppose all of the eigenvalues of A are of type (C, ν) with respect

to σ(F ). The PDEs

Aθ2(x)− ∂θ2

∂x
(x)Fx = T f̄(x) + β̄(x), θ2(0) = 0,(2.9)

Aθk(x)− ∂θk
∂x

(x)Fx =
∂θk−1

∂x
(x)f̄(x), θk(0) = 0, k ≥ 3,(2.10)

admit analytic solutions in |x| < r.
The next step is to prove that

θ2(x) + θ3(x) + · · ·+ θk(x) + · · ·

converges near the origin and solves the PDE (1.3).
Since f̄(x) = O(|x|2) is an analytic function in the polydisk |x| ≤ r, it can be

expanded into a Taylor series:

f̄(x) = f [2](x) + f [3](x) + · · · , |x| ≤ r,

where f [d](x) =
∑n
j=1

∑
|m|=d fj,me

jxm. Thus the following series converges:

∑
|m|=2

|fj,m|r2 +
∑

|m|=3

|fj,m|r3 + · · · := Mj

for j = 1, 2, . . . , n. We define

M̄f := max

{
M1

r2
, . . . ,

Mn

r2

}

and

‖P (x)‖ := max
1≤i≤n

∑
m

|pi,mxm|
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if P (x) is analytic in |x| < r with

P (x) =

(∑
m

p1,mx
m,
∑
m

p2,mx
m, . . . ,

∑
m

pn,mx
m

)
.

Lemma 6. There exists 0 < r1 < r such that if P (x) is analytic in |x| < r1, where
‖P (x)‖ ≤ N , then ∥∥∥∥∂P∂x (x)f̄(x)

∥∥∥∥ ≤ N in |x| < r1.

Proof . First it is easy to see that for any r1 < r we have

|f̄(x)| ≤ r2
1M̄f for |x| ≤ r1,

since for j = 1, 2, . . . , n∑
|m|=2

|fj,m|r2
1 +

∑
|m|=3

|fj,m|r3
1 + · · ·

= r2
1


 ∑

|m|=2

|fj,m|+
∑

|m|=3

|fj,m|r1
1 + · · ·


(2.11)

≤ r2
1

Mj

r2
≤ r2

1M̄f .

Next let

P (x) = (P1(x), P2(x), . . . , Pn(x)),

with Pi(x) =
∑
m pi,mx

m and

N(r) := max
|x|≤r

‖P (x)‖.

The analyticity of P (x) implies that

∂Pi
∂xj

(x) =
∑
m

∂

∂xj
(pi,mx

m) =
∑
m

pi,mmjx
m1
1 · · ·xmj−1

j · · ·xmn
n , |x| < r1,

and for any given ε > 0 there exists K > 0 such that when |m| > K∑
m,|m|≥K

∣∣∣pi,mmjx
m1
1 · · ·xmj−1

j · · ·xmn
n

∣∣∣ < ε

for |x| < r1. Thus∑
m,|m|≤K

|pi,mmjx
m1
1 · · ·xmj−1

j · · ·xmn
n |‖f̄j(x)‖ ≤

∑
m,|m|≤K

|pi,m|mjr1
|m|r1M̄f .

Let r1 be small enough such that

∑
m,|m|≤K

|pi,m|mjr1
|m|r1M̄f ≤ N(r1)

n
.
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Then for |x| < r1

∑
m

∣∣∣∣ ∂

∂xj
(pi,mx

m)

∣∣∣∣ ∥∥f̄j(x)∥∥ <
N(r1)

n
+ εr2

1M̄f .

Thus we have∥∥∥∥∂Pi∂xj
(x)f̄j(x)

∥∥∥∥ ≤∑
m

∣∣∣∣
(

∂

∂xj
(pi,mx

m)

)∣∣∣∣ ∥∥f̄j(x)∥∥ ≤ N(r1)

n
.

Therefore ∥∥∥∥∂P∂x (x)f̄(x)

∥∥∥∥ ≤ max
1≤i≤n

n∑
j=1

∥∥∥∥∂Pi∂xj
(x)f̄j(x)

∥∥∥∥ ≤ N(r1).

In the definition of type (C, ν), without lose of generality we can assume that ν
is a positive integer since if ν is not, we can replace it by a larger integer.

Lemma 7. Let r2 := r1/n, where r1 is given in Lemma 6. Let θk(x) be the
solution of

Aθk(x)− ∂θk
∂x

(x)Fx =
∂θk−1

∂x
(x)f̄(x).

Then if ‖θk−1(x)‖ ≤ N for |x| < r2, we have

‖θk(x)‖ ≤ NP (|x1|+ |x2|+ · · ·+ |xn|)
C (r1 − (|x1|+ |x2|+ · · ·+ |xn|))ν+1

for |x| < r2, where P is a polynomial of degree ν with coefficients depending only on r1.

Proof. We first let g(x) := ∂θk−1

∂x (x)f̄(x) and

φ(x) :=
Nr1

r1 − (x1 + · · ·+ xn)
.

Clearly for |x| < r2,

φ(x) =
N

1− (x1 + · · ·+ xn)/r1
= N

∞∑
d=0

(
x1 + · · ·+ xn

r1

)d

= N

∞∑
d=0

1

rd1

∑
|m|=d

|m|!
m!

xm

and

Dmφ(0) = N |m|!r−|m|
1 .

By the previous lemma, |g(x)| ≤ N for |x| < r1, so the Cauchy estimate yields

|Dmg(0)| ≤ N |m|!r−|m|
1 ,

where Dm is a partial differential operator of order m defined to be

Dm =
∂m

∂xm1
1 · · · ∂xmn

n
.



OBSERVERS IN THE SIEGEL DOMAIN 943

Let

g(x) = g[k](x) + g[k+1](x) + · · ·+ g[d](x) + · · ·
with g[d](x) =

∑n
j=1

∑
|m|=d gj,me

jxm, where

|gj,m| =
∣∣∣∣ 1m!

Dmg(0)

∣∣∣∣ ≤ N
|m|!
m!

r
−|m|
1

and

θk(x) = θ
[k]
k (x) + θ

[k+1]
k (x) + · · ·+ θ

[d]
k (x) + · · ·

with θ
[d]
k (x) =

∑n
j=1

∑
|m|=d θj,me

jxm. Then (2.12) implies that

θj,m =
gj,m

µj − λ ·m.

Since the eigenvalues of A are of type (C, ν) with respect to σ(F ), it follows that

|θj,m| =
∣∣∣∣ gj,m
µj − λ ·m

∣∣∣∣ ≤ |m|νC
|gj,m| ≤ |m|

ν |m|!
Cm!

r
−|m|
1 .

Next we claim that

N
∞∑
d=0

1

rd1

∑
|m|=d

|m|ν |m|!
m!C

xm =
NP (x1 + x2 + · · ·+ xn)

C(r1 − x1 − x2 − · · · − xn)ν+1
.

For convenience, we denote x̂ = x1 + · · ·+ xn. Notice that for |x| < r2,

r1
r1 − (x1 + · · ·+ xn)

=
∞∑
d=0

1

rd1

∑
|m|=d

|m|!
m!

xm.

We differentiate above both sides with respect to x̂ and then multiply both sides by x̂,

r1x̂

(r1 − x̂)2
=

∞∑
d=0

1

rd1

∑
|m|=d

|m||m|!
m!

xm.

We repeat this procedure ν times and obtain

P (x̂)

(r1 − x̂)ν+1
=

∞∑
d=0

1

rd1

∑
|m|=d

|m|ν |m|!
m!

xm,

where P (x̂) is a polynomial of degree ν with coefficients depending only on r1. Hence

∞∑
d=0

1

rd1

∑
|m|=d

|m|ν |m|!
m!

|xm| = P (|x1|+ · · ·+ |xn|)
(r1 − (|x1|+ · · ·+ |xn|))ν+1

,

which yields the conclusion.
Let r3 := r2/2 and

N̂ := max
|x|≤r3

P (|x1|+ · · ·+ |xn|)
C(r1 − (|x1|+ · · ·+ |xn|))ν+1
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and

M := max
|x|≤r

∞∑
d=2

(
|β[d](x)|+ |Tf [d](x)|

)
.

Theorem 2. Let θk(x) be the solution of

Aθk(x)− ∂θk
∂x

(x)Fx =
∂θk−1

∂x
(x)f̄(x), θk(0) = 0.

Then for any |x| ≤ qr3 with 0 < q < 1 we have

‖θk(x)‖ ≤ bk(q)N̂
k−2M.

Proof. According to the previous lemma, we know that

‖θ2(x)‖ ≤MN̂ for |x| ≤ r3.

Applying the lemma in a recursive way yields

‖θk(x)‖ ≤MN̂k−1 for |x| ≤ r3 and k = 3, 4, . . . .

Let g(x) = ∂θk−1

∂x (x)f̄(x). Then g(x) can be expanded into a Taylor series in |x| ≤ r3:

g(x) = g[k](x) + g[k+1](x) + · · ·
with g[d](x) =

∑n
j=1

∑
|m|=d gj,me

jxm. Similar to the proof given in Theorem 1,

‖θk(x)‖ ≤ bk(q)

∞∑
d=k


 ∑

|m|=d
|gj,m|(√qr3)|m|


 ≤ bk(q)N̂

k−2M,

and the proof is complete.
Corollary 2. When q is small enough, the series

θ2(x) + θ3(x) + · · ·+ θk(x) + · · ·
converges in |x| ≤ qr3, where θd(x) for d = 2, 3, . . . is the solution of (2.10).

Proof. Let q ≤ 1
2ν+1N̂

. It is sufficient to show that

θk(x) + θk+1(x) + · · ·
converges for some fixed k in |x| ≤ qr3. According to the definition of bk(q), we know
that when k ≥ 2ν/ ln 1

q , the following holds:

bk(q) > bk+1(q) > · · · > bd(q) > · · · → 0 as d→∞.

Choose k ≥ 2ν/ ln 1
q and notice that

bk(q) = kνqk, bk+1 = (k + 1)νqk+1, . . . , bd(q) = dνqd, . . . .

According to Theorem 2, we have

‖θk(x)‖+ ‖θk+1(x)‖+ · · · ≤ bk(q)N̂
k−2M + bk+1(q)N̂

k−1M + · · · .



OBSERVERS IN THE SIEGEL DOMAIN 945

Since

bd+1(q)N̂
d−1M

bd(q)N̂d−2M
=

(
1 +

1

d

)ν
qN̂ < 2νqN̂ ≤ 1

2
, d ≥ k,

we thus complete the proof.
From Corollary 2, we know that series

θ2(x) + θ3(x) + · · ·+ θd(x) + · · ·(2.12)

defines an analytic function in |x| ≤ qr3. Now we are ready to prove the main result
of this paper.

Proof of the main theorem. We first define two functions in |x| ≤ qr3:

θ(x) := Tx+ θ2(x) + θ3(x) + · · ·+ θd(x) + · · ·
and

θL(x) := Tx+ θ2(x) + θ3(x) + · · ·+ θL(x),

where θ2(x), θ3(x), . . . are the solutions of (2.9), (2.10). We next show that θ(x) solves
(1.3). Now

AθL(x)− ∂θL(x)

∂x
f(x)− β(h(x))

= AθL(x)− ∂θL(x)

∂x
(Fx+ f̄(x))− (BHx+ β̄(x))

=
∂θL(x)

∂x
f̄(x).

If |x| ≤ qr3, then ‖θL(x)‖ ≤ bL(q)N̂
L−2M and∥∥∥∥∂θL(x)∂x

f̄(x)

∥∥∥∥ ≤ bL(q)N̂
L−2M → 0 as L→∞

since series

bk(q)N̂
k−2M + bk+1(q)N̂

k−1M + · · ·
converges. Therefore θ(x) is an analytic solution of (1.3). Uniqueness follows from
the uniqueness of the formal power series.

A slight modification of the proof of the main theorem yields the following.
Corollary 3 (Lyapunov’s auxiliary theorem). Assume that f : Rn → Rn and

γ : Rn → Rn are analytic vector fields with f(0) = 0, ∂f
∂x (0) = F , and γ(0) = 0.

Suppose that the eigenvalues λ1, . . . , λn of F lie wholly in the open left half plane or
lie wholly in the open right half plane. Let A be an n × n matrix with eigenvalues
µ1, . . . , µn such that there do not exist nonnegative integers m1,m2, . . . ,mn not all
zero such that

∑n
i=1 miλi = µj. Then there is a unique analytic solution in some

neighborhood of the origin of the first-order PDE:

∂θ

∂x
(x)f(x)−Aθ(x) + γ(x) = 0

with initial condition θ(0) = 0.
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Proof. Let h(x) = x and β(h(x) = γ(x). The main theorem cannot be applied
directly because the Lyapunov auxiliary theorem does not require θ(x) to be a local
diffeomorphism. But the proof stills holds provided we can show that the spectrum
of A is of class (C, ν) with respect to the spectrum of F . Suppose the spectrum of
F lies wholly in the open right half plane. Then there is a constant c > 0 such that
c ≤ Re λi, i = 1, . . . , n. Suppose M ≥ Re µj , j = 1, . . . , n. Then

|m · λ− µj | ≥ 1

whenever |m| ≥ M+1
c . Let ν = 1 and choose 0 < C ≤ 1 satisfying

|m · λ− µj | ≥ C

whenever |m| < M+1
c . This is possible because the left side is never zero. We have

shown that the spectrum of A is of class (C, ν) with respect to the spectrum of F .
Corollary 4 (Siegel’s theorem). Assume that f : Rn → Rn is an analytic

vector field with f(0) = 0, ∂f∂x (0) = F . Suppose, for some C > 0, ν > 0, the eigenvalues
of F are of type (C, ν) with respect to σ(F ). Then there is an analytic solution in
some neighborhood of the origin of the first-order PDE:

∂θ

∂x
(x)f(x) = Fθ(x)

with initial condition θ(0) = 0. Moreover z = θ(x) is a local analytic diffeomorphism
around x = 0 which transforms the differential equation

ẋ = f(x)

into its linear part

ż = Fz.

Proof. Apply the main theorem with β = 0, A = F , and T = I.
Note. Lyapunov’s auxiliary theorem and Siegel’s theorem are usually stated for

complex analytic vector fields. We have stated them for real analytic vector fields
since we stated our main theorem that way. But the proof of the main theorem holds
for complex vector fields too.

3. Examples. As discussed in the introduction, there are distinct advantages to
considering nonlinear output injection β(y). It is desirable that θ be a diffeomorphism
over as large a range as possible, for this is the domain of convergence of the observer.
Nonlinear output injection can make θ a global diffeomorphism.

To illustrate this, we consider a Duffing oscillator

ẍ = x− x3,

y = x,

which is equivalent to the planar system[
ẋ1

ẋ2

]
=

[
0 1
1 0

] [
x1

x2

]
+

[
0

−x3
1

]
,

y = x1.
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This system is trivially transformed into a linear system with output injection (1.2)[
ż1

ż2

]
=

[ −2 1
−2 0

] [
z1

z2

]
−
[ −2y
−3y + y3

]

by

θ(x) = x,

β(y) =

[ −2y
−3y + y3

]
.

Notice that β is nonlinear and θ is trivially a global diffeomorphism. The observer
(1.4) is [

˙̂x1

˙̂x2

]
=

[ −2 1
−2 0

] [
x̂1

x̂2

]
−
[ −2y
−3y + y3

]
,

and the error dynamics [
˙̃x1

˙̃x2

]
=

[ −2 1
−2 0

] [
x̃1

x̃2

]

is linear and exponentially stable with poles at −1± i.
The example is trivial but illustrates two important facts. The first is the advan-

tage of allowing nonlinear β. We could take it to be linear,

β(y) =

[ −2
−3

]
y,

and still solve the PDE (1.3) for θ. But the solution might be hard to find, it could
have an infinite power series expansion, and it might not be a global diffeomorphism.

The second point is that the Duffing oscillator is truly nonlinear; it has three
equilibria and two homoclinic orbits, and the rest of the trajectories are limit cycles.
Yet it is possible to build a globally convergent error with linear error dynamics.

Next we consider a Van der Pol oscillator,

ẍ = −(x2 − 1)ẋ− x,

y = x,

which is equivalent to the planar system[
ẋ1

ẋ2

]
=

[
0 1
−1 1

] [
x1

x2

]
−
[

0
x2

1x2

]
,

y =
[
1 0

] [ x1

x2

]
.

Now we have

f(x) =

[
x2

−x1 + x2 − x2
1x2

]
, h(x) = x1,

F =

[
0 1
−1 1

]
, H =

[
1 0

]
.
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We look for a nonlinear coordinate transformation z = θ(x) such that in the new
coordinates z, the system can be described in the form

ż = Az − β(y).

Let us choose A and β to be

A =

[
b1 1

b2 − 1 1

]
, β(y) =

[
b1y +

y3

3

b2y +
y3

3

]
,

where b1, b2 are constants such that 1 + b1 < 0, b1 − b2 + 1 > 0. Clearly, A is stable
since trace(A) = 1 + b1 < 0 and det(A) = b1 − b2 + 1 > 0. Moreover A = F + BH
with B = [b1, b2]

′. The solution of (1.3) in this case is given by

θ(x) =

[
x1

x2 +
x3
1

3

]
.

Note that θ is polynomial and globally invertible on R2. This is because we chose a
nonlinear β. The resulting observer is again globally convergent with exponentially
stable linear error dynamics in z̃ coordinates despite the nonlinearities of the Van der
Pol oscillator. See Figure 1.

0 5 10 15
−3

−2

−1

0

1

2

3

4
Observation of the state of van der Pol equation, x1

time t

so
lu

tio
n 

x1

actual state
estimated   

0 5 10 15
−10

−8

−6

−4

−2

0

2

4
Observation of the state of van der Pol equation, x2

time t
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lu

tio
n 

x2

actual state
estimated   

Fig. 1. Observation of Van der Pol oscillator.

Both these examples could be treated by the method of Krener and Respondek [8].
In particular, they showed that any observable two-dimensional system of the form

y = x1,

ẋ1 = x2,

ẋ2 = f2(x) = a(x1) + b(x1)x2 + c(x1)x
2
2,
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where a(x1), b(x1), c(x1) are smooth functions, admits a local observer with linear
error dynamics in transformed coordinates. But their method is not applicable to
more general f2. The above method is applicable to any observable system with
arbitrary f2. The conditions of Krener and Respondek become more restrictive as the
dimension of the system is increased, while there are no additional conditions for the
above method.

The next example cannot be treated by the method of Krener and Respondek:

y = x1,

ẋ1 = 2x2,

ẋ2 = 2x1 − 3x2
1 − x2(x

3
1 − x2

1 + x2
2).

There is a saddle at (0, 0) and an unstable source at (2/3, 0). The stable and unstable
manifolds of the saddle form a homoclinic orbit given by x3

1−x2
1+x2

2 = 0 which wraps
around the unstable source.

The system is linearly observable around x = 0 with

F =

[
0 2
2 0

]
, H =

[
1 0

]
.

The spectrum of F is λ = (2,−2). We choose a linear output injection based on a
long time Kalman filter for the linear part of the system corrupted by standard white
noises, and this leads to

A =

[ −√17 2
−2 0

]
, B =

[ −√17
−4

]
.

The spectrum of A is

−√17± 1

2
,

and clearly these are not resonant with the spectrum of F because they are not even
integers.

First we compute θ for up to degree 3 with β[2] = 0, β[3] = 0:

θ[1](x) =

[
1 0
0 1

] [
x1

x2

]
,

θ[2](x) =

[
1.2188 −0.7731 −0.2812
1.7394 0.2812 −1.3529

] x2
1

x1x2

x2
2


 ,

θ[3](x) =

[ −20.4026 19.1878 20.8159 −20.1972
−21.7136 20.8245 20.6972 −20.8216

]
x3

1

x2
1x2

x1x
2
2

x3
2


 .

Figure 2 shows the system starting at x1 = 0.5, x2 = 0 and the observer starting
at x̂1 = 0, x̂2 = 0. Clearly this observer does not converge; in particular, the observer
seems to stall around (0.3, 0.4). The problem appears to be caused by the large sizes
of θ[2] and θ[3].
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x and xhat for deg 3 observer with be2=0, be3=0

Fig. 2. Solid line: state trajectory. Dashed line: observer trajectory.

Next we choose β[2] to minimize the Euclidean norm of the coefficients of θ[2], and
then we choose β[3] to minimize the Euclidean norm of the coefficients of θ[3]. The
result is

θ[1](x) =

[
1 0
0 1

] [
x1

x2

]
,

θ[2](x) =

[
0.0000 −0.0000 0.0000
0.0000 −0.0000 0.0000

] x2
1

x1x2

x2
2


 ,

θ[3](x) =

[
0.0330 0.0938 −0.2219 0.1925
−0.4030 −0.1514 0.3075 0.1749

]
x3

1

x2
1x2

x1x
2
2

x3
2


 ,

β(y) =

[ −4.1231 0.0000 −1.1296
−4.0000 3.0000 0.2368

] y
y2

y3


 .

Notice how much smaller θ[2] and θ[3] are. The resulting observer performs much
better, as can be seen from Figure 3.

4. Nonlinear observer design with inputs. We now consider a nonlinear
system with inputs:

ẋ = f(x, u),(4.1)

y = h(x, u),(4.2)

where f : Rn × Rm → Rn and h : Rn × Rm → Rp are continuous. We assume
here that

f(x, u) = f0(x) + f1(x, u), h(x, u) = h0(x) + h1(x, u)
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Fig. 3. Solid line: state trajectory. Dashed line: observer trajectory.

with f1(x, 0) ≡ 0, h1(x, 0) ≡ 0, and f0 : R
n → Rn and h0 : R

n → Rp are real analytic
functions with f0(0) = 0, h0(0) = 0. Let β : Rp → Rn be a real analytic function and
F = ∂f0

∂x (0), H = ∂h0

∂x (0), and B = ∂β
∂x (0). We further assume that

1. for a given n× n matrix A, there exists an invertible n× n matrix T so that
TFT−1 = A−BH;

2. there exists a C > 0, ν > 0 such that all the eigenvalues of A are of type
(C, ν) with respect to σ(F ).

Then according to the main result of this paper, we know that the first-order PDE

∂φ

∂x
(x)f0(x) = Aφ(x)− β(h0(x))(4.3)

has a unique analytic solution z = φ, which is a diffeomorphism in some neighborhood
U of the origin with ∂φ

∂x (0) = T .

Now we let the estimate of the true state obey the equation

˙̂x = f(x̂, u)−
[
∂φ

∂x̂

]−1

(β(y)− β(h(x̂, u))).(4.4)

Let e denote

e = φ(x̂)− φ(x).

Then e satisfies the differential equation

ė =
∂φ

∂x̂
f(x̂, u)− (β(y)− β(h(x̂, u)))− ∂φ

∂x
f(x, u)

=
∂φ

∂x̂
(f0(x̂) + f1)(x̂, u)− (β(y)− β(h(x̂, u)))− ∂φ

∂x
(f0(x) + f1(x, u)).
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Since

∂φ

∂x̂
f0(x̂) = Aφ(x̂)− β(h0(x̂)),

∂φ

∂x
f0(x) = Aφ(x)− β(h0(x)),

this yields

ė = Ae+N(x̂, u)−N(x, u),(4.5)

where the nonlinear function N is defined to be

N(x, u) :=
∂φ

∂x
(x)f1(x, u) + β(h(x, u))− β(h0(x)).(4.6)

We further assume that f1(·, u) is locally Lipschitz about the origin; then there exists
a positive constant L(u) such that

‖N(x1, u)−N(x2, u)‖ ≤ L(u)‖x1 − x2‖
for all x1, x2 in some open neighborhood U containing the origin. If we choose A
to be Hurwitz, then for any given positive-definite Q ∈ Rn×n there exists a unique
positive-definite P ∈ Rn×n such that

ATP + PA = −2Q.

Now we consider the Lyapunov function

V (e) = eTPe.

The derivative of V (e) evaluated along the solution of the error dynamics is given by

V̇ (e) = ėTPe+ eTP ė = −2eTQe+ 2eTP [N(x+ e, u)−N(x, u)].

Therefore we have

V̇ (e) ≤ −2eTQe+ 2L(u)‖Pe‖‖e‖
≤ (−2λmin(Q) + 2L(u)λmax(P ))‖e‖,

where λmin(Q) is the minimum eigenvalue of Q and λmax(P ) is the maximum eigen-
value of P . Hence if

λmin(Q)/λmax(P ) > L(u),

then e = 0 is local asymptotically stable.
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Abstract. An averaging technique for nonlinear multiscale singularly perturbed control systems
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1. Introduction. In this paper we consider a singularly perturbed control sys-
tem containing several small parameters ε1, . . . , εm (m ≥ 1). The parameters are
introduced in such a way that the state variables of the system are decomposed into
a group of “slow” variables which change their values with the rates of the order O(1)
andm groups of “fast” variables which change their values with the rates of the orders
O(ε−1

1 ), O(ε−1
1 ε−1

2 ), . . . , O(ε−1
1 ε−1

2 . . . ε−1
m ), respectively.

The main contribution of the paper is the description of the structure of the limit
control system, the solutions of which allow us to approximate the slow variables
when the parameters εi, i = 1, . . . ,m, tend to zero. The role of controls in the
limit system is played by probability measures defined on the product of the original
control set and a subset of the state space containing all the fast trajectories (both
are assumed to be compact). These probability measures are chosen from a limit set
of occupational measures generated by the admissible controls and trajectories of an
associated system which describes the dynamics of the fast variables if the slow ones
are “frozen” (see exact definitions below). The existence of such a set (called limit
occupational measures set (LOMS)) and its structure are the central issues discussed
in the paper.

Singularly perturbed control systems (SPCS) with one small parameter (m = 1)
have been intensively studied in the literature, the most common approaches being
related either to Tikhonov-type theorems justifying the equating of the small param-
eter to zero with further application of the boundary layer method (see [24], [30]) to
asymptotically describe the fast dynamics (see, e.g., [13], [21], [22], [25], [28], [31]) or
to different types of averaging techniques (see [1], [2], [3], [4], [5], [8], [11], [14], [15],
[16], [17], [18], [19], [20], [27], [32]) which allow us to deal with the situation when the
equating of the parameter to zero may not lead to a right approximation.

The literature on multiscale SPCS (m > 1) is much less intensive. Most available
references concern linear control systems (see, e.g., [12], [26], and references therein).
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A technique of averaging type applicable to nonlinear control systems having a trian-
gular structure (weakly coupled) was proposed in [20].

In [18] an averaging technique allowing us to deal with a general form of SPCS con-
taining two small parameters (m = 2) was developed. The extension of the technique
to the case m > 2 is, however, hardly possible since it involves a multiple averaging
over time and leads to really complex expressions which are difficult to comprehend.
In this paper, an averaging over time is replaced by averaging over measures from
the LOMS. It resembles approaches used in dealing with stochastic SPCS (see, e.g.,
[9], [23], [34]) and makes the transition from the case m = k to the case m = k + 1
(∀k = 1, 2, . . .) very natural.

Different issues related to averaging over occupational measures in SPCS with
one small parameter were discussed in [2], [3], [4], [5], [17], [32]. In [17], in particular,
LOMS for control systems without small parameters were considered. In this paper,
we introduce and study such sets for singularly perturbed control systems (as is the
associated system if the original system is multiscale).

The paper is organized as follows. Section 1 is this introduction. In section 2
statements about approximation of the slow motions by the solutions of the averaged
system are formulated under the assumption that the LOMS of the associated system
exists. An application of these results to problems of optimal control is demonstrated
and a special case concerning systems linear in fast variables and controls is consid-
ered. In section 3 issues of existence and structure of the LOMS are addressed and a
multistage averaging procedure for the construction of the LOMS is presented. The
procedure is then illustrated with a special case of control systems which have a tri-
angular structure (similar to those studied in [20]). Proofs of most of the statements
are provided in section 4.

2. Averaging of multiscale SPCS.

2.1. Preliminaries. Given a compact metric space W , B(W ) will stand for the
σ-algebra of its Borel subsets and P(W ) will denote the set of probability measures
defined on B(W ). The set P(W ) will always be treated as a compact metric space
with a metric ρ, which is consistent with its weak convergence topology. That is, a
sequence γk ∈ P(W ), k = 1, 2, . . . , converges to γ ∈ P(W ) in this metric if and only
if

lim
k→∞

∫
W

φ(w)γk(dw) =

∫
W

φ(w)γ(dw)

for any continuous φ(w) : W → R
1.

Using the metric ρ, one can define the Hausdorff metric ρH on the set of subsets
of P(W ):

ρH(Γ1,Γ2)
def

= max
{
sup
γ∈Γ1

ρ(γ,Γ2), sup
γ∈Γ2

ρ(γ,Γ1)
}
∀Γ1,Γ2 ∈ P(W ),(2.1)

where ρ(γ,Γi)
def

= inf
γ′∈Γi

ρ(γ, γ′), i = 1, 2.

We will deal with the convergence in the Hausdorff metric of sets in P(W ) defined as
unions of occupational measures. Given a measurable function w(t) : [0, T ]→W , the
occupational measure pw(·) ∈ P(W ) generated by this function is defined by taking

pw(·)(Q)
def

=
1

T
meas

{
t
∣∣ w(t) ∈ Q} ∀Q ∈ B(W ),(2.2)

where meas {·} stands for the Lebesgue measure on [0, T ].
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2.2. Setting. Consider the SPCS

ε1ε2 . . . εm−1εmẏ1(t) = f1

(
u(t), y1(t), . . . , ym(t), z(t)

)
,

...
...

...
...

...
...

εm−1εmẏm−1(t) = fm−1

(
u(t), y1(t), . . . , ym(t), z(t)

)
,(2.3)

εmẏm(t) = fm
(
u(t), y1(t), . . . , ym(t), z(t)

)
,

ż(t) = g
(
u(t), y1(t), . . . , ym(t), z(t)

)
,

where ε
def

= (ε1, ε2, . . . , εm) is a vector of small positive parameters, t ∈ [0, T ], and the
functions fi : U×R

M1×· · ·×R
Mm×R

N → R
Mi , i = 1, . . . ,m, and g : U×R

M1×· · ·×
R
Mm × R

N → R
N are continuous and satisfy Lipschitz conditions in (y1, . . . , ym, z).

Admissible controls are Lebesgue measurable functions u(t) : [0, T ] → U , where U is
a compact metric space.

Consider also the system

ε1ε2 . . . εm−1ẏ1(τ) = f1

(
u(τ), y1(τ), . . . , ym(τ), z

)
,

...
...

...
...

...
...

εm−1ẏm−1(τ) = fm−1

(
u(τ), y1(τ), . . . , ym(τ), z

)
,(2.4)

ẏm(τ) = fm
(
u(τ), y1(τ), . . . , ym(τ), z

)
,

z = constant,

in which z is fixed and τ ∈ [0, S]. This system will be referred to as an associated
system with respect to SPCS (2.3). It is formally obtained from the “fast” subsystem
of (2.3) via the replacement of the time scale τ = tε−1

m . Admissible controls for the
associated system (2.4) are Lebesgue measurable functions u(τ) : [0, S] → U . The
solutions of (2.3) and (2.4) which are obtained with admissible controls are called
admissible trajectories.

Assumption 2.1. (i) There exist compact sets Y ′′
i ⊆ Y ′

i ⊂ R
Mi , i = 1, . . . ,m,

and Z ′′ ⊆ Z ′ ⊂ R
N such that the admissible trajectories of SPCS (2.3) which satisfy

the initial conditions(
y1(0), . . . , ym(0), z(0)

) ∈ Y ′′
1 × · · · × Y ′′

m × Z ′′(2.5)

do not leave the set Y ′
1 × · · · × Y ′

m × Z ′ on the interval [0, T ].
(ii) There exist compact sets Yi (Y

′
i ⊆ Yi), i = 1, . . . ,m, and Z (Z ′ ∈ intZ) such

that for any z from Z, the admissible trajectories of system (2.4) which satisfy the
initial conditions (

y1(0), . . . , ym(0)
) ∈ Y ′

1 × · · · × Y ′
m(2.6)

do not leave the set Y1 × · · · × Ym on the interval [0,∞).
Note that to verify this assumption, one can use results from viability theory (see

Chapter 5 in [6] and also [29] for further references).
Let us introduce the following notation:

y(τ)
def

=
(
y1(τ), . . . , ym(τ)

)
, Y

def

= Y1 × · · · × Ym,

and also Y ′ def

= Y ′
1 × · · · × Y ′

m, Y
′′ def

= Y ′′
1 × · · · × Y ′′

m.
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Let u(τ) be an admissible control defined on the interval [0, S] and let y(τ) be
the solution of the associated system (2.4) obtained with this control and the initial
conditions (2.6). Let p(u(·),y(·)) ∈ P(U × Y ) be the occupational measure generated
by the pair

(
u(τ), y(τ)

)
: [0, S]→ U × Y and let

Γ
(
z, ε1, . . . , εm−1, S, y(0)

) def

=
⋃

(u(·),y(·))

{
p(u(·),y(·))

}
,(2.7)

where the union is taken over all admissible controls and the corresponding solutions of
(2.4). Notice that the dependence on (z, ε1, . . . , εm−1) in (2.7) is due to the dependence
of the solutions of (2.4) on these parameters.

Assumption 2.2. For any z ∈ Z , there exists a convex and compact set Γ(z) ⊂
P(U × Y ) such that

ρH

(
Γ
(
z, ε1, . . . , εm−1, S, y(0)

)
,Γ(z)

)
≤ ν(ε1, . . . , εm−1, S) ∀y(0) ∈ Y ′,(2.8)

where lim(ε1,...,εm−1,S−1)→0 ν(ε1, . . . , εm−1, S) = 0.
The set Γ(z) introduced in Assumption 2.2 will be referred to as the limit oc-

cupational measures set (LOMS). Some sufficient conditions for the existence of the
LOMS are considered in section 3.

Assumption 2.3. For any S > 0, any absolutely continuous function z̃(τ) :
[0, S]→ Z, and any admissible control u(τ) : [0, S]→ U ,

max
τ∈[0,S]

∥∥yz(τ)− ỹ(τ)
∥∥ ≤ c max

τ∈[0,S]

∥∥z − z̃(τ)
∥∥+ κ(ε1, . . . , εm−1), c = const,(2.9)

where yz(τ) is the solution of (2.4) obtained with a given z ∈ Z and ỹ(τ) is the
solution of the same system obtained with the replacement of z by the function z̃(τ).
Initial conditions for yz(τ) and ỹ(τ) are the same: yz(0) = ỹ(0) ∈ Y ′ and the function
κ(ε1, . . . , εm−1) is either zero (for m = 1) or tends to zero as (ε1, . . . , εm−1) tends to
zero (for m > 1).

Lemma 2.4. Let Assumptions 2.1–2.3 be satisfied. Then for any vector function
h(u, y, z) : U ×Y ×Z → R

j, j = 1, 2, . . . , which is continuous in (u, y, z) and satisfies
Lipschitz conditions in (y, z), there exists a constant ch such that

dH

(
Vh(z

′), Vh(z′′)
) ≤ ch‖z′ − z′′‖ ∀z′, z′′ ∈ Z,(2.10)

where

Vh(z)
def

=
⋃

p∈Γ(z)

∫
U×Y

h(u, y, z)p (du, dy).(2.11)

Note that dH(·, ·) in (2.10) stands for the Hausdorff metric in a finite-dimensional
space. That is, for arbitrary bounded subsets V1, V2 of R

j (j = 1, 2, . . .),

dH(V1, V2)
def

= max
{
sup
v∈V1

d(v, V2), sup
v∈V2

d(v, V1)
}
, d(v, Vi)

def

= inf
v′∈Vi

‖v − v′‖,(2.12)

where ‖·‖ is a norm in R
j .

The proof of Lemma 2.4 is in section 4.1.
Note that Assumption 2.3 is satisfied automatically if the functions f1, . . . , fm−1

defining the right-hand side of the associated systems (2.4) do not depend on z. In a
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general case, Assumption 2.3 can be verified to be valid if the associated system (2.4)
satisfies stability conditions similar to that introduced in [16] (see [16, Assumption 4.1,
Lemma 4.1]), the latter being implied by the existence of a Lyapunov-like function
(as in [17, p. 467]). For the case m = 1 (one singular perturbation parameter),
Assumption 2.3 can be replaced by the assumption that the statement of Lemma 2.4
is valid (see [17]). A slightly different assumption which can replace Assumption 2.3
for m > 1 is discussed in Remark 4.1.

2.3. Approximation of the slow trajectories. Let the function g̃(γ, z) :
P(U × Y )× R

N → R
N be defined as follows:

g̃(γ, z)
def

=

∫
U×Y

g(u, y, z) γ(du, dy).(2.13)

We will assume that the metric ρ of P(U×Y ) is chosen in such a way that the function
g̃(γ, z) satisfies the Lipschitz conditions:

‖g̃(γ′, z′)− g̃(γ′′, z′′)‖ ≤ b(ρ(γ′, γ′′) + ‖z′ − z′′‖) ∀z′, z′′, ∀γ′, γ′′,(2.14)

where b is a positive constant. Let us consider the system

ż(t) = g̃
(
γ(t), z(t)

)
,(2.15)

which will be referred to as the averaged system. The role of controls in the averaged
system is played by functions γ(t) satisfying the inclusion

γ(t) ∈ Γ
(
z(t)

)
.(2.16)

Note that the fact that the functions γ(t) are measure valued underlines the similarity
of our description with classical relaxed control setting (see [33]).

Definition 2.5. A pair
(
γ(t), z(t)

)
: [0, T ]→ P(U×Y )×R

N is called admissible
for the averaged system if γ(t) is Lebesgue measurable, z(t) is absolutely continuous,
and (2.15)–(2.16) are satisfied for almost all t ∈ [0, T ].

Theorem 2.6. Let Assumptions 2.1–2.3 be satisfied and let h(u, y, z) : U × Y ×
Z → R

j, j = 1, 2, . . . , be an arbitrary Lipschitz continuous vector function. There
exist µ(ε, T ) and µh(ε, T ),

lim
ε→0

µ(ε, T ) = 0, lim
ε→0

µh(ε, T ) = 0,(2.17)

such that the following two statements are valid:
(i) Let u(t) be an admissible control and let

(
y(t), z(t)

)
be the corresponding tra-

jectory of SPCS (2.3) which satisfies initial condition (2.5). There exists an ad-
missible pair

(
γa(t), za(t)

)
of the averaged system (2.15) with the initial conditions

za(0) = z(0) such that

max
t∈[0,T ]

∥∥z(t)− za(t)
∥∥ ≤ µ(ε, T ),(2.18)

and also ∥∥∥∥
∫ T

0

h
(
u(t), y(t), z(t)

)
dt −

∫ T

0

h̃
(
γa(t), za(t)

)
dt

∥∥∥∥ ≤ µh(ε, T ),(2.19)
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where

h̃(γ, z)
def

=

∫
U×Y

h(u, y, z) γ(du, dy).(2.20)

(ii) Conversely, let
(
γa(t), za(t)

)
be an admissible pair of the averaged system

(2.15), which satisfies initial conditions za(0) ∈ Z ′′. One can construct an admissible
control u(t) such that the trajectory

(
y(t), z(t)

)
of SPCS (2.3) obtained with this

control and initial conditions (2.5)
(
z(0) = za(0)

)
will satisfy (2.18)–(2.19).

The proof of the theorem is in section 4.1. Estimates (2.18)–(2.19) of Theorem
2.6 are not uniform with respect to the length T of the time interval. Additional
assumptions are needed to make them uniform. The assumption we use in this paper
is as follows.

Assumption 2.7. There exist positive definite matrices C, D and a constant a
such that corresponding to any z′, z′′ from Z and any γ′ ∈ Γ(z′) there exists γ′′ ∈ Γ(z′′)
such that (

g̃(γ′, z′)− g̃(γ′′, z′′)
)T

C (z′ − z′′) ≤ −‖z′ − z′′‖2D(2.21)

and

ρ(γ′, γ′′) ≤ a‖z′ − z′′‖,(2.22)

where ‖x‖2D in (2.21) (and in what follows) stands for xTDx.
Note that Assumption 2.7 is satisfied if the inequality (2.21) is valid for any

γ′ = γ′′ and the LOMS Γ(z) is independent of z (that is, the associated system does
not depend on z).

Theorem 2.8. Let Assumptions 2.1–2.3 and 2.7 be satisfied. Assume also that
all the admissible trajectories of averaged system (2.15) which start in Z ′′ do not leave
Z ′ and those which start in Z ′ do not leave intZ on the infinite time horizon. Then
there exist µ(ε) and µh(ε),

lim
ε→0

µ(ε) = 0, lim
ε→0

µh(ε) = 0,

such that statements (i) and (ii) of Theorem 2.6 remain valid with

sup
t>0

∥∥z(t)− za(t)
∥∥ ≤ µ(ε)(2.23)

replacing (2.18) and

sup
T>T0

∥∥∥∥T−1

∫ T

0

h
(
u(t), y(t), z(t)

)
dt − T−1

∫ T

0

h̃
(
γa(t), za(t)

)
dt

∥∥∥∥
(2.24) ≤ µh(ε), T0 = const

replacing (2.19) for any Lipschitz continuous vector function h(u, y, z) : U ×Y ×Z →
R
j, j = 1, 2, . . . , such that the corresponding h̃(γ, z) defined by (2.20) satisfies the

Lipschitz condition

‖h̃(γ′, z′)− h̃(γ′′, z′′)‖ ≤ ah(ρ(γ
′, γ′′) + ‖z′ − z′′‖) ∀z′, z′′, ∀γ′, γ′′,(2.25)

where ah is some positive constant.
The proof of the theorem is in section 4.1.
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2.4. Application to optimal control. Let h(u, y, z) : U × Y × Z → R
1 be

continuous and satisfy the Lipschitz conditions in (y, z). Consider the optimal control
problem

inf
(u(·),y(·),z(·))

{∫ T

0

h(u(t), y(t), z(t))dt

}
,(2.26)

where inf is sought over all admissible controls and trajectories of (2.3). Under the as-
sumptions of Theorem 2.6, the optimal value of this problem converges to the optimal
value of the problem

inf
(γ(·),z(·))

{∫ T

0

h̃(γ(t), z(t))dt

}
,(2.27)

where h̃(γ, z) is defined according to (2.20) and inf is over the admissible pairs of the
averaged system (2.15). Near optimal controls of (2.26) can also be constructed on the
basis of the solution of (2.27). These will be the controls which provide the validity of
(2.18)–(2.19) for the admissible pair (γa(t), za(t)) which delivers the optimal (or near
optimal) value to (2.27) (see statement (ii) of Theorem 2.6). If the assumptions of
Theorem 2.8 are satisfied, then a similar approximation of a problem on the infinite
time horizon with a time average criterion is possible.

In some cases the “limit” problem (2.27) can be significantly simplified with the
help of the following proposition.

Proposition 2.9. Let φ(yi) : Yi → R
1 be continuously differentiable. Then∫

U×Y
(φ′(yi))T fi(u, y, z)γ(du, dy) = 0 ∀γ ∈ Γ(z),(2.28)

and, in particular, ∫
U×Y

fi(u, y, z)γ(du, dy) = 0 ∀γ ∈ Γ(z),(2.29)

where fi(u, y, z), i = 1, . . . ,m, are the functions defining the right-hand side of (2.4).
The proof of the proposition is in section 4.1. To illustrate how this proposition

can be applied let us consider the following special case. Assume that the set U is
convex and the functions fi(u, y, z), g(z, y, u) are linear in fast variables and controls.
That is,

fi(u, y, z) =

m∑
j=1

Ai,j(z)yj +Ai,m+1(z)u+Ai,m+2(z), i = 1, . . . ,m,(2.30)

g(u, y, z) =

m∑
j=1

A0,j(z)yj +A0,m+1(z)u+A0,m+2(z),(2.31)

where Ai,j are matrix functions of the corresponding dimensions. By (2.31), the
averaged system is equivalent to

ż(t) = g(ū(t), ȳ(t), z(t)), (ū(t), ȳ(t)) ∈ Ω(z(t)),(2.32)
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where Ω(z) is the set of the first moments corresponding to the probability measures
from the LOMS Γ(z):

Ω(z)
def

=

{
(ū, ȳ) | (ū, ȳ) =

∫
Y×U

(u, y)γ(du, dy), γ ∈ Γ(z)

}
.

By (2.29) and (2.30), this set allows the representation

Ω(z) = {(ū, ȳ) | fi(ū, ȳ, z) = 0, i = 1, . . . ,m, ū ∈ U},(2.33)

and thus (2.32) is equivalent to the control system

ż(t) = g(ū(t), ψ(ū(t), z(t)), z(t)), ū(t) ∈ U,(2.34)

where ȳ = ψ(ū, z) is the root of the system of equations fi(ū, ȳ, z) = 0, i = 1, . . . ,m.
This is a so-called reduced system and can be obtained from (2.3) via formally equating
ε to zero. If, in addition, the function h(u, y, z) used in (2.26) is convex in (u, y), then
limit problem (2.27) becomes equivalent to

inf
(ū(·),z(·))

{∫ T

0

h(ū(t), ψ(ū(t), z(t)), z(t))dt

}
,(2.35)

where inf is over the admissible controls and corresponding trajectories of (2.34).
Notice that the reasoning above is valid if Assumptions 2.1–2.3 are satisfied. It can
be shown (although it is quite technical and we do not prove it in this paper) that these

assumptions are satisfied if the eigenvalues of the matrices A
(l−1)
l,l (z), l = 1, . . . ,m,

defined below have negative real parts for all z from a sufficiently large domain. The
matrices are defined recursively for l = 1, . . . ,m by the equations

A
(l)
i,j(z) = A

(l−1)
i,j (z)−A

(l−1)
i,l (z)(A

(l−1)
l,l (z))−1A

(l−1)
l,j (z)(2.36)

(i = l + 1, . . . ,m, j = l + 1, . . . ,m + 2), with A
(0)
i,j (z)

def

= Ai,j(z) (i = 1, . . . ,m,
j = 1, . . . ,m+2). Note that the condition that the matrices (2.36) have negative real
parts is similar to that used in [12] to asymptotically describe the reachability set of
a multiscale linear SPCS.

3. Existence of LOMS.

3.1. Approximation of the occupational measures set. Let u(t) be an
admissible control and let

(
y(t), z(t)

)
be the corresponding admissible trajectory of

SPCS (2.3) which satisfies initial conditions (2.5). Let p(u(·),y(·),z(·)) ∈ P(U×Y ×Z) be
the occupational measure generated by the vector function

(
u(·), y(·), z(·)): [0, T ] →

U × Y ′ × Z ′ ⊂ U× Y × Z and let

Γ
(
ε, T, y(0), z(0)

) def

=
⋃

(u(·),y(·),z(·))

{
p(u(·),y(·),z(·))

}
,(3.1)

where the union is taken over all admissible controls and the corresponding trajectories
of SPCS (2.3). In this section, we will describe the asymptotics of this set as the vector
of small parameters ε = (ε1, . . . , εm−1, εm) tends to zero.

Let (γ(t), z(t)) : [0, T ] → P(U × Y ) × Z be an admissible pair of the averaged
system (2.15) with the initial condition

z(0) ∈ Z ′′.(3.2)
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Let p(γ(t),z(t)) ∈ P(P(U×Y )×Z) be the occupational measure generated by this pair

and let Γ̃(T, z(0)) be the union of the occupational measures generated by all such
pairs

Γ̃
(
T, z(0)

) def

=
⋃

(γ(·),z(·))

{
p(γ(·),z(·))

}
.(3.3)

We will use Γ̃(T, z(0)) to specify the limit of (3.1) as ε tends to zero. To do that let
us define a map ψ(p) : p ∈ P(P(U ×Y )×Z)→ P(U ×Y ×Z) in such a way that for
any Q ∈ B(U × Y ) and any F ∈ B(Z),

ψ(p)(Q× F ) =

∫
P(U×Y )×Z

γ(Q)χF (z)p(dγ, dz),(3.4)

where χF (·) is the indicator function of F . The integration in (3.4) is legitimate since
the function

γ(Q)χF (z) : (γ, z) ∈ P(U × Y )× Z → [0, 1](3.5)

is measurable with respect to B(P(U × Y ) × Z) (see [10, Proposition 7.25, p. 133]).
Notice that for any p ∈ P(P(U × Y ) × Z

)
and any continuous function h(u, y, z) :

U × Y × Z → R
j , j = 1, 2, . . . ,∫

U×Y×Z
h(u, y, z)ψ(p)(du, dy, dz) =

∫
P(U×Y )×Z

h̃(γ, z)p(dγ, dz),(3.6)

where h̃(γ, z) is defined by (2.20). For p = p(γ(·),z(·)) (that is, for p being the occupa-
tional measure generated by an admissible pair

(
γ(·), z(·)) of (2.15))

∫
U×Y×Z

h(u, y, z)ψ
(
p(γ(·),z(·))

)
(du, dy, dz) =

1

T

∫ T

0

h̃
(
γ(t), z(t)

)
dt.(3.7)

Let us now define the set Γ(T, z(0)) ⊂ P(U × Y × Z) as follows:

Γ(T, z(0))
def

=
⋃

p∈Γ̃(T,z(0))

{
ψ(p)

}
=

⋃
(γ(·),z(·))

{
ψ
(
p(γ(·),z(·))

)}
,(3.8)

where the second union is taken over all admissible pairs of (2.15) satisfying initial
conditions (3.2). (The second equality follows from the definition (3.3) of the set
Γ̃
(
T, z(0)

)
.)

Theorem 3.1. (i) Let the assumptions of Theorem 2.6 be satisfied. Then there
exists ν(ε, T ), limε→0 ν(ε, T ) = 0, such that

ρH

(
Γ
(
ε, T, y(0), z(0)

)
,Γ
(
T, z(0)

)) ≤ ν(ε, T ) ∀(y(0), z(0)) ∈ Y ′′ × Z ′′.(3.9)

(ii) Let the assumptions of Theorem 2.8 be satisfied and let there be a sequence
qk(u, y, z) : U ×Y ×Z → R

1, k = 1, 2, . . . , of Lipschitz continuous functions such that
it is dense in C(U × Y × Z) and for any

h(z, y, u)
def

= (q1(u, y, z), . . . , qj(u, y, z)), j = 1, 2, . . . ,(3.10)
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the corresponding h̃(γ, z) defined by (2.20) satisfies Lipschitz condition (2.25). Then
estimate (3.9) becomes uniform with respect to T ≥ T0. That is, there exists ν(ε),
limε→0 ν(ε) = 0, such that ∀T ≥ T0,

ρH

(
Γ
(
ε, T, y(0), z(0)

)
,Γ
(
T, z(0)

)) ≤ ν(ε) ∀(y(0), z(0)) ∈ Y ′′ × Z ′′.(3.11)

The proof of the theorem is in section 3.4.

3.2. LOMS of the averaged system and LOMS of the multiscale SPCS.
Proposition 3.2. Let the uniform estimate (3.11) be valid and let the LOMS

of the averaged system (2.15) exist. That is, there exists the convex and compact set
Γ̃ ⊂ P(P(U × Y )× Z

)
such that

ρH

(
Γ̃
(
T, z(0)

)
, Γ̃
)
≤ µ̃(T ) ∀z(0) ∈ Z ′′,(3.12)

where limT→∞ µ̃(T ) = 0. Then the set

Γ
def

=
⋃
p∈Γ̃

{
ψ(p)

}
⊂ P(U × Y × Z

)
(3.13)

is convex and compact, and the following estimate is valid:

ρH

(
Γ
(
T, z(0)

)
,Γ
)
≤ µ(T ) ∀z(0) ∈ Z ′′,(3.14)

where limT→∞ µ(T ) = 0. Also,

ρH

(
Γ
(
ε, T, y(0), z(0)

)
,Γ
)
≤ µ(T ) + ν(ε) ∀(y(0), z(0)) ∈ Y ′′ × Z ′′,(3.15)

where µ(T ) and ν(ε) are as in (3.14) and (3.11), respectively. Thus, Γ is the LOMS
of SPCS (2.3).

Proof. The validity of (3.14) is implied by (3.12) and by the fact that the map ψ(p)
defined by (3.4) is continuous (see Lemma 4.3 in section 4.2). This continuity implies
also the fact that the set Γ is compact. The convexity of Γ follows from the linearity
of ψ(p). Estimate (3.15) follows from (3.14), (3.11), and the triangle inequality.

Theorem 3.3. Let the assumptions of Theorem 3.1(ii) be satisfied. Then
(i) the LOMS Γ̃ of the averaged system (2.15) exists and the estimate (3.12) is

valid;
(ii) the LOMS Γ of the SPCS system (2.3) exists and the estimate (3.15) is valid;

Γ is presented in the form (3.13).
Proof. The statements included in (ii) follow from Theorem 3.1(ii), Proposi-

tion 3.2, and Theorem 3.3(i). The proof of Theorem 3.3(i) is in section 4.2.

3.3. LOMS via multistage averaging. System (2.4), which was introduced as
associated with respect to (2.3), is singularly perturbed itself. One can thus consider
a system which would be associated with respect to (2.4):

ε1ε2 . . . εm−2ẏ1(τ) = f1

(
u(τ), y1(τ), . . . , ym−1(τ), ym, z

)
,

...
...

...
...

...
...

εm−2ẏm−2(τ) = fm−2

(
u(τ), y1(τ), . . . , ym−1(τ), ym, z

)
,(3.16)

ẏm−1(τ) = fm−1

(
u(τ), y1(τ), . . . , ym−1(τ), ym, z

)
,

(ym, z) = constant,
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in which both ym and z are fixed. For the sake of convenience, in this section we will
refer to (2.4) and (3.16) as to ym- and ym−1-associated systems, respectively (by the
name of the group of variables changing their values with rates of the order O(1)).
One can also consider ym−2-, . . . , y2- and y1-associated systems, the latter two being
of the form

ε1ẏ1(τ) = f1

(
u(τ), y1(τ), y2(τ), y3, . . . , ym, z

)
,

ẏ2(τ) = f2

(
u(τ), y1(τ), y2(τ), y3, . . . , ym, z

)
,(3.17)

(y3, . . . , ym, z) = constant

and

ẏ1(τ) = f1

(
u(τ), y1(τ), y2, y3, . . . , ym, z

)
,(3.18)

(y2, y3, . . . , ym, z) = constant.

Assume that the LOMS Γ1(y2, y3, . . . , ym, z) ⊂ P
(
U × Y1

)
of system (3.18) exists

(sufficient conditions for the existence of LOMS of systems which, like (3.18), do not
involve small parameters were discussed in [17]) and that Theorem 2.6 is applicable to
system (3.17). Then y2-components of the trajectories of this system are approximated
by the trajectories of the averaged system

ẏ2(τ) = f̃2

(
γ1(τ), y2(τ), y3, . . . , ym, z

)
, γ1(τ) ∈ Γ1(y2(τ), y3, . . . , ym, z),(3.19)

where (y3, . . . , ym, z) are fixed and

f̃2

(
γ1, y2, y3, . . . , ym, z

) def

=

∫
U×Y1

f2

(
u, y1, y2, y3, . . . , ym, z

)
γ1(du, dy1).(3.20)

Suppose that the LOMS Γ̃2(y3, . . . , ym, z) ⊂ P
(P(U×Y1)×Y2

)
of system (3.19) exists

and that the other assumptions of Proposition 3.2 or Theorem 3.3 are satisfied. One
then can come to the conclusion that the LOMS Γ2(y3, . . . , ym, z) ⊂ P

(
U × Y1 × Y2

)
of system (3.17) exists and is presented in the form

Γ2(y3, . . . , ym, z) =
⋃

p∈Γ̃2(y3,...,ym,z)

{
ψ1(p)

}
,(3.21)

where the map ψ1(p) : p ∈ P
(P(U × Y1) × Y2

) → P(U × Y1 × Y2) is such (compare
with (3.4) above) that for any Q ∈ B(U × Y1) and any F ∈ B(Y2),

ψ1(p)(Q× F ) =

∫
P(U×Y1)×Y2

γ1(Q)χF (y2)p(dγ1, dy2),(3.22)

χF (·) being the indicator function of F . Assuming further that Proposition 3.2 or
Theorem 3.3 can be applied step by step to y3-, . . . , ym-associated systems, one can

establish the existence of the LOMS Γ(z)
def

= Γm(z) of system (2.4), which is presented
in the form

Γm(z) =
⋃

p∈Γ̃m(z)

{
ψm−1(p)

}
,(3.23)

with the corresponding definition of ψm−1(p) and Γ̃m(z) being the LOMS of the
averaged system

ẏm(τ) = f̃m
(
γm−1(τ), ym(τ), z

)
, γm−1(τ) ∈ Γm−1(ym(τ), z),(3.24)
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where z = const, Γm−1(ym, z) is the LOMS of the ym−1-associated system, and

f̃m
(
γm−1, ym, z

) def

=

∫
U×Y1×···×Ym−1

fm
(
u, y1, . . . , ym−1, ym, z

)
γm−1(du, dy1, . . . , dym−1).

The applicability of Theorem 3.3 to each of the above systems is easy to verify, for
example, if

fi(u, y, z)
def

= fi(u, y1, . . . , yi), i = 1, . . . ,m.(3.25)

That is, the dynamics of yi-components in (2.3) is not influenced by the dynamics of
yi+1-, . . . , ym- and z-components. Assuming that this is the case, let us also introduce
the following assumption about the functions fi(·).

Assumption 3.4. There exist positive definite matrices Ci, Di (i = 1, . . . ,m)
such that for any u ∈ U and any y1, . . . , yi−1, y

′
i, y

′′
i ,(

fi(u, y1, . . . , yi−1, y
′
i)−fi(u, y1, . . . , yi−1, y

′′
i )
)T

Ci (y
′
i−y′′i ) ≤ −‖y′i−y′′i ‖2Di

.(3.26)

By (3.25), the y1-associated system (3.18) does not depend on (y2, . . . , ym, z) and,
by (3.26) with i = 1, the LOMS Γ1 of this system exists (see Proposition 3.3 in [17]).
Again, by (3.25), the dependence on (y3, . . . , ym, z) in the function (3.20) defining the
right-hand side of (3.19) disappears and, by (3.26) with i = 2, this function satisfies
the inequality

(
f̃2(γ1, y

′
2)− f̃2(γ1, y

′′
2 )
)T

C2 (y′2 − y′′2 ) ≤ −‖y′2 − y′′2‖2D2
∀γ1 ∈ P(U × Y1),

∀y′2, y′′2 ∈ R
M2 and ∀γ1 ∈ P(U × Y1). This implies the applicability of Theorem 3.3

according to which the LOMS Γ̃2 of averaged system (3.19) and the LOMS Γ2 of the
y2-associated system both exist and the representation (3.21) is valid. Continuing in
a similar way, one can finally verify that the LOMS Γ̃m of averaged system (3.24) and
the LOMS Γm of ym-associated system (2.4) exist and that the representation (3.23)
is valid. The applicability of Theorem 3.3 at this final stage can be verified by using
the fact that the function f̃m

(
γm−1, ym

)
defining the right-hand side of the averaged

system (3.24) (which, by (3.25), does not involve the dependence on z) satisfies the
inequality

(
f̃m(γm−1, y

′
m)− f̃m(γm−1, y

′′
m)
)T

Cm (y′m − y′′m) ≤ −‖y′m − y′′m‖2Dm

∀y′m, y′′m ∈ R
Mm and ∀γm−1 ∈ P(U × Y1 × · · · × Ym−1).

Note that a different multistage averaging procedure for SPCS with fi(·) having
the form (3.25) and satisfying an assumption similar to Assumption 3.4 (with Ci, Di

being identity matrices) was suggested in [20].

3.4. Basic lemma and the proof of Theorem 3.1. The proofs of Theorems
3.1 and 3.3 are based on the lemma and its corollaries presented below. Let W be a
compact metric space and qk(w) : W → R

1, k = 1, 2, . . . , be a sequence of Lipschitz
continuous functions which is dense in C(W ).

Lemma 3.5. Let Γi(α, β) ⊂ P(W ), i = 1, 2, where α and β take values in some
metric spaces A and B. Assume that corresponding to any vector function

h(w) =
(
q1(w), . . . , qj(w)

)
, j = 1, 2, . . . ,(3.27)
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there exists a function

νh(α) : A → R
1, lim

α→α0

νh(α) = 0,(3.28)

such that

sup
v∈V 1

h
(α,β)

d
(
v, V 2

h (α, β)
) ≤ νh(α),(3.29)

where

V i
h(α, β)

def

=
⋃

γ∈Γi(α,β)

{∫
W

h(w)γ(dw)

}
, i = 1, 2, . . . .(3.30)

Then there also exists another function

ν(α) : A → R
1, lim

α→α0

ν(α) = 0,(3.31)

such that

sup
γ∈Γ1(α,β)

ρ
(
γ,Γ2(α, β)

) ≤ ν(α).(3.32)

Corollary 3.6. If for any h(w) : W → R
j as in (3.27) there exists a func-

tion (3.28) such that

dH

(
V 1
h (α, β), V

2
h (α, β)

) ≤ νh(α),(3.33)

then there also exists a function (3.31) such that

ρH

(
Γ1(α, β),Γ2(α, β)

) ≤ ν(α).(3.34)

Corollary 3.7. Let Γ(α, β) ⊂ P(W ) for (α, β) ∈ A × B, and for any h(w) :
W → R

j as in (3.27) there exists a convex and compact set Vh ⊂ R
j and a func-

tion (3.28) such that

dH

(
Vh(α, β), Vh

) ≤ νh(α),(3.35)

where

Vh(α, β) =
⋃

γ∈Γ(α,β)

{∫
W

h(w)γ(dw)

}
.(3.36)

Then there exists a function (3.31) such that

ρH

(
Γ(α, β),Γ

) ≤ ν(α),(3.37)

where Γ is a convex and compact subset of P(W ) defined by

Γ
def

=

{
γ
∣∣∣ γ ∈ P(W ),

∫
W

h(w)γ(dw) ∈ Vh ∀h(w): W→ R
j as in (3.27)

}
.(3.38)

The proof of Lemma 3.5 is in section 4.2. Corollary 3.6 is implied by Lemma 3.5
in an obvious way. The proof of Corollary 3.7 is similar to the proof of Theorem 3.1(i)
in [17].
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Proof of Theorem 3.1. Let h(u, y, z) : U × Y × Z → R
j , j = 1, 2, . . . , be an

arbitrary Lipschitz continuous vector function. Let u(t) be an admissible control and
let
(
y(t), z(t)

)
be the corresponding admissible trajectory of SPCS (2.3) which satisfies

initial conditions (2.5). Let Vh
(
ε, T, y(0), z(0)

)
be the set of time averages

Vh
(
ε, T, y(0), z(0)

) def

=
⋃

(u(·),y(·),z(·))

{
1

T

∫ T

0

h
(
u(t), y(t), z(t)

)
dt

}
,(3.39)

where the union is taken over all admissible controls and the corresponding trajectories
of (2.3). Notice that by definition (3.1) of Γ

(
ε, T, y(0), z(0)

)
, the set (3.39) also allows

the representation

Vh
(
ε, T, y(0), z(0)

)
=

⋃
γ∈Γ(ε,T,y(0),z(0))

{∫
h(u, y, z)γ(du, dy, dz)

}
.(3.40)

Let the set Ṽh
(
T, z(0)

)
be defined as follows:

Ṽh
(
T, z(0)

) def

=
⋃

γ∈Γ(T,z(0))

{∫
h(u, y, z)γ(du, dy, dz)

}
(3.41)

=
⋃

(γ(·),z(·))

{∫
h(u, y, z)ψ

(
p(γ(·),z(·)))(du, dy, dz)},

where, as in (3.8), the second union is taken over all admissible pairs of (2.15) which
satisfy the initial conditions (3.2).

By (3.7), the set Ṽh
(
T, z(0)

)
can also be represented in the form

Ṽh
(
T, z(0)

)
=

⋃
(γ(·),z(·))

{
1

T

∫ T

0

h̃
(
γ(·), z(·))}.(3.42)

Using estimate (2.19) from Theorem 2.6 and comparing (3.39) and (3.42), one obtains

dH

(
Vh
(
ε, T, y(0), z(0)

)
, Ṽh
(
T, z(0)

)) ≤ 1

T
µh(ε, T )(3.43)

∀(y(0), z(0)) ∈ Y ′′ × Z ′′. Having in mind representations (3.40), (3.41) and applying
Corollary 3.6, one proves (3.9). Under the conditions of Theorem 2.8, estimate (3.43)
can be rewritten in the uniform with respect to the T ≥ T0 form

dH

(
Vh
(
ε, T, y(0), z(0)

)
, Ṽh
(
T, z(0)

)) ≤ µh(ε) ∀T ≥ T0,

where h(·) is as in (3.10). This, by Corollary 3.6, proves (3.11).

4. Proofs and auxiliary results.

4.1. Proofs for section 2.
Proof of Lemma 2.4. Consider the set of the time averages

Vh
(
z, ε̄, S, y(0)

) def

=
⋃

(u(·),y(·))

{
1

S

∫ S

0

h
(
u(τ), y(τ), z

)}
,(4.1)
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where ε̄
def

= (ε1, . . . , εm−1) and the union is taken over all admissible controls and the
corresponding trajectories of (2.4). By Assumption 2.3,

max
τ∈[0,S]

∥∥yz′(τ)− yz
′′
(τ)
∥∥ ≤ c‖z′ − z′′‖+ κ(ε̄) ∀z′, z′′ ∈ Z,(4.2)

where yz
′
(τ) and yz

′′
(τ) are solutions of (2.4) obtained with the same control and

initial conditions and with z = z′ and z = z′′, respectively. Hence,

dH

(
Vh
(
z′, ε̄, S, y(0)

)
, Vh
(
z′′, ε̄, S, y(0)

)) ≤ ch‖z′ − z′′‖+ chκ(ε̄) ∀z′, z′′ ∈ Z,(4.3)

where ch is a constant which is expressed via the Lipschitz constant of h(·) and c
from (4.2) in an obvious way.

By definition (2.7) of Γ
(
z, ε̄, S, y(0)

)
, the set Vh

(
z, ε̄, S, y(0)

)
defined in (4.1) allows

also the representation

Vh
(
z, ε̄, S, y(0)

)
=

⋃
p∈Γ(z,ε̄,S,y(0))

{∫
U×Y

h(u, y)p(du, dy)

}
.(4.4)

It follows from Assumption 2.2 that there exists a function νh(ε̄, S) such that

lim
(ε̄,S−1)→0

νh(ε̄, S) = 0

and

dH

(
Vh
(
z, ε̄, S, y(0)

)
, Vh(z)

)
≤ νh(ε̄, S) ∀z ∈ Z, ∀y(0) ∈ Y ′.(4.5)

Passing to the limit as (ε̄, S−1) tends to zero in (4.3), one obtains (2.10).

Proof of Theorem 2.6. Let ḡ(u, y, z)
def

=
(
g(u, y, z), h(u, y, z)

)
. Consider the set of

time averages

V
(
z, ε̄, S, y(0)

)
=

⋃
(u(·),y(·))

{
1

S

∫ T

0

ḡ
(
u(τ), y(τ), z

)
dτ

}
⊂ R

N+j ,

where, as in (4.1), the union is taken over all admissible controls and corresponding
trajectories of (2.4). From Assumption 2.2 it follows (similarly to (4.5)) that there
exists ν̄(ε̄, S), lim(ε̄,S−1)→0 ν̄(ε̄, S) = 0 such that

dH

(
V
(
z, ε̄, S, y(0)

)
, V (z)

)
≤ ν̄(ε̄, S) ∀z ∈ Z, ∀y(0) ∈ Y ′,(4.6)

where

V (z)
def

=
{
(v, w)

∣∣ (v, w) = (g̃(γ, z), h̃(γ, z)), γ ∈ Γ(z)
}
⊂ R

N+j ,(4.7)

with g̃ and h̃ being defined by (2.13) and (2.20), respectively.
Let us augment the averaged system (2.15) with the equation

θ̇(t) = h̃
(
γ(t), z(t)

)
, θ(0) = 0.(4.8)

The map V (z) : Z → 2R
N+j

defined by (4.7) is convex and compact valued. It also
satisfies the Lipschitz conditions (Lemma 2.4)

dH

(
V (z′), V (z′′)

) ≤ c̄‖z′ − z′′‖ ∀z′, z′′ ∈ Z, c̄ = const.(4.9)
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By the Filippov theorem (see, e.g., [7, Theorem 8.2.10, p. 316]), the set of admissible

trajectories
(
z(t), θ(t)

) def

= z̄(t) of systems (2.15) and (4.8) coincides with the set of
solutions of the differential inclusion

˙̄z(t) ∈ V (z(t)).(4.10)

Let us augment system (2.3) with the equation

θ̇(t) = h
(
u(t), y1(t), . . . , ym(t), z(t)

)
, θ(0) = 0,(4.11)

and again denote z̄(τ)
def

=
(
z(τ), θ(τ)

)
. To prove the theorem it is enough to show

that, corresponding to any admissible trajectory
(
y(t), z̄(t)

)
of (2.3) and (4.11), there

exists a solution z̄a(t) of (4.10) satisfying the inequality

max
t∈[0,T ]

∥∥z̄(t)− z̄a(t)
∥∥ ≤ µ̄(ε, T ), lim

ε→0
µ̄(ε, T ) = 0,(4.12)

and, conversely, for any solution z̄a(t) of (4.10), there exists an admissible trajectory(
y(τ), z̄(τ)

)
of (2.3) and (4.11) which satisfies (4.12).

The proof of these statements is similar to Lemma 2.1 in [16] or Theorem 3.1
in [19].

Remark 4.1. Note that an important step of the proof is an introduction of the

new time scale τ
def

= tε−1
m and a partition of the interval [0, T ε−1

m ] by the points τl =
lS(εm), l = 0, 1, . . . , where S(εm) > 0 is a function of εm such that limεm→0 S(εm) =
∞ and limεm→0 εmS(εm) = 0. At the cost of making the proof slightly more involved,
one can replace Assumption 2.3 by the assumption that the statement of Lemma 2.4
is valid and that the ym−1-associated system (3.16) has a property similar to (2.9),
with (ym, z) playing the role of z.

Proof of Theorem 2.8. The proof is based on the following result.
Proposition 4.2. Given a solution

(
z1(t), θ1(t)

)
of the differential inclusion

(4.10) satisfying the initial condition
(
z1(0), θ1(0)

)
= (z1, θ1) ∈ Z ′ ×R

j and a vector

(z2, θ2) ∈ Z ′ × R
j, there exists a solution

(
z2(t), θ2(t)

)
of (4.10) which satisfies the

initial condition
(
z2(0), θ2(0)

)
= (z2, θ2), and the following inequalities hold:

∥∥z1(t)− z2(t)
∥∥ ≤ b1e

−βt‖z1 − z2‖,(4.13) ∥∥θ1(t)− θ2(t)
∥∥ ≤ ‖θ1 − θ2‖+ b2‖z1 − z2‖,(4.14)

where b1, b2, β are some positive constants.
Proof of Proposition 4.2. As mentioned above, the map V (z) defined in (4.7) is

convex and compact valued and satisfies Lipschitz conditions. Also, from Assump-
tion 2.7 (see (2.21)–(2.22)) it follows that it has the following property: for any z′ ∈ Z,
(v′, w′) ∈ V (z′) and any z′′ ∈ Z, there exists (v′′, w′′) ∈ V (z′′) such that

(v′ − v′′)TC(z′ − z′′) ≤ −‖z′ − z′′‖2D,(4.15)

‖w′ − w′′‖ ≤ bh‖z′ − z′′‖.(4.16)

The claim of the proposition follows now from Lemma A.2 in [18].
To prove Theorem 2.8 let us choose T0 in such a way that

b1e
−βT0

def

= δ < 1,(4.17)
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and let
(
y(t), z(t), θ(t)

)
be an admissible trajectory of the systems (2.3) and (4.11)

which satisfies the initial conditions (y(0), z(0)) ∈ Y ′′×Z ′′, θ(0) = 0. By Theorem 2.6,
there exists a solution

(
za(t), θa(t)

)
of the differential inclusion (4.10) satisfying the

initial condition
(
za(0), θa(0)

)
=
(
z(0), 0

)
such that∥∥z(t)− za(t)

∥∥ ≤ µ(ε, T0),
∥∥θ(t)− θa(t)

∥∥ ≤ µh(ε, T0) ∀t ∈ [0, T0].(4.18)

When Theorem 2.6 is applied again, one can establish that there exists a solution(
z̃a(t), θ̃a(t)

)
of (4.10) on the interval [T0, 2T0] such that it satisfies the initial con-

ditions
(
z̃a(T0), θ̃

a(T0)
)
=
(
z(T0), θ(T0)

)
and, also, such that the following estimates

are valid:∥∥z(t)− z̃a(t)
∥∥ ≤ µ(ε, T0),

∥∥θ(t)− θ̃a(t)
∥∥ ≤ µh(ε, T0) ∀t ∈ [T0, 2T0].(4.19)

It follows from Proposition 4.2 that the solution
(
za(t), θa(t)

)
used in (4.18) can be

extended to the interval [T0, 2T0] in such a way that for any t ∈ [T0, 2T0],∥∥z̃a(t)− za(t)
∥∥ ≤ b1e

−β(t−T0)
∥∥z(T0)− za(T0)

∥∥,∥∥θ̃a(t)− θa(t)
∥∥ ≤ ∥∥θ(T0)− θa(T0)

∥∥+ b2
∥∥z(T0)− za(T0)

∥∥.
These along with (4.19) allow us to establish that for any t ∈ [T0, 2T0],∥∥z(t)− za(t)

∥∥ ≤ µ(ε, T0) + b1e
−β(t−T0)

∥∥z(T0)− za(T0)
∥∥,∥∥θ(t)− θa(t)

∥∥ ≤ µh(ε, T0) +
∥∥θ(T0)− θa(T0)

∥∥+ b2
∥∥z(T0)− za(T0)

∥∥.
Continuing in a similar fashion, one can construct a solution of (4.10) such that the
following inequalities are satisfied ∀t ∈ [lT0, (l + 1)T0], l = 1, 2, . . . :∥∥z(t)− za(t)

∥∥ ≤ µ(ε, T0) + b1e
−β(t−lT0)

∥∥z(lT0)− za(lT0)
∥∥,(4.20) ∥∥θ(t)− θa(t)

∥∥ ≤ µh(ε, T0) +
∥∥θ(lT0)− θa(lT0)

∥∥+b2∥∥z(lT0)− za(lT0)
∥∥.(4.21)

It follows now from (4.17) and (4.20)–(4.21) that∥∥∥z((l + 1)T0

)− za
(
(l + 1)T0

)∥∥∥ ≤ µ(ε, T0) + δ
∥∥z(lT0)− za(lT0)

∥∥,∥∥∥θ((l + 1)T0

)− θa
(
(l + 1)T0

)∥∥∥ ≤ µh(ε, T0) +
∥∥θ(lT0)− θa(lT0)

∥∥+ b2
∥∥z(lT0)− za(lT0)

∥∥,
which imply that

∥∥z(lT0)− za(lT0)
∥∥ ≤ µ(ε, T0)

1− δ
, l = 1, 2, . . . ,

∥∥θ(lT0)− θa(lT0)
∥∥ ≤ l

(
µh(ε, T0) +

b2
1− δ

µ(ε, T0)

)
, l = 1, 2, . . . .

These and (4.20)–(4.21) lead to statement (i) of the theorem (see also the proof of
Lemma 3.2 in [18]). The proof of (ii) is similar.

Proof of Proposition 2.9. Let γ ∈ Γ(z). By (2.8), there exist sequences ε̄k, Sk,
and γk ∈ Γ(z, ε̄k, Sk, y(0)) such that (ε̄k, (Sk)−1) → 0 and γk → γ as k tends to
infinity. The latter convergence is in the metric consistent with the weak convergence
topology of P(U × Y ) and, hence, it implies in particular that

lim
k→∞

∫
U×Y

(φ′(yi))T fi(u, y, z)γk(du, dy) =

∫
U×Y

(φ′(yi))T fi(u, y, z)γ(du, dy).(4.22)
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According to the definition of the set Γ(z, ε̄k, Sk, y(0)) (see (2.7)) and the fact that
γk ∈ Γ(z, ε̄k, Sk, y(0)), there exists an admissible control uk(τ) and the corresponding
trajectory yk(τ) of system (2.4) such that

∫
U×Y

(φ′(yi))T fi(u, y, z)γk(du, dy) =
1

Sk

∫ Sk

0

(φ′(yki (τ)))T fi(uk(τ), yk(τ), z)dτ.

The second integral is apparently equal to
φ(yki (Sk))−φ(yki (0))

Sk , which tends to zero as Sk

tends to infinity (since, by Assumption 2.1, the solutions of (2.4) stay in the bounded
area). This and (4.22) imply the validity of the proposition.

4.2. Proofs for section 3.
Lemma 4.3. The map ψ(p) defined by (3.4) is continuous. That is, ψ(pl) con-

verges to ψ(p) in the weak convergence topology of P(U × Y ×Z) if pl converges to p
in the weak convergence topology of P(P(U × Y )× Z

)
.

Proof of Lemma 4.3. Let h(u, y, z) : U × Y × Z → R
1 be a continuous function.

Then

lim
pl→p

∫
h(u, y, z)ψ(pl)(du, dy, dz) = lim

pl→p

∫ (∫
h(u, y, z)γ(du, dy)

)
pl(dγ, dz)

=

∫ (∫
h(u, y, z)γ(du, dy)

)
p(dγ, dz) =

∫
h(u, y, z)ψ(p)(du, dy, dz),

where it is taken into account that, because h(u, y, z) is continuous, it follows that
the function h̃(γ, z) defined by (2.20) is continuous as well. Since the last equalities
are valid for any continuous h(·), it follows that limpl→p ψ(pl) = ψ(p).

Proof of Lemma 3.5. Let the metric ρ of P(W ) be defined as follows:

ρ(γ′, γ′′) =
∞∑
k=0

1

2k
|〈γ′, qk〉 − 〈γ′′, qk〉|

1 + |〈γ′, qk〉 − 〈γ′′, qk〉| ∀γ
′, γ′′ ∈ P(W )(4.23)

where qk : W → R
1, k = 0, 1, . . . , is a sequence of Lipschitz continuous functions which

is dense in the space of continuous functions C(W ) and 〈γ, qk〉 =
∫
W
qk(w)γ(dw). Note

that this metric is consistent with the weak convergence topology of P(W ). Define

ν(α)
def

= sup
β∈B

sup
γ∈Γ1(α,β)

ρ
(
γ,Γ2(α, β)

)
(4.24)

and show that ν(α) tends to zero as α tends to α0. Assume that it does not. Then
there exists a number δ > 0 and sequences (αl, βl) ∈ A × B, γl ∈ Γ1(αl, βl), l =
1, 2, . . . , such that liml→∞ αl = α0 and ρ(γl, γ) ≥ δ ∀ γ ∈ Γ2(α, β). That is,

∞∑
k=0

1

2k
|〈γl, qk〉 − 〈γ, qk〉|

1 + |〈γl, qk〉 − 〈γ, qk〉| ≥ δ ∀ γ ∈ Γ2(α, β).(4.25)

Hence, for some integer K,

K∑
k=1

|〈γl, qk〉 − 〈γ, qk〉| ≥ δ

2
∀γ ∈ Γ2(α, β).(4.26)
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Let h(w)
def

=
(
q1(w), . . . , qk(w)

)
: W → R

K . Assume that the norm of a vector in (2.12)
is defined as the sum of the absolute values of its components. Then, by (3.30), one
can rewrite (4.26) in the form

d(vl, v) ≥ δ

2
∀v ∈ V 2

h (αl, βl), where vl
def

=

∫
W

h(w)γl(dw) ∈ V 1
h (αl, βl).

Hence, d
(
vl, V 2

h (αl, βl)
) ≥ δ

2 , l = 1, 2, . . . , which contradicts (3.29) and thus proves
the lemma.

Proof of Theorem 3.3(i). Let h̃(γ, z) : P(U × Y ) × Z → R
j , j = 1, 2, . . . , be an

arbitrary Lipschitz continuous vector function. That is,

‖h̃(γ′, z′)− h̃(γ′′, z′′)‖ ≤ ch̃(‖z′ − z′′‖+ ρ(γ′, γ′′)), ch̃ = const.(4.27)

Consider a set-valued map V (z) defined by (4.7) with h̃(γ, z) as above. Note that
this map is not necessarily convex valued since h̃(γ, z) may not be represented as the
integral (2.20). By (2.14), (4.27), and (2.22) (see Assumption 2.7), it satisfies Lipschitz
conditions (4.9). Hence, by the relaxation theorem (see, e.g., [7, Theorem 10.4.4,
p. 402]), the set of solutions of the differential inclusion (4.10) is dense in the set of
solutions of the differential inclusion

˙̄z(t) ∈ coV
(
z(t)

)
,(4.28)

where coV (z) is the convex hull of V (z).
By Corollary 3.7, to establish the existence of a convex and compact set Γ̃ ⊂

P(P(U×Y )×Z) satisfying (3.12) it is enough to show that for any Lipschitz continuous
h̃(γ, z) : P(U × Y ) × Z → R

j , j = 1, 2, . . . , there exist a convex and compact set
Vh̃ ⊂ R

j and a function µh̃(T ) such that

dH

(
Vh̃
(
T, z(0)

)
, Vh̃

)
≤ µh̃(T ) ∀z(0) ∈ Z ′′, lim

T→∞
µh̃(T ) = 0,(4.29)

where

Vh̃
(
T, z(0)

)
=

⋃
p∈Γ̃(T,z(0))

{∫
P(U×Y )×Z

h̃(γ, z)p(dγ, dz)

}
(4.30)

=
⋃

(γ(·),z(·))

{
1

T

∫ T

0

h̃
(
γ(t), z(t)

)
dt

}
,

with the second union being taken over all admissible pairs of averaged system (2.15).
The closure of the set (4.30), clVh̃

(
T, z(0)

)
, allows also the representations

clVh̃
(
T, z(0)

)
= cl

⋃
z̄(·)

{
θ(T )

T

}
=
⋃
z̄(·)

{
θ(T )

T

}
,(4.31)

where the first union is taken over the solutions of (4.10) and the second over the
solutions of (4.28), which satisfy the initial conditions z̄(0) = (z(0), 0).

As in the proof of Proposition 4.2, from Assumption 2.7 it follows that for any
z′ ∈ Z, (v′, w′) ∈ V (z′), and z′′ ∈ Z, there exists (v′′, w′′) ∈ V (z′′) such that
(4.15)–(4.16) are satisfied. It can be verified that the map coV (z) has a similar
property. That is, for any z′ ∈ Z, (v′, w′) ∈ coV (z′), and z′′ ∈ Z, there exists
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(v′′, w′′) ∈ coV (z′′) such that (4.15)–(4.16) are satisfied. As with Proposition 4.2, this
allows us to establish that, given a solution

(
z1(t), θ1(t)

)
of the differential inclusion

(4.28) satisfying the initial condition
(
z1(0), θ1(0)

)
= (z1, θ1) ∈ Z ′ × R

j and a vec-

tor (z2, θ2) ∈ Z ′ × R
j , there exists a solution

(
z2(t), θ2(t)

)
of (4.28) which satisfies

the initial condition
(
z2(0), θ2(0)

)
= (z2, θ2) such that estimates (4.13)–(4.14) will be

valid.
It follows from (4.14) that

dH

(
clVh̃(T, z

1), clVh̃(T, z
2)
) ≤ b2T

−1 ∀zi ∈ Z ′, i = 1, 2, ∀T ≥ 0.(4.32)

Now applying results from [15] or [19, Proposition 3.2], one can establish the existence
of a convex and compact set Vh̃ and a function µh̃(T ) = O(T−1/2) which satisfy (4.29).
This completes the proof of the theorem.
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A STOCHASTIC DECENTRALIZED CONTROL PROBLEM WITH
NOISY COMMUNICATION∗
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Abstract. A simple decentralized stochastic control problem is considered where the nonclassical
nature of the information pattern is induced by the uncertainty on the information transmission in
the system. This is, in fact, a reformulation of the Witsenhausen counterexample, where the first
station is allowed to send its information to the second station through a noisy channel. Nonconvexity
of the problem in this new formulation has been established, and it is shown how this formulation
relates to a classical problem and the Witsenhausen problem, respectively, when the transmission
noise intensity goes to zero or infinity. Assuming small transmission noise intensity, we then use an
asymptotic approach in order to find an approximated cost. A necessary condition for asymptotically
optimal strategies has been obtained using a variational approach, and it is shown that the linear
strategies, with slightly different coefficients than the noiseless transmission case, satisfy the necessary
condition.

Key words. optimal stochastic control, decentralized systems, asymptotic analysis
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1. Introduction. Coordinating and controlling dynamic systems in spatial net-
works has always been a challenging problem for system designers. It is now attracting
more attention as various new applications are emerging in a very wide range from au-
tonomous vehicles in formation to flow and congestion control in computer networks.
However, there are still some major difficulties in dealing with such systems. The
main characteristics of any decentralized system is that the information is distributed
among different stations and the performance of the system depends highly on the
corresponding information pattern, i.e., who knows what and when. The stations may
communicate with each other possibly by signaling through noisy channels. Even
though there might be some physical constraints on the information structure of the
system (e.g., locations of the sensors, the actuators, and the transmitters), in general,
an optimal information pattern should be obtained. Then, based on the locally avail-
able information, a set of coordinated local strategies should be designed in order to
achieve a common objective. In many cases, however, we will end up with nonconvex
functional optimization problems, which are usually very difficult to solve.

One such class of problems is when a decentralized system has a nonclassical
information pattern which is not partially nested. The information pattern is called
nonclassical when the distributed stations do not have access to the same information
and/or some stations do not have perfect recall (i.e., they lose information). Moreover,
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a nonclassical information pattern is not partially nested when some stations cannot
reconstruct the previous actions of other stations which have affected their own local
information. Unfortunately, this happens in many decentralized systems.

In 1968, Witsenhausen provided a simple example in [1] in which there are only
two stations, the dynamics are linear, the underlying uncertainties are additive and
Gaussian, and the cost is quadratic. The information pattern, however, is nonclassical.
This example motivated much research on the links between decentralized stochastic
control problems and team theory and the effects of different information patterns on
decentralized systems. Although it is a very simple example, it demonstrates the main
difficulties induced by nonclassical information patterns. In this example, one station
acts first and affects the information available to the next station, while there is no
way for the second station to determine the action of the first station. The existence
of the optimal design was established in [1], where a nonlinear set of strategies was
also proposed which showed that no affine strategy could be optimal.

This seemingly simple example, which is also called Witsenhausen’s counterexam-
ple, turned out to be extremely hard. It is still outstanding after more than 30 years.
It was later shown in [2] that when the uncertainty on the information available to
the first station is small, linear strategies would still be optimal over a large class of
nonlinear strategies. Intuitively, when the uncertainty on the information of the first
station is small, the second station will also be able to guess what that information
was. Therefore, since the problem is cooperative in the sense that the stations are
aware of each others’ strategies, the second station can almost reconstruct the action
of the first station, and there is no need for any kind of signaling among the stations
through the dynamics of the system. In Witsenhausen’s problem, the nonclassical
nature of the information pattern is a result of the fact that the information available
to the first station is completely inaccessible for the second station. However, recent
advances in computing and communication technologies make it possible for the sta-
tions in many decentralized systems to communicate different pieces of information.
But communications can never be perfect, and there is always some uncertainty in-
volved. Unfortunately, such uncertainty will again induce a nonclassical nature on
the information pattern of the system.

In this paper, we reformulate Witsenhausen’s problem by allowing the first station
to communicate its information with the second station through a noisy channel. Then
we show that as long as there is noise in the transmission, the main difficulties will
persist. Specifically, the cost might still be nonconvex with respect to the strategies.
We then consider the two limit cases where the transmission uncertainty becomes
either very large or negligible. We show how this new formulation covers a wide
range of problems, from the classical linear quadratic Gaussian (LQG) problem to
the Witsenhausen counterexample.

When the transmission noise intensity is small, one would expect the optimal
strategies to be very close to the corresponding strategies for the noiseless transmission
case. Our next objective in this paper is to investigate this case through an asymptotic
analysis.

In section 2, we present the problem formulation. In section 3, we obtain an alter-
native form for the performance index, which clearly shows the possible nonconvexity
of the cost with respect to the strategies. In section 4, we consider the two limit
cases, i.e., when the transmission noise intensity goes to zero or infinity. In section
5 we assume a small uncertainty on the transmission and approximate the cost by
expanding it in terms of the small transmission noise intensity. In section 6, we use
a variational approach in order to find a necessary condition for the strategies that
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minimize the approximated cost. As we shall see, we will actually have a singular
optimization problem. We then show that the asymptotically optimal strategies can
still be linear with slightly different coefficients than the corresponding strategies for
the noiseless transmission case. We provide concluding remarks in the final section.

2. Problem description. Consider a two-stage stochastic problem with the
following state equations:

x1 = x0 + u1,(2.1)

x2 = x1 − u2,(2.2)

where x0 is the initial state, which is assumed to be a zero mean Gaussian random
variable with variance σ2

0 . The information pattern of the system is specified by the
following output equations:

z1 = x0,(2.3)

z2 =

[
x0 + vt

x0 + u1 + v2

]
:=

[
z21
z22

]
,(2.4)

where v2 is the measurement noise for the second station, which is also assumed to be
a zero mean Gaussian random variable with unit variance. As we can see, the infor-
mation available to the first station is being transmitted to the second station, and the
communication uncertainty is modeled by an additive Gaussian noise vt ∼ N

(
0, ε2

)
.

Also, x0, v2, and vt are all assumed to be independent of each other. It is clear that
we have simply modeled the received information signal as the transmitted signal
plus the Gaussian transmission noise. While this model can be quite realistic for ana-
log communication systems, it may not be well justified when digital communication
is used. In digital communication systems the signal is quantized, coded, and sent
through the channel. Still, the channel noise may realistically be assumed to be addi-
tive and Gaussian, but sophisticated modulation and coding schemes make it difficult
to assume a simple additive Gaussian uncertainty for the received information signal.
However, if we try to incorporate the quantization effects along with the bit error
probability distribution for some good coding and modulation schemes in order to
model the communication uncertainties, we will end up with models which could still
be approximated, to some degree, by simple additive Gaussian models. Moreover,
since there are already major difficulties in dealing with decentralized nonclassical
information patterns, using more complex models for communication uncertainties
may not seem very reasonable at this point. Furthermore, we believe that the results
obtained under such a simplifying assumption would still serve as a guideline for find-
ing the true nature of the optimal decentralized strategies. The objective is now to
design the control strategies γ1 and γ2,

u1 = γ1 (z1) ,(2.5)

u2 = γ2 (z2) ,(2.6)

in order to minimize the cost function

J = E
[
k2u2

1 + x2
2

]
,(2.7)

where k2 > 0 is a given constant. Note that this is a sequential stochastic control
problem in the sense that the second station acts after the first station. In other words,
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the order in which the stations apply their control actions does not depend on the
uncertainties in the system. We see that the first controller has perfect information
but its action is costly. In contrast, the second controller has inexpensive control but
noisy information. Since the second station does not know what the first station knew,
due to the transmission noise, we do not have perfect recall, and hence we still have
a nonclassical pattern. If there was no transmission noise, we would have a classical
information pattern for which the unique optimal strategies are known to be linear in
the information.

3. An alternative form for the performance index. In this section, we
show how the performance index may be expressed in terms of the Fisher information
matrix, which indicates that the cost may not be convex in the strategies.

For simplicity, and similarly to the Witsenhausen problem, we define

f (z1) := z1 + γ1 (z1) = x0 + u1,(3.1)

g (z2) := γ2 (z2) = u2.(3.2)

Then the cost can be expressed as

J = E
[
k2u2

1 + x2
2

]
= E

[
k2 (z1 − f (z1))2 + (f (z1)− g (z2))2

]
:= J (f, g) .(3.3)

If we fix the function f , the optimal strategy g will clearly be obtained as the condi-
tional expectation, i.e.,

g∗ (z2) = argmin
g
J (f, g) = E [f (z1) |z2 ] .(3.4)

Substituting the above equation back in the cost, we get

J∗(f) := J (f, g∗)

= k2E
[
(z1 − f (z1))2

]
+ E

[
(f (z1)− g∗ (z2))2

]
= k2E

[
(z1 − f (z1))2

]
+ E

[
(f (z1))

2
]
− E

[
(g∗ (z2))

2
]
,(3.5)

where we have used the orthogonality property of the conditional expectation

E [(f (z1)− g∗ (z2)) g∗ (z2)] = 0.(3.6)

It is important to note the minus sign in the third term in (3.5). As we shall see,
this minus sign could indeed destroy the convexity of the cost with respect to the
strategies.

The objective is now to express the cost J∗(f) in terms of only one strategy f .
In doing so, we use the following lemma, which shows how g∗ (z2) may be expressed
in terms of information z2 and its probability density function.

Lemma 3.1. The optimal strategy g∗ (z2) can be expressed as

g∗ (z2) = z22 +
∂

∂z22
ln p (z2) ,(3.7)

where p (z2) = p (z21, z22) is the probability density function for the information avail-
able to the second station.
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Proof. We have

g∗ (z2) =
∫
f (z1) p (z1 |z2 ) dz1

=

∫
f (z1) p (z1, z2) dz1∫

p (z1, z2) dz1
,(3.8)

where p (z1, z2) is the joint probability density of z1 and z2. At the same time, one
can write

f (z1) p (z1, z2) = z22p (z1, z2) +
∂

∂z22
p (z1, z2) .(3.9)

This can be shown as

z22p (z1, z2) +
∂

∂z22
p (z1, z2) = z22p (z1, z2)+

∂

∂z22
p (z2 |z1 ) p (z1)

= z22p (z1, z2)+
∂

∂z22
p(vt,v2)

([
z21
z22

]
−
[

z1
f (z1)

])
p (z1)

= z22p (z1, z2)+
∂

∂z22

(
1

2πε
exp

(
− (z21 − z1)

2

2ε2
− (z22 − f (z1))

2

2

))
p (z1)

= f (z1) p (z1, z2) ,(3.10)

where we have used the specific form of the information available to the second station
and the fact that vt ∼ N

(
0, ε2

)
and v2 ∼ N (0, 1) are independent. By substituting

for f (z1) p (z1, z2) from (3.9) back in (3.8) and integrating with respect to z1, the
expression in (3.7) is obtained.

As we shall see, when we try to express the performance index in terms of only a
single strategy f , a Fisher information term comes up in the cost. Fisher information
is originally obtained in the Cramer–Rao bound, which is a measure for the minimum
error in estimating a parameter based on the value of a random variable. However, by
introducing a location parameter, an alternative form of the Fisher information may
be defined for a random variable with a given distribution. This alternative form is,
in fact, related to the entropy measure (see [3, p. 494]). We first present the definition
for the Fisher information matrix.

Definition 3.2. The Fisher information matrix for a random vector Z is de-
fined as

If (Z) := E
[∇Tz ln p (z) · ∇z ln p (z)] ,(3.11)

where p(z) is the probability density function for the random variable Z and ∇z de-
notes the gradient vector with respect to z:

∇z :=
[
∂

∂z1
. . .

∂

∂zn

]
,(3.12)

where zi is the ith component in the random vector.
We are now ready to present the alternative expression for the performance index.
Theorem 3.3. The performance index (3.5) can be written as

J∗(f) = k2E
[
(z1 − f (z1))2

]
+ 1− If (Z2)22,(3.13)
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where If (Z2)22 is, in fact, the (2, 2) element of the Fisher information matrix for the
random vector Z2. The subscript f indicates the fact that it actually depends on the
form of the strategy f , which is present in the definition of z2 and would affect its
probability density function.

Proof. Using (3.7), we first obtain E[(g∗(z2))2]. We have

E
[
z2
22

]
= E

[
(f (z1))

2
]
+ 1,(3.14)

and

E

[
z22

∂

∂z22
ln p (z2)

]
=

∫ ∫ +∞

−∞
z22

∂

∂z22
ln (p (z21, z22)) p (z21, z22) dz21dz22.(3.15)

If we integrate by parts with respect to z22, we get

∫ +∞

−∞
z22

∂

∂z22
ln (p (z21, z22)) p (z21, z22) dz22 = z22p (z21, z22)|+∞

−∞ −
∫ +∞

−∞
p (z21, z22) dz22

= −p (z21) ,(3.16)

where z22 is assumed to have a finite mean value, and therefore the first term becomes
zero. Hence,

E

[
z22

∂

∂z22
ln p (z2)

]
= −1.(3.17)

Therefore,

E
[
(g∗ (z2))

2
]
= −1 + E

[
(f (z1))

2
]
+ If (Z2)22,(3.18)

where

If (Z2)22 = E

[(
∂

∂z22
ln p (z2)

)2
]
.(3.19)

Substituting (3.18) back in (3.5), we get (3.13) as an alternative form for representing
the performance index.

As we see, the cost is now expressed only in terms of one strategy f . Also, this
somehow shows us that in order to minimize the cost, we need to get the lowest possible
cost associated with the first station, while we transfer as much information as possible
to the second station through the dynamics of the system. The possible nonconvexity
of the cost with respect to f can also be seen from this alternative expression. It
can be shown that the Fisher information term is a convex functional [4]. Therefore,
1 − If (Z2)22 is concave and the sum of a convex and a concave functional may not
be convex.

4. Limit cases. In this section we consider the two limit cases. First we consider
the case where the transmission is noiseless, and then we investigate the case where
the transmission noise intensity goes to infinity.
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4.1. Noiseless transmission. Assume there is no uncertainty in transmitting
information from the first to the second station, i.e., ε = 0 and hence z21 = z1. In this
case, we have perfect recall and the information pattern is classical. We can write

p (z2) = p (z21, z22) = p (z22 |z21 ) p (z21)

= p (z22 |z1 ) p (z1) = 1√
2π
exp

(
− (z22 − f (z1))

2

2

)
p (z1) .(4.1)

Then, from (3.7), we have

g∗ (z2) = f (z1) = f (z21) ,(4.2)

which could directly be obtained from the original definition for g∗, i.e.,

g∗ (z2) = E [f (z1)| z2] = f (z1) ,(4.3)

because z1 is exactly known when z2 is given. Substituting this back in (3.5) and
minimizing with respect to the strategy f , we have

g∗ (z2) = f (z1) = z1,(4.4)

and hence

γ1(z1) = 0,(4.5)

γ2(z2) = z1,(4.6)

which is the unique linear set of optimal strategies. This indeed turns out to be a
very simple example of the well-known classical LQG problem.

4.2. Infinite transmission noise intensity. Another limit case is when the
transmission noise intensity increases to infinity. In this case, z21 and z22 become
independent and we have

p (z2) = p (z21, z22) = p (z21) p (z22) .(4.7)

The Fisher information term can now be written as

If (Z2)22 =

∫ ∫ +∞

−∞

(
∂

∂z22
ln p (z21, z22)

)2

p (z21, z22) dz21dz22

=

∫ +∞

−∞

(
∂

∂z22
ln p (z22)

)2

p (z22) dz22

= If (Z22) ,(4.8)

which is indeed the Fisher information content of z22 only. Hence,

J∗(f) = k2E
[
(z1 − f (z1))2

]
+ 1− If (Z22).(4.9)

This is the same result that was presented for the Witsenhausen counterexample in [1].
Intuitively, when we have infinite transmission noise intensity, we might as well deny
the access to z1 for the second station, and this is exactly the case in Witsenhausen’s
counterexample. The optimal strategies for this case are still unknown. Witsenhausen
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showed that the optimal solution exists, even if x0 has a general distribution with a
finite second moment [1]. He then showed that if one of the strategies is restricted to
being affine, the other optimal strategy would also be affine. But then he provided a
set of nonlinear strategies that could achieve a lower cost for some values of k2 and
σ0.

Different approaches have been taken in order to find the optimal strategies. As
mentioned before, an asymptotic approach was used in [2] for the case where σ0 is
small. More recently, in [5], [6], [7] it was shown how a neural network, trained by
stochastic approximation techniques, can be employed as a nonlinear function approx-
imator in order to approximate f (z1). It was demonstrated that the optimal f

∗ (z1)
may not be strictly piecewise, as was suggested by Witsenhausen, but slightly sloped.
Some researchers have tried to attack the problem numerically and use some sample
and search techniques to find the solution. A discretized version of the problem was
formulated in [8], which was later shown in [9] to be NP-complete and computation-
ally intractable. It is recently asserted in [10] and [11] that a global optimum would
be achieved by searching directly in the strategy space using the generalized step
functions to approximate f (z1).

So far we have shown, through a simple example, how any uncertainty in the
transmission of information between the stations in a distributed system can make
the optimal control design very complicated and even intractable. Then, by consid-
ering the two limit cases, we showed how our example covers a very wide range of
scenarios. Namely, we saw that for the noiseless transmission case, the unique optimal
strategies, which are linear in the information, are easily obtained, whereas for the
infinite transmission noise intensity, the optimal strategies are still unknown. Now a
very feasible case to investigate is when the uncertainty on the information transmis-
sion is small. In fact, when the transmission noise intensity ε is small, one would still
expect behavior similar to the noiseless transmission case for the optimal strategies.
In the following sections, we consider this case. Namely, we assume a small intensity
for vt. Under this assumption, we obtain the first few terms in the expansion of the
performance index in terms of ε. We then use the Hamiltonian approach in order to
find a necessary condition for the strategies that minimize the approximated cost.

We show that the linear strategies, with slightly different coefficients than the
corresponding coefficients for the noiseless transmission case, do indeed satisfy the
necessary condition. This asymptotic analysis not only gives us insight on how the
optimal strategies change as the transmission uncertainty is introduced but also pro-
vides us with a better sense of the complexities in the design procedure.

5. An expansion for the cost. Assume that the first station communicates
with the second station through a low noise channel. In other words, the transmission
noise intensity ε is assumed to be small. In this section, we will find an expansion for
the cost in terms of ε. For this purpose, we first find an expansion for the probability
density function of the information available to the second station, i.e., p (z2). Then
we use (3.7) in order to find the corresponding expansion for g∗ (z2). By substituting
back in (3.5), we will obtain the expanded cost only in terms of f .

The probability density function for z2 can be written as

pε (z2) := p (z2) =

∫ +∞

−∞
p (z22, z21, z1) dz1(5.1)

=

∫ +∞

−∞
p (z22|z21, z1) p (z21|z1) p (z1) dz1(5.2)
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=

∫ +∞

−∞
p (z22|z1) p (z21|z1) p (z1) dz1(5.3)

=

∫ +∞

−∞
p (z22|z1) pvt (z21 − z1) p (z1) dz1(5.4)

=

∫ +∞

−∞

1√
2π
exp

(
− (z22 − f (z1))

2

2

)
1√
2πε

exp

(
− (z21 − z1)

2

2ε2

)
(5.5)

× 1√
2πσ0

exp

(
− z2

1

2σ2
0

)
dz1,

where for (5.3) we have used the facts that the σ-fields generated by {z21, z1} and
{z1, vt} are the same and z1, vt, and v2 are mutually independent. At this point,
one should note that even though the joint probability density function p (z22, z21, z1)
can be explicitly expressed as in (5.5), introduction into the performance index shows
that determination of f (z1) still requires averaging over all random variables. This
is another way of looking at the effect of a nonclassical information pattern, which is
not partially nested. We therefore decide to follow an asymptotic approach.

For small ε, we now approximate ln pε (z2) by considering only the first three
terms of its expansion around ε = 0. Namely,

ln pε (z2) � ln p0 (z2) +
∂

∂ε
ln pε (z2)

∣∣∣∣
ε=0

ε+
∂2

∂ε2
ln pε (z2)

∣∣∣∣
ε=0

ε2.(5.6)

By making the change of variables

εy := z1 − z21 ⇒ εdy = dz1,(5.7)

we can write pε (z2) in the following form:

pε (z2) =(5.8)∫ +∞

−∞

1√
2π
exp

(
−
(
z22 − f̄ε(y)

)2
2

)
1√
2πσ0

exp

(
− (z21 + εy)

2

2σ2
0

)
1√
2π
exp

(
−y

2

2

)
dy,

where

f̄ε(y) := f (εy + z21) .(5.9)

It is now clear that

p0 (z2) =
1√
2π
exp

(
− (z22 − f (z21))

2

2

)
1√
2πσ0

exp

(
− z

2
21

2σ2
0

)
,(5.10)

and hence

ln p0 (z2) = − (z22 − f (z21))
2

2
− z2

21

2σ2
0

+ ln

(
1

2πσ0

)
.(5.11)

For the first order term, we have

∂

∂ε
ln pε (z2)

∣∣∣∣
ε=0

=
1

p0 (z2)

∂

∂ε
pε (z2)

∣∣∣∣
ε=0

.(5.12)
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On the other hand,

∂

∂ε
pε (z2)

∣∣∣∣
ε=0

=

∫ +∞

−∞

∂

∂ε

{
1√
2π
e−

(z22−f̄ε(y))2

2
1√
2πσ0

e
− (z21+εy)2

2σ2
0

}∣∣∣∣∣
ε=0

1√
2π
e−

y2

2 dy

=

∫ +∞

−∞

1√
2π
(z22 − f (z21)) yf ′ (z21) e−

(z22−f(z21))2

2
1√
2πσ0

e
− z2

21
2σ2

0
1√
2π
e−

y2

2 dy

+

∫ +∞

−∞

1√
2π
e−

(z22−f(z21))2

2
1√
2πσ0

(
−z21
σ2

0

)
ye

− z2
21

2σ2
0
1√
2π
e−

y2

2 dy = 0.

(5.13)

Therefore,

∂

∂ε
ln pε (z2)

∣∣∣∣
ε=0

= 0.(5.14)

We could somehow expect this result. This is because we would expect the behavior
of pε (z2) to depend only on the variance of the Gaussian transmission noise, i.e., ε

2.
Using (5.14), we can now obtain the second order term as

∂2

∂ε2
ln pε (z2)

∣∣∣∣
ε=0

=
1

p0 (z2)

∂2

∂ε2
pε (z2)

∣∣∣∣
ε=0

.(5.15)

After some tedious but straightforward manipulations, we get

∂2

∂ε2
ln pε (z2)

∣∣∣∣
ε=0

= −f ′2 (z21) + f ′′ (z21) (z22 − f (z21)) + f ′2 (z21) (z22 − f (z21))2

+ 2f ′ (z21) (z22 − f (z21))
(
−z21
σ2

0

)
− 1

2σ2
0

+
z2
21

σ4
0

.(5.16)

We can now obtain a second order approximation for ln pε (z2) by substituting the
corresponding terms from (5.11), (5.14), and (5.16) back into the expansion (5.6). In
the next step, we substitute the expansion for ln pε (z2) in (3.7) in order to find the
corresponding expansion for g∗ (z2). Remember that g∗ (z2) is the optimal strategy
for the second station, assuming that the first station has a fixed strategy γ1 (z1) =
f (z1)− z1. We have

g∗ (z2) = z22 +
∂

∂z22
ln p (z2)

� z22 + ∂

∂z22
ln p0 (z2) + ε2

∂

∂z22

(
∂2

∂ε2
ln pε (z2)

∣∣∣∣
ε=0

)
= z22 − (z22 − f (z21))
+ ε2

[
f ′′ (z21) + 2f ′2 (z21) (z22 − f (z21)) + 2f ′ (z21)

(
−z21
σ2

0

)]
.(5.17)

Our goal is to get an expansion for the cost, which as we know from (3.5) can be
written as

J∗(f) = k2E
[
(z1 − f (z1))2

]
+ E

[
(f (z1))

2
]
− E

[
(g∗ (z2))

2
]
.(5.18)
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Using the expansion for g∗ (z2) from (5.17), we have

E
[
(g∗ (z2))

2
]
� E

[
(f (z21))

2
]

+ 2ε2E

[
f (z21)

(
f ′′ (z21) + 2f ′2 (z21) (z22 − f (z21)) + 2f ′ (z21)

(
−z21
σ2

0

))]
,(5.19)

where we have neglected the fourth order term in ε. Substituting this expansion back
in (5.18), we will obtain the following expansion for the cost:

J∗(f) = k2E
[
(z1 − f (z1))2

]
+ E

[
(f (z1))

2
]
− E

[
(f (z21))

2
]

− 2ε2E
[
f (z21)

(
f ′′ (z21) + 2f ′2 (z21) (z22 − f (z21)) + 2f ′ (z21)

(
−z21
σ2

0

))]
.(5.20)

Note that when the transmission is noiseless, i.e., ε = 0 and therefore z21 = z1, we
have

J∗(f) = k2E
[
(z1 − f (z1))2

]
,(5.21)

and f (z1) = z1 is the obvious unique optimal solution. The above expansion, how-
ever, is not exactly in our desired form yet. This is because the third term on the
right-hand side, which is an average over z21, still depends on ε. We shall now rewrite
the expansion in (5.20) by explicitly expressing the expectations based on the corre-
sponding probability densities:

J∗(f) =
∫ +∞

−∞

[
k2 (t− f(t))2 + f2(t)

] 1√
2πσ0

e
− t2

2σ2
0 dt

−
∫ +∞

−∞

[
f2(t) + 2ε2

(
f(t)f ′′(t)− 2f(t)f ′(t) t

σ2
0

)]
1√

2π (σ2
0 + ε2)

e
− t2

2(σ2
0
+ε2) dt

−
∫ +∞

−∞

∫ +∞

−∞
4ε2f(t)f ′2(t) (τ − f(t)) 1√

2π
e−

(τ−f(t))2

2
1√
2πσ0

e
− t2

2σ2
0 dtdτ,(5.22)

where we have substituted p (z2) = p (z22, z21) � p0 (z2) in the third term, since the
higher order terms would be multiplied by ε2 and would then be neglected. Now the
third term turns out to be zero, because∫ +∞

−∞

∫ +∞

−∞
4ε2f(t)f ′2(t) (τ − f(t)) 1√

2π
e−

(τ−f(t))2

2
1√
2πσ0

e
− t2

2σ2
0 dt

=

∫ +∞

−∞
4ε2f(t)f ′2(t)

1√
2πσ0

e
− t2

2σ2
0

(∫ +∞

−∞
(τ − f(t)) 1√

2π
e−

(τ−f(t))2

2 dτ

)
dt = 0.

(5.23)

At the same time, we can expand the probability density of z21 up to the second order
in ε. It is actually straightforward to obtain

1√
2π (σ2

0 + ε2)
e
− t2

2(σ2
0
+ε2) � 1√

2πσ0

e
− t2

2σ2
0 + ε2

1√
2πσ5

0

(
t2 − σ2

0

)
e
− t2

2σ2
0 .(5.24)

Substituting (5.23) and the above expansion back in (5.22) and neglecting the higher
order terms in ε, we can finally get the following expansion for the cost:
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J∗(f) =
∫ +∞

−∞

[
k2 (t− f(t))2

] 1√
2πσ0

e
− t2

2σ2
0 dt

+ ε2
∫ +∞

−∞

[
4f(t)f ′(t)

t

σ2
0

− 2f(t)f ′′(t) + f2(t)
σ2

0 − t2
σ4

0

]
1√
2πσ0

e
− t2

2σ2
0 dt

:= J∗
0 + ε2J∗

1 .(5.25)

The objective is now to obtain the function f , which minimizes the above ap-
proximated cost. In the next section, we use a variational approach in order to find a
necessary condition for such a function and show how the linear strategies still satisfy
this necessary condition.

6. Minimizing the approximated cost. So far, we have obtained an expan-
sion for the cost assuming that the transmission noise intensity is small. We have, in
fact, approximated the cost by including only up to the second order term in ε. We
should now try to minimize this approximated cost in order to find the asymptotically
optimal f∗. Obviously, this strategy would be optimal only for a small transmission
noise intensity. However, it would still be very helpful for the analysis of the behavior
of the optimal strategies when we deviate a little bit from the classical information
pattern by introducing a small communication uncertainty.

We now use the Hamiltonian approach in order to find the necessary conditions
for the function f(t), which minimizes our approximated cost. For simplicity, denote

x1(t) := f(t),(6.1)

x2(t) := ẋ1(t) = f ′(t),(6.2)

u(t) := ẋ2(t) = ẍ1(t) = f ′′(t),(6.3)

p(t) :=
1√
2πσ0

e
− t2

2σ2
0 .(6.4)

The Hamiltonian is then defined as [12]

H = k2 (t− x1(t))
2
p(t) + ε2

(
4x1(t)x2(t)

t

σ2
0

− 2x1(t)u(t) + x2
1(t)

σ2
0 − t2
σ4

0

)
p(t)

+λ1(t)x2(t) + λ2(t)u(t),(6.5)

where λ1 and λ2 are the Lagrange multipliers that should satisfy

λ̇1(t) = −Hx1

=

(
2k2 (t−x1(t))− 4ε2x2(t)

t

σ2
0

− 2ε2x1(t)
σ2

0 − t2
σ4

0

+ 2ε2u(t)

)
p(t),(6.6)

λ̇2(t) = −Hx2

= −4ε2x1(t)
t

σ2
0

p(t)− λ1(t).(6.7)

But as we can see, the Hamiltonian is linear in u(t) and we actually have a singular
optimization problem. The singular surface will be characterized by setting Hu and
its derivatives with respect to t equal to zero, that is,

Hu = −2ε2x1(t)p(t) + λ2(t) = 0,(6.8)
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and

d

dt
Hu = −2ε2ẋ1(t)p(t)− 2ε2x1(t)ṗ(t) + λ̇2(t) = 0.(6.9)

Substituting ṗ(t) = − t
σ2
0
p(t) and also λ̇2 from (6.7), we get

d

dt
Hu = −2ε2x2(t)p(t)− 2ε2x1(t)

t

σ2
0

p(t)− λ1(t) = 0.(6.10)

Differentiating again and substituting λ̇1 from (6.6), we have

d2

dt2
Hu = −4ε2u(t)p(t) + 4ε2 t

σ2
0

x2(t)p(t)− 2k2 (t− x1(t)) p(t) = 0.(6.11)

Therefore, the corresponding u(t) on the singular surface is

u(t) = x2(t)
t

σ2
0

− k2

2ε2
(t− x1(t)) .(6.12)

Note that the first order generalized Legendre–Clebsch condition, which is a necessary
condition for u(t) to be minimizing on the singular surface, is also satisfied, namely,

∂

∂u

(
d2

dt2
Hu

)
≤ 0.(6.13)

Therefore, the corresponding x1(t) and x2(t), which minimize our approximated cost,
should necessarily satisfy the following differential equations:

ẋ1(t) = x2(t),(6.14)

ẋ2(t) = x2(t)
t

σ2
0

− k2

2ε2
(t− x1(t)) .(6.15)

Since ε is assumed to be small, we may assume the following form in order to obtain
the solutions for the above differential equations:

x1(t) = a0(t) + ε2a2(t) + ε4a4(t) + · · · ,(6.16)

x2(t) = b0(t) + ε2b2(t) + ε4b4(t) + · · · .(6.17)

Interestingly enough, by substituting the above x1 and x2 back into the differential
equations and comparing the coefficients of the terms with the same order in ε, we get

x1(t) =

[
1− 2ε2

k2σ2
0

+

(
2ε2

k2σ2
0

)2

−
(
2ε2

k2σ2
0

)3

+ · · ·
]
t =

t(
1 + 2ε2

k2σ2
0

) .(6.18)

Back to our original notation, we actually have

f (z1) =
z1(

1 + 2ε2

k2σ2
0

) .(6.19)

As we can see, the solution is still linear with a coefficient which is slightly different
than the corresponding coefficient for the noiseless transmission case. Remember that



988 K. SHOARINEJAD, J. L. SPEYER, AND I. KANELLAKOPOULOS

f (z1) = z1 is the optimal solution when there is no transmission noise, and note that
for ε = 0 in (6.19) we get exactly the same solution as expected. Given the above
function f (z1), the corresponding g

∗ (z2) can easily be obtained using (3.4). Note
that it will also be linear because of the Gaussian assumption for the underlying
uncertainties.

We could somehow expect the optimal strategies to be linear from the beginning.
As we mentioned in section 2, linear strategies were shown to be asymptotically opti-
mal for the Witsenhausen example when the uncertainty on the information available
to the first station is small [2]. In this paper, however, we have considered a refor-
mulation of Witsenhausen’s problem where the first station sends its information to
the second station through a low noise channel. These two scenarios are somewhat
similar. Namely, in both scenarios, the second station can determine the information
available to the first station fairly accurately. Specifically, in the first scenario, the
second station almost knows z1 because of its small uncertainty, while in the second
scenario it can determine z1 from the information that is transmitted through a low
noise channel.

We would also expect the optimal strategies to approach the corresponding strate-
gies for the noiseless transmission case as the value of z1 and, in some sense, the
signal-to-noise ratio increases. This does not seem to happen in the solution (6.19).
One may justify this by looking at the exponential function in the cost (5.25). This
function drives the integrand of the cost to zero exponentially fast for large values of
z1. Therefore, the structure of the cost really does not force the optimal solution to
approach f (z1) = z1 as z1 increases.

We shall now obtain the corresponding value of the cost. Substituting f(t) from
(6.19) back into the cost (5.25), we get

J∗(f) =
∫ +∞

−∞


k2


t− t

1 + 2ε2

k2σ2
0




2

 1√

2πσ0

e
− t2

2σ2
0 dt

+ ε2
∫ +∞

−∞


4 t(

1 + 2ε2

k2σ2
0

)2

t

σ2
0

+
t2(

1 + 2ε2

k2σ2
0

)2

σ2
0 − t2
σ4

0


 1√

2πσ0

e
− t2

2σ2
0 dt

=
1(

1 + 2ε2

k2σ2
0

)2

(
2ε2 +

4ε4

k2σ2
0

)

� 2ε2 − 4ε4

k2σ2
0

,(6.20)

where we have used ∫ +∞

−∞
t2

1√
2πσ0

e
− t2

2σ2
0 dt = σ2

0 ,(6.21)

∫ +∞

−∞
t4

1√
2πσ0

e
− t2

2σ2
0 dt = 3σ4

0 .(6.22)

The optimal cost for the noiseless transmission case is zero. But if we use f (z1) = z1
when the transmission is noisy, we get the following cost:

J∗(f) = 2ε2.(6.23)
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In other words, if we fix the strategies to be the optimal strategies for the noiseless
transmission case while introducing a small transmission noise, the increase in the cost
will be proportional to the transmission noise intensity. However, if we use (6.19), we
can indeed improve the cost by the fourth order in ε.

One should note from (6.19) and (6.20) that as the value of k2σ2
0 increases, the

asymptotically optimal solution approaches f (z1) = z1, and the change in the cost
becomes smaller. In other words, increasing k2σ2

0 has an effect similar to decreasing
the communication uncertainty. To explain this, we note from the performance index
that increasing k2 implies a more expensive control action for the first station, which,
in turn, results in smaller u1. This then implies that the information available to the
second station is less affected by the action of the first station. At the same time,
increasing σ2

0 implies a higher level of uncertainty on x0, which, incidentally, is the
piece of information that is being transmitted between the stations.

This brings up an example of a very interesting fundamental issue: the notion of
information value and how it could be different for control and communication pur-
poses. In fact, we know from information theory that a higher level of uncertainty for
a piece of information implies a higher level of entropy and therefore a more valuable
piece of information for transmission. On the other hand, however, a more uncertain
piece of information would probably be less valuable for control purposes and would
have smaller effect on the control strategies. In other words, a control designer would
probably be willing to spend less on installing transmitters on the stations for commu-
nicating more uncertain pieces of information. While defining a notion for the value
of information for control purposes has been occasionally addressed in the literature
for quite a long time, it still remains an open problem. This is mostly because of the
fact that the value of information for control purposes would highly depend on how
the cost is defined for the control design, and this could be quite different in various
applications.

7. Concluding remarks. We analyzed an example of a decentralized stochastic
system. This example was a reformulation of the Witsenhausen counterexample where
the first station was allowed to send its information to the second station through a
noisy channel. The dynamics were linear, all the underlying uncertainties were as-
sumed to be Gaussian, and the cost was quadratic. It was shown that as soon as
any uncertainty is introduced in the communication among the stations, the infor-
mation pattern again becomes nonclassical, which is not partially nested. We then
showed how the performance index can be alternatively expressed such that the pos-
sible nonconvexity of the cost, with respect to the control strategies, becomes more
transparent. Therefore, in general, we will end up with a nonconvex functional opti-
mization problem when we try to obtain the decentralized optimal control algorithms.
We then considered two limit cases. Namely, the case where there is no communi-
cation uncertainty and the case in which the transmission noise intensity increases
to infinity. The former case was shown to be a trivial example of a classical LQG
problem, whereas the latter case corresponds to Witsenhausen’s counterexample, the
optimal solution of which is still unknown.

We then focused on the case where the communication uncertainty was small.
We followed an asymptotic approach where we approximated the cost based on its
expansion in terms of the small transmission noise intensity. We showed how mini-
mizing the approximated cost can be seen as a singular optimization problem. We
then used a variational approach in order to find the necessary conditions for the
asymptotically optimal strategies and showed that some reasonable linear strategies



990 K. SHOARINEJAD, J. L. SPEYER, AND I. KANELLAKOPOULOS

would actually satisfy those conditions. We also provided some intuitive explanations
for the behavior of those linear strategies and obtained the corresponding cost.

Note that while we have focused on the reformulated Witsenhausen counterexam-
ple, our main result is quite general. In fact, we have shown through an example that
communication uncertainties in decentralized systems generally result in nonclassi-
cal information patterns, which, in turn, can destroy the convexity of the associated
functional optimization problems. Moreover, our approach is indeed a very general
approach, which have been applied to various other problems before. More specifically,
expanding a cost function in terms of some small parameters is a common practice in
variational and perturbation-based approaches. Furthermore, using Hamiltonian ap-
proach in order to obtain the necessary conditions for the optimal strategies obviously
is not specific to our reformulated Witsenhausen problem. However, finding the exact
function (6.19), which is obtained in closed form, satisfies the necessary condition for
optimality, and shows how the optimal strategies could change upon introduction of
some communication uncertainty, could be very specific to our problem.

All the derivations and the results in this paper show some of the difficulties
involved in dealing with decentralized systems as soon as we deviate a little bit from
a classical, or at least a partially nested, information pattern. On the other hand,
even though we have modeled the communication uncertainty in the simplest possible
way, we have tried to emphasize the role of communication uncertainties in generating
such information patterns that are very difficult to handle.

Finally, it should be mentioned that even though the optimization problem is
generally difficult for this class of systems, in some applications one might be able to
exploit the specific structure of the system in order to obtain some reasonably good
suboptimal strategies, which could yield an acceptable performance.
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Abstract. In this paper we give sufficient conditions for a bang-bang regular extremal to be
a strong local optimum for a control problem in the Mayer form; strong means that we consider
the C0 topology in the state space. The controls appear linearly and take values in a polyhedron,
and the state space and the end point constraints are finite-dimensional smooth manifolds. In the
case of bang-bang extremals, the kernel of the first variation of the problem is trivial, and hence the
usual second variation, which is defined on the kernel of the first one, does not give any information.
We consider the finite-dimensional subproblem generated by perturbing the switching times, and we
prove that the sufficient second order optimality conditions for this finite-dimensional subproblem
yield local strong optimality. We give an explicit algorithm to check the positivity of the second
variation which is based on the properties of the Hamiltonian fields.
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1. Introduction. This paper is part of a general research program whose aim
is to further extend the use of Hamiltonian methods in the study of optimal control
problems. We believe that these methods can play a relevant role in control theory be-
cause they allow a general approach to sufficient conditions for strong local optimality,
as we wish to show here.

The Hamiltonian approach to strong optimality consists of constructing a field of
state extremals covering a neighborhood of a given trajectory which has to be tested.
This field of extremals is obtained by projecting on the state manifold M the flow
Ht of the maximized Hamiltonian emanating from the Lagrangian submanifold of
the initial transversality conditions. If this projection admits a Lipschitz continuous
local inverse, then we can estimate the variation of the cost function at a neighboring
trajectory by a function ψ which depends only on the final point, and it is hence
independent of the control differential equation; in this way we reduce the problem
to a finite-dimensional one. The existence of a Lipschitz continuous local inverse is
guaranteed by the surjectivity of the projection on M of the tangent map to the flow
Ht. This construction corresponds to the classical one of a nonselfintersecting family
of state extremals. This is enough to obtain optimality if the final point is fixed since
the submanifold of the final end points reduces to a singleton; otherwise we need some
further optimality condition on the function ψ.

We use the relations existing between a suitable second variation and the sym-
plectic properties of the Hamiltonian flow to show that when this second variation is
positive definite then the projection on the state manifold M of the tangent map to
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the flow Ht is surjective; moreover the positivity of this second variation leads also to
the sufficient optimality conditions for the function ψ.

To make this general approach possible we need an intrinsic formulation of the
second variation as an accessory linear-quadratic minimization problem on the tangent
space; this will allow us to exploit one of the crucial ideas underlying the Hamiltonian
approach: the tangent map of the flow of the maximized Hamiltonian is the linear
Hamiltonian flow of an associated linear-quadratic problem, i.e., the flow of the Jacobi
system.

Another important issue is that, when the initial point is not free, it is not possible
to cover a neighborhood of the initial point by the projection of the Hamiltonian flow.
In the calculus of variations this problem has been solved by perturbing the initial
time, but this method does not always work in optimal control because the projection
could be singular for a time interval of positive length; this is always the case for
bang-bang controls if there is a constraint on the initial point. We propose a different
approach: when the second variation is positive we add a penalty term, which allows
us to reduce the original problem to another one without constraints on the initial
point.

Some of these issues have already been addressed. In [ASZ98b] we stated sufficient
conditions for strong local optimality for an optimal control problem in R

n with
unbounded controls, while in [ASZ98a] we gave an intrinsic expression of the accessory
problem and studied the relations between the Hamiltonian flow and the index of the
second variation. The geometric properties of the field of extremals necessary for
proving sufficient conditions for strong optimality were studied in [ASZ99].

In this paper we study a control problem in the Mayer form where the controls
appear linearly and take values in a polyhedron, the state space and the end point con-
straints are finite-dimensional smooth submanifolds, and we give sufficient conditions
for a bang-bang extremal to be a strong local minimizer.

In the bang-bang case we have to face some new problems. Since the maximized
Hamiltonian is not smooth at the switching points we need to give conditions (see
Assumptions 2.1, 2.2, 2.3) which assure us that its flow is defined and piecewise
smooth around the reference adjoint covector. Moreover, in the case of bang-bang
extremals, the kernel of the first variation of the problem is trivial, and hence the
usual second variation, which is defined on the kernel of the first one, does not give any
information. We solve this problem by considering the finite-dimensional subproblem
generated by perturbing the switching times. The usual (finite-dimensional) second
order optimality conditions for this problem give an appropriate second variation.
Indeed we prove that the positivity of this second variation yields that the Hamiltonian
flow has the properties we have described so that we can prove strong local optimality
for the reference trajectory. The set of admissible variations on which we test the
second variation can be very small, its dimension can be less than the state space
dimension, and when it is zero, we directly have optimality.

By introducing an analogue of the strict Legendre condition, Assumption 2.3, we
can eliminate the control from the extremality conditions for the second variation,
and its extremals are then described by a discrete version of the Jacobi system, (2.9);
the flow of this system describes the tangent subspaces to the flow of the maximized
Hamiltonian at the points of nonsmoothness. Since the optimality can be lost only
at these points, then the positivity of the second variation can be checked by an
algorithm (see Lemma 2.8) which is based on the properties of the discrete flow of
the bang-bang Jacobi system. For analogous conditions in the case of unbounded
controls, see [ASZ98b].
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The literature on second order sufficient conditions for the optimality of a bang-
bang trajectory is scarce; we refer to [PS00] and the references therein for results
based on the existence of a regular synthesis, and to [Sar92] and [Sar97], where the
author studies local minima in the L1 norm on the control in the time-optimal case.
For a general description of the classical study of strong local optimality in the one-
dimensional calculus of variations, see [GH96a, GH96b].

2. Statement of the results. Let Xi, i = 1, 2, . . . ,m, be distinct C∞ vector
fields defined on the C∞ finite-dimensional manifoldM and let ∆ = co {e1, e2, . . . , em}
be the unitary simplex in R

m.
We are interested in the optimal control problem

Minimize J(ξ) := c0(ξ(0)) + cT (ξ(T ))

subject to

ξ̇(t) =

m∑
i=1

ui(t)Xi(ξ(t)), u(t) ∈ ∆(2.1)

ξ(0) ∈ N0 , ξ(T ) ∈ NT ,(2.2)

where the time interval [0, T ] is fixed, N0, NT are given C∞ submanifolds of M ,
and c0, cT are real-valued smooth functions. We will give sufficient conditions for a
trajectory to be a strong local optimum, where strong means that we consider the C0

topology in the state space.
As a candidate optimal solution we are given a bang-bang Pontryagin extremal

(ξ̂, û), that is, an absolutely continuous solution ξ̂ : [0, T ]→ M of system (2.1)–(2.2)
with corresponding control û satisfying the Pontryagin maximum principle (PMP);
moreover there is a partition of [0, T ]

0 = t0 < t1 < t2 < · · · < tr < tr+1 = T

such that

û(t) = eji , t ∈ (ti−1, ti),

for some ji ∈ {1, 2, . . . ,m}. Therefore ξ̂ is a solution of

ξ̇(t) = Xji(ξ(t)), t ∈ [ti−1, ti],(2.3)

in each subinterval. The values ti for i = 1, 2, . . . , r will be called switching times,
and we set

x0 := ξ̂(0), xT := ξ̂(T )

to simplify notation. Corresponding to the reference extremal we define the time-
dependent vector field

ĥ : [0, T ]×M → TM as ĥ|(ti−1,ti) := Xji ,

and we set hi := Xji . Therefore the reference trajectory is a solution of the differential
equation

ξ̇(t) = ĥt(ξ(t)), t ∈ [0, T ].(2.4)
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By lifting the vector field ĥt to the cotangent bundle, we define the time-dependent
Hamiltonian

Ĥ : [0, T ]× T ∗M → R, (t, �) �→ 〈�, ĥt(π�)〉,

where π : T ∗M →M is the canonical projection; let us set Hi := Ĥ|(ti−1,ti).
For our problem the maximized Hamiltonian

H : T ∗M → R, � �→ max
u∈∆

〈
�,

m∑
i=1

uiXi(π�)

〉

is well defined and Lipschitz.
Recall that any piecewise smooth Hamiltonian Ht : T

∗M → R defines a Hamil-
tonian vector field �Ht whose flow will be denoted by Ht. Moreover for any time-
independent vector field Y we denote its flow by (t, x) �→ exp t Y (x); see [Arn80].

We can express the PMP by saying that there exist p0 ∈ {0, 1} and a lift λ̂ of ξ̂
to the cotangent bundle, which is a solution of

λ̇(t) =
�̂
Ht(λ(t)),

λ(0) = p0 dc0(x0) on Tx0N0,(2.5)

λ(T ) = −p0 dcT (xT ) on TxT
NT(2.6)

such that

|p0|+ ‖λ̂‖ = 0,

Ĥt(λ̂(t)) = H(λ̂(t)).

Let us now introduce our first assumption.
Assumption 2.1 (bang-bang regular extremal). The maximum

max
u∈∆

〈
λ̂(t),

m∑
i=1

uiXi(ξ̂(t))

〉

is attained at a vertex of ∆ for all t ∈ [0, T ], t = t1, t2, . . . , tr.
Assumption 2.1 means that on each subinterval (ti−1, ti) there is a unique index

ji such that

H(λ̂(t)) = 〈λ̂(t), Xji(ξ̂(t))〉.
The smooth functions p0 c0 and p0 cT are defined on N0 and NT , respectively, but

they can be extended to the whole manifold M in such a way that the transversality
conditions (2.5) and (2.6) hold on the whole tangent space. We denote by α, β :M →
R two functions such that

α = p0 c0 on N0, β = p0 cT on NT ,

λ̂(0) = dα(x0) on Tx0
M, λ̂(T ) = −d β(xT ) on TxT

M.(2.7)

Consider the two Lagrangian submanifolds

Λ0 :=
{
dα(x) + (TxN0)

⊥ | x ∈ N0

}
,

ΛT :=
{
−d β(x) + (TxNT )

⊥ | x ∈ NT
}
;
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the transversality conditions (2.5) and (2.6) of the PMP can be equivalently stated
by saying that

λ(0) ∈ Λ0, λ(T ) ∈ ΛT .

In the normal case (p0 = 1) α, β are cost functions equivalent to the original ones,
while in the abnormal case (p0 = 0) they are extensions of the zero function. When
p0 = 0 all the costs disappear, and indeed we will study a problem with a zero cost;
therefore, proving that ξ̂ is a strict strong minimizer will imply that it is isolated
with respect to the C0 topology among the admissible trajectories. In the case of
sub-Riemannian metrics isolated trajectories are called rigid geodesics.

The sufficient conditions will be derived by studying the following optimal control
problem, which is equivalent to the original one:

Minimize J(ξ) := α(ξ(0)) + β(ξ(T ))(P)

subject to (2.1) and (2.2).
The points

�i := λ̂(ti), i = 0, 1, . . . , r + 1,

will be called the switching points of the adjoint covector λ̂. From the PMP we can
deduce the following relations, which represent necessary optimality conditions:

Hi(�i) = Hi+1(�i), i = 1, 2, . . . , r,

〈d(Hi+1 −Hi), �Hi+1〉(�i) ≥ 0, i = 1, 2, . . . , r.

To state sufficient conditions for ξ̂ to be a strong local minimizer we need to strengthen
these two conditions, and hence we assume the following.

Assumption 2.2 (simple switching points). The maximum

max
u∈∆

〈
λ̂(t),

m∑
i=1

uiXi(ξ̂(t))

〉

is attained along a one-dimensional edge of ∆ for t = t1, t2, . . . , tr.
Assumption 2.3 (strict bang-bang Legendre condition).

〈d(Hi+1 −Hi), �Hi+1〉(�i) > 0, i = 1, 2, . . . , r.

Remark 2.4. The PMP implies that the switching point �i belongs to the level set
Hi+1−Hi = 0 for i = 1, 2, . . . , r. The strict bang-bang Legendre condition yields that,
near the point �i, this level set is a hypersurface which will be called the switching
surface.

Our assumptions are strictly related to the properties of the flow of the maximized
Hamiltonian H, and they guarantee that the Hamiltonian flow is piecewise smooth;
see Corollary 4.2. In particular, Assumptions 2.1 yields that locally around the ref-
erence extremal we can switch from one vector field to another only on the switching
surfaces, while Assumption 2.2 yields that, on the switching surfaces, we can choose
only between two vector fields, and the last one, Assumption 2.3, yields that we are
forced to switch. Let s be the Liouville one form in T ∗M and denote by σ = ds the
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canonical symplectic two form on T ∗M ; see [Arn80] for the definitions. Taking into
account the basic properties of σ, Assumption 2.3 can be equivalently written as

〈d(Hi+1−Hi), �Hi+1〉(�i)
= σ

(
�Hi, �Hi+1

)
(�i)

= {Hi, Hi+1} (�i)
= 〈�i, [hi, hi+1](ξ̂(ti)〉 ≥ 0,

where { , } and [ , ] denote the Poisson and Lie brackets, respectively.

2.1. A finite-dimensional subproblem. We are going to choose an appropri-
ate r-dimensional family of variations corresponding to bang-bang trajectories; they
are generated by perturbing the switching times. The optimality with respect to these
variations will be not only necessary but also sufficient (under the previously stated
assumptions) to prove that the reference trajectory is a strong local minimizer.

For a given a > 0 such that mini=1,...,r+1(ti − ti−1) > 2a, let ε ∈ B(0, a) ⊂ R
r,

set ε0 = εr+1 = 0, and consider the time-dependent vector field

(ε, x) �→ ht(ε, x) = hi(x) if t ∈ (ti−1 + εi−1, ti + εi).

This new vector field is obtained from the reference one by moving the switching time
ti by εi.

Remark 2.5. A small ε corresponds to a control variation which is small in the
L1 norm but not in the L∞ norm.

Denote the flow of ξ̇(t) = ht(ε, ξ(t)) by

St :M ×B(0, a)→M

and consider the following finite-dimensional subproblem of problem (P):

Minimize γ(x, ε) := α(x) + β(ST (x, ε))(sub-P)

subject to

x ∈ N0, ST (x, ε) ∈ NT .
Note that Ŝt := St(·, 0) is the flow of ĥt, St(x0, 0) = ξ̂(t) and (x0, 0) is the candidate
optimal solution for the subproblem.

By using the relations (2.7) and the extremality properties of the reference tra-
jectory, it is easy to prove that (x0, 0) is a critical point for γ, that is,

dγ(x0, 0) = 0,

and hence

J ′′ :=
1

2
D2γ(x0, 0)

is a well-defined quadratic form on Tx0M × R
r, which gives the second order ap-

proximation of γ. The second variation of (sub-P) is the restriction of J ′′ to the
linearization of the constraints; namely, if we set

N =
{
(δx, ε) ∈ Tx0N0 × R

r : ST∗(δx, ε) ∈ TxT
NT

}
,(2.8)
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then the second variation of (sub-P) is J ′′
|N, and it will be called the second variation

at the switching points. Let us remark that J ′′
|N ≥ 0 is a necessary optimality condition

when the subproblem is normal.
The main result of the paper states that under the regularity conditions on the

maximized Hamiltonian previously stated, the positivity of the second variation at
the switching points is sufficient to prove that the reference trajectory (ξ̂, û) is a
strict local minimizer for the original problem in the C0 topology on the state (strong
minimizer).

From an intuitive point of view the idea underlying this result can be summarized
by saying that the flow of the maximized Hamiltonian projects onto the trajectories
of the finite-dimensional subproblem, which then generates a field of extremals that
can be used to prove sufficiency.

Theorem 2.6. Assume that the given bang-bang Pontryagin extremal ξ̂ is regular
and has simple switching points and that the strict bang-bang Legendre condition is
satisfied. If the second variation at the switching points is positive definite, then ξ̂
is a strict strong local minimizer, i.e., a strict local minimizer in the C0 topology.
In the abnormal case ξ̂ is an isolated admissible solution of the constrained control
system.

Remark 2.7. If N reduces to {0}, then the second variation at the switching points
is positive definite, and hence we obtain a first order sufficient condition.

2.2. The bang-bang Jacobi system. We can check the positivity of the second
variation at the switching points in a complete Hamiltonian form. Let

Π := Tπ M ↪→ TT
∗M

be the vertical subspace and define

L0 := T0Λ0, LT := TTΛT .

The regularity assumptions on the maximized Hamiltonian yield that Ht is smooth
everywhere except at the switching times where it is left and right smooth; see Corol-
lary 4.2. The positivity of the second variation at the switching points can be checked
through the properties of the tangent subspaces to Htk(Λ0) from the left and from the
right and by their relative positions with respect to Π. Thanks to the strict bang-bang
Legendre condition, these Lagrangian subspaces can be described through the flow of
the following discrete version of the Jacobi system:




δ�−k =
(
exp(tk+1 − tk) �Hk+1

)
∗ δ�

+
k−1,

δ�+k = δ�−k +
σ(δ�−k , ( �Hk − �Hk+1)(�k))

σ( �Hk, �Hk+1)(�k)
( �Hk − �Hk+1)(�k).

(2.9)

Denote the flow of δ�−k and δ�+k by ∆−
k ,∆

+
k and set

L−
k := ∆−

k L0, L+
k := ∆+

k L0.

In section 4 we prove that L+
k , L

−
k are the left and right tangent subspaces to Htk(Λ0);

see Remark 4.6.
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Lemma 2.8. The positivity of the second variation at the switching points can be
checked through the following algorithm.
STEP 1: Set k = 1.
STEP 2: If k ≤ r, then go to STEP 3

else go to STEP 4.

STEP 3: If ( �Hk − �Hk+1)(�k) /∈ L−
k +Π or ( �Hk − �Hk+1)(�k) ∈ L−

k , then set k =
k + 1 and go to STEP 2.

else

if L+
k ∩Π ⊆ L−

k ∩Π and for every δ�+ ∈ L+
k , δ�

− ∈ L−
k such that

π∗δ�+ = π∗δ�− we have that σ(δ�−, δ�+) ≥ 0, then set k = k + 1 and

go to STEP 2.

else J ′′
|N is not positive definite, STOP.

STEP 4: If for every δ� ∈ L−
r+1, δ�T ∈ LT such that π∗δ� = π∗δ�T = 0 we

have that σ(δ�, δ�T ) > 0, then J ′′
|N is positive definite, END.

else J ′′
|N is not positive definite, STOP.

Remark 2.9. Let us explain the meaning of each step of this algorithm.
1. The algorithm first checks the positivity of the second variation associated to

the corresponding problem with fixed final point (STEP 3).
2. Each iteration of the algorithm is associated to a new variation obtained by per-

turbing the corresponding switching time; this procedure generates an increasing
family of variations.

3. STEP 3 deserves some comment: if ( �Hk − �Hk+1)(�k) /∈ L−
k +Π, then there is no

new variation, and hence there is no condition to check; if ( �Hk− �Hk+1)(�k) ∈ L−
k ,

then the flow Ht is differentiable also at tk and the properties of the second
variation remain unchanged.

4. STEP 4 checks the positivity conditions related to the presence of a nontrivial
final cost, and hence when the final point is fixed, STEP 4 is void and the
algorithm becomes the following.
STEP 1: k = 1.
STEP 2: If k ≤ r, then go to STEP 3

else J ′′
|N is positive definite, END.

STEP 3: If ( �Hk − �Hk+1)(�k) /∈ L−
k +Π or ( �Hk − �Hk+1)(�k) ∈ L−

k , then set

k = k + 1 and go to STEP 2.

else

if L+
k ∩Π ⊆ L−

k ∩Π and for every δ�+ ∈ L+
k , δ�

− ∈ L−
k such

that π∗δ�+= π∗δ�− we have σ(δ�−, δ�+) ≥ 0, then set k = k + 1
and go to STEP 2.

else J ′′
|N is not positive definite, STOP.

Since the maximized Hamiltonian is a piecewise lift of a vector field onM, then the
vertical directions remain vertical under the action of the flow, and at the switching
points the dimension of the projection increases at most by one. To obtain a flow which
projects locally onto M we will reduce the problem to an equivalent one with free
initial point; for this reason we describe explicitly the algorithm in this special case.

Corollary 2.10. If the initial point is free, we have that L0 ∩ Π = {0}, and
hence the algorithm becomes the following.
STEP 1: Set k = 1.
STEP 2: If k ≤ r, then go to STEP 3

else go to STEP 4.
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STEP 3: If ( �Hk − �Hk+1)(�k) ∈ L−
k , then set k = k + 1 and go to STEP 2.

else

if π∗L+
k = Tξ̂(tk)M and for every δ�+ ∈ L+

k , δ�
− ∈ L−

k such that

π∗δ�+ = π∗δ�− we have that σ(δ�−, δ�+) ≥ 0, then set k = k + 1 and

go to STEP 2.

else J ′′
|N is not positive definite, STOP.

STEP 4: If for every δ� ∈ L−
r+1, δ�T ∈ LT such that π∗δ� = π∗δ�T = 0 we

have that σ(δ�, δ�T ) > 0, then J ′′
|N is positive definite, END.

else J ′′
|N is not positive definite, STOP.

Remark 2.11. In STEP 3 we check the fixed final point problem, and the algorithm
stops when we find a direction on which the quadratic form is negative or zero. For this
reason we call the corresponding switching time tk the conjugate point ; a conjugate
point can occur only at a switching time.

2.3. The Bolza problem. We deal with an optimal control problem in the
Mayer form only for simplicity; all the results can be stated for a problem in the
Bolza form when the cost function includes an integral term, that is,

Minimize J(ξ) := c0(ξ(0)) + cT (ξ(T )) +

∫ T

0

m∑
i=1

ui(t)X
0
i (ξ(t)) dt

subject to (2.1) and (2.2), where X0
i , i = 1, 2, . . . ,m, are C∞ functions defined onM.

The same proofs can be carried out using as reference and maximized Hamiltonian
those defined as

Ĥ : � �→ 〈�, ĥ(π�)〉 − p0

m∑
i=1

ûi(t)X
0
i (π�),

H : � �→ max
u∈∆

(〈
�,

m∑
i=1

uiXi(π�)

〉
− p0

m∑
i=1

uiX
0
i (π�)

)
.

3. The second variation at the switching points. This section is necessarily
technical, but it contains the main ideas and the technical lemmas needed to carry
out this kind of approach.

To study the relations existing between the second variation at the switching
points and the properties of the Hamiltonian flow, let us reduce (sub-P) to a single-
input affine problem with piecewise constant control maps having the ti’s as switching
times. This reduction can be achieved by the following time reparametrization:

ϕ̇(τ) = 1 + ν(τ), ν ∈ (−1, 1),
ϕ(0) = 0, ϕ(T ) = T,

where ν is piecewise constant, i.e., ν(τ) ≡ νi, τ ∈ [ti−1, ti).
Any solution of this boundary value problem is an increasing isomorphism of the

interval [0, T ] onto itself. If we set εi := ϕ(ti)− ti, i = 1, 2, . . . , r, then we have that
Sϕ(τ)(x, ε) is the solution of the differential equation

ζ̇(τ) = [1 + ν(τ)] ĥτ (ζ(τ)), ζ(0) = x.(3.1)
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If we set ui := νi (ti − ti−1), then from our construction it follows that εi =
∑i
j=1 uj

and
∑r+1
j=1 uj = 0 as it follows from the boundary condition ϕ(T ) = T. Therefore we

can take as control space the r-dimensional vector space

U :=


(u1, u2, . . . , ur+1) ∈ R

r+1

∣∣∣∣∣∣
r+1∑
j=1

uj = 0


 .

For a given u ∈ U we denote by νu the corresponding control map. Since there
is a one-to-one correspondence between ε and u we still denote by N the subset of
Tx0N0 × U corresponding to N ⊆ Tx0

N0 ×R
r, which is defined in (2.8). We can now

study the second variation of the problem of minimizing α(ζ(0))+β(ζ(T )) subject to
(3.1) with the boundary conditions ζ(0) ∈ N0 and ζ(T ) ∈ NT .

Following the same approach used in [ASZ98a] we can define the second variation
as a linear quadratic problem on Tx0 M by the using pull-back system defined through
the time-dependent vector field

ĝt := Ŝ−1
t∗ ĥt ◦ Ŝt.(3.2)

ĝt is piecewise constant with the same switching times as ĥt, and we set gi := ĝ|(ti−1,ti).
Consider the pull-back control system

η̇(t) = ν(t) ĝt(η(t))(3.3)

and the associated linearized equation at η(t) ≡ x0,

δ̇η(t) = ν(t) ĝt(x0).(3.4)

If we also pull back the costs by setting

β̂ = β ◦ ŜT , γ̂ = α+ β̂,

then, reasoning as in [ASZ98a], the second variation at the switching points can be
equivalently written as the restriction to N of the linear-quadratic form

J ′′[δe]2 =
1

2
D2γ̂(x0)[δx]

2 +

∫ T

0

νu(s) 〈Qs, δηs(δe)〉 ds,

where δe := (δx, u) ∈ Tx0M × U and

〈Qt, δx〉 = 〈D〈D β̂, ĝt〉(x0), δx〉.
The Hamiltonian associated with this linear-quadratic problem is

(ω, δx, u) �→ G′′
t (ω, δx)νu(t),

where G′′
t is the following piecewise constant linear Hamiltonian:

G′′
t : T

∗
x0
M × Tx0

M → R, (ω, δx) �→ 〈ω, ĝt(x0)〉+ 〈Qt, δx〉.
With notation analogous to previous ones, we set G′′

i := G′′ |(ti−1,ti) and define the
Lagrangian subspace of the initial and final transversality conditions as

L′′
0 :=

{(−D2γ̂(x0)(δx, ·) + ω, δx
) | δx ∈ Tx0N0, ω ∈

(
Tx0N0

)⊥}
,

L′′
T :=

(
Tx0 Ŝ

−1
T (NT )

)⊥
× Tx0 Ŝ

−1
T (NT ).
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We want to express the value of the form J ′′ in Hamiltonian notation. Let δe = (δx, u)
and δf = (δy, v) belong to Tx0M × U and let δ� ∈ L′′

0 be such that

π∗δ� = δx.

If we denote by G′′
t (δ�, u) := (ωt(δ�, u), δηt(δe)) the solution of the Hamiltonian system

λ̇(t) = �G′′
t (λ(t)) νu(t), λ(0) = δ�,(3.5)

then we obtain, as in the proof of Lemma 4 in [ASZ98a, p. 700],

J ′′(δe, δf) = D2γ̂(x0)(δx, δy) +

∫ T

0

〈Qs, νu(s)δηs(δf) + νv(s)δηs(δe)〉 ds

= D2γ̂(x0)(δx, δy)− 〈ωT (δ�, u), δηT (δf)〉+ 〈ω0(δ�, u), δy〉(3.6)

+

∫ T

0

G′′
t

(
G′′
t (δ�, u)

)
νv(t) dt.

The positivity of the second variation at the switching points will be checked in two
steps. We first consider the problem with fixed final point and check the positivity of
the corresponding second variation, that is, J ′′ restricted to

V := {(δx, u) ∈ Tx0N0 × U | δη(δx, νu, T ) = 0} ⊆ N.

Afterwards we check the positivity of J ′′ on N∩V ⊥J′′ , where ⊥J′′ means orthogonality
with respect to J ′′.

To study the signature of the second variation on V we take an increasing sequence
of subspaces Vk ⊂ V obtained by considering as admissible controls those u for which
νu is zero from tk+1 on; i.e., we will study the second variation on each

Vk := {(δx, u) ∈ V | uj = 0 for j ≥ k + 2} .
The extremals of J ′′ on V are essential in the study of its signature, and they are
those δe belonging to V ∩V ⊥J′′ . For this reason we characterize the J ′′-orthogonality
in the following integral version of the Jacobi system.

Lemma 3.1. For k ∈ {1, 2, . . . , r}, δe = (δx, u) ∈ N ∩ V ⊥J′′
k if and only if there

exists δ� ∈ L′′
0 such that

π∗δ� = δx, π∗ G′′
T (δ�, u) ∈ π∗ L′′

T ,(3.7)

∫ T

0

G′′
t

(
G′′
t (δ�, u)

)
νv(t) dt = 0 ∀v : vj = 0, j ≥ k + 2.(3.8)

Proof. δe ∈ N ∩ V ⊥J′′
k if and only if there exist ω̄0 ∈ (Tx0N0)

⊥
and ω̄T ∈ Π such

that

J ′′(δe, δf) = 〈ω̄0, δy〉+ 〈ω̄T , δηT (δf)〉
for all δf = (δy, v) ∈ Tx0M × U such that vj = 0, j ≥ k + 2.

If we choose

δ� = (−D2γ̂0(δx, ·) + ω̄0, δx),
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then δ� ∈ L′′
0 and (3.7) is satisfied. For v = 0, from (3.6) we obtain

−ωT (δ�, u) = ω̄T

and hence (3.8).
To prove the converse, let us remark that (3.7) yields that δe ∈ N; moreover,

using (3.6) for δf ∈ Vk, from (3.7) and (3.8), it follows that J ′′[δe, δf ] = 0.
Corollary 3.2. Let δe = (δx, u) ∈ N ∩ V ⊥J′′ and let δ� ∈ L′′

0 be the one given
in Lemma 3.1. If δ�1 ∈ L′′

T is such that π∗δ�1 = π∗G′′
T (δ�, u), then

J ′′ [δe]2 = σ
(
δ�1,G

′′
T (δ�, u)

)
.(3.9)

Let δe = (δx, u) ∈ Vk ∩ V ⊥J′′
k−1 and let δ� ∈ L′′

0 be the one given in Lemma 3.1. Then

J ′′[δe]2 = σ
(
G′′
tk
(δ�, u), uk+1(�G

′′
k+1 − �G′′

k)
)
.(3.10)

Proof. Equality (3.9) is an easy consequence of Lemma 3.1 and (3.6). Integrating
by parts and using the symplectic properties of the Hamiltonian flow, again from
(3.6), it follows that

J ′′[δe]2 =
∫ tk

tk−1

G′′
k

(
G′′
t (δ�, u)

) −uk+1

tk − tk−1
dt+

∫ tk+1

tk

G′′
k+1

(
G′′
t (δ�, u)

)
νu(t) dt

= −uk+1G
′′
k

(
G′′
tk
(δ�, u)

)
+ uk+1G

′′
k+1

(
G′′
tk+1

(δ�, u)
)

= uk+1

(
G′′
k+1 −G′′

k

)(
G′′
tk
(δ�, u)

)
.

Equality (3.10) now follows thanks to the symplectic properties of the Hamiltonian
flow.

Let us remark that (3.7) characterizes those δe in N, while (3.8) characterizes

those in V
⊥J′′
k . In particular the extremals of the second variation are described by

those δ� ∈ L′′
0 , u ∈ U such that G′′

T (δ�, u) ∈ L′′
T , and∫ T

0

G′′
t

(
G′′
t (δ�, u)

)
νv(t) dt = 0 ∀ v ∈ U.(3.11)

The relations between the second variation and the Hamiltonian of the original prob-
lem can be better understood by using the following map:

ı : T ∗
x0
M × Tx0M → T0T

∗M, (ω, δx) �→ −ω + d(−β̂)∗δx

It is easy to check that the map ı is an antisymplectic isomorphism

σ (ı δ�1, ı δ�2 ) = −σ (δ�1, δ�2 )(3.12)

and that it is an isomorphism between L′′
0 and L0 which acts as

ı δ� = dα∗π∗δ�.

The map ı connects the Hamiltonians associated with the second variation with the
original ones through the following relation:

ı �G′′
k = Ĥ−1

tk∗
�Hk(�k) = Ĥ−1

tk−1 ∗
�Hk(�k−1).(3.13)
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Equation (3.13) can be proved starting from the equality

�G′′
k =

(
−D〈D β̂, gk〉(x0), gk(x0)

)
and applying the map ı to obtain, in coordinates,

ı �G′′
k =

(
dβ̂(x0)Dgk(x0), gk(x0)

)
;

finally since dβ̂(x0) = −dα(x0), then (3.13) follows.
Thanks to the above properties of the map ı we can restate the strict bang-bang

Legendre condition as

σ
(
�G′′
k ,
�G′′
k+1

)
< 0, k = 1, 2, . . . , r.(3.14)

The strict bang-bang Legendre condition allows us to solve recursively equation (3.11)
with respect to the control, and hence we are able to define a discrete version of the
Jacobi system by substituting this control back into (3.5). The resulting system is
defined below, and its construction is described in the subsequent Lemma 3.4.

Definition 3.3. Suppose that the strict bang-bang Legendre condition is satisfied
and consider the discrete dynamical system on R× T ∗(Tx0

M),


wk =
σ
(
δ�k−1, �G

′′
k − �G′′

k+1

)
σ
(
�G′′
k ,
�G′′
k+1

) ,

δ�k = δ�k−1 + (�G′′
k − �G′′

k+1) wk.

For k = 1, 2, . . . , r we define the flows of wk and δ�k as the linear functions

ωk : L
′′
0 → R

and the symplectic isomorphisms

GkT : L′′
0 → T ∗

x0
M × Tx0

M.

Lemma 3.4. Suppose that the strict bang-bang Legendre condition is satisfied and
let (δ�, u) ∈ L′′

0 × U ; then (3.8) holds if and only if

ui = 〈(ωi − ωi−1), δ�〉, i = 1, 2, . . . , k,

G′′
ti(δ�, u) = GiT (δ�) + 〈ωi, δ�〉 �G′′

i+1, i = 1, 2, . . . , k.

Proof. From the properties of the Hamiltonian flows, by integrating by parts
equality (3.8), it follows that ∫ T

0

G′′
t

(
G′′
t (δ�, u)

)
νv(t) dt

=
k∑
i=1

vi

(
G′′
i

(
G′′
ti(δ�, u)

)
−G′′

k+1

(
G′′
tk+1

(δ�, u)
))

= 0

for all v ∈ U such that vj = 0, j ≥ k + 2. Hence (3.8) is equivalent to

G′′
1

(
G′′
t1(δ�, u)

)
= G′′

2

(
G′′
t2(δ�, u)

)
= · · · = G′′

k+1

(
G′′
tk+1

(δ�, u)
)
.
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If we compute explicitly(
G′′
i −G′′

i+1

)
(G′′
ti−1

(δ�, u) + ui �G
′′
i ) = 0,

we obtain, for each i = 1, 2, . . . , k,

σ
(
G′′
ti−1

(δ�, u) + ui �G
′′
i ,
�G′′
i − �G′′

i+1

)
= 0.

The equivalence now follows by finite induction and from Definition 3.3.
Remark 3.5. Let us remark that being J ′′-orthogonal to Vk implies that the

values of the control maps u1, u2, . . . , uk are uniquely determined by the value of δ�.
Moreover we obtain the flow of the Hamiltonian system of the second variation up to
time tk through the flow of the discrete bang-bang Jacobi system. More precisely, if
we define the control wk : L′′

0 → U as

wki := (ωi − ωi−1), i = 1, 2, . . . , k,

wkk+1 := −ωk,
wki := 0, i ≥ k + 2,

(3.15)

then from Lemma 3.4 it follows that this control is such that (δ�, 〈wk, δ�〉) satisfies
(3.8) and

GkT (δ�) = G′′
T (δ�, 〈wk, δ�〉).

A possible way to check the positivity of J ′′ on Vk is to study the behavior of J ′′

on Vk∩V ⊥J′′
k−1 . Thanks to the properties of the bang-bang Jacobi system the variations

belonging to Vk ∩ V ⊥J′′
k−1 and the values of J ′′ can be described through the following

subspaces:

L′′
k := GkT L

′′
0 .

The results are given in the two following lemmas. Let us notice that the first state-
ment of the next lemma states that the extremals of J ′′ on Vk are the solutions of the
Jacobi system that become vertical at step k and that the third statement character-
izes the occurrence of a new variation.

Lemma 3.6. Suppose that the strict bang-bang Legendre condition is satisfied.
The following statements hold:

1. δe = (δx, u) ∈ Vk ∩ V ⊥J′′
k if and only if there exists δ� ∈ L′′

0 such that

π∗δ� = δx, u = 〈wk, δ�〉, GkT (δ�) ∈ Π.

2. δe ∈ Vk ∩ V ⊥J′′
k−1 if and only if there exists δ� ∈ L′′

0 such that

π∗δ� = δx, uj = 〈wk−1
j , δ�〉, j = 1, 2, . . . , k − 1,

Gk−1
T (δ�)− uk+1 (�G

′′
k − �G′′

k+1) ∈ Π,

and in this case we have that

J ′′[δe]2 = σ
(
Gk−1
T (δ�)− uk+1

�G′′
k ,−uk+1(�G

′′
k − �G′′

k+1)
)
.(3.16)
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3. If J ′′
|Vk−1

> 0, then Vk = Vk−1 if and only if �G′′
k − �G′′

k+1 /∈ L′′
k−1 +Π.

4. If δ�k−1 ∈ L′′
k−1 and δ�k ∈ L′′

k \ L′′
k−1 are such that

π∗δ�k−1 = π∗δ�k,

then there exists a nontrivial δe ∈ Vk ∩ V ⊥J′′
k−1 such that

J [δe]2 = σ (δ�k, δ�k−1) .

Proof. 1. From (3.7) and (3.8) and from the properties of the control (3.15) it
follows that

u = 〈wk, δ�〉 and G′′
T (δ�, u) = GkT (δ�) ∈ Π.

2. Letting δe ∈ Vk ∩ V ⊥J′′
k−1 be the first part is an immediate consequence of

Lemmas 3.1 and 3.4. Once again from the properties of the control (3.15) we have
that

G′′
tk+1

(δ�, u) = Gk−1
T (δ�) + 〈ωk−1, δ�〉 �G′′

k + uk �G
′′
k + uk+1

�G′′
k+1

= Gk−1
T (δ�)− uk+1 (�G

′′
k − �G′′

k+1).

From (3.10) it follows that

J ′′[δe]2 = σ
(
G′′
tk
(δ�, u), −uk+1(�G

′′
k − �G′′

k+1)
)

= σ
(
Gk−1
T (δ�)− uk+1

�G′′
k ,−uk+1(�G

′′
k − �G′′

k+1)
)
.

3. �G′′
k − �G′′

k+1 /∈ L′′
k−1 +Π if and only if

Gk−1
T (δ�)− uk+1 (�G

′′
k − �G′′

k+1) ∈ Π⇒ uk+1 = 0.

From statement 2 we have that J [δe]2 = 0, and hence the statement follows.
4. By definition there are δ�0, δ�1 ∈ L′′

0 such that

δ�k−1 = Gk−1
T (δ�0), δ�k = GkT (δ�1).

From the assumptions we have that

GkT (δ�1)− Gk−1
T (δ�0) = Gk−1

T (δ�1)− Gk−1
T (δ�0) + 〈ωk, δ�1〉 (�G′′

k − �G′′
k+1) ∈ Π.

If we define δ� := δ�1 − δ�0 and δe := (π∗δ�, 〈wk, δ�1〉 − 〈wk−1, δ�0〉), then we have

that uk+1 = −〈ωk, δ�1〉, and from statement 2 we have that δe ∈ Vk ∩ V ⊥J′′
k−1 , and it is

nontrivial because if uk+1 = 0, then δ�k ∈ L′′
k−1. Moreover we have that

J ′′[δe]2 = σ
(
Gk−1
T (δ�1 − δ�0)− uk+1

�G′′
k , −uk+1(�G

′′
k − �G′′

k+1)
)

= σ
(−Gk−1

T (δ�0), GkT (δ�1)
)
+ σ

(
Gk−1
T (δ�0), Gk−1

T (δ�1)
)

− uk+1 σ
(
Gk−1
T (δ�1) + 〈ωk, δ�1〉 �G′′

k , �G
′′
k − �G′′

k+1

)
.

The final statement now follows because the second addend is zero since both the
arguments belong to the same Lagrangian subspace L′′

k−1 and the third one is zero
by the properties of ωk.
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Lemma 3.7. J ′′
|V > 0 if and only if one of the following statements holds for each

k = 1, 2, . . . , r:
1. �G′′

k − �G′′
k+1 /∈ L′′

k−1 +Π.

2. �G′′
k − �G′′

k+1 ∈ L′′
k−1.

3. L′′
k ∩Π ⊆ L′′

k−1 ∩Π and for all δ�k ∈ L′′
k and δ�k−1 ∈ L′′

k−1 such that π∗δ�k =
π∗δ�k−1, we have that σ(δ�k, δ�k−1) ≥ 0.

Proof. The idea of the proof is the following: we first show that these conditions
together with J ′′

|Vk−1
> 0 imply that

J ′′
|Vk∩V ⊥

J′′
k−1

> 0

and hence J ′′
|Vk

> 0; since V0 = {0}, then the lemma will follow by finite induction
on k. Let us show that the induction step is valid for each k if and only if one of the
statements of the lemma holds.

Assume that J ′′
|Vk−1

> 0.

• From statement 2 of Lemma 3.6 it follows that �G′′
k − �G′′

k+1 /∈ L′′
k−1 + Π is

equivalent to Vk ∩ V ⊥J′′
k−1 = {0} and the induction step is trivial.

• If �G′′
k − �G′′

k+1 ∈ L′′
k−1, then L′′

k = L′′
k−1; moreover we can choose uk+1 = 1

in part 2 of Lemma 3.6 to show that Vk ∩ V ⊥J′′
k−1 = {0} to obtain a nontrivial

δe ∈ Vk ∩ V ⊥J′′
k−1 such that

J ′′[δe]2 = σ
(
Gk−1
T (δ�)− �G′′

k ,−(�G′′
k − �G′′

k+1)
)

= σ
(
�G′′
k+1,

�G′′
k

)
.

Equation (3.14) completes the proof.

• If �G′′
k − �G′′

k+1 ∈ {L′′
k−1 + Π} \ L′′

k−1, then dimVk ∩ V ⊥J′′
k−1 = 1. From the first

statement of Lemma 3.6 it follows that the condition L′′
k ∩ Π ⊆ L′′

k−1 ∩ Π is
equivalent to

Vk ∩ V ⊥J′′
k = Vk−1 ∩ V ⊥J′′

k−1 = {0},

and hence it will be enough to prove that J ′′
|Vk∩V ⊥

J′′
k−1

≥ 0.

Under our assumptions there is δ� ∈ L′′
k−1 such that 〈ωk, δ�〉 = 1. If we set

δ�k := δ�+ (�G′′
k − �G′′

k+1) ∈ L′′
k ,

then we can find δ�k−1 ∈ L′′
k−1 such that π∗ δ�k−1 = π∗ δ�k. From the fourth statement

of Lemma 3.6 it follows that

J [δe]2 = σ (δ�k, δ�k−1) .

Since dimVk ∩ V ⊥J′′
k−1 = 1 then J|Vk∩V ⊥

J′′
k−1

≥ 0 if and only if σ (δ�k, δ�k−1) ≥ 0.

Lemma 3.8. Assume that J ′′
|V > 0; then the quadratic form J ′′

|N∩V ⊥
J′′ is positive

definite if and only if for every δ� ∈ L′′
0 and δ�T ∈ L′′

T such that

π∗ δ�T = π∗ GrT (δ�) = 0
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we have

σ(δ�T ,G
r
T (δ�)) > 0.

Proof. From Lemma 3.1 and the properties of the control wk (see (3.15)), we have
that δe = (δx, u) ∈ N ∩ V ⊥J′′ if and only if there is δ� ∈ L′′

0 such that

π∗δ� = δx, u = 〈wr, δ�〉, π∗GrT (δ�) ∈ π∗ L′′
T .

If π∗GrT (δ�) = 0, then δe ∈ V ∩V ⊥J′′ and hence δe = 0; otherwise we can use equation
(3.9).

3.1. The algorithm. We have essentially already shown that the algorithm can
be used to check the positivity of the second variation at the switching points. This
can be easily seen since from (3.12), (3.13), it follows that

L−
k = Ĥtk∗ ı L

′′
k−1 for k = 1, 2, . . . , r + 1,

L+
k = Ĥtk∗ ı L

′′
k for k = 1, 2, . . . , r.

Moreover STEP 3 follows from Lemma 3.7, while STEP 4 follows from Lemma 3.8,
taking into account (3.12).

4. Proof of the theorem. In order to demonstrate the Hamiltonian method we
now give the proof of our main result step by step following the approach described
in the introduction.

All the proofs make strong use of the properties (see [Arn80]) of the Poincaré–
Cartan form ω = s−H dt on I × T ∗M associated to the Hamiltonian H. Namely,

• ω evaluated along a lift of a solution of (2.1) is nonpositive and it is zero

along λ̂;
• ω is exact on the Legendre submanifold generated by the flow of �H emanating
from a Lagrangian submanifold.

4.1. Flow properties. The first step shows that our assumptions guarantee
that the flow of the maximized Hamiltonian is locally well defined and piecewise C∞

and describes the structure of the switching surfaces.
Lemma 4.1. There exists a neighborhood U of �0 such that we can define recur-

sively for i = 1, . . . , r the C∞-maps

τi : U→ R and φi : U→ T ∗M

in the following way: set

τ0 := 0, φ0 := Id.

The τi’s are implicitly defined by{
(Hi −Hi+1)

(
exp τi(�) �Hi(φi−1(�))

)
= 0,

τi(�i) = ti,

while the φi’s are defined as

φi := � �→ exp(−τi(�) �Hi+1) ◦ exp τi(�) �Hi (φi−1(�)).
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The neighborhood U can be chosen such that

sup
∈U

τi(�) < inf
∈U

τi+1(�),(4.1)

and the φi’s are C∞ symplectic diffeomorphisms.
Proof. Thanks to the strict bang-bang Legendre condition we can apply the

implicit function theorem to show that the τi’s are well defined and C∞. Therefore,
by continuity, we can guarantee that (4.1) holds. Let us show by induction that φi’s
are symplectic diffeomorphisms. From the definition of the τi’s we have that

σ
(
�Hi, �Hi+1

)
d τi(�) = σ

(
(exp τi(�) �Hi)∗φi−1 ∗, �Hi − �Hi+1

)
,(4.2)

and from the definition of the φi’s we have that

φi∗ = exp(−τi(�) �Hi+1)∗ exp(τi(�) �Hi)∗φi−1 ∗

+
{
exp(−τi(�) �Hi+1)∗ �Hi

(
exp(τi(�) �Hi(φi−1(�))

)
− �Hi+1(φi(�))

}
d τi(�).

(4.3)

The result now follows from (4.2) and from the general fact that exp(s �G) is a sym-

plectic diffeomorphism for any Hamiltonian vector field �G.
Let U be the neighborhood of �0 given in Lemma 4.1. If we set

Oi :=
{
(t, �) | � ∈ U, τi−1(�) ≤ t ≤ τi(�)

}
⊆ [0, T ]× T ∗M,

then the Oi’s are 2n+1-dimensional C
∞ submanifolds with boundary ∂Oi = Si−1∪Si,

where

Si := Oi ∩ Oi+1 =
{
(τi(�), �) , � ∈ U

}
.

From Lemma 4.1 we can easily deduce the following.
Corollary 4.2. Under Assumptions 2.1, 2.2, and 2.3 the Hamiltonian system

λ̇(t) = �H(λ(t)),

λ(0) = �

has a unique solution, which can be represented on [0, T ]×U by the map H : (t, �) �→
(t,Ht(�)) given by

Ht(�) = exp t �Hi+1(φi(�)), t ∈ [τi(�), τi+1(�)],(4.4)

where τr+1 ≡ T ; moreover the flow H is C∞ on each Oi.
Let us remark that every solution of the Hamiltonian system (4.4) has the same

number of switches as the reference trajectory ξ̂; moreover, from the above equation
(4.4), we can deduce that for t ∈ [τi−1(�), τi(�)] we can write

Ht(�) = exp(t− τi−1(�)) �Hi ◦ · · · ◦ exp(τ2(�)− τ1(�)) �H2 ◦ exp τ1(�) �H1 (�)

and the φi’s can be written as

φi(�) = exp(−τi(�) �Hi+1) ◦Hτi() (�).



STRONG OPTIMALITY FOR A BANG-BANG TRAJECTORY 1009

Remark 4.3. We can interpret Lemma 4.1 as saying that, thanks to the strict
bang-bang Legendre condition, we can define, in a tube around the adjoint covector,
a time-dependent maximized Hamiltonian as

(t, �) �→ Hi(t, �) if H−1(t, �) ∈ Oi.

This Hamiltonian switches from one vector field to another when its flow crosses the
switching surfaces and hence when changing the vector field results in an energy in-
crease. Assumptions 2.1 and 2.2 ensure that with this choice we obtain the maximized
Hamiltonian.

4.2. Hamiltonian methods. For a general introduction to the use of these
methods and their application to optimal control, we refer to [AG90, AG97].

Without loss of generality we can assume that Λ0 ⊆ U and that Λ0 is a smooth
simply connected Lagrangian submanifold; if necessary we take the restriction to a
neighborhood of x0. Define

Ωi :=
{
(t, �) ∈ Oi | � ∈ Λ0

}
, Σi := Ωi ∩ Ωi+1,

and

Ω :=

r+1⋃
i=1

Ωi.

The Ωi’s are n+ 1-dimensional C∞ submanifolds with boundary ∂Ωi = Σi−1 ∪ Σi.
From (4.4) it follows that Ht(Λ0) is a Lagrangian submanifold, although it might

be not C1 at the switching surfaces. We now investigate the properties of the Cartan
form ω and of the map

πt := π ◦Ht : Λ0 �→M.

Lemma 4.4. The form H∗ω is closed on each Ωi and hence exact on Ω so that
it can be written as

H∗ω = d ϑ,

where ϑ is a continuous function on [0, T ] × Λ0, which is C∞ on each Ωi. Moreover
ϑ can be chosen such that

ϑ(0, ·) := ϑ0 = α ◦ π.
If πt is Lipschitz invertible, then

d(ϑt ◦ π−1
t ) = Ht ◦ π−1

t .

Proof. The proof of the first statement is a standard consequence of the properties
of ω (see [Arn80]).

Let γ : [a, b] → M be a Lipschitz curve; then from the first part of the lemma it
follows that ∫

γ

Ht ◦ π−1
t =

∫
Ht◦π−1

t ◦γ
s =

∫
π−1
t ◦γ

H∗
t s = ϑt ◦ π−1

t

∣∣∣∣
γ(b)

γ(a)

,

and the statement follows.
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If λ : [0, T ] → T ∗M is a Lipschitz lift of a solution ξ of equation (2.1) such that
(t, λ(t)) ∈ Ω for t ∈ [0, T ], then∫

λ

ω ≤ 0 and

∫
λ̂

ω = 0(4.5)

because ω is defined by the maximized Hamiltonian H. From this property and by
the previous lemma, we obtain that

J(πλ)− J(ξ̂) ≥ ϑT

(
H−1
T (λ(T ))

)
− ϑT (�0) + β(ξ(T ))− β(xT ).(4.6)

Hence, as we mentioned in the introduction, the variation of the cost is estimated
from below by the function ϑT + β ◦ π, which depends only on the final point.

Let us remark that if πT is invertible, then the same estimate can be obtained by
the function

χ := ϑT ◦ π−1
T + β.

For this function, Lemma 4.4 and the transversality conditions imply that

dχ(xT ) = 0.

4.3. An equivalent free initial point problem. To be able to lift to Ω any
trajectory in a neighborhood of the reference one, we need that πt is locally onto for
each t and in particular for t = 0. This last condition can be fulfilled by constructing an
equivalent problem with a free initial point. Let Q be any nonnegative quadratic form
on Tx0M, whose nullity is Tx0

N0. We extend it to Tx0M × R
r by setting Q[δx, ε]2 =

Q[δx]2. If the quadratic form J ′′ is positive on N, then we can find ρ > 0 such that

J ′′ +
1

2
ρQ > 0 on

{
(δx, ε) ∈ Tx0M × R

r : ST∗(δx, ε) ∈ TxT
NT

}
,

as can be easily proved by elementary arguments of linear algebra. Let us choose a
function αρ such that

αρ = α on N0,

dαρ = dα on Tx0
N0,

D2αρ(x0) = D2α(x0) + ρQ

and consider the problem

Minimize αρ(ξ(0)) + β(ξ(T ))(4.7)

subject to

ξ̇(t) =

m∑
i=1

ui(t)Xi(ξ(t)), u ∈ ∆,

ξ(T ) ∈ NT .
Since the reference trajectory satisfies the initial boundary conditions, then proving
that it is optimal for this new problem yields its optimality for the original one. There-
fore without loss of generality we can assume that the original problem has already free
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initial point, i.e., N0 ≡M and α ≡ αρ; in this case the initial Lagrangian submanifold
is horizontal and its projection covers a neighborhood of the initial point x0.

Remark 4.5. This reduction is possible because the new cost on the initial point
contains an exact penalty which can be constructed assuming that the second variation
is positive definite.

Let us now see which properties of the symplectic map Ht∗ : T0Λ0 → Tλ̂(t)M

lead to the optimality of ξ̂. Let us remark that (4.4) yields, for δ� ∈ L0,

Ht∗(δ�) = (exp t �Hi+1)∗φi∗δ� for t ∈ (ti, ti+1),(4.8)

Hti ∗(δ�) =



(exp ti �Hi)∗φi−1 ∗δ� for 〈d τi(�0), δ�〉 ≤ 0,

(exp ti �Hi+1)∗φi∗δ� for 〈d τi(�0), δ�〉 ≥ 0.
(4.9)

Remark 4.6. By (4.2) and (4.3) one can easily see that L−
k = (exp tk �Hk)∗φk−1 ∗ L0

and L+
k = (exp tk �Hk+1)∗φk∗; therefore L−

k and L+
k are tangent to Htk(L0) from the

left and from the right, respectively. Moreover if d τk(�0)|L0
= 0, then the flow is

differentiable at (tk, �0).
Lemma 4.7. If the map π∗ Ht∗ : L0 → Tξ̂(t)M is onto for t ∈ [0, T ], then there

exists a neighborhood V ⊆ Λ0 of �0 such that [0, T ] × V is mapped by πH onto a

neighborhood of ξ̂ in [0, T ] ×M and πH has a piecewise C∞ local inverse. Without
loss of generality we set V = Λ0.

Proof. Thanks to the invertibility assumption on π∗ Hti ∗ and by possibly taking
a smaller neighborhood of �0, we can apply the inverse function theorem on each sub-
manifold with boundary Ωi to show that the image under πH of Ω is a neighborhood
of ξ̂ in [0, T ]×M.

Theorem 4.8. The equality

π∗Ht∗ L0 = Tξ̂(t)M

holds for t ∈ [0, T ] if and only if the following statements hold for i = 1, 2, . . . , r:
1. π∗φi∗L0 = Tx0M.
2. If δ�1, δ�2 ∈ L0 are such that

π∗
[
(exp ti �Hi)∗φi−1 ∗δ�1

]
= π∗

[
(exp ti �Hi+1)∗φi∗δ�2

]
,

then

σ
(
(exp ti �Hi)∗φi−1 ∗δ�1, (exp ti �Hi+1)∗φi∗δ�2

)
≥ 0.

Proof. Since exp t �Hi transforms horizontal submanifolds into horizontal subman-
ifolds, then (4.8)–(4.9) imply that the map π∗ Ht∗ is onto for t ∈ [0, T ] if and only if
it is onto for t = ti, i = 1, 2, . . . , r.

Let us now check that conditions 1 and 2 are equivalent to

π∗Hti∗ L0 = Tξ̂(ti)M.(4.10)

If d τi(�0) = 0 on L0, then the maps (exp ti �Hi)∗φi−1 ∗ and (exp ti �Hi+1)∗φi∗ coincide,
and hence (4.10) is equivalent to condition 1, and moreover condition 2 holds with
the equality sign.
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Otherwise we have that (4.10) holds if and only if

π∗φi−1 ∗L0 = π∗φi∗L0 = Tx0
M

and the two half-spaces{
π∗(exp ti �Hi)∗φi−1 ∗δ�, 〈d τi(�0), δ�〉 ≤ 0

}
,{

π∗(exp ti �Hi+1)∗φi∗δ�, 〈d τi(�0), δ�〉 ≥ 0
}

do not coincide. To check this we can show that for every δ�1, δ�2 ∈ L0 such that

π∗
[
(exp ti �Hi)∗φi−1 ∗δ�1

]
= π∗

[
(exp ti �Hi+1)∗φi∗δ�2

]
one has

〈d τi(�0), δ�1〉 〈d τi(�0), δ�2〉 ≥ 0.

By (4.3) we obtain that

σ
(
(exp ti �Hi)∗φi−1 ∗δ�1, (exp ti �Hi+1)∗φi∗δ�2

)
= σ

(
(exp ti �Hi)∗φi−1 ∗δ�1, ( �Hi − �Hi+1)(�i)

)
〈d τi(�0), δ�2〉.

Finally by the strict bang-bang Legendre condition and by (4.2) we obtain that

σ
(
(exp ti �Hi)∗φi−1 ∗δ�1, ( �Hi − �Hi+1)(�i)

)
has the same sign as 〈d τi(�0), δ�1〉, and the statement is proved.

Remark 4.9. Theorem 4.8 states that in the bang-bang case, a conjugate point
can occur only at a switching time; moreover condition 1 states that the projection
has full dimension, while condition 2 says that there is not a fold.

Theorem 4.10. Let the map π∗ Ht∗ : L0 → Tξ̂(t)M be onto for t ∈ [0, T ]. If the
form

δx �→ σ
(
d(ϑT ◦ π−1

T )∗δx, d(−β)∗δx
)
= σ

(
(HT ◦ π−1

T )∗δx, d(−β)∗δx
)

is positive definite on TxT
NT , then ξ̂ is a strict strong local minimizer for the problem

(P).
Proof. By (4.6) if we prove that xT is a local minimizer on NT of χ = ϑT ◦π−1

T +β,

then ξ̂ is a strong local minimizer for the problem (P). As we pointed out before,
dχ(xT ) = 0; thus the second derivative of χ is well defined at xT , and we have that

D2 χ(xT )[δx]
2 = σ

(
d(ϑT ◦ π−1

T )∗δx, d(−β)∗δx
)
,

which ends the first part of the proof.
Let us now prove that the minimum is locally uniquely attained. First of all let us

notice that under our assumptions ξ̂(T ) is a strict local minimum for the function χ.
Assume now by contradiction that there exists another admissible trajectory ξ with
the same cost and the same final point ξ(T ) = ξ̂(T ); denote by λ := t �→ π−1

t (ξ(t)) its
lift. By (4.6) and (4.5) we have that ∫

λ

ω = 0;
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thus, since H is the maximized Hamiltonian, we have that

〈Ht(λ(t)), ξ̇(t)〉 −H(Ht(λ(t))) = 0 a.e. t ∈ [0, T ].
Thanks to Assumption 2.1, for all t such that (t, λ(t)) ∈ int Ωi we have that

ξ̇(t) = hi(ξ(t));

this equation yields that

λ̇(t) = 0,

and hence, from inequality (4.1), it follows that λ(t) is constant, say ki, for t ∈
[τi−1(ki), τi(ki)]. When τi(ki) ≤ t ≤ τi(ki+1) we have that (t, λ(t)) ∈ Σi, and hence
there is µ ∈ [0, 1] such that

ξ̇(t) = (1− µ)hi+1(ξ(t)) + µhi(ξ(t)).

For t ∈ [τr(kr), T ] we have that λ(t) ∈ Ωr+1, and hence λ is as smooth as ξ; moreover
on the last time interval [tr, T ] we have that λ(t) = �0. Let us now show that λ cannot
remain on the switching surface for a time interval of positive measure or, equivalently,
that τr(kr) = tr. By contradiction, if kr = �0, then

(t, ξ(t)) ∈ πH(Σr) ⊆ πH(Ωr+1), t ∈ [τr(kr), tr].
If we differentiate the identities

t = τr(λ(t)), πHt(λ(t)) = ξ(t),

we obtain, a.e. t ∈ [τr(kr), tr],
〈d τr(λ(t)), λ̇(t)〉 = 1, ξ̇(t) = hr+1(ξ(t)) + π∗Ht ∗λ̇(t).(4.11)

From Assumption 2.2 it follows that for a.a. t ∈ [τr(kr), tr] there exists µt ∈ [0, 1] such
that

ξ̇(t) = (1− µt)hr+1(ξ(t)) + µt hr(ξ(t)),

and hence

π∗Ht ∗λ̇(t) = µt

(
hr(ξ(t))− hr+1(ξ(t))

)
.

Since λ̇(t) and µt are bounded we can take a sequence ti → tr such that λ̇(ti)→ δ� ∈
L0 and µti → µ. Taking into account (4.11) we can say that δ� = 0, and since we have
that π∗Htr ∗ is injective, then from

π∗Htr ∗δ� = µ
(
hr(ξ(tr))− hr+1(ξ(tr))

)
it follows that also µ = 0. On the other hand from (4.4) and (4.3) we obtain

π∗
(
exp tr �Hr

)
∗
φr−1 ∗δ� = π∗Htr ∗δ�−

(
hr(ξ(tr))− hr+1(ξ(tr))

)
= (µ− 1)

(
hr(ξ(tr))− hr+1(ξ(tr))

)
.

Once again the last term has to be nonzero. If we set δ�1 :=
µ
µ−1δ�, then

〈d τr(�0), δ�〉 〈d τr(�0), δ�1〉 = µ

µ− 1
< 0,

and from Theorem 4.8 we obtain a contradiction. Therefore kr = �0, and hence
τr(kr) = τr(�0) = tr.We can do the same proof on each interval proceeding backwards
in time to prove that the trajectory is constant.
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4.4. The proof. As we pointed out in Remark 4.6 if we have a regular bang-bang
extremal with simple switching times and the strict bang-bang Legendre condition is
satisfied, then

L−
k = (exp tk �Hk)∗ϕk−1 ∗ L0 for k = 1, 2, . . . , r + 1,

L+
k = (exp tk �Hk+1)∗ϕk ∗ L0 for k = 1, 2, . . . , r.

On the other hand we are considering a free initial point problem; therefore if J ′′
|V > 0,

then from STEP 3 of the algorithm described in Corollary 2.10 it follows that we can
apply Theorem 4.8, and hence we have that π∗Ht∗ L0 = Tξ̂(t)M for all t ∈ [0, T ] and

L−
r+1 =

(
HT ◦ π−1

T

)
∗TxT

M.

Therefore STEP 4 of the algorithm described in Corollary 2.10 yields that we can
apply Theorem 4.10.

In the abnormal case the cost is zero, and hence the existence of a strict strong
local minimizer is equivalent to the fact that the reference trajectory is isolated among
the admissible trajectories in the C0 topology.
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Abstract. A leader-follower stochastic differential game is considered with the state equation
being a linear Itô-type stochastic differential equation and the cost functionals being quadratic.
We allow that the coefficients of the system and those of the cost functionals are random, the
controls enter the diffusion of the state equation, and the weight matrices for the controls in the cost
functionals are not necessarily positive definite. The so-called open-loop strategies are considered
only. Thus, the follower first solves a stochastic linear quadratic (LQ) optimal control problem with
the aid of a stochastic Riccati equation. Then the leader turns to solve a stochastic LQ problem for
a forward-backward stochastic differential equation. If such an LQ problem is solvable, one obtains
an open-loop solution to the two-person leader-follower stochastic differential game. Moreover, it is
shown that the open-loop solution admits a state feedback representation if a new stochastic Riccati
equation is solvable.

Key words. leader-follower stochastic differential game, linear quadratic optimal control prob-
lem, forward-backward stochastic differential equation, stochastic Riccati equation
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1. Introduction. Let (Ω,F ,P, {Ft}t≥0) be a complete filtered probability space
on which a one-dimensional standard Brownian motion W (·) is defined such that
{Ft}t≥0 is the natural filtration generated by W (·), augmented by all the P-null
sets in F . We consider the following controlled linear stochastic differential equation
(SDE):



dx(t) = [A(t)x(t) +B1(t)u1(t) +B2(t)u2(t)]dt

+ [C(t)x(t) +D1(t)u1(t) +D2(t)u2(t)]dW (t), t ∈ [0, T ],

x(0) = ξ,

(1.1)

where A(·), B1(·), B2(·), C(·), D1(·), and D2(·) are matrix-valued {Ft}t≥0-adapted
processes of suitable dimensions, and ξ ∈ R

n, the standard n-dimensional Euclidean
space. In the above, x(·) is the state process with values in R

n, and u1(·) and u2(·)
are control processes taken by the two players in the game, labeled 1 and 2, with
values in R

m1 and R
m2 , respectively. It is seen that the controls enter the diffusion of

the state equation. Let U1[0, T ]
∆
=L2

F (0, T ;R
m1), the set of all R

m1-valued {Ft}t≥0-

adapted processes u1 : [0, T ] × Ω → R
m1 such that E

∫ T
0
|u1(t)|2dt < ∞. The set

U2[0, T ]
∆
=L2

F (0, T ;R
m2) is defined similarly. The control processes u1(·) and u2(·)

are taken from U1[0, T ] and U2[0, T ], respectively.
Under some mild conditions on the coefficients, for any (ξ, u1(·), u2(·)) ∈ R

n ×
U1[0, T ]×U2[0, T ], there exists a unique (strong) solution x(·) ≡ x(· ; ξ, u1(·), u2(·)) ∈
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grant 10131030, the Chinese Education Ministry Science Foundation under grant 2000024605, and
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L2
F (0, T ;R

n) to (1.1). Thus, we can define the cost functionals for the players as
follows:

Ji(ξ;u1(·), u2(·)) = E

{∫ T

0

[ 〈Qix(t), x(t) 〉+ 〈Riui(t), ui(t) 〉 ]dt
+ 〈Gix(T ), x(T ) 〉

}
, i = 1, 2,

(1.2)

where, for i = 1, 2, Qi and Ri are (n × n) and (mi ×mi) symmetric matrix-valued
{Ft}t≥0-adapted processes, respectively, and Gi is an (n×n) symmetric matrix-valued
FT -measurable random variable. We emphasize here that no nonnegative conditions
are assumed on any of Qi, Ri, and Gi. In particular, R1 and R2 are not necessarily
positive definite. It is possible to consider more general forms of cost functionals
(for example, J1(·) also explicitly contains u2(·), etc.). We take the above form for
simplicity of the presentation in this paper.

Roughly speaking, in the above, Player i wants to minimize his/her own cost
functional Ji(ξ;u1(·), u2(·)) by choosing a suitable control ui(·) ∈ Ui[0, T ]. We refer
to this problem as a stochastic linear quadratic (LQ) differential game.

Let us now explain the leader-follower feature of the game. In the game, Player 2
is the leader, and Player 1 is the follower. For any choice u2(·) ∈ U2[0, T ] of Player 2
and a fixed initial state ξ ∈ R

n, Player 1 would like to choose a u1(·) ∈ U1[0, T ] so that
J1(ξ;u1(·), u2(·)) is the minimum of J1(ξ;u1(·), u2(·)) over u1(·) ∈ U1[0, T ]. Knowing
the follower would take such an optimal control u1(·) (supposing it exists, which
depends on the choice u2(·) of the leader and the initial state ξ, in general), Player 2
(the leader) would like to choose some u2(·) ∈ U2[0, T ] to minimize J2(ξ;u1(·), u2(·))
over u2(·) ∈ U2[0, T ]. We refer to such a problem as a leader-follower stochastic LQ
differential game.

In a little more rigorous way, Player 1 wants to find a map α1 : U2[0, T ]× R
n →

U1[0, T ] and Player 2 wants to find a control u2(·) ∈ U2[0, T ] such that

J1(ξ;α1[u2(·), ξ](·), u2(·)) = min

u1(·)∈U1[0,T ]
J1(ξ;u1(·), u2(·)) ∀u2(·) ∈ U2[0, T ],

J2(ξ;α1[u2(·), ξ](·), u2(·)) = min
u2(·)∈U2[0,T ]

J2(ξ;α1[u2(·), ξ](·), u2(·)).
(1.3)

If the above pair (α1[·], u2(·)) exists, we refer to it as an open-loop solution to the above
leader-follower differential game. Note that the map α1 could be “anticipating”; i.e.,
α1[u2(·), ξ](t) could depend on the future value u2(s) (s ∈ [t, T ]) of u2(·) (see below).
Thus, to make the open-loop solution (if it exists) more useful, we will make a great
effort to find a state feedback representation for the open-loop solution. This can be
regarded as one of the main contributions in this paper. See [26] for a similar result
of feedback representation for the open-loop solution in a deterministic case.

We recall that there are several frameworks of studying differential games as
far as the strategies are concerned. For open-loop strategies (or pure strategies) in
finite-dimensional deterministic differential games, see [1, 3, 9, 26, 28]; the infinite-
dimensional counterpart can be found in [2, 17, 22]; some corresponding stochastic
cases can be found in [14, 15, 16]. For “nonanticipating” and/or closed-loop strategies
of deterministic or stochastic differential games, there is substantial literature; see
[1, 2, 4, 10, 11, 12, 13, 16, 17, 21, 22, 29, 30] and the references cited therein. In
the present paper, we consider only open-loop strategies. The open-loop solution
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and its state feedback representation will be discussed. It is also possible to consider
problems with closed-loop strategies together with some kind of equilibrium. However,
at this moment, we do not have publishable results for this. We hope to address these
problems in future work.

Now, let us make some simple comparisons of our formulation with others in the
literature. First, all the formulations of stochastic differential games in the above-
mentioned literature have the restriction that the controls do not enter into the dif-
fusion. Also, in most cases (except [14, 15, 16]), all the coefficients are deterministic.
Hence, this paper might be the first one for random coefficient stochastic differential
games with the diffusion that contains controls. Second, recently the stochastic LQ
control problems in which the weight matrix for the control in the cost functionals are
not necessarily nonnegative have been studied extensively [6, 7, 8, 34]. This kind of
problem has some interesting applications in mathematical finance [34]. This paper
might also be the first time that a similar kind of problem is formulated for differential
games.

To summarize the above, we see that the novelty of the formulation in this paper
is the following: (i) The controls enter into the diffusion, and all coefficients are
possibly random; (ii) the weight matrices of the controls in the cost functionals are
not necessarily nonnegative; and (iii) the state feedback representation of an open-loop
solution to such a differential game is obtained via a new stochastic Riccati equation.

Next, let us briefly look at the procedure of finding an open-loop solution to the
above leader-follower differential game. First, we solve an LQ problem for Player
1. For given u2(·) ∈ U2[0, T ], the follower (Player 1) wants to solve the following
stochastic LQ problem.

Problem (LQ)1. For given ξ ∈ R
n, find a u1(·) ∈ U1[0, T ] such that

J1(ξ;u1(·), u2(·)) = inf
u1(·)∈U1[0,T ]

J1(ξ;u1(·), u2(·)).(1.4)

Any u1(·) ∈ U1[0, T ] satisfying (1.4) is called an optimal control, the corresponding
state process x(·) is called an optimal state process, and (x(·), u1(·)) is called an optimal
pair of Problem (LQ)1, respectively. This problem will be studied in section 2. Here,
we state some relevant results only. To this end, let us introduce the following SDE:



dP = −{PA+ATP + CTPC + ΛC + CTΛ +Q1

− (PB1 + ΛD1 + CTPD1

)(
R1 +DT

1 PD1

)−1(
BT1 P +DT

1 Λ +DT
1 PC

)}
dt

+ ΛdW (t), t ∈ [0, T ],

P (T ) = G1,

R1 +DT
1 P (t)D1 > 0, t ∈ [0, T ], a.s.

(1.5)

This is a terminal value problem for an SDE, which is known by now as a backward
stochastic differential equation (BSDE; see [24, 27, 34] for details). We call (1.5) the
stochastic Riccati equation for Problem (LQ)1 (see [5, 6, 7, 8, 31, 34]). The unknown
for (1.5) is the pair of (n × n) symmetric matrix-valued {Ft}t≥0-adapted processes
(P (·),Λ(·)). If such a pair exists, we call it an adapted solution of (1.5). Note that
(1.5) is a nonlinear BSDE with some singularities in the unknown (P (·),Λ(·)). In
[7], a general local solvability result, as well as a couple of results on the solvability
to some special case of such BSDEs, was presented. We should point out that the
general solvability of (1.5) remains widely open. Now, suppose (1.5) admits an adapted
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solution (P (·),Λ(·)). With such a pair at hand, we introduce another BSDE:


dϕ = −
{
[AT − (PB1 + ΛD1 + CTPD1)(R1 +DT

1 PD1)
−1BT1 ]ϕ

+ [CT − (PB1 + ΛD1 + CTPD1)(R1 +DT
1 PD1)

−1DT
1 ]θ

+
[− (PB1 + ΛD1 + CTPD1)(R1 +DT

1 PD1)
−1DT

1 PD2

+ PB2 + ΛD2 + CTPD2

]
u2

}
dt+ θdW (t), t ∈ [0, T ],

ϕ(T ) = 0.

(1.6)

Again, the unknown here is a pair (ϕ(·), θ(·)) of R
n-valued {Ft}t≥0-adapted processes.

Now, let us formally state the following result for Problem (LQ)1 (omitting some
technical assumptions). A precise statement will be given in the next section.

Theorem 1.1. Suppose (1.5)–(1.6) admit adapted solutions (P (·),Λ(·)) and
(ϕ(·), θ(·)), respectively. Then Problem (LQ)1 admits an optimal control u1(·) of a
state feedback form,

u1(t) = −R̂1(t)
−1Ŝ1(t)x(t)− R̂1(t)

−1f(t), t ∈ [0, T ],(1.7)

where 
 R̂1

∆
=R1 +DT

1 PD1, Ŝ1
∆
=BT1 P +DT

1 Λ +DT
1 PC,

f
∆
=BT1 ϕ+DT

1 θ +DT
1 PD2u2.

(1.8)

If we define the right-hand side of (1.7) as α1[u2(·), ξ](t), then the first equality
in (1.3) holds. Note that in the above, (P (·),Λ(·)) does not depend on (u1(·), u2(·)),
whereas (ϕ(·), θ(·)) does depend on u2(·) although it still does not depend on u1(·).
Moreover, since (1.6) is a BSDE, the value (ϕ(t), θ(t)) of (ϕ(·), θ(·)) at time t depends
on {u2(s)

∣∣ s ∈ [0, T ]}. Thus, f(t) and hence u1(t) depend on {u2(s)
∣∣ s ∈ [0, T ]} as

well (see (1.7)–(1.8)). This means that α1[u2(·), ξ] ≡ u1(·) is anticipating, in general
(unless BT1 ϕ+DT

1 θ = 0), as we pointed out earlier.
Once Problem (LQ)1 is solved, we return to the leader (Player 2). Note that

when the follower takes his optimal control u1(·) given by (1.7), the leader ends up
with the following state equation:



dx(t) =
{
Âx(t) + F̂1ϕ(t) + B̂1θ(t) + B̂2u2(t)

}
dt,

+
{
Ĉx(t) + B̂T1 ϕ(t) + D̂1θ(t) + D̂2u2(t)

}
dW (t),

dϕ(t) = −{ÂTϕ(t) + ĈT θ(t) + F̂T2 u2(t)
}
dt+ θ(t)dW (t),

x(0) = ξ, ϕ(T ) = 0,

(1.9)

where 


Â
∆
=A−B1R̂

−1
1 Ŝ1, F̂1

∆
=−B1R̂

−1
1 BT1 ,

B̂1
∆
=−B1R̂

−1
1 DT

1 , B̂2
∆
=B2 −B1R̂

−1
1 DT

1 PD2,

Ĉ
∆
=C −D1R̂

−1
1 Ŝ1, F̂2

∆
= Ŝ2 −DT

2 PD1R̂
−1
1 Ŝ1,

D̂1
∆
=−D1R̂

−1
1 DT

1 , D̂2
∆
=D2 −D1R̂

−1
1 DT

1 PD2,

Ŝ2
∆
=BT2 P +DT

2 Λ +DT
2 PC.

(1.10)
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The cost functional is J2(ξ;u1(·), u2(·)), with u1(·) being of form (1.7), which is still
a quadratic form. Equation (1.9) is a two-point boundary value problem for SDEs,
which is what we call a forward-backward stochastic differential equation (FBSDE; see
[24, 32, 33]). This FBSDE is decoupled. One can first solve the backward equation
for (ϕ(·), θ(·)), then solve the forward equation for x(·). Hence, we end up with an
LQ problem for an FBSDE. Let us keep in mind that the “state” for (1.9) is the
triple (x(·), ϕ(·), θ(·)). We mention here that the LQ control problem for BSDEs was
studied in [23].

Solving the LQ problem for an FBSDE (1.9) itself is interesting. In solving this
problem, we obtain an optimal control u2(·) of a “state” feedback via a new stochastic
Riccati equation in which the “state” is (x(·), ϕ(·), θ(·)). Then (u1(·), u2(·)) gives an
open-loop solution to the leader-follower differential game. We have seen that u1(·)
is anticipating in general. Since (ϕ(·), θ(·)) could be anticipating, then so could u2(·).
Thus, the open-loop solution (u1(·), u2(·)) of the game is anticipating in general. The
next big job in this paper is to represent u1(·) and u2(·) in terms of the original state
x(·). This makes the whole current paper nontrivial and meaningful.

Readers are referred to [19] for some classical deterministic LQ problems, to
[31, 5] for classical stochastic LQ problems, to [20, 25] for stochastic control systems
with control entering the diffusion, and to [6, 7, 8, 34] for stochastic LQ problems
with control entering into the diffusion of the state equation without assuming the
nonnegativity of control weight in the cost functional. Finally, some classical results
for differential games can be found in [18].

The rest of the paper is organized as follows. Section 2 is devoted to a brief study
of the LQ problem for the follower, together with some other preliminary results. In
section 3, we discuss the LQ problem for the leader. A new kind of Riccati equation
is derived. In section 4, we present two one-dimensional cases. In section 5, we inves-
tigate the deterministic coefficients case, for which we obtain an open-loop solution
and its state feedback representation to the leader-follower differential game.

2. LQ problem for the follower. Let us first introduce some notation which
will be used throughout the paper.

Let R
n×m be the set of all (n×m) matrices, and let Sn be the set of all (n× n)

symmetric matrices. For any Banach space H (for example, H = R
n,Rn×m,Sn),

let L∞
F (0, T ;H) (resp., CF ([0, T ];H)) be the set of all H-valued {Ft}t≥0-adapted

bounded (resp., bounded continuous) processes. For any 1 ≤ p <∞, let LpF (0, T ;H)
be the set of all H-valued {Ft}t≥0-adapted processes ϕ : [0, T ] × Ω → H such that

E
∫ T
0
|ϕ(t)|pHdt < ∞, and let LpFT

(Ω;H) be the set of all FT -measurable random
variable η : Ω → H such that E|η|pH < ∞. The spaces of deterministic functions
Lp(0, T ;H) and C([0, T ];H) are defined in the usual way.

Let us introduce the following assumptions, which will be used later.
(S) Let

A,C ∈ L∞

F (0, T ;Rn×n),

Bi ∈ L∞
F (0, T ;Rn×mi), Di ∈ CF ([0, T ];Rn×mi), i = 1, 2,

Qi ∈ CF ([0, T ];Sn), Ri ∈ CF ([0, T ];Smi), Gi ∈ L∞
FT

(Ω;Sn), i = 1, 2.

(2.1)

Note that under (S), the coefficients of the control system and the cost functional
are random. Now, let us discuss Problem (LQ)1. Similarly to [7, 8], we introduce the
following notion.

Definition 2.1. For given u2(·) ∈ U2[0, T ], Problem (LQ)1 is said to be
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(i) finite at ξ ∈ R
n if

inf
u1(·)∈U1[0,T ]

J1(ξ;u1(·), u2(·)) > −∞;(2.2)

(ii) (uniquely) solvable at ξ ∈ R
n if there exists a (unique) u1(·) ∈ U1[0, T ] such

that (1.4) holds.
Using a similar idea found in [8] (see [34] also), we are able to prove the following

result.
Proposition 2.2. Let (S) hold and u2(·) ∈ U2[0, T ] be given.
(i) Let Problem (LQ)1 be finite at some ξ ∈ R

n. Then for any u1(·) ∈ U1[0, T ],
the unique adapted solution (x0(·), p0(·), q0(·)) of the FBSDE


dx0(t) = [Ax0(t) +B1u1(t)]dt+ [Cx0(t) +D1u1(t)]dW (t),

dp0(t) = −[AT p0(t) + CT q0(t) +Q1x
0(t)]dt+ q0(t)dW (t),

x0(0) = 0, p0(T ) = G1x
0(T )

(2.3)

satisfies

E

∫ T

0

〈R1u1(t) +BT1 p
0(t) +DT

1 q
0(t), u1(t) 〉 dt ≥ 0.(2.4)

(ii) Let the conclusion of (i) hold. Then Problem (LQ)1 is (uniquely) solvable
with (x(·), u1(·)) being a (the only) optimal pair if and only if there exists a (unique)
4-tuple (x(·), u1(·), p(·), q(·)) satisfying the FBSDE


dx(t) = [Ax(t) +B1u1(t) +B2u2(t)]dt+ [Cx(t) +D1u1(t) +D2u2(t)]dW (t),

dp(t) = −[AT p(t) + CT q(t) +Q1x(t)]dt+ q(t)dW (t),

x(0) = ξ, p(T ) = G1x(T )

(2.5)

such that

R1u1(t) +BT1 p(t) +DT
1 q(t) = 0, t ∈ [0, T ], a.s.(2.6)

Next, by the idea of “four-step scheme” found in [24] (see also [33, 34]), we can
heuristically derive the stochastic Riccati equation (1.5) and BSDE (1.6). With these,
we have the following sufficient condition for the solvability of Problem (LQ)1, which
makes the statement of Theorem 1.1 precise.

Theorem 2.3. Let (S) hold. Suppose (1.5)–(1.6) admit adapted solutions (P (·),
Λ(·)) ∈ CF ([0, T ];Sn)×L2

F (0, T ;Sn) and (ϕ(·), θ(·)) ∈ CF ([0, T ];Rn)×L2
F (0, T ;R

n),

respectively, such that R̂1 ≡ R1 +DT
1 PD1 > 0, and{

B1R̂
−1
1 Ŝ1, D1R̂

−1
1 Ŝ1 ∈ L∞

F (0, T ;Rn×n),

B1R̂
−1
1 f, D1R̂

−1
1 f ∈ L∞

F (0, T ;Rn),
(2.7)

where Ŝ1 and f are given by (1.8). Then Problem (LQ)1 is solvable with the optimal
control u1(·) being of a state feedback form (1.7), and

inf
u1(·)∈U1[0,T ]

J1(ξ;u1(·), u2(·)) = 〈P (0)ξ, ξ 〉+2 〈ϕ(0), ξ 〉

+ E

∫ T

0

{
2 〈BT2 ϕ(t) +DT

2 θ(t), u2(t) 〉+ 〈DT
2 P (t)D2u2(t), u2(t) 〉

− |R̂1(t)
− 1

2 f(t)|2}dt ∀ξ ∈ R
n.

(2.8)
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Proof. By our assumption, the following SDE admits a unique strong solution
x(·): 


dx(t) =

{[
A−B1R̂

−1
1 Ŝ1

]
x(t)−B1R̂

−1
1 f +B2u2(t)

}
dt

+
{[
C −D1R̂

−1
1 Ŝ1

]
x(t)−D1R̂

−1
1 f +D2u2(t)

}
dW (t),

x(0) = ξ.

(2.9)

It is clear that the control u1(·) defined by (1.7) is in U1[0, T ]. Now, for any u1(·) ∈
U1[0, T ], u2(·) ∈ U2[0, T ], let x(·) be the corresponding state process. Applying Itô’s
formula to 〈P (·)x(·), x(·) 〉 and 〈ϕ(·), x(·) 〉, with some computation, we have

J1(ξ;u1(·), u2(·))− 〈P (0)ξ, ξ 〉−2 〈ϕ(0), ξ 〉

= E

∫ T

0

{
|R̂ 1

2
1 [u1 + R̂−1

1 Ŝ1x+ R̂−1
1 f ]|2 − |R̂− 1

2
1 f |2

+ 2 〈BT2 ϕ+DT
2 θ, u2 〉+ 〈DT

2 PD2u2, u2 〉
}
dt.

(2.10)

Note that P (·) does not depend on (u1(·), u2(·)) and (ϕ(·), θ(·)) does not depend on
u1(·) (although it might depend on u2(·)). By (1.8), f(·) does not depend on u1(·).
Consequently, we obtain

J1(ξ;u1(·), u2(·))− J1(ξ;u1(·), u2(·))

= E

∫ T

0

∣∣R̂ 1
2
1 [u1 + R̂−1

1 Ŝ1x+ Ŝ1f ]
∣∣2dt ≥ 0,

(2.11)

which implies that u1(·) is an optimal control. It also leads to (2.8).

3. LQ problem for the leader. Now, let Problem (LQ)1 be uniquely solvable
for any given (ξ, u2(·)) ∈ R

n × U2[0, T ]. Then the follower takes his optimal con-
trol u1(·) of form (1.7). Consequently, the leader has the state equation (1.9) with

the coefficients given by (1.10). Note that F̂1 and D̂1 are symmetric. As we men-
tioned before, (1.9) is an FBSDE whose adapted solution is a triple (x(·), ϕ(·), θ(·))
of {Ft}t≥0-adapted processes. The leader would like to choose his control so that his
cost functional (with u1(·) = u1(·) being of the form (1.7)) is minimized. To be more
precise, we define

Ĵ2(ξ;u2(·)) ∆
=J2(ξ;u1(·), u2(·))

= E

{∫ T

0

[ 〈Q2x(t), x(t) 〉+ 〈R2u2(t), u2(t) 〉
]
dt+ 〈G2x(T ), x(T ) 〉

}
,

(3.1)

where x(·) is the first component of the adapted solution (x(·), ϕ(·), θ(·)) of (1.9). The
LQ problem for the leader can be stated as follows.

Problem (LQ)2. For given ξ ∈ R
n, find a u2(·) ∈ U2[0, T ] such that

Ĵ2(ξ, u2(·)) = min
u2(·)∈U2[0,T ]

Ĵ2(ξ;u2(·)).(3.2)

The above Problem (LQ)2 is an LQ problem for an FBSDE. Similarly to the
previous section, we can introduce the following notion.

Definition 3.1. Problem (LQ)2 is said to be
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(i) finite at ξ ∈ R
n if

inf
u2(·)∈U2[0,T ]

Ĵ2(ξ;u2(·)) > −∞;(3.3)

(ii) (uniquely) solvable at ξ ∈ R
n if there exists a (unique) u2(·) ∈ U2[0, T ] such

that (3.2) holds.
Any u2(·) ∈ U2[0, T ] satisfying (3.2) is called an optimal control, and the cor-

responding state (x(·), ϕ(·), θ(·)) is called an optimal state process, and (x(·), ϕ(·),
θ(·), u2(·)) is called an optimal 4-tuple, for the Problem (LQ)2, respectively.

Similarly to Proposition 2.2, we have the following Pontryagin-type maximum
principle for Problem (LQ)2.

Theorem 3.2. Let (S) hold.
(i) Let Problem (LQ)2 be finite at some ξ ∈ R

n. Then for any u2(·) ∈ U2[0, T ],
the unique adapted solution (x0(·), ϕ0(·), θ0(·), y0(·), z0(·), ψ0(·)) of the FBSDE




dx0(t) =
[
Âx0(t) + F̂1ϕ

0(t) + B̂1θ
0(t) + B̂2u2(t)

]
dt,

+
[
Ĉx0(t) + B̂T1 ϕ

0(t) + D̂1θ
0(t) + D̂2u2(t)

]
dW (t),

dϕ0(t) = −[ÂTϕ0(t) + ĈT θ0(t) + F̂T2 u2(t)
]
dt+ θ0(t)dW (t),

dy0(t) = −[ÂT y0(t) + ĈT z(t) +Q2x
0(t)
]
dt+ z0(t)dW (t),

dψ0(t) =
[
Âψ0(t) + F̂1y

0(t) + B̂1z
0(t)
]
dt

+
[
Ĉψ0(t) + B̂T1 y

0(t) + D̂1z
0(t)
]
dW (t),

x0(0) = 0, ϕ(T ) = 0, y0(T ) = G2x
0(T ), ψ0(0) = 0

(3.4)

satisfies

Ĵ2(0;u2(·)) = E

∫ T

0

〈R2u2(t) + B̂T2 y
0(t) + D̂T

2 z
0(t) + F̂2ψ

0(t), u2(t) 〉 dt ≥ 0.(3.5)

(ii) Let the conclusion of (i) hold. Then Problem (LQ)2 is solvable at ξ ∈ R
n

with (x(·), ϕ(·), θ(·), u2(·)) being an optimal 4-tuple if and only if (x(·), ϕ(·), θ(·)) is
the adapted solution of (1.9) corresponding to (ξ, u2(·)) and the FBSDE



dy = −(ÂT y + ĈT z +Q2x)dt+ zdW (t),

dψ = (Âψ + F̂1y + B̂1z)dt+ (Ĉψ + B̂T1 y + D̂1z)dW (t),

y(T ) = G2x(T ), ψ(0) = 0

(3.6)

admits a unique adapted solution (y(·), z(·), ψ(·)) such that

R2u2 + B̂T2 y + D̂T
2 z + F̂2ψ = 0.(3.7)

Proof. For any fixed ξ ∈ R
n and u2(·) ∈ U2[0, T ], FBSDE (1.9) admits a unique

adapted solution (x(·), ϕ(·), θ(·)), and FBSDE (3.6) also admits a unique adapted
solution (y(·), z(·), ψ(·)). (One can solve the BSDE for (y(·), z(·)) first, then solve the
FSDE for ψ(·).) Similarly, for any u2(·) ∈ U2[0, T ], (3.6) admits a unique adapted
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solution (x0(·), ϕ0(·), θ0(·), y0(·), z0(·), ψ0(·)). By Itô’s formula, we obtain

E 〈G2x(T ), x
0(T ) 〉

= E
[ 〈 y(T ), x0(T ) 〉− 〈 y(0), x0(0) 〉− 〈ψ(T ), ϕ0(T ) 〉+ 〈ψ(0), ϕ0(0) 〉 ]

= E

∫ T

0

[− 〈 ÂT y + ĈT z +Q2x, x
0 〉+ 〈 y, Âx0 + F̂1ϕ

0 + B̂1θ
0 + B̂2u2 〉

+ 〈 z, Ĉx0 + B̂T1 ϕ
0 + D̂1θ

0 + D̂2u2 〉− 〈 Âψ + F̂1y + B̂1z, ϕ
0 〉

+ 〈ψ, ÂTϕ0 + ĈT θ0 + F̂T2 u2 〉− 〈 Ĉψ + B̂T1 y + D̂1z, θ
0 〉 ]dt

= E

∫ T

0

[− 〈Q2x, x
0 〉+ 〈u2, B̂

T
2 y + D̂T

2 z + F̂2ψ 〉
]
dt.

(3.8)

Similarly, we have

E 〈G2x
0(T ), x0(T ) 〉 = E

∫ T

0

[− 〈Q2x
0, x0 〉+ 〈u2, B̂

T
2 y

0 + D̂T
2 z

0 + F̂2ψ
0 〉 ]dt,(3.9)

which implies

Ĵ2(0;u2(·)) = E

∫ T

0

〈R2u2(t) + B̂T2 y
0(t) + D̂T

2 z
0(t) + F̂2ψ

0(t), u2(t) 〉 dt.(3.10)

Then, for any λ ∈ R,

Ĵ2(ξ;u2(·) + λu2(·))− Ĵ2(ξ;u2(·))

= 2λE

{∫ T

0

[ 〈Q2x, x
0 〉+ 〈R2u2, u2 〉

]
dt+ 〈G2x(T ), x

0(T ) 〉
}

+ λ2E

{∫ T

0

[ 〈Q2x
0, x0 〉+ 〈R2u2, u2 〉

]
dt+ 〈G2x

0(T ), x0(T ) 〉
}

= 2λE

∫ T

0

〈u2, R2u2 + B̂T2 y + D̂T
2 z + F̂2ψ 〉 dt

+ λ2E

∫ T

0

〈u2, R2u2 + B̂T2 y
0 + D̂T

2 z
0 + F̂2ψ

0 〉 dt.

(3.11)

Hence, when Problem (LQ)2 is finite at some ξ ∈ R
n, (3.5) must hold. Further, if

(3.5) holds, then u2(·) is optimal if and only if (3.7) holds.
We note that when

Q2(t) ≥ 0, R2(t) ≥ 0, G2 ≥ 0, t ∈ [0, T ], a.s.(3.12)

holds, (3.5) holds automatically.
The above result gives us an equivalence between the solvability of Problem (LQ)2

and that of an FBSDE. As usual, we refer to (3.6) as the adjoint equation of (1.9)
along the optimal 4-tuple. Condition (3.7) together with (3.5) can be regarded as
the maximum condition in Pontryagin’s maximum principle. In the current case,
due to the linear quadratic nature of the problem, (3.5) implies that the functional

u2(·) �→ Ĵ2(ξ;u2(·)) is convex. Thus, (3.7) becomes a sufficient condition for the
existence of an optimal control. We refer to (1.9), (3.6)–(3.7) as the optimality system
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of Problem (LQ)2. It is clear that (1.9) and (3.6) are two (decoupled) FBSDEs which
are coupled through condition (3.7).

Similar to typical (stochastic) LQ problems, the representation of optimal control
u2(·) through (3.7) is not satisfactory since in order to determine (y(t), z(t)) at time
t ∈ [0, T ), one needs to solve the BSDE in (3.6), for which x(T ) (a future information
of the state) has to be known. This is not realistic. We expect to have some kind of
state feedback representation for the optimal control via a certain Riccati equation.
To make the problem clearer, let us put (1.9) and (3.6) together, dropping bars in x,
etc. (but keeping the bar in u2), for notational simplicity:



dx(t) =
[
Âx(t) + F̂1ϕ(t) + B̂1θ(t) + B̂2u2(t)

]
dt,

+
[
Ĉx(t) + B̂T1 ϕ(t) + D̂1θ(t) + D̂2u2(t)

]
dW (t),

dϕ(t) = −[ÂTϕ(t) + ĈT θ(t) + F̂T2 u2(t)
]
dt+ θ(t)dW (t),

dy(t) = −[ÂT y(t) + ĈT z(t) +Q2x(t)
]
dt+ z(t)dW (t),

dψ(t) =
[
Âψ(t) + F̂1y(t) + B̂1z(t)

]
dt+

[
Ĉψ(t) + B̂T1 y(t) + D̂1z(t)

]
dW (t),

x(0) = ξ, ϕ(T ) = 0, y(T ) = G2x(T ), ψ(0) = 0,

R2u2 + B̂T2 y + D̂T
2 z + F̂2ψ = 0.

(3.13)

Note that the equations for (x(·), ϕ(·)) form a coupled FBSDE, and those for (y(·), ψ(·))
form another coupled FBSDE. These two FBSDEs are further coupled through the
last relation. Hence, the above is a coupled system of FBSDEs. We may look at the
above in a different way. To this end, let us set



X =

(
x
ψ

)
, Y =

(
y
ϕ

)
, Z =

(
z
θ

)
, X0

∆
=

(
ξ
0

)
,

Â ∆
=

(
Â 0
0 Â

)
, F̂1 =

(
0 F̂1

F̂1 0

)
, B̂1 =

(
0 B̂1

B̂1 0

)
, B̂2 =

(
B̂2

0

)
,

Ĉ ∆
=

(
Ĉ 0
0 Ĉ

)
, D̂1 =

(
0 D̂1

D̂1 0

)
, D̂2 =

(
D̂2

0

)
,

Q̂2
∆
=

(
Q2 0
0 0

)
, F̂2 =

(
0 F̂2

)
, Ĝ2 =

(
G2 0
0 0

)
.

(3.14)

Then (3.13) is equivalent to the FBSDE


dX =
(ÂX + F̂1Y + B̂1Z + B̂2u2

)
dt

+
(ĈX + B̂T1 Y + D̂1Z + D̂2u2

)
dW (t),

dY = −(Q̂2X + ÂTY + ĈTZ + F̂T2 u2

)
dt+ ZdW (t),

X(0) = X0, Y (T ) = Ĝ2X(T ),

(3.15)

together with the following condition:

R2u2 + B̂T2 Y + F̂2X + D̂T2 Z = 0.(3.16)

FBSDE (3.15) is of a standard form. We should point out that only F̂1, D̂1, Q̂2, and

Ĝ2 are symmetric; Â, Ĉ, and B̂1 are not necessarily symmetric and/or skew-symmetric
(although they look like so). Thus, the seemingly special form (3.14) of the coefficients



LINEAR QUADRATIC DIFFERENTIAL GAME 1025

does not give us any additional helps in solving the linear FBSDE (3.15). We now
use the idea of the four-step scheme (see [24, 32, 33]) to study the solvability of the
above FBSDE. Suppose we have the relation

Y (t) = P̂ (t)X(t), t ∈ [0, T ],(3.17)

with P̂ (·) being an S2n-valued process satisfying{
dP̂ (t) = Γ̂(t)dt+ Λ̂(t)dW (t), t ∈ [0, T ],

P̂ (T ) = Ĝ2

(3.18)

for some undetermined S2n-valued processes Γ̂(·) and Λ̂(·). Applying Itô’s formula to
(3.17), we obtain (suppressing t below)

(
Γ̂X + P̂ ÂX + P̂ F̂1P̂X + P̂ B̂1Z + P̂ B̂2u2

+ Λ̂ĈX + Λ̂B̂T1 P̂X + ΛD̂1Z + Λ̂D̂2u2

)
dt

+
(
Λ̂X + P̂ ĈX + P̂ B̂T1 P̂X + P̂ D̂1Z + P̂ D̂2u2

)
dW (t)

= d[P̂X] = dY

= −(Q̂2X + ÂT P̂X + ĈTZ + F̂T2 u2

)
dt+ ZdW (t).

(3.19)

Hence, comparing the diffusion terms, we have(
I − P̂ D̂1

)
Z =

(
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

)
X + P̂ D̂2u2,(3.20)

and by comparing the drift terms in (3.19), we have

0 = Γ̂X + P̂ ÂX + P̂ F̂1P̂X + P̂ B̂1Z + P̂ B̂2u2

+ Λ̂ĈX + Λ̂B̂T1 P̂X + Λ̂D̂1Z + Λ̂D̂2u2

+ Q̂2X + ÂT P̂X + ĈTZ + F̂T2 u2

= (Γ̂ + P̂ Â+ ÂT P̂ + P̂ F̂1P̂ + Q̂2 + Λ̂Ĉ + Λ̂B̂T1 P̂ )X
+ (P̂ B̂1 + Λ̂D̂1 + ĈT )Z + (P̂ B̂2 + Λ̂D̂2 + F̂T2 )u2.

(3.21)

We should keep in mind that (3.19) is equivalent to (3.20)–(3.21). Next, assuming

the existence of
(
I − P̂ D̂1

)−1
, one obtains (from (3.20))

Z =
(
I − P̂ D̂1

)−1[(
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

)
X + P̂ D̂2u2

]
.(3.22)

Hence, it follows from (3.16) that

0 = R2u2 + B̂T2 Y + F̂2X + D̂T2 Z
=
[
R2 + D̂T2

(
I − P̂ D̂1

)−1
P̂ D̂2

]
u2

+
[D̂T2 (I − P̂ D̂1

)−1(
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

)
+ B̂T2 P̂ + F̂2

]
X.

(3.23)

We point out that

(
I − P̂ D̂1

)−1
P̂ = P̂

(
I − D̂1P̂

)−1
(3.24)
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is symmetric (which can be proved by multiplying both sides by (I − P̂ D̂1) from left

and by (I − D̂1P̂ ) from right). Let us now assume that

R̂2
∆
=R2 + D̂T2

(
I − P̂ D̂1

)−1
P̂ D̂2(3.25)

is invertible (which is an Sm2-valued process). Consequently, by (3.23),

u2 = −R̂−1
2

[D̂T2 (I − P̂ D̂1

)−1(
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

)
+ B̂T2 P̂ + F̂2

]
X.(3.26)

Plugging the above into (3.22), one has

Z =
(
I − P̂ D̂1

)−1{
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

− P̂ D̂2R̂
−1
2

[D̂T2 (I − P̂ D̂1

)−1(
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

)
+ B̂T2 P̂ + F̂2

]}
X.

(3.27)

Substituting (3.26)–(3.27) into (3.21), we end up with

0 = (Γ̂ + P̂ Â+ ÂT P̂ + P̂ F̂1P̂ + Q̂2 + Λ̂Ĉ + Λ̂B̂T1 P̂ )X
+ (P̂ B̂1 + Λ̂D̂1 + ĈT )

(
I − P̂ D̂1

)−1{
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

− P̂ D̂2R̂
−1
2

[D̂T2 (I − P̂ D̂1

)−1(
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

)
+ B̂T2 P̂ + F̂2

]}
X

− (P̂ B̂2 + Λ̂D̂2 + F̂T2 )R̂−1
2

{D̂T2 [I − P̂ D̂1

]−1[
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

]
+ B̂T2 P̂ + F̂2

}
X.

(3.28)

Thus, process Γ̂ should be chosen as follows:

Γ̂ =− (P̂ Â+ ÂT P̂ + P̂ F̂1P̂ + Q̂2 + Λ̂Ĉ + Λ̂B̂T1 P̂ )
− (P̂ B̂1 + Λ̂D̂1 + ĈT )

(
I − P̂ D̂1

)−1{
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

− P̂ D̂2R̂
−1
2

[D̂T2 (I − P̂ D̂1

)−1(
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

)
+ B̂T2 P̂ + F̂2

]}
+ (P̂ B̂2 + Λ̂D̂2 + F̂T2 )R̂−1

2 [D̂T2
(
I − P̂ D̂1

)−1(
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

)
+ B̂T2 P̂ + F̂2].

(3.29)

In other words, if Γ̂(·) is defined by (3.29), then (3.28) holds.
Next, by substituting (3.17), (3.26), and (3.27) into the equation for X(·) in

(3.15), we obtain {
dX = AXdt+ CXdW (t),

X(0) = X0,
(3.30)

where 


A = Â+ F̂1P̂ + B̂1

(
I − P̂ D̂1

)−1{
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

− P̂ D̂2R̂
−1
2

[D̂T2 (I − P̂ D̂1

)−1(
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

)
+ B̂T2 P̂ + F̂2

]}
− B̂2R̂

−1
2

[D̂T2 (I − P̂ D̂1

)−1(
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

)
+ B̂T2 P̂ + F̂2

]
,

C = Ĉ + B̂T1 P̂ + D̂1

(
I − P̂ D̂1

)−1{
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

− P̂ D̂2R̂
−1
2

[D̂T2 (I − P̂ D̂1

)−1(
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

)
+ B̂T2 P̂ + F̂2

]}
− D̂2R̂

−1
2

[D̂T2 (I − P̂ D̂1

)−1(
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

)
+ B̂T2 P̂ + F̂2

]
.

(3.31)
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Now, if X(·) is the unique strong solution of (3.30) and if Y (·), Z(·), and u2(·) are
defined by (3.16), (3.25), and (3.26), respectively (assuming that (P̂ (·), Λ̂(·)) is an

adapted solution of (3.18) and that (I − P̂ D̂1)
−1 and R̂−1

2 exist), then (3.15)–(3.16)
hold.

We now make some rearrangement for the right-hand side of (3.29). First of all,

(P̂ B̂1 + Λ̂D̂1 + ĈT )
(
I − P̂ D̂1

)−1(
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂ )

= (P̂ B̂1 + ĈT )(I − P̂ D̂1)
−1P̂ (B̂T1 P̂ + Ĉ) + Λ̂D̂1(I − P̂ D̂1)

−1Λ̂

+ (P̂ B̂1 + ĈT )(I − P̂ D̂1)
−1Λ̂ + Λ̂D̂1(I − P̂ D̂1)

−1P̂ (B̂T1 P̂ + Ĉ)
= (P̂ B̂1 + ĈT )(I − P̂ D̂1)

−1P̂ (B̂T1 P̂ + Ĉ) + Λ̂D̂1(I − P̂ D̂1)
−1Λ̂

+ (P̂ B̂1 + ĈT )(I − P̂ D̂1)
−1Λ̂ + Λ̂[(I − P̂ D̂1)

−1 − I](B̂T1 P̂ + Ĉ).

(3.32)

Next, one has

(P̂ B̂1 + Λ̂D̂1 + ĈT )
(
I − P̂ D̂1

)−1
P̂ D̂2R̂

−1
2

[D̂T2 (I − P̂ D̂1

)−1(
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

)
+B̂T2 P̂ + F̂2

]
(3.33)

+ (P̂ B̂2 + Λ̂D̂2 + F̂T2 )R̂−1
2

[D̂T2 (I − P̂ D̂1

)−1(
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

)
+ B̂T2 P̂ + F̂2

]
=
[
(P̂ B̂1 + Λ̂D̂1 + ĈT )

(
I − P̂ D̂1

)−1
P̂ D̂2 + (P̂ B̂2 + Λ̂D̂2 + F̂T2 )

]
R̂−1

2

·[D̂T2 (I − P̂ D̂1

)−1(
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

)
+ B̂T2 P̂ + F̂2

]
.

Note that

(P̂ B̂1 + Λ̂D̂1 + ĈT )
(
I − P̂ D̂1

)−1
P̂ D̂2 + P̂ B̂2 + Λ̂D̂2 + F̂T2

= (P̂ B̂1 + Λ̂D̂1 + ĈT )P̂
(
I − D̂1P̂

)−1D̂2 + Λ̂D̂2 + P̂ B̂2 + F̂T2
= (P̂ B̂1P̂ + ĈT P̂ )(I − D̂1P̂ )

−1D̂2 + Λ̂
[(
I − D̂1P̂

)−1 − I]D̂2

+ Λ̂D̂2 + P̂ B̂2 + F̂T2
= (P̂ B̂1P̂ + ĈT P̂ + Λ̂)

(
I − D̂1P̂ )

−1D̂2 + P̂ B̂2 + F̂T2 .

(3.34)

Hence, the right-hand side of (3.34) reads[
(P̂ B̂1P̂ + ĈT P̂ + Λ̂)

(
I − D̂1P̂ )

−1D̂2 + P̂ B̂2 + F̂T2
]
R̂−1

2

· [D̂T2 (I − P̂ D̂1

)−1(
P̂ Ĉ + P̂ B̂T1 P̂ + Λ̂

)
+ B̂T2 P̂ + F̂2

]
.

(3.35)

Combining (3.31)–(3.35), we obtain

−Γ̂ ≡ −Γ̂(t, P̂ , Λ̂) ∆
= P̂ Â+ ÂT P̂ + P̂ F̂1P̂ + Q̂2

+ (P̂ B̂1 + ĈT )
(
I − P̂ D̂1

)−1
P̂
(Ĉ + B̂T1 P̂ )+ Λ̂D̂1

(
I − P̂ D̂1

)−1
Λ̂

+
(
P̂ B̂1 + ĈT

)(
I − P̂ D̂1

)−1
Λ̂ + Λ̂

(
I − D̂1P̂

)−1(B̂T1 P̂ + Ĉ)
− [(P̂ B̂1P̂ + ĈT P̂ + Λ̂

)(
I − D̂1P̂

)−1D̂2 + P̂ B̂2 + F̂T2
]
R̂−1

2

· [D̂T2 (I − P̂ D̂1

)−1(
P̂ Ĉ + P̂ B̂T1 P̂ + Λ̂

)
+ B̂T2 P̂ + F̂2

]
= P̂ Â+ ÂT P̂ + P̂ F̂1P̂ + Q̂2

+
(
P̂ B̂1 + ĈT Λ̂

)( (I − P̂ D̂1)
−1P̂ (I − P̂ D̂1)

−1

(I − D̂1P̂ )
−1 D̂1(I − P̂ D̂1)

−1

)( B̂T1 P̂ + Ĉ
Λ̂

)

− [(P̂ B̂1P̂ + ĈT P̂ + Λ̂
)(
I − D̂1P̂

)−1D̂2 + P̂ B̂2 + F̂T2
]
R̂−1

2

· [D̂T2 (I − P̂ D̂1

)−1(
P̂ Ĉ + P̂ B̂T1 P̂ + Λ̂

)
+ B̂T2 P̂ + F̂2

]
.

(3.36)
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Once we write the map Γ̂ in the above form, we have that for any P̂ , Λ̂ ∈ S2n, provided
(I − P̂ D̂1)

−1 and R̂−1
2 exist, Γ̂(t, P̂ , Λ̂) ∈ S2n, i.e., for any symmetric P̂ and Λ̂, image

Γ(t, P̂ , Λ̂) of (P̂ , Λ̂) under the map Γ̂ is also symmetric. Here, we should note that
similarly to (3.24),

D̂1

(
I − P̂ D̂1

)−1
=
(
I − D̂1P̂

)−1D̂1(3.37)

is symmetric and S2m1-valued. Now, the Riccati equation for (P̂ (·), Λ̂(·)) is given by


dP̂ (t) = Γ̂(t, P̂ (t), Λ̂(t))dt+ Λ̂(t)dW (t), t ∈ [0, T ],

P̂ (T ) = Q̂2,

det[I − P̂ (t)D̂1(t)] �= 0,

det[R2(t) + D̂2(t)
T
(
I − P̂ (t)D̂1(t)

)−1
P̂ (t)D̂2(t)] �= 0,

(3.38)

with Γ̂(t, P̂ , Λ̂) given by (3.36). We summarize the above as follows.
Theorem 3.3. Let (S) hold. Let Riccati equation (3.38) admit an adapted so-

lution (P̂ (·), Λ̂(·)). Let X(·) be the solution of (3.30). Define (Y (·), Z(·), u2(·)) by
(3.17), (3.26), and (3.27). Then (3.15)–(3.16) holds. Moreover, for such a u2(·), the
following holds:

Ĵ2(ξ;u2(·)) = 〈 P̂2(0)ξ, ξ 〉,(3.39)

where P̂ (·) =
(
P̂2(·) P̂3(·)
P̂3(·)T P̂4(·)

)
. When (i) of Theorem 3.2 holds, in particular, if (3.12)

holds, the state feedback control u2(·) defined by (3.26) is an optimal control of Problem
(LQ)2.

Proof. We need only prove (3.39). Similarly to (3.8)–(3.10), we are able to show
that

Ĵ2(ξ;u2(·)) = 〈Y (0), X(0) 〉+E
∫ T

0

〈u2, R2u2 + B̂T2 Y + D̂T2 Z + F̂2X 〉 dt

= 〈 P̂2(0)ξ, ξ 〉 .
The rest is clear.

Note that optimal control u2(·) has a “state” feedback representation (3.26) with

the “state” X(·) ≡
(
x(·)
ψ(·)
)
being the solution of (3.30), or X(·) is the solution of the

system {
dX =

[ÃX + B̃2u2

]
dt+

[C̃X + D̃2u2

]
dW (t),

X(0) = X0

(3.40)

corresponding to the feedback control u2(·) given by (3.26), where

Ã = Â+ F̂1P̂ + B̂1(I − P̂ D̂1)

−1(Â+ P̂ Ĉ + P̂ B̂1P̂ ),

C̃ = Ĉ + B̂T1 P̂ + D̂1(I − P̂ D̂1)
−1(Â+ P̂ Ĉ + P̂ B̂1P̂ ),

B̃2 = B̂2 + B̂1(I − P̂ D̂1)
−1P̂ D̂2, D̃2 = D̂2 + D̂1(I − P̂ D̂1)

−1P̂ D̂2.

(3.41)

The point here is that u2(·) given by (3.26) is nonanticipating. Likewise, for the
follower, the optimal control u1(·) can also be represented in a nonanticipating way.
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In fact, by (1.7)–(1.8), we have

u1 = −R̂−1
1

{
Ŝ1x− R̂−1

1 B̂T1 Y + D̂T1 Z +DT
1 PD2u2

}
= −R̂−1

1

{(
Ŝ1 0

)− R̂−1
1 B̂T1 P̂ + D̂T1

(
I − P̂ D̂1

)−1{
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

− P̂ D̂2R̂
−1
2

[D̂T2 (I − P̂ D̂1

)−1(
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

)
+ B̂T2 P̂ + F̂2

]}
−DT

1 PD2R̂
−1
2

[D̂T2 (I − P̂ D̂1

)−1(
Λ̂ + P̂ Ĉ + P̂ B̂T1 P̂

)
+ B̂T2 P̂ + F̂2

]}
X.

(3.42)

Hence, under assumptions in Theorems 2.3 and 3.2, our differential game admits an
open-loop solution (u1(·), u2(·)), and they admit a state feedback representation (3.26)
and (3.42).

Remark 3.4. From (3.36), one can see that the equations for each block P̂2(·),
P̂3(·), and P̂4(·) of P̂ (·) in (3.38) are heavily coupled (even for very simple cases; this is
mainly due to the appearance of the controls in the diffusion and the randomness of the
coefficients; see below). In particular, one might not be able to solve the equation for

P̂2(·) first, and then the remaining equations for P̂3(·) and P̂4(·). Although from (3.39),

it seems that only P̂2(·) plays a particular role, blocks P̂3(·), P̂4(·), and Λ̂(·) actually
play equally important roles. We note that in (2.8), only P (0) and ϕ(0) appear.
However, Λ(·) and θ(·) play crucial roles as well. This is a similar situation. We

expect that there might be some interesting relations among blocks P̂i(·) (i = 2, 3, 4),
but we are currently not able to find them. We hope to say something about this in
future papers.

We now look at a special case in which the follower does not appear. In this case
the problem is reduced to a typical LQ problem. Let us still regard it as if the follower
does appear but does not affect the game at all, i.e., we assume that

B1 = D1 = 0, Q1 = 0, G1 = 0, R1 = I.(3.43)

In the above case, Riccati equation (1.5) admits a unique solution (P (·),Λ(·)) = (0, 0).
Consequently, by (1.10), one has

{
Â = A, F̂1 = 0, B̂1 = 0, B̂2 = B2,

Ĉ = C, F̂2 = 0, D̂1 = 0, D̂2 = D2.
(3.44)

The above further implies that (see (3.14))




Â ∆
=

(
A 0
0 A

)
, F̂1 = 0, B̂1 = 0, B̂2 =

(
B2

0

)
,

Ĉ ∆
=

(
C 0
0 C

)
, D̂1 = 0, D̂2 =

(
D2

0

)
,

Q̂2
∆
=

(
Q2 0
0 0

)
, F̂2 = 0, Ĝ2 =

(
G2 0
0 0

)
.

(3.45)

Then (3.36) becomes

−Γ̂ ≡ −Γ̂(t, P̂ , Λ̂) ∆
= P̂ Â+ ÂT P̂ + Q̂2 + ĈT P̂ Ĉ + ĈT Λ̂ + Λ̂Ĉ

− [(ĈT P̂ + Λ̂
)D̂2 + P̂ B̂2

]
R̂−1

2

[D̂T2 (P̂ Ĉ + Λ̂
)
+ B̂T2 P̂

]
.

(3.46)
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If (P̂ (·), Λ̂(·)) is an adapted solution of (3.38), and if we let

P̂ (·) =
(
P̂2(·) P̂3(·)
P̂3(·)T P̂4(·)

)
, Λ̂(·) =

(
Λ̂2(·) Λ̂3(·)
Λ̂3(·)T Λ̂4(·)

)
,(3.47)

then (P̂2(·), Λ̂2(·)) is an adapted solution of


dP̂2 = −
{
P̂2A+AT P̂2 +Q2 + CT P̂2C + CT Λ̂2 + Λ̂2C

− [(CT P̂2 + Λ̂2)D2 + P̂2B2](R2 +DT
2 P̂2D2)

−1[DT
2 (P̂2C + Λ̂2) +BT2 P̂ ]

}
dt

+ Λ̂2dW (t),

P̂2(T ) = Q2.

(3.48)

This is the Riccati equation for the LQ problem (found in [6, 7, 8]) with the state
equation (1.1) in which B1 = D1 = 0 and with the cost functional (1.2) (with i =
2). Thus, we might regard our differential game problem as a generalization of LQ
problems.

To conclude this section, we would like to point out that the general solvability of
Riccati equation (3.38) is very difficult. It remains a very challenging open question.
We are not able to attack the general case in this paper. Instead, we would like to
look at some special and interesting cases in section 5.

4. Two one-dimensional cases. In this section, we present two one-dimen-
sional cases with some very special coefficients, in which we want to address two
points: (i) Due to the randomness of the coefficients and the appearance of the controls
in the diffusion, even for a very simple problem, the explicit solution might not be
expected; and (ii) due to the appearance of the controls in the diffusion, the Isaacs-
type condition does not necessarily hold, which results in that the “equilibrium” does
not necessarily exist.

We now first assume the following:{
n = m1 = m2 = 1, A = C = B1 = B2 = Q1 = Q2 = 0,

D1 = D2 = R1 = R2 = 1, G1 = G2 = η
∆
= e

T
2 +W (T ) − 1,

(4.1)

whereW (T ) is the value, at t = T , of the Brownian motionW (·) appearing in the state
equation. We choose the above special form of η merely for the later computation to
be easier. Other choices are also possible. The point here is that η is not deterministic.
When (4.1) holds, we can rewrite the state equation (1.1) as follows:{

dx(t) = [u1(t) + u2(t)]dW (t), t ∈ [0, T ],

x(0) = ξ,
(4.2)

and the cost functionals can be written as follows:

Ji(ξ;u1(·), u2(·)) = E

{∫ T

0

|ui(t)|2dt+ ηx(T )2

}
, i = 1, 2.(4.3)

We see that the problem looks to be extremely simple. In this case, Riccati equation
(1.5) reads 


dP =

Λ2

P + 1
dt+ ΛdW (t), t ∈ [0, T ],

P (T ) = η,

P (t) + 1 > 0, t ∈ [0, T ], a.s.

(4.4)
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One can check that the adapted solution of (4.4) is given by{
P (t) = e

t
2+W (t) − 1,

Λ(t) = P (t) + 1 ≡ e
t
2+W (t).

(4.5)

Consequently, BSDE (1.6) takes the following form:{
dϕ = (θ − u2)dt+ θdW (t), t ∈ [0, T ],

ϕ(T ) = 0.
(4.5)

The optimal control u1(·) is given by

u1(t) = −x(t)− θ(t) + P (t)u2(t)

P (t) + 1
, t ∈ [0, T ],(4.6)

and the optimal cost is given by (note P (0) = 0)

inf
u1(·)∈U1[0,T ]

J1(ξ, u1(·), u2(·)) = J1(ξ, u1(·), u2(·))

= 2ϕ(0)ξ + E

∫ T

0

{
2θ(t)u2(t) + P (t)u2(t)

2 − |θ(t) + P (t)u2(t)|2
P (t) + 1

}
dt

= 2ϕ(0)ξ + E

∫ T

0

P (t)u2(t)
2 + 2θ(t)u2(t)− θ(t)2
P (t) + 1

dt.

(4.7)

We note that since θ(·) (determined by (4.5)) is anticipating, so is u1(·) defined by
(4.6). Next, with

R̂1
∆
=P + 1, Ŝ1 = Ŝ2

∆
=Λ ≡ P + 1,(4.8)

we have 


Â = F̂1 = B̂1 = B̂2 = 0, Ĉ
∆
=−R̂−1

1 Ŝ1 = −1,
D̂1

∆
=−R̂−1

1 = − 1

P + 1
, D̂2

∆
=1− P

P + 1
=

1

P + 1
,

F̂2
∆
= Ŝ2 − PR̂−1

1 Ŝ1 = 1.

(4.9)

Then 


Â = F̂1 = B̂1 = Q̂2 = 0, B̂2 = 0,

Ĉ = −I, D̂1 = − 1

P + 1

(
0 1
1 0

)
, D̂2 =

1

P + 1

(
1
0

)
,

F̂2 = ( 0 1 ) , Ĝ2 = η

(
1 0
0 0

)
.

(4.10)

Note that

(I − P̂ D̂1)
−1 =

(
I +

1

P + 1
P̂

(
0 1
1 0

))−1

= (P + 1)

(
P + 1 + P̂3 P̂2

P̂4 P + 1 + P̂3

)−1

=
P + 1

(P + 1 + P̂3)2 − P̂2P̂4

(
P + 1 + P̂3 −P̂2

−P̂4 P + 1 + P̂3

)
.

(4.11)
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Thus,

(I − P̂ D̂1)
−1P̂

=
P + 1

(P + 1 + P̂3)2 − P̂2P̂4

(
P + 1 + P̂3 −P̂2

−P̂4 P + 1 + P̂3

)(
P̂2 P̂3

P̂3 P̂4

)

=
P + 1

(P + 1 + P̂3)2 − P̂2P̂4

(
(P + 1)P̂2 (P + 1 + P̂3)P̂3 − P̂2P̂4

(P + 1 + P̂3)P̂3 − P̂2P̂4 (P + 1)P̂4

)
(4.12)

and

D̂1(I − P̂ D̂1)
−1 =

−1
(P + 1 + P̂3)2 − P̂2P̂4

(
−P̂2 P + 1 + P̂3

P + 1 + P̂3 −P̂4

)
.(4.13)

Then it follows that

R̂2
∆
=R2 + D̂T2

(
I − P̂ D̂1

)−1
P̂ D̂2

= 1 +
P̂2

(P + 1 + P̂3)2 − P̂2P̂4

=
(P + 1 + P̂3)

2 − P̂2P̂4 + P̂2

(P + 1 + P̂3)2 − P̂2P̂4

.
(4.14)

Hence, we can compute

− Γ̂ ≡ −Γ̂(t, P̂ , Λ̂) = (I − P̂ D̂1

)−1
P̂ + Λ̂D̂1

(
I − P̂ D̂1

)−1
Λ̂

+
(
I − P̂ D̂1

)−1
Λ̂ + Λ̂

(
I − D̂1P̂

)−1

− [(P̂ + Λ̂
)(
I − D̂1P̂

)−1D̂2 + F̂T2
]
R̂−1

2

[D̂T2 (I − P̂ D̂1

)−1(
P̂ + Λ̂

)
+ F̂2

]
=

P + 1

(P + 1 + P̂3)2 − P̂2P̂4

(
(P + 1)P̂2 (P + 1 + P̂3)P̂3 − P̂2P̂4

(P + 1 + P̂3)P̂3 − P̂2P̂4 (P + 1)P̂4

)

− 1

(P + 1 + P̂3)2 − P̂2P̂4

Λ̂

(
−P̂2 P + 1 + P̂3

P + 1 + P̂3 −P̂4

)
Λ̂

− P + 1

(P + 1 + P̂3)2 − P̂2P̂4

(
P + 1 + P̂3 −P̂2

−P̂4 P + 1 + P̂3

)
Λ̂

− P + 1

(P + 1 + P̂3)2 − P̂2P̂4

Λ̂

(
P + 1 + P̂3 −P̂4

−P̂2 P + 1 + P̂3

)

− (P + 1 + P̂3)
2 − P̂2P̂4

(P + 1 + P̂3)2 − P̂2P̂4 + P̂2

·
{

1

(P + 1 + P̂3)2 − P̂2P̂4

(P̂ + Λ̂)

(
P + 1 + P̂3 −P̂4

−P̂2 P + 1 + P̂3

)(
1
0

)
+

(
0
1

)}

·
{

1

(P + 1 + P̂3)2 − P̂2P̂4

( 1 0 )

(
P + 1 + P̂3 −P̂2

−P̂4 P + 1 + P̂3

)
(P̂ + Λ̂) + ( 0 1 )

}

=
P + 1

(P + 1 + P̂3)2 − P̂2P̂4

(
(P + 1)P̂2 (P + 1 + P̂3)P̂3 − P̂2P̂4

(P + 1 + P̂3)P̂3 − P̂2P̂4 (P + 1)P̂4

)

− 1

(P + 1 + P̂3)2 − P̂2P̂4

Λ̂

(
−P̂2 P + 1 + P̂3

P + 1 + P̂3 −P̂4

)
Λ̂
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− P + 1

(P + 1 + P̂3)2 − P̂2P̂4

(
P + 1 + P̂3 −P̂2

−P̂4 P + 1 + P̂3

)
Λ̂

− P + 1

(P + 1 + P̂3)2 − P̂2P̂4

Λ̂

(
P + 1 + P̂3 −P̂4

−P̂2 P + 1 + P̂3

)

− (P + 1 + P̂3)
2 − P̂2P̂4

(P + 1 + P̂3)2 − P̂2P̂4 + P̂2

·
{

1

[(P + 1 + P̂3)2 − P̂2P̂4]2
(P̂ + Λ̂)

(
(P + 1 + P̂3)

2 −P̂2(P + 1 + P̂3)

−P̂2(P + 1 + P̂3) P̂ 2
2

)
(P̂ + Λ̂)

+
1

(P + 1 + P̂3)2 − P̂2P̂4

(P̂ + Λ̂)

(
0 P + 1 + P̂3

0 −P̂2

)

+
1

(P + 1 + P̂3)2 − P̂2P̂4

(
0 0

P + 1 + P̂3 −P̂2

)
(P̂ + Λ̂) +

(
0 0
0 1

)}
.

From the above, we can easily see that in the Riccati equation


dP̂ (t) = Γ̂(t, P̂ (t), Λ̂(t))dt+ Λ̂(t)dW (t), t ∈ [0, T ],

P̂ (T ) = 0,

P (t) + 1 + P̂3(t)− P̂2(t)P̂4(t) �= 0, t ∈ [0, T ],

[P (t) + 1 + P̂3(t)]
2 − P̂2(t)P̂4(t) + P̂2(t) �= 0, t ∈ [0, T ],

(4.15)

the components P̂2(·), P̂3(·), and P̂4(·) are heavily coupled. Thus, an explicit solution
of (4.16) is not expected. The reason for the complexity is the appearance of the
controls in the diffusion and the randomness of the coefficients.

Let us now look at another special case:{
n = m1 = m2 = 1, A = C = B1 = B2 = Q1 = Q2 = R1 = R2 = 0,

D1 = D2 = G1 = −G2 = 1.
(4.16)

Then the state equation is the same as (4.2) and the cost functionals are

J(ξ;u1(·), u2(·)) ∆
=J1(ξ;u1(·), u2(·)) = E

{
|x(T )|2

}
= −J2(ξ;u1(·), u2(·)).(4.17)

Thus, our leader-follower differential game becomes a zero-sum differential game with
the state equation (4.2) and the cost functional J(ξ;u1(·), u2(·)), in which Player 1
is the minimizer and Player 2 is the maximizer. If we denote the upper and lower
values (in the sense of Elliot–Kalton [10]) by V +(t, x) and V −(t, x), respectively,
then a formal application of Bellman’s dynamic programming principle leads to the
following Isaacs equations for these two functions:{

V +
t (t, x) +H+(V +

xx(t, x)) = 0,

V +(T, x) = x2,
(4.18)

{
V −
t (t, x) +H−(V −

xx(t, x)) = 0,

V −(T, x) = x2,
(4.19)
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where 

H+(K)

∆
= inf
u1∈Rm1

sup
u2∈Rm2

{1
2
(u1 + u2)

2K
}
=

{
0, K ≤ 0,

+∞, K > 0,

H−(K)
∆
= sup
u2∈Rm2

inf
u1∈Rm1

{1
2
(u1 + u2)

2K
}
=

{
0, K ≥ 0,

−∞, K < 0.

(4.20)

Clearly, the usual Isaacs condition does not hold. We can check that the solutions of
(4.19) and (4.20) are given by the following:

V +(t, x) =

{
+∞, (t, x) ∈ [0, T )× R,

x2, t = T, x ∈ R,
(4.21)

and

V −(t, x) = x2, (t, x) ∈ [0, T ]× R.(4.22)

They are not equal. Thus, the value (in the sense of Elliot–Kalton) does not exist.
On the other hand, we may look at the problem using open-loop strategies. Since


J1(ξ;u1(·), u2(·)) = ξ2 + E

∫ T

0

|u1(t) + u2(t)|2dt,

J2(ξ;u1(·), u2(·)) = −ξ2 − E
∫ T

0

|u1(t) + u2(t)|2dt,
(4.23)

we see easily that


inf
u1(·)∈U1[0,T ]

J1(ξ;u1(·), u2(·)) = ξ2 ∀u2(·) ∈ U2[0, T ],

inf
u2(·)∈U2[0,T ]

J2(ξ;u1(·), u2(·)) = −∞ ∀u1(·) ∈ U1[0, T ].
(4.24)

This coincides with the above conclusion.
Remark 4.1. The above shows that if the controls enter into the diffusion, one

might not expect to have the existence of the value for a zero-sum differential game
(unless some other compatibility conditions hold between the state equation and the
cost functional; we hope to address this in future work). The main reason is that the
Isaacs-type condition does not necessarily hold in the current case. At this moment,
we might realize why almost all formulations of stochastic differential games in the
literature avoided the controls entering the diffusion. Due to this, we study only the
leader-follower case in the present paper. This can be regarded as a first step to
approaching the stochastic differential games with controls in the diffusion.

5. Deterministic coefficient cases. In this section, we concentrate on the case
in which all the coefficients are deterministic. For simplicity, we will consider only the
constant coefficient case. To be more precise, we introduce the following assumption.

(DI) Let

A,C ∈ R
n×n, Bi, Di ∈ R

n×mi , Qi, Gi ∈ Sn, Ri ∈ Smi , i = 1, 2.(5.1)



LINEAR QUADRATIC DIFFERENTIAL GAME 1035

According to [6, 7], under (DI), the Riccati equation for Problem (LQ)1 takes the
following form:



Ṗ + PA+ATP + CTPC +Q1

− (PB1 + CTPD1)(R1 +DT
1 PD1)

−1(BT1 P +DT
1 PC) = 0, t ∈ [0, T ],

P (T ) = G1,

R1 +DT
1 P (t)D1 > 0 a.e. t ∈ [0, T ].

(5.2)

In fact, if P (·) is a solution of (5.2), then (P (·), 0) is an adapted solution of (1.5), with
which (1.6) becomes



dϕ = −
{
[AT − (PB1 + CTPD1)(R1 +DT

1 PD1)
−1BT1 ]ϕ

+ [CT − (PB1 + CTPD1)(R1 +DT
1 PD1)

−1DT
1 ]θ

+
[− (PB1 + CTPD1)(R1 +DT

1 PD1)
−1DT

1 PD2

+ PB2 + CTPD2

]
u2

}
dt+ θdW (t), t ∈ [0, T ],

ϕ(T ) = 0.

(5.3)

This is still a BSDE, since u2(·) ∈ U2[0, T ] is random in general. For the current case,
we still have Proposition 2.2 and Theorem 2.3. Note that these results are incomplete
in the sense that we still do not know when Problem (LQ)1 is solvable, unless we know
when either the FBSDE (2.5) (together with (2.6)) or the Riccati equation (5.2) is
solvable. Our first goal of this section is to present some sufficient conditions for the
solvability of (2.5) and/or (5.2). We now introduce the following further assumption.

(H1) Matrix R1 has an inverse. Moreover,

B1R
−1
1 DT

1 = 0, C = 0,(5.4)

and

R1 +DT
1 G1D1 > 0.(5.5)

We emphasize here that R1 is not necessarily positive semidefinite. Also, B1 and
D1 are not necessarily zero. Here is a simple example:

B1 = D1 =

(
1 1
1 1

)
, R1 =

(
1 0
0 −1

)
.(5.6)

One can easily check that (H1) holds for B1, D1 and R1 given in (5.6). The following
lemma tells us the role that assumption (H1) is playing.

Lemma 5.1. Let R−1
1 exist and let the first relation in (5.4) hold. Then for any

P ∈ R
n×n such that (R1 +DT

1 PD1)
−1 exists, the following holds:

B1(R1 +DT
1 PD1)

−1 = B1R
−1
1 .(5.7)

Proof. We observe the following:

B1(R1 +DT
1 PD1)

−1 −B1R
−1
1 = B1

[
(R1 +DT

1 PD1)
−1 −R−1

1

]
= B1R

−1
1 [R1 −R1 −DT

1 PD1](R1 +DT
1 PD1)

−1

= −B1R
−1
1 DT

1 PD1(R1 +DT
1 PD1)

−1 = 0,

(5.8)
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proving (5.7).
Under assumption (H1) (noting Lemma 5.1), Riccati equation (5.2) takes the

following form:



Ṗ + PA+ATP +Q1 − PB1R

−1
1 BT1 P = 0, t ∈ [0, T ],

P (T ) = G1,

R1 +DT
1 P (t)D1 > 0 a.e. t ∈ [0, T ],

(5.9)

and BSDE (5.3) becomes



dϕ = −

{
[AT − PB1R

−1
1 BT1 ]ϕ− PB1R

−1
1 DT

1 θ

− [PB1R
−1
1 DT

1 PD2 − PB2

]
u2

}
dt+ θdW (t), t ∈ [0, T ],

ϕ(T ) = 0.

(5.10)

On the other hand, the FBSDE (2.5) becomes (the bars are dropped)



dx(t) = [Ax(t) +B1u1(t) +B2u2(t)]dt+ [D1u1(t) +D2u2(t)]dW (t),

dp(t) = −[AT p(t) +Q1x(t)]dt+ q(t)dW (t),

x(0) = ξ, p(T ) = G1x(T ).

(5.11)

We note that without looking at the third constraint, (5.9) looks like a standard
Riccati equation for deterministic LQ problems. However, we should keep in mind
that there are no positive semidefiniteness conditions imposed on either Q1 and R1.
Also, the third constraint is not obviously to be satisfied if there is no positivity of
Q1 and R1.

Now, let (x(·), u1(·)) be an optimal pair of Problem (LQ)1 and let (p(·), q(·)) be
the adapted solution of BSDE in (5.11). Since R−1

1 exists, the optimal control u1(·)
has the form (note (5.4))

u1(t) = −R−1
1 [BT1 p(t) +DT

1 q(t)] = −R−1
1 BT1 p(t), t ∈ [0, T ].(5.12)

Plugging (5.12) into (5.11), we obtain




dx(t) =
[
Ax(t)−B1R

−1
1 BT1 p(t) +B2u2(t)

]
dt

+ [−D1R
−1
1 DT

1 q(t) +D2u2(t)]dW (t),

dp(t) = −[Q1x(t) +AT p(t)
]
dt+ q(t)dw(t),

x(0) = ξ, p(T ) = G1x(T ).

(5.13)

This is a coupled linear FBSDE. To obtain sufficient conditions for the solvability of
such an FBSDE via the result of [32], let us make some reductions. For notational
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simplicity, in what follows we suppress the argument t. Let η = p−G1x. Then

dη = dp−G1dx

=
[−Q1x−AT p−G1(Ax−B1R

−1
1 BT1 p+B2u2)

]
dt

+
[
(I +G1D1R

−1
1 DT

1 )q −G1D2u2]dW

=
[
(−Q1 −G1A)x+ (−AT +G1B1R

−1
1 BT1 )(η +G1x)−G1B2u2

]
dt

+
[
(I +G1D1R

−1
1 DT

1 )q −G1D2u2

]
dW

=
[
(−Q1 −G1A−ATG1 +G1B1R

−1
1 BT1 G1)x

+ (−AT +G1B1R
−1
1 BT1 )η −G1B2u2

]
dt

+
[
(I +G1D1R

−1
1 DT

1 )q −G1D2u2

]
dW.

(5.14)

We define

ζ = (I +G1D1R
−1DT

1 )q.(5.15)

A direct computation shows that

(I +G1D1R
−1
1 DT

1 )
−1 = I −G1D1(R1 +DT

1 G1D1)
−1DT

1 .(5.16)

This means that (I +G1D1R
−1
1 DT

1 )
−1 exists, and from (5.15) we have

q = (I +G1D1R
−1
1 DT

1 )
−1ζ.(5.17)

Consequently,

dx =
[
Ax−B1R

−1
1 BT1 (η +G1x) +B2u2

]
dt

+
[−D1R

−1
1 DT

1 (I +G1D1R
−1
1 DT

1 )
−1ζ +D2u2

]
dW

=
[
(A−B1R

−1
1 BT1 G1)x−B1R

−1
1 BT1 η +B2u2

]
dt

+ [−D1(R1 +DT
1 G1D1)

−1DT
1 ζ +D2u2]dW.

(5.18)

Also,

dη =
[
(−Q1 −G1A−ATG1 +G1B1R

−1
1 BT1 G1)x

+ (−AT +G1B1R
−1
1 BT1 )η −G1B2u2

]
dt+ [ζ −G2D2u2]dW.

(5.19)

Hence, (5.11) becomes


dx(t) =
[
(A−B1R

−1
1 BT1 G1)x(t)−B1R

−1
1 BT1 η(t) +B2u2(t)

]
dt

+
[−D1(R1 +DT

1 G1D1)
−1DT

1 ζ(t) +D2u2(t)
]
dW (t),

dη(t) =
[
(−Q1 −G1A−ATG1 +G1B1R

−1
1 BT1 G1)x(t)

+ (−AT +G1B1R
−1
1 BT1 )η(t)−G1B2u2(t)

]
dt

+ [ζ(t)−G1D2u2(t)]dW (t),

x(0) = ξ, η(T ) = 0.

(5.20)

We denote

A ∆
=

(
A−B1R

−1
1 BT1 G1 −B1R

−1
1 BT1

−Q1 −G1A−ATG1 +G1B1R
−1
1 BT1 G1 −AT +G1B1R

−1
1 BT1

)
,

C1 ∆
=

(−D1(R1 +DT
1 G1D1)

−1DT
1

I

)
, B2

∆
=

(
B2

−G1B2

)
, D2

∆
=

(
D2

−G1D2

)
.

(5.21)
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Then (5.20) can further be written as

d

(
x(t)
η(t)

)
=
{
A
(
x(t)
η(t)

)
+ B2u2(t)

}
dt+

{
C1ζ(t) +D2u2(t)

}
dW (t),

x(0) = ξ, η(T ) = 0.

(5.22)

Next, we introduce the following Riccati equation for FBSDE (5.20):

Π̇(t) + Π(t)(A−B1R

−1
1 BT1 G1) + (A−B1R

−1
1 BT1 G1)

TΠ(t)

−Π(t)B1R
−1
1 BT1 Π(t) + [Q1 +G1A+ATG1 −G1B1R

−1
1 BT1 G1] = 0,

Π(T ) = 0.

(5.23)

It is easy to see that solution Π(·) of (5.23) and that P (·) of (5.9) are related by the
following:

P (t) = G1 +Π(t), t ∈ [0, T ].(5.24)

The following was proved in [32].
Theorem 5.2. Let (H1) hold and let


det
{
( 0 I ) eAt

(
0
I

)}
> 0,

det
{
( 0 I ) eAtC1

}
> 0,

t ∈ [0, T ].(5.25)

Then (5.23) admits a unique solution Π(·) which has the following representation:

Π(t) = −
[
( 0 I ) eA(T−t)

(
0
I

)]−1

( 0 I ) eA(T−t)
(
I
0

)
, t ∈ [0, T ].(5.26)

Moreover, (5.24) gives the solution of (5.9).
Combining Theorem 5.2 and (5.24), we see that when (H1) and (5.25) hold,

Riccati equation (5.9) admits a unique solution P (·), which leads to the solvability of
Problem (LQ)1 for any given (ξ, u2(·)) ∈ R

n × U2[0, T ]. It is important to note that
conditions (H1) and (5.25) are checkable, in principle.

Now, under (H1) and (5.25), we have the solution P (·) of Riccati equation (5.9)
and FBSDE (1.9) becomes


dx(t) =

[
Âx(t) + F̂1ϕ(t) +B2u2(t)

]
dt+

[
D̂1θ(t) + D̂2u2(t)

]
dW (t),

dϕ(t) = −[ÂTϕ(t) + PB2u2(t)
]
dt+ θ(t)dW (t),

x(0) = ξ, ϕ(T ) = 0,

(5.27)

where 
 Â

∆
=A−B1R

−1
1 BT1 P, F̂1

∆
=−B1R

−1
1 BT1 ,

D̂1
∆
=−D1R̂

−1
1 DT

1 , D̂2
∆
=D2 −D1R̂

−1
1 DT

1 PD2.
(5.28)

FBSDE (3.6) becomes (we again drop the bars)

dy = (ÂT y +Q2x)dt+ zdW (t),

dψ = (Âψ + F̂1y)dt+ D̂1zdW (t),

y(T ) = G2x(T ), ψ(0) = 0.

(5.29)
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Next, similarly to (H1), we introduce the following assumption.
(H2) Let R−1

2 exist. Moreover,

B2R
−1
2 DT

2 = 0(5.30)

and

R2 +DT
2 G2D2 > 0.(5.31)

We note that under (H2), the following holds:

B2R
−1
2 D̂T

2 = B2R
−1
2 DT

2 (I −D1R̂
−1
1 DT

1 ) = 0.(5.32)

Further, under (H1)–(H2), (3.7) implies

u2 = −R−1
2

(
BT2 y + D̂T

2 z +BT2 Pψ
)
.(5.33)

Thus, by setting X =
(
x
ψ

)
, Y =

(
y
ϕ

)
, and Z =

(
z
θ

)
, we have the following:




dX =

{(
Â −B2R

−1
2 BT2 P

0 Â

)
X +

(−B2R
−1
2 BT2 F̂1

F̂1 0

)
Y

}
dt

+

(−D̂2R
−1
2 D̂2 D̂1

D̂1 0

)
ZdW (t),

dY = −
{(

Q2 0
0 −PB2R

−1
2 BT2 P

)
X +

(
ÂT 0

−PB2R
−1
2 BT2 ÂT

)
Y

}
dt

+ ZdW (t),

X(0) =

(
ξ
0

)
∆
= ξ̂, Y (T ) =

(
G2 0
0 0

)
X(T )

∆
= Ĝ2X(T ).

(5.34)

Now, we set

Â =




Â −B2R
−1
2 BT2 P −B2R

−1
2 BT2 F̂1

0 Â F̂1 0
−Q2 0 −ÂT 0

0 PB2R
−1
2 BT2 P PB2R

−1
2 BT2 −ÂT



, Ĉ1 =



−D̂2R

−1
2 D̂2 D̂1

D̂1 0
I 0
0 I


 .

Then (5.34) becomes

d

(
X(t)
Y (t)

)
= Â(t)

(
X(t)
Y (t)

)
dt+ Ĉ1(t)Z(t)dW (t),

X(0) = ξ̂, Y (T ) = Ĝ2X(T ).

(5.35)

Note that (5.35) is an FBSDE with time-dependent and deterministic coefficients.
Thus, we need only take Z(·) = 0 and (X(·), Y (·)) to be a solution of the following
ODE: 


d

(
X(t)
Y (t)

)
= Â(t)

(
X(t)
Y (t)

)
dt,

X(0) = ξ̂, Y (T ) = Ĝ2X(T ).

(5.36)
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Hence, by letting Θ(·) be the solution of


d

dt
Θ(t, s) = Â(t)Θ(t, s), t ∈ [s, T ],

Θ(s, s) = I,
(5.37)

one knows that any solution (X(·), Y (·)) is given by(
X(t)
Y (t)

)
= Θ(t, 0)

(
ξ̂
η̂

)
, t ∈ [0, T ],(5.38)

with η̂ being in R
m such that

0 =
(
−Ĝ2 I

)
Θ(T, 0)

(
ξ̂
η̂

)
.(5.39)

This is equivalent to

(
Ĝ2 −I

)
Θ(T, 0)

(
ξ̂
0

)
=
(
−Ĝ2 I

)
Θ(T, 0)

(
0
I

)
η̂.(5.40)

This proves the following.
Theorem 5.3. Let (DI), (H1), (H2), and (5.25) hold. Suppose further that

det

{(
−Ĝ2 I

)
Θ(T, 0)

(
0
I

)}
�= 0.(5.41)

Then (5.35) is solvable. Consequently, if the conclusions of Proposition 2.2(i) and
of Theorem 3.2(i) hold, in particular, if Qi, Ri, and Gi are nonnegative, then the
leader-follower differentiable game admits an open-loop solution which admits a state
feedback representation.
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Abstract. The topological sensitivity analysis provides an asymptotic expansion of a shape
function when creating a small hole inside a domain. This expansion yields a descent direction
which can be used for shape optimization if one wishes to keep a classical domain throughout the
optimization process. In this paper, such an expansion is obtained for the Poisson equation for
a large class of cost functions and arbitrarily shaped holes. In the three-dimensional case, this
expansion depends on the shape of the hole but not on its orientation if the cost function involves
only the solution u to the underlying partial differential equation, whereas it may also depend on
its orientation if the cost function involves the gradient ∇u. In contrast, the asymptotic expansion
is independent of the shape in the two-dimensional case. A numerical example illustrates the use of
the asymptotic expansion, which yields a minimizing sequence of classical domains in a case where
no classical solution exists.

Key words. topological sensitivity, topological derivative, shape optimization, design sensitiv-
ity, Poisson’s equation

AMS subject classifications. 49Q10, 49Q12, 74P05, 74P10, 74P15

PII. S0363012901384193

1. Introduction. In many shape optimization problems, there is no “classical
solution”; that is, a minimizing sequence of domains does not converge to a domain.
In such cases, relaxed formulations or homogenization are often involved (see, e.g.,
[5, 6, 1, 25, 3, 18]), leading to the introduction of some “intermediate material” or
micro-structures. The drawback is precisely that the optimal solution is not a classical
design: it is a distribution of composite materials. Then penalization methods must
be applied in order to retrieve a “feasible” shape. Hence, keeping a minimizing se-
quence of classical domains might be preferred (with a stopping criterion or additional
constraints defined by the user). In that direction, global optimization techniques like
genetic algorithms or simulated annealing have been proposed (see, e.g., [26]), but
these methods have a high computational cost and can hardly be applied to indus-
trial problems. Another approach, introduced by the works of Schumacher [27] and
Soko2lowski and Żochowski [28], is presented and analyzed in this paper in the case
of the Poisson equation with Dirichlet boundary conditions for a large class of cost
functions.

The shape optimization problem consists of minimizing a function j(Ω) := J(Ω, uΩ)
where the solution uΩ to the Poisson equation is defined on a variable open and
bounded subset Ω of R

n. For ε > 0, let Ωε = Ω\(x0 + εω) be the subset obtained by
removing a small part x0 + εω from Ω, where x0 ∈ Ω and ω ⊂ R

n is a fixed open and
bounded subset containing the origin. Then, an asymptotic expansion of the function
j is obtained in the following form:

j(Ωε) = j(Ω) + ρ(ε)δj(x0) + o(ρ(ε)),

lim
ε→0

ρ(ε) = 0, ρ(ε) > 0.
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The “topological sensitivity” δj(x0) provides information for creating a small hole
located at x0: if δj(x0) < 0, then j(Ωε) < j(Ω) for small ε. For example, in the case
of a circular hole and n = 3, and for a class of cost functions involving uΩ but not
∇uΩ, the first variation of the function j reads

j(Ωε) = j(Ω) + 4πε uΩ(x0)vΩ(x0) + o(ε),

where vΩ is the adjoint state. It is interesting to observe that the first order optimality
condition uΩvΩ ≥ 0 given by Buttazzo and Dal Maso [5] follows straightforwardly from
this expansion. More generally, the function δj can be used like a descent direction in
an optimization process. The step length then consists of choosing the proportion of
the domain which is “removed,” located where δj(x) is the most negative. The idea
of this algorithm goes back to Céa, Gioan, and Michel [8] and was presented in the
topological optimization context in [9]. For the sake of completeness, the principle
of this algorithm is recalled in section 6. The main motivation of this approach is to
provide an optimization method in which the iterated domains may have a varying
topology but still remain classical domains, which may be required for feasibility when
no mixture of materials is wanted. Of course, there is a drawback: there may be no
solution to the optimization problem, and, in particular, the solution to the discretized
problem may be mesh dependent. This is illustrated by an example in section 6, where
a minimizing sequence of classical domains is obtained. Nevertheless, in contrast to
classical shape optimization, which allows only moving the boundary (thus keeping
fixed the topology, at least for small variations), the topological asymptotic expansion
allows one to modify the topology of the domain during the optimization process, and
can naturally be coupled with classical shape optimization.

A topological sensitivity framework using an adaptation of the adjoint method [7]
and a truncation technique was introduced by Masmoudi [23] in the case of the Laplace
equation with a circular hole. In the present paper, we analyze the case of the Poisson
equation with noncircular holes. For this purpose, the technique used in [15, 16] for the
elasticity equations with homogeneous Neumann conditions imposed on the boundary
of the hole is adapted to Dirichlet boundary conditions, nonzero right-hand sides, and
a large class of cost functions involving uΩ or ∇uΩ. In the three-dimensional case,
it will be shown that the topological sensitivity δj(x0) depends on the shape of the
hole but not on its orientation if the cost function involves only uΩ, whereas it may
also depend on its orientation if the cost function involves ∇uΩ. In contrast, it will
be shown that in the two-dimensional case the topological sensitivity is independent
of the shape of the hole. Apart from the theoretical aspect, the consideration of
noncircular holes may have some interesting applications, for example, in the study
of cracks, which are beyond the scope of this paper.

First, the adaptation of the adjoint method to the topology shape optimization is
recalled in section 2. Next, the formulation of the problem is presented in section 3.
The truncation technique, which provides an efficient and general theoretical frame,
is then applied to the problem in section 4. Section 5 presents the main results, whose
proofs are reported in section 7. In the case of a circular hole, explicit expressions of
the topological sensitivity are given for Dirichlet boundary conditions and for dimen-
sions n = 2 or 3. Finally a numerical example in section 6 illustrates the use of the
topological sensitivity in a shape optimization problem.

2. The generalized adjoint method. In this section, we recall the framework
introduced in [23, 16] which extends the adjoint method [7] to the topology shape
optimization. Let V be a Hilbert space. For ε ≥ 0, let aε be a bilinear and symmetric
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form on V and let lε be a linear form on V such that for all ε ≥ 0,

aε(u, v) ≤M1‖u‖ ‖v‖ ∀u, v ∈ V,
aε(u, u) ≥ α‖u‖2 ∀u ∈ V,
|lε(v)| ≤M2‖v‖ ∀v ∈ V,

where the constants α > 0, M1 > 0, and M2 ≥ 0 are independent of ε.
Assume that there exist a bilinear and continuous form δa, a linear and continuous

form δl, and a real function ρ(ε) > 0 defined on R+ such that

‖aε − a0 − ρ(ε)δa‖L2(V) = o(ρ(ε)),(1)

‖lε − l0 − ρ(ε)δl‖L(V) = o(ρ(ε)),(2)

lim
ε→0

ρ(ε) = 0,

where L(V) (respectively, L2(V)) denotes the space of continuous and linear (respec-
tively, bilinear) forms on V. The same function ρ is used here for both asymptotic
expansions (1)–(2). It does not exclude the case where aε−a0 and lε−l0 have different
behaviors in O(ρ1(ε)) and O(ρ2(ε)), in which case ρ is chosen the “slowest” between
ρ1 and ρ2, that is, ρi(ε) = O(ρ(ε)), i = 1, 2.

For ε ≥ 0, let uε be the solution to the following problem: find uε ∈ V such that

aε(uε, v) = lε(v) ∀v ∈ V.

Lemma 2.1 (see [16]). For ε ≥ 0, this problem has a unique solution uε, and

‖uε − u0‖ = O(ρ(ε)).

Consider now a function j(ε) := Jε(uε), where Jε is defined on V for ε ≥ 0, and
J0 is differentiable with respect to u, its derivative being denoted DJ0(u). Moreover,
suppose that there exists a function δJ defined on V such that

Jε(v)− J0(u) = DJ0(u)(v − u) + ρ(ε)δJ(u) + o(‖v − u‖+ ρ(ε)).

This expression looks like a first order (total) derivative and would be in fact the first
order derivative of the function J (s, u) defined by J (s, u) := Jρ−1(s)(v)−J0(u), with
the change of variable s = ρ(ε). Next, the Lagrangian Lε is defined by

Lε(u, v) = Jε(u) + aε(u, v)− lε(v) ∀u, v ∈ V.

Its variation with respect to ε is given by

δL(u, v) = δJ(u) + δa(u, v)− δl(v),
Lε(u, v)− L0(u, v) = ρ(ε)δL(u, v) + o(ρ(ε)).

Theorem 2.2 (see [16]). The function j has the following asymptotic expansion:

j(ε) = j(0) + ρ(ε)δL(u0, v0) + o(ρ(ε)),

where v0 is the solution to the following adjoint problem: find v0 ∈ V such that

a0(w, v0) = −DJ0(u0)w ∀w ∈ V.
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Γ

Ω

∂ωε

Ωε

ωε

Γ

Fig. 1. The initial domain shown before and after inclusion of the hole.

3. Formulation of the problem. Let Ω be an open and bounded subset of
R

n with boundary Γ, n = 2 or 3. The Poisson equation with homogeneous Dirichlet
boundary conditions reads { −∆uΩ = f in Ω,

uΩ = 0 on Γ.
(3)

Some regularity is required from f , at least f ∈ Lq(Ω), q > n/2. (In fact, that will be
needed only around x0.) This equation has a unique solution in H1

0 (Ω), and due to the
regularity of f , this solution is continuous in Ω [12]. The case of a nonhomogeneous
boundary condition on Γ can be treated similarly.

For a given x0 ∈ Ω, consider the modified open subset Ωε = Ω\ωε, ωε = x0 + εω,
where ω is a fixed open and bounded subset of R

n containing the origin (ωε = ∅ if
ε = 0), whose boundary ∂ω is connected and piecewise of class C1 (see Figure 1). The
modified solution uΩε satisfies


−∆uΩε = f in Ωε,

uΩε = 0 on Γ,
uΩε

= 0 on ∂ωε.
(4)

Note that for ε = 0, one has uΩ0 = uΩ.
In the context of identification of conductivity imperfections, the asymptotic be-

havior of the voltage potential uΩε−uΩ was studied in [13, 10] for the Laplace equation.
Here we consider a right-hand side and a cost function which can be defined on Ωε.
The adjoint technique is used for computing the variation of the cost function. It will
be shown that the adjoint state is independent of the location of the hole.

The function uΩε is defined on the variable open subset Ωε, and thus it belongs
to a functional space which depends on ε. Hence, if we want to derive the asymptotic
expansion of a function of the form

j(ε) := J̃ε(uΩε)(5)

with J̃ε being defined on H1(Ωε) for ε ≥ 0, we cannot apply directly the tools of
section 2, which require a fixed functional space. In classical shape optimization, this
requirement can be satisfied with the help of a domain parameterization technique
[24, 22, 17]. This technique involves a fixed domain and a bi-Lipschitz map between
this domain and the modified one. In the topology optimization context, such a map
does not exist between Ω and Ωε. However, a functional space independent of ε can
be constructed by using the following domain truncation technique. Let R > 0 be
such that the closed ball B(x0, R) is included in Ω. It is supposed throughout this
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ΩR

ΓR

R

Γ

Dε

Fig. 2. The truncated domain.

paper that ε remains small enough so that ωε ⊂ B(x0, R). The truncated open subset
is defined by (see Figure 2)

ΩR = Ω\B(x0, R).

In section 4 the following are defined:
• a Hilbert space VR independent of ε;
• a VR-elliptic bilinear and continuous form aε;
• a linear and continuous form lε

such that the solution uε to the equation

aε(uε, v) = lε(v) ∀v ∈ VR
is equal to the restriction of uΩε

to ΩR. A bilinear form δa satisfying (1) and a
linear form δl satisfying (2) will be obtained in section 7, from which the asymptotic
expansion of the cost function will be derived by using the framework described in
section 2. The main results and the particular case of a spherical hole are detailed in
section 5.

A natural question is, Why do we need such a truncation technique? For ε ≥ 0,
one could simply define aε on H1

0 (Ω)×H1
0 (Ω) by

aε(u, v) =

∫
Ωε

∇u.∇v dx

and work with functions of H1
0 (Ωε) extended by 0 on ωε. The main difficulty with

this approach is that we cannot apply the Lagrangian technique described in sec-
tion 2, because there is no bilinear and continuous form δa such that ‖aε − a0 −
ρ(ε)δa‖L2(H1

0 (Ω)) = o(ρ(ε)) for some adequate positive function ρ. Indeed, we have

aε(u, v)− a0(u, v) = −
∫
ωε

∇u.∇v dx,

and for smooth functions u, v, and n = 3 (for example) we have

aε(u, v)− a0(u, v) = −ε3∇u(x0).∇v(x0)

∫
ω

dx+ o(ε3).

But δa(u, v) := ∇u(x0).∇v(x0) cannot be continuously extended on H1
0 (Ω)×H1

0 (Ω).
Besides, if uΩε is extended by 0 on ωε, the behavior of ‖uΩε − uΩ‖H1(Ω) is not of order

ε3 but only of order ε1/2 (see Lemma 7.3). This change of order comes from the lack



TOPOLOGICAL EXPANSION FOR THE DIRICHLET PROBLEM 1047

of continuity of the above bilinear form δa. In contrast, the bilinear form aε defined
in the next section will be associated to a bilinear and continuous form δa which
will satisfy aε − a0 = εδa + o(ε) (see Proposition 7.6), and the associated solution
uε will yield the same order: ‖uε − u0‖H1(ΩR) = O(ε) (consequence of Lemma 2.1).

Moreover, it will be seen that δa(u, v) involves u(x0) and v(x0), and not ∇u(x0) and
∇v(x0). Another point is that the truncation technique can be applied to the case of
a Neumann boundary condition on the hole [16], or even to more general boundary
conditions.

4. The truncated problem. The open subset B(x0, R) \ ωε is denoted by Dε

(see Figure 2). For ϕ ∈ H1/2(ΓR) and ε > 0, let uf,ϕε ∈ H1(Dε) be the solution to
the following problem: find uf,ϕε such that


−∆uf,ϕε = f in Dε,

uf,ϕε = ϕ on ΓR,
uf,ϕε = 0 on ∂ωε,

(6)

where ΓR is the boundary of the ball B(x0, R). For ε = 0, uf,ϕ0 is the solution to{ −∆uf,ϕ0 = f in B(x0, R),

uf,ϕ0 = ϕ on ΓR.
(7)

Clearly we have

uf,ϕε = uf,0ε + u0,ϕ
ε .(8)

For ε ≥ 0, the Dirichlet-to-Neumann operator Tε is defined by

Tε : H
1/2(ΓR) −→ H−1/2(ΓR),

ϕ �−→ Tεϕ = ∇u0,ϕ
ε .n,

and the function fε ∈ H−1/2(ΓR) is defined by

fε = −∇uf,0ε .n,

where the normal n is chosen outward to Dε on ΓR and ∂ωε. Thus we have

∇uf,ϕε .n = Tεϕ− fε.
Finally, we define for ε ≥ 0 the solution uε to the truncated problem


−∆uε = f in ΩR,

uε = 0 on Γ,
−∇uε.n+Tεuε = fε on ΓR.

(9)

The variational formulation associated to (9) is the following: find uε ∈ VR such that

aε(uε, v) = lε(v) ∀v ∈ VR,(10)

where the functional space VR, the bilinear form aε, and the linear form lε are defined
by

VR =
{
u ∈ H1(ΩR); u = 0 on Γ

}
,

aε(u, v) =

∫
ΩR

∇u.∇v dx+
∫

ΓR

Tεuv dγ(x),(11)

lε(v) =

∫
ΩR

fv dx+

∫
ΓR

fεv dγ(x).(12)
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Here x.y denotes the usual dot product of R
n and dγ(x) is the Lebesgue measure on

the boundary. Symmetry, continuity, and coercivity of aε, and continuity of lε follow
directly from ∫

ΓR

Tεϕψ dγ(x) =

∫
Dε

∇u0,ϕ
ε .∇u0,ψ

ε dx,∫
ΓR

fεψ dγ(x) =

∫
Dε

fu0,ψ
ε dx.

Notice that
∫
Dε
∇uf,0ε .∇u0,ψ

ε dx = 0. The proof of the following result is standard.

Proposition 4.1. Let ε ≥ 0. Problems (4) and (9) have a unique solution.
Moreover, the restriction to ΩR of the solution uΩε to (4) is the solution uε to (9),
and on Dε we have

(uΩε)|Dε
= uf,0ε + u0,ϕ

ε ,(13)

where ϕ is the trace of uε on ΓR.
We now have at our disposal the fixed Hilbert space VR required by section 2. The

cost function (5) can be redefined in the following way: for u ∈ VR, let ũε ∈ H1(Ωε)
be the extension of u which coincides with u on ΩR and with uf,ϕε on Dε for ϕ = u|ΓR

.
Then a function Jε can be defined on VR by

Jε(u) := J̃ε(ũε).(14)

Particularly, it follows from the previous proposition that

j(ε) = J̃ε(uΩε) = Jε(uε).(15)

Notice that Jε(uε) is independent of the choice of R. For example, for a given target
function ud defined on Ω, if

J̃ε(uΩε) =

∫
Ωε

|uΩε
− ud|2dx,

then we have

Jε(u) =

∫
ΩR

|u− ud|2dx+
∫
Dε

|uf,ϕε − ud|2dx, u ∈ VR, ϕ = u|ΓR
.

5. Asymptotic expansion of the cost function. This section contains the
main results of this paper. All the proofs are reported in section 7. Henceforth we have
to distinguish the cases n = 2 and n = 3. This is due to the fact that the fundamental
solutions to the Laplace equation in R

2 and R
3 have an essentially different asymptotic

expansion at infinity, and Problem (16) has generally no solution if n = 2.

5.1. The three-dimensional case. Possibly changing the coordinate system,
we can suppose for convenience that x0 = 0. Let vω be the solution to the exterior
problem 


−∆vω = 0 in R

3\ω,
vω = 0 at ∞,
vω = uΩ(x0) on ∂ω,

(16)
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where uΩ is the solution to (3). Recall that f ∈ Lq(Ω), q > n/2, so that uΩ is
continuous inside Ω and the above boundary condition is well defined. The function
vω can be expressed by a single layer potential on ∂ω. Let

E(y) =
1

4πr
(17)

with r = ‖y‖. It is a fundamental solution for the Laplace equation in R
3. Then the

function vω reads

vω(y) =

∫
∂ω

E(y − x)pω(x) dγ(x), y ∈ R
3\ω,(18)

where pω ∈ H−1/2(∂ω) is the solution to boundary integral equation [12]∫
∂ω

E(y − x)pω(x) dγ(x) = uΩ(x0) ∀y ∈ ∂ω.

For x bounded and large r = ‖y‖, we have

E(y − x) = E(y) +O
(

1

r2

)
,

and the asymptotic expansion at infinity of the function vω is given by

vω(y) = Pω(y) +Wω(y),(19)

Pω(y) = Aω(uΩ(x0))E(y),(20)

Aω(uΩ(x0)) =

∫
∂ω

pω(x) dγ(x),(21)

Wω(y) = O

(
1

r2

)
.

Notice that Pω ∈ Lm
loc(R

3) for all m < 3. Clearly, the function α �−→ Aω(α) is linear
on R, and the number Aω(α) depends on the shape of ω. For example, if ω is changed
in kω, k > 0, then vkω(ky) = vω(y) in (16), and it follows from (18) that kpkω(kx) =
pω(x) for x ∈ ∂ω. Then using (21) we obtain Akω(uΩ(x0)) = kAω(uΩ(x0)). However,
it is interesting to observe that Aω(α) is independent of the orientation of the hole ω:
if R is a rotation, one obtains in a similar way ARω(uΩ(x0)) = Aω(uΩ(x0)). Next we
consider the constant Qω ∈ R defined by

Qω =
Aω(uΩ(x0))

4πR
= (Pω)|ΓR

.(22)

The main result is the following, which will be proved in section 7. It is based on
the fact that

ε(Qω − Pω)|Dε
(23)

is the first order approximation of (uf,ϕε −uf,ϕ0 )|Dε
with ϕ = (uΩ)|ΓR

, in a sense which
will be stated precisely in section 7. Observe that it depends on the shape of ω through
the term Aω(uΩ(x0)) involved in (20). The stronger hypothesis f ∈ Lq(Ω), q > n, is
used in the study of the variation of the linear form lε (12); cf. Proposition 7.7, which
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involves the C1 norm of u0 around x0. If lε does not depend on ε (which happens, for
example, if f vanishes on D0), then f ∈ Lq(Ω), q > n/2, is sufficient.

Theorem 5.1. Let f ∈ Lq(Ω), q > n, and let Jε be a function defined on VR for
all ε ≥ 0. Suppose that for all v ∈ VR and ε > 0, one has

Jε(v)− J0(u0) = DJ0(u0)(v − u0) + ε δJ(u0) + o(ε+ ‖v − u0‖VR
),(24)

where DJ0(u0) is linear and continuous on VR, and uε, ε ≥ 0, is the solution to (10).
Let v0 ∈ VR be the solution to the adjoint equation

a0(w, v0) = −DJ0(u0)w ∀w ∈ VR.(25)

Let j(ε) = Jε(uε), ε ≥ 0. Then the function j has the asymptotic expansion

j(ε) = j(0) + ε δj(x0) + o(ε)

with

δj(x0) = −
∫

ΓR

∇Pω.n v0 dγ(x) + δJ(u0) =
Aω(uΩ(x0))

4πR2

∫
ΓR

v0(x) dγ(x) + δJ(u0).

(26)

The function δj(x0) is called the topological sensitivity or the topological gradient.
Moreover, as j is usually independent of R (at least when it is of the form (15), which
is the “natural” way of posing the problem) and δj(x0) is independent of ε, it follows
from the uniqueness of an asymptotic expansion that δj(x0) is also independent of R.
This is not necessarily true for the terms δa(u0, v0), δl(v0) (see section 7), or δJ(u0)
considered separately, because a, l, and J do depend on R.

Practically, what is computed is the solution uΩ to (3) and the solution vΩ to∫
Ω

∇w.∇vΩ dx = −DJ̃0(uΩ)w ∀w ∈ H1
0 (Ω).(27)

As observed in Proposition 4.1, u0 is the restriction to ΩR of uΩ. The same property
holds for v0 and vΩ. This can easily be seen by observing that for w ∈ H1

0 (Ω) such
that ∆w = 0 in D0, and denoting by vR and wR the restrictions of vΩ and w to ΩR,
on the one hand we have

a0(wR, vR) =

∫
ΩR

∇wR.∇vR dx+
∫

ΓR

T0wRvR dγ(x)

=

∫
Ω

∇w.∇vΩ dx,(28)

and on the other hand, due to (14), we have J̃0(u) = J0(uR) for all u ∈ H1
0 (Ω) such

that −∆u = f in D0 (with uR = u|ΩR
); hence

DJ̃0(uΩ)w = DJ0(u0)wR.(29)

Then, gathering (28), (27), and (29), we obtain

a0(wR, vR) = −DJ0(u0)wR ∀wR ∈ VR,
which proves that vR is the solution to (25), that is, v0 is the restriction to ΩR of vΩ.
The basic property of an adjoint technique is here also satisfied, in that the function
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uΩ and the adjoint state vΩ do not depend on x0. Hence only two systems have to be
solved in order to compute the topological sensitivity δj(x) for all x ∈ Ω.

Thanks to Green’s formula, Pω = Qω on ΓR and ∇Qω = 0, the integral in (26)
also reads

−
∫

ΓR

∇Pω.n v0 dγ(x) =

∫
ΓR

∇vΩ.nPω dγ(x)−∇Pω.n vΩ dγ(x)−
∫
D0

∆vΩQω dx.

When vΩ is smooth enough, it follows from Newton’s potential theory [12] that

vΩ(x0) =

∫
ΓR

∇vΩ.nE dγ(x)−∇E.n vΩ dγ(x)−
∫
D0

∆vΩE dx.

Multiplying by Aω(uΩ(x0)) and using Pω = Aω(uΩ(x0))E yields∫
ΓR

∇vΩ.nPω dγ(x)−∇Pω.n vΩ dγ(x) =

∫
D0

∆vΩPω dx+Aω(uΩ(x0))vΩ(x0).

Then using (26) leads to the following result.

Corollary 5.2. Under the assumptions of Theorem 5.1, if ∆vΩ ∈ Lq(D0),
q > n/2, then

δj(x0) = Aω(uΩ(x0))vΩ(x0) +

∫
D0

∆vΩ(Pω −Qω) dx+ δJ(u0).(30)

Proposition 5.3 will show that, in fact, the two last terms in the right-hand side
of (30) cancel each other for a class of cost functions which do not involve ∇uΩ. In
that case, the dependence on the shape of ω occurs only through the term Aω(uΩ(x0))
(21). For example, if ω is changed in kω, k > 0, we have observed previously that
Akω(uΩ(x0)) = kAω(uΩ(x0)). Hence ε is changed in kε, which is not surprising. We
have also observed that Aω(uΩ(x0)) was independent of the orientation of ω; hence
it remains true for δj(x0). However, δj(x0) can depend on the orientation of ω if the
cost function involves ∇uΩ; see Proposition 5.4. What will be more surprising is that
in the two-dimensional case, δj(x0) is independent of ω (size, shape, orientation); see
Propositions 5.5 and 5.6.

When ω is the unit ball B(0, 1), then vω(y), Pω(y), W (y), and Qω can be com-
puted explicitly:

vω(y) =
uΩ(x0)

r
= Pω(y), W (y) = 0, 0 �= y ∈ R

3,

Qω = uΩ(x0).

Then it follows from (17) and (20) that

Aω(uΩ(x0)) = 4πuΩ(x0).

It can also be easily checked that

pω(y) = uΩ(x0) ∀y ∈ ∂ω.

We examine now two particular cases of cost functions.
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5.1.1. First example. The first example consists of functions of the form

J̃ε(u) =

∫
Ωε

g(x, u(x)) dx, u ∈ H1(Ωε).(31)

The hypotheses on g are the following:
• for all x ∈ Ω, the function s �→ g(x, s) is of class C1 on R, its derivative being
denoted by gs(x, s);

• for all x ∈ Ω, the function s �→ gs(x, s) is Lipschitz continuous and there
exists a constant M such that

|gs(x, t)− gs(x, s)| ≤M |t− s| ∀(x, s, t) ∈ Ω× R× R;(32)

• the function x �→ gs(x, 0) belongs to L
2(Ω) and x �→ g(x, 0) belongs to L3/2(Ω)

(or to Lp(Ω), p > 1, if n = 2; cf. section 5.2).
These hypotheses imply that for all (x, s) ∈ Ω× R

|g(x, s)| ≤ |g(x, 0)|+ |gs(x, 0)s|+ M

2
s2,(33)

|gs(x, s)| ≤ |gs(x, 0)|+M |s| ,(34)

and the functions x �→ g(x, u(x)) and x �→ gs(x, u(x))
2 are integrable on Ω for all u ∈

L2(Ω). If u ∈ L6(O) (or Lm(O), m > 2, if n = 2), then the function x �→ g(x, u(x))
belongs to L3/2(O) (or to Lp′

(O), 1 < p′ = min(p, 2m/(m+ 2),m/2), if n = 2). The
usual example

g(x, s) = |s− ud(x)|2

satisfies these hypotheses if ud belongs to L3(Ω) (or to L2p(Ω) if n = 2).
Remark 5.1. These assumptions are standard in shape optimization (see, for

example, [6]), with the difference that x �→ g(x, 0) is usually supposed to be in L1(Ω)
only. Equation (60) is the only place where g(., 0) ∈ L3/2(Ω) is used. That comes

from the choice made on the function J̃ε. When J̃ε is of the form

J̃ε(u) =

∫
Ω

g(x, u(x)) dx, u ∈ H1(Ωε) extended by 0 on ωε,

then the term (60) disappears, g(., 0) ∈ L1(Ω) is sufficient, and the result remains the
same.

Proposition 5.3. If these hypotheses are satisfied and if f ∈ Lq(Ω), q > n, then

δJ(u0) =

∫
D0

gs(x, uΩ)(Qω − Pω) dx,

∆vΩ = gs(x, uΩ)

with vΩ ∈ H1
0 (Ω), and the function j has the following asymptotic expansion:

j(ε) = j(0) + εAω(uΩ(x0))vΩ(x0) + o(ε).

If ω is the unit ball B(0, 1), then

j(ε) = j(0) + 4πε uΩ(x0)vΩ(x0) + o(ε).
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5.1.2. Second example. The second example consists of functions of the form

J̃ε(u) =
1

2

∫
Ωε

B(x)∇(u− ud).∇(u− ud) dx, u ∈ H1(Ωε),(35)

where B ∈W 1,∞(Ω,R3×3), B(x) is a symmetric matrix for all x ∈ Ω, and ud ∈ H1(Ω).
Here trB(x) denotes the trace of the matrixB(x), div denotes the divergence operator,
and Wm,∞(Ω) is the Sobolev space of distributions whose derivatives up to the order
m are in L∞(Ω).

Proposition 5.4. If these hypotheses are satisfied and if f and ∆ud belong to
Lq(Ω), q > n, then

δJ(u0) =
1

2

∫
R3\ω

B(x0)∇vω(y).∇vω(y) dy +
∫
D0

∆vΩ(Qω − Pω) dx,

−∆vΩ = div (B(∇uΩ −∇ud))

with vΩ ∈ H1
0 (Ω), and the function j has the following asymptotic expansion:

j(ε) = j(0) + εAω(uΩ(x0)).vΩ(x0) +
ε

2

∫
R3\ω

B(x0)∇vω(y).∇vω(y) dy + o(ε).(36)

If ω is the unit ball, then

vω =
uΩ(x0)

r

and the integral can be computed explicitly:

j(ε) = j(0) + ε

(
4πuΩ(x0)vΩ(x0) +

2πuΩ(x0)
2

3
trB(x0)

)
+ o(ε).

Here, due to the form of the integral in (36) and the definition of vω, one can
observe that the topological sensitivity will usually depend on the orientation of the
hole ω, unless, for example, the matrix B(x0) is proportional to the identity.

5.2. The two-dimensional case. We briefly describe the transposition of the
previous results to the two-dimensional case. As before, uΩ and the adjoint state
vΩ are, respectively, the solutions to (3) and (27). A fundamental solution for the
Laplace equation in R

2 is given by

E(y) =
−1
2π

log r.

The exterior problem must now be defined differently than in (16). Let vω be the
solution to 


−∆vω = 0 in R

2\ω,
vω(y)/ log r = uΩ(x0) at ∞,

vω = 0 on ∂ω.

The function vω has the form

vω(y) = uΩ(x0) log ‖y‖+ Pω +Wω(y),
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where Pω is constant andWω(y) = o(1) at infinity [12]. The first order approximation

of (uf,ϕε − uf,ϕ0 )|Dε
with ϕ = (uΩ)|ΓR

is now (compare with (23))

1

log(R/ε)

(
uΩ(x0)

(
log
‖x‖
ε
− log

R

ε

))
|Dε

� −uΩ(x0) log(‖x‖ /R)|Dε

log ε
.

In the following propositions (where ω is not supposed to be a ball), one can observe
that in the two-dimensional case the topological sensitivity does not depend on the
shape of the hole ω, in contrast to the three-dimensional case.

Proposition 5.5. The assumptions are the same as in Proposition 5.3, with J̃ε
of the form

J̃ε(u) =

∫
Ωε

g(x, u(x)) dx, u ∈ H1(Ωε).

Then the function j has the following asymptotic expansion:

j(ε) = j(0)− 2πuΩ(x0)vΩ(x0)

log ε
+ o

( −1
log ε

)
.

In the next proposition, the first expression of j(ε) is given for comparison with
the three-dimensional case.

Proposition 5.6. The assumptions are the same as in Proposition 5.4, with J̃ε
of the form

J̃ε(u) =
1

2

∫
Ωε

B(x)∇(u− ud).∇(u− ud) dx, u ∈ H1(Ωε).

Then the function j has the following asymptotic expansion (with Dε/ε = B(0, R/ε)/ω):

j(ε) = j(0)− 2π

log ε
uΩ(x0)vΩ(x0) +

1

2 log2 ε

∫
Dε/ε

B(x0)∇vω(y).∇vω(y) dy + o
( −1
log ε

)

= j(0)− 1

log ε

(
2πuΩ(x0)vΩ(x0) +

π

2
uΩ(x0)

2trB(x0)
)
+ o

( −1
log ε

)
.

The proofs use the same tools as for the three-dimensional case (see section 7)
and will not be repeated for the two-dimensional case.

6. A numerical example. We illustrate the use of the asymptotic expansion
given by Proposition 5.3 on an example taken from [6], to which we refer the reader
for more details on its construction. It consists of minimizing

j(Ω) =

∫
B(0,1)

(uΩ − ud)2 dx,

where the solution uΩ ∈ H1
0 (Ω) to

−∆uΩ = 1 in Ω ⊂ B(0, 1) ⊂ R
2(37)



TOPOLOGICAL EXPANSION FOR THE DIRICHLET PROBLEM 1055

is extended by 0 on B(0, 1)\Ω (see, however, Remark 5.1) and

ud(x) =

{
r2
1−r2

4 + a if r ≤ r1,
a if r1 ≤ r ≤ 1.

Here 0 < a < 3/16, r = ‖x‖, and r1 is the first minimum of the function

q(r1) = 2π

∫ 1

r1

((
a− 1− r21

4

)
log r

log r1
+

1− r2
4
− a
)2

r dr.

We use the value a = 1/19, which gives r1 � 0.503. This problem has no classical
solution. We seek a minimizing sequence of classical solutions, when obtaining a
classical approximate solution is a constraint imposed on the optimization process.

The relaxed formulation reads

min
µ

∫
B(0,1)

(uµ − ud)2 dx,(38)

where uµ ∈ H1
0 (B(0, 1)) is the solution to

−∆uµ + µuµ = 1 in B(0, 1)

and µ is a nonnegative Borel measure on B(0, 1) which vanishes on all sets of capacity
zero. For this example, the solution to (38) is known: it is given by

µ = γH1
∂B(0,r1)

, γ =
4a− 1 + r21
4ar1 log r1

,

uµ(x) =

{
ud(x) if r ≤ r1,(
a− 1−r2

1

4

)
log r
log r1

+ 1−r2

4 if r1 ≤ r ≤ 1,

where H1
∂B(0,r1)

denotes the Hausdorff measure on the circle ∂B(0, r1). The minimum

of the (relaxed) cost function is∫
B(0,1)

(uµ − ud)2 dx = q(r1) � 1.12 10−3.(39)

A minimizing sequence (ΩN )N≥1 for the optimal design problem (38) is given by (R2

is identified with the complex plane)

ΩN = B(0, 1)\
N⋃

k=1

{
z ∈ C ;

∣∣∣z − e2iπk/N
∣∣∣ ≤ e−N/γr1

}
.(40)

Using the topological asymptotic expansion of j in a way similar to that described
in [16], we retrieve the above minimizing sequence in less than 20 iterations for different
values of the mesh size h. One can observe in Figure 3 that the number of “holes”
is approximately proportional to log h. This agrees with the fact that if the size of
the holes in (40) is set to h = e−N/γr1 , then N = −γr1 log h. The cost function at
each step is illustrated by Figure 4. The obtained minimum is not far from the exact
(relaxed) minimum (39).
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Fig. 3. Solution for h = .05, h = .025 (top) and h = .0125 (bottom).
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For completeness, we recall here the topology optimization algorithm [16]. Let
(mk)k≥0 be a decreasing sequence of volume constraints, with m0 = meas(B(0, 1)).
For example, a geometrical sequence may be chosen. At the kth iteration, the topo-
logical sensitivity is denoted by δjk(x). The algorithm is as follows:

• Initialization: chose Ω0 = B(0, 1), and set k = 0.
• Repeat until target is reached:

1. solve (37) in Ωk,
2. compute the topological sensitivity δjk,
3. set Ωk+1 = {x ∈ Ωk, δjk(x) ≥ ck+1} , where ck+1 is chosen such that

meas(Ωk+1) = mk+1,
4. k ← k + 1.

This algorithm can be seen as a descent method where the descent direction is de-
termined by the topological sensitivity δjk, and the step length is given by the volume
variation mk+1 −mk. One possible stopping criterion is when no more improvement
can be done, or simply when the optimality condition δjk(x) ≥ 0 for all x ∈ Ωk is
satisfied.

7. Proofs. This section consists of the proofs of Theorem 5.1 and Propositions
5.3 and 5.4. The variations of the bilinear form aε and the linear form lε (see (11)
and (12)) read

aε(u, v)− a0(u, v) =

∫
ΓR

(Tε − T0)uv dγ(x),

lε(v)− l0(v) =
∫

ΓR

(fε − f0)v dγ(x).

Hence, the problem reduces to the analysis of (Tε − T0)ϕ for ϕ ∈ H1/2(ΓR) and of
fε−f0 inH−1/2(ΓR). More precisely, it will be shown in sections 7.3 and 7.4 that there
exist an operator δT ∈ L(H1/2(ΓR);H

−1/2(ΓR)) and a function δf ∈ H−1/2(ΓR) such
that

‖Tε − T0 − εδT‖L(H1/2(ΓR);H−1/2(ΓR)) = O(ε
2),(41)

‖fε − f0 − εδf‖H−1/2(ΓR) = O(ε
2).(42)

Consequently, defining δa and δl by

δa(u, v) =

∫
ΓR

δTuv dγ(x), u, v ∈ VR,

δl(v) =

∫
ΓR

δf v dγ(x), v ∈ VR,

will yield straightforwardly

‖aε − a0 − εδa‖L2(VR) = O(ε
2),

‖lε − l0 − εδl‖L(VR) = O(ε
2).

In order to derive (41)–(42), we need some definitions and preliminary lemmas.

7.1. Definitions. For convenience, the following norms and seminorms are cho-
sen for the functional spaces which will be used.
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• For a bounded and open subset O ⊂ R
3 andm ≥ 0, the Sobolev spaceHm(O)

is equipped with the norm defined by

‖u‖2m,O =

m∑
k=0

|u|2k,O ,

where the seminorms |u|2k,O are given by

|u|2k,O :=
∑
|α|=k

∫
O
|∂αu|2 dx.(43)

• For a given ε > 0, the space H1/2(ΓR/ε) is equipped with the following norm:

‖v‖1/2,ΓR/ε
= inf

{‖u‖1,C(R/(2ε),R/ε); u = v on ΓR/ε

}
,

where C(r, r′) :=
{
x ∈ R

3; r < ‖x‖ < r′}.
• The dual space H−1/2(ΓR/ε) is equipped with the natural norm

‖w‖−1/2,ΓR/ε
= sup

{
〈w, v〉−1/2,1/2 ; v ∈ H1/2(ΓR/ε), ‖v‖1/2,ΓR/ε

= 1
}
.

It can easily be checked that if ψ ∈ H1(C(R/2, R)) with ∆ψ = 0 in C(R/2, R),
then

‖∇ψ.n‖−1/2,ΓR
≤ c |ψ|1,C(R/2,R) .(44)

Here and in what follows, c is a positive constant independent of the data (e.g.,
on ε).

7.2. Preliminary lemmas. Recall that x0 = 0. We will use extensively the
following change of variable: for a given function u defined on a subset O, the function
ũ is defined on Õ := O/ε by

ũ(y) = u(x), y = x/ε.

Due to ∇u(x) = ∇ũ(y)/ε and to definition (43), we have

|u|21,O =

∫
O
|∇u|2 dx =

1

ε2

∫
Õ
|∇ũ|2 ε3dy;

hence

|u|1,O = ε1/2 |ũ|
1,Õ .(45)

Similarly, we have

‖u‖0,O = ε3/2 ‖ũ‖
0,Õ .(46)

Lemma 7.1. For ϕ ∈ H1/2(∂ω) let v be the solution to the problem

−∆v = 0 in R

3\ω,
v = 0 at ∞,
v = ϕ on ∂ω.

(47)
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The function v is split into

v(y) = V (y) +W (y),

V (y) = E(y)

∫
∂ω

p(x) dγ(x),

where E(y) = 1/4π ‖y‖ , and p ∈ H−1/2(∂ω) is the unique solution to∫
∂ω

E(y − x)p(x)dγ(x) = ϕ(y) ∀y ∈ ∂ω.(48)

There exists a constant c > 0 (independent of ϕ and ε) such that

‖V ‖0,C(R/(2ε),R/ε) ≤ c ε−1/2‖ϕ‖1/2,∂ω,
|V |1,C(R/(2ε),R/ε) ≤ c ε1/2‖ϕ‖1/2,∂ω,

‖V ‖0,Dε/ε
≤ c ε−1/2‖ϕ‖1/2,∂ω,

|V |1,Dε/ε ≤ c ‖ϕ‖1/2,∂ω,
‖W‖0,C(R/(2ε),R/ε) ≤ c ε1/2‖ϕ‖1/2,∂ω,
|W |1,C(R/(2ε),R/ε) ≤ c ε3/2‖ϕ‖1/2,∂ω,

‖W‖1,Dε/ε
≤ c ‖ϕ‖1/2,∂ω.

Proof. The function v reads

v(y) =

∫
∂ω

E(y − x)p(x) dγ(x), y ∈ R
3\ω.

Using a Taylor expansion of E computed at the point y and the well-posedness of
(48) we have for large ‖y‖

|V (y)| ≤ c
r
‖ϕ‖1/2,∂ω, |W (y)| ≤ c

r2
‖ϕ‖1/2,∂ω,

|∇V (y)| ≤ c

r2
‖ϕ‖1/2,∂ω, |∇W (y)| ≤ c

r3
‖ϕ‖1/2,∂ω,

from which the above inequalities follow straightforwardly.
Lemma 7.2. For ϕ ∈ H1/2(ΓR), let vε be the solution to the problem


−∆vε = 0 in Dε,
vε = ϕ on ΓR,
vε = 0 on ∂ωε.

(49)

There exist a constant c > 0 (independent of ϕ and ε) and ε1 > 0 such that for all
0 < ε < ε1,

‖vε‖1,Dε
≤ c ‖ϕ‖1/2,ΓR

.

Proof. Let ε0 > 0. Problem (49) is well-posed; hence there exists a constant c
such that

|vε0 |1,Dε0
≤ c ‖ϕ‖1/2,ΓR

.
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Let ε1 ≤ ε0 be such that Dε0
⊂ Dε for all ε < ε1. Let v̂ε0

be the extension of vε0
to

Dε by 0. The function vε minimizes the energy |v|1,Dε over the affine space{
v ∈ H1(Dε); v = ϕ on ΓR and v = 0 on ∂ωε

}
;

hence, for all ε ≤ ε1 we have

|vε|1,Dε
≤ |v̂ε0

|1,Dε
= |vε0

|1,Dε0
≤ c ‖ϕ‖1/2,ΓR

.

We also have

‖v0‖0,D0
≤ c ‖ϕ‖1/2,ΓR

.

Then, denoting by v̂ε the extension by 0 of vε to D0 and using the Poincaré inequality
on D0 yields

‖vε‖0,Dε
= ‖v̂ε‖0,D0

≤ ‖v̂ε − v0‖0,D0
+ ‖v0‖0,D0

≤ c |v̂ε − v0|1,D0
+ ‖v0‖0,D0

≤ c |v̂ε|1,D0
+ c ‖v0‖1,D0

= c |vε|1,Dε
+ c ‖v0‖1,D0

≤ c ‖ϕ‖1/2,ΓR
.

Lemma 7.3. For ε > 0 and ψ ∈ H1(D0), let uε be the solution to the problem

−∆uε = 0 in Dε,

uε = 0 on ΓR,
uε = ψ on ∂ωε.

(50)

There exist a constant c > 0 (independent of ψ and ε) and ε1 > 0 such that for all
0 < ε < ε1,

|uε|1,C(R/2,R) ≤ c ε‖ψ(εy)‖1/2,∂ω,
‖uε‖0,Dε

≤ c ε ‖ψ(εy)‖1/2,∂ω ,
|uε|1,Dε

≤ c ε1/2 ‖ψ(εy)‖1/2,∂ω .

Proof. Let ṽε be the solution to the exterior problem

−∆ṽε = 0 in R

3\ω,
ṽε = 0 at ∞,
ṽε = ψ(εy) on ∂ω.

The function uε can be written

uε = vε − wε,

where vε(x) = ṽε(x/ε). The function wε itself is the solution to

−∆wε = 0 in Dε,

wε = vε on ΓR,
wε = 0 on ∂ωε.
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It follows from (45), (46), and Lemmas 7.1 and 7.2 that there exist c > 0 and ε1 > 0
such that for all 0 < ε < ε1,

|vε|1,C(R/2,R) ≤ c ε1/2|ṽε|1,C(R/2ε,R/ε) ≤ c ε ‖ψ(εy)‖1/2,∂ω ,
‖wε‖1,Dε

≤ c ‖vε‖1/2,ΓR

≤ c ‖vε‖1,C(R/2,R)

≤ c (|vε|0,C(R/2,R) + |vε|1,C(R/2,R))

= c (ε3/2|ṽε|0,C(R/2ε,R/ε) + ε
1/2|ṽε|1,C(R/2ε,R/ε))

≤ c ε ‖ψ(εy)‖1/2,∂ω .(51)

Hence

|uε|1,C(R/2,R) = |vε − wε|1,C(R/2,R) ≤ |vε|1,C(R/2,R) + |wε|1,Dε

≤ c ε ‖ψ(εy)‖1/2,∂ω .
Similarly we have

‖vε‖0,Dε
= ε3/2 ‖ṽε‖0,Dε/ε

≤ c ε ‖ψ(εy)‖1/2,∂ω ,
|vε|1,Dε

= ε1/2 |ṽε|1,Dε/ε
≤ c ε1/2 ‖ψ(εy)‖1/2,∂ω

and

‖uε‖0,Dε
≤ c ε ‖ψ(εy)‖1/2,∂ω ,

|uε|1,Dε ≤ c ε1/2 ‖ψ(εy)‖1/2,∂ω .
Lemmas 7.2 and 7.3 are summarized in the following lemma.
Lemma 7.4. Let vε be the solution to the problem


−∆vε = 0 in Dε,

vε = ϕ on ΓR,
vε = ψ on ∂ωε,

where ϕ ∈ H1/2(ΓR) and ψ ∈ H1(D0). There exist a constant c > 0 (independent of
ϕ, ψ, and ε) and ε1 > 0 such that for all 0 < ε < ε1,

|vε|1,C(R/2,R) ≤ c
(
‖ϕ‖1/2,ΓR

+ ε ‖ψ(εy)‖1/2,∂ω
)
,

‖vε‖0,Dε
≤ c

(
‖ϕ‖1/2,ΓR

+ ε ‖ψ(εy)‖1/2,∂ω
)
,

|vε|1,Dε ≤ c
(
‖ϕ‖1/2,ΓR

+ ε1/2 ‖ψ(εy)‖1/2,∂ω
)
.

7.3. Variation of the bilinear form. The variation of the bilinear form aε
reads

aε(u, v)− a0(u, v) =

∫
ΓR

(Tε − T0)uv dγ(x).

For ϕ ∈ H1/2(ΓR), recall that u
0,ϕ
ε is the solution to (6) or (7) if ε = 0. Let v0,ϕω be

the solution to 

−∆v0,ϕω = 0 in R

3\ω,
v0,ϕω = 0 at ∞,
v0,ϕω = u0,ϕ

0 (x0) on ∂ω.
(52)
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As (19)–(22), let P 0,ϕ
ω (y) = Aω(u

0,ϕ
0 (x0))E(y) be the dominant part of v0,ϕω , and

let Q0,ϕ
ω = Aω(u

0,ϕ
0 (x0))/(4πR), P

0,ϕ
ω (x) = Q0,ϕ

ω on ΓR. The linear operator δT
(independent of ε) is defined as follows:

δT : H1/2(ΓR) −→ H−1/2(ΓR),
ϕ �−→ δTϕ := −∇P 0,ϕ

ω .n.
(53)

Proposition 7.5. The asymptotic expansion of Tε is

‖Tε − T0 − εδT‖L(H1/2(ΓR);H−1/2(ΓR)) = O(ε
2).(54)

Proof. Let ϕ ∈ H1/2(ΓR). For simplicity we drop the subscripts (.)0,ϕ. For
y = x/ε, we have vω(y) = Pω(y) + Wω(y) with Pω(x/ε) = εPω(x) and Wω(y) =

O(1/ ‖y‖2). Let
ψε(x) = (Tε − T0 − εδT )ϕ(x).

We have

ψε(x) = (∇uε −∇u0 + ε∇ (Pω −Qω)) .n

= ∇(wε(x)−Wω(x/ε)).n,

where wε is defined by

wε(x) = uε(x)− u0(x) + vω(x/ε)− εQω.

The function wε is the solution to

−∆wε = 0 in Dε,

wε = vω(x/ε)− εQω on ΓR,
wε = −u0(x) + u0(x0)− εQω on ∂ωε.

In order to apply Lemma 7.4, we have to estimate the two right-hand sides.
On ΓR, due to Pω(x) = Qω, we have

vω(x/ε)− εQω =Wω(x/ε).

Using (45), (46), Lemma 7.1, and elliptic regularity we obtain

‖vω(x/ε)− εQω‖1/2,ΓR
= ‖Wω(x/ε)‖1/2,ΓR

≤ c ‖Wω(x/ε)‖1,C(R/2,R)

≤ c (‖Wω(x/ε)‖0,C(R/2,R) + |Wω(x/ε)|1,C(R/2,R))

= c (ε3/2|Wω(y)|0,C(R/2ε,R/ε) + ε
1/2|Wω(y)|1,C(R/2ε,R/ε))

≤ c ε2 ‖u0(x0)‖1/2,∂ω
≤ c ε2 ‖ϕ‖1/2,ΓR

.

On ωε, putting θε(x) := (−u0(x) + u0(x0)− εQω)/ε, we have for small ε

‖θε(εy)‖1/2,∂ω ≤ c ‖θε(εy)‖1,ω
= c

∥∥∥∥u0(εy)− u0(x0)

ε
+Qω

∥∥∥∥
1,ω

≤ c (‖u0‖C1(B(0,R/2)) + |Qω|)
≤ c (‖ϕ‖1/2,ΓR

+ |u0(x0)|)
≤ c ‖ϕ‖1/2,ΓR

.
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We can now apply Lemma 7.4, which gives

|ωε(x)|1,C(R/2,R) ≤ c (ε2 ‖ϕ‖1/2,ΓR
+ ε ‖εθε(εy)‖1/2,∂ω)

≤ c ε2 ‖ϕ‖1/2,ΓR
.

Finally it follows from (44), (45), and Lemma 7.1 that

‖ψ‖−1/2,ΓR
= ‖∇(ωε −Wω(x/ε)).n‖−1/2,ΓR

≤ c (|wε|1,C(R/2,R) + |Wω(x/ε)|1,C(R/2,R))

= c (|wε|1,C(R/2,R) + ε
1/2|Wω(y)|1,C(R/2ε,R/ε))

≤ c ε2‖ϕ‖1/2,ΓR
.

Hence

‖(Tε − T0 − εδT )ϕ‖−1/2,ΓR
= O(ε2).

The asymptotic expansion of the bilinear form aε follows now straightforwardly.
Proposition 7.6. Let

δa(u, v) =

∫
ΓR

δTuv dγ(x), u, v ∈ VR.

Then the asymptotic expansion of the bilinear form aε is given by

‖aε − a0 − εδa‖L2(VR) = O(ε
2).

7.4. Variation of the linear form. The technique is the same as in section
7.3. The difference comes from the boundary condition imposed on ∂ω to the solution
to the exterior problem: v0,ϕω = u0,ϕ

0 (x0) in (52) for the study of the bilinear form, and

vf,0ω = uf,00 (x0) in (55) for the study of the linear form. Hence estimations involving
‖ϕ‖1/2,ΓR

are replaced by estimations involving ‖f‖Lq .
The variation of the linear form lε reads

lε(v)− l0(v) =
∫

ΓR

(fε − f0)v dγ(x).

Recall that uf,0ε is the solution to (6) or (7) if ε = 0. Let vf,0ω be the solution to

−∆vf,0ω = 0 in R

3\ω,
vf,0ω = 0 at ∞,
vf,0ω = uf,00 (x0) on ∂ω.

(55)

As with (19)–(22), let P f,0
ω (y) = Aω(u

f,0
0 (x0))E(y) be the dominant part of vf,0ω , and

let Qf,0
ω = Aω(u

f,0
0 (x0))/(4πR), P

f,0
ω (x) = Qf,0

ω on ΓR. The function δf ∈ H−1/2(ΓR)
(independent of ε) is defined by

δf = ∇P f,0
ω .n.(56)

Proposition 7.7. Let f ∈ Lq(Ω), q > n. The asymptotic expansion of fε with
respect to ε is

‖fε − f0 − εδf‖−1/2,ΓR
= O(ε2).
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Proof. The proof runs as in Proposition 7.5 (we drop the subscripts (.)f,0) with
wε and θε defined by

wε(x) = uε(x)− u0(x) + vω(x/ε)− εQω,

θε(x) = (−u0(x) + u0(x0)− εQω)/ε.

The only difference lies in the elliptic regularity estimate [20, 21]

|u0(x0)| ≤ ‖u0‖C0(D0) ≤ ‖f‖Lq ,

and for small ε,

‖θε(εy)‖1/2,∂ω ≤ c ‖θε(εy)‖1,ω
≤ c

∥∥∥∥u0(εy)− u0(x0)

ε
+Qω

∥∥∥∥
1,ω

≤ c (‖u0‖C1(B(0,R/2)) + |Qω|)
≤ c (‖f‖Lq + |u0(x0)|)
≤ c ‖f‖Lq .

The asymptotic expansion of the linear form lε now follows straightforwardly.
Proposition 7.8. Let

δl(v) =

∫
ΓR

δfv dγ(x), v ∈ VR.

Then the asymptotic expansion of linear form lε is given by

‖lε − l0 − εδl‖L(VR) = O(ε
2).

7.5. Proof of Theorem 5.1. The fundamental hypotheses (1) and (2) are sat-
isfied; hence we can apply Theorem 2.2:

j(ε) = j(0) + (δa(u, v)− δl(v) + δJ(u))ε+ o(ε).

It follows from (13), (16), (52), and (55) that

vω = vf,0ω + v0,ϕω ,

which implies

Pω = P f,0
ω + P 0,ϕ

ω .

Then, using (53), (56), and Propositions 7.6 and 7.8, we obtain

δa(u, v)− δl(v) =
∫

ΓR

− (∇P 0,ϕ
ω +∇P f,0

ω

)
.n v dγ(x)

= −
∫

ΓR

∇Pω.n v dγ(x),

which achieves the proof of Theorem 5.1.



TOPOLOGICAL EXPANSION FOR THE DIRICHLET PROBLEM 1065

7.6. Proof of Proposition 5.3. This section describes the variations of Jε(u) =

J̃ε(ũε) (see (14)) when J̃ε is of the form (31)

J̃ε(v) =

∫
Ωε

g(x, v(x)) dx, v ∈ H1(Ωε).

The hypotheses on g (32)–(34) described in section 5 are supposed to be satisfied.
Throughout this and the next subsection, ũε ∈ H1(Ωε), ε ≥ 0, denotes the extension
of u ∈ VR which coincides with u on ΩR and with uf,ϕε on Dε for ϕ = u|ΓR

.

Lemma 7.9. Let ϕ ∈ H1/2(ΓR) and f ∈ Lq(Ω), q > n. Let uf,ϕε and uf,ϕ0 be,
respectively, the solutions to (6) and (7). Then∥∥∥uf,ϕε − uf,ϕ0 − ε(Qf,ϕ

ω − P f,ϕ
ω )

∥∥∥
0,Dε

= O(ε3/2),(57) ∥∥∥uf,ϕε − uf,ϕ0 − εQf,ϕ
ω + vf,ϕω (x/ε)

∥∥∥
1,Dε

= O(ε3/2),(58)

where P f,ϕ
ω is the dominant part (19) of the solution vf,ϕω to the exterior problem (16)

with uf,ϕ0 (x0) substituted for uΩ(x0) and Qf,ϕ
ω is the associated constant (22).

Proof. Recall that vω = Pω + Wω (19) with Pω(x/ε) = εPω(x) and Wω(y) =

O(1/ ‖y‖2) (we drop the subscripts (.)f,ϕ). Let

wε(x) = (uε − u0 − ε(Qω − Pω)) (x) +Wω(x/ε)(59)

= uε(x)− u0(x) + vω(x/ε)− εQω.

The function wε is the solution to

−∆wε = 0 in Dε,

wε = vω(x/ε)− εQω on ΓR,
wε = −u0(x) + u0(x0)− εQω on ∂ωε.

Using the same arguments as in the proofs of Propositions 7.5 and 7.7 we obtain

‖vω(x/ε)− εQω‖1/2,ΓR
≤ c ε2 ‖u0(x0)‖1/2,∂ω
≤ c ε2

(
‖ϕ‖1/2,ΓR

+ ‖f‖Lq

)
,

‖ − u0(εy) + u0(x0)− εQω‖1/2,∂ω ≤ c ε
(
‖ϕ‖1/2,ΓR

+ ‖f‖Lq

)
.

It follows from Lemma 7.4 that

‖wε‖0,Dε
≤ c ε2

(
‖ϕ‖1/2,ΓR

+ ‖f‖Lq

)
,

‖wε‖1,Dε
≤ c ε3/2

(
‖ϕ‖1/2,ΓR

+ ‖f‖Lq

)
.

The second equation proves (58). Due to (46), Lemma 7.1, and elliptic regularity we
also have

‖Wω(x/ε)‖0,Dε
= ε3/2 ‖Wω‖0,Dε/ε

≤ c ε3/2 ‖u0(x0)‖1/2,∂ω
≤ c ε3/2

(
‖ϕ‖1/2,ΓR

+ ‖f‖Lq

)
.
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We conclude by using uε − u0 − ε(Qω − Pω) = wε(x)−Wω(x/ε).
The variation Jε(u)− J0(u) is given by the next lemma.
Lemma 7.10. For u ∈ VR we have

Jε(u) = J0(u) + εδJ(u) + o(ε),

δJ(u) =

∫
D0

gs(x, ũ0(x))(Qω − Pω) dx,

where Qω and Pω are defined as in Lemma 7.9 with ϕ = u|ΓR
.

Proof. Let

Iε = Jε(u)− J0(u)− ε
∫
D0

gs(x, ũ0)(Qω − Pω) dx.

On Dε we have ũε = u
f,ϕ
ε for ε ≥ 0, ϕ = u on ΓR, and on ΩR we have ũε = ũ0. Hence

Iε = J̃ε(ũε)− J̃0(ũ0)− ε
∫
D0

gs(x, ũ0)(Qω − Pω) dx

=

∫
Ωε

g(x, ũε) dx−
∫

Ω

g(x, ũ0) dx− ε
∫
D0

gs(x, ũ0)(Qω − Pω) dx

=

∫
Dε

g(x, uf,ϕε )− g(x, uf,ϕ0 ) dx−
∫
ωε

g(x, uf,ϕ0 ) dx− ε
∫
D0

gs(x, u
f,ϕ
0 )(Qω − Pω) dx.

Due to the hypotheses on g (32) and (33), we have for all (x, s, t) ∈ Ω× R× R

g(x, t)− g(x, s) = gs(x, s)(t− s) + θ(x, s, t)(t− s)2,
|θ(x, s, t)| ≤ M

2
.

Then

Iε =

∫
Dε

gs(x, u
f,ϕ
0 )

(
uf,ϕε − uf,ϕ0 − ε(Qω − Pω)

)
dx

− ε
∫
ωε

gs(x, u
f,ϕ
0 )(Qω − Pω) dx−

∫
ωε

g(x, uf,ϕ0 ) dx

+

∫
Dε

θ(x, uf,ϕ0 , uf,ϕε )(uf,ϕε − uf,ϕ0 )2 dx

and

|Iε| ≤
∫
Dε

∣∣∣gs(x, uf,ϕ0 )
(
uf,ϕε − uf,ϕ0 − ε(Qω − Pω)

)∣∣∣ dx+ ε ∫
ωε

∣∣∣gs(x, uf,ϕ0 )(Qω − Pω)
∣∣∣ dx

+

∫
ωε

∣∣∣g(x, uf,ϕ0 )
∣∣∣ dx+ ∫

Dε

M

2
(uf,ϕε − uf,ϕ0 )2 dx.

It follows from the hypotheses on g (32)–(34), Lemma 7.9, the regularity of uf,ϕ0

(which implies that x �→ g(x, uf,ϕ0 (x)) is in L3/2(B(0, R/2))), ‖Pω‖0,ωε
= c ε1/2, and

‖gs(., uf,ϕ0 (.))‖0,ωε = o(1) that∫
Dε

∣∣∣gs(x, uf,ϕ0 )
(
uf,ϕε − uf,ϕ0 − ε(Qω − Pω)

)∣∣∣ dx ≤ c∥∥∥uf,ϕε − uf,ϕ0 − ε(Qω − Pω)
∥∥∥

0,Dε

= O(ε3/2),∫
Dε

M

2
(uf,ϕε − uf,ϕ0 )2 dx = O(ε2),
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ε

∫
ωε

∣∣∣gs(x, uf,ϕ0 )(Qω − Pω)
∣∣∣ dx ≤ ε ∥∥∥gs(., uf,ϕ0 (.))

∥∥∥
0,ωε

‖Qω − Pω‖0,ωε

= o(ε3/2),

∫
ωε

∣∣∣g(x, uf,ϕ0 )
∣∣∣ dx ≤ (∫

ωε

∣∣∣g(x, uf,ϕ0 )
∣∣∣3/2 dx)2/3(∫

ωε

dx

)1/3

(60)

= o(ε).

Hence

Iε = o(ε).

We can now check hypothesis (24) involved by Theorem 5.1.
Proposition 7.11. The function J0 is differentiable on VR, and we have for all

u, v ∈ VR
Jε(v)− J0(u) = εδJ(u) +DJ0(u)(v − u) + o(ε+ ‖v − u‖VR

).

Proof. We have

J0(u) = J̃0(ũ) =

∫
Ω

g(x, ũ(x)) dx.

It follows from the hypotheses on g (32) that the function J̃0 is differentiable onH1(Ω)
with

DJ̃0(ũ0)w =

∫
Ω

gs(x, ũ0)w dx, w ∈ H1(Ω).

Thus J0 is differentiable on VR, and for w ∈ VR extended by ŵ ∈ H1(Ω) with ∆ŵ = 0
in D0, we have

DJ0(u)w = DJ̃0(ũ0)ŵ.

Hence, applying Lemma 7.10 yields

Jε(v)− J0(u) = Jε(v)− J0(v) + J0(v)− J0(u)

= εδJ(v) + o(ε) +DJ0(u)(v − u) + o(‖v − u‖VR
)

= εδJ(u) +DJ0(u)(v − u) + o(ε+ ‖v − u‖VR
)

+ ε(δJ(v)− δJ(u)).
It remains to prove that ε(δJ(v)− δJ(u)) = o(ε+ ‖v− u‖VR

). For this it is sufficient
to prove that δJ(v)−δJ(u) = O(‖v−u‖VR

). With the notation defined below in (61)
and (62), it follows from Lemma 7.10 that

δJ(v)− δJ(u) =
∫
D0

gs(x, ṽ0)(Q
v
ω − P v

ω)− gs(x, ũ0)(Q
u
ω − Pu

ω ) dx

=

∫
D0

[gs(x, ṽ0)− gs(x, ũ0)] (Q
v
ω − P v

ω) dx

+

∫
D0

gs(x, ũ0) [(Q
v
ω − P v

ω)− (Qu
ω − Pu

ω )] dx.
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Hence, using the hypotheses on g (32)–(33) we obtain

|δJ(v)− δJ(u)| ≤
∫
D0

M |ṽ0 − ũ0| |Qv
ω − P v

ω | dx

+

∫
D0

(|gs(x, 0)|+M |ũ0|) (|Qv
ω −Qu

ω|+ |P v
ω − Pu

ω |) dx.

We conclude by using linearity and continuity of

VR → H1/2(ΓR) → H1(D0) → L2(D0),

u �→ ϕ := u|ΓR
�→ uf,ϕ0 �→ Pu

ω := Aω(u
f,ϕ
0 )(x0))E

(61)

and

VR → H1/2(ΓR) → R,
u �→ (Pu

ω )|ΓR
�→ Qu

ω.
(62)

Hence, hypothesis (24) is fulfilled and we can apply Theorem 5.1. The adjoint
equation (27) reads ∫

Ω

∇vΩ.∇w dx = −
∫

Ω

gs(x, uΩ)w dx,

and hence

∆vΩ = gs(x, uΩ).(63)

It follows from (30), Lemma 7.10, and (63) that

δj(x0) = Aω(uΩ(x0))vΩ(x0) +

∫
D0

∆vΩ(Pω −Qω) dx+ δJ(u0)

= Aω(uΩ(x0))vΩ(x0) +

∫
D0

∆vΩ(Pω −Qω) dx+

∫
D0

gs(x, uΩ)(Qω − Pω) dx

= Aω(uΩ(x0))vΩ(x0),

which achieves the proof of Proposition 5.3.

7.7. Proof of Proposition 5.4. Here J̃ε is of the form (35):

J̃ε(v) =
1

2

∫
Ωε

B(x)∇(v − ud).∇(v − ud) dx, v ∈ H1(Ωε).

The notation is the same as in the previous subsection. For u ∈ VR, we have

Jε(u) = J̃ε(ũε) =
1

2

∫
Ωε

B∇(ũε − ud).∇(ũε − ud) dx.

Due to the assumption on ud and to f ∈ Lq(Ω), q > n, we have ∇ud, ∇ ũ0 ∈
C0(B(0, R/2))3 [12], and hence∫

ωε

B∇(ũ0 − ud).∇(ũ0 − ud) dx = O(ε3).
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This and the fact that bij(x) = bji(x) yields

Jε(u)−J0(u) =
1

2

∫
Dε

2B∇(ũ0−ud).∇(ũε− ũ0)+B∇(ũε− ũ0).∇(ũε− ũ0) dx+ o(ε).

Equation (59) reads here

wε(x) = ũε(x)− ũ0(x) + vω(x/ε)− εQω

with Qω constant, and

Jε(u)− J0(u) =

∫
Dε

B∇(ũ0 − ud).∇(wε − vω(x/ε)) dx

+
1

2

∫
Dε

B∇(wε − vω(x/ε)).∇(wε − vω(x/ε)) dx+ o(ε).

Recall that vω = Pω +Wω (19) with Pω(x/ε) = εPω(x) and Wω(y) = O(1/ ‖y‖2).
Then

Jε(u)− J0(u) =

∫
Dε

B∇(ũ0 − ud).∇wε(x) dx

− ε
∫
Dε

B∇(ũ0 − ud).∇Pω(x) dx

−
∫
Dε

B∇(ũ0 − ud).∇xWω(x/ε) dx

+
1

2

∫
Dε

B∇wε.∇wε dx−
∫
Dε

B∇xvω(x/ε).∇wε dx

+
1

2

∫
Dε

B∇xvω(x/ε).∇xvω(x/ε) dx+ o(ε).

Here ∇x denotes the derivative with respect to x, and particularly ∇(v(x/ε)) =
∇xv(x/ε) = ∇v(x/ε)/ε. It follows from Lemmas 7.1 and 7.9 that ‖vω(x/ε)‖1,Dε

=

O(ε1/2) and ‖wε‖1,Dε
= O(ε3/2); hence

∫
Dε

B∇(ũ0 − ud).∇wε(x) dx = O(ε3/2),∫
Dε

B∇wε.∇wε dx = O(ε3),

−
∫
Dε

B∇xvω(x/ε).∇wε dx = O(ε2).

We have ‖∇xWω(x/ε)‖L1(Dε)
= ε2 ‖∇Wω‖ |L1(Dε/ε) = O(ε

2| log ε|), and thus

∣∣∣∣
∫
Dε

B∇(ũ0 − ud).∇xWω(x/ε) dx

∣∣∣∣ ≤ ‖B∇(ũ0 − ud)‖∞ ‖∇xWω(x/ε)‖L1(Dε)

≤ (‖ũ0‖3,D0
+ ‖ud‖1,∞,D0

) ‖∇xWω(x/ε)‖L1(Dε)

= o(ε).
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Using ∇Pω = O(1/r2), which implies that
∫
ωε
B∇(ũ0−ud).∇Pω dx = O(ε), we obtain

(with ∇Qω = 0)

Jε(u)− J0(u) = −ε
∫
D0

B∇(ũ0 − ud).∇(Pω −Qω) dx

+
1

2

∫
Dε

B∇xvω(x/ε).∇xvω(x/ε) dx+ o(ε).

The adjoint equation implies for all ϕ ∈ D(D0)∫
D0

−∆vΩ ϕdx = −
∫
D0

B∇(uΩ − ud).∇ϕdx.(64)

Due to B ∈ W 1,∞(Ω)3×3 and ∆ud, f ∈ Lq(Ω) (thus D2ud, D
2uΩ ∈ Lq(D0); cf. the

Calderon–Zygmund theorem [12]), we have −∆vΩ = div [B∇(uΩ − ud)] ∈ Lq(D0).
Moreover, q > n/2 and Pω − Qω ∈ Lm(D0) for all m < 3; thus ∆vΩ(Pω − Qω) ∈
L1(D0). Hence, as Pω −Qω vanishes on ΓR, (64) still holds for ϕ = Pω −Qω, and

Jε(u0)− J0(u0) = −
∫
D0

ε∆vΩ.(Pω −Qω)

+
1

2

∫
Dε

B∇xvω(x/ε).∇xvω(x/ε) dx+ o(ε).

Then the proof can be achieved as in section 7.6. It follows from (30) that

j(ε) = j(0) + εAω(uΩ(x0))vΩ(x0) +
1

2

∫
Dε

B∇xvω(x/ε).∇xvω(x/ε) dx+ o(ε).

Using Lebesgue’s convergence theorem, we deduce that∫
Dε

B(x)∇xvω(x/ε).∇xvω(x/ε) dx = ε

∫
Dε/ε

B(εy)∇vω(y).∇vω(y) dy

= ε

∫
R3\ω

B(x0)∇vω(y).∇vω(y) dy + o(ε),

which proves that

j(ε) = j(0) + εAω(uΩ(x0))vΩ(x0) +
ε

2

∫
R3\ω

B(x0)∇vω(y).∇vω(y) dy + o(ε).

If ω is the unit ball, then we have the evident solution vω = uΩ(x0)/r and∫
R3\ω

B(x0)∇vω(y).∇vω(y) dy = uΩ(x0)
2

∫
R3\B(0,1)

1

r4
B(x0)er.er dy

= uΩ(x0)
2 trB(x0)

1

3

∫
R3\B(0,1)

dy

r4

=
4πuΩ(x0)

2

3
trB(x0),

where er(y) = y/ ‖y‖. This completes the proof of Proposition 5.4.
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ary computation, Rev. Européenne Élém. Finis, 5 (1996), pp. 619–648.
[27] A. Schumacher, Topologieoptimierung von Bauteilstrukturen unter Verwendung von Lopch-

positionierungkrieterien, Thesis, Universität-Gesamthochschule-Siegen, 1995.
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Abstract. Let (X,Y, Z) be a triple of payoff processes defining a Dynkin game

R̃(σ, τ) = E
[
Xσ1{τ>σ} + Yτ1{τ<σ} + Zτ1{τ=σ}

]
,

where σ and τ are stopping times valued in [0, T ]. In the case Z = Y , it is well known that the condi-
tion X ≤ Y is needed in order to establish the existence of value for the game, i.e., infτ supσ R̃(σ, τ)
= supσ infτ R̃(σ, τ).

In order to remove the condition X ≤ Y , we introduce an extension of the Dynkin game by
allowing for an extended set of strategies, namely, the set of mixed strategies. The main result of
the paper is that the extended Dynkin game has a value when Z ≤ Y , and the processes X and Y
are restricted to be semimartingales continuous at the terminal time T .

Key words. optimal stopping, Dynkin games, stochastic analysis, minimax theorem
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1. Introduction. Dynkin games have been introduced by Dynkin (1967) as a
generalization of optimal stopping problems. Since then, many authors contributed to
solve the problem both in discrete and continuous-time models; see, e.g., Dynkin and
Yushkevich (1968), Bensoussan and Friedman (1974), Neveu (1975), Bismut (1977),
Stettner (1982), Alario, Lepeltier, and Marchal (1982), Morimoto (1984), Lepeltier
and Maingueneau (1984), Cvitanić and Karatzas (1996), and Karatzas and Wang
(2001), among others.

The setting of the problem is very simple. There are two players, labeled Player
1 and Player 2, who observe two payoff processes X and Y defined on a probability
space (Ω,F , P ). Player 1 (resp., 2) chooses a stopping time σ (resp., τ) as control for
this optimal stopping problem. At (stopping) time σ∧ τ the game is over, and Player
2 pays the amount Xσ1{τ>σ} + Yτ1{τ<σ} + Zτ1{τ=σ} to Player 1. Therefore the
objective of Player 1 is to maximize this payment, while Player 2 wishes to minimize
it. It is then natural to introduce the lower and upper values of the game:

sup
σ

inf
τ

E
[
Xσ1{τ>σ} + Yτ1{τ<σ} + Zτ1{τ=σ}

]
,

inf
τ

sup
σ

E
[
Xσ1{τ>σ} + Yτ1{τ<σ} + Zτ1{τ=σ}

]
.

If the above values are equal, then the game is said to have a value. In the previously
cited literature, it is proved that the game has a value essentially under the conditions
X. ≤ Y· = Z·, P -a.s. A precise discussion of this is given in section 2.

The purpose of this paper is to remove the condition X. ≤ Y· = Z·, P -a.s. by suit-
ably convexifying the set of strategies of the players. This is achieved by introducing
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the notion of mixed strategies, standard in (discrete-time) game theory literature.
Loosely speaking, instead of choosing a stopping time, we shall allow both players
to choose a distribution on the set of stopping times. Namely, at each time, both
players fix a probability of stopping and decide whether or not to stop according to
this probability.

This leads us to define mixed strategies as nondecreasing right-continuous pro-
cesses with zero initial data and final data less than 1. In section 7 of this paper,
we provide two justifications of this definition. The first is obtained by enlarging the
probability space in order to allow for an independent randomizing device for each
player. The second justification consists of defining the notion of randomized stopping
time by means of functional analysis arguments, as in Bismut (1979).

Section 3 reports the precise definition of the extended Dynkin game and the
main result of the paper: the extended Dynkin game has a value, provided the payoff
processes X and Y are semimartingales continuous at the terminal time T , and Z· ≤
Y·, P -a.s. For ease of presentation, we split the proof as follows. Section 4 provides the
main steps of the proof, which basically relies on the two following technical results.
In the first one, reported in section 5, we prove that the players’ strategy sets can be
reduced without affecting the lower and the upper values of the game. The second
one states that the game with restricted strategies has a value. The proof of the last
claim, reported in section 6, is obtained by an application of Sion’s min-max theorem.

Before concluding this introduction, let us set up some notation which will be
extensively used in the paper.

Given a right-continuous process with left limits S, we denote St− := lims↑t Ss.
The jumps of S are denoted by ∆St := St−St−. We shall denote by ∆S the process
of jumps of S, and by S− the process of left limits of S.

We shall denote by λ the Lebesgue measure on [0, T ], and by Eλ the associated
expectation operator. For a nondecreasing process A, we denote by mA the positive
finite measure induced by A. If S is a semimartingale, then it admits a decomposition
S = M + A, where A is a finite variation process and M is a martingale. We shall
denote by mM the measure induced by the (nondecreasing) predictable quadratic
variation process 〈M,M〉 of M , i.e., mM (B) = Eλ [1B〈M〉∞]. We abuse the latter
notation by saying that some property holds mS-a.s. whenever it holds both mA-a.s.
and mM -a.s.

2. Dynkin game with pure strategies. In this section, we recall the classical
formulation of a Dynkin game, as suggested by Dynkin and Yushkevich (1968), Neveu
(1975), and Bismut (1977).

Let (Ω,F , P ) be a complete probability space, and let T > 0 be a fixed terminal
time. Let X = {Xt, 0 ≤ t ≤ T}, Y = {Yt, 0 ≤ t ≤ T}, and Z = {Zt, 0 ≤ t ≤ T} be
real-valued càdlàg processes, satisfying the integrability condition

E

[
sup
t
|Xt|+ sup

t
|Yt|+ sup

t
|Zt|

]
< +∞.(2.1)

We denote by F = {Ft, 0 ≤ t ≤ T} the P -augmentation of the filtration generated
by (X,Y, Z), and by T the set of all stopping times for F.

The structure of a Dynkin game is the following. Two players observe the triple of
stochastic processes (X,Y, Z). Player 1 chooses a stopping time σ ∈ T , and Player 2
chooses a stopping time τ ∈ T . Player 2 pays Player 1 the amount

Xσ1{τ>σ} + Yτ1{τ<σ} + Zτ1{τ=σ}.
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The payoff of the game is then defined by the expected value of the above payoff:

R̃(σ, τ) := E
[
Xσ1{τ>σ} + Yτ1{τ<σ} + Zτ1{τ=σ}

]
.

Player 1 wishes to maximize R̃(σ, τ), while Player 2 wishes to minimize it. It is then
natural to define the lower and upper values of the game:

V := sup
σ

inf
τ

R̃(σ, τ) and V := inf
τ

sup
σ

R̃(σ, τ),

which satisfy V ≤ V . If it happens that

V = V ,

then the above Dynkin game is said to have a value.
There is extensive literature providing sufficient conditions for the existence of

the value for the continuous-time Dynkin game in the case Z = Y . Bismut (1977)
proved existence of the value under the condition

X· ≤ Y· = Z·, P -a.s.(2.2)

as well as some regularity conditions and Mokobodski’s hypothesis (namely, that there
exist positive bounded supermartingales Z and Z ′ satisfying X ≤ Z − Z ′ ≤ Y ). The
regularity assumption was weakened by Alario, Lepeltier, and Marchal (1982), and
then Lepeltier and Maingueneau (1984) established the existence of the value without
Mokobodski’s hypothesis, assuming only X· ≤ Y· = Z·.

We also mention the paper by Cvitanić and Karatzas (1996), which derives the
latter result in the context of a Brownian filtration by means of doubly reflected
backward stochastic differential equations.

3. Dynkin game with mixed strategies. The chief goal of this paper is to
remove condition (2.2) by “convexifying” the set of stopping times. A precise discus-
sion of the problem of extending the set of strategies is provided in section 7. In this
section, we give only the main intuition in order to obtain an extended version of the
Dynkin game, and we state the main result of the paper.

The main idea is to identify stopping times with {0, 1}-valued, nondecreasing
processes. Then convexifying the set of these processes leads naturally to considering
the set V+ of all adapted, nondecreasing, right-continuous processes A with A0− = 0
and AT ≤ 1.

More precisely, let V0,1 be the subset of {0, 1}-valued processes of V+. For every
stopping time τ , define the process F τ by

F τ
t := 1{τ≤t}, 0 ≤ t ≤ T.

It is clear that F τ ∈ V0,1. Conversely, given F ∈ V0,1, let

τF := inf{t ∈ [0, T ] : Ft > 0}
with the usual convention inf ∅ = +∞. From the right-continuity of F , it is clear that
τF is a stopping time for F. This provides an identification of V0,1 and T . Clearly,

the payoff function R̃ can be written in terms of F,G ∈ V0,1 as

R(F,G) := R̃(τF , τG) = E


∫ T

0

X(1−G)dF +

∫ T

0

Y (1− F )dG +
∑
[0,T ]

Z∆F∆G


 .
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Observe that the right-hand side expression is well defined for F,G ∈ V+. Our
interest is in the extended Dynkin game, in which players choose elements of V+, and
the payoff is given by R. A rigorous justification of the set V+ as being the set of
mixed strategies is reported in section 7, as well as the extension of the payoff function
R̃ to V+.

The following is the main result of the paper.

Theorem 3.1. Let (X,Y, Z) be a triple of payoff processes satisfying (2.1). Sup-
pose that X and Y are semimartingales with trajectories continuous at time T, P -a.s.
Assume further that Z ≤ Y . Then

sup
F∈V+

inf
G∈V+

R(F,G) = inf
G∈V+

sup
F∈V+

R(F,G),

i.e., the extended Dynkin game has a value.

This theorem states that the Dynkin game has a value when the set of strategies
V0,1 is convexified in the natural way. The only conditions required for this result are
Z ≤ Y , and X and Y are semimartingales continuous at the terminal time T . The
reason for the restriction to semimartingales is explained in Remark 5.1.

An alternative way of convexifying the set T of stopping times is to allow the
players to choose a randomized stopping time, i.e., a probability distribution over
stopping times. This corresponds to the concept of mixed strategy in game theory.
Although in some respect more natural, this approach is more technically demanding,
as it requires an abstract construction by means of functional analysis tools (see
section 7 and Bismut (1979)).

The connection between the two approaches is that any process in V+ can intu-
itively be viewed as the random distribution function of a randomized stopping time.
Another interpretation is that each player chooses randomly, at each time t, whether
to stop or not. This corresponds to the concept of behavioral strategy in game theory.

There is entensive literature in game theory, starting with Kuhn (1953), on the
equivalence between mixed strategies and behavioral strategies. In discrete time,
both notions are equivalent under fairly general assumptions (see Mertens, Sorin, and
Zamir (1994)).

A by-product of section 7 is that, in the context of the simple game studied in
this paper, behavioral strategies and mixed strategies are equivalent.

4. Proof of the main result. We prove the result by applying the following
well-known min-max theorem.

Theorem 4.1 (see Sion (1958)). Let S and T be convex subsets of topological
vector spaces, one of which is compact, and let g : S × T −→ R. Assume that for
every real c, the sets {t : g(s0, t) ≤ c} and {s : g(s, t0) ≥ c} are closed and convex
for every (s0, t0) ∈ S × T . Then

sup
s∈S

inf
t∈T

g(s, t) = inf
t∈T

sup
s∈S

g(s, t).

If S (resp., T ) is compact, then sup (resp., inf) may be replaced by max (resp., min),
i.e., the corresponding player has an optimal strategy.

The main difficulty in the proof of Theorem 3.1 is that the above min-max theorem
does not apply directly to the set of strategies V+ (see the proofs of Lemmas 6.3 and
6.4). We therefore start by reducing the set of strategies to some subsets of V+ for
which the min-max theorem applies.
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We first restrict the strategies of the first player. Define

V1 :=
{

F ∈ V+ : F is continuous, P -a.s.
}
.

As for the second player, we introduce the subset of strategies:

V2 :=
{
G ∈ V+ : GT = 1 on {YT < 0 < XT }, and YT∆GT ≤ 0

}
.

We shall prove that the restriction of the strategies of Player 2 from V+ to V2

does not change the value of the game. The following is an intuitive justification of
this claim. On the event set {YT < 0 < XT }, it follows from the continuity of the
payoff processes X and Y at T that it is optimal for Player 2 to stop the game before
time T ; recall that Z· ≤ Y·, implying that the situation is even better for Player 2
if Player 1 stops at the same time. On the other hand, on the event set {YT > 0},
Player 2 can obtain the same value of the game by smoothing his strategy at time T ,
again taking advantage of the continuity at time T of the process Y .

Also, given that the strategies of Player 2 are restricted to V2, we shall prove that
the restriction of the strategies of Player 1 to V1 does not change the value of the
game; i.e., Player 1 can achieve the same value by means of continuous strategies.

For ease of presentation, the proof of the following two propositions will be re-
ported in section 5.

Proposition 4.1. Let (X,Y, Z) be a triple of payoff processes satisfying (2.1).
Then

sup
F∈V1

inf
G∈V2

R(F,G) = sup
F∈V1

inf
G∈V+

R(F,G).

Proposition 4.2. Under the assumptions of Theorem 3.1, we have

inf
G∈V2

sup
F∈V1

R(F,G) = inf
G∈V2

sup
F∈V+

R(F,G).

We then apply the min-max theorem to the strategy sets S = V1 and T = V2.
Proposition 4.3. Let (X,Y, Z) be a triple of processes satisfying (2.1). Assume

further that X and Y are semimartingales. Then, we have

sup
F∈V1

inf
G∈V2

R(F,G) = inf
G∈V2

sup
F∈V1

R(F,G).

The proof of the last proposition will be carried out in section 6. We now complete
the proof of Theorem 3.1. By Proposition 4.2 and the fact that V2 ⊂ V+, we see that

inf
G∈V2

sup
F∈V1

R(F,G) = inf
G∈V2

sup
F∈V+

R(F,G) ≥ inf
G∈V+

sup
F∈V+

R(F,G).

Similarly, it follows from Proposition 4.1 and the fact that V1 ⊂ V+ that

sup
F∈V1

inf
G∈V2

R(F,G) = sup
F∈V1

inf
G∈V+

R(F,G) ≤ sup
F∈V+

inf
G∈V+

R(F,G).

In view of Proposition 4.3, this provides

inf
G∈V+

sup
F∈V+

R(F,G) ≤ sup
F∈V+

inf
G∈V+

R(F,G),

which ends the proof, as the reverse inequality is trivial.
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5. A priori restrictions on strategies. This section is devoted to the proofs
of Propositions 4.1 and 4.2.

5.1. Proof of Proposition 4.1. Let F be a fixed strategy of Player 1 in the
set V1. For each G ∈ V+, we define G ∈ V2 by

GT = 1 on the event set {XT > 0 > YT },
GT = GT− on the event set {YT > 0},
G = G otherwise.

Then it is immediately checked that

R(F,G)−R(F,G) = E
[
XT (∆GT −∆GT )∆FT

]
+E

[
YT (1− FT )(∆GT −∆GT )

]
+E

[
ZT∆FT (∆GT −∆GT )

]
= E

[
YT (1− FT )(∆GT −∆GT )

]
since F is continuous. By definition of G, we have ∆GT= 0 on {YT > 0} and ∆GT

≥ ∆GT on {YT < 0}. It follows that R(F,G)−R(F,G) ≤ 0, and therefore

sup
F∈V1

inf
G∈V2

R(F,G) ≤ sup
F∈V1

inf
G∈V+

R(F,G).

The required result follows from the fact that V2 ⊂ V+.

5.2. Proof of Proposition 4.2. We introduce the subset of strategies W1 de-
fined by

W1 =
{
F ∈ V+ : ∆FT = 0 on {XT > 0, YT ≥ 0}} .

In order to prove Proposition 4.2, we first need to prove that the restriction of the
strategies of Player 1 from V+ to W1 does not change the value of the game. As we
shall see in the subsequent proof, this is a consequence of the continuity of the payoff
processes X and Y at time T .

Lemma 5.1. Let (X,Y, Z) be a triple of processes satisfying (2.1). Assume further
that X and Y have continuous trajectories at time T . Then, for any G ∈ V2 and
F ∈ V+, there exists a sequence (Fn)n in W1 such that

lim sup
n→∞

R(Fn, G) ≥ R(F,G).

Proof. We organize the proof in four steps.
Step 1. Let T[t,T ] denote the set of [t, T ]-valued stopping times. We introduce the

two Snell envelopes U and V defined by

Ut := ess sup
ζ∈T[t,T ]

E[Xζ |Ft],

Vt := ess inf
ζ∈T[t,T ]

E[Yζ |Ft].

In view of our assumptions on X and Y , the processes U and V can be considered in
their càdlàg modifications; see, e.g., Appendix D in Karatzas and Shreve (1998). In
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the rest of this step, we prove that

U and V are continuous at T, P -a.s.

To see this, observe that

0 ≤ Ut − E [XT |Ft] ≤ E

[
sup
t≤s≤T

Xs −XT |Ft
]
,(5.1)

and, by Theorem VI.6 in Dellacherie and Meyer (1975),

E [XT |Ft] −→ E [XT |FT−] = XT as t↗ T(5.2)

by continuity of X at T . Now, notice that the process At := supt≤s≤T Xs − XT is
decreasing. Then, for fixed s < T , we have

0 ≤ lim sup
t↗T

E [At|Ft] ≤ E [As|FT−] .

By sending s to T , it follows from the dominated convergence theorem that

0 ≤ lim sup
t↗T

E [At|Ft] ≤ E [AT |FT−] = 0,(5.3)

where we used the continuity of A at T inherited from X. The required continuity
result follows from (5.1)–(5.3).

Step 2. For each ε > 0, define

θε := inf{t ≥ T − ε : Xt ≥ 0, Ut − ε ≤ Xt and Vt ≥ −ε} ∧ T.

Since X, U, and V are right-continuous, θε is a stopping time. Observe that θε → T, P -
a.s., as ε→ 0.

Next, for each integer n ≥ 1, define the sequence of stopping times

θε,n := T ∧
(
θε +

1

n

)
.

We define (F ε,n) ∈ V+ to be a continuous process on (θε, θε,n] such that

F ε,n = F on [0, θε] and F ε,n = 1 on [θε,n, T ].

Since X, Y , U, and V are continuous at T , F ε,n is a sequence in W1. We intend to
prove that

lim sup
ε→0

lim sup
n→∞

R(F ε,n, G) ≥ R(F,G),

which will provide the required result.
First, since F ε,n is continuous on (θε, T ] and F ε,n = 1 on [θε,n, T ], we have

R(F ε,n, G) = A + E

[
ξε
∫ T

θε
X(1−G)dF ε,n + Y (1− F ε,n)dG

]

= A + E

[
ξε
∫ θε,n

θε
X(1−G)dF ε,n

]
+ E

[
ξε
∫ θε,n

θε
Y (1− F ε,n)dG

]
,



1080 NIZAR TOUZI AND NICOLAS VIEILLE

where ξε = 1{θε<T} and

A = E


∫ θε

0

X(1−G)dF + Y (1− F )dG +
∑
[0,θε]

Z∆F∆G


 .

Step 3. We now fix ε > 0 and let n go to infinity. As for the second expectation
on the right-hand side of (5.4), observe that Ytξ

ε(1− F ε,n
t )1[θε,T ](t) converges P -a.s.

to zero for all t ∈ (θε, T ]. Since G is right-continuous, this implies that Ytξ
ε(1 −

F ε,n
t )1[θε,T ](t) converges mG ⊗ P -a.s. to zero. Therefore, by dominated convergence

(see Theorem I.4.31 in Jacod and Shiryaev (1987)), we have

lim
n→∞E

[
ξε
∫ θε,n

θε
Y (1− F ε,n)dG

]
= 0.

As for the first expectation on the right-hand side of (5.4), we have

lim sup
n→∞

E

[
ξε
∫ θε,n

θε
X(1−G)dF ε,n

]
≥ lim sup

n→∞
E

[
ξε inf

[θε,θε,n]
(X(1−G))

∫ θε,n

θε
dF ε,n

]

= lim sup
n→∞

E

[
ξε inf

[θε,θε,n]
(X(1−G))(1− Fθε)

]
= E [ξεXθε(1−Gθε)(1− Fθε)] ,

where the last equality follows by dominated convergence and right-continuity of X(1−
G). This yields

lim sup
n→∞

R(F ε,n, G)−R(F,G) ≥ E [ξεXθε(1−Gθε)(1− Fθε)]

−E
[
ξε
∫ T

θε
X(1−G)dF + Y (1− F )dG

]

−E

ξε ∑

(θε,T ]

Z∆F∆G




= E [ξεXθε(1−Gθε)(1− Fθε)]

−E
[
ξε
∫ T

θε
X(1−G)dF + Y (1− F−)dG

]

+E


ξε ∑

(θε,T ]

(Y − Z)∆F∆G




≥ E [ξεXθε(1−Gθε)(1− Fθε)]

−E
[
ξε
∫ T

θε
X(1−G)dF + Y (1− F−)dG

]
,

where we used the condition Z ≤ Y of Theorem 3.1. Set F̃ := F −∆F1{T} and G̃
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:= G−∆G1{T}. Then

lim sup
n→∞

R(F ε,n, G)−R(F,G) ≥ E [ξεXθε(1−Gθε)(1− Fθε)− ξεXT (1−GT )∆FT ]

−E
[
ξε
∫ T

θε
X(1−G)dF̃ + Y (1− F−)dG̃

]

−E [ξεYT (1− FT )∆GT ]

≥ E [ξεXθε(1−Gθε)(1− Fθε)− ξεXT (1−GT )∆FT ]

−E
[
ξε
∫ T

θε
X(1−G)dF̃ + Y (1− F−)dG̃

]
(5.4)

since YT∆GT ≤ 0 by definition of V2.
Step 4. We now take limits as ε goes to zero. Since θε → T , and both F̃ and G̃

are continuous at T, the second expectation on the right-hand side of (5.4) converges
to zero. We now use the following claim, whose proof will be carried out later:

ξεXθε −→ 1{0≤XT ,YT }XT , P -a.s.(5.5)

Then, by dominated convergence and the fact that GT− ≤ GT ,

lim
ε→0

E [ξεXθε(1−Gθε)(1− Fθε)− ξεXT (1−GT )∆FT ]

≥ E
[
1{0≤XT ,YT }XT (1−GT )(1− FT− −∆FT )

]
= E

[
1{0≤XT ,YT }XT (1−GT )(1− FT )

]
≥ 0

by definition of F and G. Hence

lim
ε→0

lim sup
n→∞

R(F ε,n, G)−R(F,G) ≥ 0.

It remains to prove (5.5). By definition of θε, it is clear that θε (hence also ξε)
increases as ε decreases to zero. Thus,

ξε −→ 1∩ε>0{θε<T}, P -a.s.

Now, observe that 0 ≤ XT , 0 ≤ YT on the event {θε < T for all ε} by continuity at
T of the Snell envelopes U and V . Conversely, on the event {0 < XT , 0 ≤ YT }, it
is clear that θε < T for all ε, again by continuity of U and V . This provides claim
(5.5).

Given the result of Lemma 5.1, the statement of Proposition 4.2 follows directly
from the following reduction of strategies of Player 1 from W1 to V1.

Lemma 5.2. Let (X,Y, Z) be a triple of processes satisfying (2.1). Assume further
that X is a semimartingale and Z ≤ Y . Then, for any G ∈ V2 and F ∈ W1, there
exists a sequence (Fn) in V1 such that

lim sup
n→∞

R(Fn, G) ≥ R(F,G).

Proof. For each integer n, define F̃n ∈ V+ by

F̃n
t = Ft −

∑
s≤t

∆Fs1{∆Fs≤n−1}
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so that the jumps of F̃n are of size greater than n−1, and therefore F̃n has a finite
number of jumps. Clearly, we have the pointwise convergence

F̃n
t −→ Ft, 0 ≤ t ≤ T, P -a.s.(5.6)

Since F̃n has a finite number of jumps, it follows from a diagonal extraction argument
that there exists a sequence of continuous processes Fn ∈ V+ such that Fn− F̃n

− → 0
pointwise, P -a.s. From the pointwise convergence (5.6), this provides

Fn −→ F−, P -a.s.

In order to obtain the required result, we shall prove that

lim
n→∞R(Fn, G) ≥ R(F,G).(5.7)

First, observe that by Itô’s lemma (see, e.g., Theorem I.4.57 in Jacod and Shiryaev
(1987)), we have

R(F,G) = E

[∫ T

0

Y (1− F−)dG

]
− E

[∫ T

0

F−d(X(1−G))

]

+E


∑

[0,T ]

(Z − Y )∆F∆G




+E [XT (1−GT )FT−] + E [XT (1−GT )∆FT ]

≤ E

[∫ T

0

Y (1− F−)dG

]
− E

[∫ T

0

F−d(X(1−G))

]
(5.8)

+E [XT (1−GT )FT−] + E [XT (1−GT )∆FT ] ,

where we used the condition Z ≤ Y of Theorem 3.1. Since Fn → F−, mG and
mX(1−G)-a.s., it follows from dominated convergence that

lim
n→∞E

[∫ T

0

Y (1− Fn)dG

]
= E

[∫ T

0

Y (1− F−)dG

]
,

lim
n→∞E

[∫ T

0

Fnd(X(1−G))

]
= E

[∫ T

0

F−d(X(1−G))

]
,

lim
n→∞E [XT (1−GT )Fn

T ] = E [XT (1−GT )FT−] .

In view of (5.8), and since Fn is continuous, this proves that

lim
n→∞R(Fn, G) ≥ R(F,G)− E [XT (1−GT )∆FT ] .

Finally, observe that

XT (1−GT )∆FT ≤ XT (1−GT )∆FT1{XT>0}1{GT<1}
= XT (1−GT )∆FT1{0<XT ,0≤YT }1{GT<1}
= 0,
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where we used the fact that G ∈ V2 and F ∈ W1. This ends the proof of (5.7), and
the proof of Lemma 5.2 is complete.

Remark 5.1. In the last proof, we used for the first time the fact that X is a
semimartingale. The reason is that we needed to apply integration by parts in the

integral
∫ T
0

X(1−G)dF , and therefore we needed the stochastic integral with respect
to process X to be well defined. Similar integration by parts are involved in the
proofs of Lemmas 6.3 and 6.4, which then require the assumption that X and Y are
semimartingales.

6. The value on restricted strategy spaces. This section is devoted to the
proof of Proposition 4.3. As argued earlier, we shall apply Sion’s theorem to the sets
S = V1 and T = V2. We first define a suitable topology on V1 and V2.

Let S be the set of all F-adapted processes Z satisfying Z0− = 0 and

E

[∫ T

0

Z2
t dt + (∆ZT )2

]
< +∞, where ∆ZT = ZT − lim inf

t↗T
Zt.

The space S is a separable Hilbert space when endowed with the scalar product

1

T + 1
E

[∫ T

0

WtZtdt + ∆WT∆ZT

]
.

Notice that V1 and V2 are convex subsets of BS , the unit ball of S.
Lemma 6.1. The set V2 is compact for the weak topology σ(S,S).
Proof. Since BS is compact for the weak topology σ(S,S), it suffices to prove

that V2 is closed for the weak topology or, equivalently, for the strong topology, by
convexity.

Let (Zn) be a sequence in V2, which converges strongly to some Z ∈ S. Then,
possibly along some subsequence,

Zn −→ Z, λ⊗ P -a.s.,(6.1)

and

ZnT −→ ZT , P -a.s.(6.2)

Clearly, this shows that Z inherits the nondecrease of (Zn), Z0− = 0, and ZT ≤ 1. We
now check that ∆ZnT → ∆ZT , P -a.s. By Fubini’s theorem, it follows from (6.1) that,
P -a.s., Znt → Zt for λ-a.e. t ∈ [0, T ]. Since Zn and Z are nondecreasing, we see that,
P -a.s., Znt− → Zt− for every t ∈ [0, T ]. Thus, from (6.2), this yields ∆ZnT → ∆ZT ,
P -a.s. The required result follows from the fact that ∆ZnT = 0 on the event {YT > 0}.
Observe finally that ZnT = 1 for every n implies ZT = 1.

Lemma 6.2. Let (Fn)n be a sequence in V1 converging to some F ∈ V1 in the
sense of the strong topology of S. Then

lim
n→∞Fn

t = Ft for all t ∈ [0, T ], P -a.s.

after possibly passing to a subsequence.
Proof. Let (Fn) be as in the statement of the lemma. Then, by possibly passing

to a subsequence, Fn −→ F, λ⊗P -a.s., and Fn
T −→ FT , P -a.s. By the same argument

as in the previous proof, we use Fubini’s theorem and the nondecrease of Fn and F
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to see that Fn
t− −→ Ft− for all t ∈ [0, T ], P -a.s. The required result follows from the

continuity of Fn and F .
Lemma 6.3. Let (X,Y, Z) be a triple of processes satisfying (2.1). Assume further

that X is a semimartingale. Then, for all G ∈ V2, the function R(., G) is continuous
on V1 in the sense of the strong topology of S.

Proof. By Itô’s lemma,

XT (1−GT )FT =

∫ T

0

X(1−G−)dF +

∫ T

0

F (1−G−)dX −
∫ T

0

FXdG

=

∫ T

0

X(1−G)dF +

∫ T

0

F (1−G−)dX −
∫ T

0

FXdG

since F is a continuous process. Then

R(F,G) = E

[∫ T

0

Y dG

]
− E

[∫ T

0

F (1−G−)dX

]
+ E [XT (1−GT )FT ]

+E

[∫ T

0

(X − Y )FdG

]
.

Let (Fn)n be a sequence in V1 converging to F ∈ V1. We intend to prove that

lim
n→∞R(Fn, G) = R(F,G).

Consider any subsequence (Fnk) such that limk R(Fnk , G) exists. It suffices to prove
that this limit is independent of the subsequence and equal to R(F,G). For ease of
notation, rename the subsequence (Fn). From Lemma 6.2, by possibly passing to a
subsequence, we can assume that, P -a.s.,

lim
n

Fn
t = Ft for all t ∈ [0, T ].

Then, Fn → F , mX ⊗ P -a.s., and mG ⊗ P -a.s. and the result follows by dominated
convergence.

Lemma 6.4. Let (X,Y, Z) be a triple of processes satisfying (2.1). Assume further
that Y is a semimartingale. Then, for all F ∈ V1, the function R(F, .) is continuous
on V2 in the sense of the strong topology of S.

Proof. As in the previous proof, let (Gn) be a sequence in V2 converging to G ∈
V2. We intend to prove that

lim
n→∞R(F,Gn) = R(F,G).

Consider any subsequence (Gnk) such that limk R(F,Gnk) exists. It suffices to prove
that this limit is independent of the subsequence and equal to R(F,G). For ease
of notation, rename the subsequence (Gn). Recall that G is nondecreasing. Then,
applying the same argument as in the proof of Lemma 6.1, we see that by possibly
passing to a subsequence, we can assume that

Gn −→ G, λ⊗ P -a.s., Gn
− −→ G−, P -a.s.

and

Gn
T −→ GT , P -a.s.
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Set Ŷ := Y (1− F ). By Itô’s formula and the continuity of F ,∫ T

0

Y (1− F )dFn = ŶTG
n
T −

∫ T

0

GndŶ +
∑

0≤t≤T
∆Yt(1− Ft−)∆Gn

t

= ŶTG
n
T −

∫ T

0

GndŶ c +
∑

0≤t≤T
∆Yt(1− Ft)G

n
t−.

Since F and Ŷ c are continuous, Gn → G, mF ⊗ P -a.s. and m
Ŷ c ⊗ P -a.s, and the

result follows by dominated convergence.
Proof of Proposition 4.3. The strategy sets S = V1 and T = V2 are convex

topological spaces when endowed with the weak topology σ(S,S). From Lemma 6.1,
V2 is compact for σ(S,S).

Since R(F,G) is bilinear, the sets {G ∈ V2 : R(F 0, G) ≤ c} and {F ∈ V1 :
R(F,G0) ≥ c} are convex for all F 0 ∈ V1, G0 ∈ V2, and c ∈ R. Then in order to
prove that they are closed for the weak topology σ(S,S), it suffices to prove that
they are closed for the strong topology of S. The latter is a direct consequence of
Lemmas 6.3 and 6.4. We are then in the context of Sion’s theorem, and the proof is
complete.

7. Extended problem and randomized stopping times. In this section,
we first provide a justification of V+ as being the natural mixed strategy set, which
has been described heuristically in section 3. Then we derive rigorously the payoff
function R(F,G) defined in the extended strategy set V+ × V+.

For ease of exposition, we shall discuss the case Z = Y only. The general case
follows immediately by adding up the jump term induced by Z.

In game theory, mixed strategies are defined as probability distributions over pure
strategies. In the context of Dynkin games, pure strategies are stopping times. At
this stage, the main problem is to define a measurable structure on the set of stopping
times. There are two ways to avoid this difficulty. Following Aumann (1964), one may
define mixed strategies by enlarging the probability space; this viewpoint is discussed
in section 7.1. An alternative approach consists of defining the notion of randomized
stopping time by means of functional analysis arguments; this is discussed in section
7.2. We shall (essentially) show that V+ is in one-to-one correspondence with the set
of mixed strategies and with the set of randomized stopping times. Therefore, both
approaches are equivalent.

7.1. Mixed strategies. We enlarge the probability space from (Ω, P ) to ([0, 1]×
Ω, λ1⊗P ), where λ1 is the Lebesgue measure. A mixed strategy (for Player 1) is then
defined as a λ1 ⊗ P measurable function φ mapping [0, 1]× Ω into [0, T ] such that

for λ1-a.e., r ∈ [0, 1], σr := φ(r, ·) is a stopping time.

We denote by Φ the space of mixed strategies. Loosely speaking, ([0, 1], λ1) is a
randomizing device for Player 1. In order to introduce an independent randomizing
device for Player 2, we need to have an independent copy ([0, 1], λ2) of the probability
space ([0, 1], λ1). The corresponding set of mixed strategies is denoted by Ψ; a generic
element of Ψ will be denoted by ψ, and, for r ∈ [0, 1], we set τr := ψ(r, ·).

Hence, the underlying probability space for the extended Dynkin game is ([0, 1]×
[0, 1]× Ω, λ1 ⊗ λ2 ⊗ P ).

Recall that the payoff function on the stopping times is denoted by R̃, and its
extension to V+ is denoted by R. The following result provides a justification of the
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definition of V+ as the set of mixed strategies, and R as the payoff function on the
extended strategy sets.

Proposition 7.1. (i) There exists a mapping H from Φ (or Ψ) onto V+.

(ii) For every (φ, ψ) ∈ Φ×Ψ, we have

Eλ1⊗λ2

[
R̃(σ, τ)

]
= R(H(φ), H(ψ)).

Proof. We only prove (i) for the set Φ. For φ ∈ Φ, define the process H(φ) by

H(φ)t =

∫
1{σr≤t}λ1(dr) = Eλ1

[1{σ≤t}] for t ∈ [0, T ].

Clearly, H(φ)0− = 0, H(φ) is nondecreasing, right-continuous and H(φ)T ≤ 1. Since
σr is a stopping time for λ1-a.e., r ∈ [0, 1], the process H(φ) is F-adapted. This proves
that H(φ) ∈ V+. To see that H is onto, define

φF (r, ω) := inf{s ≥ 0 : Fs(ω) > r} for F ∈ V+.

Observe that φF ∈ Φ, since F is F-adapted and right-continuous. Set σr := φF (r, ·).
For t ∈ [0, T ], we compute

H(φF )t =

∫
1{σr≤t}λ1(dr) =

∫
1{Ft≥r}λ1(dr) = Ft,

which concludes the proof of (i).

Let (φ, ψ) ∈ Φ×Ψ, and set Ft = 1{σ≤t} and Gt = 1{τ≤t}. By Fubini’s theorem,

Eλ1⊗λ2⊗P

[∫ T

0

X(1−G)dF

]
= Eλ1⊗P

[∫ T

0

X(1−H(ψ))dF

]
.

By Itô’s lemma, this provides

Eλ1⊗λ2⊗P

[∫ T

0

X(1−G)dF

]
= Eλ1⊗P

[
XT (1−H(ψ)T )FT −

∫ T

0

F−d(X(1−H(ψ))

]

= EP

[
XT (1−H(ψ)T )H(φ)T −

∫ T

0

H(φ)−d(X(1−H(ψ))

]
,

where we again used Fubini’s theorem. By another application of Itô’s lemma, we get

Eλ1⊗λ2⊗P

[∫ T

0

X(1−G)dF

]
= EP

[∫ T

0

X(1−H(ψ))dH(φ)

]
.

The same argument applies to the second integral
∫ T
0

Y (1− F−)dG. Hence,

Eλ1⊗λ2

[
R̃(σ, τ)

]
= EP

[∫ T

0

X(1−H(ψ))dH(φ) + Y (1−H(φ)−)dH(ψ)

]

= R(H(φ), H(ψ)).
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7.2. Randomized stopping times. In this section, we describe briefly the
functional analysis approach in order to define the notion of randomized stopping
times introduced by Bismut (1979). We shall recall a representation theorem which
connects randomized stopping times to our set V+.

Let Y be the space of càdlàg optional processes Y defined on [0, T ] such that

E

[
sup
t∈[0,T ]

|Yt|
]
< +∞.(7.1)

Observe that Y is a Banach space when endowed with the norm defined by (7.1). We
denote by Y ′ the dual space of Y. Then we have the following representation result
of elements of Y ′.

Proposition 7.2 (see Bismut (1979)). For any µ ∈ Y ′, there exist two right-
continuous adapted processes with finite variation A and B valued in R∪ {+∞} such
that

〈µ, Y 〉 = E

[∫ T

0

Y dA + Y−dB

]
for all Y ∈ Y.

Proposition 1.3 in Bismut (1979) provides a uniqueness result for such a repre-
sentation under further restrictions on A and B.

Definition 7.1. A randomized stopping time is an element µ ∈ Y ′, for which
there exists a representation with B = 0, A nondecreasing and AT ≤ 1.

The following easy consequence establishes the connection between our set of
extended strategies V+ and the set of randomized stopping times.

Corollary 7.1. There is a bijection between V+ and the set of randomized
stopping times.

Proof. To every randomized stopping time µ, we can associate A ∈ V+ by the
above representation. Conversely, given A ∈ V+, it is easy to check that Y �→
E
∫ T
0

Y dA belongs to Y ′.
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Abstract. The H2/H∞ problem is formulated in a Hilbertian context. It has a unique solution,
which is the strong limit of sequences generated by Galerkin methods based on convenient, but not
necessarily orthogonal, generator sets. Using these results, a methodology to solve the problem by a
Galerkin method is proposed, and an example is solved and compared to other approaches.

Key words. optimal control, robust control, H2/H∞ problem, linear control systems, weighted
Hardy spaces
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1. Introduction. The simplest H2/H∞ problem is to find a function K(. ) in
the Hardy class H∞

+ minimizing the quadratic criterion

J [K(. )] =

∫ ∞

−∞
{K(−iω)Γ(iω)K(iω) +K(−iω)γ(iω)}dω,

under the H∞ constraint

ess sup|A(iω)K(iω) +B(iω)| ≤ λ,

where Γ(. ), γ(. ), A(. ), and B(. ) are known rational functions, λ is a given positive
real number, and the essential supremum is taken on the set of real numbers ω. This
problem arises in quadratic optimal control theory for linear systems when robustness
conditions or filtering constraints are imposed on the controller. This paper shows
that, in spite of the H∞ constraint, the above optimal control problem is well-posed
in a larger space, H2,−1

+ , a Hilbert space to be defined here. It means that the optimal
control problem has a unique solution in this space with desired regularity properties,
under suitable conditions on the functional J [ . ]. Moreover, this functional setting
leads to the definition of generator sets such that Galerkin methods converge to the
optimal control problem solution. A significant remark is that it is possible to measure
the approached solution quality when the proposed method is coupled with the dual
method presented in [1]. The design of a pitch optimal control of a fighter airplane is
presented as an example to show the numerical viability and to allow for comparison
with other design methods.

The crucial point in this paper is the construction of a Hilbert space containing
the usual Hardy spaces H2

+, H
∞
+ such that bounded and closed sets in both spaces

are also bounded closed in this new space. The embedding of the original problem
in this new setting allows the use of Hilbert space convex optimization tools to solve
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the problem. The H∞
+ constraint carries the optimal solution into this last space

with no further considerations about the H∞
+ non-Hilbertian topology. Besides, this

construction will be necessary to build a chain of Hilbert spaces needed to represent
the optimal solution regularity, which is essential information for the Galerkin method
convergence properties.

In the remainder of this section, a survey of theH2/H∞ problem and the notation

to be used will be presented. The geometry of the Hilbert spaces H2,−1
+ and H2,−k

+ is
presented in section 2. The unconstrained H2 optimal control problem is rewritten in
section 3 as a minimum norm problem in a suitable space H2,−k

+ according to the data;
this clarifies its existence and regularity properties. The constrained H2/H∞ optimal
control problem is solved in Theorem 7 of section 4, which states the existence and
uniqueness results cited above. The convergence of Galerkin methods is the subject
of section 5, and a numerical example is presented and discussed in section 6. Some
extensions of those results are shown in the last section, particularly to multivariable
problems. All proofs which are not in the main text can be found in Appendix A.

After the introduction of the Youla–Kučera parameterization [2], [3], quadratic
criteria for Wiener–Hopf linear-quadratic optimal control problems have been consid-
ered, allowing the manipulation of well-defined technical or physical optimal solution
characteristics, as rms transient error, plant saturation and closed-loop sensitivity [2],
transient specifications against shape-deterministic exogenous inputs [4], performance
measures [5], [6], [7], servomechanism specifications [8], and transient specifications
[9]. The work in [9] presents a heuristic procedure to choose the criteria weighting
filters in such a way that a trade-off between overshoot and time constant can be
obtained. All these papers consider the controller set as an optimization variable,
with the set of controllers being parameterized by real-rational proper stable rational
matrices. Explicit expressions for the optimal solutions are derived.

These linear-quadratic criteria have been enriched by quadratic ofH∞ constraints
to consider performance or robustness conditions in [6], [7], [10], and [11]. In particu-
lar, H∞ constraints have been used to impose a prespecified robustness degree to the
optimal solution (see [12]), but they can be used also to impose other specifications,
such as filter constraints (see [13]).

Other methods have been proposed to solve the H2/H∞ problem as well. Some of
these methods modify the original optimization criteria to obtain new mathematical
problems but obscuring the original physical interpretation. Examples are the meth-
ods described in [5], [10], and [11]. Direct methods, using expansions in series, do not
modify the original criteria; they were proposed in [14] in a different context, and in
[15], [16], [17], and [18]. Reference [17] considers discrete-time linear systems, present-
ing an algorithm to solve an approximate version such that the optimal parameter is
exponentially stable. The other references consider the continuous-time case by using
Laguerre functions as a generator set but do not prove the existence of an optimal
solution. Reference [18] addresses the existence proof discussed in [19]. However, [19]
does not contain such a proof but simply states that “it is easy to show that [the
quadratic functional] has a unique minimum h∗ on [the constraint set]”. It is worth
noting that these papers assume the Youla parameter in the usual quadratic Hardy
space, a functional space not containing biproper rational functions. Moreover, [18]
presents an extension of the algorithm already proposed in [17]. These assumptions
are addressed in the last section. In [20], the use of linear matrix inequalities (LMIs)
is proposed to solve the H2/H∞ problem but under assumptions too restrictive and
unnatural.
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A recent methodology was presented in [1] where a sequence of H2 constraints
approaching the original H∞ constraint was built. In this method, each H2 constraint
defines a pure H2 problem solved by a dual problem whose solution is explicitly given.
The present paper shows that this solution defines a lower bound to the original
optimal cost, with the sequence of these solutions monotonically approaching the
optimal solution, when they exist. Such an algorithm will be used here as a part of a
methodology to establish lower bounds to the optimal criterion value.

Actually, it is possible to obtain only approximate solutions. Indeed, paper [19]
presents a theorem stating that the optimal solution is infinite-dimensional when the
H∞ constraint is active, which forces the designer to find rational approximations
to the optimal solution. Moreover, [19] shows that the optimal parameter cannot be
exponentially stable.

A first explicit proof for the existence and uniqueness of the H2/H∞ problem
solution was given by the authors in [21], searching for the solution in the space
generated by completing the set of real-rational proper stable functions under the
norm defined by the quadratic criterion term. This result was further developed in
[22], allowing a complete methodology to solve the H2/H∞ problem without changes
in the criteria and in the constraints other than projections on finite-dimensional
spaces. This methodology will, in part, be shown here. The present paper develops
a more complete mathematical theory for the problem, determining the existence,
uniqueness, and regularity to the solutions under natural assumptions and proving
the convergence of the Galerkin approximating sequence to the optimal solution.

Notations. Let N, Z, R, and C denote the natural numbers (i.e., the positive
integers), the integers, the real, and the complex numbers, respectively. Also, let
|s|, s̄, and Re{s} denote the modulus, the conjugate, and the real part of a complex
number s, respectively.

With i denoting
√−1, let iR = {iω, ω ∈ R}, C0

+ = {s ∈ C: Re{s} > 0}, and
C0

− = {s ∈ C: Re{s} < 0}. The functions f : A→ B are denoted as f , f(. ), or f(s),
with f(s) also denoting its value at s ∈ A. A function f(. ) is real if it maps real
numbers in real numbers.

If f(. ) = n(. )/d(. ) is rational, with n(. ) and d(. ) being polynomials, ∂r(f) de-
notes its relative degree, defined as the integer “degree of d(. ) − degree of n(. ).” Also
f∗(s) = f(−s), |f(iω)|2 = f̄(iω)f(iω) (or f∗(iω)f(iω) if f(. ) is real).

The usual inner product and the usual quadratic norm are defined by

〈f, g〉2 =
∫ ∞

−∞
f̄(iω)f(iω)dω and ‖f‖2 = [〈f, f〉2]1/2 =

[∫ ∞

−∞
|f(iω)|2dω

]1/2
.

The H∞ norm is defined by

‖f‖∞ = ess sup|f(iω)|,
the supremum taken on ω ∈ R. The symbols Rm, R

+
m, and R−

m denote the classes
of rational functions with relative degree greater than or equal to m, without poles
in iR, in iR ∪C0

+ (stable functions), and in iR ∪C0
− (completely unstable functions),

respectively.
The symbols H2

+, H
2
−, H

∞
+ , and H∞

− represent the usual Hardy classes studied
in [23], [24]. The principal features of these spaces to be used here are given in what
follows. The two spaces of stable functions are defined by

H2
+ = {f : C0

+ → C analytic in C0
+ : ∃ M <∞ with ‖f(a+ iω‖2 < M ∀ a > 0},

H∞
+ = {f : C0

+ → C analytic and bounded in C
0
+},
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H2
− and H∞

− defined analogously by changing the symbol “+” by “−” and assuming
a < 0.

Also, if

L2(iR) = {f : iR→ C : ‖f‖2 <∞},

it can be proved that 〈f, g〉2 is an inner product in L2(iR), H2
+, and H2

−, with all these
spaces being Hilbert spaces under this inner product. The functional spaces H2

+ and
H2

− can be identified to be orthogonal subspaces of L
2(iR) so that L2(iR) = H2

+⊕H2
−

(an orthogonal sum of subspaces). The symbols [f ]+ and [f ]− denote the orthogonal
projection of f ∈ L2(iR) in H2

+ and H2
−, respectively, and H∞

+ , H∞
− are Banach

spaces under the norm ‖. ‖∞.
The symbol A0 denotes the subset of H

∞
+ -functions continuous on the completed

imaginary axis. The symbol Â(β1) denotes the class of Laplace transforms of distri-
butions in the Callier–Desoer algebra A(β1), and Â−(β) denotes the set of functions
belonging to Â(β1) for some β1 < β.

If H represents a locally convex topological vector space [25], H ′ denotes its
topological dual endowed with its strong topology. If H and V are such spaces,
H + V and H ⊕ V denote their sums and their direct sums, respectively. The latter
means H ∩ V = {0}, the trivial subspace. Further information about these concepts
can be found in [25], [26], or [27].

2. A functional setting for the optimal control problem. This section
presents the functional setting to formulate the H2/H∞ problem as a well-posed
problem. The basic idea is to define spaces containing H2

+ and H∞
+ such that the

quadratic functional to be minimized is continuous and the constraints convex, closed,
and bounded. Actually, a chain of spaces likeH2

+ will be defined to utilize the problem
regularity.

Definition 1. Let Φ−k = (s+ 1)
−k, k ∈ Z, let

〈f, g〉2,−k =

∫ ∞

−∞
f∗(iω)Φ∗

−k(iω)Φ−k(iω)f(iω)dω,

and let

‖f‖2,−k = [〈f, f〉2,−k]
1/2 =

[∫ ∞

−∞
|Φ−k(iω)f(iω)|2dω

]1/2
.

Set

L2
−k(iR) = {f : iR→ C : ‖f‖2,−k <∞},

H2,−k
+ = {f : C0

+ → C is analytic in C0
+ : ∃ M <∞

such that ‖f(a+ iω)‖2,−k < M ∀ a > 0},

H2,−k
− the analogous space using a < 0 and C0

− in its definition.
As 〈f, g〉2,−k = 〈Φ−kf,Φ−kg〉2 and ‖f‖2,−k = ‖Φ−kf‖2, it is easy to prove that

〈f, g〉2,−k defines an inner product and ‖f‖2,−k is the associated norm in the spaces
defined above (see Appendix A). Moreover, the usual L2(iR), H2

+, and H2
− spaces are

the special cases where k = 0. The next theorem presents the geometrical properties
of the spaces defined here.

Theorem 1. Let the spaces L2
−k(iR), H

2,−k
+ , H2,−k

− be as in Definition 1.
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(a) L2
−k(iR), H

2,−k
+ , H2,−k

− are the completion of the sets R1−k, R
+
1−k, and R−

1−k

in the norm ‖. ‖2,−k, respectively. Moreover, they are Hilbert spaces with
respect to the corresponding inner product.

(b) H2,−k
+ and H2,−k

− are closed subspaces of L2
−k(iR).

(c) L2
−k(iR) = H2,−k

+ +H2,−k
− . If k ≤ 0, then H2,−k

+ ∩H2,−k
− is empty. If k ≥ 1,

then H2,−k
+ ∩H2,−k

− contains the polynomials in s with degree less than or equal
to k−1 and the functions defined by

∑∞
m=1 αme−stm , where

∑∞
m=1 |αm| <∞

and, for any m, tm > 0.
Remark 1. It is worth noting that a rational function f(s) without poles in iR

belongs to L2
−k(iR) if and only if ∂r(f) ≥ 1− k. Alternatively, if ∂r(f) = m and f(s)

has no poles in iR, then f(s) ∈ L2
−k(iR) for each k ≥ 1−m.

The next theorem collects some results relating the topologies of H∞
+ , L

2
−k(iR),

and H2,−k
+ for different indexes k.

Theorem 2. Let the spaces L2
−k(iR), H

2,−k
+ , H2,−k

− be as in Definition 1 and let
k < m.

(a) L2
−k(iR) ⊂ L2

−m(iR). The linear spaces L2
−k(iR) and L2

−m(iR) are isomet-
rically isomorphic, the isometry from L2

−k(iR) to L2
−m(iR) being injective

and the inverse isometry being surjective. Therefore, the L2
−k(iR) topology is

strictly finer than the L2
−m(iR) topology.

(b) H2,−k
+ ⊂ H2,−m

+ . The H2,−k
+ topology is strictly finer than the H2,−m

+ topol-
ogy.

(c) L2
−k(iR) is dense in L2

−m(iR), H2,−k
+ is dense in H2,−m

+ . In particular, if

k ≥ 1, the sets R0, R+
0 , and R−

0 are dense in L2
−k(iR), H2,−k

+ , and H2,−k
− ,

respectively.
(d) H∞

+ ⊂ H2,−1
+ , the H∞

+ topology being strictly finer than the one of H2,−1
+ .

Remark 2. Property (c) says that biproper rational functions can be approached
in H2,−1

+ by strictly proper rational functions, diminishing the relative degree at the
limit. As an example, fn(s) = n(s+n)−1 converges to the constant function f(s) ≡ 1
in the H2,−1

+ topology. This explains why it is possible to find complete sets for H2,−k
+ ,

k ≥ 1, formed by strictly proper real-rational stable functions (R+
0 functions).

Remark 3. Let S(iR) denote the space of functions going quickly to zero at
infinity and (S(iR))′ its topological dual (the space of temperate distributions) [26],
[27]. Define S+(iR) as S(iR)∩H2

+ and (S+(iR))
′ as its closure in the (S(iR))′ topology.

With these notations it is possible to prove that, for any k > 1,

S(iR) ⊂ L2
k(iR) ⊂ L2

1(iR) ⊂ L2(iR) ⊂ L2
−1(iR) ⊂ L2

−k(iR) ⊂ (S(iR))′

∪ ∪ ∪ ∪ ∪ ∪ ∪
S+(iR) ⊂ H2,k

+ ⊂ H2,1
+ ⊂ H2

+ ⊂ H2,−1
+ ⊂ H2,−k

+ ⊂ (S+(iR))
′

∪
H∞

+ .

Each space is dense in the next bigger one in the chain. An analogous sequence can be
built for unstable functions spaces. The original H2/H∞ problem will be embedded
in these chains of Hilbert spaces, as will be shown in the next section.

Remark 4. Let Hk denote the order k Sobolev space [26], [27]. As Hk is the
Fourier transform image of L2

k(iR) (by an adaptation of a construction found in [26]),
it is possible to define stable Sobolev spaces [Hk]

+ as the inverse Fourier transform
image of Hk

+. Then, it is possible to build a corresponding sequence of stable Sobolev



1094 M. A. DA SILVEIRA AND R. ADES

spaces also beginning in S+(iR) and ending in (S+(iR))
′. Also, from the structure

theorem (see [26, p. 255]), it is possible to show that the temperate distributions in
(S+(iR))

′ are derivatives of some finite order of functions in [H2]
+.

Now, the crucial point for embedding the H2/H∞ problem in H2,−k
+ will be

considered.
Theorem 3. Consider the spaces presented in Definition 1.
(a) If k ≤ m, the bounded subsets of L2

−k(iR) are bounded in L2
−m(iR), and the

bounded closed subsets of L2
−k(iR) are bounded and closed in L2

−m(iR), the

same relations existing between sets in H2,−k
+ and H2,−m

+ .

(b) The bounded subsets of H∞
+ are bounded in H2,−1

+ , and the bounded closed

subsets of H∞
+ are bounded and closed in H2,−1

+ .
Remark 5. Here it is essential that the subset be bounded. The spaces H∞

+ and

H2
+ are closed and unbounded in its own topologies, but they are dense in H2,−1

+ in
the coarser topology. Also, closed balls in H∞

+ have empty interiors in relation to

H2,−1
+ topology.
The next step is to collect the properties of linear and quadratic functionals in

H2,−k
+ , preparing more tools for minimizing the quadratic criteria defined in section 1.
Theorem 4. Let γ(s) be a real-rational function without poles in iR.
(a) The linear functional

F (f) =

∫ ∞

−∞
f∗(iω)γ(iω)dω

is continuous on H2,−k
+ if and only if ∂r(γ) ≥ k + 1.

(b) The space of continuous linear functional on H2,−k
+ can be identified to H2,k

+

for any k.
Theorem 5. Let Γ(s) be a real rational para-Hermitian function in R2k without

poles or zeros in iR, i.e., Γ(s) = Γ∗(s) and |Γ(iω)| > 0 for each finite ω.
(a) Γ(s) = Φ∗(s)Φ(s), Φ(s) being a real-rational stable function in R+

k with all
its zeros in C0

+ (i.e., minimum-phase).
(b) The quadratic functional

f �→
∫ ∞

−∞
f∗(iω)Γ(iω)f(iω)dω = 〈Φf,Φf〉2 = ‖Φf‖22

is continuous in H2,−m
+ if and only if m ≤ k. It is coercive in H2,−m

+ (i.e.,
there is a real number α > 0 such that 〈Φf,Φf〉2 ≥ α2‖f‖22,−m for all f ∈
H2,−m

+ ) if and only if m = k. Moreover, it is strictly convex, and ‖Φf‖2
defines a norm in H2,−k

+ equivalent to ‖f‖2,−k.

3. Optimal H 2 unconstrained control problems. This section presents the
mathematical extension of the usual H2 unconstrained optimal control problem on
the mathematical framework developed in the last section. New conditions about its
solution will be obtained, clarifying the ones in [8], [9]. This extension will be used in
the next section to solve the H2/H∞ optimal control problem.

The unconstrained H2 problem can be defined as follows: Find a function K̆(s)
solution to

inf
K

{∫ ∞

−∞
[K∗(iω)Γ(iω)K(iω)− 2K∗(iω)γ(iω)]dω

}
= inf

K
J [K],(3.1)
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where the functions K(s) belong to some H2,−k
+ space, or, formally, to (S+)

′, a space
containing H2,−k

+ for all integer k. Γ(s) and γ(s) are given real-rational functions.
Recall that K(s) is the parameter describing the set of stabilizing controllers (or
the set of controllers solving a given servomechanism problem), initially a free real-
rational stable and proper function. To define the functional J [ . ] some assumptions
are needed:
(A1) Γ(s) = Φ∗(s)Φ(s) is a para-Hermitian real-rational function in R2k without

poles or zeros in iR, Φ(s) being a real-rational stable function in R+
k with all

its zeros in C0
+ (i.e., minimum-phase);

(A2) γ(s) is a real-rational function without poles in iR, ∂r(γ) = p.
The functional J [ . ] will be finite only for a meager parameter subset if Γ(s)

or γ(s) have poles on the imaginary axis, as both are rational functions. Indeed,
if such happens, J [K] will be finite only for K(s) with zeros on those imaginary
poles. The other conditions on assumption A1 are natural for quadratic functional on
H2,−k

+ spaces, according to Theorem 5 above. Indeed, it is possible to represent all

integral quadratic real functional on H2,−k
+ spaces as an integral quadratic operator

with a para-Hermitian kernel by a procedure similar to the autoadjoint representation
for integral quadratic functional on L2 spaces. Moreover, Γ(s) is assumed with no
zeros on the imaginary axis because this allows unstable solutions (see Remark 8).
Finally, the Wiener–Hopf factorization Γ = Φ∗Φ is a consequence of the known Youla
factorization theorem cited above as Theorem 5(a) [28].

Lemma 1. Under assumptions A1 and A2, let m = min{k, p − 1}. Then the
functional J [ . ] is continuous in H2,−m

+ but not well-defined in larger spaces, i.e., the

integrals in J [K] diverge for K ∈ (S+)
′−H2,−k

+ (the complement of H2,−k
+ in (S+)

′).
Proof. The first statement follows from continuity conditions in Theorems 4 and

5(b). For the second statement, if K ∈ (S+)
′ −H2,−k

+ is a rational function, J [K] is
not defined because ∂r(K

∗ΓK) ≤ 1 or ∂r(K∗γ) ≤ 1.
Definition 2. The space H2,−m

+ in Lemma 1 will be called the effective domain
of the function J [ . ]. This terminology is inherited from convex analysis and adapted
to the chain of spaces defined here.

Now, note that, for K ∈ H2,−m
+ and m as in Lemma 1, ΦK ∈ H2

+. Then the
functional J [K] can be written as

J [K] = ‖ΦK‖22 − 2
∫ ∞

−∞
{[Φ(iω)K(iω)]∗[Φ∗(iω)]−1γ(iω)}dω.(3.2)

As (Φ∗)−1γ ∈ L2
p−k−1(iR), it can be factorized as a sum of a function in H2,p−k−1

+

with a function in H2,p−k−1
− , according to Theorem 1(c).

If p ≤ k, this factorization is not unique because p− k − 1 ≤ −1. As (Φ∗)−1γ is
rational, it is possible to choose a factorization where the polynomial part of (Φ∗)−1γ
is taken on the unstable factor. This factorization will be denoted by

(Φ∗)−1γ = [(Φ∗)−1γ]+ + [(Φ
∗)−1γ]−,

with ∂r([(Φ
∗)−1γ]+) ≥ 1, [(Φ∗)−1γ]+ ∈ H2,p−k−1

+ , [(Φ∗)−1γ]− ∈ H2,p−k−1
− .

Actually, [(Φ∗)−1γ]+ ∈ H2
+ because it is a stable strictly proper rational function

with all its poles in C0
−.

If p+1 ≥ k, L2
p−k−1(iR) ⊂ L2(iR), p−k− 1 ≥ 0. The above factorization will be

interpreted as [(Φ∗)−1γ]+ ∈ H2,p−k−1
+ ⊂ H2

+, [(Φ
∗)−1γ]− ∈ H2,p−k−1

− ⊂ H2
−, because
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∂r([(Φ
∗)−1γ]+) ≥ p − k ≥ 1. Note that all the stable projections in different spaces

H2,p−k−1
− are denoted by the same symbol [ . ]+, but the spaces will be clear from the

context.
With this notation, the linear part of J [K] becomes

− 2〈ΦK, [(Φ∗)−1γ]+〉2 − 2
∫ ∞

−∞
K∗(iω)Φ∗(iω)[(Φ∗(iω))−1γ(iω)]−dω

= − 2〈ΦK, [(Φ∗)−1γ]+〉2,

the integral being zero since all the integrand poles are in C0
+ and its relative degree is

less than or equal to 2. (The residue theorem applied to a circuit involving C0
− proves

the statement; see [8].) In other words, the unstable term [(Φ∗)−1γ]− is orthogonal
to the stable function ΦK. Then, completing the square in (3.2), we get

J [K] = ‖ΦK‖22 − 2〈ΦK, [(Φ∗)−1γ]+〉2 + ‖[(Φ∗)−1γ]+‖22 − ‖[(Φ∗)−1γ]+‖22

= ‖ΦK − [(Φ∗)−1γ]+‖22 − ‖[(Φ∗)−1γ]+‖22.

Therefore, the minimum of J [ . ] is attained at a parameter K̆ such that ΦK̆ −
[(Φ∗)−1γ]+ = 0, but only if J [K̆] <∞, i.e., only if K̆ belongs to the effective domain
of J [ . ], that is, to H2,−m

+ . These conclusions are collected in the next theorem.

Theorem 6. Let assumptions A1 and A2 be verified, and let K̆ be a rational
function given by

K̆ = Φ−1[(Φ∗)−1γ]+,(3.3)

where [(Φ∗)−1γ]+ denotes the stable strictly proper part of (Φ∗)−1γ, m = min{k, p−1}.
If K̆ ∈ H2,−m

+ (the J [ . ] effective domain), then inf{J [K]} = J [K̆] in H2,−m
+ .

As commented above, in common H2/H∞ problems, K(s) is a proper stable real-
rational function, which means ∂r(K) ≥ 0. In the mathematical framework presented
here, this implies K ∈ H2,−1

+ . This situation is explored in the next corollary, easily

proved from Theorem 6 and the calculations above. Note that the condition H2,−m
+ ⊃

H2,−1
+ is not necessary, but only the condition K̆ ∈ H2,−q

+ ⊂ H2,−1
+ with H2,−q

+ ⊂
H2,−m

+ for some q ≤ 1.
Corollary 1. Under the same assumptions as in Theorem 6, ∂r(K̆) ≥ 0 if and

only if ∂r([(Φ
∗)−1γ]+) ≥ k. Sufficient conditions for this conclusion are p = ∂r(γ) ≥

2k or k = ∂r(Φ) ≤ 1.
Remark 6. The conditions presented in Corollary 1 are sufficient but not nec-

essary. Indeed, for any Φ with ∂r(Φ) = k and for any q ≤ k, it is possible to find
a function γ(s) as in (3.1) such that ∂r(K̆) = 1 − q and J [K̆] < ∞. For that, let
γ = Φ∗B, B ∈ L2(iR) such that ∂r([B]+) = 1 + k − q, which is always possible if
q ≤ k. Note that k ≤ p − 1 = ∂r(γ) − 1, which implies that J [ . ] is well-defined in

H2,−k
+ . Then

∂r(K̆) = ∂r(Φ
−1[(Φ∗)−1Φ∗B]+) = ∂r(Φ

−1[B]+) = 1− q.

Also, K̆ ∈ H2,−k
+ , then J [K̆] <∞.
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In the control context, criteria such as (3.1) usually appear as a functional in the
form

‖AK +B‖22
(3.4)

=

∫ ∞

−∞
{K∗(iω)A∗(iω)A(iω)K(iω)− 2K∗(iω)A∗(iω)B(iω) +B∗(iω)B(iω)}dω,

where B(iω) ∈ L2(iR) is a real-rational strictly proper function with ∂r(B) ≥ 1.
For each simple functional, by direct verification, Φ(s) = A(s), γ(s) = A∗(s)B(s).
Therefore ∂r(γ) = ∂r(Φ) + ∂r(B), which implies the condition:

∂r(γ) ≥ ∂r(Φ) + 1.(3.5)

Condition (3.5) is inherited by sums of quadratic functionals as in (3.4) and will
greatly simplify the use of Theorem 6. Indeed, under such condition, the function
[Φ∗(iω)]−1γ(iω) ∈ L2(iR) because (3.5) corresponds to p + 1 ≥ k. Then the decom-
position used to prove Theorem 6 will be the usual L2(iR) = H2

+ ⊕ H2
−. In other

words, [(Φ∗)−1γ]+ is the usual projection on H2
+. Moreover, m = min{k, p− 1} = k.

Therefore, K̆ = Φ−1[(Φ∗)−1γ]+ is a rational function with ∂r(K̆) ≥ ∂r([(Φ
∗)−1γ]+)−

∂r(Φ) = 1 − k, which implies J [K̆] < ∞ and K̆ ∈ H2,−m
+ = H2,−k

+ with no further

condition. In the other sense, if H2−m
+ = H2,−k

+ , then m = k ≤ p − 1, which implies
(3.5).

These remarks are collected in the next corollary.
Corollary 2. Let assumptions A1 and A2 hold. Then condition (3.5) is equiv-

alent to saying that the effective domain of J [ . ] is H2,−k
+ . In this case the function

K̆(s) given by (3.3) is such that inf{J [K]} = J [K̆] in H2,−k
+ , [ . ]+ denoting the usual

orthogonal projection on H2
+.

Remark 7. The conditions found in the literature about the unconstrained prob-
lem are particular cases of assumptions in Corollaries 1 and 2 [8]. See especially [9], in
which a well-motivated criterion is presented such that these conditions are naturally
verified.

Remark 8. If Γ(s) has zeros on the imaginary axis, Φ(s) will have the same zeros
if the generalized Wiener–Hopf factorization is used as in [28]. Then K̆ given in (3.2)
will have these zeros as poles, being unstable. In other words, the completion of R0

in the norm induced by the quadratic part of J [ . ] will contain, in this case, unstable
rational functions, the minimum being attained in such a function.

Remark 6 shows that ∂k(K̆) can be different from 1−m, where the J [ . ] effective
domain is H2,−m

+ . This possibility will be essential to the algorithm convergence

regularity; see section 5 above. Corollary 1 gives conditions for ∂r(K̆) ≥ 0 if m ≥ 1.
The same considerations used in its proof can be generalized to any relative degree for
the optimal solution. Actually, much of the work found in the literature can be linked
with this search for regularity, and it was essential in the existence proofs in [8], [9]
and in some seminal but unclear comments in [2]. Moreover, a lot of work was needed

in [9] to define a natural criterion such that ∂r(K̆) ≥ 0 for all linear systems for which
the proposed servomechanism problem there is solvable. This natural criteria verify
assumptions A1, A2 and condition (3.5) with k = p = 1. Then, by Corollary 2, m = k,
the effective domain is exactly H2,−1

+ , which eases considerably the application of the
methodology proposed therein.
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4. Optimal H2/H∞ control problems. This section presents the mathemat-
ical extension of the usual H2/H∞ control problem on the mathematical framework
developed in section 2. The optimal solution existence and uniqueness will be proved
in the following and regularity results will be presented.

In theH2/H∞ optimal control problem the goal is to find a function K̂(s) solution
to

inf
K∈Ω∩Θ

{∫ ∞

−∞
[K∗(iω)Γ(iω)K(iω)− 2K∗(iω)γ(iω)]dω

}
≡ inf

K∈Ω∩Θ
J [K],(4.1)

where Ω is a bounded closed convex subset of H∞
+ and Θ is a bounded closed convex

subset of H2
+. The usual examples of sets Ω and Θ arising from performance, filtering,

and robustness specifications are

Ω =

M⋂
m=1

Ωm; Ωm = {K ∈ H∞
+ : ‖AmK +Bm‖∞ ≤ λm},

Am and Bm functions in H∞
+ ;

Θ =
N⋂

n=1

Θn; Θn = {K ∈ H2
+ : ‖CnK +Dn‖2 ≤ µn}, Cn ∈ H∞

+ and Dn ∈ H2
+;

λm and µn are positive real numbers so that the set Ω is nonempty.
Now, under the assumptions of Lemma 1, the criterion functional in (4.1) is

strictly convex and continuous in its effective domain, H2,−m
+ . From Theorem 3(a),

the set Θ is convex, bounded, and closed in H2,−m
+ for m ≥ 0 as a convex, bounded,

and closed subset of H2
+. From Theorem 3(b), Ω is convex, bounded, and closed in

H2,−1
+ as a convex, bounded, and closed subset of H∞

+ . Then Ω is convex, bounded,

and closed in H2,−m
+ for m ≥ 1, from Theorem 3(a). Therefore, we can apply a well-

known theorem [29, Theorem 2.6.1, p. 50] to show the existence and uniqueness of
the optimal solution for problem (4.1).

Theorem 7. Let assumptions A1 and A2 with ∂r(Γ) ≥ 2, ∂r(γ) ≥ 2 be verified.
Then

(a) if the constraint set Ω∩Θ is nonempty, the optimal control problem (4.1) has
one and only one solution in H2,−1

+ ;
(b) if Ω is nonempty, the optimal solution is in H∞

+ ; if Θ is nonempty, the optimal
solution is in H2

+.
Proof. (a) is proved in the above comments. The second statement is clear.
Naturally, it is possible to add H2,−1

+ closed convex subsets as new constraints
without changing the above conclusions.

Remark 9. A direct consequence of this last theorem is the convergence of the
approximating sequence generated by the algorithm proposed in [1] to the optimal
solution of problem (4.1). In the same paper it is shown that the optimal control,
if it exists, belongs to the H∞ constraint boundary. Also, the H2 optimal control
problem is explicitly solved with only H2 constraints by duality, a key to the method
proposed therein.

Before the presentation of numerical methods to solve the optimal control problem
(4.1) it will be interesting to rewrite it as a minimal norm problem, a step in the strong
convergence proof. Assume that K̆ ∈ H2,−q

+ ⊂ H2,−m
+ for some q ≤ m = inf{k, p−1}.



SOLUTION OF THE H2/H∞ PROBLEM BY DIRECT METHODS 1099

Then ΦK̆ ∈ H2
+. Now, the calculations used to prove Theorem 6 give

J [K] = ‖Φ{K − Φ−1[(Φ∗)−1γ]+}‖22 − ‖Φ{Φ−1[(Φ∗)−1γ]+}‖22
= ‖Φ(K − K̆)‖22 − ‖ΦK̆‖22.

(4.2)

Notation. Let ‖f‖Γ = ‖Φf‖2 be a norm associated to the J [ . ] quadratic term,
and let 〈f, g〉Γ = 〈Φf,Φg〉Γ be the associated internal product.

Theorem 5(b) says that if assumption A1 is verified, ‖f‖Γ defines a norm on

H2,−k
+ equivalent to the norm ‖ . ‖2,−k. Then

J [K] = ‖K − K̆‖2Γ − ‖K̆‖2Γ.(4.3)

Therefore, under the assumptions of Theorem 7, the optimal control problem (4.1) is
equivalent to finding a function K̂ solution to

inf
Ω∩Θ
‖K − K̆‖2Γ,(4.4)

a best approximation problem in H2,−k
+ . Note that if condition (3.5) is verified,

H2,−k
+ = H2,−m

+ , but here it is needed only that K̆ ∈ H2,−q
+ ⊂ H2,−m

+ ⊂ H2,−k
+ .

Corollary 3. Let assumptions A1 and A2 hold with ∂r(Γ) ≥ 2, ∂r(γ) ≥ 2.

Problems (4.1) and (4.4) are equivalent if and only if K̆ ∈ H2,−q
+ ⊂ H2,−m

+ ⊂ H2,−k
+ ,

i.e., ∂r(K̆) ≥ 1 − m, m = min{k, p − 1}. Moreover, assumptions A1 and A2 with
∂r(Γ) ≥ 2, ∂r(γ) ≥ 2 and condition (3.5) are sufficient for the same conclusion.

Proof. According to the above comments, the first statement is a consequence
of Theorem 7 and the second statement is a consequence of Theorem 7 and Corol-
lary 2.

The optimal control problem (4.1) can be rewritten as a minimal norm problem

in H2,−k
+ if this space is translated by K̆. For that, redefine G = K− K̆, Ω′ = Ω− K̆,

Θ′ = Θ− K̆. Note that Ω′ and Θ′ are convex, bounded, and closed in H2,−k
+ because

these properties are not changed by translations in a Hilbert space. In these notations
the optimization problem (4.4) can be translated as the new problem: Find a Ĝ ∈
H2,−k

+ solution to

inf
G∈Ω′∩Θ′

‖G‖2Γ,(4.5)

a minimal norm problem. Note that K̆ could not belong to H2,−1
+ . Thus (4.5) shall

be solved carefully from a numerical point of view.
Regularity now is essential: if the optimal control problem needs to be solved

in some H2,−q
+ as a minimal norm problem, beyond the existence conditions in The-

orem 7, the condition H2,−q
+ = H2,−k

+ ⊂ H2,−m
+ will also be needed. This means

q = k ≤ m, with K̆ ∈ H2,−q
+ , or, more exactly, K̆ ∈ H2,−r

+ for some r ≤ q. For
that, Corollary 1 (and its extensions) and Corollary 2 are useful. The usual setting
is q = 1 as in [8], [21], [22], or, in a more restricted way, q = k = 1, as in [9]. In the
present paper this setting is generalized to better understand the weak and strong
convergence of the algorithm proposed in the next section.

5. The Galerkin method. If {βn, n ∈ N} is a generator set for H2,−1
+ , not

necessarily orthogonal, denote byHn the finite-dimensional subspace generated by the
n first vectors in the generator set. Let Ωn be defined as Ω∩Θ∩Hn. If Ωn is nonempty,
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it is possible to project the optimal control problem (2.3) in Hn, which defines the
following finite-dimensional optimization problem: Find a K̂n in Hn solution to

inf
K∈Ωn

{‖K‖2Γ − 2〈K, γ〉2}.(5.1)

As Ωn is a bounded closed convex subset of Hn and the criterion is strictly convex,
this optimal control problem has one and only one solution K̂n in Hn for each n ∈ N

(see [29, p. 50]). The Galerkin method consists of approximating the optimal solution
K̂ to the optimal control problem (4.1) by K̂n if the sequence {K̂n} converges to the
optimal solution K̂.

We need a technical assumption to have Ωn nonempty for n sufficiently large.
(A3) Let A0 denote the set of H

∞
+ -functions continuous in the closed right convex

semiplane. Assume that Ω ∪ A0 has a nonempty relative interior in A0 with
respect to the H∞

+ topology.
This assumption is verified for the usual sets Ωm presented in section 4 because this
set has a nonempty interior in H∞

+ and A0 is a closed subspace of the same space.
Moreover, A0 is the closure of the rational proper stable functions in H∞

+ [30, p. 668].
Theorem 8. Let the assumptions in Theorem 7 and assumption A3 be verified.

Also, assume that the unconstrained optimal solution K̆ does not belong to Ω ∩ Θ.
(Otherwise the optimal solution will be K̆.) Then the sequence {K̂n} generated by the
Galerkin method converges weakly in H2,−1

+ to the unique optimal solution K̂ to the
optimal control problem (4.1).

Under the assumptions of Corollary 3, including (3.5), the optimal control prob-
lem (4.1) can be rewritten as minimal norm problems (4.4) and (4.5), which will allow
us to show the strong convergence of the sequence {K̂n} in suitable spaces. For that,
let {βn, n ∈ N} be a generator set for H2,−k

+ and let ‖ . ‖Γ be the norm defined in
section 4. Thus we can define the projection of the minimal norm problem (4.4) in
Hn as some K̂n in Hn solution to

inf
K∈Ωn

‖K − K̆‖2Γ,(5.2)

where K̆n is the projection of K̆ in Hn. Analogously, translating Hn by K̆n, the
minimal norm problem (4.5) can be projected to finding a Ĝn solution of

inf
G∈Ω′

n

‖G‖2Γ,(5.3)

where Ω′
n = Ωn − K̆n. As Ωn and Ω

′
n are bounded closed convex sets, the optimiza-

tion problems (5.2) and (5.3) have one and only one solution, defining sequences of
functions approximating the optimal solution to optimal norm problems (4.4) and
(4.5) for n ∈ N.

Theorem 9. Let assumptions A1, A2, A3 and condition (3.5) be verified. Also,
assume that ∂r(Γ) ≥ 2, ∂r(γ) ≥ 2, and that K̆ does not belong to Ω ∩ Θ. Then the
sequences {K̂n} and {Ĝn} of all solutions to (5.2) and (5.3) for all n ∈ N converge

strongly in H2,−k
+ to the optimal solutions to (4.4) and (4.5), respectively.

Remark 10. Note that the strong convergence in H2,−1
+ happens only if k = 1

and condition (3.5) is verified, as in [9].
In the proof of Theorem 8, (5.1) and (5.2) are characterized by linear variational

inequalities on H2,−k
+ . Galerkin methods are powerful for solving this type of inequal-

ity in functional spaces [31], generating linear matrix inequalities (LMIs) after the
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choice of a basis for H2,−k
+ . Another approach to problems (4.4) and (4.5) is the one

presented under the name of best approximation, using convex projections or prox-
iminal maps (the mapping from K̆ to K̂). This approach is interesting for minimum
norm problems in Hilbert spaces, as in the present paper, where the proximinal map is
continuous (see [32, pp. 157, 164]). The same reference shows the difficulties when the
problem is considered in H∞

+ , which is not a reflexive Banach space (see [32, p. 77]).

Theorems 8 and 9 deal with convergence in H2,−1
+ , not in H∞

+ . In general, strong

H2,−1
+ convergence does not imply H∞

+ strong convergence. It allows spikes in se-
quences converging to zero, as in fn(s) = (ns + 1)−1 (see the proof of Remark 5 in
Appendix A). Actually, K̂n → K̂ strongly in H2,−1

+ implies Φ−1K̂n → Φ−1K̂ in

measure on the imaginary axis and K̂n → K̂ in measure on any finite measure subset
of the imaginary axis. (In this case the H2,−1

+ and H2
+ strong topologies coincide.)

From [33, Theorem 7.11, p. 73], this implies the almost uniform convergence on the
finite measure subset. But this result does not imply H∞

+ strong convergence even in
those subsets. In spite of these difficulties, the next theorem and remark show some
relevant results in H∞

+ .

Theorem 10. If the sequence K̂n converges to K̂ strongly in H2,−1
+ , as in The-

orem 9, then it converges to K̂ in the weak topology of H∞
+ .

Remark 11. If the sequence K̂n converges to K̂ weakly in H2,−1
+ , as in Theorem 8,

then it is possible to prove, after some identifications, that K̂n converges to K̂ in the
weak-star topology of (H∞

+ )
′.

To end the theoretical presentation of Galerkin methods, some generator set for
H2,−1

+ and for H2,−k
+ must be presented. Due to the density of H2

+ in H2,−k
+ , k ≥ 1,

any one of the bases obtained from the Runge theorem [34] for the space of analytic
functions on C0

+ can be used. Note that the topology used in the Runge theorem (the
topology of the uniform convergence in all compacts in C0

+) is finer than the L2(iR)
topology. An example, already used in [15], is the Laguerre orthonormal basis in H2

+:{
Ln =

√
2a

(s− a)n−1

(s+ a)n
, n ∈ N

}
for each positive real number a.

The numerical experiments in [22] show the interest in the use of redundant sets
of generators, as{

L0 = 1, Ln =
√
2a

(s− a)n−1

(s+ a)n
, n ∈ N

}
for each positive real number a,

which capture more quickly the asymptotic behavior of the optimal solutions. The
proofs of Theorems 8 and 9 apply to these redundant sets without changes.

An orthonormal basis for H2,−1
+ , in relation to the inner product 〈 . . , . . 〉Γ−1 , is

given by {
M0 = 1,Mn =

√
2a (1− s)

(s− a)n−1

(sa)n
, n ∈ N

}
.

Note that ∂r(Mn) = 0, which differs from the Laguerre basis. Reference [22] presents

other orthonormal bases for H2,−k
+ built under the same principle, with the poles of

Φ∗ as the zeros of the basis functions. The numerical solution of (5.2) needs some
mathematical programming development [22], which will be presented in a future
paper. Some comments about the numerical procedure following the developments in
[22] will be presented next.
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After the choice of a redundant generator set, say {1, βn, n ∈ N}, and the choice
of the number of poles of Kn(s), say n, the functions Kn(s) in the finite-dimensional
space Hn can be represented as

Kn(s) =

n∑
m=0

αmβm(s),

where β0(s) represents the constant function. By substitution of this last expres-
sion in (5.1) or (5.2) an (n+ 1)-dimensional programming problem is defined, whose
variable is the (n + 1)-vector +α = (α0, α1, . . . , αn)

T . The integrals in the quadratic
functional calculation can be performed analytically, being this functional quadratic in
+α. Quadratic constraints are differentiable and can be considered by usual methods
[22], but not the H∞ constraints. Actually, there is no need to explicitly calcu-
late these hard constraints, but only a generalized gradient. The reason is that the
finite-dimensional constrained optimization problem was solved by a penalty method
coupled with the known BFGS algorithm, where the position of the H∞ constraint
gradient (which does not exist) was provided by a generalized gradient. If this con-
straint is represented by

sup |A(iω)Kn(iω) +B(iω)| − λ ≤ 0,
it is proved in [22] that the derivative of |A(iω)Kn(iω) +B(iω)| for ω = ω0, ω0 being
one of the values where this function assumes its maximum, is a generalized gradient
for the constraint. The ω0 calculation uses the tools of H

∞ theory, as shown in [6].
Note that the procedure should consider also the case where ω0 =∞. The convergence
of this procedure was proved in [22], and the authors did not find significant problems
in obtaining the optimal parameters K̂n after performing the functional calculations
through state variable and Lyapunov equation tools.

6. Numerical example. The example shown here was developed in [22], where
a more complete discussion can be found. It represents the pitch optimal control of a
fighter airplane described in [35] to exemplify LQG/LQR design, and it is used in [36]
to exemplify the dual method from Corrêa [1]. In this example the transfer function
from the elevation angle to the attitude angle is

P (s) =
−(948,12s3 + 30325s2 + 56482s+ 1215.3)

s6 + 64.554s5 + 1167s4 + 372.86s3 − 5495.4s2 + 1102s+ 708.1
,

the quadratic criterion being the one defined in [9] with weighting filters and weighting
coefficients given by

φw(s) = 0, φd(s) =
1

s2 + 2s+ 2
, φv(s) =

1

s+ 10
, ρv = ρnd = ρuv = 1.

After some calculations, the optimal control problem criterion can be transformed
in

J2[K(s)] = ‖A(s) +B(s)K(s)‖22 + JF ,

where A(s) and B(s) are 14th- and 10th-order rational functions (presented in Ap-
pendix B), both with unitary relative degree, JF = 0.30612, and K(s) is the rational
proper and stable Youla parameter. The stability margin functional for the control
problem, after some transformations to put it in Nehari form [22], is given by

J∞[K(s)] = ‖K(s)− F0(s)‖∞,
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Table 1
Characteristics of some related controllers.

K(s) J2[K(s)] J∞[K(s)] Order

KH2(s) 0.306120137 2.07804793 17

KH∞(s) 3.964188309 0.61051297 1

KSPQ(s) 2.141469573 0.67180700 29

KSPQR(s) 2.141470588 0.67193138 14

F0(s) being a second-order unstable proper rational function (also presented in Ap-
pendix B) with unitary relative degree. The minimum value for J∞[K(s)], i.e., the
optimal stability margin, is 0.610513.

If we define the robustness constraint allowing a 10% degradation of the optimal
stability margin, the H2/H∞ problem to be solved becomes

Find K(s) minimizing J2[K(s)] subject to J∞[K(s)] ≤ γ = 0.6715643.

Assumptions A1 and A2, with k = p = 1, condition (3.5), and the others conditions
on Theorem 7 are verified. Then, by Theorem 7 this problem has one and only one
solution in H2,−1

+ , belonging to H∞
+ . Also, by Theorem 9 the sequence of functions

generated by the Galerkin method, as exposed in section 5, converges strongly to the
H2/H∞ problem optimal solution for any basis or redundant generator set in H2,−1

+ .
Table 1 presents some characteristics of controllers solving related optimal control

problems, where K(s) is the optimization parameter used to obtain a controller by
the Youla parameterization. In the first column,

• KH2(s) represents the Youla parameter corresponding to the controller min-
imizing the quadratic criterion J2[K(s)] without constraints (the H

2 optimal
controller);
• KH∞(s) represents the Youla parameter corresponding to the controller min-
imizing the stability margin (the H∞ optimal controller);
• KSPQ(s) represents the Youla parameter corresponding to an infeasible con-
troller approximating the H2/H∞ problem solution (with γ = 0.6715643)
calculated by the dual method from Corrêa [1];
• KSPQR(s) represents the Youla parameter corresponding to a reduced order
controller generated from KSPQ(s) by truncation of a balanced realization.

Note that KSPQ(s) and KSPQR(s) do not verify the stability margin constraint, as
expected, i.e., they are not feasible.

Table 2 presents the same characteristics for the controllers obtained by Galerkin
method, n = 1, . . . , 9, using the redundant generator set based on Laguerre functions
as in section 4, γ = 0.6715643.

First, all solutions are feasible, as expected. Second, the greater the order, the
smaller the quadratic criterion value. Third, comparing the values of K9(s) and
KSPQ(s) and using the dual solutions properties, we verify that

J2[KSPQ(s)] = 2.141469573 < J2[K̂(s)] < 2.175038 = J2[K9(s)],

K̂(s) being the H2/H∞ problem optimal solution. Therefore, the difference between
the quadratic criterion value error of K9(s) and the quadratic criterion value error of
the optimal solution is less than 1.54%.

Table 3 presents the same characteristics for the optimal controllers obtained by
the Galerkin method using an H2,−1

+ basis generated step by step by minimization
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Table 2
Characteristics of optimal Galerkin controllers for extended Laguerre functions.

K(s) J2[K(s)] J∞[K(s)] Order

K1(s) 2.436117 0.6715643 1

K2(s) 2.367955 0.6715643 2

K3(s) 2.346453 0.6715643 3

K4(s) 2.250182 0.6715643 4

K5(s) 2.209556 0.6715643 5

K6(s) 2.207430 0.6715643 6

K7(s) 2.206113 0.6715643 7

K8(s) 2.191661 0.6715643 8

K9(s) 2.175038 0.6715643 9

Table 3
Characteristics of optimal Galerkin controllers for “optimal step-by-step” basis.

K(s) J2[K(s)] J∞[K(s)] Order

K0A(s) 2.651499 0.6715643 0

K1A(s) 2.417010 0.6715643 1

K2A(s) 2.412348 0.6715643 2

K3A(s) 2.278789 0.6715643 3

K4A(s) 2.195134 0.6715643 4

K5A(s) 2.195134 0.6715643 4

K6A(s) 2.164122 0.6715643 6

of the quadratic criterion (under the H∞ constraint) as a function of both the ba-
sis coefficients and the basis poles [22]. The optimization problem to be solved for
each dimension n is not convex. Then the usual optimization algorithms give only
Hn locally optimal solutions, depending on the algorithm initialization. The BFGS
method extended for generalized gradients was used to solve the finite-dimensional
optimization problems, the constraints considered by a Lagrangian method [22]. As
above, γ = 0.6715643.

Note that K4A(s) and K5A(s) are equal: the new dimension did not allow a
smaller criterion value for the chosen initialization vector. The local character of
the n-dimensional numerical optimization and its dependence on the initialization
vector is shown by the worst behavior of K2A(s) in relation to K2(s). In spite of
those difficulties, the 6th-order controller attains a smaller criterion value than K9(s),
which allows us to find a best estimation for the criterion optimal value and a best
approximation for the optimal controller (corresponding to K6A(s)):

J2[KSPQ(s)] = 2.141469573 < J2[K̂(s)] < 2.164122 = J2[K6A(s)],

with a relative error smaller than 1.05%.
For the sake of comparison, Figures 1, 2, and 3 show the Bode diagrams for

the functions KSPQ(s) − F0(s), K9(s) − F0(s), and K6A(s) − F0(s), respectively. It
was verified in [22] that Bode diagrams for the Galerkin approximations do not show
significant changes after a sufficiently great dimension n, and they do not present
“spikes” in spite of the discussion just before Theorem 10. Numerical calculations
were performed on a PC using MATLAB.
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Fig. 1. Bode diagrams for the function KSPQ(s) − F0(s).

Fig. 2. Bode diagrams for the function K9(s) − F0(s).

7. Conclusions and comments. In this paper the H2/H∞ problem was stud-
ied in the context of weighted Hardy spaces, allowing the proof of the existence and
uniqueness of its solution and the proof of the convergence of the Galerkin method.
Note that this method solves only one convex programming problem after the choice
of the controller order.

The extension of these results to the multivariable case is straightforward but
tedious, in light of the existing techniques presented, for example, in [8] and [37].
Essentially, consider the following notations: M [A] denotes the set of matrices with
entries in A and the dimensions established by the context, KT denotes the transpose
of the matrix K, [K(s)]∗ = [K(−s)]T , Φ(s) denotes a maximal rank real-rational
matrix in M [R1−k] with all its poles and zeros in C0

+, and Γ(s) = Φ
∗(s)Φ(s) denotes

a maximal rank real-rational para-Hermitian matrix,

〈K,G〉Γ =
∫ ∞

−∞
Trace{K∗(iω)Γ(iω)G(iω)}dω,
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Fig. 3. Bode diagrams for the function K6A(s) − F0(s).

‖K‖Γ = [〈K,K〉Γ]1/2, ‖K‖∞ = σ̄{‖Kjk‖∞} (the greatest singular value of the matrix
whose entries are the H∞ norm of the K-entries). With these notations the re-
sults presented in this paper can be rewritten ipsis literis on the spaces M [L2

−k(iR)],

M [H2,−k
+ ], M [H2,−k

− ], M [H∞
+ ], and M [H∞

− ], with the use of M [Rk], M [R+
k ], and

M [R−
k ] and the obvious adaptations in notation and proofs. The conditions on zeros

and poles can be written as det{s2Γ(iω)} > η for some η > 0 and for each real number
ω. This assumption is verified by the functional defined in section 2 [8], [9]. A serious
problem not considered in this paper is the great number of entries in a multivari-
able basis, which increases dramatically the number of parameters in the optimization
problems (4.1), (4.2), and (4.3). The most parsimonious basis, with the same poles in
all the entries of the rational matrix K(s), uses as many parameters as the product
of the entry number by the number of parameters in the one-dimensional problem
(i.e., for an m-dimensional problem on Hn, we have an nm-dimensional optimization
problem).

The algorithms presented in sections 5 and 6 do not explore all the theoretical
possibilities. The freedom in the choice of a generator set allowed by the Runge
theorem linked to a convenient use of model order reduction algorithms by balanced
realizations can be used to build an algorithm optimizing, in a certain sense, the
generator set used in each step of the Galerkin method. The numerical behavior
and the convergence of such an algorithm are better than the simpler algorithms
proposed in this paper, as is shown in [22]. The presentation of the “optimized
basis” methodology will be the subject of a future paper, where the mathematical
programming algorithms to be used will be carefully developed.

Now, some regularity results will be considered, linking our results with [17],
[18], and [19]. First, in Theorem 7 it is assumed that ∂r(Γ) ≥ 2 and ∂r(γ) ≥ 2,
which imposes H2,−1

+ as the natural space for the Youla parameter K(s). Almost
all the literature, in particular [14], [15], [16], [17], [18], [19], and [20], assume this
parameter in H2

+, which means ∂r(Γ) = 0 and ∂r(γ) ≥ 1. Under these conditions, the
optimal unconstrained parameter K̆ belongs to H2

+, J [K] <∞ if and only if K ∈ H2
+

(see section 3). Also the norm in problem (4.4) is equivalent to the H2
+ norm. This

problem can be relaxed to H2,−1
+ , where J [ . ] is a strictly convex upper semicontinuous
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functional [38]. As Ω∩Θ is a nonempty, convex, bounded, and closed subset of H2,−1
+ ,

problem (4.1) has one and only one solution K̂ in this space [38]. But it is easy to
show that there exists almost one K ∈ Ω ∩ Θ ∩ H2

+. As J [K̂] ≤ J [K] < ∞, then
J [K̂] <∞, which implies that K̂ ∈ H2

+.
Theorem 11. Let assumptions A1, A2, and A3 with ∂r(Γ) = 0, ∂r(γ) ≥ 1 be

verified. If the constraint set Ω ∩ Θ is nonempty, then the optimal control problem
(4.1) has one and only one solution in H2

+.
The algorithm in section 5 applies without changes if used with the original La-

guerre basis or any other complete set for H2
+. Thus the sequence K̂n generated by

the Galerkin method approaches the optimal solution strongly in H2
+ and weakly in

H∞
+ .
Another optimal control problem (presented in [18] to obtain rational approx-

imations in H∞
+ ) searches for solutions in A0, the class of continuous functions in

the extended imaginary axis. It is known that A0 ∩H∞
+ is the closure of the proper

rational functions in H∞
+ [30, p. 668]. Then we can redefine problems (4.1) and (4.4)

with constraint set Ω0 = Ω ∩ A0. As A0 is a closed linear subspace of H
∞
+ , Ω0 is

also closed and all the results apply. But the sequences defined in section 5 are the
same for Ω as for Ω0. Thus the optimal solutions for both the problems are the same,
which implies that K̂ ∈ A0. In spite of that regularity, K̂ does not represent an
exponentially stable linear system (except for trivial cases), as a consequence of [19].
Recall that exponentially stable systems with finite numbers of inputs and outputs
are characterized by their transfer functions being in the algebra Â−(0) defined in
section 1 (see [30, p. 364]).

Theorem 12. Let assumptions A1, A2, and A3 with ∂r(Γ) = 2k, ∂r(γ) ≥ 2k+1,
k ≥ 0, be verified. The optimal solution K̂(s) to (4.1) or (4.4) belongs to A0, but it
is not a transfer function of an exponentially stable system; i.e., it does not belong to
the algebra Â−(0) (except for trivial cases).

This theorem rules out functions as e−s, but not e−s/(s + 1). Actually, A0 �

Â−(0), the latter algebra being dense in the former (because Â−(0) contains the
Laguerre functions). Thus (4.1) with a constraint defined by Ω′ = Ω ∩ Â−(0) is not
well-posed, the optimal solution in this case being the same as in the former problem,
i.e., outside Ω′, or, more precisely, in its H∞

+ -boundary.
In [18] a new optimal control problem is defined with an exponentially stable so-

lution. The last paragraph shows that it is necessary to change the problem structure
to force optimal controllers in Â(0). An example of such a new problem, simpler than
the one proposed in [18], is to find K̂ε such that

Jε(K̂ε) = inf
K∈Ωε

{∫ ∞

−∞
[K∗(s)Γ(s)K(s)− 2K∗(s)γ(s)]s=iω−εdω

}
,(7.1)

where Ωε has the same definition as Ω but with the supremum taken in the imaginary
axis translated to the left by ε, the positive real number ε sufficiently small to have
sΓ(s) bounded from zero and without poles or zeros and γ(s) without poles in the
vertical strip

{s = σ + iω, ω ∈ R,−ε ≤ σ ≤ ε}.

This new problem can be solved in the spaces H2,−1
+,ε and H∞

+,ε, defined on the semi-

plane {s ∈ C : Re{s} > −ε} similarly toH2,−1
+ andH∞

+ but with the norms calculated
on the translated imaginary axis iRε = {s = −ε+ iω, ω ∈ R}. It is straightforward to
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extend calculations in sections 4 and 5 to this new problem, proving the existence and
uniqueness of solutions. Applying the Galerkin method to a generator set composed
by rational functions with all poles at the left of iRε, we can find an approaching
sequence K̂nε which converges to the optimal parameter K̂ε, strongly in H2,−1

+,ε and

weakly in H∞
+,ε. Moreover, the optimal solution K̂ε is analytic in an open strip con-

taining the imaginary axis. Thus K̂ε ∈ Â−(0) is exponentially stable. We can show
that (7.1) and the optimal control problem solved in [18] are approximations to (4.1)
in the same sense. In spite of all these convergence results, conditions to K̂n and K̂ε

converge to K̂ strongly in H∞
+ remain an open problem.

Finally, the algorithm proposed in the present paper can be computed in poly-
nomial time as the resolution of a finite-dimensional convex optimization problem by
a quasi-Newton algorithm (in this case the generalized BFGS algorithm) after the
choice of the controller order.

Appendix A. In this appendix we provide the proofs not presented in the main
text.

Proof of comments after Definition 1. As 〈f, g〉2,−k = 〈Φ−kf,Φ−kg〉2 and
Φ∗

−k(iω)Φ−k(iω) > 0 for all ω, the announced properties are inherited from the inner
product and the norm in L2(iR) if the integrals are finite. If f ∈ Rk−1, this last
property is a consequence of f being a rational function without poles in iR and

∂r(f
∗Φ∗

−kΦ−kf) ≥ (1− k) + 2k + (1− k) = 2

(then integrable on iR).
Proof of Theorem 1. (a) The function f belongs to L2

−k(iR) if and only if Φ−kf

belongs to L2(iR), by definition. As R1 is dense in L2(iR) [26], Φ−1
−kR1 is dense in

L2
−k(iR). But Φ

−1
−kR1 = R1−k. Indeed, if f ∈ R1−k, g = (Φ−k)f belongs to R1

because ∂r(Φ−kf) ≥ 1 and g has no poles in iR. In the reverse direction, if f belongs
to R1, then Φ

−1
−kf belongs to R1−k because ∂r(Φ−kf) ≥ 1 − k and f has no poles

in iR. Therefore, R1−k is dense in L2
−k(iR). The same specified argument, when

applied to R+
1 and H2

+, R
+
1−k and H2,−k

+ , R−
1 and H2

−, and R−
1−k and H2,−k

− , proves
the stated densities. The final statement in (a) is a consequence of L2

−k(iR) being the

completion of R1−k in the norm ‖ . ‖2,−k; the same applies to H2
+ in relation to R+

1 ,

to H2,−k
+ in relation to R+

1−k, etc.

(b) H2,−k
+ and H2,−k

− , as closures of R+
1−k and R−

1−k in L2
−k(iR), are closed sub-

spaces.
(c) Theorem 1(c) follows straightforwardly from (a). Note that e−s∆ ∈ H∞

+ for

∆ a positive real number because e(a+ωi)∆ is bounded on each vertical straight line
in C0

+ for each real a < 0. Then e−s∆ belongs to H2,−1
+ .

Proof of Theorem 2. (a) As k < m, Φ−m = ΦΦ−k for some real-rational stable
and minimum phase function with ∂r(Φ) = m − k > 0. Then a function f belongs
to L2

−m(iR) if and only if Φf belongs to L2
−k(iR) as a consequence of Definition 3

and as a consequence of ‖f‖2,−m = ‖Φ−mf‖2 = ‖ΦΦ−kf‖2 = ‖Φf‖2,−k. Therefore,
the operator f → Φf is an isometry from L2

−m(iR) to L2
−k(iR), the inverse isometry

being g → Φ−1
g . By the Cauchy–Schwarz inequality applied in L2(iR),

‖f‖2,−m = ‖ΦΦ−kf‖2 ≤ ‖Φ‖2‖Φkf‖2 = ‖Φ‖2‖f‖2,−k,

and, as ‖Φ‖2 < ∞, L2
−k(iR) ⊂ L2

−m(iR). Then the isometry from L2
−k(iR) to

L2
−m(iR) is an injective mapping and its inverse is a surjective mapping.
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(b) Theorem 2(b) is a direct consequence of Theorems 1(b) and 2(a).
(c) Let k ≥ 0. First, we will prove that R1 is dense in R0 in the L2

−1(iR)
topology. Actually, we need only show that the constant function f(s) ≡ 1 is a limit
of R1-functions in this topology. Defining fn(s) = n(s+ n)−1,

‖fn − 1‖22,−1 =

∫ ∞

−∞

ω2

n2 + ω2

1

1 + ω2
dω =

π

n+ 1
,

which converges to zero if n goes to ∞, showing the desired convergence and the
stated density.

Second, as R0 ⊂ R1 ⊂ L2
−1(iR), R1 is also dense in L2

−1(iR).
Third, as R1 ⊂ L2(iR) ⊂ L2

−1(iR), the density of R1 in L2
−1(iR) implies the

density of L2(iR) in L2
−1(iR).

Fourth, more generally, let M be a total set in L2
−k(iR), k < m, and assume

f(s) ∈ L2
−m(iR). Set∫ ∞

−∞
f∗(iω)Φ∗

−m(iω)Φ−m(iω)g(iω)dω = 0 ∀ g(s) ∈M,

which makes sense because g(s) ∈ L2
−k(iR) ⊂ L2

−m(iR). Then,

fΦ−mΦ
∗
−m ∈ L2

−m(iR) ⊂ L2
k(iR) ≈ [L2

−k(iR)]
′

(where the symbol ≈ denotes the identification to be shown in Theorem 4(a) below,
proved independently from the present theorem), implying that fΦ−mΦ

∗
−m can be

taken as the zero function. This implies that f(s) ≡ 0 because Φ−m(iω)Φ
∗
−m(iω) is

strictly positive for all real ω. Therefore, as g(s) is any function in a total set, the
set M is also total in L2

−m(iR) by a known corollary of the Hahn–Banach theorem.
From k < m, L2

−k(iR) ⊂ L2
−m(iR), proving the density of the first in the second.

Analogous arguments can be used for H2,−k
+ and H2,−k

− .
(d) Assume that fn converges to f in H∞

+ . Then

‖fn − f‖22,−1 =

∫ ∞

−∞
|fn(iω)− f(iω)|2 |Φ−1(iω)|2 dω

≤ ess sup
ω ∈ R

{|fn(iω)− f(iω)|2}
∫ ∞

−∞
Φ∗

−1(iω)Φ−1(iω)dω

≤ ‖fn − f‖2∞‖Φ−1‖22,

and because ‖Φ−1‖22 is finite, fn converges to f in L2
−1(iR). The stability of f is

assured because f ∈ H∞
+ . To complete the proof, let us now exhibit a function in

H2,−1
+ that does not belong to H∞

+ . First, note that there are unbounded functions in

L2(iR), as g(iω) = |iω|−1/4χ[−1,1], where χ[−1,1] denotes the characteristic function
of the closed interval [−1, 1]. Straightforward calculations show that ‖g‖2 = 2 and
that |g(iω)| diverges when ω goes to zero. As a L2(iR) function, g = g+ + g−,
where g+ ∈ H2

+ and g− ∈ H2
−. Both functions cannot be simultaneously bounded,

because g is not bounded. If g+ is unbounded, it is the example completing the proof,
because g+ ∈ H2

+ ⊂ H2,−1
+ but g+ �∈ H∞

+ . If g+ is bounded, g− is unbounded, and

g∗−(s) = g−(−s) ∈ H2
+ ⊂ H2,−1

+ and is unbounded because |g∗−(s)| = |g−(s)|, g∗−(s)
being the example, and completing the proof.
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Proof of Remark 2. Remark 2 is proved in (c) above if we note that

‖fn‖22 =
∫ ∞

−∞

n2

n2 + ω2
dω = nπ,

which implies that the sequence {fn} does not converge in L2(iR) when n goes to ∞,
in spite of its convergence in H2,−1

+ .
Proof of Theorem 3. (a) As k ≤ m, Φ−m = ΦΦ−k for some real-rational stable

and minimum phase function with ∂r(Φ) = m− k ≥ 0. First, if ‖f‖2,−k ≤M , by the
Cauchy–Schwarz inequality

‖f‖2,−k ≤ ‖f‖2,−m‖Φ‖2 ≤M‖Φ‖2,
proving the first part of the statement. Second, the closed balls of L2

−k(iR) are
closed in L2

−m(iR) as an inverse image of closed sets by an isometric isomorphism (see
Lemma 2).1

Third, if Ω is a bounded closed set in L2
−k(iR), it is within a closed ball in L2

−k(iR),
which is a closed subset of L2

−m(iR). As Ω is closed in a closed subset of a metric
subspace of L2

−m(iR), Ω is also closed in L2
−m(iR) (see Theorem 2,II,9,2,b in [25], page

27). Fourth, as H2,−k
+ is a closed subspace of L2

−k(iR), the last property is inherited

by H2,−k
+ .
(b) First, if ‖f‖∞ ≤M ,

‖f‖22,−1 =

∫ ∞

−∞
|f(iω)|2 |Φ−1(iω)|2dω ≤ ‖f‖2∞‖Φ−1‖22 ≤M2‖Φ−1‖22 <∞,

which shows that bounded subsets of H∞
+ are bounded in the L2

−1(iR) metric.

Second, it will be shown that the closed balls in H∞
+ are closed in H2,−1

+ . For that,
let {fn} be a sequence in a closed ball of H∞

+ with radius M , i.e., ‖fn‖∞ ≤M for all
n ∈ N. Let f ∈ H∞

+ with ‖f‖∞ > M . Thus there is a positive real number ε so that
‖f‖∞ is strictly greater than M +2ε. The definition of “essential supremum” implies
that there exists a set E ⊂ R with strictly positive measure so that |f(iω)| > M + ε
for all ω ∈ E. Therefore, fn does not converge to f in H2,−1

+ because

‖fn − f‖22,−1 =

∫ ∞

−∞
|fn(iω)− f(iω)|2 |Φ−1(iω)|2 dω

≥
∫
|fn(iω)− f(iω)|2 |Φ−1(iω)|2 dω

≥
∫
E

|f(iω)2|Φ−1(iω)|2dω −
∫
E

|fn(iω)|2 |Φ−1(iω)|2dω

> [(M + ε)−M ]

∫
E

|Φ−1(iω)|2dω = ε

∫
E

|Φ−1(iω)|2dω > 0,

1A more direct proof uses the weak continuity of the multiplication by Φ. Indeed, reasoning on
L2(iR), L2−1(iR), if fn → f weakly in L2(iR), |

∫
(fn − f)Φgdω| ≤ ‖Φ‖∞

∫
|(fn − f)g|dω → 0 for all

g in L2(iR). Then, if for all n ∈ N, ‖fn‖2 ≤M , there is a subsequence, say {fm}, converging weakly
in L2(iR) to a limit fn such that ‖fw‖2 ≤ M (see [28, p. 26]). The weak continuity proved above
implies that Φfm converges weakly in L2(iR) to Φfw. However, as fn converges to f strongly in
L2−1(iR), Φfn converges strongly to Φf in L2(iR), and then Φfn converges weakly to Φf in L2(iR).

As {fm} represents a subsequence of {fn}, Φfw = Φf (which implies fw = f in L2(iR) because
Φ( . ) is a continuous bounded function with no zeros on iR), it follows that ‖f‖2 ≤M , proving that
the closed ball with radius M in L2(iR) is also closed in L2−1(iR). The same reasoning applies to

L2−k(iR) for any integer k.
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the last integral being strictly positive because Φ−1(iω) is continuous and strictly
positive on the real axis. The contrapositive proposition is

If fn → f in H2,−1
+ , then ‖f‖∞ ≤M,

implying that closed balls of H∞
+ are also closed in the H2,−1

+ topology.
Third, if Ω is a bounded closed set in H∞

+ , it is contained in a closed ball in H∞
+ ,

which is a closed set in H2,−1
+ . As Ω is closed in a closed subset of a metric subspace

of H2,−1
+ , Ω is also closed in H2,−1

+ (see Theorem 2,II,9, 2,b in [25], page 27).
Proof of Remark 5. Let fn(s) = (ns + 1)−1, n ∈ N. These functions belong to

H∞
+ with ‖fn‖∞ = fn(0) = 1. Also

‖fn‖22 =
∫ ∞

−∞

(1/n)2

(1/n)2 + ω2
dω =

π

n
.

Therefore, the sequence fn(s) converges to zero in H2
+ and, a fortiori, in H2,−1

+ . But
it does not converge to zero in H∞

+ . Now, let g(s) ∈ H∞
+ be any function such that

‖g‖∞ ≤ 1. Then gn(s) = g(s) + 3fn(s) converges to g(s) in H2,−1
+ but does not

converge in H∞
+ because ‖gn‖∞ > 2 for all n. Therefore, any function in the closed

unit ball in H∞
+ can be strongly approximated in H2,−1

+ by functions in the exterior

of this ball: all the functions in this set are in its H2,−1
+ boundary. The H∞

+ closed

balls have an empty interior in the H2,−1
+ topology.

Proof of Theorem 4. (a) As continuous linear functionals on Hilbert spaces are
uniformly continuous, we need to prove the statement only on R+

1−k, a dense subset

of H2,−k
+ [38, p. 98]. In this case, as γ(s) and f(s) have no poles on the imaginary

axis, the integral will be finite if and only if ∂r(f) + ∂r(γ) ≥ 2. This occurs for all
f ∈ R+

1−k if and only if ∂r(γ) ≥ 2 − (1 − k) = k + 1. Also, (Φ∗
−k)

−1γ ∈ L2(iR) and
Φ−kf ∈ L2(iR). Then, by the Cauchy–Schwarz inequality, the linear functional F (f)
is continuous on R+

1−k because∣∣∣∣
∫ ∞

−∞
f∗(iω)γ(iω)dω

∣∣∣∣ =
∣∣∣∣
∫ ∞

−∞
(fΦ−k)

∗(iω)[(Φ∗
−k)

−1γ](iω)dω

∣∣∣∣
≥ ‖(Φ∗

−k)
−1γ‖2 ‖f‖2,−k.

(b) As a consequence of (a), a rational function g(s) is in the dual space of H2,−k
+

if and only if ∂r(g) ≥ k + 1, i.e., g ∈ H2,k
+ . As the dual of H2,−k

+ is a Hilbert space,
the completion argument proves the statement.

Proof of Theorem 5. (a) The statement is an adaptation of the known Youla
Theorem; see [28].

(b) We need to prove the statement only on R+
1−k, a dense subset of H

2,−k
+ (see

[38, p. 100]). Now, if f(s) is a rational function without poles on iR,∫ ∞

−∞
f∗(iω)Γ(iω)f(iω)dω =

∫ ∞

−∞
[Φf(iω)]∗[Φf(iω)]dω = ‖Φf‖22 <∞

if and only if ∂r(fΦ) ≥ 1, i.e., ∂r(f) ≥ 1− k or f ∈ H2,−k
+ .

Also, as Φ(s) and Φ−k(s) are rational functions with no poles or zeros on iR, and
those functions have the same relative degree, there are real numbers α and β such
that

0 < α ≤ |Φ(iω)Φ−1
−k(iω)| ≤ β <∞.
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This implies that if f ∈ R+
1−k, then

α‖f‖22,−k ≤
∫ ∞

−∞
f∗(iω)Γ(iω)f(iω)dω = ‖Φf‖22 ≤ β‖f‖22,−k.

Thus ‖Φf‖2 defines a norm equivalent to ‖f‖2,−k, the quadratic functional being
continuous on R+

1−k as the square of an equivalent norm. Finally, if m < k and

f ∈ H2,−m
+ , ‖fΦ−m(iω)|2 and |ΦΦ−1

−m(iω)|2 belong to L2(iR), then

∫ ∞

−∞
f∗(iω)Γ(iω)f(iω)dω =

∫ ∞

−∞
[Φ−mf(iω)]∗[Φ−mf(iω)][ΦΦ−1

−m(iω)]
∗[ΦΦ−1

−m(iω)]dω

≤ ‖ΦΦ−1
−m‖22‖Φ−mf‖22 = ‖ΦΦ−1

−m‖22‖f‖22,−m

by the Cauchy–Schwarz inequality. Therefore, the quadratic functional is continuous
in H2,−m

+ at the origin, then continuous in H2,−m
+ for m < k.

The coerciveness onH2,−k
+ was shown above, where α is the coerciveness constant.

For m < k and f ∈ H2,−m
+ , let

fn(s) = Φ
−1
−m(s)[s

√
n(s+ n)−2], Φ(s)Φ−1

−m(s) = g(s)(s+ 1)−1,

where |g(iω)|2 ≤ β2 < ∞ for some real number β because g(s) is a proper rational
function without poles on the imaginary axis. Straightforward calculations show that

0 ≤ ‖Φfn‖22 ≤ β2

∥∥∥∥ 1

s+ 1

s
√
n

(s+ n)2

∥∥∥∥
2

2

= β2 (2n
2 − 2n+ 1)π
2(n2 − 1)2 ,

which converges to zero when n goes to infinity. But ‖fn‖2−m = π/2 for all n. Then
there is no real number α such that α2‖fn‖2−m ≤ ‖Φfn‖22 for all n, which shows that
the quadratic functional is not coercive on H2,−m

+ for m < k.
The proof of the strictly convexity is straightforward.
Proof of Corollary 1. As ∂r(K̆) = ∂r([(Φ

∗)−1γ]+) − k, then ∂r(K̆) ≥ 0 if and
only if ∂r([(Φ

∗)−1γ]+) ≥ k. If ∂r(γ) ≥ 2k, then ∂r((Φ
∗)−1γ) ≥ k, implying that

∂r([(Φ
∗)−1γ]+) ≥ k, which proves the sufficiency of the condition. If k = ∂r(Φ) ≤ 1,

as ∂r([(Φ
∗)−1γ]+) ≥ 1, then ∂r(K̆) ≥ 0.

Proof of comments about condition (3.5). We need to prove that condition (3.5)
is inherited by a finite sum of quadratic functional as in (3.4). To do that, denote the
functional as

J [K] =
∑

Jn[K], Jn[K] =

∫ ∞

−∞
{K∗ΓnK − 2K∗γn}dω, Γn = Φ

∗
nΦn.

Then

J [K] =

∫ ∞

−∞
{K∗ΓK − 2K∗γ}dω for Γ = Φ∗Φ =

∑
Φ∗
nΦn, γ =

∑
γn.

Let ∂r(γn) ≥ ∂r(Φn) + 1 and assumptions A1 and A2 hold for each n. Then

∂r

(∑
γn

)
≥ min{∂r(γn)},



SOLUTION OF THE H2/H∞ PROBLEM BY DIRECT METHODS 1113

as usual, but

∂r

(∑
Γn

)
= ∂r

(∑
Φ∗
nΦn

)
= min{∂r(Γn)}

because the numerator of the first term is a sum of para-Hermitian functions, each one
strictly positive on the imaginary axis, which implies that its degree is the maximum
degree of the parcels. See [9] for a complete development of this argument. Therefore,

∂r

(∑
γn

)
≥ min{∂r(γn)} ≥ ∂r(Φn) + 1 =

(
1

2

)
min{∂r(Γn)}+ 1

=

(
1

2

)
min

{
∂r

(∑
Γn

)}
+ 1 = ∂r(Φn) + 1,

completing the proof.
Proof of Theorem 8. Here the notations ‖ . ‖Γ and 〈 . , . 〉Γ from section 4 will

be used. The strictly convex criterion in (5.1) is a continuous function because Hn

is finite-dimensional. Ωn is a closed convex set as the interception of the closed
convex sets Ω, Θ, and Hn. The set Ωn is nonempty if the dimension n is sufficiently
large because it is the closure of

⋃∞
n=1 Hn in H2,−1

+ and in A0 in the correspondent
topologies, and assumption A3 is verified. Therefore, if n is sufficiently large, then
(5.1) has one and only one solution K̂n.

(a) For all V ∈ H1, ‖K̂n‖Γ ≤ ‖V ‖Γ because Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωn ⊂ · · · ⊂ Ω ∩ Θ.
Then the sequence {K̂n, n ∈ N} is bounded, which implies the existence of a weakly
convergent subsequence that converges weakly in H2,−1

+ to a function, denoted here

by K̂w (see the Bolzano–Weierstrass theorem, [29, p. 26]). This subsequence will be
denoted by {K̂m,m ∈ N}. Note that K̂w depends on the chosen subsequence.

(b) As Ω∩Θ is convex and strongly closed, it is also weakly closed (see the Mazur
theorem, [29, p. 20]). Then K̂w ∈ Ω ∩Θ.

(c) K̂n is a solution of (5.1) if and only if it verifies the following variational
inequality:

〈Vm, Vm − K̂m〉γ ≥ 0 ∀ Vm ∈ Ωm

(see [31, pp. 9–11] or, in a more general setting [32, p. 76]). The weak convergence of
K̂m implies the convergence of the inequality above to the condition

〈Vm, Vm − K̂w〉Γ ≥ 0 ∀ Vm ∈ Ωm

for each m used in the subsequence. As the sequence of spaces {Hn} increases, then⋃∞
m=1 Hm is a dense subspace of H2,−1

+ and
⋃∞

m=1 Ωm∪Ωm is a dense subset of Ω∩Θ.
Taking the limit in the last inequality, we arrive at

〈V, V − K̂w〉2,−1 ≥ 0 ∀ V ∈ Ω ∩Θ,

a necessary and sufficient condition to K̂w being the solution of (2.3). Then K̂w equals
K̂, the solution of (4.1) for any subsequence K̂m of the sequence K̂n generated by the
Galerkin method, which implies the weak convergence of this sequence to the optimal
solution to (4.1).

Proof of Theorem 9. First, it will be considered the situation where K̆n = K̆,
when (5.2) and (5.3) are essentially the same. Second, note that Theorem 8 can be
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generalized to the space H2,−k
+ without changes, which proves the weak convergence

(in H2,−k
+ ) of the sequences generated by (5.2) and (5.3), when n ∈ N, meaning

that K̂n converges weakly to K̂ and Ĝn + K̆ converges weakly to Ĝ + K̆ = K̂ in
H2,−k

+ . Under the assumptions of Theorem 9 these sequences will converge strongly

in H2,−k
+ for the same limit. Indeed, the density of

⋃∞
n=1 Hn in H2,−k

+ and the fact

that Ĝ ∈ Ω′∩Θ′, a closed convex set, imply that for all positive real numbers ε, there
is an integer N such that ‖Ĝ −Gn‖Γ < ε for all n > N and Gn ∈ Ω′

n. Thus, by the
triangle inequality,

‖Gn‖Γ = ‖Gn + Ĝ− Ĝ‖Γ ≤ ‖Gn − Ĝ‖Γ + ‖Ĝ‖Γ < ‖Ĝ‖Γ + ε.

Squaring this expression and recalling the minimizing property of Ĝ in Ω′ ∩Θ′ ⊂ Ω′
n,

we have

(‖Ĝ‖Γ + ε)2 = ‖Ĝ‖2Γ + ε(2‖Ĝ‖Γ + ε) > ‖Gn‖2Γ ≥ ‖Ĝn‖2Γ ≥ ‖Ĝ‖2Γ.

When ε tends to zero, ‖Ĝn‖2Γ converges to ‖Ĝ‖2Γ.
Now an argument due to Riesz shows the strong convergence of Ĝn to Ĝ:

‖Ĝn − Ĝ‖2Γ = 〈Ĝn − Ĝ, Ĝn − Ĝ〉Γ = ‖Ĝn‖2Γ − 2〈Ĝn, Ĝ〉Γ + ‖Ĝ‖2Γ,

which goes to ‖Ĝ‖2Γ − 2〈Ĝ, Ĝ〉Γ + ‖Ĝ‖2Γ = 0 as n goes to ∞ by the weak convergence

of Ĝn to Ĝ and by the norm convergence (showed above). This ends this part of the
proof.

The strong convergence of K̂n = Ĝn + K̆ to K̂ = Ĝ+ K̆ is a consequence of the
continuity of the sum in Hilbert spaces.

Now, if K̆n is the projection of K̆ in Ωn, then K̂n = Ĝn + K̆n, where {Ĝn}
is exactly the sequence considered above. As Ĝn converges strongly to Ĝ and K̆n

converges strongly to K̆ (by the continuity of convex projections in Hilbert spaces

[32, pp. 157–158]), K̂n converges strongly to K̂ in H2,−k
+ .

The strong convergence of Ĝn to Ĝ, in the case where K̆n is the projection of K̆
in Ωn, is now a consequence of the equivalence between (4.2) and (4.3).

To end the proof, note that Ωn ⊂ H2,−1
+ , which implies that K̂n belongs to H2,−1

+ .

Then the convergence of K̂n in H2,−k
+ implies the convergence in H2,−1

+ to the same
limit by the inverse isometry of Theorem 2(a).

Proofs of Remark 11 and Theorem 10. First, note that

H∞
+ ⊂ H2,−1

+ ≈ (H2,−1
+ )′ = H2,1

+ ⊂ (H∞
+ )

′,

H∞
+ being dense in H2,−1

+ and (H2,−1
+ )′ being weak-star dense in (H∞

+ )
′ (apply the

corollary in [25, p. 298] and T2, XIX, 7; 5, [25, p. 299]). Then K̂n, K̂ above can be
identified with functions in (H2,−1

+ )′ ⊂ (H∞
+ )

′ by K ≈ GK(f) = 〈Φ−1K,Φ−1f〉2 for
f ∈ H∞

+ . Second, “Fn ∈ (H∞
+ )

′ converges to F ∈ (H∞
+ )

′ in the weak-star topology”
means Fn(g)→ F (g) for all g ∈ H∞

+ .

If K̂n → K̂ weakly in H2,−1
+ , 〈Φ−1K̂n,Φ−1g〉2 → 〈Φ−1K̂,Φ−1g〉2 for each g ∈

H∞
+ , which proves the sequence weak-star convergence in (H

∞
+ )

′ and Remark 11.
Now, for Theorem 10, let K̂n converge to K̂ strongly inH2,−1

+ . For each functional

G ∈ (H∞
+ )

′, let Fm be a functional sequence in (H2,−1
+ )′ approaching G in the (H∞

+ )
′

weak-star topology, i.e., Fm(g) → G(g) for each g ∈ H∞
+ . By the Banach–Steinhaus
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Table 4

Rational
functions Degree Numerator coefficients Denominator coefficients

A(s) s14 0 1.000000000000000e+000
s13 1.381024580093296e+000 1.211595042867158e+002
s12 1.686008580615162e+000 5.458713034337957e+003
s11 7.703019538462904e+003 1.125395291285975e+005
s10 1.634508577704982e+005 1.076974629099070e+006
s9 1.671129690051401e+006 4.927775329734212e+006
s8 8.766081844981248e+006 1.233200905234427e+007
s7 2.566570185137830e+007 1.843165614381086e+007
s6 4.288376514277657e+007 1.679171067887532e+007
s5 3.638011973651214e+007 8.937537473511269e+006
s4 1.128209738056106e+007 2.752841097866921e+006
s3 1.881317702823051e+006 4.943826116024184e+005
s2 1.129883884492416e+005 4.781899120202310e+004
s1 2.747279969974730e+003 1.733418128119080e+003
s0 2.330461985378970e+001 1.960830911271398e+001

B(s) s10 0 1.000000000000000e+001
s9 −1.000012371305996e+000 1.863782215050616e+001
s8 −1.562399952832152e+001 1.181106597540888e+002
s7 −1.161078545444695e+002 3.834756797815088e+002
s6 −4.837125168666809e+002 7.437879887932461e+002
s5 −1.205831279245822e+003 9.129112097836384e+002
s4 −1.706884574538163e+003 7.095696057600543e+002
s3 −1.220645462582847e+003 3.376552213167196e+002
s2 −3.711128214145705e+002 9.277136443643682e+001
s1 −3.777832594378928e+001 1.316517110219557e+001
s0 −7.343714254348321e−001 7.250551615217723e−001

F0(s) s2 0 1.000000000000000e+000
s1 −2.488088793672762e+000 −2.263724821234260e+000
s0 8.620956412513727e−001 8.843128062448000e−001

theorem [25], the set {Fm} is equicontinuous in H2,−1
+ . Thus Fn(K̂n) converges to

G(K̂). Indeed,

|G(K̂)− Fn(K̂n)| ≤ |Fn(K̂n)− Fn(K̂)|+ |Fn(K̂)−G(K̂)|,
the first term in the right going to zero because {Fm} is equicontinuous and K̂n → K̂
strongly inH2,−1

+ , the second term in the right going to zero because Fm(g)→ G(g) for

each g ∈ H∞
+ . Therefore, G(K̂n) converges to G(K̂) for each functional G ∈ (H∞

+ )
′,

proving the weak convergence in H∞
+ .

Appendix B. In this appendix we provide the numerical data for the example
in section 5. Rational functions described in Table 4 have been calculated from the
data P (s), φw(s), φd(s), and φv(s) given in section 5 by solving some diophantine
equations (arising from the parameterization of stabilizing controllers), a variable
change to reduce the robustness condition to Nehari form was applied, and some
cancellations of coincident poles and zeros were made. The first two calculations
were performed by state variable methods, as exposed in [6], the cancellation being
performed by model order reduction using the Hankel singular value technique. The
use of double precision calculations was imperative.
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EXISTENCE OF MINIMIZERS FOR NONCONVEX, NONCOERCIVE
SIMPLE INTEGRALS∗

P. CELADA† AND S. PERROTTA‡

SIAM J. CONTROL OPTIM. c© 2002 Society for Industrial and Applied Mathematics
Vol. 41, No. 4, pp. 1118–1140

Abstract. We consider the problem of minimizing autonomous, simple integrals such as

min

{∫ T

0
f
(
x(t) , x′(t)

)
dt : x ∈ AC([0 , T ]), x(0) = x0, x(T ) = xT

}
,(P)

where f : R × R → [0,∞] is a possibly nonconvex function with either superlinear or slow growth at
infinity. Assuming that the relaxed problem (P∗∗)—obtained from (P) by replacing f with its convex
envelope f∗∗ with respect to the derivative variable x′—admits a solution, we prove attainment for
(P) under mild regularity and growth assumptions on f and f∗∗. We discuss various instances of
growth conditions on f that yield solutions to the corresponding relaxed problem (P∗∗), and we
present examples that show that the hypotheses on f and f∗∗ considered here for attainment are
essentially sharp.

Key words. nonconvex and noncoercive minimum problem, simple integrals, existence of solu-
tions

AMS subject classifications. 49J05, 49K05

PII. S0363012901387999

1. Introduction. This paper deals with the existence of solutions to variational
problems for autonomous, simple integrals such as

min

{∫ T

0

f(x(t) , x′(t)) dt : x ∈ AC([0 , T ]), x(0) = x0, x(T ) = xT
}
,(P)

where the Lagrangian function f : R×R→ [0 ,∞] is a possibly nonconvex function of
its second argument x′. Though the emphasis here is on the lack of convexity of f , we
remark that we wish to consider either problems with slow growth, i.e., f(η , ξ) has
no superlinear growth as |ξ| → ∞, or problems with an extended-valued Lagrangian
f as it happens in the case of one-sided constraints on derivatives like x′ ≥ 0 or x′ > 0
almost everywhere on [0 , T ].

As is well known, the lack of convexity of f(η , ξ) with respect to ξ affects the
sequential lower semicontinuity of the integral with respect to weak convergence in
AC([0 , T ]), thus ruling out the possibility of establishing the existence of optimal
configurations by means of the direct method of the calculus of variations. However,
attainment is a quite typical behavior for variational, simple integrals, and the basic
question for nonconvex minimum problems like (P) becomes that of finding which
conditions other than convexity of f(η , ξ) with respect to ξ yield solutions to (P).

This question has been widely investigated in recent years, mainly when f has a
special form like f(η , ξ) = h(ξ) + g(η) or f(η , ξ) = g(η)h(ξ) with nonnegative g and
h. In either case, a fairly complete understanding of attainment versus nonattainment
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phenomena is now available: roughly speaking, attainment occurs provided g ∈ C(R)
is such that (i) every point t ∈ R lies between two intervals where g is monotone,
i.e., g does not oscillate too fast, and (ii) g has no strict, local minima. Moreover,
well-known Bolza-type examples such as

min

{∫ T

0

[(
|x′(t)|2 − 1

)2

+ |x(t)|2
]
dt : x ∈ AC([0 , T ]), x(0) = x(T ) = 0

}

and

min

{∫ T

0

(
1 + |x(t)|2

)[
1 +

(
|x′(t)|2 − 1

)2
]
dt : x ∈ AC([0 , T ]), x(0) = x(T ) = 0

}

show that attainment is not to be expected to hold in general if the latter assumption
on g is dropped, unless h is supposed to be convex at zero, i.e., the values at zero
of h and its convex envelope h∗∗ coincide (see [12] and [17] for a complete discussion
of this issue). Among the many related papers, we refer to [1], [18], [4], [5], [6], [16],
[8], and [9] for sum-like integrals and to [14], [15], and [2] for product-like integrals.
We mention also the above-mentioned [12] and [17] for a somewhat different point of
view on the subject.

As regards the case of nonconvex Lagrangian functions f of general form, we
mention [19], [14], [13], [15], and [20]. Roughly speaking, in these papers, assuming
that either f and its convex envelope f∗∗ with respect to ξ are smooth, attainment
for (P) is proved when the continuous function

f∗∗(η , ξ)− ξ ∂f
∗∗

∂ξ
(η , ξ)(1.1)

is either monotone or concave as a function of η for every ξ or possibly on the sections
with fixed ξ of the set {f∗∗ < f} only (see [20]). Note that, letting f∗ be the polar
function of f(η , ξ) with respect to ξ, the function above coincides with

−f∗
(
η ,
∂f∗∗

∂ξ
(η , ξ)

)
,(1.2)

i.e., the value at the origin of the supporting affine function to the graph of ξ →
f∗∗(η , ξ) through the point (η , ξ). Hence, according to these papers, attainment for
(P) seems to require a very special, global (or possibly local as in [20]) behavior of
either (1.1) or (1.2) as a function of η for every ξ like monotonicity or concavity.
However, in the special cases of variational problems (P) featuring smooth sum-like
or product-like Lagrangian functions f , (1.1) and (1.2) turn in{ [

h∗∗(ξ)− ξ (h∗∗)′ (ξ)]+ g(η) = −h∗ ((h∗∗)′ (ξ))+ g(η),
g(η)

[
h∗∗(ξ)− ξ (h∗∗)′ (ξ)] = g(η) [−h∗ ((h∗∗)′ (ξ))] , (η , ξ) ∈ R×R,

respectively. Hence, the monotonicity or concavity assumptions on (1.1) and (1.2)
as functions of η reduce to the requirement that g share the same property on the
whole real line in cases of sum-like integrals and that g be monotone or possibly
convex, provided h∗

(
(h∗∗)′ (ξ)

) ≥ 0 for every ξ in the product-like case. By contrast,
the existence results mentioned before for these special problems call only for weaker
properties of g, namely, no oscillations on increasingly smaller scales and no strict
local minima.
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Thus, there is a gap between the available attainment results for sum- or product-
like, nonconvex, variational problems on one hand and the same problems with a
Lagrangian f of general form on the other hand, and the aim of this paper is precisely
to fill this gap. Indeed, we are going to show that the hypotheses on f∗∗ that yield
attainment for (P) in the general case actually look even weaker than they appear in
the case of sum-like or product-like integrals.

To this aim, provided f enjoys mild regularity and growth assumptions (see The-
orem 2.2), we associate with the convex envelope f∗∗ of f with respect to ξ a function
Ef∗∗ : R×R→ [−∞ ,∞] whose value at a point (η , ξ) is, roughly speaking, the value
at the origin of the supporting affine function to the graph of ξ → f∗∗(η , ξ) through
the point (η , ξ) and which reduces to (1.1) and (1.2) for smooth convex envelopes f∗∗.
Then, assuming also that the relaxed problem (P∗∗) obtained from (P) by replacing
f with its convex envelope f∗∗, i.e.,

min

{∫ T

0

f∗∗(x(t) , x′(t)) dt : x ∈ AC([0 , T ]), x(0) = x0, x(T ) = xT
}
,(P∗∗)

admits a solution, we prove attainment for (P) provided Ef∗∗ and f∗∗ have the
following qualitative, local behavior on the set {f∗∗ < f}:

(i) If f∗∗(η0 , ξ0) < f(η0 , ξ0), there is δ = δ(η0 , ξ0) > 0 such that the restriction
η → Ef∗∗(η , ξ0) is monotone on both intervals [η0 − δ , η0] and [η0, η0 + δ];
and, whenever the section of {f∗∗ < f} with ξ = 0 is not empty,

(ii) the function η → f∗∗(η , 0) has no strict, local minima on such sections.
We wish to point out that, in the Bolza-type examples mentioned above, the set
{f∗∗ < f} is given in either case by R×(−1 , 1), that f∗∗(η , 0) is given by η2 and
1 + η2, respectively, and that all the other assumptions of our result are satisfied.
Thus, nonattainment for those problems is a direct consequence of the failure of (ii).

We refer to section 2 for the exact statement of our result, a more detailed dis-
cussion of its hypotheses, and some examples.

Finally, we wish to remark that the existence result for the nonconvex problem (P)
we are going to prove is based on the assumption of attainment for the corresponding
relaxed problem (P∗∗) and thereby can be applied to nonconvex problems featuring
either superlinear or slow growth at infinity, provided the associated relaxed problem
admits a solution. Indeed, besides the standard case of functions f having superlinear
growth at infinity (see Corollary 2.3) for which the existence of solutions for the
corresponding relaxed problem (P∗∗) follows immediately from the direct method of
the calculus of variations, we consider also the case of functions f with slow growth
at infinity (see Corollary 2.4) for which attainment for the relaxed problem (P∗∗) can
be obtained by applying the existence result of [7].

The remaining part of the paper is organized as follows. In the next section, we
introduce some notation, we recall some well-known preliminary results, and we state
the main result (Theorem 2.2) and prove its consequences (Corollaries 2.3 and 2.4).
Then, in section 3, we prove some technical results that will be needed in the proof
of Theorem 2.2, presented in section 4.

2. Notation and statement of the main results. We begin by recalling
some elementary definitions, notation, and results, mostly from convex analysis and
measure theory.

If A ⊂ R
n, we let int (A), A, and ∂A be the interior, the closure, and the boundary

of A, respectively.
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The effective domain of a function g : A → (−∞ ,∞] is the subset of A defined
by

dom (g) = {ξ ∈ A : g(ξ) <∞} ,
and g itself is said to be proper whenever its effective domain is not empty. Now, let
g : R→ [0 ,∞] be a proper, lower semicontinuous function. We recall that g is said to
be subdifferentiable at a point ξ ∈ dom (g) if there exists d ∈ R such that

g(ζ) ≥ g(ξ) + d(ζ − ξ), ζ ∈ R.(2.1)

Every such d is a subgradient of g at ξ, and the set of all such numbers d is the
subdifferential ∂g(ξ) of g at ξ. When g is also convex, ∂g(ξ) is a nonempty, compact
interval for every ξ ∈ int (dom (g)), and g turns out to be locally Lipschitz continuous
on int (dom (g)) so that ∂g(ξ) = {g′(ξ)} for a.e. ξ ∈ int (dom (g)).

We recall also that if g : R→ [0 ,∞] is proper and lower semicontinuous, the polar
function of g is the proper, lower semicontinuous convex function g∗ : R→ (−∞ ,∞]
defined by

g∗(ζ) = sup {ξζ − g(ξ) : ξ ∈ R} , ζ ∈ R

(see [11]), and that the bipolar function or convex envelope of g is the polar g∗∗ : R→
[0 ,∞] of g∗. Thus, g∗∗ is a proper, lower semicontinuous convex function such that

g∗∗(ξ) ≤ g(ξ) for every ξ ∈ R;(2.2)

g∗∗(ξ) = g(ξ) for every ξ ∈ R \ int (dom (g∗∗));(2.3)

the set {g∗∗ < g} is open;(2.4)

g∗∗ is affine on the connected components of {g∗∗ < g};(2.5)

the closure of each connected component of the set {g∗∗ < g} is contained in(2.6)

dom (g∗∗).

Moreover, we recall that, whenever d ∈ R is a subgradient of g∗∗ at some point
ξ ∈ dom (g∗∗), the values of g∗∗(ξ) and g∗(d) are related by

g∗∗(ξ) + g∗(d) = dξ(2.7)

(see [11]) because of the equality g∗∗∗ = g∗. Hence, writing (2.1) with g∗∗ instead of
g, it follows that the value at the origin of the supporting affine function to the graph
of g∗∗ through the point (ξ , g∗∗(ξ)) with slope d is given by −g∗(d).

As to measure theoretic notations and results, we denote the Lebesgue measure
of a measurable subset E of R by |E|, and we recall that a family of nondegenerate,
compact intervals K is said to shrink at some point x ∈ R if x ∈ K for every K ∈ K
and inf {|K| : K ∈ K} = 0. We recall also that a Vitali covering of a measurable set
E is a family of nondegenerate, compact intervals K such that, for a.e. x ∈ E, the
subfamily of those intervalsK ∈ K containing x shrinks at x itself. We emphasize that
in the definitions above, the intervals K associated with x need not be centered at x
or nested. Then Vitali’s covering theorem states that every such covering contains an
(at most) countable subfamily of sets {Kn}n consisting of pairwise disjoint intervals
that cover E up to a negligible set, i.e., |E \ (∪nKn)| = 0. We also recall that a point
x ∈ R is said to be a density point for a measurable set E if

1

2ε
|(x− ε , x+ ε) ∩ E| → 1 or, equivalently,

1

2ε
|(x− ε , x+ ε) \ E| → 0
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as ε→ 0+ and that Lebesgue’s differentiation theorem states that almost every point
of E is a density point. It is plain that for every such point x,

|K \ E|
|K| → 0 as K ∈ K and |K| → 0(2.8)

whenever K shrinks at x.

As regards functional theoretic notations, we let T be a positive number, use
standard notations for the Lebesgue space of integrable functions on [0 , T ] and its
norm, and write AC([0 , T ]) for the space of absolutely continuous functions on [0 , T ],
which turns out to be a Banach space with respect to the Sobolev norm

‖x‖1,1 =
∫ T

0

[|x(t)|+ |x′(t)|] dt, x ∈ AC([0 , T ]).

We also denote the space of all smooth, compactly supported functions on the real
line by D(R).

Now, we introduce the class of functionals we are going to consider in what follows.
Given a proper and lower semicontinuous function f : R×R→ [0 ,∞] we consider the
integral functional

I(x) =

∫ T

0

f(x(t) , x′(t)) dt, x ∈ AC([0 , T ]),

and the associated minimum problem

min {I(x) : x ∈ AC([0 , T ]) with x(0) = x0 and x(T ) = xT }(P)

with x0, xT ∈ R. We denote the polar and the bipolar functions of f with respect to
the second variable ξ by f∗ : R×R→ (−∞ ,∞] and f∗∗ : R×R→ [0 ,∞], respectively,
and, for every η ∈ R, we denote also the subdifferential of ξ → f∗∗(η , ξ) at the point
ξ ∈ R by ∂f∗∗(η , ξ). Then we consider the functional

I∗∗(x) =
∫ T

0

f∗∗(x(t) , x′(t)) dt, x ∈ AC([0 , T ]),

and the associated minimum problem

min {I∗∗(x) : x ∈ AC([0 , T ]) with x(0) = x0 and x(T ) = xT } ,(P∗∗)

which we loosely refer to as the relaxed functional and the relaxed minimum problem,
respectively. It is plain that I∗∗ ≤ I on AC([0 , T ]) so that any solution x to (P∗∗)
satisfying f∗∗(x , x′) = f(x , x′) almost everywhere on [0 , T ] is a solution to (P) as well.
Moreover, I∗∗ is sequentially weakly lower semicontinuous on the set of competing
functions {x ∈ AC([0 , T ]) : x(0) = x0 and x(T ) = xT }.

Throughout this paper, we shall consider the following assumptions on the func-
tions f and f∗∗:

dom (f) = dom (f∗∗) = R×C, where C is a nondegenerate interval;(H1)

f and f∗∗ are continuous on R×int (C).(H2)
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If the function f satisfies (H1), it follows that f∗∗(η , ξ) = f(η , ξ) for every η ∈ R and
ξ ∈ R \ int (C) because of (2.3); moreover, if f also satisfies (H2), the detachment set
D defined by

D = {(η , ξ) ∈ R×R : f∗∗(η , ξ) < f(η , ξ)}(2.9)

is an open subset of R× int (C). In what follows, we shall denote the sections of
the detachment set D with η and ξ fixed by Dη = {ξ ∈ R : (η , ξ) ∈ D} and Dξ =
{η ∈ R : (η , ξ) ∈ D}, respectively.

Now, consider the mapping Ef∗∗ : R×R→ [−∞ ,∞] defined by

Ef∗∗(η , ξ) = sup {−f∗(η , d) : d ∈ ∂f∗∗(η , ξ)} , (η , ξ) ∈ R×R,

where, as usual, the supremum of the empty set is set equal to −∞. Note that if it
happens that f∗∗ is smooth, say f∗∗ ∈ C1(R×R), then Ef∗∗ reduces to the continuous
function already considered in (1.1), i.e.,

Ef∗∗(η , ξ) = f∗∗(η , ξ)− ξ ∂f
∗∗

∂ξ
(η , ξ), (η , ξ) ∈ R×R,

because of the basic equality (2.7).
On the function f , we shall consider also the following growth assumption:

lim
|ξ|→∞

sup {Ef∗∗(η , ξ) : |η| ≤ R} = −∞ for every R ≥ 0.(H3)

Note that all functions f satisfying (H2) and (H3) have the following property: For
every positive number R, there exist two numbers α > 0 and β ≥ 0 depending on R
such that

f∗∗(η , ξ) ≥ α |ξ| − β for every |η| ≤ R and every ξ ∈ R.(2.10)

The growth condition (H3) is strictly weaker than superlinearity at infinity. Indeed,
it is easy to see that if a proper and lower semicontinuous function f : R×R→ [0 ,∞]
satisfies (H1) and (H2) and has the further property that, for every given R ≥ 0,
f(η , ξ) ≥ θ(|ξ|) for every |η| ≤ R and ξ ∈ R for some suitable function θ : [0 ,∞)→ R

depending on R such that θ(|ξ|)/ |ξ| → ∞ as |ξ| → ∞, then (H3) is also satisfied (see
[7], for instance). By contrast, the function

f(η , ξ) = f(ξ) = |ξ| − log (1 + |ξ|), ξ ∈ R,

provides a simple example of a convex function satisfying (H3) and having linear
growth at infinity. We refer to [3] for interesting results on the relationship between
(H3) and the regularity of solutions to (P∗∗).

The properties of the restriction of the function Ef∗∗ to the detachment set D
are gathered in the following proposition.

Proposition 2.1. Let f : R×R→ [0 ,∞] be a proper and lower semicontinuous
function satisfying (H1) and (H2) and let D be the detachment set defined by (2.9).
Then

(i) there exists d : D → R such that ∂f∗∗(η , ξ) = {d(η , ξ)} for every (η , ξ) ∈ D;
(ii) Ef∗∗(η , ξ) = −f∗(η , d(η , ξ)) for every (η , ξ) ∈ D;
(iii) Ef∗∗ is finite-valued on D and both Ef∗∗ and d are continuous on D;
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(iv) the restrictions ξ ∈ Dη → Ef∗∗(η , ξ) and ξ ∈ Dη → d(η , ξ) are constant on
the connected components of Dη;

(v) if D0 �= ∅, then Ef∗∗(η , 0) = f∗∗(η , 0) for every η ∈ D0.
Proof. For every nonempty section Dη the function ξ ∈ R→ f∗∗(η , ξ) is affine on

the connected components of Dη because of (2.5). Hence, it is differentiable at every
point ξ of Dη so that (i) holds with d(η , ξ) given by the partial derivative of f∗∗ with
respect to ξ at the point (η , ξ) and (ii) follows from (i) and the definition of Ef∗∗.
Then recall that

f∗(η, d(η , ξ)) = ξd(η , ξ)− f∗∗(η , ξ), (η , ξ) ∈ D,(2.11)

because of (2.7). The right-hand side of this equality is finite since D ⊂ R×int (C) ⊂
dom (f∗∗) and, moreover, f∗∗ is continuous on D because of (H2). As to d, its
restriction ξ ∈ Dη → d(η , ξ) is constant on the connected components of Dη so that
for every rectangle Q = [η1 , η2]×[ξ1 , ξ2] contained in the detachment set D, we have

d(η, ξ) =
f∗∗(η , ξ1)− f∗∗(η , ξ2)

ξ2 − ξ1 , (η , ξ) ∈ Q.(2.12)

Thus, d too is continuous on D and (iii) and (iv) follow from (ii), (2.11), and (2.12).
Finally, (v) follows immediately from (i) and (2.11).

After these preliminaries, we can state the main result of the paper.
Theorem 2.2. Let f : R×R → [0 ,∞] be a proper and lower semicontinuous

function satisfying (H1), (H2), and (H3). Assume also that the following properties
hold:

For every (η0, ξ0) ∈ D, there is δ = δ(η0, ξ0) > 0 such that [η0 − δ , η0 + δ] ⊂(2.13)

Dξ0 and such that the restriction η ∈ [η0 − δ , η0 + δ]→ Ef∗∗(η , ξ0)
is monotone on each interval [η0 − δ , η0] and [η0 , η0 + δ];

and, if D0 �= ∅,
the restriction η ∈ D0 → f∗∗(η , 0) has no strict, local minima on D0.(2.14)

Then, if the relaxed problem (P∗∗) has a solution, the nonconvex problem (P) has a
solution too.

As already pointed out in section 1, the hypothesis (2.14) cannot be dropped
without affecting attainment for (P).

Then we complete the previous result by presenting two instances of growth hy-
potheses on f ensuring the existence of solutions to the relaxed problem (P∗∗) and
hence to the nonconvex problem (P) by Theorem 2.2. The first one is the familiar
case of functions f having superlinear growth at infinity, whereas the second, a simple
application of the existence result of [7], applies to problems featuring Lagrangian
functions f with slow growth at infinity. We wish to remark that both results apply
to nonconvex problems featuring one-sided constraints on a derivative like x′ ≥ 0 or
x′ > 0 almost everywhere on [0 , T ].

Corollary 2.3. Let f : R×R → [0 ,∞] be a proper and lower semicontinuous
function such that all the hypotheses of Theorem 2.2 hold with (H3) replaced by the
following:

f(η , ξ) ≥ α |ξ| − β, (η , ξ) ∈ R×R, for some α > 0 and β ≥ 0;(2.15)

for every R ≥ 0, there exists θ : [0 ,∞)→ R such that f(η , ξ) ≥ θ(|ξ|) for(2.16)

every |η| ≤ R and ξ ∈ R and θ(|ξ|)/ |ξ| → ∞ as |ξ| → ∞.
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Then the nonconvex problem (P) admits (at least) a solution for every boundary data
x0, xT ∈ R.

Proof. First, recall that (2.16) implies (H3) so that all the hypotheses of Theo-
rem 2.2 hold. Then assume there is some feasible function x ∈ AC([0 , T ]) such that
I∗∗(x) = c <∞; otherwise there is nothing to prove, and set

A = {x ∈ AC([0 , T ]) : x(0) = x0, x(T ) = xT and I∗∗(x) ≤ c} .
All functions x ∈ A are uniformly bounded because of (2.15). Hence, I∗∗ is coer-
cive on A by (2.16) and lower semicontinuous on the same set with respect to weak
convergence in AC([0 , T ]) (see Theorem 2.1, Chapter 8 in [11], for instance). Thus,
(P∗∗) admits a solution and the conclusion follows from Theorem 2.2.

Corollary 2.4. Let f : R×R → [0 ,∞] be a proper and lower semicontinuous
function such that all the hypotheses of Theorem 2.2 hold. Assume also that

C is a cone;(2.17)

∂f∗∗(η , ξ) �= ∅ for every (η , ξ) ∈ R×C;(2.18)

f(η , ξ) ≥ α |ξ| − β, (η , ξ) ∈ R×R, for some α > 0 and β ≥ 0.(2.19)

Then the nonconvex problem (P) admits (at least) a solution for every boundary data
x0, xT ∈ R.

Recall that a cone in R is either R itself or any open or closed half line starting at
zero. Note that (2.18) is automatically fulfilled if C is open, and recall also that the
detachment set D is contained in R×int (C). Hence, unless C is the whole real line,
the section D0 of D with ξ = 0 is empty so that (2.14) is automatically fulfilled too.

Proof of Corollary 2.4. The very same computations of [2, Corollary 1.4] show
that the hypotheses of the existence result of [7] hold for the relaxed problem (P∗∗).
Thus, (P∗∗) admits a solution and the conclusion follows from Theorem 2.2.

Finally, we end this section by presenting two examples of nonconvex problems
which the previous results apply to. They are not meant to be meaningful from the
point of view of applications. We just want to illustrate the scope of application of
the previous results by showing examples of problems to which the previously known
attainment results do not apply.

Example 2.5. Let f : R×R→ [0 ,∞) be defined by

f(η , ξ) = [ξ − a(η)]2 [ξ − b(η)]2 + c(η), (η , ξ) ∈ R×R,

where the coefficients a , b , c ∈ C(R) are such that

c(η) ≥ αmax {|a(η)| , |b(η)|} , η ∈ R,(2.20)

for some α > 0. Note that if a and b are bounded, the condition above can always be
satisfied by any lower bounded function c by possibly adding a positive constant to c
itself. Here, we obviously assume that a(η0) �= b(η0) for some η0; otherwise f would
be convex with respect to ξ and we can also assume without loss of generality that
a(η) ≤ b(η) for every η ∈ R.

Then the convex envelope f∗∗ of f with respect to ξ is given by

f∗∗(η , ξ) =
{

[ξ − a(η)]2 [ξ − b(η)]2 + c(η), ξ ≤ a(η) or ξ ≥ b(η),
c(η), a(η) ≤ ξ ≤ b(η), η ∈ R,

and the detachment set D by D = {(η , ξ) : a(η) < ξ < b(η)}.
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It is clear that (H1) and (H2) hold. Moreover, it is easy to check that (2.20) yields
(2.15) and that, for every R ≥ 0, f(η , ξ) ≥ ξ4/2 −M for every |η| ≤ R and every
ξ ∈ R for some suitable M ≥ 0 depending on R.

Now, note that Ef∗∗(η , ξ) = c(η) for every (η , ξ) ∈ D so that the main hypotheses
(2.13) and (2.14) of Theorem 2.2 are satisfied, for instance, by every smooth function
c whose derivative has only isolated zeros and which has no strict, local minima on
D0 = {a < 0}∩{b > 0}. In such cases, all the hypotheses of Corollary 2.3 are satisfied
and the corresponding nonconvex minimum problem (P) has at least one solution.

Example 2.6. Let f : R×R→ [0 ,∞] be defined by

f(η , ξ) =

{
∞ for η ∈ R and ξ ≤ 0,

ξ − log ξ + a(η)e−b(η)[ξ−c(η)]
2

for η ∈ R and ξ > 0,

where the coefficients a , b , c ∈ C(R) are positive functions. For suitable choices of a,
b, and c, f fails to be convex with respect to ξ.

It is plain that (H1) and (H2) hold with C = (0 ,∞) so that (2.17) and (2.18)
obviously follow. Moreover, the growth assumption (2.19) holds too; choose α = 1/2
and β = 0, for instance. As to (H3), note that Ef∗∗ off the set D is given by

Ef∗∗(η , ξ) = 1− log ξ + a(η) {1 + 2b(η)ξ [ξ − c(η)]} e−b(η)[ξ−c(η)]2 , (η , ξ) /∈ D.

Since it is easy to check that, for every R ≥ 0, there is M = M(R) > 0 such that
f(η , ξ) = f∗∗(η , ξ) for every |η| ≤ R and every ξ ≥M , we conclude that (H3) holds.

Now, for every (η , ξ) ∈ D, there is ξ′ > ξ such that (η , ξ′) ∈ ∂D and Ef∗∗(η , ξ) =
Ef∗∗(η , ξ′). Therefore, (2.13) holds true provided a, b, and c have the appropriate
behavior; for instance, they are smooth with only isolated zeros of the derivatives. As
C = (0 ,∞), the section D0 of the detachment set D is empty and the existence of
solutions to the corresponding nonconvex problem (P) follows from Corollary 2.4.

3. Some technical results. The proof of our attainment result (Theorem 2.2)
is based on the following idea: Let z be a solution to the relaxed problem (P∗∗) and
let t be a differentiability point of z such that (z(t) , z′(t)) lies in the detachment set D.
Then we locally modify z around this point t, thus finding a family of new solutions to
(P∗∗) which have the further property that they lie, together with their derivatives,
on the “boundary” of the detachment set D, i.e., where f and f∗∗ coincide, almost
everywhere on shrinking neighborhoods of the point t. Then a covering argument
allows us to select and glue some of these new solutions so as to find a further new
solution x to (P∗∗) satisfying f∗∗(x , x′) = f(x , x′) almost everywhere on [0 , T ], thus
proving attainment for (P).

The main steps towards the proof of Theorem 2.2 are gathered in this section.
Indeed, the program outlined above calls first for a local description of the “bound-
ary” of the detachment set D which is given in Proposition 3.1 below and then calls
for defining new solutions to (P∗∗) which stay locally on the “boundary” of D. These
latter functions will be defined as extremal solutions to suitable, convex-valued dif-
ferential inclusions related to the detachment set D.

Proposition 3.1. Let f : R×R→ [0 ,∞] be a proper and lower semicontinuous
function satisfying (H1), (H2), and (H3). Then, for every (η0, ξ0) ∈ D, there exists
δ = δ(η0, ξ0) > 0 and two functions a , b : [η0 − δ , η0 + δ]→ R such that

(i) a(η) < ξ0 < b(η) for every η ∈ [η0 − δ , η0 + δ];
(ii) a and b are bounded, upper and lower semicontinuous functions, respectively;
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(iii) {(η , ξ) : |η − η0| ≤ δ and a(η) < ξ < b(η)} ⊂ D;
(iv) f∗∗(η , a(η)) = f(η , a(η)) < ∞ and f∗∗(η , b(η)) = f(η , b(η)) < ∞ hold for

every η ∈ [η0 − δ , η0 + δ].
In other words, (iii) and (iv) of Proposition 3.1 say that every connected compo-

nent of every sufficiently narrow, vertical strip of D is the plane set contained between
the graphs of two functions a and b satisfying (i) and (ii).

Proof of Proposition 3.1. Let (η0, ξ0) be a point of D, choose δ = δ(η0, ξ0) > 0
such that (η , ξ0) ∈ D when |η − η0| ≤ δ, and consider the corresponding nonempty,
open sections Dη.

Since ξ ∈ Dη → Ef∗∗(η , ξ) is constant on the connected components of Dη
by (iv) of Proposition 2.1, the growth assumption (H3) implies that Dη has bounded
connected components. Hence, the functions a and b defined by{
a(η) = inf {ξ ≤ ξ0 : f∗∗(η , ξ′) < f(η , ξ′) for every ξ′ ∈ [ξ , ξ0]} ,
b(η) = sup {ξ ≥ ξ0 : f∗∗(η , ξ′) < f(η , ξ′) for every ξ′ ∈ [ξ0, ξ]} , |η − η0| ≤ δ,

are finite and properties (i) and (iii) hold by construction. Moreover, the open interval(
a(η) , b(η)

)
is the connected component of Dη containing ξ0 whence we obtain the

equalities in (iv). Also, the closure of every connected component of Dη is contained
in C by (2.6) so that f and f∗∗ are finite at the points (η , a(η)) and (η , b(η)) for
every η within δ from η0 because of (H1).

Thus, we are left to prove (ii). As regards semicontinuity, suppose, for instance,
that b fails to be lower semicontinuous at some point η′ in [η0 − δ , η0 + δ] so that

lim inf
η→η′

b(η) < M < b(η′)

for some real numberM > ξ0. It follows that f
∗∗(η′, ξ) < f(η′, ξ) for every ξ ∈ [ξ0,M ].

Hence, the compact segment {η′}× [ξ0,M ] is contained in the open set D whence
[η′−σ , η′+σ]×[ξ0,M ] is in D too for some positive σ. This yields that b(η) ≥M for
all η such that |η − η′| ≤ σ and |η − η0| ≤ δ, and this gives a contradiction. Finally,
to prove that a and b are bounded, note that (iii) and (iv) of Proposition 2.1 imply
that Ef∗∗(η , ξ) ≥ −M for every ξ ∈ (a(η) , b(η)) and every η ∈ [η0 − δ , η0 + δ] for
some M ≥ 0 and that the growth assumption (H3) yields that

sup {Ef∗∗(η , ξ) : |η − η0| ≤ δ} < −M, |ξ| ≥ R,
for some large enough R. Thus, −R < a(η) < b(η) < R for every |η − η0| ≤ δ,
completing the proof.

The following lemma is proved in [2]. It is a technical result whose statement is
long though its proof is elementary.

Lemma 3.2. Let z ∈ AC([0 , T ]) be differentiable at some point s ∈ (0 , T ) and let
α, β ∈ R be such that

α < z′(s) < β.

Then for every δ > 0, there exist ε0 = ε0(s , δ) > 0, two families of compact
subintervals H±

s = {H±
s,ε : 0 < ε ≤ ε0} of (0 , T ), and two families of functions

Z±
s = {z±s,ε : 0 < ε ≤ ε0} in AC([0 , T ]) such that, setting


J+
s,ε =

(
s− ε

β − z′(s) , s+
ε

z′(s)− α
)
,

J−s,ε =
(
s− ε

z′(s)− α , s+
ε

β − z′(s)
)
,

ε > 0,(3.1)
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the following properties hold for every 0 < ε ≤ ε0:
J±s,ε/2 ⊂ H±

s,ε ⊂ J±s,2ε ⊂ (0 , T );(3.2)

z±s,ε = z on [0 , T ] \ int (H±
s,ε

)
;(3.3)

z(t) < z+s,ε(t) ≤ z(t) + δ for every t ∈ int
(
H+
s,ε

)
;(3.4+)

z(t)− δ ≤ z−s,ε(t) < z(t) for every t ∈ int
(
H−
s,ε

)
;(3.4−)

ε ≥ z+s,ε(t)− [z(s) + z′(s)(t− s)] ≥ ε/2 for every t ∈ J+
s,ε/2;(3.5+)

−ε/2 ≥ z−s,ε(t)− [z(s) + z′(s)(t− s)] ≥ −ε for every t ∈ J−s,ε/2;(3.5−) (
z±s,ε
)′
(t) ∈ {α , β} for a.e. t ∈ H±

s,ε.(3.6)

Setting

E = {s ∈ (0 , T ) : z is differentiable at s with α < z′(s) < β} ,
note in particular that either family of compact sets H± = {H±

s,ε : 0 < ε ≤ ε0(s , δ),
s ∈ E} constitute a Vitali covering of the measurable set E itself.

Then we construct the local solutions that will be used in the proof of Theorem 2.2.
As mentioned above, they will be defined as extremal solutions to suitable, convex-
valued differential inclusions.

Proposition 3.3. Let a, b : [η0− δ , η0+ δ]→ R be two bounded, upper and lower
semicontinuous functions, respectively, such that

(i) a(η) < ξ0 < b(η) for every η ∈ [η0 − δ , η0 + δ]
for some ξ0 ∈ R and assume that there exist y ∈ AC([0 , T ]) and t0 ∈ (0 , T ) such that

(ii) y is differentiable at t0 with y(t0) = η0 and y′(t0) = ξ0.
Then there exist ε0 = ε0(t0, δ) > 0, two families of compact subintervals K±

t0 =

{K±
t0,ε : 0 < ε ≤ ε0} of (0 , T ) such that

each set K±
t0,ε is a neighborhood of t0 and each family K±

t0 shrinks at t0,(3.7)

and two families of functions Y±
t0 = {y±t0,ε : 0 < ε ≤ ε0} in AC([0 , T ]) such that the

following properties hold for every 0 < ε ≤ ε0:

y±t0,ε = y on [0 , T ] \ int (K±
t0,ε

)
;(3.8)

y(t) < y+t0,ε(t) ≤ y(t) + ε for every t ∈ int
(
K+
t0,ε

)
;(3.9+)

y(t)− ε ≤ y−t0,ε(t) < y(t) for every t ∈ int
(
K−
t0,ε

)
;(3.9−) ∣∣y±t0,ε(t)− η0∣∣ ≤ δ for every t ∈ K±

t0,ε;(3.10) (
y±t0,ε

)′
(t) ∈ {a (y±t0,ε(t)) , b (y±t0,ε(t))} for a.e. t ∈ K±

t0,ε.(3.11)

Proof. We are going to treat the + case, the other one being entirely equivalent.
Therefore, to simplify the notations, we shall drop the superscript + from now on.
Our strategy is the following: Relying on Lemma 3.2, for every small enough ε,
we are going to define the compact set Kt0,ε and a sequence of functions yk,t0,ε in
AC([0 , T ]) satisfying (3.8), (3.9+), and (3.10) which are “approximated” solutions to
the differential inclusion (3.11). The remarkable point is that although the derivatives
of the “approximated” solutions yk,t0,ε oscillate faster and faster as k →∞ in order to
solve (3.11), the functions yk,t0,ε can be defined in such a way that they do converge
strongly in AC([0 , T ]). The limit function will be yt0,ε.
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To this purpose, set I = [η0 − δ , η0 + δ] to simplify the notation and define{
M = max {a(η) : η ∈ I} ,
m = min {b(η) : η ∈ I} and σ = min {m− ξ0, ξ0 −M}(3.12)

so that σ > 0 because of (i). Then choose ε′0 = ε
′
0(t0, δ , σ) > 0 small enough so that{

ε′0 < min {δ/4 , σ/16 , σt0/4 , σ(T − t0)/4} ,
|t− t0| ≤ 4ε′0/σ =⇒ |y(t)− η0| < min {δ/4 , σ/32}(3.13)

hold and define also{
ak(η) = max {a(η′)− k |η′ − η| : η′ ∈ I}+ σ/2k,
bk(η), = min {b(η′) + k |η′ − η| : η′ ∈ I} − σ/2k, η ∈ I.(3.14)

These functions ak and bk are (up to the constants σ/2k) the Moreau–Yosida approx-
imations of a and b, respectively. They enjoy the following properties (see [10], for
instance):

ak and bk are Lipschitz continuous on I with Lipschitz constant k;(3.15)

M + σ/2 ≥ a1(η) and ak(η)− ak+1(η) ≥ ∆k for every η ∈ I and k ≥ 1;(3.16)

m− σ/2 ≤ b1(η) and bk+1(η)− bk(η) ≥ ∆k for every η ∈ I and k ≥ 1;(3.17)

where ∆k =
σ

2k(k+1) , k ≥ 1, and

ak → a and bk → b pointwise on I.(3.18)

Now, the preparatory work is over and the proof will be completed by proving the
following three claims.

Claim 1. There exist ε0 = ε0(t0, δ , σ) ∈ (0 , ε′0] and a family of compact subinter-
vals Kt0 = {Kt0,ε : 0 < ε ≤ ε0} of (0 , T ) satisfying (3.7) with the further property
that for every sequence of positive numbers {ωk}k≥1, the following holds for every
ε ∈ (0 , ε0]: There exists a sequence of functions {yk,t0,ε}k≥0 in AC([0 , T ]) such that
y0,t0,ε = y and

yk,t0,ε = y on [0 , T ] \ int (Kt0,ε);(3.19)

0 < yk,t0,ε(t)− yk−1,t0,ε(t) < min

{
ε

2k
, ωk,

∆k

4(k + 1)

}
, t ∈ int (Kt0,ε);(3.20)

|yk,t0,ε(t)− η0| <
∑

1≤h≤k
δ/2h, t ∈ Kt0,ε;(3.21)

y′k,t0,ε(t) ∈
(
ak+1 (yk,t0,ε(t)) , ak (yk,t0,ε(t))

)
∪
(
bk (yk,t0,ε(t)) , bk+1 (yk,t0,ε(t))

)
for a.e. t ∈ Kt0,ε

(3.22)

for every k ≥ 1.
Claim 2. There exists a sequence of positive numbers {ωk}k such that for every

ε ∈ (0 , ε0], the sequence of functions {yk,t0,ε}k converges strongly in AC([0 , T ]) to a
function yt0,ε ∈ AC([0 , T ]).
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Claim 3. For the same sequence of numbers {ωk}k, we also have that{
ak+h (yk,t0,ε(t))→ a (yt0,ε(t)) ,
bk+h (yk,t0,ε(t))→ b (yt0,ε(t))

as k →∞(3.23)

for every h ≥ 0 and t ∈ [0 , T ].
Once the previous claims have been proved, we conclude immediately that yt0,ε

satisfies (3.8), (3.9+), and (3.10) for every ε ∈ (0 , ε0] because of the corresponding
properties of the functions yk,t0,ε. Moreover, Claim 2 implies that some subsequence
of {y′k,t0,ε}k converges to y′t0,ε almost everywhere on [0 , T ] so that (3.11) follows from
(3.22) and Claim 3.

Proof of Claim 1. We apply Lemma 3.2 in the + case with s = t0, z = y and
α = [a1(η0) + a2(η0)]/2 and β = [b1(η0) + b2(η0)]/2 thus finding ε0 = ε0(t0, δ , σ) ∈
(0 , ε′0], a family of compact subintervals Ht0 = {Ht0,ε : 0 < ε ≤ ε0} of (0 , T ) which
are all neighborhoods of t0, and a family of functions Zt0 = {zt0,ε : 0 < ε ≤ ε0} in
AC([0 , T ]) such that (3.2), (3.3), (3.4+), and (3.6) hold. Relying on these properties,
it is easy to check that (zt0,ε− y)→ 0+ uniformly on [0 , T ] as ε→ 0 so that for every
0 < ε ≤ ε0, we can choose 0 < ε′ ≤ ε such that

0 < zt0,ε′(t)− y(t) < min

{
ε

2
, ω1,

∆1

4(1 + 1)

}
, t ∈ int (Ht0,ε′) .

Hence, recalling that y0,t0,ε = y for every ε ∈ (0 , ε0] by definition and setting Kt0,ε =
Ht0,ε′ and y1,t0,ε = zt0,ε′ for every ε ∈ (0 , ε0], we conclude that Kt0,ε satisfies (3.7),
that y1,t0,ε satisfies (3.19) and (3.20) with k = 1, and, moreover, that the derivative
of y1,t0,ε is such that

y′1,t0,ε(t) ∈
{
a1(η0) + a2(η0)

2
,
b1(η0) + b2(η0)

2

}
for a.e. t ∈ Kt0,ε.

As regards (3.21), note that each compact interval Kt0,ε is contained in Ht0,ε0 and
that this latter interval is contained in [t0 − 4ε′0/σ , t0 + 4ε′0/σ] by (3.2). This latter
inclusion, together with the equality y0,t0,ε = y and the choice of ε′0 made in (3.13),
implies that

|y0,t0,ε(t)− η0| ≤ min

{
δ

4
,

∆1

4(1 + 1)

}
(3.24)

since σ/32 = ∆1/8. Hence,

|y1,t0,ε(t)− η0| ≤ |y1,t0,ε(t)− y0,t0,ε(t)|+ |y0,t0,ε(t)− η0|
< ε/2 + δ/4 ≤ δ/4 + δ/4 = δ/2

(3.25)

holds for every t ∈ Kt0,ε because of (3.20) with k = 1 and (3.24). At last, to complete
the first step, we have to check that y1,t0,ε is an “approximated” solution to the
differential inclusion (3.11) on the set Kt0,ε, i.e., that (3.22) holds for k = 1. Indeed,
let y1,t0,ε be differentiable at some point t ∈ int (Kt0,ε) with derivative y′1,t0,ε(t) =
[a1(η0) + a2(η0)]/2. By elementary computations based on (3.15), (3.16), (3.20) for
k = 1 and (3.24), we get

a2 (y1,t0,ε(t)) ≤ a2(η0) + 2
(
|y1,t0,ε(t)− y0,t0,ε(t)|+ |y0,t0,ε(t)− η0|

)
< a2(η0) +

∆1

2
=
a1(η0) + a2(η0)

2
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and, similarly,

a1 (y1,t0,ε(t)) >
a1(η0) + a2(η0)

2
.

Thus, a2 (y1,t0,ε(t)) < y
′
1,t0,ε(t) < a1 (y1,t0,ε(t)), and the very same kind of com-

putations in the case that y′1,t0,ε(t) is [b1(η0) + b2(η0)]/2 yield that b1 (y1,t0,ε(t)) <
y′1,t0,ε(t) < b2 (y1,t0,ε(t)), which is (3.22) for k = 1.

Next, we go on defining the second “approximated” solution y2,t0,ε on the same
set Kt0,ε. We shall do this for a fixed ε ∈ (0 , ε0].

To this purpose, choose any point t ∈ int (Kt0,ε) where y1,t0,ε is differentiable
and (3.22) holds for k = 1 and set ηt = y1,t0,ε(t). For every such point t, we apply
Lemma 3.2 in the + case again with s = t, z = y1,t0,ε and α = [a2(ηt) + a3(ηt)]/2
and β = [b2(ηt) + b3(ηt)]/2, thus finding a positive number θ0 = θ0(t , ε), a family of
nondegenerate, compact intervals Lt = {Lt,θ : 0 < θ ≤ θ0} contained in Kt0,ε and a
family of functions Zt = {zt,θ : 0 < θ ≤ θ0} in AC([0 , T ]) such that all sets Lt,θ in
Lt are neighborhoods of t and the following properties hold for every θ ∈ (0 , θ0]:

zt,θ = y1,t0,ε on [0 , T ] \ int (Lt,θ);(3.26)

0 < zt,θ(s)− y1,t0,ε(s) ≤ min

{
ε

22
, ω2,

∆2

4(2 + 1)

}
for every s ∈ int (Lt,θ);(3.27)

z′t,θ(s) ∈
{
a2(ηt) + a3(ηt)

2
,
b2(ηt) + b3(ηt)

2

}
for a.e. s ∈ Lt,θ.(3.28)

Moreover, we can assume that θ0 is small enough to have

|y1,t0,ε(s)− ηt| ≤
∆2

4(2 + 1)
for every s ∈ Lt,θ and θ ∈ (0 , θ0],(3.29)

and we note also that from (3.27), (3.13), and (3.25), it follows that

|zt,θ(s)− η0| ≤ |zt,θ(s)− y1,t0,ε(s)|+ |y1,t0,ε(s)− η0| ≤ δ/2 + δ/4(3.30)

for every s ∈ Lt,θ and θ ∈ (0 , θ0]. Next, we prove that

z′t,θ(s) ∈
(
a3 (zt,θ(s)) , a2 (zt,θ(s))

)
∪
(
b2 (zt,θ(s)) , b3 (zt,θ(s))

)
(3.31)

for a.e. s ∈ Lt,θ. Indeed, (3.27), (3.16), and (3.29) yield

a3 (zt,θ(s)) ≤ a3(ηt) + 3
(
|zt,θ(s)− y1,t0,ε(s)|+ |y1,t0,ε(s)− ηt|

)
< a3(ηt) +

∆2

2
≤ a2(ηt) + a3(ηt)

2

and, similarly,

a2(ηt) + a3(ηt)

2
< a2 (zt,θ(s))

for a.e. s ∈ Lt,θ. Thus, (3.31) holds if the derivative of zt,θ exists and is equal to
[a2(ηt)+a3(ηt)]/2, and a specular argument yields (3.31) if z′t,θ(s) is [b2(ηt)+b3(ηt)]/2.

So far, we have defined a family of functions zt,θ satisfying (3.19),(3.20), (3.21),
and (3.22) for k = 2 around every “good” point t in the interior of Kt0,ε and, to com-
plete the definition of y2,t0,ε, we just have to glue these functions zt,θ by a covering
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argument. Indeed, by the remark following Lemma 3.2, the family of nondegener-
ate, compact intervals L = {Lt,θ : 0 < θ ≤ θ0(t , ε) and t ∈ E1} constitutes a Vitali
covering of the measurable set

E1 =
{
t ∈ int (Kt0,ε) : y

′
1,t0,ε(t) exists and (3.22) holds with k = 1

}
,

which is a full measure subset of int (Kt0,ε). Hence, Vitali’s covering theorem yields
(at most) countably many points tj ∈ E1 and positive numbers θj ∈ (0, θ0(tj , ε)] such
that the corresponding compact intervals Lj = Ltj ,θj are pairwise disjoint sets that
cover E1, and hence Kt0,ε as well, up to a null set.

Now, we define the second “approximated” solution y2,t0,ε by setting

y2,t0,ε(t) = y1,t0,ε(t) +
∑
j≥1

[zj(t)− y1,t0,ε(t)] , t ∈ [0 , T ],(3.32)

where zj = ztj ,θj . As the supports Lj of the functions zj−y1,t0,ε are disjoint, the series
in (3.32) is actually a finite sum for every t and, moreover, the functions zj − y1,t0,ε
have (essentially) uniformly bounded derivatives on [0 , T ]. Thus, y2,t0,ε is Lipschitz
continuous on [0 , T ] by the Ascoli–Arzelà theorem, and the fulfillment of (3.19),
(3.20), (3.21), and (3.22) for k = 2 follows straightforwardly from the corresponding
properties (3.26), (3.27), (3.30), and (3.31) of the functions zj = ztj ,θj .

Finally, all the remaining functions yk,t0,ε are defined recursively in the very same
way we have got y2,t0,ε from y1,t0,ε, and this completes the proof of Claim 1.

Proof of Claim 2. We are going to choose the positive numbers ωk so as to have
strong convergence in L1([0 , T ]) of the derivatives y′k,t0,ε.

To this purpose, let ϕ ∈ D(R) be the standard mollifying kernel and set, as usual,
ϕr(t) = r−1ϕ(t/r) for every t ∈ R and r > 0. Choose also a sequence of positive
numbers 0 < rk < 2−k in such a way that, extending each function yk,t0,ε to the
whole real line as a constant function off the interval [0 , T ], the following inequality
holds: ∫

R

∣∣ϕrk ∗ y′k,t0,ε(t)− y′k,t0,ε(t)∣∣ dt ≤ 1

k
, k ≥ 1.(3.33)

Then let {ωk}k be the sequence defined by setting ω1 = 1 and, recursively,

ωk+1 = rkωk, k ≥ 1.(3.34)

The reader might think that this way of choosing the numbers ωk is inconsistent as it
requires that the functions yk,t0,ε be already defined. This is not the case. Indeed, we
set ω1 to be 1 and then define y1,t0,ε so that (3.20) with k = 1 holds. Then we compute
r1 according to (3.33) with k = 1—which requires only that y1,t0,ε be defined—and
then we define the number ω2 = r1ω1. Only then do we choose the function y2,t0,ε so
that (3.20) with k = 2 holds, and we restart the procedure.

Now, we claim that this choice of the numbers ωk yields the conclusion of Claim 2,
and we break the remaining part of the proof into the following three claims.

Claim 2.1. For every ε ∈ (0 , ε0], the sequence {yk,t0,ε}k converges uniformly on
[0 , T ] to some function yt0,ε.

Indeed,

0 ≤ yk+1,t0,ε(t)− yk,t0,ε(t) ≤ ωk+1, t ∈ [0 , T ],(3.35)
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by (3.19) and (3.20). Since 0 < ωk+1/ωk = rk → 0 as k →∞, the sequence {yk,t0,ε}k
is uniformly Cauchy on [0 , T ] and the conclusion follows.

Claim 2.2. yt0,ε ∈ AC([0 , T ]).
All the functions yk,t0,ε have (essentially) uniformly bounded derivatives on the

interval Kt0,ε since a and b are bounded and

a (yk,t0,ε(t)) < ak+1 (yk,t0,ε(t)) < y
′
k,t0,ε(t) < bk+1 (yk,t0,ε(t)) < b (yk,t0,ε(t))

for a.e. t ∈ Kt0,ε. Thus, yt0,ε is Lipschitz continuous on Kt0,ε. As it coincides with
the absolutely continuous function y on [0 , T ]\ int (Kt0,ε) because of (3.19), the claim
is proved.

Claim 2.3. The sequence {yk,t0,ε}k converges strongly in AC([0 , T ]).
Indeed, ∥∥y′k,t0,ε − y′t0,ε∥∥1

≤ ∥∥y′k,t0,ε − ϕrk ∗ y′k,t0,ε∥∥1
+
∥∥ϕrk ∗ y′k,t0,ε − ϕrk ∗ y′t0,ε∥∥1

+
∥∥ϕrk ∗ y′t0,ε − y′t0,ε∥∥1

.

The first and the third summand on the right-hand side go to zero as k →∞ because
of (3.33) and the properties of convolutions with mollifying kernels, respectively. We
are thus left to prove that

Rk =
∥∥ϕrk ∗ (y′k,t0,ε − y′t0,ε)∥∥1

→ 0 as k →∞.

To this aim, note that Rk = Cr
−1
k ‖yk,t0,ε − yt0,ε‖∞, where C = T ‖ϕ′‖1, so that

(3.34) and (3.35) yield that

‖yk,t0,ε − yt0,ε‖∞ ≤
∑
j≥1

‖yk+j,t0,ε − yk+j−1,t0,ε‖∞ ≤
∑
j≥1

ωk+j

= ωk+1


1 +

∑
j≥1

rk+j


 ≤ 2ωk+1 = 2rkωk

because 0 < rk < 2−k by assumption. Thus, Rk ≤ 2Cωk → 0 as k → ∞, and the
conclusion follows.

Proof of Claim 3. Let t be in the interior of Kt0,ε; otherwise the conclusion follows
immediately from (3.19) and (3.18). For such t, we have

|ak+h (yk,t0,ε(t))− a (yt0,ε(t))|
≤ |ak+h (yk,t0,ε(t))− ak+h (yt0,ε(t))|+ |ak+h (yt0,ε(t))− a (yt0,ε(t))| ,

and the second summand at the right-hand side goes to zero as k → ∞ because of
(3.18) again, no matter what h is. As to the first one, (3.15) and the very same
argument of Claim 2.3 show that it is bounded by 2(k + h)ωk+1, and this goes to
zero as k → ∞ because (3.34) and the basic assumption 0 < rk < 2−k yield that
ωk+1 ≤ 2−k. This proves the a case and nothing changes in the b case.

4. Proof of the main result. In this final section, we put together and ex-
ploit the tools developed in the previous section and prove our attainment result,
Theorem 2.2.

Proof of Theorem 2.2. Let R be a bounded, open rectangle whose closure is
contained in D. By (iii) and (iv) of Proposition 2.1, the function

q(η) = Ef∗∗(η , ξ), (η , ξ) ∈ R,
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is well defined, and we claim that it has at most finitely many strict, local extrema
in R. Indeed, should this be false, there would be a converging sequence {mk}k of
strict, local extrema of q, say mk → m0, and we could assume also the sequence
{mk}k is strictly monotone. Thus, q would fail to be monotone on both sides of m0,
and this gives a contradiction to (2.13). As D is a countable union of such rectangles
R, we conclude that there exists an (at most) countable family of subsets of D, say
{mi}×Li, with the property that, for every index i, Li is a connected component
of Dmi and, for every ξ ∈ Li, mi is a strict, local extremum point of the mapping
η ∈ Dξ → Ef∗∗(η , ξ). Conversely, if (η , ξ) ∈ D is such that η is a strict, local
extremum point for η ∈ Dξ → Ef∗∗(η , ξ), then η = mi for some index i and the
corresponding open interval Li is the connected component of Dmi containing ξ. We
recall also that according to (v) of Proposition 2.1 and (2.14), a point mi may be a
strict, local minimum point for η ∈ Dξ → Ef∗∗(η , ξ) for some ξ ∈ Li only if 0 /∈ Li.

Now, let y ∈ AC([0 , T ]) be a solution to (P∗∗) and assume that I∗∗(y) < ∞;
otherwise there is nothing else to prove. We are going to prove that y can be modified
so as to find a new solution x to (P∗∗) such that

f∗∗(x(t) , x′(t)) = f(x(t) , x′(t)) for a.e. t ∈ [0 , T ],(4.1)

thus showing that x is a solution to (P) as well. The proof goes through the following
three steps.

Step 1. Let M be the subset of D defined by M = ∪i ({mi}×Li) and note that
D \M is open. First, we prove that whenever the measurable set

E =
{
t ∈ (0 , T ) : y is differentiable at t and

(
y(t) , y′(t)

) ∈ D \M}(4.2)

has positive measure, we can use Lemma 3.2 and Proposition 3.3 to associate with
every point s ∈ E a family of new solutions Ys = {ys,ε : 0 < ε ≤ ε0(s)} to (P∗∗) such
that the sets Ks,ε defined as the closure of {ys,ε �= y} are nondegenerate, compact
intervals that shrink at s and the following properties hold for every 0 < ε ≤ ε0(s):

sup {|ys,ε(t)− y(t)| : 0 ≤ t ≤ T} ≤ ε;(4.3a)

f∗∗(ys,ε(t) , y′s,ε(t)) = f(ys,ε(t) , y
′
s,ε(t)) for a.e. t ∈ Ks,ε.(4.3b)

Step 2. Then we use the modified solutions of the previous step and a covering
argument to define a new solution x to (P∗∗) such that, setting

A =
{
t ∈ (0 , T ) : x is differentiable at t and

(
x(t) , x′(t)

) ∈M} ,(4.4)

we have that

f∗∗(x(t) , x′(t)) = f(x(t) , x′(t)) for a.e. t ∈ [0 , T ] \A.(4.5)

Step 3. Finally, we show that A is negligible. Thus, (4.5) reduces to (4.1), and
this shows that x is a solution to (P).

Proof of Step 1. Assume that the set E defined by (4.2) has positive measure, fix
a point t0 ∈ E, and set η0 = y(t0) and ξ0 = y

′(t0). As (η0, ξ0) ∈ D\M by assumption,
the basic hypotheses (2.13) and (2.14) and the very definition of the setM itself imply
that the restriction η ∈ Dξ0 → Ef∗∗(η , ξ0) is monotone on the interval [η0− δ , η0 + δ]
for some δ > 0. Moreover, by possibly choosing a smaller value of δ, we can describe
the upper and the lower parts of the boundary of the connected component of the
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vertical strip D ∩ ([η0 − δ , η0 + δ]×R) of D containing (η0, ξ0) as in Proposition 3.1,
i.e., as the graphs of two functions a, b : [η0−δ , η0+δ]→ R satisfying (i), (ii), (iii), and
(iv) of Proposition 3.1. Also, setting D′ = {(η , ξ) : |η − η0| ≤ δ and a(η) ≤ ξ ≤ b(η)}
and recalling (2.5), (2.6), and Proposition 2.1, we can write the convex envelope f∗∗

of f on the set D′ as

f∗∗(η , ξ) = d(η)ξ + q(η), (η , ξ) ∈ D′,(4.6)

where the continuous functions d, q : [η0 − δ , η0 + δ] → R are defined by q(η) =
Ef∗∗(η , ξ) and d(η) = d(η , ξ) for every (η , ξ) ∈ D′. Note also that q is monotone on
the interval [η0 − δ , η0 + δ] because of the corresponding property of the restriction
η ∈ Dξ0 → Ef∗∗(η , ξ0), that

f∗∗(η , ξ) ≥ d(η)ξ + q(η) for every η ∈ [η0 − δ , η0 + δ] and ξ ∈ R(4.7)

holds because of (2.1) and (2.7), and that the equalities{
f∗∗(η , a(η)) = f(η , a(η)),
f∗∗(η , b(η)) = f(η , b(η)),

η ∈ [η0 − δ , η0 + δ],(4.8)

follow from (iv) of Proposition 3.1.
Then we apply Proposition 3.3 and let K±

t0 = {K±
t0,ε : 0 < ε ≤ ε0(t0)} and Y±

t0 =

{y±t0,ε : 0 < ε ≤ ε0(t0)} be the corresponding intervals and functions. We assume in
addition that ε0(t0) is small enough so as to have

|y(t)− η0| ≤ δ for every t ∈ K±
t0,ε and 0 < ε ≤ ε0(t0).(4.9)

Now, we wish to compare I∗∗(y±t0,ε) with I
∗∗(y). To this aim, recalling (3.8), we see

that it is enough to compare∫
K±

t0,ε

f∗∗
(
y±t0,ε(t) ,

(
y±t0,ε

)′
(t)
)
dt and

∫
K±

t0,ε

f∗∗(y(t) , y′(t)) dt.

As (y±t0,ε(t) , (y
±
t0,ε)

′(t)) can only stay on the upper and lower parts of the boundary of

D′ for a.e. t ∈ K±
t0,ε by (3.10) and (3.11), equation (4.6) shows that the first integral

turns in∫
K±

t0,ε

f∗∗
(
y±t0,ε(t) ,

(
y±t0,ε

)′
(t)
)
dt =

∫
K±

t0,ε

[
d
(
y±t0,ε(t)

) (
y±t0,ε

)′
(t) + q

(
y±t0,ε(t)

)]
dt.

By the fundamental theorem of calculus, the integrals of d
(
y±t0,ε

) (
y±t0,ε

)′
and d(y)y′

over the interval K±
t0,ε are equal as they are both derivatives of absolutely continuous

functions having the same values at the endpoints of the interval K±
t0,ε. Hence, the

previous computation together with (4.9) and (4.7) yields that∫
K±

t0,ε

f∗∗
(
y±t0,ε(t) ,

(
y±t0,ε

)′
(t)
)
dt

≤
∫
K±

t0,ε

f∗∗(y(t) , y′(t)) dt+
∫
K±

t0,ε

[
q
(
y±t0,ε(t)

)− q(y(t))] dt.(4.10)
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Then recall that q is monotone on the interval [η0 − δ , η0 + δ] and that (3.9+) and
(3.9−) hold. Therefore, setting yt0,ε = y−t0,ε and Kt0,ε = K−

t0,ε if q is increasing,

and yt0,ε = y
+
t0,ε and Kt0,ε = K

+
t0,ε otherwise, we conclude that all functions yt0,ε are

solutions to (P∗∗). Moreover, (4.3a) and (4.3b) follow immediately either from (3.9−)
or from (3.9+) and from (3.11) and (4.8), respectively. This completes the proof of
the step.

Proof of Step 2. We assume again that the set E defined by (4.2) has positive
measure; otherwise the conclusion of the step trivially holds with x = y.

Then, for every point s ∈ E, we let Ks = {Ks,ε : 0 < ε ≤ ε0(s)} be the family
of nondegenerate, compact intervals and Ys = {ys,ε : 0 < ε ≤ ε0(s)} be the family of
new solutions to the relaxed problem (P∗∗) satisfying (4.3) that were constructed in
Step 1. Moreover, we can assume that 0 < ε0(s) ≤ 1 for every s ∈ E.

Now, we are left to prove that we can select and glue some of these functions ys,ε
from Ys so as to find a new solution x to (P∗∗) satisfying (4.5).

To this purpose, recall that the intervals K = {Ks,ε : 0 < ε ≤ ε0(s) and s ∈ E}
defined in the previous step constitute a Vitali covering of E because of (3.7). Hence,
Vitali’s covering theorem yields (at most) countably many points sh ∈ E and numbers
εh ∈ (0 , ε0(sh)] such that the corresponding intervals Kh = Ksh,εh are pairwise
disjoint subsets of (0 , T ) which cover E up to a null set. Also let yh = ysh,εh be the
corresponding solution to (P∗∗) so that the equality

∫
Kh

f∗∗ (yh(t) , y′h(t)) dt =
∫
Kh

f∗∗ (y(t) , y′(t)) dt for every h(4.11)

follows from (3.8) and, moreover,

f∗∗ (yh(t) , y′h(t)) = f (yh(t) , y
′
h(t)) for a.e. t ∈ Kh(4.12)

by (4.3b), i.e., the vectors (yh(t) , y
′
h(t)) keep off the set D for a.e. t ∈ Kh.

Then we set

x(t) = y(t) +
∑
h

[yh(t)− y(t)] , t ∈ [0 , T ],

and, as in Claim 1 of Proposition 3.3, we show that the series above converges strongly
in AC([0 , T ]). Indeed, the functions yh − y are absolutely continuous functions on
[0 , T ], whose supports Kh are pairwise disjoint so that the series above actually re-
duces to a finite sum for every t and its partial sums are bounded by 1 by either (3.9+)
or (3.9−) and the choice of ε0(s). Thus, the series converges strongly in L1([0 , T ])
by Lebesgue’s dominated convergence theorem. As to the derivatives, first recall that
the basic assumptions (H2) and (H3) imply that (2.10) holds, i.e., that f∗∗(η , ξ) has
at least linear growth at infinity as |ξ| → ∞, uniformly with respect to η ranging in
a bounded interval. Therefore, setting R = ‖y‖∞ + 1, for instance, and letting α > 0
and β ≥ 0 be the corresponding numbers as in (2.10), we get from (4.11) that

∑
h

∫
Kh

|y′h(t)| dt ≤
1

α
[I∗∗(y) + βT ] .
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Hence,

∑
h

∫ T

0

|y′h(t)− y′(t)| dt =
∑
h

∫
Kh

|y′h(t)− y′(t)| dt

≤
∑
h

∫
Kh

|y′h(t)| dt+ ‖y′‖1 ≤
1

α
[I∗∗(y) + βT ] + ‖y′‖1 <∞;

i.e., the series of the derivatives converges strongly in L1([0 , T ]), and this proves the
claim about the series defining x.

Finally, it is plain that x is feasible for (P∗∗) because of (3.8) so that, adding
(4.11) up for every h, we conclude that x is a solution to (P∗∗). Moreover, x = y on
[0 , T ]\(∪hKh), whereas x = yh on Kh and x′ = y′h almost everywhere on the same set
so that the equality f∗∗(x , x′) = f(x , x′) almost everywhere on ∪hKh follows from
(4.12). As the intervals Kh cover E up to a null set, we conclude that (4.5) holds.

Proof of Step 3. Let x be the solution to (P∗∗) satisfying (4.5) that was defined
in Step 2 and let A be the set defined by (4.4). We have to show that A is negligible,
which we will accomplish by showing that, otherwise, a feasible function x such that
I∗∗(x) < I∗∗(x) would exist.

Indeed, recalling the definitions of the sets A andM in Steps 2 and 1, respectively,
we see that set A itself can actually be written, up to a null set, as a countable union
of sets

Bi = {t ∈ (0 , T ) : x(t) = mi, x is differentiable at t and x′(t) = 0}

since x′ vanishes almost everywhere on each level set {x = mi}. Now, assume by
contradiction that some set Bi has positive measure and, to simplify notation, set
m = mi, L = Li, and B = Bi. Note also that (v) of Proposition 2.1 and our
assumption (2.14) imply that 0 ∈ L and that m has to be a strict, local maximum
point of η ∈ D0 → Ef∗∗(η , 0).

Then, for a sufficiently small δ > 0, there exist two functions a, b : [m − 2δ ,m +
2δ] → R as in Proposition 3.1 such that the functions d, q : [m − 2δ ,m + 2δ] → R

defined by {
d(η) = d(η , ξ),
q(η) = Ef∗∗(η , ξ), η ∈ [m− 2δ ,m+ 2δ],

are well defined because of Proposition 2.1, no matter what ξ ∈ (a(η), b(η)) is, and,
moreover, the following properties hold:

(m, 0) ∈ D;(4.13a)

a(η) < 0 < b(η) for every η ∈ [m− 2δ ,m+ 2δ];(4.13b)

q(η) = f∗∗(η , 0) for every η ∈ [m− 2δ ,m+ 2δ];(4.13c)

f∗∗(η , ξ) = d(η)ξ + q(η) for ξ ∈ (a(η) , b(η)) and η ∈ [m− 2δ ,m+ 2δ];(4.13d)

m is a strict, local maximum point of q;(4.13e)

q is increasing on [m− 2δ ,m] and decreasing on [m,m+ 2δ].(4.13f)

Now, let s ∈ B be a density point of B and let H±
s =

{
H±
s,ε : 0 < ε ≤ ε0

}
and

X±
s =

{
x±s,ε : 0 < ε ≤ ε0

}
be the families of intervals and functions associated with

z = x, δ, α = max {a(η) : |η −m| ≤ δ} < 0, and β = min {b(η) : |η −m| ≤ δ} > 0
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by Lemma 3.2. Let also J±s,ε be the intervals defined by (3.1) and assume ε0 = ε0(s , δ)

is small enough so as to have ε0 ≤ 2δ and |x(t)−m| ≤ δ for every t in J±s,2ε0 . Hence,∣∣x±s,ε(t)−m∣∣ ≤ 2δ for every t in H±
s,ε and every 0 < ε ≤ ε0 by either (3.4+) or (3.4−).

Each function x±s,ε is feasible for (P∗∗) because of (3.2) and (3.3) and, in order to

compare I∗∗
(
x±s,ε

)
with I∗∗(x), it is enough that we compare∫

H±
s,ε

f∗∗
(
x±s,ε(t) ,

(
x±s,ε

)′
(t)
)
dt and

∫
H±

s,ε

f∗∗ (x(t) , x′(t)) dt.

Now, the very same computations of Step 1 yield that∫
H±

s,ε

f∗∗
(
x±s,ε(t) ,

(
x±s,ε

)′
(t)
)
dt

≤
∫
H±

s,ε

f∗∗ (x(t) , x′(t)) dt+
∫
H±

s,ε

[
q
(
x±s,ε(t)

)− q(x(t))] dt(4.14)

for every 0 < ε ≤ ε0, and we claim that for small enough ε, we can choose either + or
− so that the last summand at the right-hand side of (4.14) is negative, thus getting
a contradiction.

To see this, choose a decreasing sequence {εk}k in (0 , ε0] such that εk → 0 and
set

ηk =
1

εk
sup {|x(t)−m| : |t− s| < 2pεk} for every k,

where p = max {(β−x′(s))−1 , (x′(s)−α)−1}. Obviously, ηk → 0+ since x is differen-
tiable at s with x′(s) = 0 by assumption and, moreover, 0 < ηkεk ≤ δ by the choice
of ε0. Then, recalling that m is a strict, local maximum point of q and possibly ex-
tracting a subsequence that we still label as {εk}k, we can assume that the minimum
between q(m− ηkεk) and q(m+ ηkεk) is actually achieved for every k by terms with
the same sign inside, say q(m+ ηkεk), so that

0 < q(m)− q(m+ ηkεk) = max {q(m)− q(m− ηkεk), q(m)− q(m+ ηkεk)}(4.15)

holds for every k.
According to this assumption, we choose the + functions and, to simplify notation,

we set xk = x+s,εk and Hk = H+
s,εk

for every k. Of course, if the minimum between
q(m − ηkεk) and q(m + ηkεk) was achieved by q(m − ηkεk) instead, we would have
chosen the − functions.

Finally, also set Jε = J
+
s,ε for ε > 0 and note that (3.2) reduces to

Jεk/2 ⊂ Hk ⊂ J2εk .(4.16)

We prove the claim by showing that the integral∫
Hk

[q(xk(t))− q(x(t))] dt

is eventually negative.
To see this, set

A1
k =

1

|Hk|
∫
Hk

[q(m)− q(xk(t))] dt and A2
k =

1

|Hk|
∫
Hk

[q(m)− q(x(t))] dt
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for every k so that the claim reduces to proving that eventually
∣∣A1

k −A2
k

∣∣ > 0. Indeed,
recalling (4.16), that q is decreasing on the interval [m,m+2δ] by (4.13f) and noting
that (3.5+) reduces to

2δ ≥ εk ≥ xk(t)−m ≥ εk/2, t ∈ Jεk/2,
because s ∈ B and because of the choice of ε0, we find that

A1
k ≥

1

|J2εk |
∫
Jεk/2

[q(m)− q(xk(t))] dt

≥ 1

|J2εk |
∫
Jεk/2

[q(m)− q(m+ εk/2)] dt =
1

4
[q(m)− q(m+ εk/2)]

for every k since
∣∣Jεk/2∣∣ / |J2εk | = 1/4 by (3.1). As to A2

k, note that

A2
k =

1

|Hk|
∫
Hk\B

[q(m)− q(x(t))] dt for every k

and that m− ηkεk ≤ x(t) ≤ m+ ηkεk for t ∈ Hk by (4.16) and the very definition of
ηk. Hence,

0 ≤ q(m)− q(x(t)) ≤ max {q(m)− q(m− ηkεk) , q(m)− q(m+ ηkεk)}
= q(m)− q(m+ ηkεk)

for every t ∈ Hk and every k by (4.13f) and (4.15) whence we obtain

0 ≤ A2
k ≤
|Hk \B|
Hk

[q(m)− q(m+ ηkεk)] for every k.

Since ηk → 0, it follows that eventually q(m)−q(m+εk/2) ≥ q(m)−q(m+ηkεk) > 0
by (4.13f). As s is a density point of B and the intervals {Hk}k shrink at s, the ratio
|Hk \B| / |Hk|goes to zero because of (2.8) and the conclusion follows.
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Abstract. We introduce nonautonomous well-posed and (absolutely) regular linear systems as
quadruples consisting of an evolution family and output, input, and input–output maps subject to
natural hypotheses. In the spirit of Weiss’ work, these maps are represented in terms of admissible
observation and control operators (the latter in an approximate sense) in the time domain. In this
setting, the closed-loop system exists for a canonical class of “admissible” feedbacks, and it inherits
the absolute regularity and other properties of the given system. In particular, we can iterate
feedbacks.

Key words. input–output map, evolution family, Lebesgue extension, representation, closed-
loop system, controllable, observable, robustness of exponential dichotomy, input–output stability
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1. Introduction. As a motivation, we first look at the finite dimensional nonau-
tonomous linear system

x′(t) = A(t)x(t) +B(t)u(t), t ≥ s ≥ 0,

y(t) = C(t)x(t), t ≥ s ≥ 0, x(s) = x0,
(1.1)

on the state space X with control operators B(t) : U → X, observation operators
C(t) : X → Y , the control space U , and the observation space Y . Let T (t, s),
t ≥ s ≥ 0, be the evolution family (propagator) on X generated by A(·). Then the
output of (1.1) with u = 0, the state of (1.1) with x0 = 0, and the input–output
operator of (1.1) are given by

(Ψsx0)(t) = C(t)T (t, s)x0, Φt,su =

∫ t

s

T (t, τ)B(τ)u(τ)dτ,

(Fsu)(t) = C(t)

∫ t

s

T (t, τ)B(τ)u(τ)dτ, t ≥ s.
(1.2)

If one feeds back the output via u(t) = ∆(t)y(t), the resulting closed-loop system is
described by the perturbed evolution equation

x′(t) = [A(t) +B(t)∆(t)C(t)]x(t), t ≥ s ≥ 0, x(s) = x0.(1.3)

Of course, x(t) = T∆(t, s)x0 solves (1.3) if T∆ is generated by A(t) + B(t)∆(t)C(t).
This evolution family also satisfies the “variation of constants formulas”

T∆(t, s)x = T (t, s)x+

∫ t

s

T (t, τ)B(τ)∆(τ)C(τ)T∆(τ, s)x dτ,(1.4)

T∆(t, s)x = T (t, s)x+

∫ t

s

T∆(t, τ)B(τ)∆(τ)C(τ)T (τ, s)x dτ(1.5)
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for t ≥ s and x ∈ X. Identity (1.4) is the integrated version of (1.3). To derive
(1.5), we perturb T∆ by −B(t)∆(t)C(t). There are formulas analogous to (1.4) and
(1.5) relating the maps from (1.2) with the corresponding ones of the closed-loop sys-
tem. These formulas are needed to show further properties of the closed-loop system.
For instance, the closed-loop system is observable (controllable) if and only if the
open-loop system is observable (controllable). In this framework, one can also show
the equivalence of internal stability with input/output stability, detectability, and
stabilizability. We establish infinite dimensional versions of these results in section 5.

If we pass to an infinite dimensional state space X, it is no longer clear that
(1.3) possesses differentiable solutions for “many” initial values even if the Cauchy
problem for A(·) is well-posed; cf. [7], [9, section VI.9], [10]. Nevertheless, the formulas
(1.2) still work, and there is an evolution family T∆ fulfilling (1.4) and (1.5). Thus
x(t) = T∆(t, s)x0 is the “mild” solution of (1.3) [7]. However, point or boundary
control and observation lead to input and output operators B(t) : U → Xt and
C(t) : Xt → Y for spaces Xt � X � Xt, where C(t) usually is not closable; see, e.g.,
[3], [16]. In order to solve (1.4) in this more general setting, we may restrict ourselves
to “admissible” observation and control operators—roughly speaking, those for which
the expressions (1.2) make sense. Then we are also faced with the question of whether
the operators B(t) and C(t) are again admissible for the perturbed evolution family
T∆, which is necessary to verify (1.5) or to iterate feedbacks.

The resulting perturbation problem (1.3) generalizes the settings of both the
Desch–Schappacher theorem (where ∆(t) = C(t) = I) and the Miyadera theorem
(where ∆(t) = B(t) = I) from semigroup theory [9, section III.3], [19]. In the
control literature, there is a rich perturbation theory for the autonomous case (i.e.,
A(t) = A, B(t) = B, C(t) = C, ∆(t) = ∆). Linear systems belonging to the
Pritchard–Salamon class [18] were exhaustively treated in [6]. Salamon and Weiss
introduced the larger class of well-posed linear systems in [21] and [28], [29], [30],
[31]. Here the semigroup T is given, and the operators Φ, Ψ, and F are defined in
an abstract way by certain algebraic relations. One can then construct admissible
control and observation operators B and C and obtain formulas such as (1.2) if the
system satisfies a quite natural regularity hypothesis. Weiss established a powerful
feedback theory for regular systems in the Hilbert space situation [32]. We refer to
section 4, [3, section 3.3], [17], [33], and, in particular, to Staffans’ monograph [25] for
further information and literature.

For nonautonomous systems in variational form, there is the well-known approach
due to Lions [16]; see also [1] and [3, Chap. 2]. In a general setting, Hinrichsen, Ja-
cob, and Pritchard [10], [12], [14] constructed an evolution family solving (1.4) for
initial values x contained in a dense subspace X of X under rather weak assump-
tions covering autonomous regular systems. However, (1.5) and the admissibility of
the perturbed system was investigated only in [12] requiring stronger hypotheses of
Pritchard–Salamon type.

In the present work, we combine the direct approach of Hinrichsen, Jacob, and
Pritchard with some of Weiss’ ideas: In Definition 2.6, we introduce “Lebesgue exten-
sions” of given observation operators C(t) (cf. [28]) which allow the study of (1.4) and
(1.5) for all x ∈ X and simplify several technical details of the proofs considerably.
For similar reasons, we mostly work with nonautonomous (absolutely) regular systems,
which are defined in the spirit of Weiss’ work (see Definitions 3.6 and 3.10) as opposed
to admissible systems, which have been used in [10], [12], [14] and are given directly
by operators B(t) and C(t) (see Definition 3.8). In Theorem 2.7, Proposition 3.5, and
Theorem 3.11, we represent a given regular system similar as in (1.2). It is known
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[27, Ex. 6] that (1.3) can only be solved if the feedback is not “too large.” We thus
introduce admissible feedbacks in Definition 4.1; cf. [25, section 7.1], [32, section 3].
In our main theorem, Theorem 4.4, we then establish the existence of an absolutely
regular closed-loop system for a given absolutely regular nonautonomous system with
admissible time varying feedback.

However, the extension of Weiss’ theory to the nonautonomous case is limited by
two serious obstacles: One cannot apply transform methods, and, in contrast to semi-
groups (see, e.g., [2, Chap. V], [9, section II.5]), we do not have a general extrapolation
theory for evolution families. The first point excludes the use of transfer functions
(being crucial in [32]) but leads us to arguments which work in a Banach space setting
(as in [25, Chap. 7]). The second point forces us to employ approximation formulas
for the representation of control systems in Proposition 3.5. A similar problem occurs
in the computation of the feedback system and in the context of (1.5); cf. Remark 4.7.

In section 5 we derive analogues of (1.4) and (1.5) for the operators given in
(1.2). It is also seen that the closed-loop system is controllable (or observable) if and
only if the given system is controllable (or observable). Moreover, iterated feedbacks
behave as one would expect. We further prove that the feedback system inherits the
exponential dichotomy (or stability) of T . Results of this type are important tools
in investigating the long-term behavior of evolution equations but have not yet been
obtained for perturbations mapping from a subspace of X to a larger space. Finally,
the equivalence of internal stability with input–output stability, detectability, and
stabilizability is established, extending theorems from [5], [6], [17], [20], [33] to the
present setting. As a sample of possible applications, we treat in section 6 a parabolic
problem with point observation and control in space dimension n ≤ 3 which can be
generalized in various directions.

Notation. We denote the space of bounded linear operators from X to Y by
L(X,Y ) and put L(X) := L(X,X), where X,Y, U, Z always designate Banach spaces.
Cb(R+,Ls(X,Y )) and L∞(R+,Ls(X,Y )) are the spaces of (essentially) bounded
strongly continuous and strongly measurable operator-valued functions, respectively.
We set a∨ b = max{a, b}, a∧ b = min{a, b}, a+ = a∨ 0, and a− = (−a)+ for a, b ∈ R

and write 1lN for the characteristic function of N ⊂M . Unless otherwise stated, p is a
number contained in [1,∞). The spaces Lp

loc([s,∞), Z) and C([s,∞), Z) are endowed
with their standard Fréchet topologies. We mostly use the same symbol for a function
on J ⊂ R and its restrictions to subintervals.

2. Nonautonomous observation systems.
Definition 2.1. A set T = (T (t, s))t≥s≥0 ⊆ L(X) is an evolution family if
(E1) T (t, s) = T (t, r)T (r, s), T (s, s) = I,
(E2) (t, s) �→ T (t, s) is strongly continuous, and
(E3) ‖T (t, s)‖ ≤Mew(t−s)

for t ≥ r ≥ s ≥ 0 and constants M ≥ 1 and w ∈ R. We also define (Ksf)(t) =∫ t

s
T (t, τ)f(τ) dτ for t ≥ s ≥ 0 and f ∈ L1

loc([s,∞), X) and put K = K0.
Evolution families arise as solution operators of nonautonomous evolution equa-

tions, although not every evolution family solves such a problem. We refer to [4], [9,
section VI.9], and the references therein for further information. Condition (E3) is
needed only in the study of asymptotic properties in section 5; see Remark 4.5.

Definition 2.2. Let T be an evolution family on X and Ψs : X → Lp
loc([s,∞), Y ),

s ≥ 0, be linear operators satisfying

Ψsx = ΨtT (t, s)x on [t,∞) and

∫ s+t0

s

‖(Ψsx)(t)‖pY dt ≤ γp ‖x‖pX(2.1)
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for t ≥ s ≥ 0, x ∈ X, and some t0 > 0, γ = γ(t0) > 0. Then (T,Ψ) = (T, {Ψs : s ≥
0}) is a nonautonomous observation system. We extend the map Ψsx by 0 to R.

Lemma 2.3. Let (T,Ψ) be a nonautonomous observation system. Then one
can replace the constant t0 in (2.1) by every t1 > 0 and γ = γ(t0) by γ(t1) =

c0Mγ(t0)c(t1), where c(t) = ew
+t for w �= 0, c(t) = (1 + t

t0
)

1
p for w = 0, and c0

depends on t0, w, p.
Proof. The case t1 ≤ t0 is obvious. So let t1 = nt0 + τ for some n ∈ N and

τ ∈ [0, t0). Setting Ik = [s+ kt0, s+ (k + 1)t0], we deduce from Definition 2.2 that

‖Ψsx‖pLp([s,s+t1],Y ) ≤
n∑

k=0

‖Ψs+kt0T (s+ kt0, s)x‖pLp(Ik,Y ) ≤Mp γ(t0)
p

n∑
k=0

ewpt0k

for x ∈ X and s ≥ 0. The assertion then follows easily.
Definition 2.4. Let T be an evolution family on X and C(s) : D(C(s)) ⊆ X →

Y , s ≥ 0, be densely defined linear operators such that T (·, s)x ∈ D(C(·), s) := {f ∈
Lp
loc([s,∞), X) : f(t) ∈ D(C(t)) for a.e. t ≥ s, C(·)f(·) ∈ Lp

loc([s,∞), Y )} and
∫ s+t0

s

‖C(t)T (t, s)x‖pY dt ≤ γp ‖x‖pX(2.2)

for s ≥ 0, x ∈ D(C(s)), and some constants γ, t0 > 0. Then we say that C(s), s ≥ 0,
are (T -)admissible observation operators.

Lemma 2.5. Let C(s), s ≥ 0, be T -admissible observation operators. Then (2.2)
holds for all t0 > 0 with a possibly different γ. Let Ψs : X → Lp

loc([s,∞), Y ), s ≥ 0,
be the continuous extension of the map D(C(s)) � x �→ C(·)T (·, s)x. Then (T,Ψ) is
a nonautonomous observation system.

Proof. The first claim can be established as Lemma 2.3; one has only to replace
s + kt0 by points sk ≈ s + kt0 such that T (sk, s)x ∈ D(C(sk)); see [23, Lem. 4.13].
So we can define Ψs as in the claim. Given t ≥ s ≥ 0 and x ∈ D(C(s)), we take
zn ∈ D(C(t)) converging in X to T (t, s)x and tn ↘ t such that T (tn, s)x, T (tn, t)zn ∈
D(C(tn)). Since ΨtT (t, s)x = limn→∞ 1l[tn,t+t0] C(·)T (·, t)zn in Lp([t, t + t0], Y ), we
obtain

‖ΨtT (t, s)x− C(·)T (·, s)x‖pLp([t,t+t0],Y )

= lim
n→∞

[∫ t+t0

tn

‖C(τ)T (τ, tn) [T (tn, t)zn − T (tn, s)x]‖pdτ +
∫ tn

t

‖C(τ)T (τ, s)x‖pdτ
]

≤ γp lim
n→∞ ‖T (tn, t)zn − T (tn, s)x‖

p = 0.

Therefore, (2.1) holds for x ∈ D(C(s)) and thus for x ∈ X by approximation.
We note that different admissible observation operators C1(s) and C2(s) may yield

the same observation system as shown in [28, Ex. 1.2]. However, if the observation
operators C(s) are closable, then one easily verifies that Ψsx = C(·)T (·, s)x for the
induced observation system. We now proceed in the converse direction and represent
a given observation system by admissible observation operators; cf. [28, Def. 4.1].

Definition 2.6. For a nonautonomous observation system (T,Ψ), we define

C(s)x = lim
τ↘0

1

τ

∫ s+τ

s

(Ψsx)(σ) dσ (in Y )(2.3)
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for x ∈ Xs := {x ∈ X : the limit in (2.3) exists} and

‖x‖Xs
= ‖x‖X + sup

0<τ≤1

∥∥∥∥1τ
∫ s+τ

s

(Ψsx)(σ) dσ

∥∥∥∥
Y

for x ∈ Xs and s ≥ 0. The space D(C(·), s) is defined as in Definition 2.4 by replacing
D(C(t)) with Xt.

Clearly, ‖ · ‖X
s
is a norm on the subspace Xs and C(s) : Xs → Y is linear and

continuous. As in [28, Prop. 4.3], one verifies that (Xs, ‖ · ‖Xs
) is complete.

We say that t ∈ R is a p-Lebesgue point of f ∈ Lp
loc(R, Z), 1 ≤ p <∞, if

lim
|J|→0

1

|J |
∫
J

‖f(s)− f(t)‖p ds = 0,

where the limit is taken over compact intervals J containing t (of length |J |). If
p = 1, then t is called the Lebesgue point. Recall that a.e. t is a p-Lebesgue point of
f ∈ Lp

loc(R, Z); see, e.g., [31, Lem. 6.1] or [26, section I.1.8]. The next representation
theorem extends [28, Thm. 4.5] to nonautonomous observation systems. A different
representation of output functions was given in [11] applying Weiss’ theory to the
“evolution semigroup” on Lp([0, t0], X) associated with T ; cf. [4].

Theorem 2.7. Let (T,Ψ) be a nonautonomous observation system, and let
C(s) ∈ L(Xs, Y ) be given as in Definition 2.6. Let x ∈ X and t ≥ s ≥ 0. Then
T (t, s)x ∈ Xt if and only if 1/τ

∫ τ

0
(Ψsx)(t+ σ) dσ converges as τ ↘ 0. If this is the

case, then the limit equals C(t)T (t, s)x. Thus (Ψsx)(t) = C(t)T (t, s)x for all Lebesgue
points t of Ψsx.

Proof. The theorem follows from the identity

1

τ

∫ t+τ

t

[Ψsx](σ) dσ =
1

τ

∫ t+τ

t

[ΨtT (t, s)x](σ) dσ.

This theorem shows that the operators C(t), t ≥ 0, introduced in Definition 2.6
are admissible observation operators. According to Lemma 2.5, they generate an
observation system (Ψ̃, T ). It is easy to see that, in fact, (Ψsx)(t) = (Ψ̃sx)(t) for each
x ∈ X and a.e. t ≥ s. We say that the operators C(t) from Definition 2.6 represent
the observation system (T,Ψ).

In the remainder of this section, we establish several properties of Ψs which will
be important for our main perturbation result.

Lemma 2.8. Let (T,Ψ) be a nonautonomous observation system, f ∈ Lp
loc(R+, X),

and t0 > 0. Then the map [0, t0] � s �→ Ψsf(s) ∈ Lp([0, t0], Y ) is measurable, and∫ t0

0

‖Ψsf(s)‖pLp([0,t0],Y ) ds ≤ γ(t0)p ‖f‖pLp([0,t0],X) .(2.4)

Proof. For f ∈ C(R+, X), the map s �→ Ψsf(s) is continuous from the right since

‖Ψsf(s)−Ψrf(r)‖pLp([0,t0],Y ) = ‖Ψs(f(s)−T (s, r)f(r))‖pLp([s,t0],Y )+‖Ψrf(r)‖pLp([r,s],Y )

for 0 ≤ r ≤ s ≤ t0. Functions f ∈ Lp
loc(R+, X) can be treated by approximation. The

estimate (2.4) follows from (2.1).
The nonclosedness of C(t) is a major obstacle for the analysis of observation

systems and input–output operators; for instance, it is a priori not clear whether C(t)
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can be taken out of an integral. As in the autonomous case (see, e.g., [31, section 4]),
such problems can be overcome by employing the operators

Cτ (s)x =
1

τ

∫ s+τ

s

(Ψsx)(σ) dσ,(2.5)

x ∈ X, s ≥ 0, and τ ∈ (0, 1]. Due to this definition, Cτ (s) belongs to L(X,Y ) with
norm less than or equal to γ(1)τ−

1
p , Cτ (s)x converges as τ → 0 if and only if x ∈ Xs,

and then the limit equals C(s)x. Let Cc(R+) be the space of continuous functions
with compact support in [0,∞). We also define

Ds = span{ϕ(·)T (·, r)x : x ∈ X, r ≥ s, ϕ ∈ Cc(R+), ϕ(t) = 0 for s ≤ t < r}(2.6)

for s ≥ 0 (setting T (t, s) := 0 for t < s), and we put D = D0. This space is dense
in Lp([s,∞), X) and in C0([s,∞), X), the space of continuous functions vanishing at
infinity. This fact can be seen by an obvious modification of the proof of [4, Thm.
3.12].

Lemma 2.9. Let (T,Ψ) be a nonautonomous observation system represented
by C(s), and let Cτ (s) be given by (2.5). Then (s, τ) �→ Cτ (s)x is continuous on
R+ × (0, 1],

‖Cτ (·)T (·, s)x‖Lp([s,s+t0],Y ) ≤ γ(t0 + 1) ‖x‖, and(2.7)

Ψsx = lim
τ→0

Cτ (·)T (·, s)x in Lp
loc([s,∞), Y )(2.8)

for x ∈ X, s ≥ 0, τ ∈ (0, 1], and t0 > 0.
Proof. If f ∈ D, then (t, τ) �→ Cτ (t)f(t) is continuous since

Cτ (t)f(t) =

n∑
k=1

ϕk(t)
1

τ

∫ t+τ

t

(Ψrkxk)(σ) dσ

for τ > 0, t ≥ 0, and suitable n ∈ N, rk ≥ 0, xk ∈ X, ϕk ∈ Cc(R+). The first assertion
follows by approximation. We further estimate

‖Cτ (·)T (·, s)x‖pLp([s,s+t0],Y )

≤
∫ s+t0+τ

s

1

τ

∫ σ

σ−τ

‖(Ψsx)(σ)‖p dt dσ ≤ γ(t0 + 1)p ‖x‖p

using Hölder’s inequality and Fubini’s theorem. Similarly, (2.8) follows from

‖Cτ (·)T (·, s)x−Ψsx‖pLp([s,s+t0],Y )

≤ 1

τ

∫ τ

0

∫ s+t0

s

‖(Ψsx)(t+ σ)− (Ψsx)(t)‖p dt dσ.

We want to show that C(·)Ks : Lp([s, s + t0], X) → Lp([s, s + t0], Y ) is well
defined and bounded. This fact is crucial for Theorem 4.4, and its proof is somewhat
technical. We set

ϕ(t; τ, σ, f) = (Cτ (t)− Cσ(t))

∫ t

0

T (t, s)f(s) ds,

of (t) = lim
τ,σ→0

‖ϕ(t; τ, σ, f)‖ = lim
n→∞ sup

m≥n
sup

τ,σ∈[1/m,1/n]

‖ϕ(t; τ, σ, f)‖
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for f ∈ L1
loc(R+, X), t ≥ 0, τ, σ ∈ (0, 1]. Observe that of is measurable. We further

need the maximal operator given by

Mψ(t) = sup
τ>0

1

τ

∫ t+τ

t

|ψ(s)| ds ∈ [0,∞]

for all t ∈ R and ψ ∈ L1
loc(R). Recall that

‖Mψ‖Lp(R) ≤ cp ‖ψ‖Lp(R)(2.9)

for ψ ∈ Lp(R), 1 < p ≤ ∞, and a constant cp; see [26, Thm. I.1].
Lemma 2.10. Let (T,Ψ) be a nonautonomous observation system, p ∈ (1,∞),

and f ∈ Lp
loc(R+, X). Then Cτ (t)(Kf)(t)→ C(t)(Kf)(t) as τ ↘ 0 for a.e. t ≥ 0.

Proof. Take g ∈ D and f ∈ Lp
loc(R+, X). Observe that og = 0 a.e. because of

Cτ (t)(Kg)(t) =

n∑
k=1

∫ t

0

ϕk(s) ds
1

τ

∫ t+τ

t

(Ψrkxk)(σ) dσ

for τ > 0, t ≥ 0, and suitable n ∈ N, rk ≥ 0, xk ∈ X, and ϕk ∈ Cc(R+). Due to
Lemma 2.8, there is a measurable function ψf−g : R× R+ → R+ such that

for a.e. s ≥ 0, ‖[Ψs(f(s)− g(s))](t)‖Y = ψf−g(t, s) for a.e. t ≥ s.
(Here we set [Ψs(f(s) − g(s))](t) = ψf−g(t, s) = 0 for t < s, t > t0, or s > t0, where
t0 > 0 is fixed but arbitrary.) Employing these facts, we estimate

of (t) ≤ of−g(t) ≤ sup
τ,σ∈(0,1]

∫ t

0

‖(Cτ (t)− Cσ(t))T (t, s)(f(s)− g(s))‖ ds

≤ 2 sup
τ∈(0,1]

∫ t

0

1

τ

∫ t+τ

t

‖[Ψs(f(s)− g(s))](ρ)‖ dρ ds

≤ 2

∫ t

0

[Mψf−g(·, s)](t) ds(2.10)

for t not contained in a set of measure 0 depending on g. Approximating 0 ≤ φ ∈
L1
loc(R

2) by continuous functions, one sees that (t, s) �→ [Mφ(·, s)](t) is measurable.
We can now use (2.10), Fubini’s theorem, and the maximal inequality (2.9) to derive

|{t ∈ [0, t0] : of (t) > ε}| ≤ 2

ε

∫ t0

0

∫ t

0

[Mψf−g(·, s)] (t) ds dt

≤ c
ε

∫ t0

0

‖Mψf−g(·, s)‖Lp(R) ds

≤ c
′

ε

∫ t0

0

‖ψf−g(·, s)‖Lp([s,t0]) ds

=
c′

ε

∫ t0

0

‖Ψs(f(s)− g(s))‖Lp([s,t0],Y ) ds

≤ γc
′

ε
‖f − g‖L1([0,t0],X)

for each ε > 0 and constants c, c′ not depending on f, g, ε. Since g is arbitrary, the
set {of > ε} has Lebesgue measure 0. This fact implies the assertion.
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Proposition 2.11. Let (T,Ψ) be a nonautonomous observation system repre-
sented by C(t), p ∈ (1,∞), and let Cτ (t) be given by (2.5). Then Ksf ∈ D(C(·), s),

‖C(·)Ksf‖Lp([s,s+t0],Y ) ≤ c(t0) ‖f‖Lp([s,s+t0],X) ,

and Cτ (·)Ksf → C(·)Ksf in Lp
loc([s,∞), Y ) as τ → 0 for s ≥ 0, t0 > 0, f ∈

Lp
loc(R+, X), and a constant c(t0) independent of f and s.

Proof. By Lemma 2.10, C(·)Ksf is a well-defined measurable function. Further,∫ s+t0

s

‖Cτ (t)(Ksf)(t)‖p dt ≤ c
∫ s+t0

s

∫ t

s

‖Cτ (t)T (t, r)f(r)‖p dr dt

= c

∫ s+t0

s

∫ s+t0

r

‖Cτ (t)T (t, r)f(r)‖p dt dr
≤ cγ̃p ‖f‖pLp([s,s+t0],X)(2.11)

for a constant c by Hölder’s inequality, Fubini’s theorem, and Lemma 2.9. Similarly,

‖(Cτ (·)− Cσ(·))Ksf‖pp ≤ c
∫ s+t0

s

∫ s+t0

r

‖(Cτ (t)− Cσ(t))T (t, r)f(r)‖p dt dr,

and the right side tends to 0 as τ, σ → 0 by Lemma 2.9 and the dominated convergence
theorem. Hence Cτ (·)Ksf also converges in L

p([s, s+t0], Y ) to C(·)Ksf . The asserted
estimate then follows from (2.11).

3. Well-posed and regular nonautonomous systems.
Definition 3.1. Let T be an evolution family on X, and let Φt,s = Φ(t, s) :

Lp
loc([s,∞), U)→ X, t ≥ s ≥ 0, be linear operators satisfying

Φt,su = Φt,r(u|[r,∞)) + T (t, r)Φr,su, t ≥ r ≥ s ≥ 0, and(3.1)

‖Φt,su‖X ≤ β ‖u‖Lp([s,t],U), 0 ≤ t− s ≤ t0,(3.2)

for u ∈ Lp(R+, U) and constants t0 > 0, β = β(t0) > 0. Then (T,Φ) = (T, {Φt,s : t ≥
s ≥ 0}) is called a nonautonomous control system.

Observe that the above definition implies that Φt,t = 0 and Φt,su = Φt,ru if u = 0
on [s, r] ⊆ [s, t]. Thus the control system is causal.

Lemma 3.2. Let (T,Φ) be a nonautonomous control system. Then

‖Φt,su‖X ≤ c′0Mβ(t0) c(t− s) ‖u‖Lp([s,t],U),(3.3)

‖Φ(·, s)u‖Lp([s,t],X) ≤ c′0Mβ(t0) c(t− s) ‖u‖Lp([s,t],U)(3.4)

for t ≥ s ≥ 0, u ∈ Lp([s, t], U), and c′0 = c
′
0(t0, w, p) (c(t) was defined in Lemma 2.3).

Proof. In Lemma 3.4, we show the measurability of Φ(·, s)u (of course without
referring to (3.4)). The assertion is clear for s ≤ t ≤ s+t0. Let sk = s+kt0 for k ∈ N0,
let t ∈ [sn, sn+1] for some n ∈ N, and let uk be the restriction of u to [sk, sk+1]∩ [s, t]
for k = 0, . . . , n. Then

Φ(t, s)u = Φ(t, sn)un +

n∑
k=1

T (t, sk)Φ(sk, sk−1)uk−1 ,(3.5)

‖Φ(t, s)u‖ ≤ β ‖un‖p +Mβ
n∑

k=1

ew(t−sk) ‖uk−1‖p ≤Mβew−t0 (a ∗ b)n ,
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where ak = ewt0k if k = 0, . . . , n and ak = 0 otherwise, bk = ‖uk‖p, a = (ak)k, and
b = (bk)k. Young’s inequality now implies the lemma.

Definition 3.3. Let T be an evolution family on X, and let Xt, t ≥ 0, be
Banach spaces in which X is densely and continuously embedded. Assume that T (t, s)
has a locally uniformly bounded extension T (t, s) : Xs → Xt (which then satisfies
(E1) and is strongly continuous with respect to s). We call B(t) ∈ L(U,Xt), t ≥ 0,
(T -)admissible control operators if the function T (t, ·)B(·)u(·) is integrable in Xt,

(KsB(·)u) (t) :=
∫ t

s

T (t, τ)B(τ)u(τ) dτ ∈ X,

and there are constants t0, β > 0 such that

‖(KsB(·)u)(t)‖X ≤ β ‖u‖Lp([s,t],U)(3.6)

for all 0 ≤ s ≤ t ≤ s+ t0 and u ∈ Lp([s, t], U). (We omit the subscript s if s = 0.)
Setting Φt,su := (KsB(·)u)(t), we obtain, of course, a nonautonomous control

system (T,Φ) if B(t), t ≥ 0, are admissible control operators. Every autonomous
control system is given by a T -admissible control operator due to [29, Thm. 3.9],
where Xt, t ≥ 0, coincide with the extrapolation space X−1 of X with respect to the
semigroup T (see, e.g., [2, Chap. V], [9, section II.5]). In Proposition 3.5, we extend
this result to the time dependent setting but only in an approximate sense because of
the lack of an extrapolation theory for evolution families. We first show a preliminary
fact.

Lemma 3.4. Let (T,Φ) be a nonautonomous control system, and let u ∈ Lp
loc(R+, U).

Then t �→ Φt,su ∈ X is continuous from the right for t ≥ s, s �→ Φt,su ∈ X is contin-
uous for s ∈ [0, t] (locally uniformly in t), and (t, s) �→ Φt,su ∈ X is measurable.

Proof. Definition 3.1 implies the estimates

‖Φ(t′, s)u− Φ(t, s)u‖ ≤ ‖Φ(t′, t)u‖+ ‖(T (t′, t)− I)Φ(t, s)u‖
≤ β ‖u‖Lp([t,t′],U) + ‖(T (t′, t)− I)Φ(t, s)u‖,

‖Φ(t, s)u− Φ(t, s′)u‖ = ‖T (t, s′)Φ(s′, s)u‖ ≤Mβe|w|(t−s) ‖u‖Lp([s,s′],U) ,

where t′ ≥ t ≥ s′ ≥ s. Thus the lemma is established.
Let u ∈ Lp

loc(R, U), t ≥ 0 ≥ s, and n ∈ N. We define (Bnu)(t) = nΦ(t, t − 1
n )u,

where Φ(t, s)u := Φ(t, 0)u. Note that Bnu ∈ L∞
loc(R+, X) because of the above lemma.

To approximate Φ, we introduce

Φn(t, s)u = Φn
t,su :=

∫ t

s

T (t, τ)(Bnu)(τ) dτ = (KsBnu)(t)(3.7)

for t ≥ s ≥ 0, n ∈ N, and u ∈ Lp
loc(R, U). These operators can be expressed by

Φn(t, s)u = n

∫ t

s

(
Φ

(
t, τ − 1

n

)
u− Φ(t, τ)u

)
dτ

= n

∫ s

s− 1
n

Φ(t, τ)u ds− n
∫ t

t− 1
n

Φ(t, τ)u dτ

= Φ(t, s)u+ nT (t, s)

∫ s

s− 1
n

Φ(s, τ)u dτ − n
∫ t

t− 1
n

Φ(t, τ)u dτ(3.8)



1150 ROLAND SCHNAUBELT

due to (3.1). If we take a function u ∈ Lp
loc([s,∞), U) and extend it by 0 to R, then

Φ(t, s)u− Φn(t, s)u = n

∫ t

t− 1
n

Φ(t, τ)u dτ =: rn(t; u).(3.9)

To represent Φ approximately, we define operators Bn(t) ∈ L(U,X) by

Bn(t)z := (Bnuz)(t) = nΦ

(
t, t− 1

n

)
uz , where uz ≡ z, z ∈ U.

Proposition 3.5. Let (T,Φ) be a nonautonomous control system, n ∈ N, 0 ≤
s ≤ t ≤ s+ t0, t0 > 0, z ∈ U , and u ∈ Lp

loc(R, U). Then we have the following:
1. Φn(t, s)u→ Φ(t, s)u, and ‖Φn(t, s)u‖X ≤ 2β(t0)‖u‖Lp([s,t],U).
2. (t, s) �→ Φ(t, s)u, and t �→ Bn(t)z are continuous in X.
3. [KsBn(·)u](t)→ Φ(t, s)u, and ‖[KsBn(·)u](t)‖X ≤ β(t0 + 1) ‖u‖Lp([s,t],U).

Here the limits as n→∞ are taken in X and are locally uniform in (t, s).
Proof. For u ∈ Lp

loc(R, U), we estimate∥∥∥∥∥n
∫ t

t− 1
n

Φ(t, τ)u dτ

∥∥∥∥∥
X

≤ sup
t− 1

n≤τ≤t

‖Φ(t, τ)u‖X ≤ β ‖u‖Lp([t− 1
n ,t],U) ,

∥∥∥∥∥nT (t, s)
∫ s

s− 1
n

Φ(s, τ)u dτ

∥∥∥∥∥
X

≤Mβew(t−s) ‖u‖Lp([s− 1
n ,s],U) ,

which yields the first part of (1) because of (3.8). This fact implies (2). The second
part of (1) follows from (3.9) if we extend u ∈ Lp([s,∞), X) by 0 to R. We set

ũ(τ, σ) = u(τ) and u(n)(σ) = n
∫ σ+ 1

n

σ
u(τ) dτ for σ ≥ τ ≥ 0 and n ∈ N. Taking first

u ∈W 1,p
loc (R, U), using Hölder’s inequality, and interchanging integrals, we estimate

‖Bku−Bk(·)u‖L1([s,s+t0],X) ≤ k
∫ s+t0

s

∥∥∥∥Φ
(
τ, τ − 1

k

)
[u− ũ(τ, ·)]

∥∥∥∥
X

dτ

≤ βk
∫ s+t0

s

(∫ τ

τ− 1
k

(∫ τ

σ

‖u′(ρ)‖U dρ
)p

dσ

) 1
p

dτ

≤ βk1− 1
p

∫ s+t0

s

∫ 1
k

0

‖u′(τ − ρ)‖U dρ dτ

≤ c
(∫ 1

k

0

∫ s+t0

s

‖u′(τ − ρ)‖pU dτ dρ
) 1

p

so that [KsBk(·)u](t) → Φ(t, s)u as k → ∞ locally uniformly in this case. Fix now
t > s ≥ 0, and extend u ∈ Lp([s, t], X) by 0 to R. Then (3.1) and the above
results imply
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[KsBn(·)u](t) = n
∫ t

s− 1
n

Φ(t, τ)

[
ũ

(
τ +

1

n
, ·
)
− ũ(τ, ·)

]
dτ

= lim
k→∞

n

∫ t

s− 1
n

∫ t

τ

T (t, σ)Bk(σ)

[
u

(
τ +

1

n

)
− u(τ)

]
dσ dτ

= lim
k→∞

n

∫ t

s− 1
n

T (t, σ)Bk(σ)

∫ σ

s− 1
n

[
u

(
τ +

1

n

)
− u(τ)

]
dτ dσ

= Φ

(
t, s− 1

n

)
u(n).

Observing that ‖u(n)‖Lp([s,t],U) ≤ ‖u‖Lp([s,t],U), we deduce (3).
We give, as in [13], the nonautonomous analogue of Weiss’ definition of a well-

posed system; see [30, Def. 1.1].
Definition 3.6. Let (T,Φ) and (T,Ψ) be nonautonomous control and obser-

vation systems. If there are linear operators Fs : Lp
loc([s,∞), U) → Lp

loc([s,∞), Y ),
s ≥ 0, satisfying

Fsu = ΨtΦt,su+ Ft(u|[t,∞)) on [t,∞) and(3.10)

‖Fsu‖Lp([s,s+t0],Y ) ≤ κ ‖u‖Lp([s,s+t0],U)(3.11)

for u ∈ Lp
loc([s,∞), U), t ≥ s ≥ 0, and constants t0 > 0, κ = κ(t0) > 0, then Σ =

(T,Φ,Ψ,F) = (T,Φt,s,Ψs,Fs)t≥s≥0 is called a well-posed nonautonomous system,
and Fs, s ≥ 0, are called input–output operators. We put F = F0.

The above definition implies that Fsu = 0 on [s, t] and Fsu = Ft(u|[t,∞)) on
[t,∞) if u vanishes on [s, t]. Hence Fs is causal, and we can define its restriction as

Ft,s = F(t, s) : Lp([s, t], U)→ Lp([s, t], Y ), t ≥ s ≥ 0.

Lemma 3.7. A well-posed nonautonomous linear system Σ satisfies (3.11) with
t0 replaced by each t1 > 0 and κ = κ(t0) by κ(t1) = c′′0(κ(t0) ∨Mβ(t0)γ(t0))c(t1),
where c′′0 = c′′0(w, t0) and c(t) was defined in Lemma 2.3.

Proof. The assertion is clear for t1 ≤ t0. So let t1 ∈ [sn, sn+1) for some n ∈ N,
sk = s+kt0, Ik = [sk, sk+1], and uk = u|Ik for k ∈ N0, s ≥ 0, and u ∈ Lp

loc([s,∞), U).
From Definition 3.6 and (3.5), we deduce that

Fsu = Fskuk +

k∑
j=1

ΨskT (sk, sj)Φ(sj , sj−1)uj−1 on Ik,

‖Fsu‖Lp(Ik,Y ) ≤ κ(t0) ‖uk‖p +Mβ(t0)γ(t0)
k∑

j=1

ewt0(k−j) ‖uj−1‖p

≤ (κ(t0) ∨Mβ(t0)γ(t0)) ew−t0 (a ∗ b)k ,

‖Fsu‖Lp([s,s+t1],Y ) ≤
(

n∑
k=0

‖Fsu‖pLp(Ik,Y )

) 1
p

≤ (κ(t0) ∨Mβ(t0)γ(t0)) ew−t0 ‖a ∗ b‖�p ,

where the sequences a and b were defined in the proof of Lemma 3.2. Young’s in-
equality now implies the asserted estimate.
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Also, Definition 3.6 is complemented by a concept involving admissible input and
output operators; cf. [10], [12, section 1.3], [14].

Definition 3.8. Let B(s) and C(s), s ≥ 0, be T -admissible control and ob-
servation operators. We call the triple (T,B(·), C(·)) an admissible nonautonomous
system if KsB(·)u ∈ D(C(·), s) and ‖C(·)KsB(·)u‖Lp([s,s+t0],Y ) ≤ κ ‖u‖Lp([s,s+t0],U)

for s ≥ 0, u ∈ Lp
loc([s,∞), U), and constants κ, t0 > 0.

Lemma 3.9. Let (T,B(·), C(·)) be an admissible nonautonomous system. De-
fine Ψs as in Lemma 2.5, Φt,su := (KsB(·)u)(t), and Fs := C(·)KsB(·)u. Then
(T,Φ,Ψ,F) is a well-posed nonautonomous system.

Proof. In view of Lemma 2.5, we have only to verify (3.10) for u ∈ Lp
loc([s,∞), U)

and t ≥ s ≥ 0. There are tn ↘ t such that Φtn,tu,Φtn,su ∈ D(C(tn)), and hence

Fsu = Ftu−ΨtnΦtn,tu+ΨtnΦtn,su

a.e. on [tn,∞). The third term on the right-hand side converges in Lp to ΨtΦt,su due
to Proposition 3.5 and the proof of Lemma 2.8. The assertion then follows from

‖ΨtnΦtn,tu‖Lp([tn,s+t0],Y ) ≤ βγ ‖u‖Lp([t,tn],U) .

In order to prove a converse to the above lemma, we need the first of the following
notions, which extends the corresponding concept due to Weiss [30, Def. 4.1].

Definition 3.10. A well-posed nonautomonous system Σ = (T,Φ,Ψ,F) is called
regular (with feedthrough D = 0) if

lim
τ↘0

1

τ

∫ t+τ

t

(Ftuz)(σ) dσ = 0(3.12)

(in Y ) and absolutely regular if

lim
τ↘0

1

τ

∫ t+τ

t

‖(Ftuz)(σ)‖pY dσ = 0(3.13)

for all t ≥ 0 and z ∈ U , where uz(s) := z for s ≥ 0.
We derive several useful properties of a well-posed system Σ. First, (3.11) yields∥∥∥∥1τ

∫ t+τ

t

(Ftuz)(σ) dσ

∥∥∥∥
p

Y

≤ 1

τ

∫ t+τ

t

‖(Ftuz)(σ)‖pY dσ ≤ κp ‖z‖p(3.14)

for 0 < τ ≤ t0, t ≥ 0, and z ∈ U . Take u ∈ Lp
loc(R+, U), and set ũ(t, σ) = u(t) for

σ ≥ t and t ≥ 0. Then the functions

t �→ Fτ (t) =
1

τ

∫ t+τ

t

(Ftu)(σ) dσ and t �→ F̃τ (t) =
1

τ

∫ t+τ

t

(Ftũ(t, ·))(σ) dσ

are measurable for a fixed τ > 0. Indeed, using (3.10), we can write

τF̃τ (t)− τF̃τ (r) =
∫ t+τ

r+τ

[Ftũ(t, ·)](σ) dσ +
∫ r+τ

t

[Ft(ũ(t, ·)− ũ(r, ·))](σ) dσ

−
∫ r+τ

t

[ΨtΦt,rũ(r, ·)](σ) dσ −
∫ t

r

[Frũ(r, ·)](σ) dσ

for t ≥ r ≥ t − τ . This identity and the straightforward estimates imply the left
continuity of F̃τ if u is continuous. Thus F̃τ is measurable by approximation and
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(3.14). The function Fτ can be handled in the same way. If Σ is regular, we deduce
from Lebesgue’s theorem and (3.14) that

lim
τ↘0

∫ t0

0

‖F̃τ (t)‖pY dt = 0.(3.15)

Similarly, ϕu(·, τ) 1
p is measurable, and absolute regularity yields

lim
τ↘0

∫ t0

0

1

τ
ϕu(t, τ) dt := lim

τ↘0

∫ t0

0

1

τ

∫ t+τ

t

‖[Ftũ(t, ·)](σ)‖pY dσ dt = 0.(3.16)

We now show a nonautonomous version of Weiss’ representation theorem [30, Thm. 4.5].
Theorem 3.11. Let Σ = (T,Φ,Ψ,F) be a regular nonautonomous system, and let

C(s) and Cτ (s) be given by Definition 2.6 and (2.5). Then Φ(·, s)u ∈ D(C(·), s), and
Fsu = C(·)Φ(·, s)u for s ≥ 0 and u ∈ Lp

loc([s,∞), U). Moreover, Cτ (·)Φ(·, s)u→ Fsu
in Lp

loc([s,∞), Y ) as τ ↘ 0, and ‖Cτ (·)Φ(·, s)u‖Lp([s,s+t0],Y ) ≤ c ‖u‖Lp([s,s+t0],U) for
τ ∈ (0, 1] and a constant c = c(t0) independent of u and s.

Proof. Let t ∈ [s,∞) be a p-Lebesgue point of u and Fsu such that the regularity
condition (3.12) holds at this point t. Setting ot(σ) = u(σ)− u(t) for σ ≥ t, we have

Fsu = Ftũ(t, ·) + Ftot +ΨtΦt,su on [t,∞) and(3.17) ∥∥∥∥1τ
∫ t+τ

t

(Ftot)(σ) dσ

∥∥∥∥
p

≤ κp 1
τ

∫ t+τ

t

‖u(σ)− u(t)‖pdσ.(3.18)

Consequently, Cτ (t)Φt,su converges in Y to (Fsu)(t) as τ → 0 so that the first assertion
holds. The estimate (3.18) and Fubini’s theorem further yield

∫ s+t0

s

∥∥∥∥1τ
∫ t+τ

t

(Ftot)(σ) dσ

∥∥∥∥
p

dt ≤ κ
p

τ

∫ τ

0

∫ s+t0

s

‖u(t+ σ)− u(t)‖pdt dσ,
(3.19)

∫ s+t0

s

∥∥∥∥1τ
∫ t+τ

t

[(Fsu)(σ)− (Fsu)(t)] dσ

∥∥∥∥
p

dt

≤ κ
p

τ

∫ τ

0

∫ s+t0

s

‖(Fsu)(t+ σ)− (Fsu)(t)‖pdt dσ,

where both terms on the right-hand side converge to 0 as τ → 0. Combining these facts
with (3.15) and (3.17), we establish that Fsu = limτ Cτ (·)Φ(·, s)u in Lp

loc([s,∞), Y ).
The asserted estimate follows in a similar way.

The next approximation result complements Proposition 3.5 for absolutely regular
systems. For technical reasons, we have to use the operators Bn : Lp

loc(R+, U) →
L∞
loc(R+, X) rather than Bn(t) : U → X. Observe that only regularity is used in the

proof of estimate (3.20).
Proposition 3.12. Let Σ be an absolutely regular nonautonomous system, p ∈

(1,∞), and let C(s) and Φn
t,s be given as in Definition 2.6 and (3.7). Then Φn(·, s)u ∈

D(C(·), s), C(·)Φn(·, s)u→ Fsu in Lp
loc([s,∞), Y ) as n→∞, and

‖C(·)Φn(·, s)u‖Lp([s,s+t0],Y ) ≤ 2κ(t0) ‖u‖Lp([s,s+t0],U)(3.20)

for u ∈ Lp
loc([s,∞), U), s ≥ 0, n ∈ N, and t0 > 0.



1154 ROLAND SCHNAUBELT

Proof. Due to Proposition 2.11, we have Φn(·, s)u = KsBnu ∈ D(C(·), s). For-
mula (3.9), Proposition 2.11, and Theorem 3.11 further yield

Fsu− C(·)Φn(·, s)u = C(·)rn(·; u) = lim
τ→0

Cτ (·)rn(·; u) (in Lp
loc([s,∞), Y )).(3.21)

Using Hölder’s inequality, Fubini’s theorem, and Theorem 3.11, we now derive

‖C(·)rn(·; u)‖pLp([s,s+t0],Y ) ≤ lim
τ→0

n

∫ s+t0

s

∫ t

t− 1
n

‖Cτ (t)Φt,σu‖pY dσ dt

≤ n
∫ s+t0

s− 1
n

‖Fσu‖pLp([σ,σ+1/n],Y ) dσ(3.22)

≤ nκ(t0)
∫ 1

n

0

∫ s+t0

s− 1
n

‖u(t+ σ)‖p dσ dt ≤ κ(t0) ‖u‖pp.

(Here we have considered a function u ∈ Lp([s, s+ t0], U) and extended it by 0 to R.)
Thus (3.20) holds. The estimate (3.22) also gives

‖C(·)rn(·; u)‖Lp([s,s+t0],Y )

≤
(∫ s+t0

s− 1
n

n ‖Fσoσ‖pLp([σ,σ+ 1
n ],Y )

dσ

) 1
p

+

(∫ s+t0

s− 1
n

n ‖Fσũ(σ, ·)‖pLp([σ,σ+ 1
n ],Y )

dσ

) 1
p

.

The right-hand side tends to 0 as in (3.19) and (3.16).

4. The main result and discussion. Let Σ be a regular nonautonomous sys-
tem, ∆(·) ∈ L∞(R+,Ls(Y,U)), and let C(s) be given by Definition 2.6. For x ∈ X
and s ≥ 0, we are looking for functions x(·) ∈ C([s,∞), X) ∩D(C(·), s) satisfying

x(t) = T (t, s)x+Φt,s∆(·)C(·)x(·), t ≥ s,(4.1)

or, if Φ(·, s)u = KsB(·)u(·) for admissible control operators B(s),

x(t) = T (t, s)x+

∫ t

s

→ (t, τ)B(τ)∆(τ)C(τ)x(τ) dτ, t ≥ s.(4.2)

As shown by [27, Ex. 6], one cannot allow for every bounded feedback in (4.1) in
general. (We note that this example gives rise to an absolutely regular autonomous
system with p = 1 and ∆ = B = I.) This fact motivates the next concept.

Definition 4.1. Let Σ = (T,Φ,Ψ,F) be a well-posed nonautonomous system.
We call ∆(·) ∈ L∞(R+,Ls(Y,U)) an admissible feedback for Σ if there is t0 > 0 such
that I−F(s+ t0, s)∆(·), s ≥ 0, have uniformly bounded inverses on Lp([s, s+ t0], Y ).

Of course, ∆(·) is admissible if

‖∆(·)‖∞ <

[
inf
t0>0

sup
s≥0
‖F(s+ t0, s)‖

]−1

=: q.(4.3)

The right-hand side of this inequality equals ∞ if B(t) and C(t) are of “lower order”;
see, e.g., [6] or [23, Ex. 4.11]. We point out that the invertibility of I−F(s+ t0, s)∆(·)
is in fact necessary for some properties of the feedback system as shown by Lemma 4.3
and Proposition 5.1. The next lemmas also indicate that our notion of admissibility is
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quite flexible; see [21, Lem. 4.1], [25, section 7.1], and [32, section 3] for autonomous
analogues.

Lemma 4.2. Let ∆(·) ∈ L∞(R+,Ls(Y,U)) and Σ be a well-posed nonautonomous
system. If I −F(s+ t0, s)∆(·) is invertible on Lp([s, s+ t0], Y ) for all s ≥ 0 and some
t0 > 0, then I − F(s + t1, s)∆(·) is invertible on Lp([s, s + t1], U) for all s ≥ 0 and
t1 > 0. The notion of an admissible feedback is independent of t0 > 0.

Proof. We assume that U = Y and ∆(s) = I for simplicity. First, let t1 ≤
t0. Extend a given v ∈ Lp([s, s + t1], Y ) by 0 to ṽ ∈ Lp([s, s + t0], Y ), and set
ũ = (I − F(s + t0, s))

−1ṽ. Then (I − F(s + t1, s))u = v for the restriction u of ũ.
If u = F(s + t1, s)u, then there is a function u1 ∈ Lp([s + t1, s + t0], U) such that
(I − F(s + t0, s + t1))u1 = Ψs+t1Φs+t1,su. Set ũ = u on [s, s + t1] and ũ = u1 on
[s+ t1, s+ t0]. Hence ũ = F(s+ t0, s)ũ so that u = 0.

It remains to consider t1 = nt0 for n ∈ N. Proceeding by induction, we assume
that the assertion is true for t1 = nt0. It is then clear that I − F(s + (n + 1)t0, s) is
injective. For v ∈ Lp([s, s+(n+1)t0], Y ), we set u1 = (I−F(s+nt0, s))

−1(v|[s, s+nt0])
and u2 = (I−F(s+(n+1)t0, s+nt0))

−1 {v|[s+nt0, s+(n+1)t0]+Ψs+nt0Φs+nt0,su1}.
Putting u1 and u2 together, one sees that I − F(s+ (n+ 1)t0, s) is surjective.

Lemma 4.3. For maps T : E → F and V : F → E, the following are equivalent:
1. I − V T is bijective on E.
2. I − TV is bijective on F .
3. There is a map S : E → F such that S − T = TV S = SV T .

Then we have (I−TV )−1 = I+T (I−V T )−1V = I+SV and (I−V T )−1 = I+V S,
and S in (3) is uniquely given by S = (I − TV )−1T = T (I − V T )−1.

Thus a feedback ∆(·) is admissible if and only if I −∆(·)F(s+ t0, s), s ≥ 0, have
uniformly bounded inverses for some/all t0 > 0 if and only if for some/all t0 > 0
there are uniformly bounded operators F

∆(s+ t0, s), s ≥ 0, such that F
∆(s+ t0, s)−

F(s+ t0, s) = F
∆(s+ t0, s)∆(·)F(s+ t0, s) = F(s+ t0, s)∆(·)F∆(s+ t0, s).

We now solve (4.1) by constructing an evolution family T∆ onX and show that the
feedback system Σ∆ is again absolutely regular if the unperturbed system is absolutely
regular. Proposition 5.1 describes the relations between Σ and Σ∆ in greater detail.

Theorem 4.4. Let Σ = (T,Φ,Ψ,F) be a regular nonautonomous system and
∆(·) ∈ L∞(R+,Ls(Y,U)) be an admissible feedback. Then the following hold:

(a) There is an evolution family T∆ on X such that T∆(·, s)x ∈ D(C(·), s),

‖C(·)T∆(·, s)x‖Lp([s,s+t0],Y ) ≤ γ′ ‖x‖ ,(4.4)

x(·) = T∆(·, s)x is the unique solution of (4.1), and

T∆(t, s)x = T (t, s)x+Φt,s∆(·)C(·)T∆(·, s)x(4.5)

for t ≥ s ≥ 0, x ∈ X, and a constant γ′. If, in addition, Φ(·, s)u = KsB(·)u(·) for
T -admissible control operators B(t), then

T∆(t, s)x = T (t, s)x+

∫ t

s

→ (t, τ)B(τ)∆(τ)C(τ)T∆(τ, s)x dτ.(4.6)

(b) If the system is absolutely regular and p ∈ (1,∞), then

T∆(t, s)x = T (t, s)x+ lim
n→∞

∫ t

s

T∆(t, τ)[Bn(∆(·)Ψsx)](τ) dτ(4.7)
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for t ≥ s ≥ 0 and x ∈ X, where the limit is taken in X and is locally uniform in t.
Moreover, Σ∆ = (T∆,Φ

∆,Ψ∆,F∆) is an absolutely regular system, where we set

Ψ∆
s x = C(·)T∆(·, s)x, Φ∆

t,su = lim
n→∞[K∆

s Bnu](t),

F
∆
s u = lim

n→∞C(·)K
∆
s Bnu, K

∆
s f (t) =

∫ t

s

T∆(t, τ)f(τ) dτ

for t ≥ s ≥ 0, x ∈ X, u ∈ Lp
loc([s,∞), U), and f ∈ Lp

loc([s,∞), X), where the limits
are taken in X and Lp

loc, respectively.
Proof. (a) We first prove the uniqueness of solutions to (4.1). If v solves (4.1)

with x = 0, then C(·)v = Fs∆(·)C(·)v by Theorem 3.11. Since I − F(s+ t1, s)∆(·) is
injective, C(·)v has to vanish a.e. on [s, s+ t1], where t1 > 0 can be chosen arbitrarily
large by Lemma 4.2. Hence (4.1) implies that v = 0. To solve (4.1), we define

T∆(t, s)x = T (t, s)x+Φt,s∆(·)(I − F(s+ t1, s)∆(·))−1Ψsx(4.8)

for 0 ≤ t − s ≤ t1 and x ∈ X. Clearly, T∆(t, s) is an exponentially bounded linear
operator on X, and T∆(·, s)x is continuous in X by Proposition 3.5. Theorems 2.7
and 3.11 further show that T∆(·, s)x ∈ D(C(·), s) and

C(·)T∆(·, s)x = Ψsx+ Fs∆(·)(I − F(s+ t1, s)∆(·))−1Ψsx(4.9)

= (I − F(s+ t1, s)∆(·))−1Ψsx.(4.10)

Hence (4.4) holds. Inserting (4.10) into (4.8), we obtain (4.5) and (4.6) and thus have
solved (4.1). One verifies (E1) for T∆ using the uniqueness of (4.1), formula (3.1),
and a standard argument. It remains to establish the strong continuity of T∆. We
first take (tn, sn) → (s0, s0) with tn ≥ sn ≥ 0. For ε > 0, x ∈ X, and large n, there
is r ∈ [0, s0] ∩ [0, sn] such that ‖T (s0, r)x− x‖ ≤ ε. Then (4.8) and (2.1) yield

‖T∆(tn, sn)x− x‖ ≤ ‖T∆(tn, sn)(x− T (sn, r)x)‖+ ‖T∆(tn, sn)T (sn, r)x− x‖

≤ c ‖x− T (sn, r)x‖+ ‖T (tn, r)x− x‖+ c
[∫ tn

sn

‖[Ψrx](σ)‖pdσ
] 1

p

,

lim
n→∞ ‖T∆(tn, sn)x−x‖ ≤ (c+ 1)ε

for a constant c. Therefore, T∆ is strongly continuous at (s0, s0). If (tn, sn)→ (t0, s0)
for some t0 > s0, we may assume that tn > sn and tn > s0. We take tn ≥ rn ≥ sn∨s0
with rn → s0 and derive (E2) from the above results and the expression

T∆(tn, sn)x− T∆(t0, s0)x = T∆(tn, rn)(T∆(rn, sn)x− T∆(rn, s0)x)

+ T∆(tn, s0)x− T∆(t0, s0)x.

(b) Define D∆,s as in (2.6) using T∆. Then (4.5) and Proposition 3.5 imply that

K
∆
s f (t) = Ksf (t) + lim

n→∞

∫ t

s

∫ t

τ

T (t, σ)Bn(σ)∆(σ)C(σ)T∆(σ, τ)f(τ) dσ dτ

for f ∈ D∆,s and s ≥ 0 since the integrand is the sum of functions of the form

(τ, σ) �→ γ(τ)T (t, σ)Bn(σ)∆(σ)C(σ)T∆(σ, r)x.(4.11)
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For the same reason, K
∆
s f belongs to D(C(·), s), and we can apply Fubini’s theorem

and take T (t, σ)Bn(σ)∆(σ)C(σ) ∈ L(Xσ, X) out of the inner integral. So we obtain

K
∆
s f = Ksf + lim

n→∞ KsBn(·)∆(·)C(·)K∆
s f = Ksf +Φ(·, s)∆(·)C(·)K∆

s f(4.12)

for f ∈ D∆,s due to Proposition 3.5. Theorem 3.11 now shows that C(·)K∆
s f =

C(·)Ksf + Fs∆(·)C(·)K∆
s f . Hence

C(·)K∆
s f = (I − F(s+ t1, s)∆(·))−1C(·)Ksf(4.13)

on [s, s+ t1] for each t1 > 0. Inserting (4.13) into (4.12), we conclude that

K
∆
s f = Ksf +Φ(·, s)∆(·)(I − F(s+ t1, s)∆(·))−1C(·)Ksf(4.14)

on [s, s+ t1] for f ∈ D∆,s. This identity holds for all f ∈ Lp
loc([s,∞), X) by Proposi-

tion 2.11. So we may take f = Bnu for u ∈ Lp
loc([s,∞), U) and n ∈ N, and thus

K
∆
s Bnu = KsBnu+Φ(·, s)∆(·)(I − F(s+ t1, s)∆(·))−1C(·)KsBnu.(4.15)

As a consequence, K
∆
s Bnu ∈ D(C(·), s) and

C(·)K∆
s Bnu = (I − F(s+ t1, s)∆(·))−1C(·)KsBnu(4.16)

by Proposition 2.11 and Theorem 3.11. In view of Propositions 3.5 and 3.12, we can
take the limit as n → ∞ in the formulas (4.15) and (4.16) (in C([s, s + t1], X) and
Lp([s, s + t1], Y ), respectively). It is then easy to see that Σ∆ = (T∆,Φ

∆,Ψ∆,F∆)
defined in the assertion is a well-posed nonautonomous system. Equation (4.16) and
Proposition 3.12 further yield∫ t+τ

t

‖(F∆
t uz)(σ)‖p dσ ≤ c

∫ t+τ

t

‖(Ftuz)(σ)‖p dσ

for t ≥ 0, τ > 0, uz ≡ z, and z ∈ U so that additionally Σ∆ is absolutely regular.
We now choose u = ∆(·)Ψsx for x ∈ X and deduce from (4.15), Propositions 3.5

and 3.12, and (4.8) that

lim
n→∞ K

∆
s Bn∆(·)Ψsx = Φ(·, s)∆(·)Ψsx+Φ(·, s)∆(·)(I − F(s+ t1, s)∆(·))−1

Fs∆(·)Ψsx

= Φ(·, s)∆(·)(I − F(s+ t1, s)∆(·))−1Ψsx = T∆(·, s)x− T (·, s)x,

where the limit is taken in X and is locally uniform in t. Thus (4.7) holds.
We state several variants of Theorem 4.4 and compare them to related results.
Remark 4.5. The above theorem remains valid if we do not assume (E3), require

β, γ, κ and ‖(I − F(s+ t0, s)∆(·))−1‖ only to be uniform with respect to s ∈ [0, a] for
every a > 0, and assert for the perturbed problem only the analogous properties.
The proof of part (a) also works in the case that T (and then T∆) is only strongly
continuous in t and s separately. Part (a) can be verified for admissible systems, too,
if one considers only x ∈ D(C(s)) in (4.2), (4.4), and (4.6); see [23, Thm. 4.18] or
(c) below.

Remark 4.6. Let Σ be a nonautonomous regular system with p ∈ (1,∞). It can
be shown that 〈C(·)KsBnu, v〉 → 〈Fsu, v〉 as n → ∞ for all v ∈ Lq([s, s + t0], Y

∗),
1
p +

1
q = 1. Thus, if Y is reflexive, the conclusions of Theorem 4.4(b) hold for merely
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regular systems except that the limits exist only weakly and that it is not clear whether
Σ∆ is regular again. In the autonomous case, the regularity of Σ∆ for regular Σ was
established in [32, Thm. 4.5, 4.7], but the proof given there relies on Laplace transforms
and a Tauberian theorem [31, Thm. 5.2] not available here; see also [25, section 7.5].

(a) Perturbation theory of evolution equations. Theorem 4.4 is a joint nonau-
tonomous extension of the Desch–Schappacher and Miyadera perturbation theorem
from semigroup theory (see, e.g., [9, section III.3]): First, let B(t) be T -admissible
control operators, and define Y = X, Ψs = T (·, s), and Fs = KsB(·); i.e., C(t) ≡ I.
This gives an absolutely regular nonautonomous system with κ(t0) = βt

1/p
0 so that

q = ∞ in (4.3). Second, let (T,Ψ) be a nonautonomous observation system for
p ∈ (1,∞) represented by C(t). Setting U = X, Φt,su = (Ksu)(t), and Fs = C(·)Ks,
i.e., B(t) ≡ I, we obtain a well-posed nonautonomous system thanks to Proposi-
tion 2.11. Approximating uz by T (·, t)z, one verifies that the system is absolutely
regular. A nonautonomous Miyadera theorem for closable perturbations C(t) and
p ≥ 1 was proved in [19] by other methods.

(b) Autonomous controlled systems. Let T (t − s) = T (t, s) be a C0-semigroup
generated by A and ∆(t) ≡ ∆. We say that (T,B,C) belongs to the Pritchard–
Salamon class [18] if (2.2) holds with ‖x‖X replaced by ‖x‖X and (3.6) holds with
‖ · ‖X replaced by ‖ · ‖X . The perturbation theory for this class was developed in

detail in [6]. In this case, one can extend T∆(t) to X, and the number q in (4.3) is
equal to ∞.

Weiss introduced autonomous regular systems in [28], [29], [30], [31] similarly as
in the above definitions by considering only the initial time s = 0. He solved the
feedback problem in [32, Thm. 6.1] for a well-posed system with p = 2 on Hilbert
spaces X,Y, U , allowing for nontrivial feedthrough D and assuming that (roughly
speaking) I − CR(λ,A−1)B∆ is invertible on a right halfplane; see also [21]. If the
system is regular, the feedback system is again regular and can be represented almost
in the natural way; see [32, section 7]. The feedback theory for several classes of
(non)regular systems is exhaustively studied in Chapter 7 of Staffans’ monograph [25]
in a Banach space setting and also for p = 1,∞.

The remaining difficulties come from the fact that, in general, T∆(t) cannot be
continuously extended to the extrapolation space XA

−1 corresponding to T (see [23,
Ex. 4.20]); in particular, the extrapolation space X∆

−1 of T∆ may differ from XA
−1.

Weiss constructed subspaces W and W∆ of XA
−1 and X∆

−1, respectively, such that
Jx := limλ→∞ λR(λ,A−1)x (in X∆

−1) defines an isomorphism J : W → W∆; see [32,
Thm. 7.7]. Note that Jx = x for x ∈ X. Then

T∆(t)x = T (t)x+

∫ t

0

T∆,−1(t− τ)JB∆CT (τ)x dτ

by (6.11), (6.1), and [32, p. 55]. In other words, Weiss managed to put the limit in
(4.7) inside the integral using a different regularization. Identifying B and JB, he
represented the feedback system in terms of B and C and computed the generator of
T∆ [32, section 7]; see [25, section 7.4] for a somewhat different approach.

(c) Nonautonomous controlled systems. Part (a) of Theorem 4.4 was proved by
Hinrichsen, Jacob, and Pritchard for nonautonomous admissible systems in a slightly
differing setting; see [10, Thm. 3.2] and [12], [14] also for nonlinear feedback. They
work with separately strongly continuous evolution families and have some additional
technical assumptions (see, e.g., Hypotheses 4 and 7 of [10]). Moreover, they obtain
(4.6) with a pointwise representation of C(·)T (·, s)x only for x ∈ D(C(s)). The
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issues investigated in Theorem 4.4(b) were not considered in [10] and [14] and were
considered in [12, Thm. 3.4.7] only for systems of Pritchard–Salamon type.

Remark 4.7. In addition to the assumptions of Theorem 4.4(b), we suppose
that Φt,s is given by admissible observation operators B(·) ∈ L∞(R+,Ls(U,X)) for
Xt ≡ X and that T∆(t, s) has a locally uniformly bounded extension T∆(t, s) : X → X.

Thus T∆ satisfies (E1) and (E2). We set (K
∆

s f)(t) =
∫ t

s
T∆(t, τ)f(τ) dτ for t ≥ s ≥ 0

and f ∈ L1
loc([s,∞), X). Then Φ∆(·, s)u = K

∆

s B(·)u, F
∆
s u = C(·)K

∆

s B(·)u, and

T∆(t, s)x = T (t, s)x+

∫ t

s

→∆ (t, τ)B(τ)∆(τ)C(τ)T (τ, s)x dτ(4.17)

for u ∈ Lp
loc([s,∞), U), x ∈ X, and t ≥ s ≥ 0.

Proof. Observe that Bnu→ B(·)u as n→∞ in Lp
loc(R+, X) for u ∈ Lp

loc(R+, X)
because of the inequality

‖Bnu−B(·)u‖pLp([0,t0],X)
≤ n

∫ 1
n

0

∫ t0

0

‖T (τ+σ, τ)B(τ)u(τ)−B(τ+σ)u(τ+σ)‖p
X
dτ dσ,

which is a consequence of Hölder’s inequality and Fubini’s theorem. Thus Φ∆(·, s)u =
K

∆

s B(·)u, and (4.17) holds. The identities (4.15) and (4.16) then imply that

C(·)K∆

s B(·)u = (I − F(s+ t1, s)∆(·))−1
Fsu = F

∆
s u.

The above remark and paragraph (b) indicate that an (absolutely) regular nonau-
tonomous system and the corresponding feedback system can be represented by oper-
ators B(t) (and not just approximately by Bn(t)) whenever we have a decent extrap-
olation theory for the given problem. It seems to be reasonable to study first the case
that T is generated by operators A(t) and consider spaces Xt related to A(t). For
various results on parabolic evolution equations and extrapolation spaces, we refer to
[1], [2, Chap.V], [23, Prop. 2.1].

5. Further properties of the feedback system. In the setting of Theo-
rem 4.4, we study the relationship between the open- and the closed-loop systems
in more detail; see [25, Chap. 7] and [32, section 6] for similar results in the au-
tonomous case. To put the formulas in a concise form, we define Ψ(t, s)x = 1l[s,t]Ψsx
and

Σ(t, s) =

(
T (t, s) Φ(t, s)
Ψ(t, s) F(t, s)

)
: X × Lp([s, t], U)→ X × Lp([s, t], Y ), t ≥ s ≥ 0.

Proposition 5.1. Let Σ be an absolutely regular nonautonomous system, let
p ∈ (1,∞), let ∆(·) be an admissible feedback for Σ, and let Σ∆ be the feedback
system from Theorem 4.4. Then

F
∆
s = (I − Fs∆(·))−1

Fs = Fs(I −∆(·)Fs)
−1 = C(·)Φ∆(·, s),(5.1)

Σ∆(t, s)− Σ(t, s) = Σ(t, s)

(
0 0
0 ∆(·)

)
Σ∆(t, s) = Σ∆(t, s)

(
0 0
0 ∆(·)

)
Σ(t, s).(5.2)

Proof. The first equality in (5.1) is an immediate consequence of (4.16) and
Proposition 3.12. Lemma 4.3 then yields the second equality in (5.1) and the expres-
sions for F

∆−F in the lower right corner of (5.2). Taking the limit in (4.15) and using



1160 ROLAND SCHNAUBELT

the formulas for F
∆, we deduce the last equality in (5.1). The identities for T∆ − T

in the upper left corner of (5.2) were established in Theorem 4.4, and they imply the
formulas for Ψ∆ −Ψ in the lower left corner in (5.2). The first equality in the upper
right corner follows from (4.15). Employing the previous results, we finally obtain

Φ∆(·, s)∆(·)Fs = Φ(·, s)∆(·)Fs +Φ(·, s)∆(·)F∆
s ∆(·)Fs

= Φ(·, s)∆(·)F∆
s = Φ∆(·, s)− Φ(·, s).

The above result allows us to prove that the following control theoretic properties
(cf. [7]) remain unchanged under feedback.

Definition 5.2. (a) A nonautonomous control system (T,Φ) is called exactly
(approximately) controllable on [s, t] if Φ(t, s) is surjective (has dense range) and it
is called exactly (approximately) null controllable on [s, t] if T (t, s)X is contained in
the (closure of) Φ(t, s)Lp([s, t], U).

(b) A nonautonomous observation system (T,Ψ) is called (continuously) initially
observable on [s, t] if Ψ(t, s) is injective (bounded from below) and (continuously)
finally observable on [s, t] if kerΨ(t, s) ⊂ kerT (t, s) (if ‖T (t, s)x‖ ≤ c ‖Ψ(t, s)x‖p for
a constant c > 0 and x ∈ X).

Proposition 5.3. Let Σ be an absolutely regular nonautonomous system, let
p ∈ (1,∞), let ∆(·) be an admissible feedback for Σ, and let Σ∆ be the corresponding
feedback system. Then Σ possesses one of the properties in Definition 5.2 if and only
if Σ∆ has the same property.

Proof. (1) The assertions concerning exact (approximate) controllability and (con-
tinuous) initial observability follow from the formulas

Φ∆(t, s) = Φ(t, s)(I +∆(·)F∆
s ), Φ(t, s) = Φ∆(t, s)(I −∆(·)Fs),

Ψ∆(t, s) = (I + F
∆
s ∆(·))Ψ(t, s), Ψ(t, s) = (I − Fs∆(·))Ψ∆(t, s),

which are immediate consequences of (5.2).
(2) Assume that Σ is null controllable. For x ∈ X, there is u ∈ Lp([s, t], U)

such that T (t, s)x = Φt,su. Thus (5.2) yields T∆(t, s)x = Φ∆(t, s)[u − ∆(·)Fsu +
∆(·)Ψsx], and Σ∆ is null controllable. The converse implication and the equivalence
for approximate null controllability are shown in the same way.

(3) Assume that Σ is continuously finally observable. Using (5.2), we estimate

‖T∆(t, s)x‖ ≤ ‖T (t, s)x‖+ ‖Φ(t, s)∆(·)Ψ∆(t, s)x‖(5.3)

≤ c ‖Ψ(t, s)x‖p + c1 ‖Ψ∆(t, s)x‖p
≤ (c+ c1) ‖Ψ∆(t, s)x‖p + ‖Fs∆(·)Ψ∆(t, s)x‖p ≤ c2 ‖Ψ∆(t, s)x‖p

so that Σ∆ is continuously finally observable. If Σ is finally observable and Ψ∆(t, s)x =
0, then Ψ(t, s)x = −Fs∆(·)Ψ∆(t, s)x = 0. Hence T (t, s)x = 0, and (5.3) yields
T∆(t, s)x = 0. The converse implications are proved similarly.

Theorem 4.4 also guarantees that repeated feedbacks behave nicely.
Proposition 5.4. Let Σ be an absolutely regular nonautonomous system with

p ∈ (1,∞), let ∆(·) be an admissible feedback for Σ, let Σ∆ be the corresponding
feedback system, and let ∆̃(·) ∈ L∞(R+,Ls(Y,U)). Then ∆̃(·) is admissible for Σ∆ if

and only if ∆(·)+ ∆̃(·) is admissible for Σ. If this is the case, then Σ∆+∆̃ = (Σ∆)∆̃.
Proof. Proposition 5.1 implies that

Fs [I − ∆̃(·)F∆
s ] = [I − Fs(∆(·) + ∆̃(·))]F∆

s and

[I − F
∆
s ∆̃(·)]Fs = F

∆
s [I − (∆(·) + ∆̃(·))Fs].

(5.4)
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Assume that ∆(·) + ∆̃(·) is admissible for Σ. We then deduce from (5.4) and (5.1)
that

F
∆+∆̃
s − F

∆
s = F

∆+∆̃
s ∆̃(·)F∆

s = F
∆
s ∆̃(·)F∆+∆̃

s

so that ∆̃(·) is admissible for Σ∆ by Lemma 4.3. The converse implication is proved
in the same way. The second claim follows similarly from (5.2) and Lemma 4.3.

We introduce a basic asymptotic property of evolution equations; see, e.g., [4],
[9].

Definition 5.5. An evolution family T has an exponential dichotomy (or is
called hyperbolic) if there are projections P (t), t ≥ 0, and constants N, δ > 0 such
that P (·) ∈ Cb(R+,Ls(X)) and, for t ≥ s ≥ 0 and Q(t) = I − P (t),

1. T (t, s)P (s) = P (t)T (t, s),
2. the restriction TQ(t, s) : Q(s)X → Q(t)X of T (t, s) has the inverse TQ(s, t),
3. ‖T (t, s)P (s)‖ ≤ Ne−δ(t−s), and ‖TQ(s, t)Q(t)‖ ≤ Ne−δ(t−s).

If P (t) ≡ I, then T is called exponentially stable.
Persistence of dichotomy under perturbations mapping from spaces Xt into X

has been studied intensively; see [4, section 5.2], [22, section 5], and the references
given there. The next result also holds for admissible systems; see [23, Thm. 4.23].

Theorem 5.6. Assume that (T,Φ,Ψ,F) is a regular nonautonomous system
and that ∆(·) ∈ L∞(R+,Ls(Y,U)) is Σ-admissible with k(t0) := sups ‖(I − F(s +
t0, s)∆(·))−1‖. Suppose that T has an exponential dichotomy with constants N, δ > 0
and projections P (t). Then there is a number ε0 = ε0(N, δ, t0) > 0 such that

k(t0)β(t0)γ(t0) ‖∆(·)‖∞ ≤ ε0
implies that T∆ is hyperbolic with projections having the same rank as P (t) and Q(t).

Proof. We extend the evolution families T and T∆ to the time interval R by
setting T (t, s) = T∆(t, s) = exp[(t− s)δ(Q(0)− P (0))] for 0 ≥ t ≥ s and T(∆)(t, s) =
T(∆)(t, 0) exp[−sδ(Q(0)−P (0))]. Observe that we can take k(t1) = k(t0) for 0 < t1 ≤
t0 by the proof of Lemma 4.2 and that exp[tδ(Q(0) − P (0))] = e−δtP (0) + eδtQ(0).
Therefore, (4.8) yields

‖T∆(s+ t0, s)− T (s+ t0, s)‖ ≤ (1 + eδt0)Nk(t0)β(t0)γ(t0) ‖∆(·)‖∞.
The assertion then follows from [24, Prop. 2.3] (see also [4, Thm. 5.23] and the refer-
ences therein), where ε0 := (1− eδt0)2 ((1 + eδt0)8N3)−1.

We finally characterize the exponential stability of T from the perspective of
control theory using the following notions; cf. [5], [6], [17], [20], [25, section 8.2].

Definition 5.7. A nonautonomous control system (T,Φ) is called stabilizable
if there exists an observation system (TF ,Ψ

F ) with an exponentially stable evolu-
tion family TF on X such that TF (t, s)x = T (t, s)x + Φt,sΨ

F
s x for all x ∈ X and

t ≥ s ≥ 0.
Definition 5.8. A nonautonomous observation system (T,Ψ) is called de-

tectable if there is a control system (TK ,Φ
K) with an exponentially stable evolution

family TK on X such that TK(t, s)x = T (t, s)x+Φ
K
t,sΨsx for all x ∈ X and t ≥ s ≥ 0.

The following theorem relates the exponential stability of T , i.e., internal stability,
with the boundedness of F : Lp(R+, U) → Lp(R+, Y ), the so-called input–output
stability. Versions of Theorem 5.9 for the autonomous Hilbert space setting are proved
in [6, Thm. 5.8] for the Pritchard–Salamon class, in [20, Cor. 1.8] for regular systems,
and in [17, Thm. 5.2] and [33, Thm. 5.3] for well-posed systems. In that case, the
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input–output stability can be replaced by the equivalent condition that the transfer
function H(λ) = CR(λ,A−1)B is bounded for Reλ > 0; cf. [31, Thm. 3.1]. In [5,
Thm. 4.3], our theorem was shown for bounded control and observation operators
using the characterization of exponential stability given in [4, Thm. 3.26]. Here we
employ Datko’s theorem [8, Thm. 1, Rem. 3] in order to avoid some technical problems.
However, we remark that Datko’s theorem can be deduced from [4, Thm. 3.26]; see [23,
Thm. 1.19]. A variant of the next result holds for admissible systems [23, Thm. 4.29].

Theorem 5.9. Let Σ = (T,Φ,Ψ,F) be a regular nonautonomous system. Then
the following assertions are equivalent:

1. T is exponentially stable.
2. (T,Φ) is stabilizable, and Φ(·, 0) ∈ L(Lp(R+, U), L

p(R+, X)).
3. (T,Ψ) is detectable, and ‖Ψsx‖Lp([s,∞),Y ) ≤ c ‖x‖ for s ≥ 0 and x ∈ X.
4. Σ is detectable and stabilizable, and F ∈ L(Lp(R+, U), L

p(R+, Y )).
Proof. Let 1 hold. Then Σ is always stabilizable (take ΨF = 0) and detectable

(take ΦK = 0). The other assertions in 2–4 follow from Lemmas 2.3, 3.2, and 3.7.
Extending u ∈ Lp([s,∞), U) by 0 to R+ and using causality, we see that the norms
of Φ(·, s) and Fs decrease as s increases. The assumptions in 2 and Lemma 2.3
yield ‖T (·, s)x‖Lp([s,∞),X) ≤ c ‖x‖X for s ≥ 0, x ∈ X, and a constant c. Thus 1
is a consequence of Datko’s theorem [8, Thm. 1, Rem. 3]. The implication “3⇒1”
can be proved in the same way. If Σ is stabilizable, then Theorems 2.7 and 3.11
show that the operators C(t) representing Ψ are also TF -admissible, and Ψsx =
C(·)TF (·, s)x − FsΨ

F
s x for s ≥ 0 and x ∈ X. Hence 4 implies 1 by Lemmas 2.3 and

2.5.

6. A parabolic problem with point control and observation. Let Ω ⊂ R
n

be a bounded domain with C2-boundary ∂Ω, and let akl, ak, a0 : R+ ×Ω→ R, k, l =
1, . . . , n be bounded and uniformly Hölder continuous such that

∑
kl akl(t, ξ)vkvl ≥

α |v|2 for a constant α > 0 and v ∈ R
n, t ≥ 0, ξ ∈ Ω. Further, let b, c : R+ → Ω be

uniformly Lipschitz such that |b(t) − c(t)| ≥ δ > 0 for t ≥ 0. Let ϕ ∈ C0(Ω), s ≥ 0,
and Dk = ∂

∂ξk
. The unique solution w ∈ C([s,∞) × Ω) ∩ C1,2((s,∞) × Ω) of the

problem

wt(t, ξ) =
∑

kl
akl(t, ξ)DkDlw(t, ξ) +

∑
k
ak(t, ξ)Dkw(t, ξ)

+ a0(t, ξ)w(t, ξ), t > s,

w(t, ξ) = 0, ξ ∈ ∂Ω, t ≥ s, w(s, ξ) = ϕ(ξ), ξ ∈ Ω,
(6.1)

is given by w(t, ξ) =
∫
Ω
k(t, s, ξ, η)ϕ(η) dη for a continuous kernel k(t, s, ξ, η), t > s ≥

0, ξ ∈ Ω, η ∈ Ω, satisfying the Gaussian estimate

|k(t, s, ξ, η)| ≤M(t− s)−n
2 exp

(
−w|ξ − η|

2

t− s + w̃(t− s)
)

for 0 < t − s ≤ t0 and constants M,w > 0 and w̃ ∈ R; see, e.g., [15, section IV.16].
By the uniqueness of solutions, we also have

k(t, s, ξ, η) =

∫
Ω

k(t, r, ξ, ζ)k(r, s, ζ, η) dζ, t > r > s ≥ 0, ξ, η ∈ Ω.(6.2)
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We take p, q ∈ [1,∞) and set X = Lq(Ω), U = Y = C, T (s, s) = I, Φ(s, s)u = 0, and

T (t, s)ϕ =

∫
Ω

k(t, s, ·, η)ϕ(η) dη, Φt,su =

∫ t

s

k(t, τ, ·, b(τ))u(τ) dτ,

(Ψsϕ)(t) =

∫
Ω

k(t, s, c(t), η)ϕ(η) dη, (Fsu)(t) =

∫ t

s

k(t, τ, c(t), b(τ))u(τ) dτ

for t > s ≥ 0, ϕ ∈ X, and u ∈ Lp
loc(R+). These maps correspond to the PDE (6.1)

complemented by the control B(t)u(t) = δb(t)u(t) and the output y(t) = w(t, c(t)).
The operators T (t, s) yield an evolution family on X due to standard elliptic

regularity and, e.g., [2, Thm. II.4.4.1]. Since b is Lipschitz, we have

exp

(
−w |ξ − b(s)|

2

t− s
)
≤ c1 exp

(
−w |ξ − b(t)|

2

t− s
)

(6.3)

for t > s ≥ 0, ξ ∈ Ω, and a constant c1. Hence |(Fsu)(t)| ≤ ϕ ∗ |u| (t), s ≤ t ≤ s+ t0,
where we have extended u ∈ Lp

loc([s,∞)) by 0 and put ϕ(t) = c1 t
−n

2 exp(−wδ2

t + w̃t)
for t > 0 and ϕ(t) = 0 otherwise. For 1 + 1

p = 1
λ + 1

µ , Young’s inequality yields

‖Fsu‖Lp[s,s+t0] ≤ ‖ϕ‖Lλ[0,t0] ‖u‖Lµ[s,s+t0](6.4)

so that (3.11) holds for each p ∈ [1,∞]. Observe that Ψsϕ is continuous on (s,∞)
for each ϕ ∈ L1(Ω) and that t �→ Φ(t, s)u ∈ L1(Ω) is continuous on [s,∞) for u ∈
L1
loc([s,∞)). Moreover, (6.2) implies (2.1), (3.1), and (3.10). Using (6.3), Hölder’s

inequality, and that the norm of the Gaussian kernel in Lq′(Rn) equals ct−n/2q, we
compute ∫ t

s

|Ψsϕ(τ)|p dτ ≤ c ‖ϕ‖pq
∫ t

s

(τ − s)−np
2q dτ,(6.5)

‖Φt,su‖q ≤ c
∫ t

s

(t− τ)− n
2q′ |u(τ)| dτ(6.6)

for 0 < t− s ≤ t0, 1/q + 1/q′ = 1, and constants c. Thus the operators

Ψs : L
q(Ω)→ Lp

loc([s,∞)), q >
np

2
, Φt,s : L

p
loc([s, t])→ Lq(Ω), q′ >

np′

2
,(6.7)

are continuous. As a result, (T,Φ,Ψ,F) is a well-posed nonautonomous system pro-
vided that n = 1, q > p/2, and q′ > p′/2 (for instance, if p = q = 2). In view of (6.4),
this system is absolutely regular, and every bounded feedback is admissible.

The restriction n = 1 was needed only to obtain the boundedness of Ψs and Φt,s

for the same values of p and q. We now discuss to what extent the assertions of
Theorem 4.4 remain valid for n = 2, 3. All results dealing with Ψ and Φ separately
are true for the exponents indicated in (6.7). Observe that Fs satisfies (3.11), (3.13),
and the assertions of Lemma 4.2 for all p ≥ 1 and that every bounded feedback
is admissible. Moreover, the proof and assertion of Theorem 3.11 work as before.
Proposition 3.12 holds for n = 2, u ∈ Lr

loc(R+) with r > 1, X = Lq(Ω) with q′ > r′,
and p < q in the assertions. In fact, we have Bnu ∈ L∞

loc(R+, L
q(Ω)) for q′ > r′. So

we can apply Proposition 2.11 for p < q to obtain (3.21) and then proceed as before.
We now consider Theorem 4.4, where we restrict ourselves to the case where the

state space X equals L2(Ω) and the given system Σ is admissible with exponent 2.
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We define T∆(t, s)ϕ for ϕ ∈ Lq(Ω) with q > 2n/(4 − n) as in (4.8). Then Ψsϕ ∈
Lp
loc([s,∞)) for all p ∈ (4/(4 − n), 2q/n), and T∆(t, s) : L

q(Ω) → L2(Ω) is bounded
for 0 ≤ t− s ≤ t0 due to (6.7). Because of (6.4) with p =∞ and µ < 4/n and (6.7),
we have

‖Fs∆(·)(I − F(s+ t1, s)∆(·))−1Ψsx‖L∞[s,s+t0] ≤ c ‖Ψsϕ‖Lµ[s,s+t0] ≤ c ‖ϕ‖2 .

Thus (4.9) and (6.5) yield

|C(t)T∆(t, s)ϕ| ≤ c (t− s)−n
4 ‖ϕ‖2(6.8)

for 0 < t− s ≤ t0. The identity (4.5) (with ϕ ∈ Lq(Ω)) follows as before. Using (4.5),
(6.6), and (6.8), we further estimate ‖T∆(t, s)ϕ‖2 ≤ c (t − s)1−n

2 ‖ϕ‖2 . Therefore,
we can extend T∆(t, s) and (4.5) to L2(Ω). We can now argue as in the proof of
Theorem 4.4 and deduce part (a) of the theorem if we replace (4.4) by (6.8), allow
for a blow-up of T∆(t, s) as t → s if n = 3, and consider solutions x(·) of (4.1) such
that x(·) ∈ C([s,∞), L1(Ω)) and C(·)x(·) ∈ L1

loc([s,∞)).
Now let n = 2. In part (b), we restrict ourselves in (4.11) to cut-off functions

γ with compact support in (r,∞). (One checks as in [4, Thm. 3.12] that the set
of resulting functions f is still dense in Lp

loc([s,∞), X). Here we need the strong
continuity of T∆(t, s) at t = s and must thus exclude n = 3.) We proceed as before
and deduce (4.15) and (4.16) for u ∈ Lp

loc([s,∞)) with p > 2. We can take the
limits as n → ∞ in C([s, s + t1], L

2(Ω)) and L2[s, s + t1], respectively, and obtain
Φ∆u and F

∆u. Moreover, Φ∆u satisfies an estimate like (6.6). We can thus apply
Φ∆
t,s on u = ∆(·)Ψsϕ for ϕ ∈ L2(Ω) so that (4.7) holds. The other assertions of

Theorem 4.4(b) can be verified as before except that Ψ∆ and Φ∆ have the mapping
properties from (6.7) with q = 2.
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Abstract. This paper studies nonlinear feedback stabilization of Euler–Bernoulli beams subject
to various pointwise and concentrated actuators. Strong, uniform, and nonuniform stabilization
are obtained with explicit decay estimates in appropriate spaces. The results are obtained through
the study of an abstract second order distributed system which encompasses the models under
investigation.
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1. Introduction and statement of the main abstract results.

1.1. Motivating examples. In this paper, we are concerned with the question
of stabilization of second order distributed systems modelling connected vibrating
beams provided with various types of actuators. In what follows, y(x, t) represents
the displacement of the structure in question at position x and time t. The notation
y′ denotes the derivative of y with respect to time.

The canonical classes of problems that we have in mind are as follows.
Model 1. Beam equation with pointwise actuator. Let 0 < a < 1; we consider the

system of coupled beams with spatial extent from x = 0 to x = a and from x = a to
x = 1. We suppose that the end at x = 0 is simply supported and at x = 1 there is a
shear hinge end. We consider the case where, at x = a, we have a rigid support joint
with the discontinuity in the shear as control (see [8]). Then y satisfies the following
Euler–Bernoulli equation:

y′′ +
∂4y

∂x4
= 0, t > 0, x ∈ (0, a) ∪ (a, 1) .(1.1)

The boundary and joint conditions are given by


y(t, 0) = ∂2y
∂x2 (t, 0) = 0,

∂y
∂x (t, 1) =

∂3y
∂x3 (t, 1) = 0,

y(t, a−) = y(t, a+),

∂y
∂x (t, a

−) = ∂y
∂x (t, a

+),

∂2y
∂x2 (t, a

−) = ∂2y
∂x2 (t, a

+),

(1.2)

∂3y

∂x3
(t, a+)− ∂3y

∂x3
(t, a−) = u(t).(1.3)
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Model 2. Beam equation with piezoelectric actuator. We consider the Euler–
Bernoulli beam that is subject to the action of an attached piezoelectric actuator [4].
We suppose that the beam is hinged at both ends and that the actuator is excited in
a manner to produce pure bending moments. This leads to the following model [10]:

y′′ +
∂4y

∂x4
= u(t)

d

dx
(δ(x− a1)− δ(x− a2)), t > 0, 0 < x < 1,(1.4)

y(t, 0) = y(t, 1) =
∂2y

∂x2
(t, 0) =

∂2y

∂x2
(t, 1) = 0,(1.5)

where δ(x− a) denotes the Dirac mass at a. Here the points a1, a2 ∈ (0, 1) represent
the ends of the actuator and the control function u(.) is the time variation of the
voltage applied to the actuator.

Model 3. Beam equation with concentrated actuator. We consider the controlled
Euler–Bernoulli beam equation

y′′ +
∂4y

∂x4
= u(t)g(x), t > 0, 0 < x < 1,(1.6)

with boundary conditions (1.5) and g ∈ L2 (0, 1). As in [12], we shall call the con-
centrated control (or actuator) the control relevant to (1.6). The introduction of
such a system is motivated by the fact that, from an engineering viewpoint, point
actuators as in examples (1.1)–(1.3) and (1.4) are idealizations. Indeed, the control
actions resulting from such actuators affect a distributed part of the spatial domain
and not just points. Thus, although it is generally accepted that point actuators are
useful concepts which lead to the so-called unbounded controls, a more realistic model
would be to consider concentrated actuators. Such considerations have been studied
for beam equations in [12]. In this reference, it is shown that the uniform exponen-
tial stability is lost whenever the concentrated actuator concept is adopted for the
same linear feedback. In this paper, we shall see that, even when such a concept is
adopted, uniform exponential stability can be achieved in appropriate spaces by using
unbounded feedbacks.

In the equations above, the function u : (0,∞)→ IR represents the control, and
we suppose that u ∈ L2

loc (0,∞) . Then we consider the question of explicit (nonlinear)
feedback operator based on the velocity

u(t) = F (y′(., t))

such that the resulting equation produces a solution which is stable in appropriate
spaces. Furthermore, under suitable assumptions, explicit decay estimates will be
given.

1.2. Literature. As the foregoing examples indicate, the object of this paper is
to study the problem of (nonlinear) feedback stabilization of various Euler–Bernoulli
equations with interior control supported by points or zones. Let us state at the
outset a part of the abundant literature concerned with the problem of linear feedback
stabilization relative to our examples. Model 1 has been studied in [8] and [20]. In
the first reference, the tool used is based on a combination of multipliers and the
Lyapunov method. In the second one, a frequency domain approach is the main
ingredient. As for Model 2, a strong stabilization result has been obtained in [26] via
LaSalle’s invariance principle. Model 3 can be treated via the general study dealing
with the linear bounded feedback case in [21].
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The main contributions of this paper are as follows:
(i) The problems above are presented in an abstract framework which encom-

passes these examples and others as well (wave equation, Kirchhoff models,
etc.). Some aspects of this question will be considered in section 4.

(ii) The regularity results relative to the abstract model are sharp. The method
used to this end gives an alternative way to obtain in a unified approach reg-
ularity properties already studied for their own interest (see [27] for Model 2).

(iii) The nonlinear feedback used to stabilize our models is general and less re-
strictive compared to those of the existing literature. Furthermore, it enables
us to get the linear feedback stabilization results as particular cases (see [1]
for Model 1).

(iv) To the author’s knowledge and for the models above, the results deduced
from the abstract framework are new in the nonlinear feedback stabilization
setting. These results can be used to improve some partial results concerned
with particular situations (see, for instance, [9], where boundary feedback
stabilization is studied).

The plan of the paper is as follows. The rest of this section is devoted to the
statement of regularity and stabilization results relative to an abstract formulation of
our models. The second section is concerned with the proofs of the abstract results.
In the third section, we justify that our problems can be written in abstract form
and derive various stabilization results. The fourth section contains some comments
on possible extensions and related questions. In the remaining part of this paper,
we shall denote by C a generic positive constant which may be different at different
occurrences.

1.3. Formulation of the problem and statement of the abstract results.
In this subsection, we consider an abstract second order distributed control system
subject to certain assumptions. In latter sections, we verify that these assumptions
are natural for, and, in fact, automatically satisfied by, the models of our interest.

Let V,H be real Hilbert spaces such that V ⊂ H with dense, continuous, and com-
pact embedding. We denote by |.| and ‖.‖ the norms on H and V , respectively. Let us
introduce the unique linear bounded operator from V to V ′ which is characterized by

〈Av,w〉V ′,V = 〈v, w〉V for all v, w ∈ V.(1.7)

Motivated by the examples given in the introduction, we shall consider the abstract
system {

y′′(t) +Ay(t) = u(t)b, 0 < t < T,
y(0) = y0, y

′(0) = y1,
(1.8)

where u ∈ L2 (0, T ) represents the control and b is given in V ′.
Recall that, by identifying H with its dual, we have V ⊂ H ≡ H ′ ⊂ V ′ and

〈v, w〉H = 〈v, w〉 for all v, w ∈ H,(1.9)

where 〈., .〉 denotes the V ′, V duality pairing with respect to the H-topology. Hence,
if we consider A as an operator on H with

D(A) = A−1(H),(1.10)

then A is self-adjoint with compact resolvent on H.
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We shall consider the stability of the control system under (possibly nonlinear)
feedback control of the form

u(t) = −f
(
d

dt
〈b, y(t)〉

)
,(1.11)

where f : IR→ IR is continuous and monotone and satisfies

rf(r) ≥ 0 for all r ∈ IR.(1.12)

Thus the resulting system, whose stability properties we shall investigate, is the
following: {

y′′(t) +Ay(t) + f( ddt 〈b, y(t)〉)b = 0,

y(0) = y0, y
′(0) = y1.

(1.13)

The main goal is to characterize those b for which (i) the solutions of (1.8) and
(1.13) exist globally and (ii) the energy given by

E(t) =
1

2
(‖y(t)‖2 + |y′(t)|2)(1.14)

decays to zero when t→∞ for every solution of (1.13). Furthermore, we shall specify
the decay rate in terms of the function f .

Let us introduce the set
{
λn = ω2

n

}
n
of eigenvalues of A and denote by {ψn}n

the corresponding orthogonal basis in H. Then we have the standard identifications

V ≡ D(A
1
2 ), ‖v‖2 = ‖v‖2

D(A
1
2 )

=
∑
n

ω2
n |〈v, ψn〉|2 .(1.15)

More generally, for 0 < µ ≤ 1, we shall use the fractional power spaces

D(Aµ) =

{
v ∈ H /

∑
n

ω4µ
n |〈v, ψn〉|2 <∞

}
, ‖v‖2D(Aµ) =

∑
n

ω4µ
n |〈v, ψn〉|2 .(1.16)

The space D(Aµ)′ will denote the dual of D(Aµ) with respect to the H-topology so
that it can be characterized as the completion of H for the norm defined by

‖v‖2D(Aµ)′ =
∑
n

ω−4µ
n |〈v, ψn〉|2 .(1.17)

In the applications, the operator A will stand for d4

dx4 with appropriate homogenous
boundary conditions so that the spaces above can be identified with Sobolev spaces
in a standard way [13], [19]. We shall use later the fact that the embedding H ⊂ V ′

is also compact.
Let us mention that, from standard theory, the system (1.8) has a unique solution

with y ∈ C (0, T ;H)∩C1 (0, T ;V ′) [19, p. 311]. In fact, we shall prove that the solution
can be more regular. As for the feedback system (1.13), similar regularity results will
be obtained under less demanding assumptions.

Below, we shall state our main abstract results, while the proofs are relegated to
section 2.
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Proposition 1.1 (well posedness of (1.8) on V ×H). Suppose that

lim
n
ωn+1 − ωn ≥ δ > 0(1.18)

and, for some positive constant Cb,

|〈b, ψn〉| ≤ Cb, for all n.(1.19)

Then, for any {y0, y1} ∈ V ×H, there exists a unique weak solution to (1.8) such that

y ∈ C (0, T ;V ) ∩ C1 (0, T ;H) .(1.20)

Before stating the following corollary, we introduce, for −1 ≤ θ ≤ 1, the spaces
Vθ given by

Vθ =

{
D(Aθ), if θ ≥ 0,

D(A−θ)′ otherwise.
(1.21)

Then we have the following corollary.
Corollary 1.2. Suppose that (1.18) holds and, for some 0 < µ ≤ 1 and some

positive constant Cb,

|〈b, ψn〉| ≤ Cbλµn for all n.(1.22)

Then, for any {y0, y1} ∈ V 1
2−µ ×D(Aµ)′, there exists a unique weak solution to (1.8)

such that

y ∈ C(0, T ;V 1
2−µ) ∩ C

1 (0, T ;D(Aµ)′) .(1.23)

Proposition 1.3. Suppose that the assumptions of Proposition 1.1 hold. More-
over, assume that the sequence {σn}n given by

σn =
∑
j �=n

1∣∣√ωn −√ωj∣∣2(1.24)

is well defined and bounded. Then, for y solution of{
y′′(t) +Ay(t) = u(t)b, 0 < t < T,

y(0) = y′(0) = 0,
(1.25)

the function d
dt 〈b, y(.)〉 is well defined in L2(0, T ), and∥∥∥∥ ddt 〈b, y(.)〉

∥∥∥∥
L2(0,T )

≤ C ‖u‖L2(0,T )(1.26)

for some positive constant C.
Proposition 1.4 (well posedness of (1.13) on V × H). Let f : IR → IR be

a continuous monotone function satisfying (1.12). Then, for any {y0, y1} ∈ V ×H,
there exists a unique weak solution to (1.13) with the regularity (1.20).

To state our first stability result for system (1.13), we need the following assump-
tion regarding f :

rf(r) > 0 for all r �= 0.(1.27)

Then we have the following theorem.
Theorem 1.5 (strong stability for the solution of (1.13)). Let f : IR→ IR be a

continuous monotone function satisfying (1.27). Suppose that the eigenvalues λn are
simple. Then, for any {y0, y1} ∈ V ×H, the following conditions are equivalent:
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(i) The solution of (1.13) satisfies limt→∞E(t) = 0.
(ii) 〈b, ψn〉 �= 0 for all n.
(iii) For any {ϕ0, ϕ1} ∈ D(A)× V, the only function satisfying the conditions


ϕ′′(t) +Aϕ(t) = 0, 0 < t <∞,

ϕ(0) = ϕ0, ϕ
′(0) = ϕ1,

〈b, ϕ′(t)〉 = 0, 0 < t <∞,
(1.28)

is ϕ ≡ 0.
To state our second stabilization result, we consider the assumptions

cf |r| ≤ |f(r)| ≤ Cf |r| for all |r| ≥ 1,(1.29)

where cf , Cf are positive constants and there is a concave, strictly increasing function
ξ : IR+ → IR with ξ(0) = 0 such that, for some ρ ∈ (0, 1],

|r|2ρ + |f(r)|2 ≤ ξ(rf(r)) for all |r| < 1.(1.30)

On the other hand, for T satisfying

T >
2π

δ
,(1.31)

we set

h(s) = s+ ξ
( s
T

)
.(1.32)

Let p denote the inverse of C0h where C0 is a positive constant to be precise in the
proof. Then we have the following theorem.

Theorem 1.6 (stability and general decay estimate for the solution of (1.13)).
Let f be a continuous monotone function satisfying (1.27), (1.29), and (1.30). Sup-
pose that the eigenvalues λn are simple, satisfying (1.18) and such that the sequence
{σn}n is well defined and bounded. Moreover, assume that, for some positive constants
Cb, cb,

cb ≤ |〈b, ψn〉| ≤ Cb for all n.(1.33)

Then, for some T > 0, the solution of the system (1.13) satisfies

E(t) ≤ S
(
t

T
− 1

)
for all t > T,(1.34)

where S(t)→ 0 as t→∞ and is the solution (contraction semigroup) of the differen-
tial equation

S′(t) + q(S(t)) = 0, S(0) = E(0),(1.35)

and q is given by

q(s) = s− (I + p)−1(s).(1.36)

Theorem 1.7 (stability and decay estimate for the solution of (1.13)). Let f be a
continuous monotone function satisfying (1.27), (1.29), and the additional hypotheses

c̃f |r|α+1 ≤ rf(r) for all |r| < 1,(1.37)
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|f(r)| ≤ C̃f |r|β for all |r| < 1,(1.38)

where C̃f , c̃f , α, β are positive constants with 0 < β ≤ 1 and α ≥ β. Suppose
that the eigenvalues λn satisfy the assumptions of Theorem 1.6. Moreover, assume
that (1.33) holds. Then, for some positive constants ω, T , and K, the solution of the
system (1.13) satisfies

E(t) ≤ KE(0)e−ωt for all t > T(1.39)

if α = β = 1 and

E(t) = O(t−
2β

α+1−2β ) (t→∞)(1.40)

if α+ 1 > 2β.
The following result gives a nonuniform stability property for (1.13) when the

first inequality in (1.33) is not satisfied. More precisely, the decay rates are obtained
for initial data lying in a space dense in the energy space.

Theorem 1.8 (nonuniform stability and decay estimate for the solution of (1.13)).
Let f be a continuous monotone function satisfying the assumptions of Theorem 1.7
with α = β = 1. Suppose that the eigenvalues λn satisfy the assumptions of Theorem
1.6. Assume that b ∈ H and, for some positive constants Cb, cb and some 0 < µ ≤ 1,

cb
λµn
≤ |〈b, ψn〉| ≤ Cb for all n.(1.41)

Then, for any {y0, y1} ∈ D(A)× V , the solution of the system (1.13) satisfies{
E(t) = d(t)(‖y0‖2D(A) + ‖y1‖2),
d(t) = O(t−

1
2µ ) (t→∞).

(1.42)

2. Proofs of the main abstract results.

2.1. Well posedness and regularity. Without loss of generality, we shall sup-
pose in subsubsections 2.1.1–2.1.3 that T > 2π

δ .

2.1.1. Proof of Proposition 1.1. It is standard that (1.8) admits a unique
solution satisfying [19, p. 311]

y ∈ C(0, T ;H) ∩ C1(0, T ;V ′).(2.1)

On the other hand, if we consider the uncontrolled system{
ϕ′′(t) +Aϕ(t) = 0,

ϕ(0) = ϕ0, ϕ
′(0) = ϕ1,

(2.2)

and suppose that {ϕ0, ϕ1} ∈ V ×H, then we have

d

dt
〈b, ϕ(t)〉 =

∑
n

[−ωn 〈ψn, ϕ0〉 sin(ωnt) + 〈ψn, ϕ1〉 cos(ωnt)] 〈b, ψn〉 .(2.3)

If we consider the series above as a Fourier series in t and we apply Ingham’s inequality,
we obtain, for some positive constant C [3],∥∥∥∥ ddt 〈b, ϕ(.)〉

∥∥∥∥
2

L2(0,T )

≤ C(‖ϕ0‖2 + |ϕ1|2).(2.4)

By adapting Proposition 3.1 in [5, p. 172], we can easily deduce (1.20).
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2.1.2. Proof of Corollary 1.2. Let us introduce

b̃ = A−µb(2.5)

and consider the change of variables


ỹ(t) = A−µy(t),

ỹ0 = A−µy0,

ỹ1 = A−µy1.

(2.6)

Then b̃ ∈ V ′, and ỹ is the solution of the problem{
ỹ′′(t) +Aỹ(t) = u(t)̃b 0 < t < T,

ỹ(0) = ỹ0, ỹ
′(0) = ỹ1.

(2.7)

On the other hand, for some positive constant C,

|〈̃b, ψn〉| ≤ C for all n.(2.8)

Hence Proposition 1.1 yields ỹ ∈ C (0, T ;V )∩C1 (0, T ;H) . This completes the proof
of the corollary.

2.1.3. Proof of Proposition 1.3. We first note that, by using the Galerkin
method, the solution of (1.25) can be approximated by the sequence of solutions
given by 


〈y′′m(t), ψk〉+ 〈Aym(t), ψk〉 = u(t) 〈b, ψk〉 0 < t < T,

1 ≤ k ≤ m, ym(t) ∈ span (ψ1, . . . , ψm),

ym(0) = y′m(0) = 0.

(2.9)

Indeed, by adapting the methods performed in [19, chapter 3, section 8], it can be
shown that we can extract a subsequence, still denoted by {ym}m, such that

ym → y weakly in L2(0, T ;H),(2.10)

y′m → y′ weakly in L2(0, T ;V ′).(2.11)

On the other hand, we notice that, for u ∈ H1
0 (0, T ), we can easily get from above

that

y′ ∈ C (0, T ;V ) .(2.12)

Hence the function d
dt 〈b, y(.)〉 is well defined in C(0, T ). We shall use the following

result.
Lemma 2.1. Suppose that u ∈ H1

0 (0, T ). Then the sequence {ym}m satisfies

{y′m}m bounded in C (0, T ;V ) ,(2.13)

{y′′m}m bounded in C (0, T ;H) .(2.14)
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Proof. From

y′m(t) =
m∑
k=1

{∫ t

0

u′(s) sinωk(t− s)ds
} 〈b, ψk〉

ωk
ψk(2.15)

and using (1.19), we get, for some positive constant C,

‖y′m(t)‖2V ≤ C
m∑
k=1

{∫ t

0

u′(s) sinωk(t− s)ds
}2

.(2.16)

By an easy adaptation of the auxiliary result in Lemma A.1 (see Appendix A), we
obtain, for some positive constant C independent of m,

‖y′m(t)‖V ≤ C ‖u′‖L2(0,T ) for all 0 < t < T.(2.17)

The assertion (2.14) can be obtained in the same way. The proof of the lemma is
complete.

In order to complete the proof of (1.26), we notice that, by standard compactness
argument [23], there exists a subsequence, still denoted by {y′m}m, such that

y′m → y′ in C(0, T ;H),(2.18)

y′m → y′ weakly in L2(0, T ;V ).(2.19)

Furthermore, from (2.13) we get

〈b, y′m(.)〉 bounded in L2(0, T )(2.20)

so that we can extract a subsequence such that

〈b, y′m(.)〉 → 〈b, y′(.)〉 weakly in L2(0, T ).(2.21)

By a density argument, it is sufficient to establish (1.26) for u ∈ H1
0 (0, T ). Taking

into account (2.21) and using a weak compactness argument, this can be reduced to

‖〈b, y′m(.)〉‖L2(0,T ) ≤ C ‖u‖L2(0,T )(2.22)

for some positive constant C independent of m. To this end, let us denote by ũ the
extension of u defined by

ũ(t) =

{
u(t) if 0 < t < T,

0 otherwise,
(2.23)

and consider the sequences {sk}k and {Sm}m given by

sk(t) =

{
|〈b, ψk〉|2 eiωkt if 0 < t < T,

0 otherwise,
(2.24)

Sm(t) =

m∑
k=1

sk(t).(2.25)
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Then, from (2.15), we get

‖〈b, y′m(.)〉‖L2(0,T ) ≤ ‖(Sm ∗ ũ)(.)‖L2(IR) .(2.26)

For w ∈ L2(IR), let ŵ denote the Fourier transform of w defined by

ŵ(τ) =

∫
IR

e−itτw(t)dt.(2.27)

Then, using Parseval’s property, we have

‖〈b, y′m(.)〉‖L2(0,T ) ≤ ‖Ŝm̂̃u‖L2(IR)(2.28)

and

‖〈b, y′m(.)〉‖L2(0,T ) ≤ ‖Ŝm‖L∞(IR)‖̂̃u‖L2(IR).(2.29)

Hence, it is sufficient to see that, for some positive constant C,

‖Ŝm‖L∞(IR) ≤ C for all m.(2.30)

By continuity, this can be reduced to see that, for any τ such that

τ �= ωk for all k,

we have

|Ŝm(τ)| ≤ C for all m.(2.31)

In what follows, we shall implicitly consider this case so that

Ŝm(τ) =

m∑
k=1

ŝk(τ) =

m∑
k=1

ei(ωk−τ)T − 1

i(ωk − τ) |〈b, ψk〉|2 .(2.32)

If τ ≤ 0, then we have

|Ŝm(τ)| ≤
m∑
k=1

2C2
b

ωk
≤ 2C2

b

(
σ1 +

1

ω1

)
for all m.(2.33)

On the other hand, an easy computation gives

∣∣∣∣ei(ωk−τ)T − 1

i(ωk − τ)
∣∣∣∣ =

∣∣4 sin2(ωk − τ)T/2
∣∣ 1
2

|ωk − τ | = T
|sin(ωk − τ)T/2|
|ωk − τ |T/2 .

Hence we have, for all real τ ,

|ŝk(τ)| ≤ TC2
b .(2.34)

Suppose that τ > 0, and let

n(τ) = min {k / τ < ωk} .(2.35)
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If n(τ) ≤ 3, then

|Ŝm(τ)| ≤
∣∣∣∣∣∣
n(τ)∑
k=1

ŝk(τ)

∣∣∣∣∣∣+
∣∣∣∣∣∣

m∑
k=n(τ)+1

ŝk(τ)

∣∣∣∣∣∣
≤ 3TC2

b + 2C2
b

∣∣∣∣∣∣
m∑

k=n(τ)+1

1

ωk − ωn(τ)

∣∣∣∣∣∣
≤ 3TC2

b + 2C2
b


 m∑
k=n(τ)+1

1

|√ωk −√ωn(τ)|2




1
2

 m∑
k=n(τ)+1

1

|√ωk +√ωn(τ)|2




1
2

.

Thus

|Ŝm(τ)| ≤ 3TC2
b + 2C2

bσn(τ).(2.36)

If n(τ) > 3, then

|Ŝm(τ)| ≤
∣∣∣∣∣∣
n(τ)−2∑
k=1

ŝk(τ)

∣∣∣∣∣∣+
∣∣ŝn(τ)−1(τ)

∣∣+ ∣∣ŝn(τ)(τ)
∣∣+

∣∣∣∣∣∣
m∑

k=n(τ)+1

ŝk(τ)

∣∣∣∣∣∣ ,
and, as above, we can easily obtain∣∣∣∣∣∣

n(τ)−2∑
k=1

ŝk(τ)

∣∣∣∣∣∣ ≤
n(τ)−2∑
k=1

2C2
b

ω
n(τ)−1

− ωk ≤ 2C2
bσn(τ)−1

and ∣∣∣∣∣∣
m∑

k=n(τ)+1

ŝk(τ)

∣∣∣∣∣∣ ≤ 2C2
bσn(τ).

Hence the following holds:

|Ŝm(τ)| ≤ 2C2
bσn(τ)−1 + 2TC2

b + 2C2
bσn(τ).(2.37)

The inequalities (2.33), (2.36), and (2.37), combined with the boundedness of the
sequence (1.24), imply (2.30). This completes the proof of (1.26). Hence the proof of
Proposition 1.3 is complete.

2.1.4. Proof of Proposition 1.4. We shall be concerned with the unbounded
case where b /∈ H. The other case can be proved by similar arguments. Let Ã denote
the (nonlinear) operator in V ×H defined by

Ã =

(
0 I
−A −f(〈b, .〉)b

)
,(2.38)

D(Ã) = {{y0, y1} ∈ V ×H / y1 ∈ V, Ay0 + f(〈b, y1〉)b ∈ H} .(2.39)

It is sufficient to see that Ã is densely defined and maximal dissipative [6]. Since the

functional b is not bounded on H, the space Ṽ defined by

Ṽ = {v ∈ V / 〈b, v〉 = 0}(2.40)
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is dense in H. Since D(Ã) ⊃ D(A)× Ṽ , D(Ã) is dense in V ×H. On the other hand,

the condition Range (I − Ã) = V ×H can be reduced to

Range (I +A+ f(〈b, .〉 b) = V ′.

The latter follows from the coercivity of A and the assumptions on f . Furthermore,
the monotonicity results from that of f. This completes the proof of Proposition
1.4.

2.2. Stabilization.

2.2.1. Proof of Theorem 1.5. (iii) ⇒ (i). Recall that, for {y0, y1} ∈ V ×H,
the strong ω-limit set of {y0, y1}, denoted by ω({y0, y1}), is the (possibly empty) set
given by those {ϕ0, ϕ1} ∈ V ×H such that there exists a sequence tn →∞ as n→∞
for which the solution of (1.13) satisfies

{y(tn), y′(tn)} → {ϕ0, ϕ1} (strongly) in V ×H as n→∞.
By the invariance principle of LaSalle and following the outline of [11], we can reduce
the proof to the following lemmas.

Lemma 2.2. Consider the operator defined by (2.38) and (2.39). Then D(Ã) is

compactly embedded in V ×H, and (I − Ã)−1 is compact from V ×H into itself.

Proof. As in the proof of Proposition 1.4, it is easy to see that (I − Ã)−1 maps

continuously V ×H onto D(Ã) and H × V ′ onto V ×H. Then we can conclude by
noting that V ×H is compactly embedded in H × V ′.

Lemma 2.3. Suppose that {y0, y1} ∈ D(Ã). Then ω({y0, y1}) is nonempty and

satisfies ω({y0, y1}) ⊂ D(A)× Ṽ .
Proof. From Lemma 2.2, ω({y0, y1}) is nonempty. On the other hand, it is

standard that, for all t ≥ 0, {y(t), y′(t)} ∈ D(Ã) and (see, for instance, [6, p. 54])

‖Ã {y(t), y′(t)} ‖V×H ≤ ‖Ã {y0, y1} ‖V×H(2.41)

so that, from the compactness of the embedding D(Ã) ⊂ V ×H, it is easy to see that

ω({y0, y1}) ⊂ D(Ã). Furthermore, from (2.41), we get, for all t ≥ 0,

‖y′(t)‖V ≤ ‖Ã {y0, y1} ‖V×H .(2.42)

Let us consider {ϕ0, ϕ1} ∈ ω({y0, y1}). Then there exists a sequence tn → ∞ as
n→∞ such that, as n→∞,

y′(tn)→ ϕ1 in H.(2.43)

From (2.42), we deduce that there exists a subsequence, still denoted by {tn}n, such
that, as n→∞,

y′(tn)→ ϕ1 weakly in V(2.44)

so that, as n→∞,

〈b, y′(tn)〉 f(〈b, y′(tn)〉)→ 〈b, ϕ1〉 f(〈b, ϕ1〉).(2.45)

On the other hand, we have, for all t > 0,

E(t)− E(0) +

∫ t

0

〈b, y′(s)〉 f(〈b, y′(s)〉)ds = 0.(2.46)
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Therefore,

lim
n→∞

∫ t+tn

tn

〈b, y′(s)〉 f(〈b, y′(s)〉)ds = lim
n→∞

∫ t

0

〈b, y′(s+ tn)〉 f(〈b, y′(s+ tn)〉)ds = 0.

Let us consider the solution of the equation{
ϕ′′(t) +Aϕ(t) + f( ddt 〈b, ϕ(t)〉)b = 0,

ϕ(0) = ϕ0, ϕ
′(0) = ϕ1.

(2.47)

Then the dominated convergence theorem gives∫ t

0

〈b, ϕ′(s)〉 f
(
d

ds
〈b, ϕ(s)〉

)
ds = 0 for all t > 0.

By continuity, this implies that

〈b, ϕ′(t)〉 f(〈b, ϕ′(t)〉) = 0 for all t ≥ 0.

Hence, by assumption (1.27), we get

〈b, ϕ′(t)〉 = 0 for all t ≥ 0.(2.48)

This completes the proof of the lemma.
(i)⇒ (ii). Suppose that condition (ii) is violated for some eigenvector ψ̃ associated

to the eigenvalue λ̃. Then y(t) = ei
√
λ̃tψ̃ is a constant energy solution of (1.28).

(ii)⇒ (iii). Suppose that, for {ϕ0, ϕ1} ∈ D(A)×V , we have a solution ϕ satisfying
(1.28). Then, for all t ≥ 0,∑

n

− ωn 〈ϕ0, ψn〉 〈b, ψn〉 sin(ωnt) +
∑
n

〈ϕ1, ψn〉 〈b, ψn〉 cos(ωnt) = 0.(2.49)

The proof can be reduced to the fact that (2.49) implies

ϕ0 = ϕ1 = 0.(2.50)

It is easy to see that the series in (2.49) is uniformly convergent in (−∞,∞). From the
uniqueness of the Fourier series expansion for almost periodic functions, we deduce
that (2.49) implies, for all n,

〈ϕ0, ψn〉 〈b, ψn〉 = 〈ϕ1, ψn〉 〈b, ψn〉 = 0.(2.51)

Thus condition (ii) gives (2.50).
The proof of Theorem 1.5 is complete.

2.2.2. Proof of Theorem 1.6. For y solution of (1.13) and every T > 0, the
following equality can be deduced by a density argument

E(T ) +

∫ T

0

d

dt
〈b, y(t)〉 f

(
d

dt
〈b, y(t)〉

)
dt = E(0).(2.52)

Let us consider the decomposition

y = ϕ+ ψ,(2.53)
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where ϕ is the solution of {
ϕ′′(t) +Aϕ(t) = 0,

ϕ(0) = y0, ϕ
′(0) = y1,

(2.54)

and ψ is determined by the problem{
ψ′′ +Aψ = −f( ddt 〈b, y(t)〉)b,

ψ(0) = ψ′(0) = 0.
(2.55)

Then we have, for T > 2π
δ [3],∫ T

0

∣∣∣∣ ddt 〈b, ϕ(t)〉
∣∣∣∣
2

dt ≥ CE(0)(2.56)

so that

E(T ) = −
∫ T

0

d

dt
〈b, y(t)〉 f

(
d

dt
〈b, y(t)〉

)
dt+ E(0)

≤ C
{∫ T

0

d

dt
〈b, y(t)〉 f

(
d

dt
〈b, y(t)〉

)
dt+

∫ T

0

∣∣∣∣ ddt 〈b, ϕ(t)〉
∣∣∣∣
2

dt

}
.

On the other hand, by applying (1.26) to system (2.55),∫ T

0

∣∣∣∣ ddt 〈b, ϕ(t)〉
∣∣∣∣
2

dt ≤ C
{∫ T

0

∣∣∣∣ ddt 〈b, ψ(t)〉
∣∣∣∣
2

dt+

∫ T

0

∣∣∣∣ ddt 〈b, y(t)〉
∣∣∣∣
2

dt

}

≤ C
{∫ T

0

∣∣∣∣f( ddt 〈b, y(t)〉)
∣∣∣∣
2

dt+

∫ T

0

∣∣∣∣ ddt 〈b, y(t)〉
∣∣∣∣
2

dt

}
.

Let us consider the decomposition [0, T ] = J1 ∪ J2 such that

J1 =

{
t ∈ [0, T ] /

∣∣∣∣ ddt 〈b, y(t)〉
∣∣∣∣ ≥ 1

}
, J2 =

{
t ∈ [0, T ] /

∣∣∣∣ ddt 〈b, y(t)〉
∣∣∣∣ < 1

}
.

Then, from (1.29), we get

∫
J1

∣∣∣∣f
(
d

dt
〈b, y(t)〉

)∣∣∣∣
2

dt+

∫
J1

∣∣∣∣ ddt 〈b, y(t)〉
∣∣∣∣
2

dt ≤ C
∫ T

0

f

(
d

dt
〈b, y(t)〉

)
d

dt
〈b, y(t)〉 dt.

The hypothesis (1.30) implies

∫
J2

∣∣∣∣f
(
d

dt
〈b, y(t)〉

)∣∣∣∣
2

dt +

∫
J2

∣∣∣∣ ddt 〈b, y(t)〉
∣∣∣∣
2

dt

≤
∫
J2

∣∣∣∣f
(
d

dt
〈b, y(t)〉

)∣∣∣∣
2

dt+

∫
J2

∣∣∣∣ ddt 〈b, y(t)〉
∣∣∣∣
2ρ

dt

≤
∫ T

0

ξ

(
f

(
d

dt
〈b, y(t)〉

)
d

dt
〈b, y(t)〉

)
dt.
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Applying Jensen’s inequality, we obtain

∫ T

0

ξ

(
f

(
d

dt
〈b, y(t)〉

)
d

dt
〈b, y(t)〉

)
dt ≤ Tξ

(
1

T

∫ T

0

f

(
d

dt
〈b, y(t)〉

)
d

dt
〈b, y(t)〉 dt

)
.

Therefore, for some positive constant C0, which will be the one introduced in the
theorem, we have

E(T ) ≤ C0

{∫ T

0

f

(
d

dt
〈b, y(t)〉

)
d

dt
〈b, y(t)〉 dt

+ ξ

(
1

T

∫ T

0

f

(
d

dt
〈b, y(t)〉

)
d

dt
〈b, y(t)〉 dt

)}

so that

E(T ) ≤ C0h(E(0)− E(T )),(2.57)

where h is the function given by (1.32). Then the function p (inverse of C0h) is
obviously increasing on [0,+∞), and (2.57) gives

E(T ) + p(E(T )) ≤ E(0).(2.58)

As the estimate above remains valid in successive intervals [kT, (k + 1)T ], we have

E((k + 1)T ) + p(E((k + 1)T )) ≤ E(kT ), k = 0, 1, 2, . . . .(2.59)

We now apply the result of Lemma 3.3 in [17].

Lemma 2.4 (see [17]). Let p denote a positive increasing function such that
p(0) = 0, and consider the function q(s) = s− (I + p)−1(s) and the sequence {sk}k of
positive numbers such that

p(sk+1) + sk+1 ≤ sk, k ≥ 0.(2.60)

Then sk ≤ S(k), where S(t) is the solution of

S′(t) + q(S(t)) = 0, S(0) = s0.(2.61)

Moreover, if p(s) > 0 for s > 0, then S(t)→ 0 as t→∞.
Thus applying the lemma to the sequence sk = E(kT ) yields

E(kT ) ≤ S(k), k = 0, 1, 2, . . . .(2.62)

For any t > 0, we may write t = kT + τ for some integer k and 0 ≤ τ < T so that

E(t) ≤ E(kT ) ≤ S(k) ≤ S
(
t− τ
T

)
≤ S

(
t

T
− 1

)
for t > T.

This completes the proof of Theorem 1.6.
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2.2.3. Proof of Theorem 1.7. We first construct a function which fulfills the
assumptions prescribed for ξ in Theorem 1.6. For |r| < 1, the assumptions (1.37) and
(1.38) give

|r|2β + |f(r)|2 ≤ c̃−
2β

α+1

f |rf(r)| 2β
α+1 + C̃2

f |r|2β ≤ c̃
− 2β

α+1

f (1 + C̃2
f ) |rf(r)|

2β
α+1 .(2.63)

Therefore, we can choose

ξ(s) = c̃
− 2β

α+1

f (1 + C̃2
f )s

2β
α+1 ,(2.64)

and we may define the functions h (which gives p) and q given by (1.32) and (1.36),
respectively. We conclude the proof by itemizing as follows.

(i) If α = β = 1, then p and q have the forms

p(s) = cps, q(s) = ωs

for some positive constants cp, ω. Then, for some positive constant C, we easily get
(1.39).

(ii) If α+1 > 2β, by setting γ = α+1
2β and noting that, for some positive constants

C1, C2, we have

p

(
C1s+ C2

( s
T

) 1
γ

)
= s,(2.65)

we obtain

p(s) ∼ Cpsγ (s→ 0)(2.66)

for some positive constant Cp. Furthermore, from q(s+ p(s)) = p(s), we get

q(s) ∼ Cqsγ (s→ 0)(2.67)

for some positive constant Cq. Then the estimate (1.40) can be deduced from the
following lemma, whose proof is given in the Appendix B.

Lemma 2.5. Let q denote a positive function such that

q(s) ∼ Cqsγ (s→ 0), γ > 1.(2.68)

Then the solution of the differential equation (2.61) satisfies

S(t) = O(t
1

1−γ ) (t→∞).(2.69)

This completes the proof of Theorem 1.7.
Remark 2.1. Under the assumption (1.31), it is easy to see that the solution

of (2.54) satisfies (2.56) if and only if the first inequality in (1.33) holds. In other
words, this condition is a characterization of the observability of the abstract sytem
(2.2) with the output

w(t) = 〈b, ϕ′(t)〉 .
Remark 2.2. In the case α = β = 1 and by adapting the results established in [2],

we can see that the first inequality in (1.33) is necessary for the exponential decrease
(1.39) to hold.
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2.2.4. Proof of Theorem 1.8. One of the ingredients of Theorem 1.8 is the
following lemma, whose proof is given in Appendix C.

Lemma 2.6. Under the assumptions of Theorem 1.8, the solution of (1.13) sat-
isfies ∥∥∥∥ ddt 〈b, y(.)〉

∥∥∥∥
2

L2(0,T )

≥ C(‖y0‖2V 1
2
−µ

+ ‖y1‖2D(Aµ)′)(2.70)

for some positive constant C.
By using (2.52) and (2.70), it is easy to see that

E(T ) ≤ E(0)− C(‖y0‖2V 1
2
−µ

+ ‖y1‖2D(Aµ)′).(2.71)

On the other hand, from the interpolation identities

V = D(A
1
2 ) = [D(A), V 1

2−µ] 1
1+2µ

, H = [D(A
1
2 ), D(Aµ)′] 1

1+2µ
,

we get the following interpolation inequalities [19, p. 23]:

‖y0‖ ≤ C ‖y0‖
2µ

1+2µ

D(A) ‖y0‖
1

1+2µ

V 1
2
−µ
,(2.72)

|y1| ≤ C ‖y1‖
2µ

1+2µ ‖y1‖
1

1+2µ

D(Aµ)′ .(2.73)

Then we obtain

‖y0‖2V 1
2
−µ
≥ C ‖y0‖

2(1+2µ)

‖y0‖4µD(A)

,(2.74)

‖y1‖2D(Aµ)′ ≥ C
|y1|2(1+2µ)

‖y1‖4µ
.(2.75)

Furthermore, it is easy to see that

‖y0‖2V 1
2
−µ

+ ‖y1‖2D(Aµ)′ ≥ C
{
‖y0‖2(1+2µ)

‖y0‖4µD(A)

+
|y1|2(1+2µ)

‖y1‖4µ
}

≥ C (E(0))1+2µ

(‖y0‖2D(A) + ‖y1‖2)2µ
.

Then the inequality (2.71), combined with the fact that E(t) is nonincreasing, gives

E(T ) ≤ E(0)− C (E(T ))1+2µ

(‖y0‖2D(A) + ‖y1‖2)2µ
.(2.76)

The estimate above remains valid in successive intervals [kT, (k + 1)T ] so that

E((k + 1)T ) ≤ E(kT )− C (E((k + 1)T ))1+2µ

(‖y(kT )‖2D(A) + ‖y′(kT )‖2)2µ
, k = 1, 2, . . . .(2.77)
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As {y(t), y′(t)} defines a (nonlinear) semigroup of contraction inD(A)×V , the relation
above gives [6, p. 54]

E((k + 1)T ) ≤ E(kT )− C (E((k + 1)T ))1+2µ

(‖y0‖2D(A) + ‖y1‖2)2µ
, k = 1, 2, . . . .(2.78)

Let us consider the function F (s) = s
‖y0‖2

D(A)+‖y1‖2 . Then relation (2.78) would read

F (E(k+1)T )) ≤ F (E(kT ))−C(F (E(k+1)T )))1+2µ. By using Lemmas 2.4 and 2.5,
we can easily deduce (1.42). This completes the proof of Theorem 1.8.

3. Applications.

3.1. Beam equation with internal pointwise actuator. Consider the sys-
tem (1.1)–(1.3). By the approach introduced in [14], one can obtain for this system
the following state-space equation (see [20] for details):

y′′ +
∂4y

∂x4
= u(t)δ(x− a), t > 0, 0 < x < 1,(3.1)

y(t, 0) =
∂2y

∂x2
(t, 0) =

∂y

∂x
(t, 1) =

∂3y

∂x3
(t, 1) = 0.(3.2)

This formulation has the form (1.8) if we set

H = L2(0, 1), V =

{
v ∈ H2(0, 1) / v(0) =

dv

dx
(1) = 0

}
,(3.3)

A =
d4

dx4
, D(A) =

{
v ∈ H4(0, 1) ∩ V /

d2v

dx2
(0) =

d3v

dx3
(1) = 0

}
,(3.4)

b = δ(x− a).(3.5)

The eigenvalues
{
λn = ω2

n

}
n
and the corresponding eigenfunctions {ψn}n are given

by

λn =
(
−π
2
+ nπ

)4

, n = 1, 2, . . . ,(3.6)

ψn(x) = sin
(
−π
2
+ nπ

)
x, n = 1, 2, . . . .(3.7)

On the other hand, the analogue of the feedback (1.11) is given by

u(t) = −f
(
d

dt
y(t, a)

)
.(3.8)

Theorem 1.7 can be adapted to obtain the following stabilization result.
Theorem 3.1. Let f be a monotone function satisfying the assumptions of The-

orem 1.7. Suppose that a is a rational number with coprime factorization

a =
a1

a2
(3.9)
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such that a1 is odd. Then, for any initial conditions {y0, y1} ∈ V × L2(0, 1), the
solution of the feedback system defined by (3.1), (3.2), and (3.8) satisfies, for some
positive constants ω, K, T ,∥∥∥∥∂2y(t, .)

∂x2

∥∥∥∥
2

L2(0,1)

+ ‖y′(t, .)‖2L2(0,1)

≤ K
{∥∥∥∥d2y0

dx2

∥∥∥∥
2

L2(0,1)

+ ‖y1‖2L2(0,1)

}
e−ωt for all t > T

(3.10)

if α = β = 1 and∥∥∥∥∂2y(t, .)

∂x2

∥∥∥∥
2

L2(0,1)

+ ‖y′(t, .)‖2L2(0,1) = O(t−
2β

α+1−2β ) (t→∞)(3.11)

if α+ 1 > 2β.
Proof. We have only to see that, for some positive constant c,∣∣∣sin(

−π
2
+ nπ

)
a
∣∣∣ ≥ c > 0 for all n.(3.12)

This result has been established in [20].

3.2. Beam equation with internal piezoelectric actuator. Consider the
system defined by (1.4) and (1.5). This system has the form (1.8) if we set

H = L2(0, 1), V = H2(0, 1) ∩H1
0 (0, 1),(3.13)

A =
d4

dx4
, D(A) =

{
v ∈ H4(0, 1) / v(0) =

d2v

dx2
(0) = v(1) =

d2v

dx2
(1) = 0

}
,(3.14)

b =
d

dx
(δ(x− a1)− δ(x− a2)).(3.15)

The eigenvalues
{
λn = ω2

n

}
n
and the corresponding eigenfunctions {ψn}n are given

by

λn = (nπ)4, n = 1, 2, . . . ,(3.16)

ψn(x) =
√
2 sinnπx, n = 1, 2, . . . .(3.17)

It is easy to see that b ∈ D(A
1
2 )′ and∣∣∣∣

〈
d

dx
(δ(x− a1)− δ(x− a2)), ψn

〉∣∣∣∣ = √2nπ |cosnπa1 − cosnπa2|

= 2
√
2nπ

∣∣∣∣sin
(
nπ

a1 + a2

2

)
sin

(
nπ

a1 − a2

2

)∣∣∣∣ ≤ Cλ 1
4
n .

From Corollary 1.2, we deduce that, for {y0, y1} ∈ H1
0 (0, 1)×H−1(0, 1), the solution

of (1.4) satisfies

y ∈ C(0, T ;D(A
1
4 ) = H1

0 (0, 1)) ∩ C1(0, T ;D(A
1
4 )′ = H−1(0, 1)).
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Furthermore, an easy application of Theorem 1.5 gives the following result.
Theorem 3.2. Let f be a monotone continuous function satisfying (1.27), and

consider the feedback

u(t) = −f
[
d

dt

(
∂y(t, a1)

∂x
− ∂y(t, a2)

∂x

)]
.(3.18)

Then, for any {y0, y1} ∈ D(A
1
2 )×L2(0, 1), the solution of the feedback system defined

by (1.4), (1.5), and (3.18) satisfies

y ∈ C(0, T ;D(A
1
2 ) = H2(0, 1) ∩H1

0 (0, 1)) ∩ C1(0, T ;L2(0, 1)).(3.19)

Moreover, limt→∞ ‖∂
2y(t,.)
∂x2 ‖2L2(0,1) + ‖y′(t, .)‖2L2(0,1) = 0 if and only if

a1 + a2

2
,
a1 − a2

2
∈ IR\IQ.(3.20)

In order to get decay estimates related to the position of the actuators, we shall
introduce some results from the theory of Diophantine approximations. Such results
have been used to derive observability results for parabolic systems in [22], exact
controllability properties for system (1.4) in [27], and decay estimate for strings and
beams in [15] and [1], respectively.

For a real number θ, we denote by |||θ||| the difference, taken positively, between
θ and the nearest integer, i.e.,

|||θ||| = min
n∈Z
|θ − z| .(3.21)

An irrational number θ ∈ (0, 1) is said to be of constant type if the sequence{θn}n,
defined by the expansion of θ as a continuous fraction, is bounded. From [16], we
quote the following result.

Proposition 3.3. An irrational number θ ∈ (0, 1) is of constant type if and only
if there exists a positive constant C such that

|||nθ||| ≥ C

n
, n = 1, 2, . . . .(3.22)

Furthermore, we shall use the following [7].
Proposition 3.4. For any ε > 0, there exists a set Bε ⊂ (0, 1) having the

Lebesgue measure equal to 1 and a positive constant C such that, for any θ ∈ Bε,

|||nθ||| ≥ C

n1+ε
, n = 1, 2, . . . .(3.23)

Remark 3.1. The property (3.22) is satisfied if θ is irrational and is a root of a
second degree polynomial with rational coefficients. The property (3.23) holds true if
θ is an algebraic irrational [7, p. 104].

Then we have the following stabilization result.
Theorem 3.5. Let f satisfy the assumptions of Theorem 1.8, and consider the

feedback given by

u(t) = −f
[
d

dt

(
∂(A−1y)

∂x
(t, a1)− ∂(A−1y)

∂x
(t, a2)

)]
.(3.24)
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Then, for any {y0, y1} ∈ L2(0, 1)×D(A
1
2 )′, the feedback system defined by (1.4) and

(3.24) admits a unique solution such that

y ∈ C(0, T ;L2(0, 1)) ∩ C1(0, T ;D(A
1
2 )′).(3.25)

Moreover, for any {y0, y1} ∈ D(A
1
2 )× L2(0, 1), we have

‖y(t, .)‖2L2(0,1) + ‖y′(t, .)‖2D(A
1
2 )′

= d(t){‖y(t, .)‖2
D(A

1
2 )

+ ‖y′(t, .)‖2L2(0,1)},(3.26)

where

d(t) = O(t−
2
3 ) (t→∞)(3.27)

if a1+a22 , a1−a22 are of constant type and

d(t) = O(t−
2

3+2ε ) (t→∞)(3.28)

if a1+a22 , a1−a22 ∈ Bε.
Proof. Suppose that {y0, y1} ∈ L2(0, 1)×D(A

1
2 )′, and consider

b̃ = A− 1
2
d

dx
(δ(x− a1)− δ(x− a2)) ∈ L2(0, 1)(3.29)

and the change of variables 


ỹ(t) = A− 1
2 y(t),

ỹ0 = A− 1
2 y0,

ỹ1 = A− 1
2 y1.

(3.30)

Then we have {ỹ0, ỹ1} ∈ D(A
1
2 )×L2(0, 1), and, by using Proposition 1.4, the feedback

system {
ỹ′′(t) +Aỹ(t) + f( ddt 〈̃b, ỹ(t)〉)̃b = 0,

ỹ(0) = ỹ0, ỹ
′(0) = ỹ1,

(3.31)

admits a unique solution satisfying the analogous regularity to the one given by (1.20).
This implies that the feedback system defined by (1.4) and (3.24) admits a unique
solution satisfying (3.25). Moreover, we have

|〈̃b, ψn〉| = 2
√
2

nπ

∣∣∣∣sin
(
nπ

a1 + a2

2

)
sin

(
nπ

a1 − a2

2

)∣∣∣∣ ≤ 2
√
2

π
for all n(3.32)

and, if a1+a22 and a1−a2
2 are of constant type,

|〈̃b, ψn〉| ≥ Cλ−
3
4

n for all n.(3.33)

Hence, under the assumption {y0, y1} ∈ D(A
1
2 )×L2(0, 1), we have {ỹ0, ỹ1} ∈ D(A)×

D(A
1
2 ) so that, by using Theorem 1.8, the solution of (3.31) satisfies{

‖ỹ(t)‖2
D(A

1
2 )

+ ‖ỹ′(t)‖2L2(0,1) = d(t){‖ỹ0‖2D(A) + ‖ỹ1‖2D(A
1
2 )
},

d(t) = O(t−
2
3 ) (t→∞).

(3.34)

This gives (3.26) and (3.27). The remaining part of the proof can be obtained by
similar arguments. This ends the proof of Theorem 3.5.
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3.3. Beam equation with concentrated actuator. Consider the system de-
fined by (1.6) with the boundary conditions (1.5). This system has the form (1.8)
by setting (3.13), (3.14), and b = g ∈ L2(0, 1). The appropriate eigenvalues and
the corresponding eigenfunctions are given by (3.16) and (3.17). Furthermore, it is

standard that, for any {y0, y1} ∈ D(A
1
2 )× L2(0, 1), there exists a unique solution to

(1.5)–(1.6) satisfying (3.19). On the other hand, applying Theorem 1.6, we can obtain
the following theorem.

Theorem 3.6. Let f be a monotone continuous function satisfying (1.27), and
consider the feedback

u(t) = −f
(∫ 1

0

g(x)y′(t, x)dx
)
.(3.35)

Then, for any {y0, y1} ∈ D(A
1
2 ) × L2(0, 1), the solution of the feedback system de-

fined by (1.5), (1.6), and (3.35) satisfies (3.19). Moreover, limt→∞ ‖∂
2y(t,.)
∂x2 ‖2L2(0,1) +

‖y′(t, .)‖2L2(0,1) = 0 if and only if

∫ 1

0

gψndx �= 0 for all n.(3.36)

Before stating a stabilization result which improves the theorem above, let us
mention the following regularity result.

Proposition 3.7. Suppose that, for some positive constant Cg,

|〈g, ψn〉| =
∣∣∣∣
∫ 1

0

gψndx

∣∣∣∣ ≤ Cg
n2

for all n.(3.37)

Then, for any {y0, y1} ∈ D(A) × D(A
1
2 ), the system (1.5)–(1.6) admits a unique

solution such that

y ∈ C(0, T ;D(A)) ∩ C1(0, T ;D(A
1
2 )).(3.38)

Proof. If we set

b̃ = A
1
2 g(3.39)

and consider the change of variables


ỹ(t) = A
1
2 y(t),

ỹ0 = A
1
2 y0,

ỹ1 = A
1
2 y1,

(3.40)

then b̃ ∈ D(A
1
2 )′, and, for some positive constant C̃g,

|〈̃b, ψn〉| ≤ C̃g for all n(3.41)

so that, by Proposition 1.1, we have

ỹ ∈ C(0, T ;D(A
1
2 )) ∩ C1(0, T ;L2(0, 1)).(3.42)

This yields (3.38).
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Then we have the following strong stabilization result.
Theorem 3.8. Let f be a monotone continuous function satisfying (1.27), and

consider the feedback

u(t) = −f
[
d

dt

(∫ 1

0

g(x)
∂4y(t, x)

∂x4
dx

)]
.(3.43)

Then, for any {y0, y1} ∈ D(A)×D(A
1
2 ), the feedback system defined by (1.5)–(1.6) and

(3.43) admits a unique solution satisfying (3.38). Moreover, limt→∞ ‖∂
4y(t,.)
∂x4 ‖2L2(0,1)+

‖∂2y′(t,.)
∂x2 ‖2L2(0,1) = 0 if and only if (3.36) holds.

Proof. Let us consider the change of variables defined by (3.40). Then the solution
of the feedback system{

ỹ′′(t) +Aỹ(t) + f( ddt 〈̃b, ỹ(t)〉)̃b = 0,

ỹ(0) = ỹ0, ỹ
′(0) = ỹ1,

(3.44)

satisfies (3.42). Moreover, limt→∞ ‖ỹ(t)‖2
D(A

1
2 )

+ ‖ỹ′(t)‖2L2(0,1) = 0 if and only if

〈̃b, ψn〉 = ωn

∫ 1

0

gψndx �= 0 for all n.(3.45)

This amounts to saying that there exists a unique solution to the feedback system
defined by (1.5), (1.6), and (3.43) and that this solution satisfies the stability of the
theorem if and only if (3.36) holds.

From Theorem 1.8, we can easily deduce the following nonuniform stabilization
result.

Theorem 3.9. Let f satisfy the assumptions of Theorem 1.8. Suppose that, for
some positive constant cg and some 1

2 < µ ≤ 4, we have

∣∣∣∣
∫ 1

0

gψndx

∣∣∣∣ ≥ cg
nµ

for all n.(3.46)

Then, for any {y0, y1} ∈ D(A) ×D(A
1
2 ), the solution of the feedback system defined

by (1.5), (1.6), and (3.35) satisfies

(3.47)




∥∥∥∂2y(t,.)
∂x2

∥∥∥2

L2(0,1)
+ ‖y′(t, .)‖2L2(0,1) = d(t)

{∥∥∥d4y0dx4

∥∥∥2

L2(0,1)
+

∥∥∥d2y1dx2

∥∥∥2

L2(0,1)

}
,

d(t) = O(t−
2
µ ) (t→∞).

Furthermore, Theorem 1.7 enables us to get uniform stabilization with explicit
decay estimate for the feedback system defined by (1.5), (1.6), and (3.43).

Theorem 3.10. Let f satisfy the assumptions of Theorem 1.7. Suppose that, for
some positive constants cg, Cg,

0 <
cg
n2
≤

∣∣∣∣
∫ 1

0

gψndx

∣∣∣∣ ≤ Cg
n2

for all n.(3.48)
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Then, for some positive constants ω, K, T and any {y0, y1} ∈ D(A) × D(A
1
2 ), the

solution of the feedback system defined by (1.5), (1.6), and (3.43) satisfies

(3.49)

∥∥∥∥∂4y(t, .)

∂x4

∥∥∥∥
2

L2(0,1)

+

∥∥∥∥∂2y′(t, .)
∂x2

∥∥∥∥
2

L2(0,1)

≤ K
{∥∥∥∥d4y0

dx4

∥∥∥∥
2

L2(0,1)

+

∥∥∥∥d2y1
dx2

∥∥∥∥
2

L2(0,1)

}
e−ωt

for all t > T

if α = β = 1 and

∥∥∥∥∂4y(t, .)

∂x4

∥∥∥∥
2

L2(0,1)

+

∥∥∥∥∂2y′(t, .)
∂x2

∥∥∥∥
2

L2(0,1)

= O(t−
2β

α+1−2β ) (t→∞)(3.50)

if α+ 1 > 2β.

4. Further extensions and related questions. As mentioned in the intro-
duction, our results deduced from the study of the abstract model may be applied
to various hyperbolic-like systems. To illustrate this, we shall consider the plate and
the membrane equations with point controls. In what follows, Ω will denote an open
bounded domain in IR2 with sufficiently smooth boundary Γ. For each operator A de-
fined in the examples below, we shall use the same notation relative to the eigenvalues
and the corresponding eigenfunctions introduced in subsection 1.3. Every eigenvalue
will be supposed simple. Here a is a given point in Ω.

4.1. Plate equation with internal point control. Consider the system


y′′ +∆2y = u(t)δ(x− a) in (0,∞)× Ω,

y = ∆y = 0 on (0,∞)× Γ,

y(0, x) = y0(x), y
′(0, x) = y1(x) in Ω.

(4.1)

This system has the form (1.8) if we set

A = ∆2, D(A) =
{
v ∈ H4(Ω) / y = ∆y = 0 on Γ

}
,(4.2)

H = L2(Ω), V = D(A
1
2 ) = H2(Ω) ∩H1

0 (Ω),(4.3)

b = δ(x− a) ∈ V ′.(4.4)

Then, for f satisfying the assumptions of Theorem 1.5 and any {y0, y1} ∈ H2(Ω) ∩
H1

0 (Ω)× L2(Ω), the solution of the feedback system defined by (4.1) and

u(t) = −f
(
d

dt
y(t, a)

)
(4.5)

satisfies limt→∞ ‖∆y(t, .)‖2L2(Ω) + ‖y′(t, .)‖2L2(Ω) = 0 if and only if

ψn(a) �= 0 for all n.(4.6)
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4.2. Wave equation with internal point control. Consider the system


y′′ −∆y = u(t)δ(x− a) in (0,∞)× Ω,

y = 0 on (0,∞)× Γ,

y(0, x) = y0(x), y
′(0, x) = y1(x) in Ω.

(4.7)

If we consider the setting defined by

A = −∆, D(A) = H2(Ω) ∩H1
0 (Ω),(4.8)

H = L2(Ω), V = D(A
1
2 ) = H1

0 (Ω),(4.9)

then we have δ(x− a) /∈ D(A
1
2 )′. Furthermore, we cannot readily apply the results of

subsection 1.3 since, from [18], [24], and [25], we have the following sharp regularity
result:

y ∈ C(0, T ;D(A
1
4 )) ∩ C1(0, T ;D(A

1
4 )′).

However, exploiting the fact that, for ε > 0 arbitrarily small, A−εδ(x− a) ∈ D(A
1
2 )′,

we can consider the change of variables


ỹ(t) = A−εy(t),

ỹ0 = A−εy0,

ỹ1 = A−εy1

(4.10)

and the auxiliary feedback system{
ỹ′′(t) +Aỹ(t) + f( ddt 〈̃b, ỹ(t)〉)̃b = 0,

ỹ(0) = ỹ0, ỹ
′(0) = ỹ1,

(4.11)

where b̃ = A−εδ(x − a). Then Theorem 1.5 may be applied to obtain that, for any

{y0, y1} ∈ D(A
1
2−ε) × D(Aε)′ and for f satisfying the assumptions of Theorem 1.5,

the feedback system defined by (4.7) and

u(t) = −f
(
d

dt

〈
A−εδ(x− a), A−εy(t)

〉)
(4.12)

admits a unique solution y ∈ C(0, T ;D(A
1
2−ε)) ∩ C1(0, T ;D(Aε)′). Moreover,

limt→∞ ‖y(t)‖2
D(A

1
2
−ε)

+ ‖y′(t)‖2D(Aε)′ = 0 if and only if the analogous condition to

(4.6) holds.

Appendix A.
Lemma A.1. For v ∈ L2(0, T ), consider

vk =

∫ T

0

v(t)e−iωktdt, 1 ≤ k ≤ m.(A.1)

Then, for any v ∈ L2(0, T ), we have

m∑
k=1

|vk|2 ≤ C ‖v‖2L2(0,T )(A.2)
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for some positive constant C independent of m.
Proof. For w = (w1, . . . , wm) ∈ IRm, we introduce

Wm(t) =

m∑
k=1

wke
iωkt.(A.3)

Then the following holds:∣∣∣∣∣
∫ T

0

v(t)Wm(t)dt

∣∣∣∣∣ =
∣∣∣∣∣
m∑
k=1

vkwk

∣∣∣∣∣ ≤ ‖v‖L2(0,T ) ‖Wm‖L2(0,T ) .

On the other hand, for some positive constant C independent of m, we have [3]

‖Wm‖2L2(0,T ) ≤ C
m∑
k=1

|wk|2 .

This yields (A.2).

Appendix B. Proof of Lemma 2.5. Let us consider the function

g(s) =

∫ ζ

s

dτ

q(τ)
, 0 < s < ζ.(B.1)

Then g is a decreasing function and g(ζ) = 0, g(0+) = +∞. Thus [0,+∞) is in the
range of g, and the solution of (2.61) is given by

X(t) = g−1(t), t ≥ 0.(B.2)

Since g(0+) = +∞,

lim
t→∞X(t) = lim

t→∞g
−1(t) = 0.

Let 0 < ε < 1. There exists δ(ε) > 0 such that, if 0 < s < δ(ε),

|q(s)− Cqsγ | < εCqs
γ .(B.3)

Moreover, there exists t0(ε) > 0 such that 0 < X(t) < δ(ε) for t ≥ t0(ε). Therefore, if
t ≥ t0(ε), we have

−q(X(t)) ≤ Cq(ε− 1)(X(t))γ .(B.4)

Hence

X ′(t) + Cq(1− ε)(X(t))γ ≤ 0, t ≥ t0(ε).(B.5)

This yields (2.69) and completes the proof of the lemma.

Appendix C. Proof of Lemma 2.6. Let us consider the decomposition defined
by (2.53), (2.54), and (2.55). Then the assumptions (1.31) and (1.41) give, for some
positive constant C [3],

∫ T

0

∣∣∣∣ ddt 〈b, ϕ(t)〉
∣∣∣∣
2

dt ≥ C(‖ϕ0‖2Vµ
+ ‖ϕ1‖2D(Aµ)′).(C.1)
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On the other hand, Proposition 1.3 implies∫ T

0

∣∣∣∣ ddt (〈b, ϕ(t)〉 − 〈b, y(t)〉)
∣∣∣∣
2

dt ≤ C
∫ T

0

∣∣∣∣ ddt 〈b, y(t)〉
∣∣∣∣
2

dt(C.2)

so that, for some positive constant C,∥∥∥∥ ddt 〈b, ϕ(.)〉
∥∥∥∥
L2(0,T )

≤ C
∥∥∥∥ ddt 〈b, y(.)〉

∥∥∥∥
L2(0,T )

.(C.3)

This yields (2.70).
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Abstract. We consider for the wave equation the inverse problem of identifying locations and
certain properties of the shapes of small conductivity inhomogeneities in a homogeneous background
medium from dynamic boundary measurements on part of the boundary and for a finite interval in
time. Using as weights particular background solutions constructed by a geometrical control method,
we develop an asymptotic method based on appropriate averaging of the partial dynamic boundary
measurements. Our approach is expected to lead to very effective computational identification algo-
rithms.

Key words. inverse problem, wave equation, reconstruction, geometric control
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1. The inverse initial boundary value problem. Let Ω be a bounded,
smooth subdomain of R2. For simplicity, we take ∂Ω to be C∞, but this condi-
tion could be considerably weakened. Let n denote the outward unit normal to ∂Ω.
We suppose that Ω contains a finite number of inhomogeneities, each of the form
zj + αBj , where Bj ⊂ R2 is a bounded, smooth domain containing the origin. The
total collection of inhomogeneities thus takes the form Bα = ∪mj=1(zj + αBj). The
points zj ∈ Ω, j = 1, . . . ,m that determine the location of the inhomogeneities are
assumed to satisfy

|zj − zl| ≥ d0 > 0 ∀ j 
= l and dist(zj , ∂Ω) ≥ d0 > 0 ∀ j.

As a consequence of this assumption, it follows immediately that m ≤ 4|Ω|
πd20
. We

also assume that α > 0, the common order of magnitude of the diameters of the
inhomogeneities, is sufficiently small so that these are disjoint and their distance to
R2 \Ω is larger than d0/2. Let γ0 denote the conductivity of the background medium;
for simplicity, we shall assume in this paper that it is constant. Let γj denote the
constant conductivity of the jth inhomogeneity, zj + αBj . Using this notation, we
introduce the piecewise constant conductivity

γα(x) =

{
γ0, x ∈ Ω \ Bα,
γj , x ∈ zj + αBj , j = 1, . . . ,m.
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Consider the initial boundary value problem for the (scalar) wave equation

(∂2
t − div γα grad)uα = 0 in Ω× (0, T ),

uα|t=0 = ϕ, ∂tuα|t=0 = ψ in Ω,

uα|∂Ω×(0,T ) = f.

(1)

Define u to be the solution of the wave equation in the absence of any inhomogeneities.
Thus u satisfies 


(∂2
t − γ0∆)u = 0 in Ω× (0, T ),

u|t=0 = ϕ, ∂tu|t=0 = ψ in Ω,

u|∂Ω×(0,T ) = f.

(2)

Here T > 0 is a final observation time, and the initial conditions ϕ,ψ ∈ C∞(Ω) and the
boundary condition f ∈ C∞(0, T ; C∞(∂Ω)) are subject to the compatibility conditions

∂2l
t f |t=0 = (γ0)

l(∆lϕ)|∂Ω and ∂
2l+1
t f |t=0 = (γ0)

l(∆lψ)|∂Ω, l = 1, 2, . . . .

From the above compatibility conditions on ϕ,ψ and f , it follows that the initial
boundary value problem (2) has a unique solution in C∞([0, T ] × Ω); see [14]. It is
also classical to prove that the transmission problem for the wave equation (1) has a
unique weak solution uα ∈ C0(0, T ;H1(Ω)) ∩ C1(0, T ;L2(Ω)); see, for example, [19].
Indeed, Lions proved in [19, Chapter VI, Theorem 4.1, p. 369] that ∂uα

∂n |∂Ω belongs
to L2(0, T ;L2(∂Ω)). His proof is based on an extension of the multiplier method.

Throughout this paper, we shall use quite standard L2-based Sobolev spaces to
measure regularity. The notation Hs is used to denote those functions which, along
with all their derivatives of order less than or equal to s, are in L2. H1

0 denotes the
closure of C∞0 in the norm of H1. Sobolev spaces with negative indices are in general
defined by duality, using an L2-inner product. We shall only need two such spaces,
namely, H−1, which is defined as the dual of H1

0 , and H−2, which is defined as the
dual of H2

0 that is the closure of C∞0 in the norm of H2.
Define νj to be the outward unit normal to ∂(zj + αBj) for j = 1, . . . ,m. Let

Γ ⊂ Ω be a given part of the boundary ∂Ω. The aim of this paper is to identify the
location and certain properties of the shapes of the inhomogeneities Bα from only
knowledge of boundary measurements of

∂uα
∂n

on Γ× (0, T ),

i.e., on the part Γ of the boundary ∂Ω and on the finite interval in time (0, T ). For
this purpose, we develop an asymptotic method based on appropriate averaging, using
particular background solutions as weights. These particular solutions are constructed
by a control method as was done in the original work [32].

The first fundamental step in the design of our reconstruction method is the
derivation of an asymptotic formula for ∂uα

∂νj
|∂(zj+αBj)+ in terms of the reference so-

lution u, the location zj of the imperfection zj + αBj , and the geometry of Bj . The
second step consists of the use of this asymptotic formula to derive integral boundary
formulae with a convenient choice of test functions, which is based on a geometrical
control method and solving Volterra-type integral equations. We expect that these
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boundary integral formulae will form the basis of very effective computational iden-
tifying algorithms. A similar approach may be applied to the full (time-dependent)
Maxwell equations with small inhomogeneities of different electric permittivity or
magnetic permeability (or both). This will be discussed in a forthcoming paper. The
elastodynamic inverse problem will also be considered.

Whereas the determination of conductivity profiles from knowledge of boundary
measurements has received a great deal of attention (see, for example, [1], [4], [9],
[12], [15], and [34]), the reconstruction of imperfections within dynamics is much less
investigated. To the best of our knowledge, the present paper is the first attempt to
design an effective method to determine the location and the size of small conductivity
imperfections inside a homogeneous medium from the dynamical measurements on
part of the boundary.

The inverse problem considered in this paper is more complicated from the math-
ematical point of view and more interesting in applications than the one solved in [4]
and [34] because, in many applications, one cannot get measurements for all t or on
the whole boundary, and so one cannot, by taking a Fourier transform in the time
variable, reduce our dynamic inverse problem to the inverse problem for the Helmholtz
equation considered in [4] and [34].

The general approach we will take to recuperate the locations and shapes of the
imperfections is to integrate the solution against special test functions. Our method
is quite similar to the ideas used (in the time-independent case) by Calderón [11] in
his proof of uniqueness of the linearized conductivity problem and later by Sylvester
and Uhlmann in their important work [29] on uniqueness of the three-dimensional
inverse conductivity problem (see Nachman [21] for the two-dimensional problem). It
is also closely related to ideas used by Yamamoto in his original work [32] on inverse
source hyperbolic problems and by Rakesh and Symes [27]. For discussions on other
interesting inverse source hyperbolic problems, the reader is referred, for example, to
Isakov [17], Belishev and Kurylev [8], Romanov and Kabanikhin [28], Yamamoto [31],
[33], Puel and Yamamoto [23], [24], [25], [26], Grasselli and Yamamoto [16], Bruckner
and Yamamoto [10], Nicaise [22], and Sun [30].

2. An energy estimate. We start the derivation of the asymptotic formula for
∂uα

∂νj
|∂(zj+αBj)+ with the following energy estimate of uα − u.

Proposition 2.1. There exist constants 0 < α0 and C such that, for 0 < α < α0,
the following energy estimate holds:

||∂t(uα − u)||L∞(0,T ;H−1(Ω)) + ||uα − u||L∞(0,T ;L2(Ω)) ≤ Cα.(3)

The constants α0 and C depend on the domains {Bj}mj=1, the domain Ω, d0, T , γ0,
{γj}mj=1, the data ϕ,ψ, and f but are otherwise independent of the points {zj}mj=1.

Proof. Since uα − u ∈ H1
0 (Ω), we have, for any v ∈ H1

0 (Ω),

∫
Ω

∂2
t (uα−u)v+

∫
Ω

γα grad(uα−u) ·grad v =
m∑
j=1

(γ0−γj)
∫
zj+αBj

gradu ·grad v.(4)

Let vα be defined by {
vα ∈ H1

0 (Ω),

div γα grad vα = ∂t(uα − u) in Ω.
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Then∫
Ω

γα grad(uα − u) · grad vα = −
∫

Ω

∂t(uα − u)(uα − u) = −1
2
∂t

∫
Ω

(uα − u)2

and ∫
Ω

∂2
t (uα − u)vα =

∫
Ω

div γα grad ∂tvα vα

= −
∫

Ω

γα grad ∂tvα · grad vα

= −1
2
∂t

∫
Ω

γα| grad vα|2.

Thus it follows that

∂t

∫
Ω

γα| grad vα|2 + ∂t

∫
Ω

(uα − u)2 = −2
m∑
j=1

(γ0 − γj)

∫
zj+αBj

gradu · grad vα.

Next ∣∣∣∣∣∣
m∑
j=1

(γ0 − γj)

∫
zj+αBj

gradu · grad vα

∣∣∣∣∣∣ ≤ C|| gradu||L2(Bα)|| grad vα||L2(Ω).

Since u ∈ C∞([0, T ]× Ω), we have

|| gradu||L2(Bα) ≤ || gradu||L∞(Bα)α


 m∑
j=1

|Bj |



1
2

≤ Cα,

which gives ∣∣∣∣∣∣
m∑
j=1

(γ0 − γj)

∫
zj+αBj

gradu · grad vα

∣∣∣∣∣∣ ≤ Cα|| grad vα||L2(Ω),

and so

∂t

∫
Ω

γα| grad vα|2 + ∂t

∫
Ω

(uα − u)2 ≤ Cα

(∫
Ω

γα| grad vα|2 +
∫

Ω

(uα − u)2
)1/2

.

From the Gronwall lemma, it follows that(∫
Ω

γα| grad vα|2
)1/2

+

(∫
Ω

(uα − u)2
)1/2

≤ Cα.

Combining this last estimate with the fact that

||∂t(uα − u)||L∞(0,T ;H−1(Ω)) ≤ C|| grad vα||L∞(0,T ;L2(Ω)),

we obtain the desired estimate (3). We remark that, taking (at least formally) v =
∂t(uα − u) in (4), we arrive at

∂t

∫
Ω

[|∂t(uα − u)|2 + γα| grad(uα − u)|2] = 2 m∑
j=1

(γ0−γj)
∫
zj+αBj

gradu·grad ∂t(uα−u).



1198 HABIB AMMARI

Using now the regularity of u in Ω and estimate (3) given above, we see that∣∣∣∣∣∣
m∑
j=1

(γ0 − γj)

∫
zj+αBj

gradu · grad ∂t(uα − u)

∣∣∣∣∣∣ ≤ C|| gradu||H2(Bα)||∂t(uα − u)||H−1(Ω)

≤ Cα2,

where C is independent of t and α, and so we obtain

∂t

∫
Ω

[|∂t(uα − u)|2 + γα| grad(uα − u)|2] ≤ Cα2,

which yields the estimate

||∂t(uα − u)||L∞(0,T ;L2(Ω)) + ||uα − u||L∞(0,T ;H1
0 (Ω)) ≤ Cα,

where C is independent of α and the points {zj}mj=1.

3. An asymptotic formula. Before formulating the main result of this section,
we need to introduce some additional notation. For any 1 ≤ j ≤ m, let Φj denote the
vector-valued solution to 



∆Φj = 0 in Bj , and R
2 \Bj ,

Φj is continuous across ∂Bj ,

γ0

γj

∂Φj
∂νj

∣∣∣∣+ − ∂Φj
∂νj

∣∣∣∣
−
= −νj ,

lim
|y|→+∞

|Φj(y)| = 0.

(5)

The existence and uniqueness of this Φj can be established using single layer potentials
with suitably chosen densities; see [12]. In terms of this function, we are able to prove
the following result about the asymptotic behavior of ∂uα

∂νj
|∂(zj+αBj)+ .

Proposition 3.1. For y ∈ ∂Bj, we have, in the weak sense,

∂uα
∂νj
|∂(zj+αBj)+(zj + αy, t) =

[
νj +

(
γ0

γj
− 1
)
∂Φj
∂νj
|+(y)

]
· gradu(zj , t) + o(1).(6)

The term o(1) depends on the shapes of the domains {Bj}mj=1 and Ω, the constants
d0, T , γ0, {γj}mj=1, the data ϕ,ψ, and f but is otherwise independent of the points
{zj}mj=1.

For simplicity, let us restrict our attention to the case of a single inhomogeneity,
i.e., the case m = 1. The proof, for any fixed number m of well-separated inhomo-
geneities, follows by iteration of the argument that we will present for the case m = 1.
In order to further simplify notation, we assume that the single inhomogeneity has the
form αB; that is, we assume it is centered at the origin. We denote the conductivity
inside αB by γ∗ and define Φ∗ to be the same as Φj , defined in (5), but with Bj and
γj replaced by B and γ∗, respectively. Define ν to be the outward unit normal to ∂B.
Let Uα = graduα(x, t) and U0 = gradu(x, t) in Ω× (0, T ).

We start with a formal derivation of the asymptotic formula (6). Following a
common practice in multiscale expansions, we introduce the local variable y = x

α .
We expect that Uα(x, t) will differ appreciably from U0(x, t) for x near the origin,
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but it will differ little from U0(x, t) for x far from the origin. Therefore, in the
spirit of matched asymptotic expansions, we shall represent Uα(x, t) by two different
expansions: an inner expansion for x near the origin and an outer expansion for x far
from the origin. The outer expansion must begin with U0, so we write

Uα(x, t) = U0(x, t)+β1(α)U1(x, t)+β2(α)U2(x, t)+ · · · for |x| >> O(α), t ∈ (0, T ),
where the gauge functions β1(α), β2(α), . . . and the functions U1, U2, . . . are to be
found. We write the inner expansion as

Uα(zj+αy, t) = V0(y, t)+µ1(α)V1(y, t)+µ2(α)V2(y, t)+· · · for |y| = O(1), t ∈ (0, T ),
where the gauge functions µ1(α), µ2(α), . . . and the functions V0, V1, V2, . . . are to
be found. Here the gauge functions βi(α) and µi(α) satisfy βi(α) >> βi+1(α) and
µi(α) >> µi+1(α) as α tends to 0.

The inner and outer expansions must be asymptotically equal in some overlap
domain within which the stretched variable |y| is large and |x| is small. In this
domain, the matching condition is

U0(x, t) + β1(α)U1(x, t) + · · · ∼ V0(y, t) + µ1(α)V1(y, t) + · · · .
From the terms of order α0, we obtain the first matching condition

V0(y, t)→ U0(0, t) as |y| → +∞ (for t ∈ (0, T )).
Since

∂2
t uα − div γαUα = 0 and curl Uα = 0,(7)

by substituting the inner and outer expansions into these equations and formally
equating coefficients of α−1, we get

curl yV0 = 0, div yγ(y)V0 = 0 in R
2,

where

γ(y) =

{
γ0 in R

2 \B,
γ∗ in B.

Therefore,

V0(y) = grad

((
γ0

γ∗
− 1
)
Φ∗(y) + y

)
· gradu(0, t),

and so, by multiplying by νj , we arrive at

∂uα
∂ν

∣∣∣∣∂(αB)+(αy, t) = ν · gradu(0, t) +
(
γ0

γ∗
− 1
)
∂Φ∗
∂ν

∣∣∣∣
+

(y) · gradu(0, t) + o(1).(8)

In the case ofm (well-separated) inhomogeneities zj+αBj , j = 1, . . . ,m, we (formally)
obtain from (8) that the following asymptotic formula holds for any y ∈ ∂Bj :
∂uα
∂νj

∣∣∣∣∂(zj+αBj)+(zj + αy, t) = νj · gradu(zj , t) +
(
γ0

γj
− 1
)
∂Φj
∂νj

∣∣∣∣
+

(y)·gradu(zj , t)+o(1).
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Proof of Proposition 3.1. Let θ be given in C∞0 (]0, T [). For any function v ∈
L1(0, T ;L2(Ω)), we define

v̂(x) =

∫ T

0

v(x, t) θ(t) dt ∈ L2(Ω).

We remark that ∂̂tv(x) = −
∫ T
0
v(x, t)θ′(t) dt. So we deduce from (7) that Ûα satisfies


div γαÛα =

∫ T

0

uα θ
′′(t) dt in Ω,

curl Ûα = 0 in Ω.

Analogously, Û0 =
∫ T
0
U0(x, t) θ(t) dt satisfies


γ0 div Û0 =

∫ T

0

u θ′′(t) dt in Ω,

curl Û0 = 0 in Ω.

Indeed, we have Ûα × n = Û0 × n = grad∂Ω f̂ × n on the boundary ∂Ω, where grad∂Ω

is the tangential gradient. Following [6], we introduce q∗α as the unique solution to
the following problem:



∆q∗α = 0 in Ω̃ =

(
Ω

α

)∖
B and in B,

q∗α is continuous across ∂B,

γ0
∂q∗α
∂ν

∣∣∣∣+ − γ∗
∂q∗α
∂ν

∣∣∣∣
−
= −(γ0 − γ∗)Û0(αy) · ν on ∂B,

q∗α = 0 on ∂Ω̃.

The jump condition

γ0
∂q∗α
∂ν

∣∣∣∣+ − γ∗
∂q∗α
∂ν

∣∣∣∣
−
= −(γ0 − γ∗)Û0(αy) · ν on ∂B

guarantees that Ûα(x)− Û0(x)− grady q∗α( xα ) belongs to the functional space

Zα(Ω) = {v ∈ L2(Ω), div (γαv) ∈ L2(Ω), curl v ∈ L2(Ω), v × n = 0 on ∂Ω}.
Since 



div γα

(
Ûα − Û0 − grady q∗α

(x
α

))

=

∫ T

0

[
uα − χ(Ω \ αB)u− γ∗

γ0
χ(αB)u

]
θ′′(t) dt in Ω,

curl
(
Ûα − Û0 − grady q∗α

(x
α

))
= 0 in Ω,

(
Ûα − Û0 − grady q∗α

(x
α

))
× n = 0 on ∂Ω,

(9)
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where χ(ω) is the characteristic function of the domain ω, we arrive, as a consequence
of the energy estimate (3), at the following:



(
Ûα − Û0 − grady q∗α

(x
α

))
∈ Zα(Ω),

div γα

(
Ûα − Û0 − grady q∗α

(x
α

))
= 0(α) in Ω,

curl
(
Ûα − Û0 − grady q∗α

(x
α

))
= 0 in Ω,

(
Ûα − Û0 − grady q∗α

(x
α

))
× n = 0 on ∂Ω.

From [6], we know that this yields the estimate∥∥∥ div γα (Ûα − Û0 − grady q∗α
(x
α

))∥∥∥
L2(Ω)

+
∥∥∥Ûα − Û0 − grady q∗α

(x
α

)∥∥∥
L2(Ω)

≤ Cα,

and so (
Ûα − Û0 − grady q∗α

(x
α

))
· ν|+ = 0(α) on ∂(αB).

Let q∗ be the unique (scalar) solution to


∆q∗ = 0 in R2 \B and in B,
q∗ is continuous across ∂B,

γ0
∂q∗
∂ν

∣∣∣∣+ − γ∗
∂q∗
∂ν

∣∣∣∣
−
= −(γ0 − γ∗)Û0(0) · ν on ∂B,

lim
|y|→+∞

q∗ = 0.

From [12, Theorem 1], it follows that∥∥∥(grady q∗ − grady q∗α)(xα
)∥∥∥

L2(Ω)
≤ Cα1/2,

which yields (
Ûα − Û0 − grady q∗

(x
α

))
· ν = o(1) on ∂(αB).

Writing q∗ in terms of Φ∗ gives∫ T

0

[
∂uα
∂ν

∣∣∣∣∂(αB)+(αy)− ν · gradu(0, t)−
(
γ0

γ∗
− 1
)
∂Φ∗
∂ν

∣∣∣∣
+

(y) · gradu(0, t)
]
θ(t) dt = o(1)

for any θ ∈ C∞0 (]0, T [). In view of (9), the remainder o(1) in the above asymptotic
formula is bounded by Cα||θ||H2(0,T ), where the constant Cα is independent of θ and
goes to zero as α→ 0. Therefore,

∂uα
∂ν

∣∣∣∣∂(αB)+(αy)− ν · gradu(0, t)−
(
γ0

γ∗
− 1
)
∂Φ∗
∂ν

∣∣∣∣
+

(y) · gradu(0, t) = o(1)

holds in a weak sense, and so, by iterating the same argument for the case of m
(well-separated) inhomogeneities zj + αBj , j = 1, . . . ,m, we arrive at the promised
asymptotic formula (6).
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4. The identification procedure. Let β(x) ∈ C∞0 (Ω) be a cutoff function such
that β(x) ≡ 1 in a subdomain Ω′ of Ω that contains the inhomogeneities Bα. For an
arbitrary η ∈ R2, we assume that we are in possession of the boundary measurements
of

∂uα
∂n

on Γ× (0, T )

for

ϕ(x) = ϕη(x) = eiη·x, ψ(x) = ψη(x) = −i√γ0|η|eiη·x
and f(x, t) = fη(x, t) = eiη·x−i

√
γ0|η|t.

This particular choice of data ϕ,ψ, and f implies that the background solution u of
the wave equation (2) in the absence of any inhomogeneity is given by

u(x, t) = uη(x, t) = eiη·x−i
√
γ0|η|t in Ω× (0, T ).

Suppose that T and the part Γ of the boundary ∂Ω are such that they geomet-
rically control Ω, which roughly means that every geometrical optic ray, starting at
any point x ∈ Ω at time t = 0, hits Γ before time T at a nondiffractive point; see [7].
Then, from [19, Theorem 6.4, p. 75] and [7], it follows that, for any η ∈ R2, we can
construct by the Hilbert uniqueness method a unique gη ∈ H1

0 (0, T ;L
2(Γ)) in such

a way that the unique weak solution wη in C0(0, T ;L2(Ω)) ∩ C1(0, T ;H−1(Ω)) of the
wave equation 



(∂2
t − γ0∆)wη = 0 in Ω× (0, T ),

wη|t=0 = β(x)eiη·x ∈ H1
0 (Ω),

∂twη|t=0 = 0 in Ω,

wη|Γ×(0,T ) = gη,

wη|∂Ω\Γ×(0,T ) = 0,

(10)

satisfies wη(T ) = ∂twη(T ) = 0. Let vα,η ∈ C0(0, T ;L2(Ω)) ∩ C1(0, T ;H−1(Ω)) be
defined by


(∂2
t − γ0∆)vα,η = 0 in Ω× (0, T ),

vα,η|t=0 = 0 in Ω,

∂tvα,η|t=0 =

m∑
j=1

i

(
1− γ0

γj

)
η ·
(
νj +

(
γ0

γj
− 1
)
∂Φj
∂νj
|+
)
eiη·zjδ∂(zj+αBj) in Ω,

vα,η|∂Ω×(0,T ) = 0.

Since
∂Φj

∂νj
|+(y)δ∂(zj+αBj) ∈ H−1(Ω) for j = 1, . . . ,m, the existence and uniqueness of

a solution vα,η can be established by transposition; see [20] and [19, Theorem 4.2, p.

46]. Indeed, we can prove that
∂vα,η

∂n |Γ ∈ H−1(0, T ;L2(Γ)). To do so, let θ be defined
as

θ ∈ H1

0 (Ω),

γ0∆θ =

m∑
j=1

i

(
1− γ0

γj

)
η ·
(
νj +

(
γ0

γj
− 1
)
∂Φj
∂νj
|+
)
eiη·zjδ∂(zj+αBj) ∈ H−1(Ω) in Ω,
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and introduce

z(x, t) =

∫ t

0

vα,η(x, s) ds+ θ(x) ∈ L2(Ω).

It is easy to see that z satisfies the initial boundary value problem

(∂2
t − γ0∆)z = 0 in Ω,

z|t=0 = θ ∈ H1
0 (Ω), ∂tz|t=0 = 0 in Ω,

z|∂Ω×(0,T ) = 0.

Classical regularity results (see [19, Theorem 4.1, p. 44]) yield

∂z

∂n
|Γ ∈ L2(0, T ;L2(Γ)),

and so
∂vα,η

∂n |Γ = ∂t(
∂z
∂n |Γ) ∈ H−1(0, T ;L2(Γ)).

The following holds.
Proposition 4.1. Suppose that Γ and T geometrically control Ω. For any η ∈

R2, we have

α

m∑
j=1

i

(
1− γ0

γj

)
e2iη·zjη ·

∫
∂Bj

(
νj +

(
γ0

γj
− 1
)
∂Φj
∂νj
|+(y)

)
eiαη·y dsj(y)

= −γ0

∫ T

0

∫
Γ

gη
∂vα,η
∂n

.

Here
∫ T
0

∫
Γ
gη

∂vα,η

∂n is in the sense of the duality pairing between H1
0 (0, T ) and

H−1(0, T ). Proposition 4.1 is obtained by multiplying (∂2
t − γ0∆)vα,η = 0 by wη and

integrating by parts over (0, T )× Ω. In fact, we have

−γ0

∫ T

0

∫
Γ

gη
∂vα,η
∂n

= α
m∑
j=1

i

(
1− γ0

γj

)
eiη·zjη

·
∫

Ω

(
νj +

(
γ0

γj
− 1
)
∂Φj
∂νj
|+
(
x− zj
α

))
δ∂(zj+αBj)e

iη·xβ(x) dx,

where the integral on the right-hand side is in the sense of the duality pairing between
H1

0 (Ω) and H
−1(Ω). Thus

−γ0

∫ T

0

∫
Γ

gη
∂vα,η
∂n

= α
m∑
j=1

i

(
1− γ0

γj

)
eiη·zjη

·
∫
∂(zj+αBj)

(
νj +

(
γ0

γj
− 1
)
∂Φj
∂νj
|+
(
x− zj
α

))
eiη·x dsj(x)

since β(x) ≡ 1 in a subdomain Ω′ of Ω that contains the inhomogeneities Bα. By a
change of variables, the above identity leads to the desired formula.

Taking now Taylor expansion of eiαη·y and having in mind that [12]∫
∂Bj

(
νj +

(
γ0

γj
− 1
)
∂Φj
∂νj
|+(y)

)
dsj(y) = 0,
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we obtain the more convenient asymptotic formula.
Proposition 4.2. Suppose that Γ and T geometrically control Ω. For any η ∈

R2, we have

α2
m∑
j=1

(
1− γ0

γj

)
e2iη·zjη ·

∫
∂Bj

(
νj +

(
γ0

γj
− 1
)
∂Φj
∂νj
|+(y)

)
η · y dsj(y)

= γ0

∫ T

0

∫
Γ

gη
∂vα,η
∂n

+ o(α2).

Next, for any η ∈ R2, let θη denote the solution to the Volterra equation of the
second kind:


∂tθη(x, t) +

∫ T

t

e−i
√
γ0|η|(s−t)(θη(x, s)− i

√
γ0|η|∂tθη(x, s)) ds = gη(x, t)

for x ∈ Γ, t ∈ (0, T ),
θη(x, 0) = 0 for x ∈ Γ.

(11)

The existence and uniqueness of this θη in H1(0, T ;L2(Γ)) for any η ∈ R2 can be
established using the resolvent kernel. Since gη ∈ H1

0 (0, T ;L
2(Γ)), the solution θη be-

longs, in fact, to H2(0, T ;L2(Γ)). Note that it was Yamamoto [32] who first conceived
the idea of using such a Volterra equation to apply the geometrical control for solving
inverse source problems. We also note from differentiation of (11) with respect to t
that θη is the unique solution of the ODE{

∂2
t θη − θη = ei

√
γ0|η|t∂t(e−i

√
γ0|η|tgη) for x ∈ Γ, t ∈ (0, T ),

θη(x, 0) = 0, ∂tθη(x, T ) = 0 for x ∈ Γ.(12)

Therefore, the function θη may be found in practice explicitly with variation of
parameters. It also immediately follows from this observation that θη belongs to
H2(0, T ;L2(Γ)) since gη ∈ H1

0 (0, T ;L
2(Γ)).

To identify the locations and certain properties of the small inhomogeneities Bα,
let us view the averaging of the boundary measurements ∂uα

∂n |Γ×(0,T ), using the solu-
tion θη to the Volterra equation (11) or, equivalently, the ODE (12) as a function of
η. The following holds.

Theorem 4.3. Let η ∈ R2. Let uα be the unique solution in C0(0, T ;H1(Ω)) ∩
C1(0, T ;L2(Ω)) to the wave equation (1) with

ϕ(x) = eiη·x, ψ(x) = −i√γ0|η|eiη·x, and f(x, t) = eiη·x−i
√
γ0|η|t.

Suppose that Γ and T geometrically control Ω; then we have

∫ T

0

∫
Γ

[
θη

(
∂uα
∂n
− ∂u

∂n

)
+ ∂tθη∂t

(
∂uα
∂n
− ∂u

∂n

)]

= −
∫ T

0

∫
Γ

ei
√
γ0|η|t∂t(e−i

√
γ0|η|tgη)

(
∂uα
∂n
− ∂u

∂n

)

= α2
m∑
j=1

(
γ0

γj
− 1
)
e2iη·zj

[
Mj(η) · η − |η|2|Bj |

]
+ o(α2),

(13)
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where θη is the unique solution to the ODE (12), with gη defined as the boundary
control in (10), and Mj is the polarization tensor of Bj, defined by

(Mj)k,l = ek ·
(∫

∂Bj

(
νj +

(
γ0

γj
− 1
)
∂Φj
∂νj
|+(y)

)
y · el dsj(y)

)
.(14)

Here (e1, e2) is an orthonormal basis of R2.
Proof. The first identity in (13) follows from integration by parts and use of the

fact that θη is the solution to the ODE (12).

From ∂tθη(T ) = 0 and (
∂uα

∂n − ∂u
∂n )|t=0 = 0, the term

∫ T
0

∫
Γ
∂tθη∂t(

∂uα

∂n − ∂u
∂n ) has

to be interpreted as follows:∫ T

0

∫
Γ

∂tθη∂t

(
∂uα
∂n
− ∂u

∂n

)
= −

∫ T

0

∫
Γ

∂2
t θη

(
∂uα
∂n
− ∂u

∂n

)
.(15)

Next, introducing

ũα,η(x, t) = u(x, t)− γ0

∫ t

0

e−i
√
γ0|η|svα,η(x, t− s) ds, x ∈ Ω, t ∈ (0, T ),

we rewrite∫ T

0

∫
Γ

[
θη

(
∂uα
∂n
− ∂u

∂n

)
+ ∂tθη∂t

(
∂uα
∂n
− ∂u

∂n

)]

=

∫ T

0

∫
Γ

[
θη

(
∂uα
∂n
− ∂ũα,η

∂n

)
+ ∂tθη∂t

(
∂uα
∂n
− ∂ũα,η

∂n

)]

−γ0

∫ T

0

∫
Γ

[
θη

∫ t

0

e−i
√
γ0|η|s ∂vα,η

∂n
(x, t− s) ds+ ∂tθη∂t

∫ t

0

e−i
√
γ0|η|s ∂vα,η

∂n
(x, t− s) ds

]
.

Since θη satisfies the Volterra equation (11) and

∂t

(∫ t

0

e−i
√
γ0|η|s ∂vα,η

∂n
(x, t− s) ds

)
= ∂t

(
e−i

√
γ0|η|t

∫ t

0

ei
√
γ0|η|s ∂vα,η

∂n
(x, s) ds

)

= −i√γ0|η|e−i
√
γ0|η|t

∫ t

0

ei
√
γ0|η|s ∂vα,η

∂n
(x, s) ds+

∂vα,η
∂n

(x, t),

we obtain by integrating by parts over (0, T ) that∫ T

0

∫
Γ

[
θη

∫ t

0

e−i
√
γ0|η|s ∂vα,η

∂n
(x, t− s) ds+ ∂tθη∂t

∫ t

0

e−i
√
γ0|η|s ∂vα,η

∂n
(x, t− s) ds

]

=

∫ T

0

∫
Γ

∂vα,η
∂n

(x, t)

(
∂tθη +

∫ T

t

θη(s)e
i
√
γ0|η|(t−s) ds

)

−i√γ0|η|(e−i
√
γ0|η|t∂tθη(t))

∫ t

0

ei
√
γ0|η|s ∂vα,η

∂n
(x, s) ds dt

=

∫ T

0

∫
Γ

∂vα,η
∂n

(x, t)

(
∂tθη +

∫ T

t

(θη(s)− i
√
γ0|η|∂tθη(s))ei

√
γ0|η|(t−s) ds

)
dt

=

∫ T

0

∫
Γ

gη(x, t)
∂vα,η
∂n

(x, t) dt,
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and so, from Proposition 4.2, we obtain that

∫ T

0

∫
Γ

[
θη

(
∂uα
∂n
− ∂u

∂n

)
+ ∂tθη∂t

(
∂uα
∂n
− ∂u

∂n

)]

= −α2
m∑
j=1

(
1− γ0

γj

)
e2iη·zjη ·

∫
∂Bj

(
νj +

(
γ0

γj
− 1
)
∂Φj
∂νj
|+(y)

)
η · y dsj(y)

+

∫ T

0

∫
Γ

[
θη

(
∂uα
∂n
− ∂ũα,η

∂n

)
+ ∂tθη∂t

(
∂uα
∂n
− ∂ũα,η

∂n

)]
+ o(α2).

(16)

In order to prove Theorem 4.1, it suffices then to find the leading order term in the
asymptotic expansion of

∫ T

0

∫
Γ

[
θη

(
∂uα
∂n
− ∂ũα,η

∂n

)
+ ∂tθη∂t

(
∂uα
∂n
− ∂ũα,η

∂n

)]
.

Let hα,η ∈ C0(0, T ;H1
0 (Ω)) ∩ C1(0, T ;L2(Ω)) be the solution to




(∂2
t − γ0∆)hα,η = 0 in Ω× (0, T ),

hα,η|t=0 = 0 in Ω,

∂thα,η|t=0 = −γ0|η|2
m∑
j=1

(
1− γ0

γj

)
eiη·xχ(zj + αBj) in Ω,

hα,η|∂Ω×(0,T ) = 0,

where χ(zj +αBj) denotes the characteristic function of the inhomogeneity zj +αBj .
Since




(∂2
t − γ0∆)

(∫ t

0

e−i
√
γ0|η|svα,η(x, t− s) ds

)

=

m∑
j=1

i

(
1− γ0

γj

)
η ·
(
νj +

(
γ0

γj
− 1
)
∂Φj
∂νj
|+(y)

)
eiη·zjδ∂(zj+αBj)e

−i√γ0|η|t

in Ω× (0, T ),(∫ t

0

e−i
√
γ0|η|svα,η(x, t− s) ds

)
|t=0 = 0,

∂t

(∫ t

0

e−i
√
γ0|η|svα,η(x, t− s) ds

)
|t=0 = 0 in Ω,

(∫ t

0

e−i
√
γ0|η|svα,η(x, t− s) ds

)
|∂Ω×(0,T ) = 0
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and 


(∂2
t − γ0∆)

(∫ t

0

e−i
√
γ0|η|shα,η(x, t− s) ds

)

= −γ0|η|2
m∑
j=1

(
1− γ0

γj

)
eiη·xχ(zj + αBj)e

−i√γ0|η|t in Ω× (0, T ),
(∫ t

0

e−i
√
γ0|η|shα,η(x, t− s) ds

)
|t=0 = 0,

∂t

(∫ t

0

e−i
√
γ0|η|shα,η(x, t− s) ds

)
|t=0 = 0 in Ω,

(∫ t

0

e−i
√
γ0|η|shα,η(x, t− s) ds

)
|∂Ω×(0,T ) = 0,

setting h̃α,η =
∫ t
0
e−i

√
γ0|η|shα,η(x, t− s) ds, it follows that

(∂2t − γ0∆)(uα − ũα,η − h̃α,η)

= γ0

m∑
j=1

i

(
1 − γ0

γj

)[
−∂uα

∂n
|+ + η ·

(
νj +

(
γ0
γj

− 1

)
∂Φj

∂νj
|+(y)

)
eiη·zj e−i

√
γ0|η|t

]
δ∂(zj+αBj)

+

m∑
j=1

(
1 − γ0

γj

)
(∂2t uα + |η|2γ0eiη·x−i

√
γ0|η|t)χ(zj + αBj),

and, therefore, by Propositions 3.1 and 2.1, we readily get that



(∂2
t − γ0∆)(uα − ũα,η − h̃α,η) = o(α2) in Ω× (0, T ),

(uα − ũα,η − h̃α,η)|t=0 = 0, ∂t(uα − ũα,η − h̃α,η)|t=0 = 0 in Ω,

(uα − ũα,η − h̃α,η)|∂Ω×(0,T ) = 0,

(17)

where the right-hand side in the first equation in (17) is of order o(α2) in theH−2(0, T ;
H−1(Ω)) norm.

Following the proof of Proposition 2.1, we immediately obtain that

||uα − ũα,η − h̃α,η||L2(Ω) = o(α2), t ∈ (0, T ), x ∈ Ω,

where the remainder o(α2) is independent of the points {zj}mj=1.
We now show that the estimate∥∥∥∥ ∂

∂n
(uα − ũα,η − h̃α,η)

∥∥∥∥
L2(0,T ;L2(Γ))

= o(α2)(18)

holds, which will immediately imply that

∫ T

0

∫
Γ

[
θη

(
∂uα
∂n
− ∂ũα,η

∂n

)
+ ∂tθη∂t

(
∂uα
∂n
− ∂ũα,η

∂n

)]

=

∫ T

0

∫
Γ

θη
∂h̃α,η
∂n

+ ∂tθη∂t
∂h̃α,η
∂n

+ o(α2).

(19)
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Let θ be given in C∞0 (]0, T [), and define

ˆ̃uα,η(x) =

∫ T

0

ũα,η(x, t)θ(t) dt,

ˆ̃
hα,η(x) =

∫ T

0

h̃α,η(x, t)θ(t) dt,

and

ûα(x) =

∫ T

0

uα(x, t)θ(t) dt.

We have


div γα grad(ûα − ˆ̃uα,η − ˆ̃hα,η) = o(α2) ∈ L2(Ω \ Ω′) ∩H−1(Ω),

(ûα − ˆ̃uα,η − ˆ̃hα,η) = 0 on ∂Ω,

which implies from [34] that∥∥∥∥ ∂

∂n
(ûα − ˆ̃uα,η − ˆ̃hα,η)

∥∥∥∥
L2(Γ)

= o(α2)

for all θ ∈ C∞0 (]0, T [), whence∥∥∥∥ ∂

∂n
(uα − ũα,η − h̃α,η)

∥∥∥∥
L2(Γ)

= o(α2) a.e. in t ∈ (0, T ),

and so the desired estimate (18) holds.
On the other hand, analogously to Proposition 4.1, by integration by parts and

taking the Taylor expansion of eiη·x in zj + αBj , the following holds:∫ T

0

∫
Γ

gη(x, t)
∂hα,η
∂n

(x, t) dt = α2
m∑
j=1

(
1− γ0

γj

)
e2iη·zj |η|2|Bj |+ o(α2).(20)

However,

∫ T

0

∫
Γ

gη(x, t)
∂hα,η
∂n

(x, t) dt =

∫ T

0

∫
Γ

θη
∂h̃α,η
∂n

+ ∂tθη∂t
∂h̃α,η
∂n

,(21)

and so, combining (16), (19), (20), and (21), we arrive at our promised asymptotic
formula (13). The proof of Theorem 4.1 is then over.

We are now in position to describe our identification procedure, which is based
on Theorem 4.1. Let us neglect the asymptotically small remainder in the asymptotic
formula (13) and define Λα(η) by

Λα(η) =

∫ T

0

∫
Γ

[
θη

(
∂uα
∂n
− ∂u

∂n

)
+ ∂tθη∂t

(
∂uα
∂n
− ∂u

∂n

)]
.

The function Λα(η) is computed in the following way. First, we construct the control
gη in (10) for given η ∈ R2. Then we solve the ODE (12) to find the auxiliary test
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function θη. From the boundary measurements ∂uα

∂n |Γ×(0,T ), we form the integrals
that come in the expression of Λα(η).

Recall that the function e2iη·zj is exactly the Fourier transform (up to a multi-
plicative constant) of the Dirac function δ−2zj (a point mass located at −2zj). From
Theorem 4.3, it follows that the function Λα(η) is (approximately) the Fourier trans-
form of a linear combination of derivatives of point masses, or

Λ̆α(η) ≈ α2
m∑
j=1

Ljδ−2zj ,

where Lj is a second order constant coefficient, differential operator whose coefficients
depend on the polarization tensor Mj defined by (14) (see [12] for its properties) and

Λ̆α(η) represents the inverse Fourier transform of Λα(η). The reader is referred to
[12] for properties of the tensor polarization Mj .

The method of reconstruction we propose here consists, as in [4], in sampling
values of Λ̆α(η) at some discrete set of points and then calculating the corresponding
discrete inverse Fourier transform. After a rescaling by− 1

2 , the support of this discrete
inverse Fourier transform yields the location of the small inhomogeneities Bα. This
procedure generalizes the approach that we developed in [4] for the two-dimensional
(time-independent) inverse conductivity problem. On other terms, once Λα(η) is
computed from dynamic boundary measurements on Γ, we calculate its inverse Fourier
transform. The asymptotic formula (13) in Theorem 4.1 asserts that this inverse
Fourier transform is a distribution supported at the locations (zj)

m
j=1.

Once the locations are known, we may calculate the polarization tensors (Mj)
m
j=1

by solving an appropriate linear system arising from (13). These polarization tensors
give ideas on the orientation and relative size of the inhomogeneities [18]. We wish
to point out that, from the leading order term of Λα(η) given by (13), we cannot
reconstruct more details of the shapes of the domains Bj . Higher order terms in
the asymptotic expansion of Λα(η), with respect to α, are needed to reconstruct the
domains Bj with high resolution.

The number of data (sampling) points needed for an accurate discrete Fourier
inversion of Λα(η) follows from Shannon’s sampling theorem [13]. We need (con-
servatively) order (hδ )

2 sampled values of Λα(η) to reconstruct, with resolution δ, a
collection of inhomogeneities that lie inside a square of side h. In order to simulate
errors in the measurements of ∂uα

∂n on Γ× (0, T ), as well as the errors inherent in the
approximation (13) and in the calculations of gη, θη, and Λα(η) (by some quadrature
rules), we should add random noise to the values of Λα(η). Numerical experiments
in [4] for the two-dimensional (time-independent) inverse conductivity problem seem
to suggest that the method is quite stable with respect to noise in measurements and
errors in the different approximations.

We are convinced that the use of approximate formulae such as (13) represents
a very promising approach to the dynamical identification of small inhomogeneities
that are embedded in a homogeneous medium. In particular, our method can be
extended to solve the dynamical identification problem of small incompressible or
rigid inclusions. Formally, we can recover these two cases by letting γj tend to +∞ or
0 in (5) and the asymptotic formula (13). Rigorously, to assert that (13) is still valid
for incompressible or rigid inclusions, we should prove that the term o(α2) is uniform
in γj as γj → +∞ or 0. We also believe that our method yields a good approximation
to small amplitude perturbations in the conductivity (γα(x) = γ0 +αγ1(x)) from the
measurements of ∂uα

∂n on Γ× (0, T ). Our method may yield the Fourier transform of
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the perturbation γ1(x). This inverse problem is considered in [2].
Finally, we wish to emphasize the fact that, in the algorithm described in this

paper, the locations zj , j = 1, . . . ,m, of the inhomogeneities are found with an er-
ror O(α), and only the polarization tensors of the domains Bj can be reconstructed.
Making use of higher order terms in the asymptotic expansion of ∂uα

∂νj
|∂(zj+αBj)+ , we

certainly would be able to reconstruct the small inhomogeneities with higher resolu-
tion from dynamical boundary measurements on part of the boundary and capture
more details of the geometries of the domains Bj . Perhaps, more importantly, this
would also allow us to identify quite general conductivity inhomogeneities without
restrictions on their sizes. Results in this direction are now available for the conduc-
tivity problem. In [3], based on layer potential techniques, high order terms in the
asymptotic expansions of the steady-state voltage potentials in the presence of a finite
number of diametrically small inhomogeneities with conductivities different from the
background conductivity are rigorously derived. In [5], similar accurate asymptotic
formulae are applied for the purpose of identifying the location and certain properties
of the shape of the conductivity inhomogeneities. A real-time algorithm with a very
high resolution and accuracy that makes use of constant current sources is designed.
We believe that the results and techniques of [3] and [5] could be combined with the
approach developed in this paper for recovering the small electromagnetic inhomo-
geneities from dynamic boundary measurements with higher resolution and accuracy.
This very important issue will be considered in a forthcoming work.

Acknowledgments. The author expresses his thanks to M. Vogelius for various
interesting discussions. He is also very grateful to the referees for their comments,
which enabled him to make many improvements to the presentation.

REFERENCES

[1] C. Alves and H. Ammari, Boundary integral formulae for the reconstruction of imperfections
of small diameter in an elastic medium, SIAM J. Appl. Math., 62 (2001), pp. 94–106.

[2] H. Ammari, Identification of small amplitude perturbations in the electromagnetic parame-
ters from partial dynamic boundary measurements, J. Math. Anal. Appl., submitted; also
available online from http://www.cmap.polytechnique/˜ammari/˜preprints.

[3] H. Ammari and H. Kang, High-order terms in the asymptotic expansions of the
steady-state voltage potentials in the presence of conductivity inhomogeneities of
small diameter, SIAM J. Math. Anal., submitted; also available online from
http://www.cmap.polytechnique/˜ammari/˜preprints.

[4] H. Ammari, S. Moskow, and M. Vogelius, Boundary integral formulas for the reconstruction
of electromagnetic imperfections of small diameter, ESAIM Control Optim. Calc. Var., to
appear; also available online from http://www.cmap.polytechnique/˜ammari/˜preprints.

[5] H. Ammari and J. K. Seo, A new algorithm for the reconstruction of conductiv-
ity inhomogeneities, J. Amer. Math. Soc., submitted; also available online from
http://www.cmap.polytechnique/˜ammari/˜preprints.

[6] H. Ammari, M. Vogelius, and D. Volkov, Asymptotic formulas for perturbations in the
electromagnetic fields due to the presence of inhomogeneities of small diameter II. The
full Maxwell equations, J. Math. Pures Appl. (9), 80 (2001), pp. 769–814.

[7] C. Bardos, G. Lebeau, and J. Rauch, Sharp sufficient conditions for the observation, control,
and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), pp.
1024–1065.

[8] M. I. Belishev and Ya Kurylev, Boundary control, wave field continuation and inverse
problems for the wave equation, Comput. Math. Appl., 22 (1991), pp. 27–52.

[9] E. Beretta, A. Mukherjee, and M. Vogelius, Asymptotic formuli for steady state voltage
potentials in the presence of conductivity imperfection of small area, Z. Angew. Math.
Phys., 52 (2001), pp. 543–572.



RECONSTRUCTION OF DIELECTRIC IMPERFECTIONS 1211

[10] G. Bruckner and M. Yamamoto, Determination of point wave sources by pointwise obser-
vations: Stability and reconstruction, Inverse Problems, 16 (2000), pp. 723–748.

[11] A. P. Calderón, On an inverse boundary value problem, in Proceedings of a Seminar on
Numerical Analysis and its Applications to Continuum Physics, Sociedade Brasileira de
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Abstract. In this paper, we consider the optimal policy for a generator offering power into
a wholesale electricity market operating under a pool arrangement. Anderson and Philpott [Math.
Oper. Res., 27 (2002), pp. 82–100] recently discussed necessary conditions for an optimal offer curve
when there is uncertainty in the demand and in the behavior of other participants in the market.
They show that the objective function in these circumstances can be expressed as a line integral
along the offer curve of a profit function integrated with respect to a market distribution function.
In this paper, we prove the existence of an optimal offer stack, and we extend the analysis of [Math.
Oper. Res., 27 (2002), pp. 82–100] to include necessary conditions of a higher order in the presence
of horizontal and/or vertical sections in an offer curve. Finally, we establish sufficient conditions for
an offer curve to be locally optimal.

Key words. electricity markets, optimal offer, necessary conditions, sufficient conditions

AMS subject classifications. 90C46, 65K10, 49K30

PII. S0363012900367801

1. Introduction. In the past few years, there has been an enormous change
in the way that wholesale prices for electricity are determined in many parts of the
world. Increasingly, market mechanisms are being set up in which the clearing price
for electricity is determined by some sort of auction process. The book by Chao and
Huntington [3] gives a useful overview of the nature of electricity markets, and the
working paper by von der Fehr and Harbord [4] is another useful starting point as it
reviews the form of a variety of markets as they existed in 1998. In this paper, we
consider a model of the operation of such a market which captures some important
features of the electricity markets which operate in the UK, Australia, New Zealand,
and parts of the US. The model was introduced in a recent paper by Anderson and
Philpott [1]. We begin by reviewing this model before going on to extend the results of
Anderson and Philpott on the form of the optimal solutions for generators operating
in a market of this sort.

Generators in an electricity market offer energy into the market at prices that they
determine. We take this offer as having the form of an offer curve linking quantity and
price. We can write the quantity of electricity offered as a nondecreasing function of
price, S(p). S(p) is the quantity of electricity that will be delivered by the generator
in question if the clearing price is p. In some markets, power is offered in blocks, which
will imply that S(p) has the form of a step function. The clearing price is determined
by a market mechanism that incorporates consideration of the offers made by all the
generators, transmission constraints operating within the electricity network, and the
demand (which may have price dependence for some large consumers).

The model we consider represents a market operating under pool arrangements.
In some markets, there are more bilateral trading arrangements, and our model will
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not apply in these cases. In a pool arrangement, some form of independent system
operator (ISO) is responsible for determining which generators are dispatched and
will do this in a way which satisfies demand at least cost, using the generator bids
as proxies for cost. If the spot market consists of a pool located at a single node,
then the price of electricity can be computed by successively dispatching generation
from the offers with the lowest price until all of the demand is met. The price of the
marginal offer, the system marginal price, is then the price that is paid for all the
electricity dispatched. Thus a low cost generator can choose to offer power at its real
marginal cost and will be very likely dispatched and paid a substantial premium over
its marginal generating cost.

Following Anderson and Philpott [1], we will be interested in finding an optimal
offer for a generator when there is uncertainty about the demand and the behavior of
the other generators. This takes a different approach than that considered by Gross
and Finlay [6], who assume perfect competition so that the clearing price is unaffected
by any single generator’s offer. In our model, the offer that a generator makes has
a direct influence on the clearing price, but we will not consider the equilibrium
framework that would arise if we were to consider the optimal response of other
generators to our offer curve. In fact, the majority of papers dealing with electricity
markets have studied equilibria, often with the aim of assessing the degree of market
power implied by different market structures. See, for example, the papers by Hobbs
[7], Bolle [2], Green and Newbery [5], Rudkevich, Duckworth, and Rosen [8], and Wei
and Smeers [9].

Our work is more directly concerned with the problem faced by a generator in
deciding on an offer. In this case, the generator might take an equilibrium solution
as an indication of where things may end up in the long term, but the immediate
problem will be to respond to the current environment, which will involve uncertainty
in demand and in other generators’ offers. Such uncertainty arises partly because of
possible outages and partly because generators’ bidding behavior is not stable. Con-
centration only on an equilibrium solution is problematic: this assumes that other
generators are behaving in a fully rational way and that we have access to all rel-
evant information. Moreover, in many circumstances, there will be more than one
equilibrium possible; which one should guide the offer behavior for a generator? Fi-
nally, we should observe that the actual computation of equilibria in these markets
with many participants is extremely hard. Of course, since offers are repeated many
times a day and there is often considerable similarity between outcomes at the same
hour on different days, we should expect electricity markets to move toward some
sort of equilibrium behavior. Thus we are not arguing here against the importance
of understanding equilibria but merely that the problem we address is of importance.
Indeed, a good understanding of this problem will be helpful in moving forward in
the analysis of equilibrium models.

Anderson and Philpott have explored the problem of finding an offer curve that
maximizes the expected value of the profit made by an individual generator. The
offer curve is simply a monotonic continuous curve in the two-dimensional (quantity,
price) space. This curve need not be smooth; indeed, it will often in practice take the
form of a series of steps. Anderson and Philpott show how the problem of maximizing
expected profit is, in some circumstances, equivalent to maximizing the line integral
along the offer curve of a market distribution function defined in the (quantity, price)
space. The market distribution function captures all the elements of uncertainty in
either demand or the other players’ behavior.
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Anderson and Philpott give necessary conditions for an optimal offer curve in this
framework. In this paper, we make a number of contributions. First, in section 2,
we demonstrate the existence of an optimal solution. Second, in section 3, we extend
the necessary conditions given previously. In section 4, we give sufficient conditions
for an offer curve to be locally optimal. Finally, in section 5, we give an example to
demonstrate the application of these conditions.

The analysis we give is quite general and has some interest apart from its elec-
tricity market context. The necessary and sufficient conditions apply to the problem
of finding a choice of monotonic curve within a bounded region in order to maximize
a line integral along the curve. In the absence of monotonicity constraints, this is
a problem in the calculus of variations. However, the requirement for monotonicity
is fundamental and implies additional conditions that apply on sections of the curve
which are either horizontal or vertical (and hence at points where monotonicity acts
as a binding constraint). The results we give are proved by relatively direct and el-
ementary methods involving consideration of perturbations of an offer curve. It is
interesting that sufficient conditions for optimality can be obtained in this way.

2. Problem formulation and fundamentals. In this section, we will intro-
duce some notation and formulate the problem that we shall consider. Let R(q, p) be
the return function: that is, R(q, p) denotes the profit we make if we are dispatched
an amount q at a clearing price p. We will assume that R has continuous partial
derivatives. This function captures not only the cost of generating an amount q and
the proceeds pq which arise from the sale of this electricity but also the effects of any
hedging contracts the generator holds which depend on the market clearing price.

Rather than dealing with a supply function S(·) directly, it is convenient to model
the offer using a continuous curve s = {(x(t), y(t)), 0 ≤ t ≤ T}, in which the compo-
nents x(t) and y(t) are continuous monotonic increasing functions of t, and x(t) and
y(t) trace, respectively, the quantity and price components. Without loss of general-
ity we may take x(0) = y(0) = 0 and y(T ) ≤ pM , where pM is a bound on the price
of any offer. We also assume that qm is a bound on the generation capacity of the
generator, so x(T ) ≤ qM .

We use a single market distribution function ψ(q, p) to describe the uncertainty
in the market. ψ(q, p) is defined as the probability of not being fully dispatched if we
offer generation q at price p. It turns out that knowledge of the single function ψ(q, p)
is enough to determine the expected profit for a generator. In practice, a generator
will estimate the market distribution function from knowledge of the distribution of
demand and from repeated observations of the behavior of other generators. This
estimation problem will depend on the information released to market participants
about other players’ bids (something which varies between different markets). Another
issue will be to decide the class of functions from which an estimate is to be chosen.
However, subject to these considerations, either Bayesian or maximum likelihood
estimation techniques can be used.

Since ψ(q, p) is a probability, it takes values between 0 and 1. Let Ψ = {(q, p), 0 <
ψ(q, p) < 1}. Throughout, we assume that ψ is continuously differentiable on Ψ ∩
{(q, p), 0 ≤ q ≤ qM , 0 ≤ p ≤ pM}. The first key result, which we repeat from Anderson
and Philpott [1], demonstrates that the expected return if a generator offers in a
supply curve s can be expressed as a line integral along s. This can be established
by showing that a generator can only be dispatched at price-quantity points lying on
its offer curve and observing that the derivative of the market distribution function
ψ captures the appropriate probability density.
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Lemma 1 (see [1, Theorem 2]). If a generator offers in a curve s and the market
distribution function ψ is continuous, then the expected return is the line integral

v(s) =

∫
s

R(q, p)dψ(q, p).

Anderson and Philpott [1] treat v(s) as an objective function and investigate the
necessary conditions for an offer curve s to be a local maximizer. However, there is an
important question that they do not address explicitly: does there exist a maximum
over the set of curves which are considered? We begin by answering this question
before discussing optimality conditions.

A generator need not offer all of its generation capacity into the market; the
offer curve will start at some point (0, y(0)) and finish at (x(T ), y(T )). However, the
clearing price is determined as though the offer curve began with a vertical segment
from the origin to (0, y(0)) and finished with a vertical segment from (x(T ), y(T )) to
(x(T ), pM ). Hence we assume that Ω, the set of curves, has these characteristics.

Lemma 2. Let Ω be the set of monotonic continuous curves starting at the origin
and ending on the closed line segment, L, from (0, pM ) to (qM , pM ). Then Ω is
compact under the Hausdorff metric:

|s1 − s2|H = max
(x1,y1)∈s1

min
(x2,y2)∈s2

√
(x1 − x2)2 + (y1 − y2)2.

Proof. Let s ∈ Ω and L(s) be the arc length of s. By the monotonicity of s,

pM ≤ L(s) ≤ pM + qM .

For any s ∈ Ω, we may use the arc length measured from the origin as a parameter
and write s = {(x(t), y(t)), 0 ≤ t ≤ L(s)}. For 0 ≤ t1 < t2 ≤ L(s), we have

t2 − t1 ≥ max (x(t2)− x(t1), y(t2)− y(t1)) .

Thus both x and y are Lipschitz with respect to t. By replacing t with T
L(s) t, we

obtain a representation of s with both x and y defined on [0, T ]. The scaled x and
y are still Lipschitz and monotonic. It is well known that the class of monotonic
Lipschitz functions defined on [0, T ] forms a compact set. Thus the set of curves Ω,
when represented as pairs of (Lipschitz) functions, is compact with the metric

|s1 − s2| = max

(
sup

0≤t≤T
|x1(t)− x2(t)|, sup

0≤t≤T
|y1(t)− y2(t)|

)
.

Since |s1 − s2|H ≤
√
2|s1 − s2|, this implies compactness of Ω with the Hausdorff

metric.
Anderson and Philpott [1] introduced the notation

Z(q, p) ≡
{

Rqψp −Rpψq, (q, p) ∈ Ψ,
0 otherwise

and observed that ∫ ∫
S
Z(q, p)dpdq =

∫
C
R(q, p)dψ(q, p),(1)
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where S is a region enclosed by a curve C. Relation (1) follows immediately from
Green’s theorem and plays an important role in the investigation of optimality con-
ditions. The scalar function Z can be thought of as indicating the direction in which
the offer curve needs to move to produce an improvement in expected profit. If Z > 0,
then a move of the offer curve down and to the left in the (q, p) plane will produce
an improvement, while Z < 0 indicates that the offer curve should move up and to
the right. Consequently, when monotonicity constraints are not binding, it will be
optimal to follow a Z = 0 curve.

Using Lemma 2 and (1), we are able to obtain the following result.
Theorem 3. Let Ω be defined as above, and let v be the expected return function

given in Lemma 1. Then v achieves its maximum on Ω.
Proof. By Lemma 2, Ω is a compact set. It suffices to prove that v is continuous

with the Hausdorff metric. Let s̃ ∈ Ω, and assume without loss of generality that S
is the region surrounded by s̃, s. Thus, as s̃ is close to s, the area S is small. By (1),
the boundedness of Ψ, and the continuous differentiability ψ and R, we know that
the integral of Z over S will be arbitrarily small when the area of S shrinks to zero.
On the other hand, the line integral at the right side of (1) over the segment of L
between s and s̃ tends to zero as s̃→ s. This implies that v(s̃) tends to v(s).

Given this theorem, the maximization problem

maximize v(s), subject to s ∈ Ω

is well defined. In the rest of this paper, we will discuss the necessary and sufficient
conditions for an offer curve s to be a local maximizer.

3. Necessary conditions. We turn now to necessary conditions for optimality.
Anderson and Philpott [1] establish a set of conditions which we will extend. Such
conditions are important in the development of algorithms to solve the generator’s
maximization problem. Later we will illustrate their use by considering a simple
example. In general, more complete optimality conditions will serve to eliminate
more potential candidate optimal offer curves. It is convenient to restate the result
of [1] in a slightly different form in order to show how it is related to the results that
we prove in this paper.

Throughout, we need to use the line integral of Z along a curve {(x(t), y(t)) : 0 ≤
t ≤ T} which is defined by

w(t) =

∫ t

0

Z(x(τ), y(τ))(x′(τ) + y′(τ))dτ.

In some cases, we will write w(x(t), y(t)) to denote w(t) for clarity.
Theorem 4. Suppose that s = {x(t), y(t), 0 ≤ t ≤ T} is an increasing continuous

offer curve. Suppose that there exist m numbers 0 ≤ t1 < t2 < · · · < tm ≤ T with
0 < x(t) < qM and 0 < y(t) < pM for t1 < t < tm and such that, on each section
(ti−1, ti), i = 2, . . . ,m, s is either strictly increasing in both components or horizon-
tal or vertical, with different characteristics in successive segments. If s is optimal,
then each of the w(ti), i = 1, 2, . . . ,m, takes the same value, say, w0, and, for each
interval I, being one of (ti−1, ti), i = 2, . . . ,m, (0, t1), or (tm, T ), one of the following
holds:

(i) s is strictly increasing in both components, and Z(x(t), y(t)) = 0 for t ∈ I;
(ii) s is horizontal on I, and w(t) ≤ w0 for t ∈ I;
(iii) s is vertical on I, and w(t) ≥ w0 for t ∈ I.
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Anderson and Philpott [1] show, in addition, that, when s is neither horizontal
nor vertical, then there are sign constraints on the partial derivatives of Z if they
exist. In fact, the existence of partial derivatives for Z will allow us to extend the
results of Theorem 4 provided that Z is well behaved enough.

We will need to make an assumption about the partial derivatives of Z. We give
the weakest form of this required for our results; it is stronger than continuous differ-
entiability, requiring also a uniformity condition on horizontal and vertical sections
of s. This condition will be implied, for example, by Z having continuous second
derivatives.

Assumption 1. Z is continuously differentiable on Ψ. If s is horizontal on [ti−1, ti],
then, for every η > 0, there is a τ0 > 0 with

|Z(x(t), y(ti) + τ)− Z(x(t), y(ti))− Zp(x(t), y(ti))τ | ≤ η|τ |

for every t ∈ [ti−1, ti] and |τ | < τ0. Similarly, if s is vertical on [ti−1, ti], then, for
every η > 0, there is a τ0 > 0 with

|Z(x(ti) + τ, y(t))− Z(x(ti), y(t))− Zq(x(ti), y(t))τ | ≤ η|τ |

for every t ∈ [ti−1, ti] and |τ | < τ0.
The theorem below extends Theorem 4, but there is a key difference that is worth

pointing out before stating the result. In the previous theorem, the values ti are
defined as corresponding to points where the curve changes characteristic, say, from
horizontal to vertical. In the theorem we give next, we will define the values ti in
terms of the w values instead. Thus suppose we have a horizontal segment within
which w(t) ≤ w0: then, in Theorem 4, the ti values mark either end of this segment,
but in the next theorem we add to this any other values of t at which w(t) = w0,
between the end points. Thus we may have a point ti, with s horizontal on either
side of it. It will be convenient to distinguish those values of ti such that the curve s
changes its characteristics at (x(ti), y(ti)), for instance, from vertical to horizontal or
strictly increasing in both components. For convenience, we call both the parameter
ti and the point (x(ti), y(ti)) a turning point.

Theorem 5. Suppose that s = {x(t), y(t), 0 ≤ t ≤ T} is an increasing continuous
offer curve. Suppose that there exist m numbers 0 ≤ t1 < t2 < · · · < tm ≤ T such that
each of the w(ti), i = 1, 2, . . . ,m, takes the same value, say, w0, and, on each section
[ti−1, ti], i = 2, . . . ,m, s is either strictly increasing in both components or horizontal
or vertical. Suppose that s is an optimal offer stack. Then, under Assumption 1, for
each section (ti−1, ti), the following hold:

(i) if s is strictly increasing on (ti−1, ti), then Zp(x(t), y(t)) ≥ 0 and Zq(x(t), y(t))
≤ 0 for t ∈ (ti−1, ti);

(ii) if s is horizontal on (ti−1, ti) and one of ti−1 or ti is a turning point, then

∫ x(ti)

x(ti−1)

Zp(x, y(ti))dx ≥ 0;(2)

further, if s turns from horizontal to vertical at ti, then∫ x(ti)

x(ti−1)

Zp(x, y(ti))dx−
∫ y(ti+1)

y(ti)

Zq(x(ti), y)dy ≥ 2Z(x(ti), y(ti));(3)
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(iii) if s is vertical on (ti−1, ti) and one of ti−1 or ti is a turning point, then

∫ y(ti)

y(ti−1)

Zq(x(ti), y)dy ≤ 0;(4)

further, if s turns from vertical to horizontal at ti, then∫ y(ti)

y(ti−1)

Zq(x(ti), y)dy −
∫ x(ti+1)

x(ti)

Zp(x, y(ti))dx ≤ 2Z(x(ti), y(ti)).(5)

Before giving a proof of this result, it may be helpful to discuss the conditions
(2), (3), (4), and (5).

If s is horizontal on (ti−1, ti), then, since w(ti−1) = w(ti) = w0,∫ x(ti)

x(ti−1)

Z(x, y(ti))dx = 0.

This integral captures the first order effect of a move of the horizontal segment up or
down by a small amount. Given that the integral is zero, we can look at the second
order effects of the same move, and these are given by the integral in (2). The same
argument applied to a vertical segment leads to the integral in (4).

The stronger conditions (3) and (5), which apply when there is a turn from
horizontal to vertical (or vice versa), arise from considering a move of a horizontal
segment at the same time as a vertical segment. Notice that, if s turns from horizontal
to vertical at ti, then Z(x(ti), y(ti)) ≥ 0. This follows from the observation that
Theorem 4 implies that w(t) is increasing at t = ti. In the same way, Z(x(ti), y(ti)) ≤
0 if there is a turn from vertical to horizontal at ti.

Proof. Part (i) was already established by Anderson and Philpott [1]. We will
prove part (ii); part (iii) follows in exactly the same way. For the sake of contradiction,
assume that (2) does not hold and s is horizontal on (ti−1, ti) but not horizontal on
(ti, ti+1). Let δ > 0 be sufficiently small, and consider a vertical perturbation of s
by an amount δ between ti−1 and ti. We can make this explicit as follows. Define
ti(+δ) = y−1(y(ti) + δ), and let

s̃(t) =




(x(t), y(t)), t ≤ ti−1,
(x(ti−1), t− ti−1 + y(ti−1)), ti−1 ≤ t ≤ ti−1 + δ,
(x(t− δ), y(ti−1) + δ), ti−1 + δ ≤ t ≤ ti(+δ) + δ,
(x(t− δ), y(t− δ)), ti(+δ) + δ ≤ t ≤ T + δ,

be a perturbation of s. This is illustrated in Figure 1. For 0 ≤ τ ≤ δ, we consider the
line integral

I(τ) =

∫ x(ti)

x(ti−1)

Z(x, y(ti) + τ)dx.

Let ε > 0 be such that
∫ x(ti)
x(ti−1)

Zp(x, y(ti))dx < −ε < 0. By Assumption 1, for τ

sufficiently small and x ∈ [x(ti−1), x(ti)],

Z(x, y(ti) + τ) ≤ Z(x, y(ti)) + Zp(x, y(ti))τ +
τε

x(ti)− x(ti−1)
.
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s

s̃

(x(ti(+ )),y(ti)+ )
(x(ti),y(ti))

Fig. 1. Perturbation of a horizontal section of s.

Thus

I(τ) ≤ w(ti)− w(ti−1) + τ

∫ x(ti)

x(ti−1)

Zp(x, y(ti))dx+ τε.

Consequently, we have, for all τ , I(τ) < 0 when δ is sufficiently small. The area
integral of Z over the region surrounded by s, s̃, x = x(ti−1), and x = x(ti) can be

written as
∫ δ
0
I(τ)dτ , which is not larger than δ2

2 [
∫ x(ti)
x(ti−1)

Zp(x, y(ti))dx+ ε].

Now we need to consider the region, namely, R, to the right of x = x(ti) sur-
rounded by s and s̃. This area exists only when s is strictly increasing in each com-
ponent on the interval (ti, ti+1). In this case, the area is of order o(δ). On the other
hand, since Z(x(t), y(t)) = 0 along the lower boundary of the region,

Z(x(t), y(ti) + τ) = Zp(x(t), y(t))(y(ti) + τ − y(t)) + o(τ) < Zp(x(t), y(t))τ + o(τ)

for all ti ≤ t ≤ ti(+δ), 0 ≤ τ ≤ δ, such that (x(t), y(ti) + τ) ∈ R. Note that Zp is
continuous, and the distance between any point (x, y) ∈ R and (x(ti), y(ti)) tends to
0 as δ → 0. Consequently, the integral of Z over R is at most of order o(δ2). Thus
we have

v(s)− v(s̃) ≤
∫ δ

0

I(τ)dτ + o(δ2) =
δ2

2

∫ x(ti)

x(ti−1)

Zp(x, y(ti))dx+
δ2

2
ε+ o(δ2)

for δ small enough. From the choice of ε, this contradicts the optimality of s for δ
small enough.

In the case that s is not horizontal on (ti−2, ti−1), we can obtain the same result by
considering a vertical perturbation of s between ti−1 and ti downward by an amount δ.

Now suppose that ti is a corner where s turns from horizontal to vertical. We will
assume that (3) does not hold and derive a contradiction. Let η be a scalar such that

∫ x(ti)

x(ti−1)

Zp(x, y(ti))dx−
∫ y(ti+1)

y(ti)

Zq(x(ti), y)dy − 2Z(x(ti), y(ti)) < −2η < 0.(6)

We consider a perturbation that moves the horizontal section between ti−1 and ti
upward by a small amount δ and the vertical section between ti and ti+1 to the
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left by the same amount δ. We can make this explicit as follows. Define ti(−δ) =
x−1(x(ti)− δ), and let

s̃(t) =




(x(t), y(t)), t ≤ ti−1,
(x(ti−1), t− ti−1 + y(ti−1), ti−1 ≤ t ≤ ti−1 + δ,
(x(t− δ), y(ti−1) + δ), ti−1 + δ ≤ t ≤ ti(−δ) + δ,
(x(ti)− δ, y(t+ k − δ)), ti(−δ) + δ ≤ t ≤ ti+1 − k + δ,
(x(ti+1) + t− 2δ + k − ti+1, y(ti+1)), ti+1 − k + δ ≤ t ≤ ti+1 − k + 2δ,
(x(t+ k − 2δ), y(t+ k − 2δ))), ti+1 − k + 2δ ≤ t ≤ T − k + 2δ,

be a perturbation of s, where k = ti(+δ)− ti(−δ).
First observe that

w(ti(−τ))− w(ti(+τ)) = −
∫ x(ti)

x(ti)−τ
Z(x, y(ti))dx−

∫ y(ti)+τ

y(ti)

Z(x(ti), y)dy

≤ −2τZ(x(ti), y(ti)) + ητ/2(7)

for τ sufficiently small, using the mean value theorem and the continuity of Z. On
the other hand, under Assumption 1, for the given η, there exists δ > 0 sufficiently
small such that, for 0 < τ ≤ δ, the line integral

I(τ) ≡
∫ x(ti)−τ

x(ti−1)

Z(x, y(ti) + τ)dx+

∫ y(ti+1)

y(ti)+τ

Z(x(ti)− τ, y)dy

≤ w(ti(−τ))− w(ti−1) + w(ti+1)− w(ti(+τ))

+ τ

∫ x(ti)−τ

x(ti−1)

Zp(x, y(ti))dx− τ

∫ y(ti+1)

y(ti)+τ

Zq(x(ti), y)dy + ητ/2.(8)

Since Zp and Zq are continuous, it follows from (6) that, for δ sufficiently small and
τ ≤ δ,

∫ x(ti)−τ

x(ti−1)

Zp(x, y(ti))dx−
∫ y(ti+1)

y(ti)+τ

Zq(x(ti), y)dy − 2Z(x(ti), y(ti)) < −η.(9)

Combining (7)–(9) and noticing that w(ti−1) = w(ti+1) = w0, we have I(τ) < 0 for δ
sufficiently small and all 0 ≤ τ ≤ δ.

Now the area integral of Z over the region surrounded by s and s̃ can be written

as
∫ δ
0
I(τ)dτ and hence is strictly negative. Thus we have constructed a perturbed

curve which leads to a larger value for v, which is a contradiction. This completes the
proof.

4. Sufficient conditions. In this section, we discuss sufficient conditions for an
offer curve s to be locally optimal. This involves a more complex set of conditions
than were required for the necessary conditions. To establish this result, we will have
to consider all possible monotonic perturbations around the offer curve s. As we shall
see, considerable care is needed in the argument required to prove this result.

Theorem 6. Let s = {x(t), y(t), 0 ≤ t ≤ T} be an increasing and continuous
offer stack. Suppose that there exist finite numbers 0 = t0 < t1 < t2 < · · · < tM = T
such that, for i = 1, . . . ,M − 1, w(ti) takes a common value, say, w0, and on each
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t1

t2 t3

t4 t5

t6

t7 t8

t9 t10

t11

t12

L6 L8

Fig. 2. Area of perturbation split into subregions.

section (ti−1, ti), i = 1, . . . ,M , s is either strictly increasing in both components or
horizontal or vertical. Suppose also that Assumption 1 and the following hold:

(i) if s is increasing in both components on (ti−1, ti), then, for t ∈ (ti−1, ti),
Z(x(t), y(t)) = 0, Zp(x(t), y(t)) > 0, and Zq(x(t), y(t)) < 0;

(ii) if s is horizontal on (ti−1, ti), then, for t ∈ (ti−1, ti), w(t) < w0; moreover,
for any j < k such that s is horizontal from tj to tk with at least one of tj
and tk a turning point,∫ x(tk)

x(tj)

Zp(x, y(tj))dx > Z(x(tk), y(tk))− Z(x(tj), y(tj));(10)

(iii) if s is vertical on (ti−1, ti), then, for t ∈ (ti−1, ti), w(t) > w0; moreover, for
any j < k such that s is vertical from tj to tk with at least one of tj and tk
a turning point,∫ y(tk)

y(tj)

Zq(x(tj), y)dy < Z(x(tk), y(tk))− Z(x(tj), y(tj));(11)

(iv) if (x(ti), y(ti)) is a point where the curve turns from horizontal to vertical,
then either Z(x(ti), y(ti)) > 0 or Z(x(ti), y(ti)) = 0 and Zp(x(ti), y(ti)) > 0,
Zq(x(ti), y(ti)) < 0; if (x(ti), y(ti)) is a point where the curve turns from
vertical to horizontal, then either Z(x(ti), y(ti)) < 0 or Z(x(ti), y(ti)) = 0
and Zp(x(ti), y(ti)) > 0, Zq(x(ti), y(ti)) < 0.

Then s is a locally optimal offer stack.
Proof. In order to prove that s is locally optimal, it suffices to prove that, for any

local perturbation s̃ which is sufficiently close to s, v(s̃) < v(s). By Green’s theorem,
this is equivalent to proving that the area integral of Z over any region surrounded
by s̃ and s is positive if the region is above or to the left of the curve s and negative
if under or to the right of s. We discuss only the case that the perturbed region is
above or to the left of the curve s, and the other case can be dealt with similarly.

We define a line y = y(ti) − (x − x(ti)) at every turning point and call this line
Li. Figure 2 illustrates this with s shown bold and s̃ as a dashed line. Assume the
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Fig. 3. Comparison between w and s.

maximum distance between s and s̃ is no larger than δ0. The idea of the proof is to
deal separately with different parts of the region between s and s̃. In fact, we divide
this region into subregions using the lines Li and show that the area integral of Z is
positive over each nonempty subregion. To accomplish this, we will consider integrals
along horizontal (or vertical) segments with an end point on one of the lines Li and
show that each of these has positive value. One of these integrals I(τ) is illustrated
in Figure 3. Since the perturbation is monotonic, the horizontal line segments will
finish on an Li, while the vertical line segments will start on an Li.

Suppose first that s is strictly increasing in both components on (ti−1, ti). By
assumption (i), it is easy to verify that Z(x, y) > 0 for any (x, y) within the region
surrounded by s, s̃, and lines Li−1 and Li provided δ0 is chosen small enough. Con-
sequently, the area integral of Z over the region surrounded by s, s̃, and these lines,
if not empty, is positive.

Now we turn to the central part of the proof, and we consider the case that s is
horizontal between th and ti, and (x(th), y(th)) and (x(ti), y(ti)) are turning points.
We observe first from (i) and (iv) that

Z(x(th), y(th)) ≤ 0(12)

and

Z(x(ti), y(ti)) ≥ 0.(13)

We will need to keep track of the parameter t at points on s which are a distance
γ to the right or left of one of the ti values in this horizontal segment. We let
tk(−γ) denote x−1(x(tk) − γ) for k = h + 1, . . . , i, and tj(+γ) = x−1(x(tj) + γ) for
j = h, . . . , i− 1.
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The proof proceeds in two major steps. In step 1, we construct a value of δ
sufficiently small for the I(τ) integrals to be positive when δ0 < δ; then, in step 2, we
demonstrate this inequality.

Step 1. To define δ appropriately, we need first to define some intermediate
quantities γ and ε. Choose γ > 0 small enough so that, for all x ∈ (x(ti)− γ, x(ti)),

Z(x, y(ti)) > 0, Zp(x, y(ti)) > 0,(14)

and for xu ∈ [x(ti)− γ, x(ti)], x
l ∈ [x(tj)− γ, x(tj) + γ], j = h+ 1, . . . , i− 1,

∫ xu

xl

Zp(x, y(ti))dx− Z(x(ti), y(ti)) > 0,(15)

and for xl ∈ [x(th), x(th) + γ],

∫ xu

xl

Zp(x, y(ti))dx+ Z(x(th), y(th))− Z(x(ti), y(ti)) > 0.(16)

The existence of a γ satisfying (14) is guaranteed by conditions (i) and (iv) and (13),
while the existence of a γ satisfying (15) and (16) follows from (10) after observing
that Z(x(tj), y(tj)) = 0 since w(tj) is a local maximum of w(·) for j = h+1, . . . , i−1.

Given such a γ, choose ε > 0 small enough so that

w0 − α(γ) > ε,

where

α(γ) = sup
x(t)∈J (γ)

w(t),

and

J (γ) =
⋃

h≤j≤i−1

[x(tj) + γ, x(tj+1)− γ];

and for xu ∈ [x(ti)− γ, x(ti)], x
l ∈ [x(tj)− γ, x(tj) + γ], j = h+ 1, . . . , i− 1,

∫ xu

xl

Zp(x, y(ti))dx− Z(x(ti), y(ti)) > 2ε,(17)

and for xl ∈ [x(th), x(th) + γ],

∫ xu

xl

Zp(x, y(ti))dx+ Z(x(th), y(th))− Z(x(ti), y(ti)) > 3ε.(18)

The definitions of α(γ) and J (γ) are illustrated in Figure 3.
Having chosen ε and γ, now let δ > 0 be chosen small enough such that the

following six conditions (a)–(f) hold.
(a)

δ <
1

2ε
(w0 − α(γ)− ε) .(19)
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(b) For xl ∈ J (γ) and xu ∈ [x(ti)− γ, x(ti)],

δ

∣∣∣∣∣
∫ xu

xl

Zp(x, y(ti))dx− Z(x(ti), y(ti))

∣∣∣∣∣ < ε.(20)

This follows from the fact that Zp is continuous.
(c) For 0 ≤ τ ≤ δ,

w0 − w(ti(−τ)) ≤ τZ(x(ti), y(ti)) + ετ.(21)

This can be proved using continuity of Z and the mean value theorem.
(d) For 0 ≤ τ ≤ δ and t ∈ [th, ti],

Z(x(t), y(ti) + τ) ≥ Z(x(t), y(ti)) + Zp(x(t), y(ti))τ − ετ

(x(ti)− x(th))
.(22)

This follows from Assumption 1.
(e) For x ∈ (x(ti)− γ, x(ti)), 0 ≤ τ ≤ δ,

Z(x, y(ti) + τ) > 0.(23)

This follows from (14) and Assumption 1.
(f) For 0 ≤ τ1, τ2 ≤ δ,

Z(x(th)− τ1, y(th) + τ2) > Z(x(th), y(th))− ε.(24)

This follows from the continuity of Z.
Step 2. For 0 < τ ≤ δ, we consider the integral

I(τ) =

∫ x(ti)−τ

xl

Z(x, y(ti) + τ)dx.

We shall prove that I(τ) > 0 for all xl ∈ [x(th)− τ, x(ti)− τ ]. To do this, we need to
consider four cases depending on the position of xl. When xl ∈ J (γ), we will show
that the value of the integral I(τ) is dominated by I(0), which is a similar integral of
Z but shifted down by an amount τ . Now I(0) = w0 −w(xl, y(ti)), which is positive.
However, when xl is near th, ti, or one of the intermediate tj , then I(0) is near zero,
and we need to consider more precisely the difference between I(τ) and I(0). This
difference will be determined by the integral of Zp along the line segment.

Suppose first that xl ≥ x(th). By (22), we have

I(τ) ≥ w(x(ti)− τ, y(ti))− w(xl, y(ti)) + τ

∫ x(ti)−τ

xl

Zp(x, y(ti))dx− ετ.(25)

Case A. For xl ∈ [x(th), x(ti)− γ]\J (γ), since w(xl, y(ti)) ≤ w(x(ti), y(ti)) = w0,
it follows from (21) and (25) that

I(τ) ≥ τ

(∫ x(ti)−τ

xl

Zp(x, y(ti))dx− Z(x(ti), y(ti))

)
− 2ετ.(26)

Thus (using (17), (18), and (12)), I(τ) > 0.



OPTIMALITY CONDITIONS IN ELECTRICITY MARKETS 1225

Case B. For xl ∈ J (γ), combining (19), (20), (21), and (25), we have

I(τ) ≥ w0 − α(γ) + τ

(∫ x(ti)−τ

xl

Zp(x, y(ti))dx− Z(x(ti), y(ti))

)
− 2ετ

≥ w0 − α(γ)− ε− 2τε
> 0.

Case C. For xl ∈ [x(ti)−γ, x(ti)− τ ], 0 ≤ τ ≤ δ, it follows immediately from (23)
that I(τ) is positive.

Case D. For xl < x(th), we must have x
l ∈ [x(th)− τ, x(th)], 0 ≤ τ ≤ δ, and

I(τ) =

∫ x(th)

xl

Z(x, y(ti) + τ)dx+

∫ x(ti)−τ

x(th)

Z(x, y(ti) + τ)dx.

By (26),

∫ x(ti)−τ

x(th)

Z(x, y(ti) + τ)dx ≥ τ

(∫ x(ti)−τ

x(th)

Zp(x, y(ti))dx− Z(x(ti), y(ti))

)
− 2ετ.

On the other hand, it follows from (24) that

∫ x(th)

xl

Z(x, y(ti) + τ)dx ≥ (Z(x(th), y(th))− ε)τ.

Thus

I(τ) ≥ τ

(∫ x(ti)−τ

x(th)

Zp(x, y(ti))dx− Z(x(ti), y(ti)) + Z(x(th), y(th))− 3ε
)

> 0.

The last inequality is due to (18).
Now that we have established that I(τ) is positive, we are almost done. Let L be

any horizontal line segment with a distance less than δ0 above s and lying between
the lines Lh and Li, and with its right-hand end on the line Li. The above discussion
shows that, when δ0 ≤ δ, the line integral of Z along L is positive. Let R̃ denote
the region surrounded by s̃, s, Lh, and Li. Since s̃ is monotonic increasing and
the maximum distance between s̃ and s is not larger than δ0, any intersection of a
horizontal line and R̃ will take the form L. This implies that the area integral of Z
over R̃ is positive.

The argument for a vertical section is similar, but the integral I(τ) takes the form

I(τ) =

∫ yu

y(ti)+τ

Z(x(ti)− τ, y)dy.

This completes the proof.
The conditions of Theorem 6 are stronger than the necessary conditions of The-

orems 4 and 5, and it is worth discussing the differences. First observe that the
necessary conditions of Theorem 4 (i) and Theorem 5 (i) carry over as we would
expect after a change to strict inequalities for Zp and Zq.

When we come to consider conditions (ii) and (iii) of Theorems 4 and 5, the
position is more complex. We replace the condition w(t) ≤ w(t1) on a horizontal
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section with the condition w(t) < w(t1) except at identified points among the tj , j =
1, . . . , where w(tj) = w(t1). The same thing happens on a vertical section. However,
there is no direct equivalence of conditions (3) and (5) (though these inequalities can
be derived from adding (10) and (11) in an appropriate way). Consider the inequality
(10). As we have already observed, Z(x(tk), y(tk)) ≥ 0, and Z(x(tj), y(tj)) ≤ 0. So
inequality (10) is strictly stronger than inequality (2). Similarly, inequality (11) is
stronger than inequality (4).

Condition (iv) of Theorem 6 strengthens the inequality Z(x(ti), y(ti)) ≥ 0 (or
Z(x(ti), y(ti)) ≤ 0), which can be derived from the necessary conditions at a turning
point from horizontal to vertical (or vertical to horizontal).

5. An example. To illustrate the application of these necessary and sufficient
conditions, we consider a small example based on one given in [1]. We define the
market distribution function ψ via an intermediate function φ, which is defined as

φ(q, p) = ((q − p)2 − 1)((q − p)2 − 0.7)− 1.59p2 − 1.11q2.

Then we set ψ (q, p) = pq + 0.045φ(q, p) − 0.1. We suppose that the cost function
is given by the quadratic C(q) = 0.08q2. We also suppose that the generator has a
two-way hedging contract for a quantity 0.15 and thus makes payments under these
contracts of 0.15(f − p) where f is the contract price. Since f is fixed, we can ignore
this term in seeking an optimal solution, and so we can take the profit function as
R(q, p) = (q − 0.15)p− C(q).

The first step in understanding the behavior of this example is to look at the
values of the function Z over the region Ψ. This is shown in Figure 4, where the
dashed lines show that Z = 0 and divide Ψ into regions where Z is either positive
or negative. Also shown in the figure are three solid lines AB, CD, and EF, which
connect the lower boundary of Ψ, ψ = 0, with its upper boundary, ψ = 1. These are
candidate offer curves. AB runs along a Z = 0 line, and EF runs along another Z = 0
line for most of its length. It is clear that AB will satisfy all of the conditions used
in this paper and is a local optimum, but the position is less clear for the other two
curves.
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Fig. 4. Candidate supply curves for the example.
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First we look at the CD offer curve. This starts with a vertical section from
(0.1858, 0.68244) to (0.1858, 0.75685), then has a horizontal section to the point (1.1972,
0.75685), and then finishes with a vertical section to hit the boundary of Ψ at the
point (1.1972, 1.0245). These points have been chosen so that the solution satisfies all
of the conditions of Theorem 4. Each of the three sections has the property that the
integral of Z along the section is zero, which is what is required for w to take the same
value w0 at the endpoints of each section. Moreover, the fact that the two vertical
sections move from Z > 0 to Z < 0, while the horizontal section does the reverse,
will ensure that w is no less than w0 on the vertical sections and no more than w0 on
the horizontal section. Once it is decided to search for an offer curve of this general
form, these conditions can be used to find the exact curve. Starting from different
points on the ψ = 0 curve, we can let the w condition determine when to switch from
vertical to horizontal and then back to vertical. We then iterate amongst possible
starting positions to search for a solution which achieves a zero Z integral on the final
vertical section; i.e., it makes w = w0 at the point where the vertical section crosses
the ψ = 1 curve. (All of the numerical calculations for this example were performed
using Maple.)

The next step is to check the second order conditions of Theorem 5. We require
that the integral of Zq on the first vertical section be no greater than zero, and, in
fact, ∫ 0.75685

0.68244

Zq(0.1858, y)dy = −5.408× 10−3,

so this condition is satisfied. We also require that the integral of Zp along the hori-
zontal section be no less than zero, but∫ 1.1972

0.1858

Zp(x, 0.75685)dx = −0.16526,

so this condition fails. Moreover, the integral of Zq on the last vertical section is
greater than zero so that this condition fails as well. Finally, both the conditions
(3) and (5) involving the value of Z at the corner points fail. So we know from the
theorem that this solution is not a local optimum.

Next we consider the EF solution. The final vertical section of this is chosen
in such a way that the integral of Z on this vertical section is zero. It starts at
the point (1.365, 0.82561) and moves vertically until meeting the ψ = 1 boundary at
(1.365, 0.90056) Since the rest of the curve is on the Z = 0 curve, the conditions of
Anderson and Philpott will be satisfied. We check the conditions of Theorem 5. We
have ∫ 0.90056

0.82561

Zq(1.365, y)dy = −9.4287× 10−3 < 0

as required.
The next step is to check the sufficient conditions of Theorem 6. Most of the

conditions of this theorem will hold trivially, but we need to check that∫ 0.90056

0.82561

Zq(1.365, y)dy < Z(1.365, 0.90056)− Z(1.365, 0.82561).

Now Z(1.365, 0.82561) = 0, and Z(1.365, 0.90056) = −1.3136×10−3, so this condition
will hold.
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Hence both the curves AB and EF are locally optimal: to choose between them,
we must evaluate the objective function for each. In fact, the objective function value
along the curve AB is 0.5183, while the value along EF is 0.4857. So the curve AB is
the (global) optimum for this problem.
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Abstract. An optimal control problem governed by quasi-linear variational inequality is con-
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pair are also obtained.
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1. Introduction. In this paper, we consider the following optimal control prob-
lem.

Problem (C). Find a ȳ ∈W 1,p
0 (Ω) such that

I(ȳ) = inf
y∈W 1,p

0 (Ω)
I(y),(1.1)

where

I(y) = I(y; z, p,Ω)
�
=

1

p

∫
Ω

{|T (y)− z|p + |∇y|p}dx, y ∈W 1,p
0 (Ω),(1.2)

1 < p < +∞, Ω ⊂ R
n is a bounded domain with C1,1 boundary ∂Ω, z ∈ Lp(Ω) is a

given target profile, y is a function in Sobolev space W 1,p
0 (Ω), ∇y denotes its general-

ized gradient, and ψ ≡ T (y) is the state corresponding to the control y satisfying the
following quasi-linear variational inequality:


ψ ∈ K(y)

�
= {ϕ ∈W 1,p

0 (Ω)|ϕ ≥ y, a.e. Ω},∫
Ω

|∇ψ|p−2∇ψ · ∇(ϕ− ψ)dx ≥ 0 ∀ ϕ ∈ K(y).
(1.3)

It is well known that for any y ∈ W 1,p
0 (Ω), (1.3) admits a unique solution (see [5],

[24], [25], for example) and ψ is the solution of (1.3) if and only if ψ minimizes the
functional ϕ → ∫

Ω
|∇ϕ|pdx over K(y). Moreover, replacing ϕ by ψ + v in (1.3), we

see that ψ satisfies

−div(|∇ψ|p−2∇ψ) ≥ 0 in Ω(1.4)

in the weak sense. We denote Hp+(Ω) to be the set of all ψ ∈W 1,p
0 (Ω) satisfying (1.4).

Any ψ ∈ Hp+(Ω) is called a p-superharmonic function.
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If one wants to design a membrane having an expected shape, one needs to choose
a suitable obstacle. In this case, the obstacle can be looked at as a control, and the
membrane can be looked at as the state. Then our aim is to find an optimal obstacle
control minimizing some cost functional.

In the literature, many other authors have discussed similar problems concerning
different aspects. See [3], [13], [14], [15], [16], [17], [18], [23], [28], for example. They
considered optimal control problems for obstacle problems (or variational inequali-
ties). Usually, the obstacle functions are fixed at 0, and the control variables appear
in the variational inequality. In other words, controls do not change the obstacle.
They change only the functional of obstacle problems. For general cases of the obsta-
cle problem, when the obstacles are smooth enough, they can be reduced to the case of
the obstacle being 0 by simple translations (see [30, Chap. 1]). Similarly, by suitable
translations, we can reformulate most optimal control problems such that the controls
change only the obstacles but not the functionals of the obstacle problems. In case
an optimal control does not exist (or we do not know whether it exists or not), we
can consider the problem with controls being in a larger space (see [4], for example)
as we consider relaxed controls in existence theory of optimal control problems. In
these cases, reformulating the obstacle problems and considering obstacles as controls
(or depending on controls) will be more convenient.

In mathematical finance, the problem of American option pricing is an obstacle
problem (see [20], [21], for example). Researching in optimal obstacle control is also
useful in the theory of designing and pricing American-type contingent claims.

In case p = 2, the optimal obstacle control problem was studied by Adams,
Lenhart, and Yong [1], Chen [8], [9], [10], and Lou [26]. The cases of p �= 2 are
related to the so-called non-Newtonian fluids. The quantity p is a characteristic of
the medium. Media with p > 2 are called dilatant fluids and those with p < 2 are
called pseudoplastics. For p = 2, they are Newtonian fluids (see [11]).

The main purpose of this paper is to establish the existence, regularity, and
necessary condition of an optimal pair to Problem (C).

By the fact that an optimal control, if it exists, must be equal to the correspond-
ing optimal state, we can see that finding an optimal pair (ȳ, ψ̄) to Problem (C) is
equivalent to finding a minimizer ȳ such that (see the next section for details)

Ĩ(ȳ) = inf
y∈Hp

+
(Ω)

Ĩ(y),

with

Ĩ(y) =
1

p

∫
Ω

{|y − z|p + |∇y|p}dx.(1.5)

Thus, it is not very hard to prove that Problem (C) admits a unique optimal pair
when p = 2. The cases of p �= 2 are quite different. The difficulty is that when p �= 2
and n �= 1, Hp+(Ω) is not a convex set (and we do not know whether it is weakly closed

in W 1,p
0 (Ω)). Thus the standard method of getting the existence of an optimal control

is not valid. The main idea of getting the existence and regularity of an optimal pair is
to establish the existence theorem for a new related control problem. More precisely,
we introduce the following optimal control problem.

Problem (C∗). Find a ū ∈ Lp
′

+ (Ω)
�
= {v ∈ Lp

′
(Ω)|v ≥ 0, a.e. Ω} such that

I∗(ū) = inf
u∈Lp′

+
(Ω)

I∗(u),
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where p′ = p
p−1 ,

I∗(u) = I∗(u; z, p,Ω)
�
=

1

p

∫
Ω

{|T ∗(u)− z|p + uT ∗(u)}dx, u ∈ Lp
′
(Ω),(1.6)

with y ≡ T ∗(u) ∈W 1,p
0 (Ω) being the unique solution of the following equation:{ −div(|∇y|p−2∇y) = u in Ω,

y|∂Ω = 0.
(1.7)

We will show that ū is an optimal control to Problem (C∗) if and only if ȳ ≡ T ∗(ū)
is an optimal control to Problem (C). Because of this fact, we are able to get C1,α-
regularity of ȳ by the results of [12]. Furthermore, it turns out that such a regularity
is the best possible result in general.

The difficulty in getting the necessary condition of optimality ȳ is to give a char-
acterization of the singular set {x ∈ Ω|∇ȳ(x) = 0} of ȳ. Without a proper charac-
terization to the singular set, the necessary condition of the optimal control is far
from completely determining it. For some special cases, we do get characterizations
of optimal controls.

Now we state our main results.
Theorem 1.1. Let 1 < p < +∞, z ∈ Lp(Ω). Then Problem (C) admits an

optimal control.
Theorem 1.1 is an existence theorem. The following theorem gives the regularity

of an optimal control.
Theorem 1.2. Suppose 1 < p < +∞, z ∈ Lp(Ω), and z+ ∈ Lq(Ω) for some

q ≥ p. Let ȳ be an optimal control to Problem (C). Then there exists a ū ∈ L
q

p−1

+ (Ω)
such that { −div(|∇ȳ|p−2∇ȳ) = ū in Ω,

ȳ|∂Ω = 0.
(1.8)

Consequently, if q > pn, then ȳ ∈ C1,α(Ω̄) for some α ∈ (0, 1).
In this paper, for 1 ≤ q ≤ +∞, we denote

Lq+(Ω)
�
= {v ∈ Lq(Ω)|v ≥ 0, a.e. Ω}.(1.9)

For 1 < p < +∞, ε ≥ 0, y ∈W 1,p
0 (Ω), define operator L by

L(ϕ; y, p, ε)
�
= −div[(ε2 + |∇y|2)

p−2
2 ∇ϕ](1.10)

−(p− 2)div[(ε2 + |∇y|2)
p−4
2 (∇y · ∇ϕ)∇y]

and denote

L(ϕ; y, p)
�
= L(ϕ; y, p, 0) ≡ −div(|∇y|p−2∇ϕ)(1.11)

−(p− 2)div[|∇y|p−4(∇y · ∇ϕ)∇y].

For ϕ ∈ W 1,p
0 (Ω) and µ ∈ W−1,p′(Ω), we always write 〈µ, ϕ〉 in the integral form∫

Ω
µϕ dx.
The positive part and the negative part of a function f will be denoted by f+,

f−, respectively, i.e., f+ = max(f, 0), f− = max(−f, 0).
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When the domain Ω is clear from the context, the sets {x ∈ Ω|f(x) < 0} and
{x ∈ Ω|f(x) = 0} will be denoted by {f < 0} and {f = 0}, respectively. The
characteristic function of E will be denoted by χE . Hereafter, by a solution of a
differential equation we mean a weak solution.

The rest of the paper is organized as follows. In section 2, we will transform
the original problem to a new related problem. In section 3, we will introduce an
approximate problem and give estimates of optimal pairs for the approximate problem.
In section 4, we use the results obtained in section 3 to obtain the existence and
regularity of the solution to the original problem. An example is presented to show
that such regularity is the best possible in general. Finally, in section 5, necessary
conditions of optimality in some special cases are derived.

2. Transformation of the problem. As is in the case of p = 2 (see [1]), we
will prove that if ȳ minimizes I(·), then T (ȳ) must be equal to ȳ. To see this, let us
introduce the following lemma, which will reveal some basic properties of the operator
T .

Lemma 2.1. Given 1 < p < +∞.
(i) Suppose y ∈W 1,p

0 (Ω). Then T (y) = y if and only if y ∈ Hp+(Ω).

(ii) T 2(y) = T (y) ∀y ∈W 1,p
0 (Ω).

(iii) T [W 1,p
0 (Ω)] = Hp+(Ω).

Proof. (i) Let y ∈W 1,p
0 (Ω) satisfy T (y) = y. Then by the definition of T , we have

y = T (y) ∈ Hp+(Ω).
On the other hand, let y ∈ Hp+(Ω). Noting that for any v ∈ K(y), we have

v − y ∈W 1,p
0 (Ω) and v − y ≥ 0, a.e. Ω, thus, it follows that∫

Ω

|∇y|p−2∇y · ∇(v − y)dx ≥ 0 ∀v ∈ K(y).

Consequently, T (y) = y by the definition.
(ii) Let y ∈ W 1,p

0 (Ω). We have T (y) ∈ Hp+(Ω). Consequently, T 2(y) = T (y)
by (i).

(iii) First, T [W 1,p
0 (Ω)] ⊆ Hp+(Ω). Next, by (i), we have

Hp+(Ω) = T [Hp+(Ω)] ⊆ T [W 1,p
0 (Ω)],

proving the result.
Now we can establish the following proposition, which shows that an optimal

control to Problem (C) must be equal to the corresponding optimal state.
Proposition 2.2. Given 1 < p < +∞, z ∈ Lp(Ω), suppose ȳ is an optimal

control to Problem (C). Then T (ȳ) = ȳ. Consequently, ȳ is an optimal control to
Problem (C) if and only if ȳ minimizes Ĩ(·) over Hp+(Ω) (see (1.5) for the definition

of Ĩ(·)).
Proof. By the definition of ȳ, we have∫

Ω

{|T (ȳ)− z|p + |∇ȳ|p}dx ≤
∫

Ω

{|T (y)− z|p + |∇y|p}dx ∀ y ∈W 1,p
0 (Ω).

Let y = T (ȳ). By Lemma 2.1, T (y) = T (ȳ). Therefore∫
Ω

{|T (ȳ)− z|p + |∇ȳ|p}dx ≤
∫

Ω

{|T (ȳ)− z|p + |∇[T (ȳ)]|p}dx.
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Thus ∫
Ω

|∇ȳ|pdx ≤
∫

Ω

|∇(T (ȳ))|pdx ≤
∫

Ω

|∇ϕ|pdx ∀ ϕ ∈ K(ȳ).

That is, T (ȳ) = ȳ.
From (1.2), (1.5), and Lemma 2.1, we see that

Ĩ(y) = I(y) ∀ y ∈ Hp+(Ω).

Because of Proposition 2.2, we need only consider Ĩ(·) over Hp+(Ω). When p = 2,
Hp+(Ω) is a closed and convex set. Then by the results in [22, Chap. 1], we can prove
that the minimizer uniquely exists. But when p �= 2 and n �= 1, Hp+(Ω) is not convex.
Here is a counterexample for Ω being a ball. The general cases are similar.

Example 1. Let n = 2, 1 < p < +∞, p �= 2, and Ω = B4 be the ball of radius 4
in R

2, centered at the origin. Define

u1(x1, x2) =

{ −x2
1 + x2

2 + 16x1 + 81 if p > 2
x2

1 − x2
2 − 16x1 + 64 if p < 2

in Ω̄,

u2(x1, x2) =

{ −16x1 + 65 if p > 2
16x1 + 65 if p < 2

in Ω̄,

and

ϕ(x1, x2) = 6(16− x2
1 − x2

2) in Ω̄.

By a straightforward computation, we have

−div(|∇ui|p−2∇ui) ≥ 0 in Ω, i = 1, 2,

−div(|∇ϕ|p−2∇ϕ) ≥ 0 in Ω.

Let ωi = min(ui, ϕ). Then ωi ∈W 1,∞
0 (Ω) ⊂W 1,p

0 (Ω) and

ωi =

{
ui in Ωi1,
ϕ in Ωi2,

where Ωi1 is an ellipse in Ω and Ωi2 = Ω \ Ωi1.
Let νi be the outer normal of ∂Ωi1. We have

νi =
−∇ϕ +∇ui
| − ∇ϕ +∇ui| on ∂Ωi1, i = 1, 2.

Therefore (see Lemma 3.3),

(−|∇ϕ|p−2∇ϕ + |∇ui|p−2∇ui) · νi ≥ 0 on ∂Ωi1, i = 1, 2.

Thus, for any v ∈W 1,p′
0 (Ω) satisfying v ≥ 0, a.e. in Ω,∫

Ω

|∇ωi|p−2∇ωi · ∇vdx

=

∫
Ωi

1

[−div(|∇ui|p−2∇ui)]vdx +

∫
Ωi

2

[−div(|∇ϕ|p−2∇ϕ)]vdx

+

∫
∂Ωi

1

v(−|∇ϕ|p−2∇ϕ + |∇ui|p−2∇ui) · νids ≥ 0.

Therefore ωi ∈ Hp+(Ω), i = 1, 2.
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Since

ω1 + ω2 =

{
x2

2 − x2
1 + 146 if p > 2

x2
1 − x2

2 + 129 if p < 2
in B 1

2
(0)

in this neighborhood, therefore 1
2 (ω1 + ω2) �∈ Hp+(Ω). Thus, Hp+(Ω) is not convex.

Let us rewrite Ĩ(·) as follows:

Ĩ(y) =
1

p

∫
Ω

{|y − z|p + |∇y|p}dx(2.1)

=
1

p

∫
Ω

{|y − z|p + [−div(|∇y|p−2∇y)] · y}dx.

Next, we introduce Problem (C∗) stated in the introduction. It is clear that

T ∗[Lp
′

+ (Ω)] ⊂ Hp+(Ω).(2.2)

By (2.1) and (1.7), we have

Ĩ[T ∗(u)] = I∗(u) ∀ u ∈ Lp
′
(Ω).(2.3)

Then the existence of an optimal control to Problem (C∗) means not only the existence
of an optimal control to Problem (C) but also that the optimal control is in the set

{y ∈W 1,p
0 (Ω)| − div(|∇y|p−2∇y) ∈ Lp

′
+ (Ω)}.

Thus, its regularity is better than W 1,p-regularity. For example, when p = 2, it means
that an optimal control to Problem (C) belongs to H1

0 (Ω) ∩ H2(Ω). To reveal the
relation between Problems (C) and (C∗), we give the following proposition.

Proposition 2.3. Given 1 < p < +∞, z ∈ Lp(Ω), suppose ȳ is an optimal

control to Problem (C) and ū ≡ −div(|∇ȳ|p−2∇ȳ) ∈ Lp
′
(Ω). Then ū ∈ Lp

′
+ (Ω) and ū

is an optimal control to Problem (C∗).
On the other hand, suppose ū is an optimal control to Problem (C∗). Then T ∗(ū)

is an optimal control to Problem (C).
Proof. Suppose ȳ is an optimal control to Problem (C) and ū = −div(|∇ȳ|p−2∇ȳ)

∈ Lp
′
(Ω). Then ū ∈ Lp

′
+ (Ω) by ȳ ∈ Hp+(Ω). Now, for any u ∈ Lp

′
+ (Ω), we have

T ∗(u) ∈ Hp+(Ω). Hence

I∗(ū) = I(ȳ) ≤ I(T ∗(u)) =
1

p

∫
Ω

{|T (T ∗(u))− z|p + |∇[T ∗(u)]|p}dx

=
1

p

∫
Ω

{|T ∗(u)− z|p + uT ∗(u)}dx = I∗(u) ∀ u ∈ Lp
′

+ (Ω).

Thus ū is an optimal control to Problem (C∗).

Similarly, let ū be an optimal control to Problem (C∗). Then for any u ∈ Lp
′

+ (Ω),

Ĩ(T ∗(ū)) = I∗(ū) ≤ I∗(u) = Ĩ(T ∗(u)).

This means T ∗(ū) minimizes Ĩ(·) over {T ∗(u)|u ∈ Lp
′

+ (Ω)}. By density (see Corollary

3.5 for details), T ∗(ū) minimizes Ĩ(·) over Hp+(Ω). Hence T ∗(ū) is an optimal control
to Problem (C).
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3. Approximate problem. To get the existence, regularity, and necessary con-
dition of an optimal control, we establish the following theorem for an approximate
problem. Let us denote UM,δ ≡ {v : Ω→ [δ,M ]|v measurable } for 0 ≤ δ < M < +∞.

Theorem 3.1. Let z ∈ L∞(Ω), 1 < p < +∞, 0 < δ < 1, and p‖z‖p−1
L∞(Ω) + 2p ≤

M < +∞. Then there exists at least one ū ∈ UM,δ such that

I∗(ū) = inf
u∈UM,δ

I∗(u).(3.1)

Moreover, if ū ∈ UM,δ satisfies (3.1), then

|ū(x)| ≤ |z+(x)|p−1 + δ, a.e. Ω.(3.2)

It is crucial that in (3.2), the estimate of ū is independent of δ > 0 (we can replace
δ by 1 in (3.2)) and M � 1. By this fact, we finally get the existence and regularity
of an optimal pair for Problem (C).

To prove Theorem 3.1, we need some preliminary lemmas.
Lemma 3.2. Let C be a constant. If ϕ ∈Wm,p(Ω), p ≥ 1,m ≥ 1, then

∂βϕ(x) = 0, a.e. in {ϕ = C} ∀ 1 ≤ |β| ≤ m,

where β = (β1, . . . , βn) is an n-tuple of nonnegative integers βi, |β| =
∑n
i=1 βi.

The above lemma can be found in ([26, p. 69]; see also [29]). It tells us that
for any element z in Wm,1(Ω), on its level set, we can calculate its mth generalized
derivatives just as we calculate classical derivatives.

Lemma 3.3. Let 1 < p < +∞. Then
(i) for any a, b ∈ R

m,m ∈ N ,

(|a|p−2a− |b|p−2b) · (a− b) ≥ 0,(3.3)

and the equality holds if and only if a = b;
(ii) for any ε > 0, a ∈ R

m,m ∈ N ,

(ε2 + |a|2)
p−2
2 |a|2 ≥ |a|p − εp.(3.4)

Proof. (i) We omit the proof since it is straightforward.
(ii) If p ≥ 2 or |a| ≤ ε, then (3.4) holds obviously. Now, we suppose that 1 < p < 2

and |a| > ε. Then

(ε2 + |a|2)p/2|a|2 + (ε2 + |a|2)εp ≥ |a|p+2 + |a|2εp
≥ |a|p+2 + |a|pε2 = |a|p(ε2 + |a|2).

That is (3.4).
Let ε ≥ 0. For µ ∈W−1,p′(Ω), define yε ≡ T ∗

ε (µ) to be the unique solution of the
following quasi-linear elliptic equation:{

−div[(ε2 + |∇yε|2)
p−2
2 ∇yε] = µ in Ω,

yε|∂Ω = 0.
(3.5)

The following two lemmas give some basic properties of the operator T ∗
ε (recall

that T ∗
0 = T ∗).
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Lemma 3.4. Let ε ≥ 0, p ∈ (1,+∞), µ ∈W−1,p′(Ω).
(i) Equation (3.5) admits a unique solution T ∗

ε (µ) in W 1,p
0 (Ω). Moreover, there

exists a positive constant C = C(p,Ω), independent of ε ≥ 0, such that

‖T ∗
ε (µ)‖W 1,p

0 (Ω) ≤ C

(
‖µ‖

1
p−1

W−1,p′ (Ω)
+ ε

)
.(3.6)

(ii) Suppose (as ε→ 0+)

µε → µ strongly in W−1,p′(Ω).

Then

T ∗
ε (µε)→ T ∗(µ) strongly in W 1,p

0 (Ω).(3.7)

In particular, if µε → µ weakly in Lp
′
(Ω), then (3.7) holds.

(iii) Fix ε ≥ 0. Suppose (as k → +∞)

µk → µ strongly in W−1,p′(Ω) or weakly in Lp
′
(Ω).

Then

T ∗
ε (µk)→ T ∗

ε (µ) strongly in W 1,p
0 (Ω).(3.8)

Proof. (i) The results can be obtained easily since yε satisfies (3.5) if and only if
yε minimizes the functional ϕ → ∫

Ω
{ 1
p (ε2 + |∇ϕ|2)

p
2 − ϕµ}dx over W 1,p

0 (Ω).

(ii) Denote yε = T ∗
ε (µε), y = T ∗(µ). By (3.6), we know that for ε ∈ (0, 1), yε

is bounded uniformly in W 1,p
0 (Ω). Consequently, by the Banach–Alaoglu theorem

(see [31]) and the Sobolev imbedding theorem (see [2]), yε has a subsequence which
converges weakly in W 1,p

0 (Ω) and strongly in Lp(Ω). Thus, it is sufficient to prove
that y∗ = y and

lim
ε→0+

‖∇yε‖Lp(Ω) = ‖∇y‖Lp(Ω)(3.9)

if

yε → y∗ weakly in W 1,p
0 (Ω), strongly in Lp(Ω).

To see this, noting that∫
Ω

{
1

p
(ε2 + |∇yε|2)

p
2 − yεµε

}
dx ≤

∫
Ω

{
1

p
(ε2 + |∇ϕ|2)

p
2 − ϕµε

}
dx ∀ ϕ ∈W 1,p

0 (Ω),

∫
Ω

|∇y∗|pdx ≤ lim inf
ε→0+

∫
Ω

(ε2 + |∇yε|2)
p
2 dx,(3.10)

and

lim
ε→0+

∫
Ω

yεµεdx =

∫
Ω

y∗µdx,(3.11)

we have ∫
Ω

{
1

p
|∇y∗|p − y∗µ

}
dx ≤

∫
Ω

{
1

p
|∇ϕ|p − ϕµ

}
dx ∀ϕ ∈W 1,p

0 (Ω).

Hence y∗ = y.
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On the other hand, by Lemma 3.3(ii),∫
Ω

yεµεdx =

∫
Ω

(ε2 + |∇yε|2)
p−2
2 |∇yε|2dx ≥

∫
Ω

(|∇yε|p − εp)dx.

Therefore

lim sup
ε→0+

∫
Ω

|∇yε|pdx ≤
∫

Ω

yµdx =

∫
Ω

|∇y|pdx.

Consequently,

lim
ε→0+

∫
Ω

|∇yε|pdx =

∫
Ω

|∇y|pdx.

Thus, (3.9) holds and we get the proof.
(iii). The proof is similar to that of (ii).

Corollary 3.5. Let p ∈ (1,+∞). Then the set {T ∗(u)|u ∈ Lp
′

+ (Ω)} is dense in
Hp+(Ω).

Proof. It is easy to see that

Hp+(Ω) = {T ∗(µ)|µ ∈W−1,p′(Ω), µ ≥ 0 in the weak sense}.

Thus, we need only to prove that for any µ ∈ W−1,p′(Ω), µ ≥ 0, there exists a

sequence uj ∈ Lp
′

+ (Ω) such that T ∗(uj)→ T ∗(µ) strongly in W 1,p
0 (Ω).

To see this, let

Ψ(x) =


 k exp

(
− 1

1− |x|2
)

if |x| < 1,

0 if |x| ≥ 1,

where k > 0 is chosen to satisfy the condition∫
Rn

Ψ(x)dx = 1.

For j ∈ N , denote Ψj(x) ≡ j nΨ(jx), and vj ≡ µ ∗ Ψj . Then we can verify that

vj ∈ C∞(Ω̄)
⋂

Lp
′

+ (Ω) and

vj → µ weakly in W−1,p′(Ω).

By Mazur’s theorem, there exists αj,i ≥ 0,
∑Kj

i=1 αj,i = 1 such that

uj ≡
Kj∑
i=1

αj,ivj+i → µ strongly in W−1,p′(Ω).

We have uj ∈ Lp+(Ω). By Lemma 3.4(iii), we get

T ∗(uj)→ T ∗(µ) strongly in W 1,p
0 (Ω),

completing the proof.
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Lemma 3.6. Let ε ≥ 0, p ∈ (1,+∞).

(i) Suppose yε ∈W 1,p
0 (Ω), −div[(ε2 + |∇yε|2)

p−2
2 ∇yε] ≥ 0. Then yε ≥ 0, a.e. Ω.

(ii) Suppose q > p′n, u ∈ Lq(Ω). Let yε = T ∗
ε (u). Then yε ∈ C1,α(Ω̄), where

α = α(p, q, ‖u‖Lq(Ω),Ω) ∈ (0, 1) is independent of ε ≥ 0. Moreover, there exists a
positive constant C = C(p, q, ‖u‖Lq(Ω),Ω) such that

|Diyε(x)−Diyε(x
′)| ≤ C|x− x′|α ∀ x, x′ ∈ Ω̄; i = 1, 2, . . . , n.(3.12)

Proof. (i) Since y−ε ∈W 1,p
0 (Ω) and y−ε ≥ 0, a.e. Ω, we have

0 ≤
∫

Ω

(ε2 + |∇yε|2)
p−2
2 ∇yε · ∇y−ε dx

= −
∫

Ω

(ε2 + |∇yε|2)
p−2
2 |∇y−ε |2dx.

Therefore ∇y−ε = 0, a.e. Ω. Consequently, y−ε = 0, a.e. Ω, i.e., yε ≥ 0, a.e. Ω.
(ii) The result is an immediate corollary of the interior C1,α-regularity of the

quasi-linear equations with the homogenous boundary condition (see [12] and [33]).
Lemma 3.7. Suppose 0 < α < 1, f ∈ Cα(Ω̄,Rn). Then
(i) ∀β > −1, there exists a γ ∈ (0, 1) such that |f |βf ∈ Cγ(Ω̄,Rn);
(ii) ∀δ > 0, β > −1, there exists a γ ∈ (0, 1) and C > 0, independent of ε ∈ [0, 1],

such that

|hε(x̃)− hε(x)| ≤ C|x̃− x|γ ∀ x̃, x ∈ Ω̄,

where hε = (ε2 + |f |δ) β
δ f .

(iii) ∀k ≥ 0, 2s + k + 1 > 0, there exists a γ ∈ (0, 1) and C > 0, independent of
ε ∈ [0, 1], such that

|gε(x̃)− gε(x)| ≤ C|x̃− x|γ ∀ x̃, x ∈ Ω̄,

where gε = (ε2 + |f |2)s|f |kf .
Proof. The proofs of (i) and (ii) are straightforward, and (i) is in fact a special case

of (ii). Finally, (iii) follows from (i) and (ii) since (ε2 + |f |2)s|f |kf = (ε2 + |g| 2
k+1 )sg

with g = |f |kf .
The following lemma has a result similar to that of Lemma 3.2, which shows some

crucial information about the so-called singular set.
Lemma 3.8. Suppose u ∈ L∞(Ω), and y ∈W 1,p

0 (Ω) is a solution of the following
equation: {

−div(|∇y|p−2∇y) = u in Ω,

y|∂Ω = 0.

Then

u(x) = 0, a.e. x ∈ {∇y = 0}.

For a proof of the above lemma, see [27]. As a consequence of the above lemma,
the singular set {∇y = 0} must have Lebesgue measure zero if u(x) > 0, a.e. Ω.
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Now, let us give a proof of Theorem 3.1.
Proof of Theorem 3.1. First, by (2.3), for any u ∈ UM,δ, I∗(u) ≥ 0. Thus, we

have uk ∈ UM,δ satisfying

lim
k→+∞

I∗(uk) = inf
u∈UM,δ

I∗(u).

Moreover, we can suppose that

uk → ū weakly in Lp
′
(Ω).

Since UM,δ is convex, ū ∈ UM,δ. On the other hand, by Lemma 3.4(ii) (for the case
ε = 0), we can obtain that

T ∗(uk)→ ȳ ≡ T ∗(ū) strongly in W 1,p
0 (Ω).

Thus, by the definition of I∗, we have

I∗(ū) = lim
k→+∞

I∗(uk) = inf
u∈UM,δ

I∗(u).

Therefore, there exists at least one ū ∈ UM,δ satisfying (3.1).
Now, let ū ∈ UM,δ be an optimal control satisfying (3.1), ȳ = T ∗(ū). By Lemma

3.6(ii), we have ȳ ∈ C1,α(Ω̄) for some α ∈ (0, 1). We will prove (3.2) in three steps.
Step I: First approximation. Let (ȳ, ū) be described as above. Fix

η ∈
(

0,
1

1 + ‖ȳ‖p−1
L+∞(Ω)

)
.

For θ > 0, consider the equation{ −div(|∇yθ|p−2∇yθ) + θyθ = u in Ω,
yθ|∂Ω = 0.

(3.13)

Similar to the existence of a ū ∈ UM,δ satisfying (3.1), it is easy to prove that there

exists a (ȳθ, ūθ) ∈W 1,p
0 (Ω)× UM,δ satisfying (3.13) and

1

p

∫
Ω

{|ȳθ − z|p + η|ȳθ − ȳ|p + ūθȳθ}dx(3.14)

≤ 1

p

∫
Ω

{|yθ − z|p + η|yθ − ȳ|p + uyθ}dx

for all (yθ, u) ∈W 1,p
0 (Ω)× UM,δ satisfying (3.13).

For any k > 0, by (3.13), we have

θk

∫
Ω

(ȳθ − k)+dx ≤ θ

∫
Ω

ȳθ(ȳθ − k)+dx

≤
∫

Ω

{|∇[(ȳθ − k)+]|p + θȳθ(ȳθ − k)+}dx

=

∫
Ω

ūθ(ȳθ − k)+dx ≤M

∫
Ω

(ȳθ − k)+dx.

Therefore,

θȳθ ≤M, a.e. Ω.(3.15)
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Similarly,

θȳθ ≥ 0, a.e. Ω.(3.16)

Thus, ‖ūθ − θȳθ‖L∞(Ω) ≤ M . By Lemma 3.6, we see that ȳθ is uniformly bounded
in C1,α(Ω̄) for some α ∈ (0, 1). Then we can suppose that, at least in the sense of a
subsequence (as θ → 0+),{

ūθ → û weakly in Lq(Ω) ∀ 1 < q < +∞,
ȳθ → ŷ uniformly in C1(Ω̄).

Thus, û ∈ UM,δ. By Lemma 3.4(ii), ŷ = T ∗(û). Moreover, by (3.14),

1

p

∫
Ω

{|ŷ − z|p + η|ŷ − ȳ|p + ûŷ}dx

≤ 1

p

∫
Ω

{|y − z|p + η|y − ȳ|p + uy}dx ∀ u ∈ UM,δ,

where y = T ∗(u). If ŷ �≡ ȳ (i.e., û �≡ ū), replacing u by ū in the above inequality, we
get

1

p

∫
Ω

{|ŷ − z|p + ûŷ}dx <
1

p

∫
Ω

{|ȳ − z|p + ūȳ}dx;

this contradicts the optimality of ū (see (3.1)). Therefore, we have û ≡ ū, ŷ ≡ ȳ.
Consequently, not only in the sense of a subsequence, we get (as θ → 0+),{

ūθ → ū weakly in Lq(Ω) ∀ 1 < q < +∞,
ȳθ → ȳ uniformly in C1(Ω̄).

(3.17)

Consequently, there exists a θ0 > 0 such that

θ‖ȳθ‖L∞(Ω) <
δ

2
, ‖ȳθ‖p−1

L∞(Ω) < ‖ȳ‖p−1
L∞(Ω) + 1 ∀ 0 < θ ≤ θ0.(3.18)

In this case, we have (see (3.13))

−div(|∇ȳθ|p−2∇ȳθ) = ūθ − θȳθ ≥ δ

2
> 0 in Ω.

Thus, by Lemma 3.8, the set Eθ ≡ {∇ȳθ = 0} has n-dimensional Lebesgue measure
zero. On the other hand, Eθ is closed since ȳθ ∈ C1,α(Ω̄).

Step II: Second approximation. For 0 < θ < θ0, ε > 0, consider the equation{
−div[(ε2 + |∇yθ,ε|2)

p−2
2 ∇yθ,ε] + θyθ,ε = u in Ω,

yθ,ε|∂Ω = 0.
(3.19)

Similar to Step I, there exists a (ȳθ,ε, ūθ,ε) ∈W 1,p
0 (Ω)× UM,δ satisfying (3.19) and

1

p

∫
Ω

{|ȳθ,ε − z|p + η|ȳθ,ε − ȳ|p + η|ȳθ,ε − ȳθ|p + ūθ,εȳθ,ε}dx

≤ 1

p

∫
Ω

{|yθ,ε − z|p + η|yθ,ε − ȳ|p + η|yθ,ε − ȳθ|p + uyθ,ε}dx
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for any (yθ,ε, u) ∈ W 1,p
0 (Ω) × UM,δ satisfying (3.19). Moreover, there exists a ϕ̄θ,ε ∈

W 1,2
0 (Ω) such that (see (1.10) for the definition of L){

L(ϕ̄θ,ε; ȳθ,ε, p, ε) + θϕ̄θ,ε = fθ,ε − ūθ,ε in Ω,
ϕ̄θ,ε|∂Ω = 0,

(3.20)

and ∫
Ω

(ϕ̄θ,ε − ȳθ,ε)(u− ūθ,ε)dx ≤ 0 ∀ u ∈ UM,δ,(3.21)

where

fθ,ε = p|z − ȳθ,ε|p−2(z − ȳθ,ε) + pη|ȳ − ȳθ,ε|p−2(ȳ − ȳθ,ε)(3.22)

+ pη|ȳθ − ȳθ,ε|p−2(ȳθ − ȳθ,ε) in Ω.

Similarly to (3.15)–(3.16) and (3.17), we have 0 ≤ θȳθ,ε ≤M , and (as ε→ 0+){
ūθ,ε → ūθ weakly in Lq(Ω) ∀ 1 < q < +∞,
ȳθ,ε → ȳθ uniformly in C1(Ω̄).

(3.23)

Therefore, there exists a Cθ > 0, independent of ε ∈ (0, 1), such that (see (3.18) and
(3.22))

−Cθ ≤ fθ,ε ≤ p(z+)p−1 + pη(ȳ)p−1 + pη(ȳθ)
p−1(3.24)

≤ p‖z‖p−1
L∞(Ω) + pη(2‖ȳ‖p−1

L∞(Ω) + 1) ≤ p‖z‖p−1
L∞(Ω) + 2p ≤M in Ω.

Thus, as in (3.15), we have

−1

θ
Cθ ≤ ϕθ,ε ≤ 1

θ
M.

By the W 2,q-estimate for linear elliptic equation (3.20), we obtain the following esti-
mate:

‖ϕ̄θ,ε‖W 2,q(Ω0) ≤ C(θ, q,Ω0) ∀ Ω0 ⊂⊂ (Ω \ Eθ), 1 < q < +∞,

where the constant C(θ, q,Ω0) is independent of ε ∈ (0, 1) (see [19]). Then we can
suppose that (at least for a subsequence)

ϕ̄θ,ε → ϕ̄θ weakly in Lq(Ω) ∀ 1 < q < +∞,(3.25)

uniformly in C1(Ω̄0) ∀ Ω0 ⊂⊂ (Ω \ Eθ).
Passing to the limit and noting that (3.21) still holds by replacing the integral domain
Ω by Ω0 ⊂ Ω (just let u = ūθ,ε on the set Ω \ Ω0), we get from (3.20)–(3.22) that

L(ϕ̄θ; ȳθ, p) + θϕ̄θ = fθ − ūθ in Ω \ Eθ,(3.26)

and ∫
Ω0

(ϕ̄θ − ȳθ)(u− ūθ)dx ≤ 0 ∀ u ∈ UM,δ, Ω0 ⊂⊂ (Ω \ Eθ),(3.27)

where

fθ = p|z − ȳθ|p−2(z − ȳθ) + pη|ȳ − ȳθ|p−2(ȳ − ȳθ) in Ω.
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One can easily see that (3.27) still holds if the integral domain Ω0 is replaced by Ω,
since Eθ has Lebesgue measure zero.

Step III: Applying the maximum principles for approximate problems. First, we
want to prove that ϕ̄θ(x) ≤ ȳθ(x), and then we want to get a useful estimate of ūθ.
Equations (3.20)–(3.21) and (3.26)–(3.27) are maximum principles for approximate
problems. We notice that in (3.26)–(3.27), no boundary condition is posed for ϕ̄θ.
Thus, as a maximum principle, (3.26)–(3.27) is incomplete (see similar results in [6],
[7]).

By (3.21), {
ūθ,ε(x) = M, a.e. x ∈ {ϕ̄θ,ε > ȳθ,ε},
ūθ,ε(x) = δ, a.e. x ∈ {ϕ̄θ,ε < ȳθ,ε}.

Therefore, by (3.24),

fθ,ε(x)− ūθ,ε(x) ≤ 0, a.e. x ∈ {ϕ̄θ,ε > ȳθ,ε}.
Thus, it follows from (3.20) that∫

Ω

{
(ε2 + |∇ȳθ,ε|2)

p−2
2 ∇ϕ̄θ,ε · ∇

(
(ϕ̄θ,ε − ȳθ,ε)

+
)

(3.28)

+ (p− 2)(ε2 + |∇ȳθ,ε|2)
p−4
2 (∇ȳθ,ε · ∇ϕ̄θ,ε)

[∇ȳθ,ε · ∇
(
(ϕ̄θ,ε − ȳθ,ε)

+
)]

+ θϕ̄θ,ε(ϕ̄θ,ε − ȳθ,ε)
+
} ≤ 0.

On the other hand, by (3.18) and (3.23), we have ε0 > 0 such that

θ‖ȳθ,ε‖L∞(Ω) < δ ∀ ε ∈ (0, ε0).

Consequently, by (3.19),

−div[(ε2 + |∇ȳθ,ε|2)
p−2
2 ∇ȳθ,ε] = ūθ,ε − θȳθ,ε > 0 ∀ ε ∈ (0, ε0).

Therefore

(p− 1)

∫
Ω

(ε2 + |∇ȳθ,ε|2)
p−2
2 ∇ȳθ,ε · ∇[(ϕ̄θ,ε − ȳθ,ε)

+]dx ≥ 0.(3.29)

Noting that ȳθ,ε ≥ 0, we have

θ

∫
Ω

ȳθ,ε(ϕ̄θ,ε − ȳθ,ε)
+dx ≥ 0.(3.30)

Combining (3.28)–(3.30), we get∫
Ω

(ε2 + |∇ȳθ,ε|2)
p−2
2 |∇[(ϕ̄θ,ε − ȳθ,ε)

+]|2dx(3.31)

+ (p− 2)

∫
Ω

(ε2 + |∇ȳθ,ε|2)
p−4
2 |∇ȳθ,ε · ∇[(ϕ̄θ,ε − ȳθ,ε)

+]|2dx

+

∫
Ω

θ[(ϕ̄θ,ε − ȳθ,ε)
+]2dx

≤ (p− 2)

∫
Ω

ε2(ε2 + |∇ȳθ,ε|2)
p−4
2 ∇ȳθ,ε · ∇[(ϕ̄θ,ε − ȳθ,ε)

+]dx.
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Thus,

min(p− 1, 1)

∫
Ω

(ε2 + |∇ȳθ,ε|2)
p−2
2 |∇[(ϕ̄θ,ε − ȳθ,ε)

+]|2dx(3.32)

≤ |p− 2|
∫

Ω

(ε2 + |∇ȳθ,ε|2)
p−2
2 |∇ȳθ,ε| |∇[(ϕ̄θ,ε − ȳθ,ε)

+]|dx.

Consequently, by Hölder’s inequality and (3.19),∫
Ω

(ε2 + |∇ȳθ,ε|2)
p−2
2 |∇[(ϕ̄θ,ε − ȳθ,ε)

+]|2dx(3.33)

≤ Cp

∫
Ω

(ε2 + |∇ȳθ,ε|2)
p
2 dx ≤ C̃p

for some Cp, C̃p > 0 independent of ε ∈ (0, ε0). Therefore, we can suppose that

(ε2 + |∇ȳθ,ε|2)
p−2
4 ∇[(ϕ̄θ,ε − ȳθ,ε)

+]→ gθ weakly in L2(Ω; R
n).

On the other hand, since ȳθ,ε is bounded uniformly in C1,α(Ω̄), by Lemma 3.7, both

(ε2 + |∇ȳθ,ε|2)
p−2
4 ∇ȳθ,ε and (ε2 + |∇ȳθ,ε|2)

p−6
4 |∇ȳθ,ε|2∇ȳθ,ε

are bounded uniformly in Cβ(Ω̄; R
n) for some β ∈ (0, 1) independent of ε. Thus, their

difference

ε2(ε2 + |∇ȳθ,ε|2)
p−6
4 ∇ȳθ,ε

is also bounded uniformly in Cβ(Ω̄; R
n). Then we can suppose that

ε2(ε2 + |∇ȳθ,ε|2)
p−6
4 ∇ȳθ,ε → hθ uniformly in C(Ω̄; R

n).

Noting that ∇ȳθ,ε(x) → ∇ȳθ(x) �= 0 for x ∈ (Ω \ Eθ), we get hθ = 0 in Ω \ Eθ.
Moreover, there exists an ε0 > 0, and C1 > C2 > 0, independent of ε ∈ (0, ε0), such
that

C2 ≤ |∇ȳθ,ε| ≤ C2 in Ω0 ⊂⊂ (Ω \ Eθ) ∀ ε ∈ (0, ε0).

Thus, by (3.33) and (3.31), there exists a C > 0, independent of ε ∈ (0, ε0), such that

C

∫
Ω0

|∇[(ϕ̄θ,ε − ȳθ,ε)
+]|2dx ≤ C̃p,(3.34)

and

C

∫
Ω0

|∇[(ϕ̄θ,ε − ȳθ,ε)
+]|2dx(3.35)

≤ (p− 2)

∫
Ω

ε2(ε2 + |∇ȳθ,ε|2)
p−4
2 ∇ȳθ,ε · ∇[(ϕ̄θ,ε − ȳθ,ε)

+]dx.

Combining (3.34) with (3.23) and (3.25), we have

(ϕ̄θ,ε − ȳθ,ε)
+ → (ϕ̄θ − ȳθ)

+ weakly in W 1,2(Ω0).
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Then, by (3.35), we get

C

∫
Ω0

|∇[(ϕ̄θ − ȳθ)
+]|2dx ≤ C lim inf

ε→0+

∫
Ω0

|∇[(ϕ̄θ,ε − ȳθ,ε)
+]|2dx

≤ (p− 2)

∫
Ω

hθ · gθdx = 0.

Thus,

∇[(ϕ̄θ − ȳθ)
+] = 0, a.e. Ω \ Eθ.

Therefore, for any ball B ⊂ (Ω \ Eθ),
(ϕ̄θ − ȳθ)

+ = CB , a.e. B.

We claim that CB = 0. Otherwise, suppose that CB > 0 for some B ⊂ (Ω \ Eθ).
Then

ϕ̄θ = ȳθ + CB , a.e. B.

Noting that ∇ȳθ �= 0 in Ω \ Eθ and ȳθ ∈ C1,α(Ω̄), we can easily prove that ȳθ, ϕ̄θ ∈
W 2,q(B) for some q > 1 (see (3.13) and (3.26)). Then by Lemma 3.2 and (3.26), we
have

−(p− 1)div(|∇ȳθ|p−2∇ȳθ) + θȳθ + θCB

= p|z − ȳθ|p−2(z − ȳθ) + pη|ȳ − ȳθ|p−2(ȳ − ȳθ)− ūθ in B.

Therefore, by (3.13), and noting that ȳθ ≥ 0,

ūθ = |z − ȳθ|p−2(z − ȳθ) + η|ȳ − ȳθ|p−2(ȳ − ȳθ) +
p− 2

p
θȳθ − 1

p
θCB(3.36)

≤ (z+)p−1 + η(ȳ)p−1 + θȳθ ≤ (z+)p−1 + 2 < M in B.

On the other hand, by (3.27),{
ūθ = M, a.e. {ϕ̄θ > ȳθ} \ Eθ,
ūθ = δ, a.e. {ϕ̄θ < ȳθ} \ Eθ.(3.37)

This contradicts (3.36) since B ⊂ ({ϕ̄θ > ȳθ} \ Eθ). Thus, we prove that

(ϕ̄θ − ȳθ)
+ = 0, a.e. Ω \ Eθ.

That is,

ϕ̄θ ≤ ȳθ, a.e. Ω \ Eθ.(3.38)

Similarly to (3.36), we have

ūθ ≤ (z+)p−1 + η(ȳ)p−1 + θȳθ, a.e. {ϕ̄θ = ȳθ} \ Eθ.
Combining the above with (3.37)–(3.38) and noting that |Eθ| = 0, we get

ūθ ≤ (z+)p−1 + ηȳp−1 + θȳθ + δ, a.e. Ω.(3.39)

Let θ → 0+; by (3.17), we get

ū ≤ (z+)p−1 + ηȳp−1 + δ, a.e. Ω.

Finally, let η → 0+; then (3.2) follows and we get the proof.
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4. Existence and regularity of an optimal control. In this section, we will
prove the main results of this paper.

Proof of Theorem 1.1. We first suppose that z ∈ L∞(Ω). Let M > p‖z+‖p−1
L∞(Ω) +

2p, 0 < δ < 1. By Theorem 3.1, there exists a ūM,δ ∈ UM,δ such that (3.1) and (3.2)
hold with ū being replaced by ūM,δ. Thus, we have a subsequence δj → 0+ such that

ūM,δj → ūM weakly in Lq(Ω) ∀ 1 < q < +∞.

It is not very hard to see that ūM minimizes I∗(·) over UM,0 and by (3.2), ūM ≤
(z+)p−1. Similarly, for any S > M , there exists a ūS minimizing I∗(·) over US,0
and satisfying ūS ≤ (z+)p−1. Consequently, ūS ∈ UM,0. Therefore I∗(ūM ) ≤ I∗(ūS).
That is, ū ≡ ūM also minimizes I∗(·) over US,0 for any S > M . Then it must minimize

I∗(·) over Lp
′

+ (Ω).
Now, suppose z ∈ Lp(Ω). For ε > 0, denote

zε(x) =

{
z(x) if |z(x)| ≤ 1

ε ,

0 if |z(x)| > 1
ε .

(4.1)

Then there exists a ūε which minimizes I∗(·; zε, p,Ω) over Lp
′

+ (Ω) such that 0 ≤ ūε ≤
(z+
ε )p−1. Thus,

‖ūε‖Lp′ (Ω) ≤ ‖z+‖p−1
Lp(Ω).(4.2)

Hence, we can suppose that

ūε → ū weakly in Lp
′
(Ω).(4.3)

Therefore,

0 ≤ ū ≤ (z+)p−1, a.e. Ω.(4.4)

Consequently, ū ∈ Lp
′

+ (Ω). Denote ȳε = T ∗(ūε), ȳ = T ∗(ū). By Lemma 3.4(iii),

ȳε → ȳ strongly in W 1,p
0 (Ω).(4.5)

Thus,

I∗(ū) =
1

p

∫
Ω

{|ȳ − z|p + ȳū}dx = lim
ε→0+

1

p

∫
Ω

{|ȳε − zε|p + ȳεūε}dx

≤ lim
ε→0+

1

p

∫
Ω

{|T ∗(u)− zε|p + uT ∗(u)}dx

=
1

p

∫
Ω

{|T ∗(u)− z|p + uT ∗(u)}dx = I∗(u) ∀ u ∈ Lp
′

+ (Ω).

That is, ū is an optimal control to Problem (C∗). Consequently, ȳ is an optimal
control to Problem (C).

Proof of Theorem 1.2. If ȳ is the limit of ȳε as in (4.5), then we have proved that
ū ≡ −div(|∇ȳ|p−2∇ȳ) satisfies (4.4).

If z+ ∈ Lq(Ω) and q > pn, then ū ∈ L
q

p−1

+ (Ω) and q
p−1 > p

p−1n = p′n. Conse-

quently, by Lemma 3.6(ii), ȳ ∈ C1,α(Ω̄) for some α ∈ (0, 1).
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In general, let ȳ be an optimal control to Problem (C). Then it is easy to see
that ȳ must be the unique minimizer of the functional y → Ĩ(y) +

∫
Ω
|y − ȳ|pdx over

Hp+(Ω). Replacing I∗(·) by I∗(·) +
∫
Ω
|T ∗(·)− ȳ|pdx, we can get the desired regularity

of ȳ by a discussion similar to that above.
The C1,α-regularity of ȳ is the best possible result in general. To see this, let us

first establish the following theorem.
Theorem 4.1. Let 1 < p < +∞, z ∈ Lp(Ω). Let ȳ be an optimal control to

Problem (C) and let Z minimize Ĩ(·) over W 1,p
0 (Ω), i.e.,{ −div(|∇Z|p−2∇Z) = |z − Z|p−2(z − Z) in Ω,

Z|∂Ω = 0.
(4.6)

Then ȳ = Z if and only if Z ≤ z.
Proof. Suppose ȳ = Z. Then Z = ȳ ≤ z since

|z − ȳ|p−2(z − ȳ) = −div(|∇ȳ|p−2∇ȳ) ≥ 0.

Now, suppose Z ≤ z. Then Z ∈ Hp+(Ω). Since Z minimizes Ĩ(·) over W 1,p
0 (Ω),

it must minimize Ĩ(·) over Hp+(Ω). Thus, Ĩ(Z) = Ĩ(ȳ). Therefore ȳ also minimizes Ĩ

over W 1,p
0 (Ω). Since Ĩ is strictly convex in W 1,p

0 (Ω), we get ȳ = Z.
By the previous theorem, we can see that the C1,α-regularity of ȳ is the best

possible result in general. In fact, it is well known that a p-harmonic function may
have no C1,α-regularity provided α > αp, where αp → 1

3 as p → +∞ (see [22]). The
case in our problem is quite similar. When p = 2, examples in [26] show that the
C1,1-regularity of ȳ is the best possible result in general. The following is an example
for the case p > 2.

Example 2. Let 2 < p < +∞, Ω = B1, z ≡ 1. Then by Theorem 4.1, we can
prove that the minimizer ȳ of I(·) corresponding to z satisfies{ −div(|∇ȳ|p−2∇ȳ) = |z − ȳ|p−2(z − ȳ) in Ω,

ȳ|∂Ω = 0.

It is easy to see that ȳ is a radial function. Denote ȳ(x) = h(|x|). We have

−h′(r) =

{
r1−n

∫ r

0

ξn−1[1− h(ξ)]p−1dξ

} 1
p−1

.(4.7)

Therefore

−h′(r) ≤
[
r1−n

∫ r

0

ξn−1dξ

] 1
p−1

=
( r
n

) 1
p−1

(4.8)

and

h(r) ≤ h(0) =

∫ 1

0

−h′(r)dr ≤
∫ 1

0

( r
n

) 1
p−1

dr =

(
1

n

) 1
p−1

· p− 1

p
< 1.

Thus, by (4.7),

−h′(r) ≥ [1− h(0)]
( r
n

) 1
p−1

.(4.9)

Combining (4.8) with (4.9), we see that h �∈ C1,α[0, 1) ∀α ∈ ( 1
p−1 , 1]. Consequently,

ȳ �∈ C1,α(B1) when α ∈ ( 1
p−1 , 1].
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5. Necessary condition. In section 3, we obtained the existence theorem and
the necessary condition for a minimizer of the approximate problem. In section 4,
we obtained the regularity of an optimal control to the original problem. However,
it is difficult to characterize an optimality ȳ. The difficulty comes when we attempt
to characterize the singular set {∇ȳ = 0}. But, in some special cases, we do get a
characterization of ȳ.

Lemma 5.1. Let −∞ < a < b < +∞, 1 < p < +∞. Suppose that y ∈W 1,p
0 (a, b).

Then, in the weak sense,

−(|y′|p−2y′)′ ≥ 0 in (a, b)⇐⇒ −y′′ ≥ 0 in (a, b).(5.1)

Consequently, Hp+(a, b) is convex.
Proof. We first suppose that in the weak sense,

−(|y′|p−2y′)′ ≥ 0 in (a, b).

Denote

µ = −(|y′|p−2y′)′.

Then µ ∈ W−1,p′(a, b) and µ ≥ 0. As in the proof of Corollary 3.5, we have uε ∈
C∞[a, b]

⋂
Lp

′
+ (Ω) for any ε > 0 such that

‖uε − µ‖W−1,p′ (a,b) ≤ ε.

Let yε satisfy (recalling that y ∈W 1,p(a, b) ↪→ C[a, b]){
−[(ε2 + |y′ε|2)

p−2
2 y′ε]

′ = uε in (a, b),
yε(a) = 0, yε(b) = 0.

(5.2)

By Lemma 3.4(ii), we have

yε → y strongly in W 1,p
0 (a, b).

It is easy to see that yε ∈ C∞(a, b). Therefore,

−(ε2 + |y′ε|2)
p−4
2 (ε2 + (p− 1)|y′ε|2)y′′ε = uε ≥ 0 in (a, b).

Thus,

−y′′ε ≥ 0 in (a, b).

Passing to the limit, we get

−y′′ ≥ 0 in (a, b).

The remainder can be proved by a discussion similar to the above.
Theorem 5.2. Let −∞ < a < b < +∞, Ω = (a, b), z ∈ Lp(a, b). Then Problem

(C) admits a unique optimal control ȳ and there exist a ϕ̄ ∈ W 1,p′
0 (a, b)∩ W 2,p′(a, b)

such that

ϕ̄ ≤ 0 in (a, b),(5.3)

{ −(|ȳ′|p−2ȳ′)′ = |z − ȳ|p−2(z − ȳ)χ{ϕ̄=0} in (a, b),
ȳ(a) = ȳ(b) = 0,

(5.4)
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and { −ϕ̄′′ = |z − ȳ|p−2(z − ȳ)χ{ϕ̄<0} in (a, b),
ϕ̄(a) = ϕ̄(b) = 0.

(5.5)

Moreover, the pair (ȳ, ϕ̄) ∈ Hp+(a, b)× [W 1,p′
0 (a, b)∩W 2,p′(a, b)] satisfying (5.3)–(5.5)

is unique.
On the other hand, if z ∈ L∞(a, b), then ϕ̄ ∈ C1,1[a, b].

If p ∈ (1, 2] and z+ ∈ Lq(a, b) for some p ≤ q ≤ +∞, then ȳ ∈ W 2, q
p−1 (a, b).

Proof. Obviously, Hp+(a, b) is closed in W 1,p
0 (a, b) and Ĩ(·) is a strictly convex

functional. By Lemma 5.1, Hp+(a, b) is convex. Thus, we can prove that Problem (C)
admits a unique optimal control ȳ by the discussion in section 2. By Theorem 1.2,

ū ≡ −(|ȳ′|p−2ȳ′)′ ∈ Lp
′

+ (a, b).
Let y ∈ Hp+(a, b). Then

ȳ + α(y − ȳ) ∈ Hp+(a, b) ∀ α ∈ (0, 1).

By the optimality of ȳ, we have

0 ≤ 1

pα

∫ b

a

{|ȳ + α(y − ȳ)− z|p + |∇ȳ + α(∇y −∇ȳ)|p − |ȳ − z|p − |∇ȳ|p}dx.

Let α→ 0+; we then get

0 ≤
∫ b

a

{|ȳ − z|p−2(ȳ − z)(y − ȳ) + |∇ȳ|p−2∇ȳ · (∇y −∇ȳ)}dx(5.6)

=

∫ b

a

{|ȳ − z|p−2(ȳ − z) + ū}(y − ȳ)dx.

Let ϕ̄ be the solution of the following equation:{ −ϕ̄′′ = |z − ȳ|p−2(z − ȳ)− ū in (a, b),
ϕ̄(a) = ϕ̄(b) = 0.

(5.7)

Then (5.6) becomes

0 ≤
∫ b

a

ϕ̄′′(y − ȳ)dx = −
∫ b

a

ϕ̄[(−y′′)− (−ȳ′′)]dx.(5.8)

Consequently, by choosing −y′′ = −ȳ′′ + v, v ∈ L∞
+ (a, b), we get (5.3).

On the other hand, choosing y = 1
2 ȳ in (5.8), we have

0 ≤ 1

2

∫ b

a

ϕ̄(−ȳ′′)dx.

By (5.7), we have ϕ̄ ∈ C1[a, b]. Thus {ϕ̄ < 0} is open and we have {ϕ̄ < 0} =
∪k(ak, bk), where (ak, bk) are mutually disjoint. Combining (5.3) with −ȳ′′ ≥ 0, we
get

supp ȳ′′ ⊆ {ϕ̄ = 0}.
Then, for any k, there exists a constant Ck such that

ȳ′ = Ck, a.e. (ak, bk).
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That is,

|ȳ′|p−2ȳ′ = |Ck|p−2Ck, a.e. (ak, bk),

and we get

ū = 0, a.e. (ak, bk).

On the other hand, by (5.7) and Lemma 3.2, we have

ū = |z − ȳ|p−2(z − ȳ), a.e. {ϕ̄ = 0}.
Thus, we get (5.4)–(5.5).

When z ∈ L∞(a, b), we see that ϕ̄ ∈W 2,∞(a, b) = C1,1[a, b] by (5.5).
When p ∈ (1, 2] and z+ ∈ Lq(a, b) for some p ≤ q ≤ +∞, we have

−ȳ′′ =
1

p− 1
|ȳ′|2−p|z − ȳ|p−2(z − ȳ)χ{ϕ̄=0} ∈ L

q
p−1 (a, b)

by (5.4). Consequently, ȳ ∈ W 2, q
p−1 (a, b).

Now, we prove the uniqueness. Suppose

(ỹ, ϕ̃) ∈ Hp+(Ω)×W 1,p′
0 (a, b)

satisfies (5.3)–(5.5) too. Then

∫ b

a

{[|z − ỹ|p−2(z − ỹ)− |z − ȳ|p−2(z − ȳ)][(z − ỹ)− (z − ȳ)](5.9)

+ (|ȳ′|p−2ȳ′ − |ỹ′|p−2ỹ′)(ȳ′ − ỹ′)}dx

=

∫ b

a

{−(|ȳ′|p−2ȳ′)′ − |z − ȳ|p−2(z − ȳ)

+ (|ỹ′|p−2ỹ′)′ + |z − ỹ|p−2(z − ỹ)}(ȳ − ỹ)dx

=

∫ b

a

(ϕ̄′′ − ϕ̃′′)(ȳ − ỹ)dx.

Since ϕ̄ ∈ W 1,p′
0 (a, b), ϕ̄ is continuous. Therefore {ϕ̄ < 0} is an open subset of (a, b).

Thus {ϕ̄ < 0} = ∪k(ak, bk), where (ak, bk) are mutually disjoint. For each (ak, bk),

−(|ȳ′|p−2ȳ′)′ = 0 in (ak, bk).

Hence

ȳ′ = Ck in (ak, bk)

for some constant Ck. Noting that ϕ̄(ak) = ϕ̄(bk) = 0, ȳ ∈ W 1,p
0 (a, b), and ϕ̄′ = 0,

a.e. in {ϕ̄ = 0}, by Lemma 3.2, we have

∫ b

a

−ϕ̄′′ȳdx =

∫ b

a

ϕ̄′ȳ′dx =

∫
{ϕ̄<0}

ϕ̄′ȳ′dx =
∑
k

∫ bk

ak

ϕ̄′ȳ′dx

=
∑
k

∫ bk

ak

ϕ̄′Ckdx =
∑
k

Ck[ϕ̄(ak)− ϕ̄(bk)] = 0.



1250 HONGWEI LOU

Similarly, ∫ b

a

−ϕ̃′′ỹdx = 0.

Therefore, by (5.3), (5.9), and Lemma 5.1,

∫ b

a

{[|z − ỹ|p−2(z − ỹ)− |z − ȳ|p−2(z − ȳ)][(z − ỹ)− (z − ȳ)]

+ (|ȳ′|p−2ȳ′ − |ỹ′|p−2ỹ′)(ȳ′ − ỹ′)}dx

=

∫ b

a

{−ϕ̄′′ỹ − ϕ̃′′ȳ}dx =

∫ b

a

{−ϕ̄′ỹ′ − ϕ̃′ȳ′}dx ≤ 0.

Hence, by Lemma 3.3, ȳ = ỹ. We complete the proof.
When the domain is BR and z is a radial function, we are interested in finding a

minimizer of I over W 1,p
0 (BR) ∩ SR, where SR denotes the set of all radial functions

in BR. We can also give results similar to those of Theorem 5.2.
Theorem 5.3. Suppose 1 < p < +∞ and z ∈ Lp(BR) ∩ SR. Then I(·) admits

a unique minimizer ȳ over W 1,p
0 (BR) ∩ SR. We have ȳ ∈ Hp+(BR) ∩ C1(BR \ {0}).

Moreover, if z+ ∈ Lq(BR) for some q > (p − 1)n, then ȳ ∈ C1,α(B̄R) for some
α ∈ (0, 1).

In the following theorems, ȳ denotes the minimizer of I(·) over W 1,p
0 (BR) ∩ SR

corresponding to z ∈ Lp(BR) ∩ SR.
Theorem 5.4. Let

ψ̄(x) = ψ̄(|x|) =

∫ R

|x|
dr

∫ r

0

ξn−1|z(ξ)|p−2z(ξ)r
1−n
p−1 dξ, 0 < |x| ≤ R.(5.10)

Then, ȳ ≡ 0 if and only if ψ̄ ≤ 0 in B̄R \ {0}.
Theorem 5.5. Suppose 1 < p < 2, ψ̄ �≡ 0, where ψ̄ is defined by (5.10) in

B̄R \ {0}. Denote
s = sup{r ∈ [0, R]|∇ȳ = 0, a.e. in Br}.(5.11)

Then s ∈ [0, R), and

∇ȳ �= 0 in BR \ B̄s.(5.12)

(i) If s = 0, then there exists a ϕ̄ ∈W
1, p+1

2
0 (BR) ∩ C1(B̄R \{0}) such that

ϕ̄ ≤ 0 in B̄R \ {0},(5.13)

{ −div(|∇ȳ|p−2∇ϕ̄) = |z − ȳ|p−2(z − ȳ)χ{ϕ̄<0} in BR,
ϕ̄|∂BR

= 0,
(5.14)

{ −div(|∇ȳ|p−2∇ȳ) = |z − ȳ|p−2(z − ȳ)χ{ϕ̄=0} in BR,
ȳ|∂BR

= 0.
(5.15)

Moreover, if z ∈ Lq(BR) for some q > n(p − 1), then ϕ̄ ∈ C1(B̄R). Consequently,
ϕ̄(0) = 0, ∇ϕ̄(0) = 0.
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(ii) If s > 0, then ∫
Bs

|z − ȳ|p−2(z − ȳ)dx = 0,(5.16)

and there exists a ϕ̄ ∈ C1(B̄R \Bs) such that
ϕ̄ ≤ 0 in BR \ B̄s,(5.17)

{ −div(|∇ȳ|p−2∇ϕ̄) = |z − ȳ|p−2(z − ȳ)χ{ϕ̄<0} in BR \ B̄s,
ϕ̄|∂BR∪∂Bs

= 0,∇ϕ̄|∂Bs
= 0,

(5.18)

and { −div(|∇ȳ|p−2∇ȳ) = |z − ȳ|p−2(z − ȳ)χ{ϕ̄=0}∩(BR\B̄s) in BR,
ȳ|∂BR

= 0.
(5.19)

Theorem 5.6. Suppose 2 < p < +∞. Then there exists a ϕ̄ ∈ W 1,p′
0 (BR)∩

C1(B̄R \ {0}) such that
ϕ̄ ≤ 0 in B̄R,(5.20)

{ −div(|x|−γ∇ϕ̄) = |z − ȳ|p−2(z − ȳ)χ{ϕ̄<0} in BR,
ϕ̄|∂BR

= 0,
(5.21)

{ −div(|∇ȳ|p−2∇ȳ) = |z − ȳ|p−2(z − ȳ)χ{ϕ̄=0} in BR,
ȳ|∂BR

= 0,
(5.22)

where γ = (n−1)(p−2)
p−1 .

Though Hp+(BR) is not convex when p �= 2 and n > 1, Hp+(BR)∩SR is convex by
a straightforward computation. The proof of Theorem 5.3 is based on the fact that
Hp+(BR)∩SR is a closed and convex subset of W 1,p

0 (BR). The proofs of Theorems 5.4–
5.6, which are somewhat similar to the proof of Theorem 5.2, need careful calculations.
We omit the proofs.

Remark 5.7. If ψ̄ in Theorem 5.4 has good regularity, then it is a solution of an
equation like (5.21) in Theorem 5.6.

Remark 5.8. Comparing Theorem 5.5(ii) with Theorems 5.2 and 5.6, we can see
that the condition we get in case 1 < p < 2 on the singular set {∇ȳ = 0} is relatively
weak. Roughly speaking, (5.16) is equivalent to ϕ̄(s) = 0.

Remark 5.9. In Theorem 5.5, if ū �= 0, a.e. in Bs+δ \Bs for some δ > 0, then in
(5.14) and (5.18), −div(|∇ȳ|p−2∇ϕ̄) can be replaced by −div(|x|−γ∇ϕ̄) as in (5.21).

The results in Theorems 5.2, 5.5, and 5.6 are somewhat surprising. We guessed
that on the singular set Ω0 ≡ {∇ȳ = 0}, ϕ̄ in these theorems would satisfy ϕ̄ ≤ 0 and
(if Ω0 is a domain ) { − ϕ̄ = |z − ȳ|p−2(z − ȳ) in Ω0,

ϕ̄|∂Ω0 = 0.

Theorems 5.3 and 5.6 show that this is not the case. Though ȳε → ȳ uniformly
in C1(Ω̄) under proper conditions, the set {∇ȳ = 0} may be quite different from
{∇ȳε = 0}.
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Boston, 1995.
[24] F. H. Lin and Y. Li, Boundary C1,α-regularity for variational inequalities, Comm. Pure Appl.

Math., 44 (1991), pp. 715–732.
[25] J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-

Verlag, New York, 1971.
[26] H. Lou, On the regularity of an obstacle control problem, J. Math. Anal. Appl., 258 (2001),

pp. 32–51.
[27] H. Lou, On Singular Sets of Local Solutions to p–Laplace Equation, Nonlinear Anal., submit-

ted.
[28] F. Mignot and J.-P. Puel, Optimal control in some variational inequalities, SIAM J. Control

Optim., 22 (1984), pp. 466–476.
[29] C. B. Morrey Jr., Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin,

1966.



QUASI-LINEAR VARIATIONAL INEQUALITIES 1253

[30] J. F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland Math. Stud. 134,
North-Holland, Amsterdam, The Netherlands, 1987.

[31] H. Royden, Real Analysis, 2nd ed., Collier-Macmillan, New York, 1968.
[32] T. W. Ting, Elastic-plastic torsion of a square bar, Trans. Amer. Math. Soc., 123 (1966),

pp. 369–401.
[33] P. Tolksdorf, Regularity for a more general case of quasilinear elliptic equations, J. Differ-

ential Equations, 51 (1984), pp. 126–150.



ASYMPTOTIC CONTROL OF PAIRS OF OSCILLATORS COUPLED
BY A REPULSION, WITH NONISOLATED EQUILIBRIA I:

THE REGULAR CASE∗

ALEXANDRE CABOT† AND MARC-OLIVIER CZARNECKI†

SIAM J. CONTROL OPTIM. c© 2002 Society for Industrial and Applied Mathematics
Vol. 41, No. 4, pp. 1254–1280

Abstract. Let φ : H → R be a C1 function on a real Hilbert space H and let γ > 0 be a positive
damping parameter. For any repulsive potential V : H → R+ and any control function ε : R+ → R+

which tends to zero as t→ +∞, we study the asymptotic behavior of the trajectories of the coupled
dissipative system of nonlinear oscillators

(HBFC2)

{
ẍ+ γẋ+ ∇φ(x) + ε(t)∇V (x− y) = 0,
ÿ + γẏ + ∇φ(y) − ε(t)∇V (x− y) = 0.

We first provide general existence results and show that ∇φ(x(t)) → 0 and ∇φ(y(t)) → 0 when
t → +∞, assuming either that the trajectory (x, y) is bounded, or that the potential V is bounded
and that φ satisfies the following limit condition:

(LIM) For every sequence (zn) ⊂ H such that limn→+∞ |zn| = +∞, there exists a subsequence
(zϕ(n)) such that

lim
n→+∞φ(zϕ(n)) = +∞ or lim

n→+∞∇φ(zϕ(n)) = 0.

If ε(t) does not tend to zero too rapidly as t → +∞, then the term ε(t)∇V (x − y) asymptotically
repulses the trajectories one from the other. Precisely, when H = R, and if ε is a “slow” control, i.e.,∫+∞
0 ε(t)dt = +∞, then the trajectories x and y converge to extremal points of the set S = {λ ∈

R,∇φ(λ) = 0} of the equilibria of φ (when S �= ∅), or they have the same limit. In particular, when
S is reduced to an interval—for example, if φ is convex—this allows us to obtain a global description
of the set S. We provide numerical experiments which make our convergence results more precise.

Key words. nonlinear oscillator, coupled system, slow control, heavy ball with friction, global
optimization

AMS subject classifications. Primary, 37N40, 34G20; Secondary, 34H05, 34D05, 34E10,
49K15, 70F99

PII. S0363012901385198

1. Introduction.
(a) Let H be a real Hilbert space, with scalar product and corresponding norm,

respectively, denoted by 〈., .〉 and | . |. Let φ : H → R be a given C1 real-valued
function called the potential function. An important problem is the search for the
equilibria of the function φ (i.e., the solutions of the equation ∇φ(x) = 0, where ∇φ
is the gradient of φ), among which the minima (global or local) play a particular
role in the fields of optimization, physics, and economics, to name a few. To obtain
equilibria or minima of the function φ, a powerful method is to follow the trajectories
of an associated dissipative gradient-like dynamical system, possibly discretized for
numerical applications. In many practical problems (for example, minimizing a convex
function which is not strictly convex), the function φ has nonisolated equilibria, and
one wants to choose a particular equilibrium or minimum. One may also desire a full
and global description of the set of equilibria or minima of φ, and also estimations of
its size. We provide some examples in section 3.1.
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It is not obvious that a dynamical system may help in these last cases, since
a trajectory would likely lead to a single equilibrium at the limit when t → +∞.
However, one could conceive, for example, that the cluster points of a dynamical
system associated to the function φ could correspond exactly to the set of its minima.
Even so, numerical applications might be tricky since the cluster points are likely to be
more difficult to identify than simply limits. Another direction, which is our concern
in this paper, is to consider coupled dynamical systems, which exchange information
and thus are more able to globally explore the function φ than a single noncoupled
system. Precisely, in order to obtain a global dynamical approach of the equilibria of
the function φ, we study the asymptotic behavior of the following second order (in
time) coupled gradient-like system:

(HBFC2)

{
ẍ+ γẋ+∇φ(x) + ε(t)∇V (x− y) = 0,

ÿ + γẏ +∇φ(y)− ε(t)∇V (x− y) = 0,

where γ > 0 is a positive damping parameter, ε : R+ → (0,+∞) is a control function
such that limt→+∞ ε(t) = 0, and V : H → R+ is a (coupling) potential function.

(b) Let us briefly explain what led us to consider the (HBFC2) system. To simply
obtain equilibria or local minima of the function φ, the classical steepest descent
method

(SD) ẋ(t) +∇φ(x(t)) = 0

gives positive results (see Bruck’s theorem [11], Lojasiewicz theorem [19, 20]; see
also [9, 10], etc.) and is a descent method which corresponds to the motion of a
drop of water on the graph of φ. Introducing acceleration in the motion, precisely
considering a second order in time dynamical system, is likely to lead to more global
exploration properties since it would not necessarily stop at the first equilibrium that
it encounters. A particularly important system, the Heavy Ball with Friction system,

(HBF) ẍ(t) + γẋ(t) +∇φ(x(t)) = 0,

corresponds to the motion of a material point with positive mass, subjected to stay on
the graph of φ. It is not a descent method but still a dissipative system (γ > 0 is the
friction parameter) and enjoys many minimizing properties (see the recent papers of
Alvarez [1], Attouch, Goudou, and Redont [6], Goudou [15], Haraux and Jendoubi [17],
and Jendoubi [18]). However, only the first problem of reaching one—nonspecified—
minimum of the function φ is answered.

In order to obtain more specifications on the properties of the equilibria which are
selected as limits of the trajectories, Attouch and Czarnecki [4] consider the system

(HBFC) ẍ(t) + γẋ(t) +∇φ(x(t)) + ε(t)x(t) = 0

(Heavy Ball with Friction and Control) by introducing a Tikhonov-like1 asymptotic
regularization term ε(t)x(t). When φ is convex and ε : R+ → R+ is a C1 control
function which tends to zero slowly, i.e., such that

∫ +∞
0

ε(t)dt = +∞, they proved
that each trajectory of the (HBFC) system strongly converges to the point of minimal
norm of the set S = argminφ 2 (which is assumed to be nonempty). The condition

1For the theory of Tikhonov regularization, we refer to [24].
2Precisely defined by argminφ = {z ∈ H|∀z′ ∈ H,φ(z) ≤ φ(z′)}.
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∫ +∞
0

ε(t)dt = +∞ corresponds to the fact that ε(t) does not tend to zero too rapidly,
thus allowing the Tikhonov regularization term ε(t)x(t) to be effective asymptotically.

This result shows in fact an asymptotic selection property: the effect of such a slow
control ε forces all the trajectories to converge to the same equilibrium, namely, the
equilibrium of minimal norm. This situation sharply contrasts with the noncontrolled
situation (or fast control) where the limits of the trajectories are only weak limits,
depend on the initial data, and may also be difficult to identify. The idea of coupling
approximation methods with the dynamics of a gradient-like system had already been
considered at the first order for the steepest descent by Attouch and Cominetti [3]
(for related topics, see also Furuya, Miyashiba, and Kenmochi [14] and Baillon and
Cominetti [8]).

(c) It is then a natural question to know if it is possible to adapt the selection
properties of the Tikhonov regularization with a coupling potential in order to allow
two different trajectories to “exchange” information so that they explore different
parts of the set of equilibria S = {λ ∈ R,∇φ(λ) = 0}. Note that the (HBFC2) system
has a similar mechanical interpretation as the (HBF) system with an extra repulsion
force—deriving from the potential V—between the two “balls” (for example, in the
case where V (z) = 1 − |z|2 (|z| < 1), it corresponds to a repulsive spring of varying
stiffness ε(t)). One can easily conceive that if ε(t) does not tend to zero too rapidly, the
mechanical system will select two equilibria as far as possible from each other. Note
also that the coupling term ε(t)∇V (x− y) can be viewed as a time-varying feedback
(see Coron [12] for a survey on stabilization of nonlinear systems by nonautonomous
feedbacks).

The first main result of the paper (corresponding to Proposition 2.1 and part of
Theorem 2.1 below) shows that ∇φ(x(t))→ 0 and ∇φ(y(t))→ 0 when t→ +∞.

Theorem A. Assume that φ : H → R is a C1 function, bounded from below, such
that ∇φ is Lipschitz continuous on the bounded sets. Let V : H → R+ be a C1 function
such that ∇V is locally Lipschitz continuous on H and bounded on the bounded subsets
of H. Let ε : [0,+∞)→ R+ be a C1 function such that limt→+∞ ε(t) = 0 and ε̇(t) ≤ 0
for every t ∈ R+. Then, for every ((x0, y0), (ẋ0, ẏ0)) ∈ H2 × H2, there is a unique
solution (x, y) : [0,+∞)→ H2 of the (HBFC2) Cauchy problem:

(HBFC2)




ẍ+ γẋ+∇φ(x) + ε(t)∇V (x− y) = 0,

ÿ + γẏ +∇φ(y)− ε(t)∇V (x− y) = 0,(
x(0), y(0), ẋ(0), ẏ(0)

)
=
(
x0, y0, ẋ0, ẏ0

)
.

Moreover,

lim
t→+∞∇φ(x(t)) = lim

t→+∞∇φ(y(t)) = 0

if one of the two following assumptions holds:

(a) The trajectory (x, y) is bounded.
(b) The map t �→ V (x(t) − y(t)) is bounded and the map φ satisfies the limit

condition
(LIM) for every sequence (zn) ⊂ H such that limn→+∞ |zn| = +∞, there exists

a subsequence (zϕ(n)) such that

lim
n→+∞φ(zϕ(n)) = +∞ or lim

n→+∞∇φ(zϕ(n)) = 0.
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The second main result of the paper (corresponding to Theorem 2.2 and Corol-
lary 2.4 below) is the convergence of the trajectories in the one-dimensional case.
Let

Ŝ =
{
z ∈ R, lim

z→z
φ′(z) = 0

}
.

Theorem B. Under the assumptions of Theorem A, additionally assume that
H = R and that zV ′(z) ≤ 0 for every z ∈ R (repulsion). Then the solution (x, y)
satisfies the following asymptotical behavior:

(i) If φ satisfies (LIM) or if the trajectory (x, y) is bounded, there exists (x∞, y∞) ∈
Ŝ × Ŝ such that limt→+∞(x(t) , y(t)) = (x∞ , y∞).

(ii) (Slow parametrization.) Additionally assume that
∫ +∞
0

ε(t) dt = +∞, that Ŝ
is an interval, and that for every z �= 0, V ′(z) �= 0. Then one of the following
cases holds:
• limt→+∞(x(t) , y(t)) = (sup Ŝ , inf Ŝ);
• limt→+∞(x(t) , y(t)) = (inf Ŝ , sup Ŝ);
• limt→+∞ x(t) = limt→+∞ y(t) ∈ Ŝ.

In fact our convergence results are more precise and are not restricted to the
case where Ŝ is a nonempty interval. The first two cases give a global description
of the set Ŝ and give an answer to the initial problem of the global exploration of
the equilibria of the potential φ. The last case does not provide global information
and could be viewed as a drawback of our results. But numerical experiments (with
different potentials φ and V ) lead to the conjecture that this last case only happens
on a negligible set of initial data, with a possibly fractal structure.

In order to precisely determine the convergence properties of the (HBFC2) system
in the infinite-dimensional setting, we show the weak convergence of the trajectories
with a convex potential φ, and a “fast” control ε, i.e., such that

∫ +∞
0

ε(t) dt < +∞
(Proposition 2.2). But with a “fast” control, the (weak) limits depend on the initial
data and are in general difficult to identify.

The one-dimensional case should be seen as a first step in which we are able
to give precise results concerning the convergence, with a “slow control” ε. Though
we provide remarks and counterexamples for such precision in higher dimensions, we
believe that our paper could give a direction and justification for further extension
of the global exploration of the equilibria of a (possibly nonconvex) function φ. Our
numerical experiments seem to indicate that in “most” cases the coupled systems
would lead to a full description of the set of the minima of φ, possibly involving a
coupled finite number N of systems, with N greater than 2.

In numerical applications and simulations, the system (HBFC2) is approximated
by a discretized system, thus requiring one to compute only the potential on the
sequence (xn, yn) of the discretized trajectory. For studies in this direction, see, for
example, [2]. Note that the control term ε(t)∇V (x−y) can be viewed as a perturbation
term and thus allows us to take into account other perturbations (for example, of the
potential φ). From the numerical point of view, it is essential to study the stability
of the trajectory behavior of the (discretized) system under a perturbation of the
potential, thus allowing for errors on the computation of φ and ∇φ (which also can be
interesting for the speed of computations). These studies are beyond the scope of our
paper, but encouraging results are obtained in [21] by using incomplete sensitivities.

Besides its first optimization scope, note that applications are also to be found
in the study of physical coupled systems, which of course requires results in higher
dimensions.
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(d) The paper is organized as follows. In section 2.1, we precisely state the
global existence results and general asymptotic properties (Proposition 2.1 and The-
orem 2.1), which are not reduced to the one-dimensional case. In section 2.2, we
precisely state the asymptotic convergence results (Theorems 2.2 and 2.3 and Corol-
laries 2.3 and 2.4). In section 3, we provide remarks on and counterexamples of our
results. The results are proved in section 4 (global existence) and section 5 (asymptotic
convergence). Finally, in section 6, we give numerical results making our theoretical
results more precise, and we indicate some possible directions for further research on
the subject.

2. Main results. In this paper, we assume the following (rather standard) set
of hypotheses.

Hypothesis 1. Let H be a real Hilbert space. Let us consider a map φ : H → R

of class C1 which satisfies the following conditions:

(Hφ)
{
(i) the map φ is bounded from below on H;
(ii) the map ∇φ is Lipschitz continuous on the bounded subsets of H.

Let V : H → R+ be a map of class C1 such that

(HV )
{
(i) the map ∇V is locally Lipschitz continuous on H;
(ii) the map ∇V is bounded on the bounded subsets of H.

Let ε : [0,+∞)→ R+ be a function of class C1 such that

(Hε)
{
(i) the function ε is nonincreasing, i.e., ∀t ∈ R+, ε̇(t) ≤ 0;
(ii) limt→+∞ ε(t) = 0.

Let γ > 0, ((x0, y0), (ẋ0, ẏ0)) ∈ H2 ×H2; the (HBFC2) system is defined as follows:

(HBFC2)




ẍ+ γẋ+∇φ(x) + ε(t)∇V (x− y) = 0,

ÿ + γẏ +∇φ(y)− ε(t)∇V (x− y) = 0,(
x(0), y(0), ẋ(0), ẏ(0)

)
=
(
x0, y0, ẋ0, ẏ0

)
.

(2.1)

Remark. For the sake of readability, we take 0 as initial time. All the results
of the paper clearly hold by taking any other initial time t0 ∈ R and making the
corresponding adaptations in the statements.

2.1. Global properties. The following proposition ensures the global existence
of the solutions of the (HBFC2) system.

Proposition 2.1 (global existence). Assume Hypothesis 1. Then
(i) there exists a unique maximal solution (x, y) : [0,+∞)→ H×H of (HBFC2)

which is of class C2;
(ii) (ẋ, ẏ) ∈ L∞([0,+∞);H × H) ∩ L2([0,+∞);H × H) and (φ(x), φ(y)) ∈

L∞([0,+∞);R× R).
Proposition 2.1 is proved in section 4.1. The next result summarizes the global

(convergence) properties of the solutions of the (HBFC2) system.
Theorem 2.1. Under the assumptions of Proposition 2.1 (Hypothesis 1), addi-

tionally assume one of the two following assumptions:
(a) The trajectory (x, y) is bounded.
(b) The map t �→ V (x(t) − y(t)) is bounded and the map φ satisfies the limit

condition
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(LIM) For every sequence (zn) ⊂ H such that limn→+∞ |zn| = +∞, there exists
a subsequence (zϕ(n)) such that

lim
n→+∞φ(zϕ(n)) = +∞ or lim

n→+∞∇φ(zϕ(n)) = 0.

Then
(iii) limt→+∞ ẋ(t) = limt→+∞ ẏ(t) = 0;
(iv) limt→+∞∇φ(x(t)) = limt→+∞∇φ(y(t)) = 0.

Additionally assume that the map φ is convex. Then, with S = {z ∈ H,∇φ(z) = 0},
(v) if x (resp., y) is bounded, then lim

t→+∞φ(x(t)) = inf φ (resp., lim
t→+∞φ(y(t)) =

inf φ);
(vi) if x∞ (resp., y∞) is a weak cluster point of x (resp., y), then x∞ (resp., y∞)

belongs to S.
Theorem 2.1 is proved in section 4.2. Note that Proposition 2.1 and Theorem 2.1

clearly imply Theorem A in the introduction.
Remark. Note that the condition (LIM) is equivalent to the following assertion:

∀α > 0, ∀A ∈ R, the set {z ∈ H,φ(z) ≤ A and |∇φ(z)| ≥ α} is bounded.
The condition (LIM) is clearly satisfied in the two following simpler cases:

(c) The map φ is coercive, i.e., lim|z|→+∞ φ(z) = +∞.
(d) lim|z|→+∞∇φ(z) = 0.

In view of Proposition 2.1(ii), the map φ is bounded and the assumption (c) implies
that the trajectory (x, y) is bounded. In this case, the assumption that the map
t �→ V (x(t)− y(t)) is bounded is automatically satisfied.

We provide additional remarks and counterexamples in section 3.2.

2.2. Convergence in the one-dimensional case. Once the (global) existence
is acquired, the main point in the study of a dissipative system is to investigate the
convergence properties of the solution map. In this section, we explore the convergence
and stabilizing properties of the solutions of the (HBFC2) system under additional
assumptions. We assume that the space H is one-dimensional (i.e., H = R). Note
that since the map V ′ : R→ R is continuous, it is bounded on the bounded sets and
assumption (HV )(ii) is automatically satisfied. Since our point is a global exploration,
and in order to push the trajectories away one from another, we consider the case
where the potential V is a repulsion, i.e., satisfies

(HV )(iii) ∀z ∈ R, zV ′(z) ≤ 0.
2.2.1. Convergence of the trajectory. The next result gives the general con-

vergence and stabilizing properties of the solutions of the (HBFC2) system without
further assumptions on the control ε. In the following, S denotes the set of the equi-
libria of φ: S = {z ∈ R, φ′(z) = 0}. In order to give a unified presentation of our
results, we define the set Ŝ as the union of S, of {+∞} if limz→+∞ φ′(z) = 0, and of
{−∞} if limz→−∞ φ′(z) = 0. Equivalently,

Ŝ =
{
z ∈ R, lim

z→z
φ′(z) = 0

}
.

Finally, in order to include the case where the trajectories x and y may not be
bounded, we consider the limit condition (LIM). Since H = R, the limit condition
(LIM) is satisfied if the map φ is convex and bounded from below.
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Theorem 2.2 (convergence of the solutions). Assume Hypothesis 1, with H = R,
together with (HV )(iii), ∀z ∈ R, zV ′(z) ≤ 0.

Assume that the map φ satisfies (LIM) (for example, if φ is convex) or that the
trajectory (x, y) is bounded.3 Let (x,y) be the solution of the (HBFC2) system. Then

there exists (x∞, y∞ ) ∈ Ŝ × Ŝ such that

lim
t→+∞(x(t) , y(t)) = (x∞ , y∞).

Theorem 2.2 is proved in section 5.1 and commented on in section 3.4. When φ
is convex, the trajectory minimizes φ. The following corollary states this precisely.

Corollary 2.1. Under the assumptions of Theorem 2.2, additionally assume
that the map φ is convex. Then

lim
t→+∞(φ(x(t)) , φ(y(t))) = (inf φ , inf φ).

Proof of Corollary 2.1. Consider the different cases (i) x∞ ∈ R (hence x is
bounded), (ii) x∞ = −∞ (hence φ′ ≥ 0), (iii) x∞ = +∞ (hence φ′ ≤ 0).

Corollary 2.1 is commented on in section 3.5. As a consequence of Theorem 2.2, we
deduce the convergence result of Haraux [16, Example 2.2.6] for the (not controlled)
(HBF) system in dimension one.

Corollary 2.2 (Haraux [16]). Let f ∈ C1(R) and γ > 0; then every bounded
solution of

ẍ(t) + γẋ(t) = f(x(t))

converges to some x∞ ∈ R such that f(x∞) = 0.
Proof of Corollary 2.2. In Theorem 2.2, consider the (not controlled) case where

ε(t) = 0 for every t, with a bounded C2 potential φ such that φ(z) = − ∫ z
0
f(u)du for

|z| ≤ ‖x‖∞.
2.2.2. Slow control. The results in this section specify the convergence of the

solution map (x, y) toward specific points of Ŝ with a “slow” control ε. For every
λ ∈ R, we denote by P+(λ) (resp., P−(λ)) the following proposition:

For every neighborhood V (λ) of λ ∃µ ∈ V (λ) ∩ R, φ′(µ) > 0 (resp., φ′(µ) < 0).

Theorem 2.3 (slow parametrization). Under the assumptions of Theorem 2.2,
additionally assume that

(Hε)(iii)
∫ +∞

0

ε(t) dt = +∞.

(HV )(iv) ∀z ∈ R \ {0}, V ′(z) �= 0.
Let m∞ = min{x∞, y∞ } and M∞ = max{x∞, y∞ }, where (x∞, y∞ ) ∈ Ŝ × Ŝ are
the limits of the trajectories. Then the solution (x, y) of the (HBFC2) system satisfies
the following properties:

• If −∞ < m∞ < M∞ < +∞, then we have P−(m∞) and P+(M∞).
• If m∞ = −∞ and M∞ < +∞, then we have P+(m∞) or P+(M∞).
• If m∞ > −∞ and M∞ = +∞, then we have P−(m∞) or P−(M∞).

3In fact this last case could be deduced from the previous one—the (LIM) assumption—by
changing the map φ.
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Theorem 2.3 is proved in section 5.2. In fact Theorem 2.3 specifies the points of
Ŝ where the trajectories x and y converge. In order to ensure readability, we consider
only the special case below (see Corollary 3.1 for a more extensive description).

Corollary 2.3 (slow parametrization). Under the assumptions of Theorem 2.3,

let I(λ) be the connected component of λ in Ŝ. If y∞ < x∞ and if one of the conditions
(a) −∞ < y∞;
(b) y∞ = −∞ and ∃λ ∈ R, φ′((−∞, λ]) ≤ 0

is satisfied, then the trajectory x converges to an extremal point of I(x∞); precisely,

x∞ ∈ {inf I(x∞), sup I(x∞)}.

Corollary 2.3 is proved in section 5.3 and commented on in section 3.6. When the
set of equilibria is an interval, the behavior of the trajectories is more precise.

Corollary 2.4 (slow parametrization with a connected set of equilibria). Under

the assumptions of Theorem 2.3, additionally assume that the set Ŝ is an interval (in
R) (for example, if φ is convex). Then the solution (x,y) of the (HBFC2) system
satisfies one of the following cases:

(i) limt→+∞(x(t) , y(t)) = (sup Ŝ , inf Ŝ).
(ii) limt→+∞(x(t) , y(t)) = (inf Ŝ , sup Ŝ).
(iii) There exists x∞ ∈ Ŝ such that limt→+∞ x(t) = limt→+∞ y(t) = x∞.
Note that Theorem 2.2 and Corollary 2.4 clearly imply Theorem B in the intro-

duction.
Remark. In Corollary 2.4, the three cases reduce to only one when Ŝ is reduced to

a singleton. But then other simple methods of optimization (like the steepest descent

method in the convex case) also apply. In the general case where Ŝ is not reduced to
a singleton, the three cases are disjoint.

Remark. When case (i) or (ii) of Corollary 2.4 holds, one obtains a global de-

scription of the set Ŝ since the trajectories converge toward the extremal points of
Ŝ. After some numerical experiments, we conjecture that case (iii) only happens for
initial data in a negligible set (see section 6.2).

To illustrate Corollary 2.4 (hence Theorem 2.3 and Corollaries 2.3 and 3.1), we
represent some trajectories (x(t), y(t)) in the plane R

2. We take φ(z) = (z + 1)2 if

z ≤ −1, φ(z) = 0 if z ∈ [−1, 1], φ(z) = (z−1)2 if z ≥ 1, V (z) = 1
2e

−z2

10 , ε(t) = 1
log(t+2) ,

and γ = 0.4. On Figure 2.1, we draw the trajectories (x(t), y(t)) for the three different
initial conditions (x(0), y(0), ẋ(0), ẏ(0)) = (0, 1.9, 0, 0), respectively, (1.5,−2.5, 0, 0),
respectively, (2.5, 1.525718, 0, 0) corresponding to case (i), respectively, (ii), respec-
tively, (iii). The gray square is the set S × S = [−1, 1]× [−1, 1].

As a (clear) consequence of Corollary 2.4, the limit of the difference of the tra-
jectories either maximizes the diameter of the set S or is equal to 0.

Corollary 2.5. Under the assumptions of Theorem 2.3, additionally assume
that S is a nonempty interval and that Ŝ = cl

R
(S). Then the solution (x, y) of the

(HBFC2) system satisfies

lim
t→+∞ |x(t)− y(t)| = diam(S) or lim

t→+∞ |x(t)− y(t)| = 0.

The proof of Corollary 2.5 is immediate.
Remark. Corollary 2.5 may not hold if we do not assume Ŝ = cl

R
(S), even if S

is a nonempty interval. Consider the counterexample in section 3.5.
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Fig. 2.1. Illustration of the three cases (i), (ii), and (iii).
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2.3. Fast convergence in the convex and infinite-dimensional case. In
order to precisely determine the convergence properties of the (HBFC2) system, we
show that the solutions of the (HBFC2) system weakly converge, with a convex po-
tential and a “fast control.” Note that in this section we do not necessarily assume
the potential V to be repulsive.

Proposition 2.2 (fast parametrization in the convex case). Assume Hypothe-
sis 1, that φ is convex with S = argminφ �= ∅, and that

(Hε)(iv)
∫ +∞

0

ε(t) dt < +∞.

Additionally assume that the trajectories x and y are bounded. Then there exists
some (x∞, y∞) ∈ S × S such that (x, y) weakly converges to (x∞, y∞); precisely, w−
limt→+∞(x(t), y(t)) = (x∞, y∞) and limt→+∞ φ(x(t)) = limt→+∞ φ(y(t)) = minφ.

Proposition 2.2 is proved in section 5.5.

3. Remarks and counterexamples.

3.1. Some applications. In this section, we give some illustrations of practical
cost or potential functions with nonunique and nonisolated equilibria. These are
of course academic examples, while examples closer to real-world applications would
require considering higher dimensions, PDEs, and also constraints (for example, if one
needs to describe the full optimal face in mathematical programming). As pointed
out in [5], this last study raises nontrivial difficulties, since the existence of constraints
implies the possibility of shocks, with ẋ, ẏ being discontinuous and ẍ, ÿ being measures
in the (HBFC2) system.

Example. Let us consider the minimization problem

(P) min
x∈Rn
{α ||Ax− b||2 + β d2

C(x)},

where A is an (m×n) matrix, b ∈ R
m is a vector, α and β are nonnegative coefficients,

and dC stands for the distance function of a convex set C, which should be seen as
a penalization. When β = 0, (P) reduces to the classical least-squares resolution of
the equation Ax = b. The optimal set S is then an affine subspace F ⊂ R

n. On
the other hand, when α = 0, the optimal set clearly coincides with the set C. Now
suppose we mix both problems by taking α > 0 and β > 0. Assuming moreover that
C ∩F �= ∅, the optimal set S is equal to C ∩F : our problem then amounts to solving
the linear system Ax = b by a least-squares technique under the constraint [x ∈ C].
One question which naturally arises here concerns the size of the set C ∩ F . We can
then use the (HBFC)2 system with φ(x) = α ||Ax− b||2 + β d2

C(x) to obtain a global
exploration of the set C ∩F , and possibly its diameter. A second important question
concerns the full description of the affine space F . This can be achieved by using N
coupled system (for N larger than dimF ) and taking C = B(0,M) (with M large
enough). If they do not collapse, the limit points of the trajectories will generate (by
affine combination) the space F .

Example. An investor who wants to set up a firm will face and minimize an
aggregate cost function, which is likely to have nonisolated equilibria. For example,
the cost of linking to various utilities (water, electricity, etc.) is usually constant in a
city, while outside the city the cost depends on the distance to the existing network.
The same applies for employment costs, due to the existence of public transportation,
but also due to possible differences of wage policies in different states.
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3.2. On the global existence results.
Remark. Proposition 2.1 holds without assuming that the map ∇V is bounded

on the bounded subsets of H ((HV )(ii)) and that limt→+∞ ε(t) = 0 ((Hε)(ii)).
Remark. If one does not assume that the trajectory (x, y) is bounded, then as-

sertion (iv) of Theorem 2.1 may not hold, even in dimension one. Consider indeed a
C2 potential φ : R → R such that φ′ > 0, limz→−∞ φ(z) = −1, limz→+∞ φ(z) = 1,
lim supz→−∞ φ′(z) ≥ 1. Take as initial conditions x0 = y0 and ẋ0 = ẏ0 = 0. Then by
the Cauchy–Lipschitz theorem, x ≡ y. Then x satisfies ẍ(t) + γẋ(t) + φ′(x(t)) = 0.
Since φ′ > 0, then ẍ+γẋ < 0. We deduce that the map ẋ+γx converges (in R). Since
ẋ is bounded, ẍ is bounded from above. Since ẋ ∈ L2([0,+∞),R), limt→+∞ ẋ(t) = 0,
and the trajectory x converges (in R). Then lim inft→+∞ φ′(x(t)) ≤ 0 (otherwise
we would have limt→+∞ ẋ(t) = −∞), and we obtain limt→+∞ x(t) = −∞; hence
lim supt→+∞ φ′(x(t)) ≥ 1, a contradiction with assertion (iv).

Remark. Proposition 2.1 and Theorem 2.1 can easily be generalized to the case of
N coupled oscillators with different potentials φ1, . . . , φN , with N ≥ 2. For example,
taking φ2 = −φ1 should lead to the exploration of saddle points, but this study is
beyond the scope of this paper.

3.3. On condition (LIM).
Remark. When H = R, note that the limit condition (LIM) is satisfied if

(LIMstrong)

{
limz→−∞ φ(z) = +∞ or limz→−∞ φ′(z) = 0,
limz→+∞ φ(z) = +∞ or limz→+∞ φ′(z) = 0.

The converse is not true. Consider, for example, a C2 convolution-type approx-
imation φ of the function f + g, where f is the simplest continuous piecewise affine
function such that f(22n) = n and f(22n+1) = 0, and g is the simplest continuous
piecewise affine function such that g(22n) = 1, g([22n + 1/2n, 22(n+1) − 1/2n+1]) = 0.
Note also that the natural generalization of (LIMstrong) in higher dimensions would
be

∀z ∈ H \ {0}, lim
λ→+∞

φ(λz) = +∞ or lim
λ→+∞

∇φ(λz) = 0.

But contrary to the one-dimensional case, the above condition does not imply
(LIM). For example, consider H = R

2 and φ(x, y) = x2.
Remark. Condition (LIM) can be generalized as follows:

(LIMweak )
∀α > 0,∀A ∈ R, for every connected component
ΓA of the set {z ∈ H,φ(z) ≤ A}, the set
{z ∈ ΓA, |∇φ(z)| ≥ α} is bounded.

Then all the results in this paper hold by replacing (LIM) by (LIMweak ). When
H = R, (LIMweak ) is equivalent to{
(∃(zn) ⊂ R, limn→+∞ zn = −∞ and limn→+∞ φ(zn) = +∞) or limz→−∞ φ′(z) = 0,
(∃(zn) ⊂ R, limn→+∞ zn = +∞ and limn→+∞ φ(zn) = +∞) or limz→+∞ φ′(z) = 0.

3.4. On Theorem 2.2.
Remark. It is possible to obtain the convergence of the solutions (but not neces-

sarily in Ŝ; see below) under other sets of assumptions (for example, φ(z) converges
when z → −∞, and when z → +∞). But our concern being the exploration of
the equilibria of φ by the (HBFC2) system, the extensive study of the converging
properties of (HBFC2) is beyond the scope of this paper.
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3.5. On Corollary 2.1.
Remark. Corollary 2.1 may not hold if the map φ is not assumed to be convex,

even if it is quasi-convex. Consider indeed the map φ : R → R defined by φ(z) =

1−e−z2 , a C1 repulsion V such that V (z) = 1/z if z ≥ 1. Then φ is quasi-convex and
(x(t) , y(t)) = (log t,− log t) (for t large enough) is a solution of the corresponding
(HBFC2) system with ε(t) = (log t)2( 1t − 1

t2 + 2e
−(log t)2 log t) and γ = 1. One easily

finds that when t → +∞, ε(t) ∼ (log t)2

t and ε̇(t) ∼ log t
t2 (2 − log t), and hence that

ε(t) > 0 and ε̇(t) < 0 for t large enough. Moreover, note that
∫ +∞
0

ε(t) dt = +∞.
The solution map (x(t) , y(t)) = (log t,− log t) clearly does not satisfy the conclusion
of Corollary 2.1.

3.6. On Corollary 2.3.
Remark. The conclusion of Corollary 2.3 may not be more precise in general.

Precisely, one cannot replace the conclusion x∞ ∈ {inf I(x∞), sup I(x∞)} by x∞ =
sup I(x∞). Indeed, consider the even C1 map φ : R→ R defined by φ(z) = z2 − 1

2 for
0 ≤ z ≤ 1

2 , φ(z) = −(z − 1)2 for 1
2 ≤ z ≤ 1, φ(z) = 0 for z ≥ 1. Let x(t) = 1 − 1

t
for t ≥ 2 and y(t) = −x(t). Then (x, y) is a solution of the corresponding (HBFC2)
system, with V (z) = 1

z for z ≥ 1 and ε(t) = (2 − 2
t )

2( 2t +
1
t2 − 2

t3 ). Note that when

t → +∞, ε(t) ∼ 8
t and ε̇(t) ∼ − 8

t2 , and hence
∫ +∞
0

ε(t) dt = +∞ and ε̇(t) < 0 for t
large enough.

Remark. The conclusion of Corollary 2.3 does not hold if y∞ = −∞ and there
exists no λ ∈ R such that φ′((−∞, λ]) ≤ 0. Indeed, consider a C1 increasing map
φ : R → R such that φ(z) = ez for z ≤ 0, φ(z) = 2 for z ≥ 1, and such that
S = [1,+∞). Let γ = 1, V (z) = e−z for z ≥ 1. Let y(t) = −(1 + 2

t ) log(t) for t ≥ 1.
Then there is a map x : [1,+∞) → R such that x(t) = 2 − 1

t + o( 1t ) and such that
(x, y) is a solution of the corresponding (HBFC2) system for t large enough, with
a control ε which satisfies ε(t) ∼ 1

C2t
and ε̇(t) ∼ −1

C2t2
for some C2 > 0. Precisely,

x(t) = x(1) +
∫ t
1
e−s

∫ s
1
−eu(ÿ(u) + ẏ(u) + ey(u))duds and ε(t) = ÿ(t)+ẏ(t)+ey(t)

V ′(x(t)−y(t)) . Then

Ŝ = {−∞} ∪ [1,+∞] and limt→+∞ x(t) = 2, which is clearly not an extremal point
of its connected component [1,+∞].

Remark. From Corollary 2.3, one can deduce a full description of the different
cases, as seen more precisely in the following corollary.

Corollary 3.1 (slow parametrization). Under the assumptions of Theorem 2.3,
the solution (x,y) of the (HBFC2) system satisfies one of the following cases:

(i) y∞ < x∞



(a) if −∞ < y∞, or (y∞ = −∞ and ∃λ ∈ R, φ′((−∞, λ]) ≤ 0),

then x∞ ∈ {inf I(x∞), sup I(x∞)};
(b) if x∞ < +∞, or (x∞ = +∞ and ∃λ ∈ R, φ′([λ,+∞)) ≥ 0),

then y∞ ∈ {inf I(y∞), sup I(y∞)}.

(ii) x∞ < y∞



(a) if −∞ < x∞, or (x∞ = −∞ and ∃λ ∈ R, φ′((−∞, λ]) ≤ 0),

then y∞ ∈ {inf I(y∞), sup I(y∞)};
(b) if y∞ < +∞, or (y∞ = +∞ and ∃λ ∈ R, φ′([λ,+∞)) ≥ 0),

then x∞ ∈ {inf I(x∞), sup I(x∞)}.
(iii) x∞ = y∞.

Proof of Corollary 3.1. Let φ̃(z) = φ(−z) and Ṽ (z) = V (−z). If (x, y) is a
solution of the (HBFC2) system associated to φ and V , (−y,−x) is a solution of the
(HBFC2) system associated to φ̃ and V , which proves (ii)(b), and (y, x) is a solution
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of the (HBFC2) system associated to φ and Ṽ , which proves (ii)(a). Assertion (i)(b)
follows.

3.7. On Corollary 2.5.
Remark. The formulation of Theorem 2.3 and Corollaries 2.3, 2.4, and 3.1 is

specific to dimension one. This is not the case for Corollary 2.5, even if this last
one may not remain true in higher dimensions. Indeed, in R

2, consider the set C =
[−1, 1] × [−1, 1], the function φ = d2

C , and V (z) = e−|z|2 . Take any γ > 0 and
slow control function ε (satisfying the assumptions (Hε)(i)(ii)(iii)). Let (x, y) be
the solution of the corresponding (HBFC2) system for initial data x(0) ∈ {0} × R,
y(0) ∈ {0} × R, ẋ(0) ∈ {0} × R, ẏ(0) ∈ {0} × R. It is then clear that the trajectories
of x and y are one-dimensional, and from Corollary 2.4 one easily shows that either
limt→+∞ x(t) = limt→+∞ y(t) or x and y converge toward the extremities of the
segment [(0,−1), (0, 1)]. In this last case, limt→+∞ |x(t)−y(t)| = 2 �= 2

√
2 = diam(S).

3.8. On Proposition 2.2.
Remark. In general, it does not seem possible to obtain a better result (in the

sense of the specification of the limit point, or by obtaining strong convergence rather
than weak convergence) without further assumptions. Indeed, if x = y, a case which
happens if and only if (x0, ẋ0) = (y0, ẏ0), then the (HBFC

2) system reduces to a
(HBF) system. It is then known (see Baillon [7] and [6]) that the trajectory (x, y)
may not strongly converge and that the weak limits depend on the initial data.

Remark. If the map φ is not assumed to be convex, the trajectories (x, y) may
not weakly converge. Considering again the case where x = y, we refer to the coun-
terexample of Redont [23] (see also [6]).

4. Proof of the global existence and of the main properties.

4.1. Proof of Proposition 2.1. Let

X = (x, y) ∈ H2, Φ(X) = φ(x) + φ(y), U(X) = V (x− y),

X0 = (x0, y0), Ẋ0 = (ẋ0, ẏ0).

The system (HBFC2) then reduces to:

(HBFC)

{
Ẍ + γẊ +∇Φ(X) + ε(t)∇U(X) = 0,
X(0) = X0, Ẋ(0) = Ẋ0.

4.1.1. Proof of (i). The second order system (HBFC) can be written as a first
order system in H2 ×H2:

Ẏ = F (t, Y )

with

Y (t) =

(
X(t)

Ẋ(t)

)
and F (t, u, v) =

(
v
−γv −∇Φ(u)− ε(t)∇U(u)

)
.(4.1)

For Y0 = (
X0

Ẋ0
) given in H2 × H2, the Cauchy–Lipschitz theorem and Hypothesis 1

ensure the existence of a unique local solution to the problem{
Ẏ = F (t, Y ),
Y (0) = Y0.

(4.2)
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Let X denote the maximal solution defined on the interval [0, Tmax) with 0 < Tmax ≤
+∞. In order to prove that Tmax = +∞, let us show that the map Ẋ is bounded.
We first observe that (HBFC) and the regularity assumptions on φ, V, and ε auto-
matically imply that the map X is C2 on [0, Tmax).

Along every trajectory of (HBFC), we define the energy by

E(t) =
1

2
|Ẋ(t)|2 +Φ(X(t)) + ε(t)U(X(t)).

By differentiation of E(t), and in view of (HBFC), we obtain for every t ∈ [0, Tmax)

Ė(t) = 〈Ẋ(t), Ẍ(t) +∇Φ(X(t)) + ε(t)∇U(X(t))〉+ ε̇(t)U(X(t))

= −γ|Ẋ(t)|2 + ε̇(t)U(X(t)).
(4.3)

Since ε̇(t) ≤ 0 (assumption (Hε)(i)) and U ≥ 0, we have Ė(t) ≤ 0. Hence the function
E is nonincreasing and for every t ∈ [0, Tmax), E(t) ≤ E(0). Equivalently,

1

2
|Ẋ(t)|2 +Φ(X(t)) + ε(t)U(X(t)) ≤ E(0).(4.4)

Since Φ is bounded from below, U ≥ 0, and ε ≥ 0, we obtain

sup
t∈[0,Tmax)

|Ẋ(t)| < +∞.

By a standard argument, we derive that Tmax = +∞. Indeed, assume that Tmax <
+∞. Since

|X(t)−X(t′)| ≤ ||Ẋ||∞|t− t′|

and since Tmax < +∞, limt→Tmax X(t) := X∞ exists. Hence, the maps X and Ẋ are
bounded on [0, Tmax). Since limt→Tmax

X(t) = X∞, the map

∇Φ(X) + ε∇U(X) is bounded on [0, Tmax).

From (HBFC), we deduce that Ẍ is bounded on this interval. Hence limt→Tmax Ẋ(t) =
Ẋ∞ exists. Applying again the local existence theorem with initial data (X∞, Ẋ∞) ∈
H2 ×H2, we can extend the maximal solution to a strictly larger interval, a contra-
diction. Hence Tmax = +∞, which completes the proof of Proposition 2.1(i).

4.1.2. Proof of (ii). We already proved that the function E is nonincreasing.
For every t ≥ 0, E(0) ≥ E(t) ≥ Φ(X(t)), which implies that the map Φ is bounded
from above, and hence bounded. Moreover, the function E is also bounded from
below. Hence, there exists E∞ ∈ R such that limt→+∞E(t) = E∞. From (4.4), and
since Φ is bounded from below and U ≥ 0 , we obtain, for every t ≥ 0,

1

2
|Ẋ(t)|2 ≤ E(0)− inf Φ.

Hence Ẋ ∈ L∞([0,+∞);H2). From (4.3) and the fact that ε̇ ≤ 0 and U ≥ 0, we
derive, for every t ≥ 0, ∫ t

0

|Ẋ(s)|2ds ≤ 1
γ
(E(0)− E(t)).
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Since E(t) decreases to E∞ as t increases to +∞, we obtain∫ +∞

0

|Ẋ(s)|2ds ≤ 1
γ
(E(0)− E∞),

and Ẋ ∈ L2([0,+∞);H2). The inequality (4.4) implies, for every t ≥ 0,
Φ(X(t)) ≤ E(0),

i.e., Φ(X) is bounded.

4.2. Proof of Theorem 2.1.

4.2.1. Proof of (iii). We first claim that the maps ∇Φ(X) and U(X) are
bounded. To prove it, we distinguish the two cases (a) and (b).

Case (a). Since the map ∇Φ is Lipschitz continuous on the bounded sets, it is
bounded on the bounded sets. Since the map ∇U is bounded on the bounded sets,
the map U is Lipschitz continuous on the bounded sets, and hence bounded on the
bounded sets. Since the trajectory X = (x, y) is bounded, the maps ∇Φ(X) and
U(X) are bounded.

Case (b). In this case, the map U(X) is assumed to be bounded. From Proposi-
tion 2.1(ii), the map φ(x) is bounded. The condition (LIM) implies that the set

C = {z ∈ H,φ(z) ≤ ‖φ(x)‖∞ and |∇φ(z)| ≥ 1}
is bounded. Since the map ∇φ is bounded on the bounded sets, it is bounded on
C. If x(t) /∈ C, since φ(x(t)) ≤ ‖φ(x)‖∞, we deduce |∇φ(x(t))| < 1. Hence the map
∇φ(x) is bounded, and so is the map ∇φ(y). We now conclude the proof thanks to
the following claim.

Claim 4.1. If the maps ∇Φ(X) and U(X) are bounded, then limt→+∞ Ẋ(t) = 0.
Proof of Claim 4.1. Since the map ∇Φ(X) is bounded, and since the map Ẋ is

bounded (Proposition 2.1(ii)), the map t �→ Φ(X(t)) is Lipschitz continuous. Let us
recall that the energy function

E(t) =
1

2
|Ẋ(t)|2 +Φ(X(t)) + ε(t)U(X(t))

converges to some E∞ ∈ R. Since t �→ U(X(t)) is bounded, limt→+∞ ε(t)U(X(t)) = 0.
Hence, the map |Ẋ|2 is the sum of a convergent map and of a Lipschitz continuous
map. From Proposition 2.1(ii), |Ẋ|2 ∈ L1([0,+∞), H). By a classical argument,
we deduce that limt→+∞ |Ẋ(t)|2 = 0, and hence deduce also that the map Φ(X(t))
converges when t→ +∞.

4.2.2. Proof of (iv). We distinguish the two cases (a) and (b).
Proof in Case (a). The trajectory X is bounded, and limt→+∞∇Φ(X(t)) = 0—

which proves (iv)—is an immediate consequence of the following lemma.
Lemma 4.1. Assume Hypothesis 1. Let (tn) ⊂ R+ be a sequence such that

limn→+∞ tn = +∞ and X(tn) is bounded. Then limn→+∞∇Φ(X(tn)) = 0.
Proof of Lemma 4.1. Assume that it is not true. Then there exist α > 0

and a subsequence of (tn), still denoted by (tn), such that limn→+∞ tn = +∞ and
|∇Φ(X(tn))| ≥ α for every n. By assumption, the map ∇Φ is K-Lipschitz continuous
on the bounded set

C = {Z ∈ H ×H, ∃n ∈ N, |Z −X(tn)| ≤ 1}
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for some K > 0. Let τ = α
K‖Ẋ‖∞

(assuming without any loss of generality that

‖Ẋ‖∞ �= 0) and let t ∈ [tn, tn + τ ]. Then

|X(t)−X(tn)| ≤ ‖Ẋ‖∞τ =
α

K
.(4.5)

Assuming without any loss of generality that α
K ≤ 1, then from (4.5), X(t) ∈ C and

|∇Φ(X(t))−∇Φ(X(tn))| ≤ K|X(t)−X(tn)| ≤ K
α

K
= α.(4.6)

Let us now integrate (HBFC) on the interval [tn, tn + τ ]:

Ẋ(tn + τ)− Ẋ(tn) + γ

∫ tn+τ

tn

Ẋ(t) dt +

∫ tn+τ

tn

∇Φ(X(t)) dt(4.7)

+

∫ tn+τ

tn

ε(t)∇U(X(t)) dt = 0.

From (iii), limn→+∞ supt∈[tn,tn+τ ] Ẋ(t) = 0 and therefore

lim
n→+∞ Ẋ(tn + τ)− Ẋ(tn) + γ

∫ tn+τ

tn

Ẋ(t) dt = 0.

Since the map ∇U is bounded on the bounded set C, we obtain

lim
n→+∞

∫ tn+τ

tn

ε(t)∇U(X(t)) dt = 0.

Noticing that∣∣∣∣
∫ tn+τ

tn

∇Φ(X(t)) dt −
∫ tn+τ

tn

∇Φ(X(tn)) dt
∣∣∣∣ ≤ K‖Ẋ‖∞

∫ tn+τ

tn

|t− tn| dt

≤ K‖Ẋ‖∞τ2

2
=

ατ

2

and that
∣∣∣∫ tn+τ

tn
∇Φ(X(tn)) dt

∣∣∣ ≥ ατ, we obtain

∣∣∣∣
∫ tn+τ

tn

∇Φ(X(t)) dt
∣∣∣∣ ≥ ατ

2
.

Taking the limit in equation (4.7) when n → +∞, we obtain a contradiction. Hence
limt→+∞ |∇Φ(X(t))| = 0.

Proof in Case (b). Let us argue by contradiction and assume that it is not true;
i.e., there exists α > 0 and a sequence (tn) ⊂ R+ such that limn→+∞ tn = +∞ and
|∇Φ(X(tn))| ≥ α. Without any loss of generality, we may assume that |∇φ(x(tn))| ≥
α. Since the map φ(x) is bounded (Proposition 2.1(ii)) and since the map φ satisfies
the condition (LIM), the sequence (x(tn)) is bounded. The following lemma shows
that the sequence (y(tn)) is also bounded. From Lemma 4.1, limn→+∞∇Φ(X(tn)) =
0, a contradiction. Hence limt→+∞∇Φ(X(t)) = 0.

Lemma 4.2. Assume Hypothesis 1, and that the map φ satisfies the limit condition
(LIM). Let α > 0 and (tn) ⊂ R+ be a sequence such that limn→+∞ tn = +∞, (x(tn))
is bounded and |∇φ(x(tn))| ≥ α. Then the sequence (y(tn)) is also bounded.
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Proof of Lemma 4.2. By assumption, the map ∇φ is K-Lipschitz continuous
on the bounded set C = {z ∈ H, ∃n ∈ N, |z − x(tn)| ≤ 1} for some K > 0.
Let τ = α

2K‖ẋ‖∞
(assuming without any loss of generality that ‖ẋ‖∞ �= 0) and let

t ∈ [tn, tn + τ ]. Then

|x(t)− x(tn)| ≤ ‖ẋ‖∞τ =
α

2K
.(4.8)

Assuming without any loss of generality that α
2K ≤ 1, x(t) ∈ C, and

|∇φ(x(t))−∇φ(x(tn))| ≤ K|x(t)− x(tn)| ≤ K
α

2K
=

α

2
.(4.9)

By adding the two equations of (HBFC2), we obtain

ẍ(t) + ÿ(t) + γ(ẋ(t) + ẏ(t)) +∇φ(x(t)) +∇φ(y(t)) = 0.(4.10)

Integrating (4.10) between tn and tn + τ , we obtain

ẋ(tn + τ) + ẏ(tn + τ)− (ẋ(tn) + ẏ(tn)) + γ

∫ tn+τ

tn

ẋ(t) + ẏ(t) dt(4.11)

+

∫ tn+τ

tn

∇φ(x(t)) +∇φ(y(t)) dt = 0.

From assertion (iii), limt→+∞ ẋ(t) + ẏ(t) = 0; hence limn→+∞ supt∈[tn,tn+τ ] ẋ(t) +
ẏ(t) = 0. Therefore,

lim
n→+∞ ẋ(tn + τ) + ẏ(tn + τ)− (ẋ(tn) + ẏ(tn)) + γ

∫ tn+τ

tn

ẋ(t) + ẏ(t) dt = 0

and

lim
n→+∞

∫ tn+τ

tn

∇φ(x(t)) +∇φ(y(t)) dt = 0.(4.12)

Writing

∇φ(x(tn)) = ∇φ(x(tn))−∇φ(x(t)) + ∇φ(x(t)) +∇φ(y(t)) − ∇φ(y(t)),
we obtain∣∣∣∣
∫ tn+τ

tn

∇φ(x(tn)) dt
∣∣∣∣ ≤

∣∣∣∣
∫ tn+τ

tn

∇φ(x(tn))−∇φ(x(t)) dt
∣∣∣∣

+

∣∣∣∣
∫ tn+τ

tn

∇φ(x(t)) +∇φ(y(t)) dt
∣∣∣∣+
∣∣∣∣
∫ tn+τ

tn

∇φ(y(t)) dt
∣∣∣∣ .

Now using |∇φ(x(tn))| ≥ α, (4.9), and (4.12), we deduce

lim inf
n→+∞

∣∣∣∣
∫ tn+τ

tn

∇φ(y(t)) dt
∣∣∣∣ ≥ α

2
τ,

and therefore, for n large enough,∫ tn+τ

tn

|∇φ(y(t))| dt ≥ α

3
τ.(4.13)
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From the above inequality, we deduce that there exists θn ∈ [tn, tn+τ ] such that, for n
large enough, |∇φ(y(θn))| ≥ α

3 . Indeed, if it were not true, up to a subsequence, then
for every n and for every t ∈ [tn, tn + τ ], |∇φ(y(t))| < α

3 , which contradicts (4.13).
Since the map φ(y) is bounded (Proposition 2.1(ii)) and since the map φ satisfies the
condition (LIM), the sequence (y(θn)) is bounded. Since |y(tn)− y(θn)| ≤ ||ẏ||∞τ , we
deduce that the sequence (y(tn)) is also bounded.

4.2.3. Proof of (v) and (vi). Let us write the classical convexity inequality

∀ξ ∈ H, φ(ξ) ≥ φ(x(t)) + 〈∇φ(x(t)), ξ − x(t)〉.

By noticing that in the duality bracket 〈∇φ(x(t)), ξ − x(t)〉 the two terms are, re-
spectively, norms converging to zero and bounded, we can pass to the upper limit to
obtain

∀ξ ∈ H, φ(ξ) ≥ lim sup
t→+∞

φ(x(t)) ≥ lim inf
t→+∞ φ(x(t)) ≥ inf φ.

This being true for any ξ ∈ H, we deduce that limt→+∞ φ(x(t)) = inf φ, which proves
assertion (v).

From assertion (iv), ∇φ(x(t)) → 0 as t → +∞. If x(tn) ⇀ x∞ weakly, by using
the graph closedness property of the maximal monotone operator ∇φ in w−H×s−H,
we conclude that ∇φ(x∞) = 0, i.e., x∞ ∈ S.

5. Proof of the convergence results. In this section, we consider the one-
dimensional case, i.e., H = R.

5.1. Proof of Theorem 2.2. The proof of the convergence of the trajectories
goes in three steps. We first establish the inequality fulfilled by the map max{x, y}.
Then we deduce the convergence of the maps max{x, y} and min{x, y}. Finally we
check the convergence of the trajectories.

5.1.1. Properties of the map max{x, y}.
Lemma 5.1. Under the assumptions of Theorem 2.2, let (x, y) be the unique

solution of the (HBFC2) system. Then
(i) there exists a discrete and closed set D ⊂ R+ such that the map w = max{x, y}

is of class C2 on R+ \ D, and for every t ∈ R+ \ D,

ẅ(t) + γẇ(t) + φ′(w(t)) ≥ 0;(5.1)

(ii) for every (t, t′) ∈ R+ × R+ such that t′ ≤ t, the following inequality holds:

w(t) ≥ w(t′)− 1
γ
(ẇ−(t)− ẇ+(t

′))− 1
γ

∫ t

t′
φ′(w(s)) ds.

Proof of Lemma 5.1.
Proof of (i). Let us remark at once that if ∀t ∈ R+, x(t) = y(t), then we obviously

have

∀t ∈ R+, ẅ(t) + γẇ(t) + φ′(w(t)) = 0.

We can then take D = ∅. Assume now that x �≡ y. Let us prove that the set
D = {t ∈ R+, x(t) = y(t)} satisfies the conditions of the statement. Since x and
y are continuous, the set D is closed. Let t0 ∈ D, i.e., such that x(t0) = y(t0).
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Necessarily ẋ(t0) �= ẏ(t0); in fact, in the opposite case, one would have x ≡ y by the
Cauchy–Lipschitz theorem. Indeed, take the solution z of z̈(t) + γż(t) + φ′(z(t)) = 0,
z(t0) = x(t0) ż(t0) = ẋ(t0) and note that (z, z) is a solution of (HBFC

2), and hence
that (x, y) = (z, z). Then there exists ε > 0 such that ∀t ∈ [t0−ε, t0[∪]t0, t0+ε], x(t) �=
y(t), i.e., [t0 − ε, t0 + ε] ∩ D = {t0}, which proves that the point t0 is isolated.

Let us now verify (5.1); let t0 ∈ R+ \ D. There exists a neighborhood V of t0
such that w coincides with x (resp., y) on V. We then have x(t0) ≥ y(t0) (resp.,
y(t0) ≥ x(t0)) and therefore, using assumption (HV )(iii), V ′(x − y)(t0) ≤ 0 (resp.,
V ′(x−y)(t0) ≥ 0). We then deduce from the first (resp., second) equation of (HBFC2)
that

ẅ(t0) + γẇ(t0) + φ′(w(t0)) ≥ 0.
Proof of (ii). Let us remark at once that the set D ∩ [t′, t] is discrete and compact,

and hence finite. Relation (5.1) is then true on [t′, t] outside a finite number of points.
Let us denote by a1, . . . , an the elements of D∩ ]t′, t[ and set a0 = t′ and an+1 = t.
We now integrate the inequality (5.1) on each interval ]ak, ak+1[, 0 ≤ k ≤ n. By
adding the obtained inequalities, one finds

n∑
k=0

∫ ak+1

ak

ẅ(s) ds + γ

n∑
k=0

∫ ak+1

ak

ẇ(s) ds +

n∑
k=0

∫ ak+1

ak

φ′(w(s)) ds ≥ 0.(5.2)

Since the functions w = max{x, y} and φ′(w) are continuous on [t′, t], we have

n∑
k=0

∫ ak+1

ak

ẇ(s) ds =

n∑
k=0

(
w(ak+1)− w(ak)

)
= w(t)− w(t′)(5.3)

and

n∑
k=0

∫ ak+1

ak

φ′(w(s)) ds =
∫ t

t′
φ′(w(s)) ds.(5.4)

On the other hand, the map w = max{x, y} verifies ẇ+ ≥ ẇ−, and hence

n∑
k=0

∫ ak+1

ak

ẅ(s) ds =

n∑
k=0

ẇ−(ak+1)− ẇ+(ak)

= ẇ−(t)− ẇ+(t
′)−

n∑
k=1

(
ẇ+(ak)− ẇ−(ak)

)
≤ ẇ−(t)− ẇ+(t

′).(5.5)

By combining (5.2), (5.3), (5.4), and (5.5), we obtain the expected formula.

5.1.2. Convergence of max{x, y} and min{x, y}.
Lemma 5.2. Under the assumptions of Theorem 2.2, the maps max{x, y} and

min{x, y} converge in R.
Proof of Lemma 5.2. Without any loss of generality, we prove the convergence

of the map w = max{x, y} only. Assume that it is not true, i.e., lim inft→+∞ w(t) <
lim supt→+∞ w(t). Let us first prove that ] lim inft→+∞ w(t), lim supt→+∞ w(t)[ ⊂ S.
Let λ ∈ ] lim inft→+∞ w(t), lim supt→+∞ w(t)[. There is a sequence (tn) in R such that
limn→+∞ tn = +∞ and limn→+∞ w(tn) = λ. Without any loss of generality, up to
a subsequence, we may assume that w(tn) = x(tn) for every n; hence from Theorem
2.1(iv), φ′(λ) = limn→+∞ φ′(w(tn)) = limn→+∞ φ′(x(tn)) = 0.
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Now consider λ and µ in R such that

lim inf
t→+∞ w(t) < λ < µ < lim sup

t→+∞
w(t).

Since µ < lim supt→+∞ w(t), there exists a sequence (tn) such that tn → +∞ and
w(tn) > µ. Let

Tn = sup

{
u ≥ tn, w([tn, u]) ≥ λ

}
.

Since lim inft→+∞ w(t) < λ, then Tn < +∞. By the continuity of w, we have w(Tn) =
λ. Let

τn = inf

{
u ∈ [tn, Tn], w([u, Tn]) ≤ lim sup

t→+∞
w(t)

}
.

If τn = tn then w(τn) = w(tn) > µ. If τn > tn, then w(τn) = lim supt→+∞ w(t) > µ.
Hence, in both cases, w(τn) > µ. For every u ∈ [τn, Tn],

lim inf
t→+∞ w(t) < λ ≤ w(u) ≤ lim sup

t→+∞
w(t);

hence φ′(w(u)) = 0. We then deduce from Lemma 5.1 that w(Tn) ≥ w(τn) −
1
γ (ẇ−(Tn)− ẇ+(τn)), and since w(Tn) = λ and w(τn) > µ,

λ > µ− 1
γ
(ẇ−(Tn)− ẇ+(τn)).(5.6)

Since limt→+∞ ẋ(t) = limt→+∞ ẏ(t) = 0 (Theorem 2.1(iii)), then limt→+∞ ẇ−(t) =
limt→+∞ ẇ+(t) = 0. Passing to the limit when n → +∞, (5.6) then yields λ ≥ µ, a
contradiction.

5.1.3. Convergence of the trajectories. We now come back to the proof of
Theorem 2.2. In view of Lemma 5.2, the maps max{x, y} and min{x, y}, respec-
tively, converge to some m∞ and M∞ in R. If m∞ < M∞, we directly deduce
the convergence of the trajectories x and y. If m∞ = M∞ = +∞ (resp., −∞),
then clearly limt→+∞ x(t) = limt→+∞ y(t) = +∞ (resp., −∞). Let us now exam-
ine the case m∞ = M∞ ∈ R. The functions x + y = max{x, y} + min{x, y} and
|x − y| = max{x, y} − min{x, y}, respectively, converge to 2m∞(= 2M∞) and 0.
Hence, limt→+∞ x(t) = limt→+∞ y(t) = m∞ =M∞. Consequently, in all cases, there
exists (x∞, y∞) ∈ R×R such that limt→+∞ x(t) = x∞ and limt→+∞ y(t) = y∞. Since
limt→+∞(φ′(x(t)), φ′(y(t))) = (0, 0) (Theorem 2.1(iv)), then (x∞, y∞) ∈ Ŝ× Ŝ, which
ends the proof of Theorem 2.2.

5.2. Proof of Theorem 2.3. Let us first assume that−∞ < m∞ < M∞ < +∞.
Without any loss of generality, we prove only the assertion P+(M∞). Let us argue
by contradiction and assume that there exists a neighborhood V (M∞) of M∞ such
that φ′

|V (M∞) ≤ 0. Setting w = max{x, y}, there exists t0 ≥ 0 such that, ∀t ≥ t0,
w(t) ∈ V (M∞), and hence

∀t ≥ t0, φ′(w(t)) ≤ 0.(5.7)
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Since, by assumption, −∞ < m∞ < M∞ < +∞, there exist α > 0, M > 0, and
t1 ≥ t0 such that, ∀t ≥ t1, α ≤ |x(t)− y(t)| ≤ M . From (HV )(iv), there exists η > 0
such that

∀t ≥ t1, |V ′(x(t)− y(t))| ≥ inf
α≤|z|≤M

|V ′(z)| = η.(5.8)

On the other hand, since x(t) �= y(t) for every t ≥ t1, then w(t) = x(t) for every t ≥ t1
or w(t) = y(t) for every t ≥ t1. Hence the map w is of class C2 on [t1,+∞). In view
of (HBFC2) and (HV )(iii), the map w verifies the following differential equation:

ẅ + γẇ + φ′(w)− ε(t)|V ′(x− y)| = 0.(5.9)

In view of (5.7), (5.8), and (5.9), we find

∀t ≥ t1, ẅ(t) + γẇ(t) ≥ ηε(t).

In view of Claim 5.1 below, we obtain limt→+∞ w(t) = +∞, a contradiction.
Claim 5.1. Let u : [0,+∞[→ R be a function of class C2 and let ε : [0,+∞)→

R+ be a continuous function such that

∀t ≥ 0, ü(t) + γu̇(t) ≥ ηε(t),

where η > 0, γ > 0, and
∫ +∞
0

ε(t) dt = +∞. Then limt→+∞ u(t) = +∞.

Proof of Claim 5.1. Let us multiply the differential inequality by eγs and integrate
twice; we find

u(t) ≥ u(0) +
u̇(0)

γ
(1− e−γt) + η

∫ t

0

∫ u

0

e−γ(u−s)ε(s) ds du.

On the other hand,

lim
t→+∞

∫ t

0

∫ u

0

e−γ(u−s)ε(s) ds du =
1

γ

∫ +∞

0

ε(s) ds = +∞.

Hence, limt→+∞ u(t) = +∞.

Let us now assume that m∞ = −∞ and M∞ < +∞. Let us argue by contradic-
tion and assume that we have neither P+(m∞) nor P+(M∞). Then there exists a
neighborhood V (M∞) of M∞, respectively, V (m∞) of m∞, such that φ′

|V (M∞) ≤ 0,
respectively, φ′

|V (m∞) ≤ 0. Consequently there exists t0 ≥ 0 such that, for every
t ≥ t0,

φ′(x(t)) ≤ 0 and φ′(y(t)) ≤ 0.

By adding the two equations of (HBFC2), we deduce that

∀t ≥ t0, ẍ(t) + ÿ(t) + γ(ẋ(t) + ẏ(t)) ≥ 0.

A direct computation shows that x+ y is bounded from below, a contradiction with
m∞ = −∞. The proof of the last case m∞ > −∞ and M∞ = +∞ goes along the
same lines.
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5.3. Proof of Corollary 2.3. Let I(x∞) be the connected component of x∞ in

Ŝ. Let us argue by contradiction and assume that x∞ /∈ {inf I(x∞), sup I(x∞)}. In
particular, we have x∞ < +∞. If condition (a) is satisfied, we obtain by Theorem 2.3
the assertions P−(y∞) and P+(x∞). If condition (b) is satisfied, the assertion P+(y∞)
is false and then, by Theorem 2.3, we obtain the assertion P+(x∞). In both cases,
we have P+(x∞), which is inconsistent with x∞ ∈ intI(x∞), a contradiction.

5.4. Proof of Corollary 2.4. We assume that the third conclusion of Corol-
lary 2.4 does not hold, i.e., x∞ �= y∞. Without any loss of generality, we may
assume that x∞ > y∞. Since Ŝ is connected, I(x∞) = Ŝ. From Corollary 2.3,

x∞ ∈ {inf Ŝ, sup Ŝ}. But x∞ > y∞ with y∞ ∈ Ŝ implies that x∞ = sup Ŝ.

5.5. Proof of Proposition 2.2. Not surprisingly, our proof of Proposition 2.2
is greatly inspired by the proof of the Alvarez theorem given in [6] and its extension
to the controlled case in [4]. The Alvarez theorem is itself an extension of Bruck’s
theorem [11] (first order steepest descent method) to the second order dissipative
(HBF) system. For the sake of completeness, we recall the outline of the proof. We
refer to [4] for further details.

Let z ∈ S; we define the function hz : [0,+∞)→ R+ by

hz(t) =
1

2
|x(t)− z|2.

Since ḣz(t) = 〈x(t)− z, ẋ(t)〉 and ḧz(t) = |ẋ(t)|2 + 〈x(t)− z, ẍ(t)〉, and since the map
x is the solution of the (HBFC2) system, we have

ḧz(t) + γḣz(t) = |ẋ(t)|2 − 〈x(t)− z,∇φ(x(t))〉 − ε(t)〈x(t)− z,∇V (x(t)− y(t))〉.

Since z ∈ S, we have ∇φ(z) = 0. From the monotonicity of ∇φ, we have, for every t,
〈x(t)− z,∇φ(x(t))〉 = 〈x(t)− z,∇φ(x(t))−∇φ(z)〉 ≥ 0. Since the trajectories x and
y are bounded and since ∇V is bounded on the bounded sets, there is C > 0 such
that |〈x(t)− z,∇V (x(t)− y(t))〉| ≤ C for every t. Hence

ḧz(t) + γḣz(t) ≤ |ẋ(t)|2 + Cε(t).(5.10)

Since |ẋ|2 ∈ L1([t0,+∞),R+) and ε ∈ L1([t0,+∞),R+), in view of [6, Lemma 4.2],
the above equation implies that hz converges. Since the function x is bounded, from
Theorem 2.1(vi) it follows that for every sequence (tn) ⊂ [0,+∞) such that tn → +∞
and x(tn) ⇀ x̄ weakly in H, we have x̄ ∈ S and limn→+∞ φ(x(tn)) = minφ. Since,
from above, limt→+∞ |x(t)− z| exists for every z ∈ S, we deduce from Opial’s lemma
(given below) that the map x weakly converges to some element x∞ of S.

Lemma 5.1 (Opial [22]). Let H be a Hilbert space and let x : [0,+∞)→ H be a
function such that there exists a nonempty set S ⊂ H which verifies

(i) ∀tn → +∞ with x(tn)⇀ x̄ weakly in H, we have x̄ ∈ S;
(ii) ∀z ∈ S, limt→+∞ |x(t)− z| exists.

Then x(t) weakly converges as t→ +∞ to some element x∞ of S.

6. Further remarks: Precisions and generalizations. In this paper the
convergence results are restricted to the one-dimensional case. They clearly call for
precisions and generalizations. With numerical applications in mind, an important
issue is the study and the control of the rates of convergence of the solutions, of the
exponential decay of the energy, etc.
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6.1. Toward higher dimensions. To obtain further results, it is natural to
directly study the map x− y in order to obtain more general conclusions on the maps
x and y. The function h(t) := 1

2 |x(t)− y(t)|2 satisfies the following equation:

ḧ(t) + γḣ(t) = |ẋ(t)− ẏ(t)|2 − 〈∇φ(x(t))−∇φ(y(t)), x(t)− y(t)〉
− 2ε(t)〈∇V (x(t)− y(t)), x(t)− y(t)〉.(6.1)

First recall that from Proposition 2.1, |ẋ − ẏ|2 ∈ L1([0,+∞),R+). We then ob-
tain positive results when φ = 0. In the general case, it seems difficult to deduce
global information from (6.1). If we assume the map φ to be convex, 〈∇φ(x(t)) −
∇φ(y(t)), x(t)−y(t)〉 ≥ 0. But the inequality that follows from (6.1) may at most lead
to upper bounds on the map h. On the other hand, since the map ∇φ is Lipschitz
continuous on the bounded sets, 〈∇φ(x(t)) − ∇φ(y(t)), x(t) − y(t)〉 ≤ Kh(t) if the
maps x and y are bounded. However, even in the slow case the term ε(t) is then
negligible in front of K and the effect of the “slow” control does not appear in the
equation deduced from (6.1).

But, as we have seen in the proof of the global existence results (section 4.1),
it is possible to rewrite the (HBFC2) system as a (HBFC) system in H × H. It
then seems to be natural to adapt the proofs of the convergence results of [4] for the
(HBFC) system in order to obtain convergence results for the (HBFC2) system. This
direction gives indeed positive results in the case where H = R but does not lead to
all the conclusions of Theorems 2.2 and 2.3 because of the problems arising from the
direct study of the map x − y. But taking into account the remark in section 3.7,
this method could likely help to generalize some of our results to a higher, possibly
infinite dimension, of course obtaining more possible cases than in Theorem 2.3.

6.2. Numerical experiments: The three cases in Corollary 2.4. When Ŝ
is a nonempty interval, for example, when φ is convex, the conclusion of Corollary 2.4
shows that either the solutions x and y of the (HBFC2) system globally explore the

set Ŝ or converge to the same limit in Ŝ. In this last case, the (HBFC2) system
does not provide more information than a simple (noncoupled) (HBF) system. A first
investigation would be to find, numerically and theoretically, when this “bad” case
happens—hopefully on a negligible set. A natural way is to distinguish the sets where
each case happens:

Ci = {(x0, y0, ẋ0, ẏ0) ∈ R
4, limt→+∞(x(t), y(t)) = (sup Ŝ, inf Ŝ)};

Cii = {(x0, y0, ẋ0, ẏ0) ∈ R
4, limt→+∞(x(t), y(t)) = (inf Ŝ, sup Ŝ)};

Ciii = {(x0, y0, ẋ0, ẏ0) ∈ R
4, limt→+∞ x(t) = limt→+∞ y(t)},

where (x, y) denotes the solution of the (HBFC2) system with initial data (x0, y0, ẋ0, ẏ0).
Then from Corollary 2.4, Ci ∪ Cii ∪ Ciii = R

4 and the sets Ci, Cii, and Ciii form
a partition of R

4 when the set Ŝ is not reduced to a singleton. Since each case is
characterized by the value limt→+∞ x(t)− y(t), we obtain equivalently

Ci = {(x0, y0, ẋ0, ẏ0) ∈ R
4, limt→+∞ x(t)− y(t) = sup Ŝ − inf Ŝ};

Cii = {(x0, y0, ẋ0, ẏ0) ∈ R
4, limt→+∞ x(t)− y(t) = inf Ŝ − sup Ŝ};

Ciii = {(x0, y0, ẋ0, ẏ0) ∈ R
4, limt→+∞ x(t)− y(t) = 0}.

Numerically, we approximate the function ∆ : (x0, y0, ẋ0, ẏ0) �→ limt→+∞ x(t)− y(t)
by the functions ∆t : (x0, y0, ẋ0, ẏ0) �→ x(t)− y(t), which converge to ∆ as t→ +∞.
We obtain positive (numerical) results on the example considered for the illustration
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Fig. 6.1. Case (i) in white and case (ii) in black.
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Fig. 6.2. Cases (i) and (ii) in white and case (iii) in black.

of Corollary 2.4 (φ(z) = (z + 1)2 if z ≤ −1, φ(z) = 0 if z ∈ [−1, 1], φ(z) = (z − 1)2 if
z ≥ 1, V (z) = 1

2e
−z2

10 , ε(t) = 1
log(t+2) , γ = 0.4).

6.2.1. About the structure of the sets Ci, Cii, and Ciii. To give an
idea of the possible structure of the sets Ci, Cii, and Ciii, we compute the function
∆t : (x0, y0, ẋ0, ẏ0) �→ x(t) − y(t) for initial data (x0, y0, ẋ0, ẏ0) in the set [−5, 5] ×
[−3.5, 3.5] × {0} × {0} and for different times t. Figures 6.1 and 6.2 correspond to
t = 60, respectively with a grid of 62500 points (250× 250) and a grid of 106 points
(1000× 1000). On Figure 6.1, the white parts correspond to the set Ci (case (i)), and
the black parts to the set Cii (case (ii)). The set Ciii (case (iii)) is easier to visualize
in Figure 6.2, where it appears in black. Note that the symmetries in the figures are
only due to the symmetries in φ and V in our example (if (x(t), y(t)) is a solution,
then (y(t), x(t)) and (−x(t),−y(t)) are also solutions).

Enlarging a part of Figure 6.1 (precisely, with a computation on a new grid
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Fig. 6.3. Zoom on the set [−1.4,−0.8] × [1.9, 2.15]. Case (i) in white and case (ii) in black.
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Fig. 6.4. Distribution of the function x(t) − y(t) at times 0, 5, 10, 15, 20, 25, and 30.

of 62500 points corresponding to the zoomed part) suggests in Figure 6.3 a fractal
structure of the sets Ci, Cii, and Ciii. This also happens with other potentials φ and
V (for example, φ = dα[a,b] with α ≥ 2, etc.).

6.2.2. Relative weight of the sets Ci, Cii, and Ciii. The second numerical
experiment illustrates on Figure 6.4 the relative weight of the sets Ci, Cii, and Ciii
and also gives an idea of the rates of convergence. It precisely consists of evaluating
the distribution of the function x(t) − y(t). For initial data (x0, y0, ẋ0, ẏ0) in the set
[−5, 5]× [−5, 5]× [−5, 5]× [−5, 5] and for different times t, we compute the function ∆t
and, for a given number p > 0, the proportion of points which belong to an interval
[kp ,

k+1
p ) for k ∈ Z. In our example, the values 2 and −2, respectively, correspond

to cases (i) and (ii), and the value 0 corresponds to case (iii). The experiments are
computed on a grid of 104 points, and we limited the representation at t = 30 for a
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matter of readability. Again, the symmetries in the figure are due to the symmetries
in φ and V . The function corresponding at t = 0 is simply the density of probability
p(z = x− y) for (x, y) ∈ [−5, 5]× [−5, 5].

6.3. The singular case to avoid case (iii). An idea to avoid case (iii) consists
of preventing the solutions x and y from collapsing by taking a “singular” potential V ,
precisely defined on R \ {0} and such that limz→0 V (z) = +∞. Then the trajectories
x and y never cross, and this effect could hopefully influence the asymptotic behavior
of the solutions and thus avoid the case limt→+∞ x(t) − y(t) = 0 (see [13]). Note,
however, that the regular case studied in this paper is still relevant from a numerical
point of view since a singular potential would be numerically approximated by a
regular potential.
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Abstract. This paper is concerned with the control of spread in semilinear parabolic systems.
It first introduces a formula in order to measure the speed of a spread. Then feedback spreading
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1. Introduction. Spreadable distributed parameter systems provide a math-
ematical context for modeling expansion phenomena which may arise in spatially
distributed processes; cf. [6, 7] and the references therein.

In handling the control aspects of that concept, a first attempt has been made
in [8], where it is shown that spreading control can be determined by minimizing a
rather unusual criterion, which is partly quadratic but contains a nonquadratic term.
Conditions for a solution are given, the optimality system is derived, and algorithms
for the resolution are determined. It is even of interest to cite [9], which relates
spreading control to actuators for a class of linear distributed parameter systems.

Nevertheless, all of the approaches cited above have the disadvantage of being
restricted to linear systems and concern only a few situations. In a recent study [13], it
has been pointed out that feedback spreading controls for semilinear partial differential
equations may be investigated in the framework of monotone solutions with respect
to a preorder ; cf. [1, 17]. Then the application of some results on monotonicity by [4]
has allowed us to characterize these controls as selections of a certain set-valued map,
which is defined by a set of tangential conditions.

The present study continues the investigation of the field as expounded in [13] by
essentially concentrating on the speed of a spread. For this, we are motivated by the
technical need to design spreads, taking into consideration both the speed and the
time of spreading; cf. [8]. First, we propose a convenient setting in which the measure
of the spread speed can be rigorously made. Then, due to some set-valued analysis
facts, we examine the existence of feedback spreading control laws, which generate a
spread either slower or quicker than a desired given speed.

In this paper, the following definitions and notation are used. Let Y be a Hilbert
space; then a set-valued map Q : S → 2Y \{∅} is said to be lower semicontinuous (lsc)
whenever the following property holds: For each z0 ∈ S and any sequence of elements
zn ∈ S converging to z0, for every y0 ∈ Q(z0), there exists a sequence of elements
yn ∈ Q(zn) which converges to y0.
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The graph of Q is denoted by

graph(Q)
.
= {(z, y) ∈ S × Z | y ∈ Q(z)}.

The inverse of Q is the map Q−1 : Y → 2S defined by

Q−1(y)
.
= {z ∈ S | y ∈ Q(z)} for each y ∈ Y.

A selection of the map Q is a mapping ν : S → Y , which satisfies

ν(z) ∈ Q(z) for each z ∈ S.
We quote Michael’s selection theorem, which states that any lsc set-valued map with
closed convex values has a continuous selection; cf. [5].

A mapping from Z to Y is said to be demicontinuous if it maps strongly convergent
sequences in Z into weakly convergent sequences in Y ; cf. [15].

When the scalar product in Y is clear from the context, it is denoted by 〈 ; 〉.
The projector of best approximation on a closed convex subset K of Y will be

denoted by πK(·).
The directional derivative of a functional 
 : S → R in the direction of y ∈ Y , if

it exists at a point z ∈ S, is denoted by

d
(z)(y)
.
= lim inf

h↓O

(z + hy) − 
(z)

h
.(1.1)

Note that, if 
 is Gâteaux differentiable at z, then we get

d
(z)(y) = 〈∇
(z), y〉 for each y ∈ Y,

where ∇
 denotes the Gâteaux derivative of 
; cf. [11].
The paper is organized as follows: In section 2, we set the spreading control

problems in their open loop form. Then section 3 gives the basic results on feedback
spreading control laws. In section 4, we state the speed functional and show some
results which justify its definition. In section 5, we deal with feedback spreading
control laws under speed constraints. Finally, section 6 is devoted to the optimality
of these control laws.

2. Statement of the problem. Let Ω ⊂ R
n be an open and bounded domain

with sufficiently smooth boundary ∂Ω, and set Q = Ω × (0,∞[. Let A be a second
order elliptic operator on Ω given in the form

A
.
= −

n∑
i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
+

n∑
i=1

ai(x)
∂

∂xi
+ a0(x),(2.1)

with the smooth functions aij , ai, and a0. For convenient boundary data, it can
be assumed that the operator −A stands for an unbounded densely defined linear
operator which generates a C0 analytic semigroup (S(t))t≥0 on Z = L2(Ω); cf. [2, 3].

We consider the semilinear parabolic control system

∂z

∂t
+ Az = ϕ(z, v) in Q(2.2a)

with initial data

z(x, 0) = z0(x) in Ω,(2.2b)
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where z0 ∈ dom(A) (i.e., the domain of A) and ϕ denotes a nonlinear operator which
maps S × V into Z, with V another Hilbert space and S a closed subset of Z. Let ω
be a map defined as follows:

ω : S ⊂ Z → 2Ω.(2.3)

Definition 2.1 (cf. [6]). A measurable function v̄ : [0, t1[ → V is called a
spreading control with respect to ω if there exists a solution z̄ which satisfies

z̄(t) ∈ S for all t ∈ [0, t1[(2.4a)

and

(ω(z̄(t)))0≤t<t1 is nondecreasing.(2.4b)

As an instance of the map ω, we consider the pollution process; cf. [8, 12]. It takes
place when the system which describes the concentration of pollutant is spreadable
with respect to ω, with

ω(z)
.
= {x ∈ Ω | z(x) > zmax},

where zmax is a tolerance coefficient. Let t1 > 0, and set

Vst1
.
= {v ∈ L2(0, t1, V ) | v is a spreading control with respect to ω}.

For each control v ∈ Vst1 , denote by z(·, v) the solution of (2.2) on the interval [0, t1[;
then a natural way to define the speed of the generated spread (ω(z(t, v)))t may be

speed(t, v)
.
= lim inf

h↓O
λ(ω(z(t + h, v)) \ ω(z(t, v)))

h
≥ 0 for each t ∈ [0, t1[ ,(2.5)

where λ stands for the Lebesgue measure on Ω. Then, roughly, the control problems
we shall consider in this paper are stated as follows:

P+
m

Find a control v+
m ∈ Vst1 such that

speed(t, v+
m) ≥ m(t) for all t ∈ [0, t1[

and

P−
m

Find a control v−m ∈ Vst1 such that
speed(t, v−m) ≤ m(t) for all t ∈ [0, t1[ ,

where m : [0, t1[ → R
+ stands for a measurable function. Also, we are concerned with

investigating the optimal control problems

P+
θ,m

min ‖vs‖2
L2(0,t1,V ) subject to

vs is a solution of P+
m

and

P−
θ,m

min ‖vs‖2
L2(0,t1,V ) subject to

vs is a solution of P−
m .

Note that there are two technical notes which might be taken into account:
(i) According to [13], it should be of interest to seek feedback spreading control

laws in the form

vs = ψ(z) for each z ∈ S.(2.6)

(ii) In general, the Lebesgue measure λ does not provide a well-defined function
speed(·, ·). That, a priori, depends upon the differentiability of λ ◦ ω in the
sense of Dini; cf. [11].
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3. Preliminaries on feedback spreading control laws. In this section, we
present a summary of the main definitions and results related to the concept of feed-
back spreading control. Let ω be as in (2.3).

Definition 3.1 (cf. [13]). The mapping ς : S → V is said to be a feedback
spreading control (fsc) law with respect to ω if, for all initial data z0 in S, there exists
a solution z̄ which satisfies

z̄(t) ∈ S for all t ∈ [0, t1[(3.1a)

and

v̄ = ς(z̄) is a spreading control.(3.1b)

Next, for each couple (y, z) ∈ Z × S, consider the following tangential condition:

for all δ > 0,∃ 0 < h < δ, and ‖p‖ ≤ δ such that
S(h)z + h(y + p) ∈ S and
ω(S(h)z + h(y + p)) ⊃ ω(z).

(3.2)

Then define the set-valued maps

Tω(z)
.
= {y ∈ Z | (3.2) holds with (y, z)} for each z ∈ S(3.3)

and

Fω(z)
.
= {v ∈ V | ϕ(z, v) ∈ Tω(z)} for each z ∈ S.(3.4)

Also, we need to let

Σω
.
= {(y, z) ∈ S2 | ω(y) ⊃ ω(z)}(3.5)

and make the following assumption.
Assumption 3.2. The semigroup S(·) is compact.
We are ready to present the following basic result which characterizes fsc laws.
Theorem 3.3. Let Assumption 3.2 hold, and let ς : S → V be a measurable

function. Furthermore, assume that
(i) Σω is closed,
(ii) ϕ(·, ς(·)) is demicontinuous on S.

Then ς is an fsc law with respect to ω iff ς is a selection of Fω.
Proof. See [13, Theorem 3.1].
It should be convenient to emphasize that, in Theorem 3.3, only ϕ(·, ς(·)) is

required to be demicontinuous, and there are no continuity assumptions on ϕ or ς.
Also, note that Assumption 3.2 is generic for parabolic systems; cf. [3, 16].

Remark 3.4. It is useful to notice that the subset Tω(z) may be expressed in
terms of contingent subsets [17], which are given by

TAD (z) =

{
y ∈ Z | lim inf

h↓0
d(S(h)z + hy,D)

h
= 0

}
.

We have, by considering (3.2),

Tω(z) = TAPω(z)(z) for each z ∈ S,
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where

Pω(z) = {y ∈ Z | ω(y) ⊃ ω(z)} for each z ∈ S.(3.6)

In the preliminary result below, we use the following assumption.
Assumption 3.5. Σω is closed, and the map ω−1 has convex values.
Lemma 3.6.

(i) The map Tω has closed values.
(ii) Under Assumption 3.5, the map Tω has convex values.
Proof. Let z belong to S; then the tangential condition (3.2) yields

Tω(z) =
⋂
δ>0

cl
⋃

h∈(0,δ)

1

h
[Pω(z) − S(h)z].

Then it is obvious that Tω(z) is closed.
Regarding (ii), let y, ȳ ∈ Tω(z), and α, β ≥ 0 such that α+ β = 1. It follows that

S(h)z + h(αy + βȳ) = α(S(h)z + hy) + β(S(h)z + hȳ).

Now it is not hard to show that Assumption 3.5 implies that the map Pω has closed
convex values. It follows that the function

y ∈ Z → d(y, Pω(z))

is convex, and therefore we get

d(S(h)z + h(αy + βȳ), Pω(z)) ≤ αd(S(h)z + hy, Pω(z)) + βd(S(h)z + hȳ, Pω(z)).

Consequently, Remark 3.4 yields the result.

4. The speed functional. Let µ be a measure on Ω. By the speed functional,
we mean the functional defined on graph(Tω) by

θ(y, z)
.
= lim inf

h↓0,‖p‖→0

µ(ω(S(h)z + h(y + p)) \ ω(z))

h
for each z ∈ S and y ∈ Tω(z).

(4.1)

Let

τω
.
= µ ◦ ω : S → R

+,
z → µ(ω(z)).

Next, we prove some immediate properties which are verified by the speed functional.
Proposition 4.1.
(i) θ is well defined and has values ranging in [0,∞].
(ii) Assume τω to be locally Lipschitz on S. Let v̄ and z̄ be as in Definition 2.1,

with µ instead of λ; then we have

speed(t, v̄) = θ(ϕ(z̄(t), v̄(t)), z̄(t)) for each t ∈ [0, t1[ .(4.2)

(iii) Suppose that S and τω are convex; then we have

θ(y, z) = dτω(z)(y −Az) for each y ∈ Tω(z) and z ∈ S ∩ dom(A).(4.3)
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Proof. First, note that (i) is simply a consequence of (3.2) and (3.3). To show
(ii), let v̄ and z̄ be as in Definition 2.1, and denote ϕ̄(·) .

= ϕ(z̄(·), v̄(·)). For t ∈ [0, t1[,
we get

z̄(t + h) = z̄(t) + h(ϕ̄(t) + ph) with ph → 0 when h → 0.

Then, applying formula (4.1) yields

θ(ϕ(z̄(t), v̄(t)), z̄(t)) = lim inf
h↓0,‖p‖→0

τω(S(h)z̄(t) + h(ϕ̄(t) + p)) − τω(z̄(t))

h

= lim inf
h↓0,‖p‖→0

τω(z̄(t + h) + h(p− ph)) − τω(z̄(t))

h
.

Now, we observe that

τω(z̄(t + h) + h(p− ph)) − τω(z̄(t)) = τω(z̄(t + h)) − τω(z̄(t))
+ τω(z̄(t + h) + h(p− ph)) − τω(z̄(t + h)).

We use the fact that τω is locally Lipschitz to obtain

lim
h↓0,‖p‖→0

τω(z̄(t + h) + h(p− ph)) − τω(z̄(t))

h
= 0.

Therefore, (ii) is proved if we refer to (2.5).
Regarding statement (iii), we first remark that, due to its convexity, the map-

ping τω has a directional derivative on S, and dτω(z)(·) is continuous for each z;
cf. [11]. On the other hand, we have

S(h)z = z − hAz + hph for each h ≥ 0, with ph → 0 when h → 0.

It follows that

θ(y, z) = lim inf
h↓0,‖p‖→0

τω(z + h(y −Az + p)) − τω(z)

h
.

Therefore, we have

θ(y, z) = lim inf
‖p‖→0

dτω(z)(y −Az + p),

and consequently we obtain (4.3) thanks to the continuity of the directional deriv-
ative.

As an important consequence, we stress that the speed functional provides a
proper tool in order to measure the speed of the spread generated by a spreading
control, especially when τω has a directional derivative, in which case formula (4.3)
can easily be used.

Remark 4.2. Note that in (iii) the assumption “τω is convex” may be replaced
by “τω is Gâteaux differentiable.” In this case, we obtain the formula

θ(y, z) = 〈∇τω(z); y −Az〉 for each y ∈ Tω(z) and z ∈ S ∩ dom(A).(4.4)

Next, we show a technical result to be used in the subsequent sections. To this
end, let us consider the following assumption.
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Assumption 4.3. For each sequence (zn)n ⊂ S and (yn)n ⊂ Z such that yn ∈
Tω(zn) for every n, we have

zn → z (strong)
yn → y (weak)

=⇒ y ∈ Tω(z), and θ(yn, zn) → θ(y, z).

Then we can prove the following result, which studies the convexity of the map-
ping θ(·, z) on Tω(z).

Lemma 4.4. Let Assumptions 3.5 and 4.3 be satisfied; then we have the following
statements:

(i) If τω is convex, then θ(·, z) is convex on Tω(z) for each z ∈ S.
(ii) If τω is Gâteaux differentiable, then, for each α, β > 0 with α + β = 1, we

have

θ(αy + βȳ, z) = αθ(y, z) + βθ(ȳ, z) for each z ∈ S and y, ȳ ∈ Tω(z).

Proof. For z ∈ S ∩ dom(A), by considering Proposition 4.1(iii), we can easily
see that θ(·, z) is convex on Tω(z) because dτω(z) is such. Now let z ∈ S; then
z = limn→∞ zn for a sequence (zn)n ⊂ S ∩ dom(A). Let α, β ≥ 0 such that α+ β = 1
and y, ȳ ∈ Tω(z); then using Assumption 4.3 yields

θ(αy + βȳ, z) = lim
n→∞ θ(αy + βȳ, zn)

≤ α lim
n→∞ θ(y, zn) + β lim

n→∞ θ(ȳ, zn)

≤ αθ(y, z) + βθ(ȳ, z),

and hence (i) is shown. Similarly, statement (ii) easily follows from Remark 4.2 and
Assumption 4.3.

5. Feedback spreading controls with constraints on the speed. In this
section, based on the results provided by Theorem 3.3 and Proposition 4.1, we suitably
restate the spreading control problems P+

m and P−
m of section 2 in their feedback

version. Let ν be a nonnegative measurable function on S; then problem P+
m may

read as follows:

P
+
ν

Find an fsc law v = ς+ν (z) such that
ρ(z, v) ≥ ν(z) for each z ∈ S.

Also, problem P−
m can be reformulated as

P
−
ν

Find an fsc law v = ς−ν (z) such that
ρ(z, v) ≤ ν(z) for each z ∈ S,

where the functional ρ is defined according to (4.2) by

ρ(z, v)
.
= θ(ϕ(z, v), z) for each z ∈ S and v ∈ Fω(z),(5.1)

and Fω(·) is as in (3.4). Now define the following maps for each z ∈ S:

T ν+

ω (z)
.
= {y ∈ Tω(z) | θ(y, z) ≥ ν(z)}(5.2a)

and

Fν+

ω (z)
.
= {v ∈ V | ϕ(z, v) ∈ T ν+

ω (z)}.(5.2b)
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We also need to set

T ν−
ω (z)

.
= {y ∈ Tω(z) | θ(y, z) ≤ ν(z)}(5.3a)

and

Fν−
ω (z)

.
= {v ∈ V | ϕ(z, v) ∈ T ν−

ω (z)}.(5.3b)

Consequently, providing that the assumptions of Theorem 3.3 are satisfied by ςεν (with
ε denoting + or −), the following statement holds:

ςεν is a solution of problem P
ε
ν ⇐⇒ ςεν is a selection of Fνε

ω .(5.4)

For both problems P
+
ν and P

−
ν , we respectively define the subsets of admissible

speeds ν as follows:

A+
ω

.
= {ν : S → R

+ | for all z ∈ S,∃y ∈ Tω(z) such that θ(y, z) > ν(z)}(5.5a)

and

A−
ω

.
= {ν : S → R

+ | for all z ∈ S,∃y ∈ Tω(z) such that θ(y, z) < ν(z)}.(5.5b)

In order to state an existence result for problem P
+
ν for appropriate speeds ν, we first

begin by proving the following lemma, which studies the lower semicontinuity of the
map P

+
ν .

Lemma 5.1. Let Assumptions 3.5 and 4.3 be satisfied. Furthermore, suppose
that

(i) Tω is lsc,
(ii) τω is Gâteaux differentiable,
(iii) ν ∈ A+

ω and is upper semicontinuous.

Then the map T ν+

ω is lsc.

Proof. Since ν ∈ A+
ω , it can easily be seen that T ν+

ω (z)  = ∅ for each z ∈ S. Now,
to see that this map is lsc, it suffices to show that the functional

 : z ∈ S → d(y0, T ν+

ω (z))2

is upper semicontinuous for each y0 ∈ Y ; cf. [5, Lemma 4.2]. Indeed, given y0 ∈ Y
and z ∈ Z, we have

(z) = min
y∈Tω(z)

ν(z)−θ(y,z)≤0

‖y0 − y‖2.(5.6)

By virtue of Lemma 3.6, Tω(z) is closed and convex. On the other hand, the func-
tion ν(z)− θ(·, z) is continuous (by Assumption 4.3) and convex (due to Lemma 4.4).
Then there is a unique y+(z) ∈ Tω(z) which solves the optimization problem (5.6).
For such a problem, the fact that ν ∈ A+

ω obviously provides the Slater condition as
in [11, Theorem 6.7] yields the formula

(z) = sup
λ≥0

inf
y∈Tω(z)

{‖y0 − y‖2 + λ(ν(z) − θ(y, z))} for each z ∈ S.(5.7)

Now let (zn)n be a sequence in S which converges to z. By condition (i) and the fact
that y+(z) ∈ Tω(z), there exists a sequence yn ∈ Tω(z) which converges to y+(z). It
follows that

inf
y∈Tω(zn)

{‖y0 − y‖2 + λ(ν(zn) − θ(y, zn))} ≤ ‖y0 − yn‖2 + λ(ν(zn) − θ(yn, zn))(5.8)
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for each λ ≥ 0 and n ∈ N. However, since ν is upper semicontinuous and

θ(yn, zn) → θ(y+(z), z),

we get

lim sup
n→∞

(ν(zn) − θ(yn, zn)) ≤ ν(z) − θ(y+(z), z) ≤ 0.

Consequently, by passing to the lim sup in (5.8), we obtain

lim sup
n→∞

inf
y∈Tω(zn)

{‖y0 − y‖2 + λ(ν(zn) − θ(y, zn))} ≤ ‖y0 − y+(z)‖2(5.9)

for each λ ≥ 0. Next, by writing (zn) by (5.7) and noting that

lim sup
n→∞

sup
λ≥0

[·] ≤ sup
λ≥0

lim sup
n→∞

[·],

we get the desired inequality

lim sup
n→∞

(zn) ≤ (z),

ending the proof of the lemma.

Now we turn our attention to examine the lower semicontinuity of the map T ν−
ω

as defined by (5.3a). Arguing as in the proof of Lemma 5.1, we can easily show the
following result.

Lemma 5.2. Let Assumptions 3.5 and 4.3 be satisfied. Furthermore, suppose
that

(i) Tω is lsc,
(ii) τω is convex or Gâteaux differentiable,
(iii) ν ∈ A−

ω and is lsc.

Then the map T ν−
ω is lsc.

Consequently, we are in a position to provide existence results for problems P
+
ν

and P
−
ν . For that purpose, we need to take into consideration the following hypothesis.

Assumption 5.3. For each z ∈ S and y ∈ Tω(z), there exists v ∈ V such that
ϕ(z, v) = y.

Proposition 5.4. Let Assumptions 3.2 and 5.3 hold, and assume that all of the
conditions of Lemma 5.1 (resp., Lemma 5.2) are satisfied. Then there exists an fsc
law which solves problem P

+
ν (resp., problem P

−
ν ).

Proof. By Lemma 5.1 (resp., Lemma 5.2), the map T ν+

ω (resp., T ν−
ω ) is lsc. More-

over, due to Assumption 4.3 and Lemma 4.4, it has closed convex values. Then, thanks
to Michael’s selection theorem which is stated in section 1, the map T ν+

ω (resp., T ν−
ω )

admits a continuous selection y+(·) (resp., y−(·)). Next, we can use Assumption 5.3
to construct a mapping ς+ν : S → V (resp., ς−ν ) in such a manner that

ϕ(z, ςεν(z)) = yε(z) for each z ∈ S with ε ∈ {+,−}.

Consequently, by using Theorem 3.3, it follows that ς+ν (resp., ς−ν ) stands for the
desired fsc law.
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6. Optimality of fsc laws with speed constraints. In the same spirit of sec-
tion 5, we investigate in this section the feedback versions of optimal control problems
P+
θ,m and P−

θ,m, which are stated in section 2. Let ν be a measurable function defined

from S with nonnegative values; then problem P+
θ,m may read as follows:

P
+
θ,ν

Find an fsc law v = ς̂+(z) which solves

min ‖v‖2 subject to ϕ(z, v) ∈ T ν+

ω (z) for each z ∈ S.

Also, problem P−
θ,m can be restated as

P
−
θ,ν

Find an fsc law v = ς̂−(z) which solves

min ‖v‖2 subject to ϕ(z, v) ∈ T ν−
ω (z) for each z ∈ S.

By virtue of Theorem 3.3, the above problems can be treated through satisfying what
follows.

(a) The involved parameterized minimization problems

min ‖v‖2 subject to ϕ(z, v) ∈ T νε

ω (z) for each z ∈ S(6.1)

uniquely have solutions ς̂ε(·) for each z ∈ S and ε ∈ {+,−}.
(b) Let the mappings ϕ(·, ς̂ε(·)) be demicontinuous.
Next, we need to assume that (2.2a) is affine in the controls; i.e.,

ϕ(z, v) = B(z)v + f(z) for each z ∈ S and v ∈ V,(6.2)

where f and B act in S and have images, respectively, in Z and L(V,Z).
First, we show a result on the optimization technique to be used in order to solve

the problems (6.1).
Lemma 6.1. Let f ∈ Z and T be a closed convex subset of Z. Let B ∈ L(V,Z)

be a linear operator satisfying the following condition:

‖B�µ‖2 ≥ m‖µ‖2 for each µ ∈ Z with m > 0.(6.3)

Then the minimization problem

min
Bv+f∈T

‖v‖2(6.4)

has a unique solution v0 = −B�µ0, where µ0 is uniquely given by the optimality system

‖B�µ0‖2 ≤ 〈µ0, f − y〉 for each y ∈ T ,
f −BB�µ0 ∈ T .

(6.5)

Proof. See the appendix.
Now we consider the following assumption.
Assumption 6.2.

(i) The mapping f : S → Z is continuous.
(ii) For each sequence (zn)n ⊂ S, (vn)n ⊂ V , and (µn)n ⊂ Z,

zn → z (strong) and vn → v (weak) =⇒ B(zn)vn → B(z)v (weak),
zn → z (strong) and µn → µ (weak) =⇒ B�(zn)µn → B�(z)µ (weak).
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(iii) For each z ∈ S, the operator B�(z) satisfies the coercivity condition which
is required in (6.3),

‖B�(z)µ‖2 ≥ mz‖µ‖2 for each µ ∈ Z,(6.6)

where the coefficient mz > 0 is such that, for each α > 0, there exists M > 0 such
that mz > M for each z ∈ S, ‖z‖ < α.

Then we are ready to examine problem P
+
θ,ν .

Theorem 6.3. Let Assumptions 3.2, 3.5, and 6.2 be satisfied. In addition,
suppose that

(i) the map Tω is lsc,
(ii) τω is Gâteaux differentiable,
(iii) ν ∈ A+

ω and is upper semicontinuous.
Then the mapping ς̂+(·) of (6.1) stands for the unique solution of problem P

+
θ,ν .

Proof. By Lemma 4.4, the map Tω has closed convex values. Then the map T ν+

ω

of (5.2a) also has closed convex values. This results, respectively, from Assumption 4.3
and Lemma 4.4 (ii). Therefore, all conditions of Lemma 6.1 are satisfied for each z ∈ S
with B

.
= B(z), f

.
= f(z), T .

= T ν+

ω (z), and the coercivity condition (6.6). Hence
the minimization problem (6.1) has ς̂+(z) as a unique solution for each z ∈ S. In
addition, by using Lemma 6.1, we have

ς̂+(z) = −B�(z)µ0(z) for each z ∈ S,(6.7)

where µ0(z)
.
= µ0 is uniquely determined by

‖B�(z)µ0‖2 ≤ 〈µ0, f(z) − y〉 for each y ∈ T ν+

ω (z) and z ∈ S,
f(z) −B(z)B�(z)µ0 ∈ T ν+

ω (z).
(6.8)

Now it remains to show that ς̂+(·) stands for an fsc law. According to (b) above, this
holds if the mapping

φs
.
= f + B(·)ς̂+ = f −B(·)B�(·)µ0(·)

is demicontinuous.
Indeed, let (zn)n be a sequence with (strong) limit z ∈ S and y ∈ T ν+

ω (z). Due to

Lemma 5.1, the map T ν+

ω is lsc; then there exists a sequence (yn)n which converges
to y and satisfies

yn ∈ T ν+

ω (zn) for each n.

Therefore, by (6.8), we have

‖B�(zn)µ0(zn)‖2 ≤ 〈µ0(zn), f(zn) − yn〉 for each n.

Consequently, since the sequence (f(zn))n is bounded (due to Assumption 6.2 (i)),
it follows that the sequence (µ0(zn))n is bounded too. It therefore has a subse-
quence (µ0(zk))k which is weakly convergent to µ̄0 ∈ Z.

Now, since 〈µ0(zk); f(zk) − yk〉 → 〈µ̄0; f(z) − y〉 (because f(zk) − yk → f(z) − y
strongly and µ0(zk) → µ̄0 weakly), we get by passing to the lim inf in the last in-
equality

lim inf ‖B�(zk)µ0(zk)‖2 ≤ 〈µ̄0; f(z) − y〉.
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Therefore, due to Assumption 6.2 (ii), it follows that

‖B�(z)µ̄0‖2 ≤ lim inf ‖B�(zk)µ0(zk)‖2 ≤ 〈µ̄0; f(z) − y〉(6.9)

for every y ∈ T ν+

ω (z). By using Assumption 6.2 (ii), we get

φs(zk) = f(zk) −B(zk)B
�(zk)µ0(zk)

we→ f(z) −B(z)B�(z)µ̄0.

This implies, due to Assumption 3.5 and the upper semicontinuity of ν, that

f(z) −B(z)B�(z)µ̄0 ∈ T ν+

ω (z).

Therefore, by (6.9), µ̄0 satisfies the optimality system (6.8), and then we obtain, by
uniqueness,

µ̄0 = µ0(z) and f(z) −B(z)B�(z)µ̄0 = φs(z).

Consequently, the sequences (µ0(zn))n and (φs(zn))n are, respectively, weakly con-
vergent to µ0(z) and φs(z). Thus, as desired, the mapping φs is demicontinuous on
the subset S.

Remark 6.4. From the proof of Theorem 6.3, it follows by Assumption 6.2 that
the minimal fsc law

ς̂· = −B�(·)µ0(·)

is also demicontinuous.

Remark 6.5. The proof of Lemma 6.1 in the appendix is informative on the
technique to use in order to compute ς̂·. In fact, we can use the optimality sys-
tem (A.3), from which a sequence of suboptimal fsc laws can be derived by successive
approximation.

Similarly, we can follow the same approach to examine problem P
−
θ,ν .

Theorem 6.6. Let Assumptions 3.2, 3.5, 5.3, and 6.2 be satisfied. In addition,
suppose that

(i) the map Tω is lsc,
(ii) τω is convex or Gâteaux differentiable,
(iii) ν ∈ A−

ω and is lsc.

Then the mapping ς̂−(·) of (6.1) stands for the unique solution of problem P
−
θ,ν .

Also, note that Remarks 6.4 and 6.5 remain valid regarding problem P
−
θ,ν .

Appendix. Proof of Lemma 6.1. Since C = {v ∈ V | Bv + f ∈ T } is
a nonempty closed convex subset in V , (6.4) has a unique solution which is v0 =
πC(0). Now we can use a saddle point method to compute v0. Define the Lagrangian
functional (cf. [10, 14])

L(v, y, µ) =
1

2
‖v‖2 + 〈Bv + f − y;µ〉 for each v ∈ V, y ∈ T , µ ∈ Z.

In fact, it can be easily shown that, if (u0, y0, µ0) is a saddle point for L, i.e.,

max
µ∈Z

L(u0, y0, µ) = L(u0, y0, µ0) = min
v∈V,y∈T

L(v, y, µ0),
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then u0 is a solution of (6.4), and, by uniqueness, u0 = v0. Now, since both L and T
are convex, the saddle point (v0, y0, µ0) is characterized by

∂L

∂v
(v0, y0, µ0) = 0,

〈
∂L

∂y
(v0, y0, µ0); y − y0

〉
≥ 0 for each y ∈ T ,

∂L

∂µ
(v0, y0, µ0) = 0

so that we have

v0 + B�µ0 = 0,
〈µ0; y − y0〉 ≤ 0 for each y ∈ T ,
Bv0 + f = y0 ∈ T .

Therefore, in an equivalent way, we get v0 = −B�µ0, where µ0 is uniquely given by
the system

−BB�µ0 + f = y0,
〈µ0, y − y0〉 ≤ 0 for each y ∈ T ,
y0 ∈ T ,

(A.1)

which is equivalent to

‖B�µ0‖2 ≤ 〈µ0, f − y〉 for each y ∈ T ,
f −BB�µ0 ∈ T .

(A.2)

Now it remains to show that such a µ0 exists. In fact, by multiplying by ρ > 0 in (A.1)
and using the operator of best approximation πT , we obtain the equivalent system

v0 = B�R−1(y0 − f),
y0 = πT [(1 − ρR−1)y0 + ρR−1f ]

(A.3)

for some ρ > 0, where the operator R = BB�. Then we are led to seek a fixed point
of the mapping

Θρ : T → T
y → πT [(1 − ρR−1)y + ρR−1f ].

Indeed, we have

‖Θρ(y) − Θρ(ȳ)‖2 ≤ ‖(1 − ρR−1)e‖2

= ‖e‖2 − 2ρ〈R−1e; e〉 + ρ2‖R−1e‖2,

where y, ȳ ∈ T , and e = y − ȳ.

Since the operator R−1 is coercive, we have, for some m′ > 0,

〈R−1y; y〉 ≥ m′‖y‖2 for each y ∈ Z.

It follows that

‖Θρ(y) − Θρ(ȳ)‖2 ≤ (1 − 2ρm′ + ρ2‖R−1‖2)‖y − ȳ‖2.

Therefore, Θρ is a contraction for ρ < 2m′/‖R−1‖2, and thereby it has a unique fixed
point y0, which belongs to T . This ends the proof of Lemma 6.1.
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Abstract. The paper introduces a new detectability concept for continuous-time Markov jump
linear systems with finite Markov space that generalizes previous concepts found in the literature.
The detectability in the weak sense is characterized as mean square detectability of a certain related
stochastic system, making both detectability senses directly comparable. The concept can also
ensure that the solution of the coupled algebraic Riccati equation associated to the quadratic control
problem is unique and stabilizing, making other concepts redundant. The paper also obtains a set of
matrices that plays the role of the observability matrix for deterministic linear systems, and it allows
geometric and qualitative properties. Tests for weak observability and detectability of a system
are provided, the first consisting of a simple rank test, similar to the usual observability test for
deterministic linear systems.

Key words. Markov jump systems, detectability and observability of stochastic systems, opti-
mal control, stochastic systems, quadratic control
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1. Introduction. The concepts of observability and detectability play an impor-
tant role in the theory of dynamic systems. For instance, in optimal control problems,
these concepts provide a connection between closed-loop stability and finiteness of the
cost functional, and they ensure uniqueness of the solution to the algebraic Riccati
equation. This is the scenario in the theory of deterministic time-invariant linear sys-
tems (see [14]), deterministic linear time-varying systems (see [1], [2] or [11]), and to
some extent, in Markov jump linear systems (MJLS) (see [7], [9], [13], [16], and [17]).

Thanks to those developments, a number of well-established results concerning
detectability and the good behavior of solutions of filtering and control problems exist
today which can be found in a literature that spans more than four decades. Among
the results we refer to concerning linear time-invariant deterministic systems are the
following: (I) invariance of nonobserved trajectories, (II) existence of a simple rank-
test condition for observability, (III) correspondence between nonobserved trajectories
and stable modes of detectable systems, and (IV) relationship between observability
and detectability. However, it was not known to this date how properties (I)–(IV)
extend to MJLS.

Consider the continuous-time MJLS written as

Φ :

{
ẋ(t) = Aθ(t)x(t), t ≥ 0,

y(t) = Cθ(t)x(t), x(0) = x0, θ(0) = θ0,
(1)

defined in a fundamental probability space (Ω,F , {Ft}, P ), where Ft denotes the σ-
field generated by {x(s), θ(s), 0 ≤ s ≤ t}. The variables x ∈ R

n and y ∈ R
q are the
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continuous state and the output, respectively; x0 is a second order random variable.
The mode θ is the state of an underlying continuous-time homogeneous Markov chain
Θ = {θ(t); t ≥ 0} having S = {1, . . . , N} as state space and Λ = [λij ], i, j = 1, . . . , N ,
as the transition rate matrix. The initial distribution of Θ is determined by µi =
P (θ0 = i), i = 1, . . . , N . Matrices Ai and Ci, 1 ≤ i ≤ N , belong to the collections
of N real matrices: A = (A1, . . . , AN ), dim(Ai) = n × n, and C = (C1, . . . , CN ),
dim(Ci) = q × n. Consider also the functional

W t(x, θ) = E

{∫ t

0

x(τ)′C ′
θ(τ)Cθ(τ)x(τ)dτ |F0

}
(2)

defined for x(0) = x and θ(0) = θ. Here we consider the following concept of ob-
servability, which is drawn from the observability concept for time-variant MJLS that
appears, for instance, in [16]. The concept is more general than other observability
concepts for MJLS, like the ones in [13].

Definition 1 (W-observability). We say that (A,C,Λ) is weakly (W-) observable
when there exist scalars td ≥ 0 and γ > 0 such that W td(x, θ) ≥ γ|x|2 for each x ∈ R

n

and θ ∈ S.
In this paper, for the time-invariant system Φ, we present a collection of ma-

trices O = (O1, . . . ,ON ) associated to the W-observability concept that resembles
observability matrices of deterministic linear systems. Then we provide extensions
of properties (I) and (II) mentioned above, respectively: we show that nonobserved
trajectories are invariant in the sense that, if x(s) is in the kernel of Oθ(s) for some
s ≥ 0, then x(t) is in the kernel of Oθ(t) for any t ≥ s (see Corollary 15), and we
show that (A,C,Λ) is W-observable if and only if each of the matrices of the set O is
of full rank. We also demonstrate that the largest attainable dimensionality of O is
constrained by the system dimensions n and N (see Lemma 12) in a similar manner
to observability matrices of deterministic systems.

Regarding the detectability of MJLS, before the work in [4] for discrete-time
MJLS, the most general detectability concept available was the dual of the stabiliz-
ability concept, known as mean square (MS-) detectability (see [7], [9], or [16]). The
concept is as follows.

Definition 2 (MS-stability). We say that (A,Λ) is MS-stable if, for system Φ
and for each x0 ∈ R

n and θ0 ∈ S,

lim
t→∞E{|x(t)|2} = 0.

Definition 3 (MS-detectability). We say that (A,C,Λ) is MS-detectable when
there exists G = {G1, . . . , GN} of appropriate dimension for which (A − GC,Λ) is
MS-stable.

In connection with the MS-detectability concept, we have that none of the well-
known properties (III) and (IV) mentioned above hold. Moreover, W-observability is
not comparable to MS-detectability. In Example 2, we present a system that is W-
observable but is not MS-detectable. It is also simple to provide a converse example: if
one takes (A,Λ) as MS-stable and C = 0, one has that (A,C,Λ) is MS-detectable but
is not W-observable. This lack of structure sometimes compels authors to consider
either a detectability or an observability hypothesis (see, for example, [9] and [16]),
where these conditions appear as sufficient conditions for uniqueness of solutions to
coupled algebraic Riccati equations (CAREs) arising in the optimal linear quadratic
problem.
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In this paper, we develop the following associate concept of W-detectability from
the W-observability concept. We mention that it is analogous to a concept for time-
varying systems that appears in [1].

Definition 4 (W-detectability). We say that (A,C,Λ) is W-detectable if there
exist scalars td, sd ≥ 0, γ > 0, and 0 ≤ δ < 1 such that W td(x0, θ0) ≥ γ|x0|2 whenever
E{|x(sd)|2} ≥ δ|x0|2.

We show that W-detectability generalizes and can retrieve each of the properties
(III) and (IV), respectively: for every nonobserved trajectory, a contraction condi-
tion holds, ensuring that the trajectory converges in the MS sense (see Lemma 20);
W-detectability generalizes W-observability. Moreover, in one of the main results of
this paper, we characterize W-detectability by means of MS-detectability as follows:
(A,C,Λ) is W-detectable if and only if (A,O,Λ) is MS-detectable (see Theorem 24).
This result allows us to clarify the conservativeness of MS-detectability when com-
pared with W-detectability, and, at same time, it provides a testable condition for
W-detectability; see section 4.1.

For the controlled MJLS, we show that the W-detectability concept ensures that
finite cost implies stable trajectories in the MS sense and, in particular, that the
solution to the CARE arising in optimal control problems is unique and stabilizing;
see section 5. This result generalizes previous characterizations in [9], [13], [16], and
[17].

The paper is organized as follows. In section 2 basic results and relevant defini-
tions are introduced, and, in section 3, we introduce the observability matrices and re-
lated properties. In section 4, some characterizations of W-detectability are presented,
and, in section 4.1, it is shown that W-detectability generalizes MS-detectability. In
section 5, we set up the link between W-detectability and stabilizing quadratic control.

2. Notation, concepts, and basic results. Let R
n be the nth dimensional

Euclidean space. LetRn,q (respectively,Rn) represent the normed linear space formed
by all n× q (respectively, n×n) real matrices and Rn0 (Rn+) the closed convex cone
{U ∈ Rn : U = U ′ ≥ 0} (the open cone {U ∈ Rn : U = U ′ > 0}), where U ′ denotes
the transpose of U ; U ≥ V (U > V ) signifies that U − V is positive semidefinite
(definite). For U ∈ Rn,q, N{U} and R{U} represent the kernel and the range of U ,
respectively.

Let Mn,q denote the linear space formed by a number N of matrices such that
Mn,q = {U = (U1, . . . , UN ) : Ui ∈ Rn,q, i = 1, . . . , N}; also, Mn ≡ Mn,n. We denote
by Mn0 (Mn+) the set Mn when it is made up by some Ui ∈ Rn0 (Ui ∈ Rn+)
for all i = 1, . . . , N . Analogously, for U, V ∈ Mn0 U ≥ V (U > V ) signifies that
U − V ∈ Mn0 (U − V ∈ Mn+). It is known that Mn,q equipped with the inner
product

〈U, V 〉 =
N∑
j=1

tr{U ′
jVj}

forms a Hilbert space. Let us define the norm ‖U‖ = 〈U, I〉 on Mn0.
Consider system Φ in (1). For i = 1, . . . , N , we define

Xi(t) = E{x(t)x(t)′1{θ(t)=i}|F0}, t ≥ 0.(3)

With this notation, we can write, for instance, E{|x(t)|2|F0} = 〈X(t), I〉 = ‖X(t)‖.
Now let us introduce the operators L : Mn → Mn and their adjoint in the inner
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product sense T : Mn → Mn as

Li(U) = A′
iUi + UiAi +

N∑
j=1

λijUj ,(4a)

Ti(U) = AiUi + UiA
′
i +

N∑
j=1

λjiUj , i = 1, . . . , N.(4b)

Let also L(t) and U(t), t ≥ 0, be defined by the matrix linear differential equations

L̇i(t) := Li(L(t)) + C ′
iCi, L(0) = 0, t ≥ 0,(5a)

U̇i(t) := Ti(U(t)), U(0) = U ∈ Mn0,(5b)

for each i = 1, . . . , N . The operators L and T are linear, and L(t) and U(t) defined
by (5) are unique. The following results are adapted from [6] and [13]; the proof is
omitted.

Proposition 5. The following assertions hold:
(i)

Ẋi(t) = Ti(X(t)), t ≥ 0, i = 1, . . . , N,(6)

for X(0) ∈ Mn0, such that Xi(0) = x0x
′
01{θ(0)=i}, i = 1, . . . , N ;

(ii)

W t(x, i) =

∫ t

0

〈X(τ), C ′C〉dτ = 〈X(0), L(t)〉.(7)

Consider the corresponding generalization of (7)

W t(U) =

∫ t

0

〈U(τ), C ′C〉dτ = 〈U,L(t)〉,(8)

where L(·) and U(·) are given by (5).
Lemma 6. U(·) ∈ Mn0 and L(s) ≥ L(t) whenever s ≥ t.
Proof. Notice that, for any U ∈ Mn0, one can adopt the following representation

(cf. Theorem 7.5.2 of [12]):

Ui = x1
ix

1′
i + · · ·+ xrii x

ri′
i ,

where xki ∈ R
n, k = 1, . . . , r and ri = rank(Ui) ≤ n. In connection, we can define

Xj,k
i (·) as the solution of (6) with Xi,k

i (0) = xki x
k′
i ; it is clear from the second moment

definition in (3) that Xj,k
i (·) ∈ Mn0. Also, from the linearity of the operator T , we

have that

Ui(t) =

N∑
j=1

rj∑
k=1

Xj,k
i (t), t ≥ 0,
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and U(·) ∈ Mn0, which proves the first assertion.
From the expression (8) and the first assertion, it is simple to check the result for

L(·). In fact, whenever s ≥ t, one has that W s(U) ≥ W t(U) for each U ∈ Mn0, and
thus 〈U,L(s) − L(t)〉 ≥ 0. The assertion follows from the Fejer’s trace theorem; cf.
[12].

It is well known that the MS-stability of A is equivalent to the requirement that
Re{λ(T )} < 0; see, for instance, [6]. Then we can rewrite the MS-stability concept
as follows.

Definition 7 (MS-stability). We say that (A,Λ) is MS-stable if

lim
t→∞ ‖X(t)‖ = 0 ∀X ∈ Mn0.

Remark 1. Feng et al. in [10] have shown that the MS-stability concept is equiv-
alent to other second moment stability concepts, such as exponential stability. Thus
the system is MS-stable if and only if there exist 0 < ξ < 1 and α ≥ 1 such that
‖X(t)‖ ≤ αξt ‖X(0)‖ for every X(0) ∈ Mn0. It is also known that, if (A,Λ) is not
MS-stable, then there exists X(0) ∈ Mn0 such that ‖X(t)‖ ≥ βζt ‖X(0)‖ for some
ζ ≥ 1 and 0 < β ≤ 1.

3. W-observability and observability matrices. In this section, we intro-
duce a collection of observability matrices, and, in one of the main results, we derive
a test for observability based on the rank of these matrices, in a parallel with the
observability test for deterministic linear systems. We also derive a counterpart for
MJLS for the well-known result for linear deterministic systems that nonobserved
trajectories are invariant. An illustrative example is also provided.

Let us introduce the matrices Oi ∈ Rn(n2N),n, defined for each i = 1, . . . , N, as

Oi := [Oi(0)Oi(1) · · · Oi(n2N − 1)]′,(9)

where each matrix Oi(·) belongs to the sequence of matrices on Mn0 defined as

Oi(k) := Li(O(k − 1)), k > 0,(10)

with Oi(0) := C ′
iCi, for each i = 1, . . . , N . Notice by inspection of (5a) that

Oi(k) =
dk+1L

dtk+1
(0).(11)

The collection of matrices O ∈ Mn0 is called the set of observability matrices
of system Φ. In fact, O resembles the observability matrices of linear deterministic
systems in many aspects, as we shall see in this section. We can mention in passing
that, for an isolated Markov state i, namely, λji = 0, j = 1, . . . , N , a direct equivalence
is retrieved: the pair (Ai, Ci) is observable in the deterministic sense if and only if Oi

is a full rank matrix.
Next we present some preliminary results.
For V ∈ Rn, let us identify the columns of V = [v1

... v2
... · · · ... vn]. For U =

(U1, . . . , UN ) and following [5], we introduce the linear and invertible operator ϕ̂ :

Mn0 → R
n2N as

ϕ̂(U) =



ϕ(U1)

...
ϕ(UN )


 , where ϕ(V ) =



v1
...
vn


 .
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Let V ⊗ Z represent the Kronecker tensor product of matrices V and Z. From (4a),
using basic properties of the Kronecker product [3], we obtain

ϕ(Li(U)) = (In ⊗A′
i)ϕ(Ui) + (A′

i ⊗ In)ϕ(Ui) +

N∑
j=1

λijϕ(Uj),

and one can check that

ϕ̂(L(U)) = Aϕ̂(U),(12)

where A ∈ Rn2N is the matrix defined by



Â1 + λ11In2 λ12In2 · · · λ1NIn2

λ21In2 Â2 + λ22In2

...
. . .

λN1In2 ÂN + λNNIn2




and Âi = (In ⊗ A′
i + A′

i ⊗ In). Applying the operator ϕ̂ in (5a) and employing (12),
we obtain

+̇(t) = ϕ̂[C ′C + L(L(t))]
= q +Aϕ̂(L(t)) = q +A+(t), t ≥ 0,

(13)

where +(t) ∈ R
n2N and q ∈ R

n2N are defined by

+(t) = ϕ̂(L(t)), q = ϕ̂(C ′C).

Notice by inspection of (13) that

dk+(0)

dtk
= Akq.(14)

We also introduce the following representation for the expression 〈U,L(t)〉:

〈U,L(t)〉 = ϕ̂(U)′ +(t).(15)

Lemma 8. Consider x ∈ R
n and i ∈ S; define X ∈ Mn0 as Xi = xx′ and Xj = 0

for all j �= i. Set w ∈ R
n2N as w = ϕ̂(X). The following assertions are equivalent:

(i) x′Li(s)x = 0 or, equivalently, w′+(s) = 0 for some s > 0;
(ii) w′dm+/dtm(0) = 0 for m = 1, . . . , n2N ;
(iii) w′Am−1q = 0 for m = 1, . . . , n2N ;
(iv) x ∈ N (Li(t)) or, equivalently, w′+(t) = 0 for all t ≥ 0;
(v) x ∈ N (Oi).
Proof. (i) ⇒ (ii): From Lemma 6, L(t) ≤ L(s) for t ≤ s; from (15), we evaluate

w′+(t) = 〈ϕ̂−1(w), L(t)〉 ≤ 〈ϕ̂−1(w), L(s)〉 = w′+(s) = 0, t ≤ s. In addition, noticing
that w′+(t) ≥ 0 and recalling that L(0) = 0, we can write w′+(t) = 0 for all 0 ≤ t ≤ s,
which leads to

w′ d
m+

dtm
(0) = 0 ∀m ≥ 0.
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(ii) ⇒ (iii): The result follows immediately from (14).
(iii) ⇒ (iv): For the linear deterministic system in (13), we can write for any

t ≥ 0

+(t) =

∫ t

0

eA(t−τ)qdτ =

∫ t

0

n2N∑
m=1

αm(τ)Am−1qdτ

=

n2N∑
m=1

Am−1q

∫ t

0

αm(τ)dτ =

n2N∑
m=1

α̂m(t)Am−1q,

where αm and α̂m are scalar functions. Then we get that

w′+(t) =
n2N∑
m=1

α̂m(t)w′Am−1q = 0.

(iv) ⇒ (i): This part of the proof is trivial.
(ii) ⇔ (v): Employing (15), we write

w′ d
m+

dtm
(0) = 0 ⇔

〈
X,

dmL

dtm
(0)

〉
= 0 ⇔ dmLi

dtm
(0)x = 0(16)

for m = 1, . . . , n2N . The proof is easily completed by noticing from (11) that

Oi =




Oi(0)
...

Oi(n
2N − 1)


 =




d1Li

dt (0)
...

dn
2NLi

dtn2N
(0)


 .

The next corollary restates some assertions in Lemma 8 for further use.
Corollary 9. The following assertions are equivalent:
(i) x ∈ N{Oi};
(ii) W s(x, i) = 0 for some s > 0;
(iii) W t(x, i) = 0 for all t ≥ 0.
Remark 2. Notice from Corollary 9 that if the conditions in Definitions 1 or 4

hold for some td ≥ 0, then they hold for all t ≥ 0.
The next theorem provides a rank test on the set of observability matrices O.

First, let us rewrite the W-observability concept in terms of the notation introduced
in section 2.

Definition 10 (W-observability). We say that (A,C,Λ) is W-observable when
there exist scalars td ≥ 0 and γ > 0 such that W td(X) ≥ γ ‖X‖ for each initial
condition X.

Theorem 11. Consider system Φ. (A,C,Λ) is W-observable if and only if Oi

has full rank for each i = 1, . . . , N .
Proof. From (8), we can write the condition in Definition 1 equivalently as

〈X,L(td)〉 ≥ γ‖X‖ ∀X ∈ Mn0.

This is equivalent to requiring that Li(td) be positive definite for each i = 1, . . . , N .
The equivalencies (i) and (v) of Lemma 8 complete the proof.

Example 1. Let N = 2, n = 2, and set

A1 = I2; A2 =

[
1 1
0 1;

]
; C1 = [1 0]; C2 = 0; Λ =

[−1 1
1 −1

]
.



1302 EDUARDO F. COSTA AND JOÃO B. R. DO VAL

From (9), one evaluates rank(O1) = rank(O2) = 2, and Theorem 11 ensures that
(A,C,Λ) is W-observable.

Remark 3. It is known that (A,C,Λ) is W-observable if each pair (Ai, Ci), i =
1, . . . , N , is observable; see, e.g., [16]. However, this condition is not necessary; for
instance, in Example 1, none of the pairs (Ai, Ci) are observable.

3.1. Properties of the observability matrices and pathwise invariance of
nonobserved trajectories. The next lemma establishes a counterpart for the well-
known result about the largest attainable dimensionality of observability matrices.

Lemma 12.

N{Oi} = N{[Oi(0)
... · · · ...Oi(k)]′} ∀k ≥ n2N − 1.

Proof. For x ∈ N (Oi), let Xi = xx′ and Xj = 0 for all j �= i, and let w = ϕ̂(X).
From Lemma 8 (iii) and (v), we have that Oix = 0 is equivalent to w′Ar−1q = 0,

r = 1, . . . , n2N . From the Cayley–Hamilton lemma, Am =
∑n2N−1
r=0 αrAr for each

m ≥ 0, and we obtain 


w′q = 0,

w′Aq = 0,
...

w′Amq = 0,

(17)

which, from (14), is equivalent to w′dm+(0)/dtm = 0, m ≥ 0. Finally, applying
(16) for a generic m ≥ 0, we obtain dmLi(0)/dt

mx = 0, and from (11) we write
Oi(m)x = dm+1Li(0)/dt

m+1x = 0 for m ≥ 0 and, in particular, for m ≥ n2N − 1.

Thus N{Oi} ⊂ N{[Oi(0)
... · · · ...Oi(k)]′} for all k ≥ n2N−1; the opposite relation holds

trivially.
Next we present a relation between the null spaces of the observability matrices

which will be useful in what follows. The following preliminary result is needed.
Proposition 13. For each scalar M > 0, there exists tM > 0 for which ‖x(t)−

x0‖ ≤M‖x0‖ almost surely (a.s.) for all t ≤ tM .
Lemma 14. Assume that the Markov state j is accessible from the state i. Then

N{Oi} ⊂ N{Oj}.
Proof. Let us deny the assertion of the lemma; that is, we assume that there exist

a scalar m > 0 and x0 ∈ R
n such that

x0 ∈ N{Oi}(18)

for which |x0 − x| ≥ m, for all x ∈ N{Oj}. Notice that x0 �= 0, and let x0 and θ0 = i
be initial conditions.

We start the proof by setting M = m/(2|x0|) in Proposition 13 to obtain that
there exists tM for which x(t) ∈ Bm/2(x0), t ≤ tM , where Bm/2(x0) = {x : |x− x0| ≤
m/2}. Let x̃(tM ) and x̂(tM ) be the orthogonal projection of x(tM ) on N{Oj} and
R{O′

j}, respectively. Notice that x̃(tM ) ⊥ x̂(tM ) and |x̃(tM )| ≥ m/2; see Figure 1.
From Lemma 8 (i) and (v), one has that N{Oj} = N{Lj(s)} for s ≥ 0, and thus

R{O′
j} = R{L′

j(s)}. In this situation, we can write

x(tM )′Lj(s)x(tM ) = x̂(tM )′Lj(s)x̂(tM ) ≥ µ|x̂(tM )|2 ≥ µ(m/2)2,
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x̃(tM )

x̂(tM )
Bm/2(x0)

N{Oi}

N{Oj}

R{O′
j}

Fig. 1. The geometry of Lemma 14.

where µ is the smallest strictly positive eigenvalue of Lj(s), and Proposition 5 leads
to

W s(x(tM ), j) ≥ µm2/4 a.s.

Now we evaluate

E{W s(x(tM ), θ(tM ))|F0} ≥ E{W s(x(tM ), θ(tM ))1{θ(tM )=j}|F0}

≥ µm2

4
E{1{θ(tM )=j}|F0} > 0,

where the last inequality comes from the assumption of the lemma. Finally, we can
write that

W s+tM (x0, θ0) = E{W s+tM (x0, θ0)|F0}
= E{W tM (x0, θ0)|F0}+ E{W s(x(tM ), θ(tM ))|F0}
≥ E{W s(x(tM ), θ(tM ))|F0} > 0,

and, from Corollary 9 (i) and (iii), it follows that x0 �∈ N{Oθ0}, which is a contradic-
tion in view of (18).

The next corollary establishes that nonobserved trajectories are pathwise invari-
ant.

Corollary 15. If x(t) ∈ N{Oθ(t)}, then x(s) ∈ N{Oθ(s)} a.s. for all s ≥ t.

4. W-detectability. Let us start this section by rewriting the concept of W-
detectability in terms of the notation introduced in section 2.

Definition 16 (W-detectability). We say that (A,C,Λ) is W-detectable if there
exist scalars td, sd ≥ 0, γ > 0, and 0 ≤ δ < 1 such that W td(X) ≥ γ ‖X‖ whenever
‖X(sd)‖ ≥ δ ‖X‖, with X(0) = X.

Notice that W-detectability requires positivity of W td(·) only when the condition
‖X(sd)‖ ≥ δ ‖X‖, related to stability of the system, is satisfied. The next result is
immediate; the proof is omitted.

Lemma 17. If (A,C,Λ) is W-observable, then (A,C,Λ) is W-detectable.
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The concept of W-detectability resembles standard concepts of detectability for
linear discrete time-varying systems; see, e.g., [1] or [11]. As we shall see in Lemma 19,
the concept retrieves the idea that every nonobserved state corresponds to stable
modes of the system. Notice that every MS-stable MJLS is W-detectable with td and
γ arbitrary and δ and sd such that δ = αξsd < 1, where α and ξ are as in Remark 1.

In what follows, basic properties of W-detectability are derived. We start with
some properties of the functional W t(X). In this section, the initial condition X(0) ∈
Mn0 is denoted by X; W t(X(s)) =W t(X) whenever X(s) = X.

Lemma 18. Let T > 0. The following assertions hold:
(i) W t(X) is continuous on X.
(ii) Assume that WT (X) = 0 for some T ≥ 0; then W t(X(s)) = 0 for all t, s ≥ 0.
Proof. (i) The assertion follows immediately from the representation in (8),

W t(X) = 〈X,L(t)〉, and the continuity of the inner product.
(ii) Since WT (X) = 0 for some T > 0, from Corollary 9 (ii) and (iii), we conclude

that W s+t(X) = 0. Now let us define U(0) = U = X(s); since U(t) is defined by
U̇i(t) = Ti(U(t)) and, from Proposition 5 (i), it holds that Ẋi(t) = Ti(X(t)), we have
that U(τ) = X(τ + s) for 0 ≤ τ ≤ t. Then, from the definition of W in (8), we can
write that

W t(X(s)) =

∫ t

0

〈U(τ), C ′C〉dτ

=

∫ s+t

s

〈X(τ), C ′C〉dτ

≤
∫ s+t

0

〈X(τ), C ′C〉dτ =W s+t(X) = 0.

The result in the next lemma parallels the known result in deterministic linear
systems theory that every nonobserved trajectory corresponds to stable modes of the
system. The proof is a counterpart of the discrete-time case presented in [4, Lemma 8].

Lemma 19. Consider system Φ, and let T > 0. (A,C,Λ) is W -detectable if and
only if ‖X(t)‖ → 0 as t→ ∞ whenever WT (X) = 0.

Proof. Sufficiency. Let us consider the set

Z = {Z : ‖Z‖ = 1,WT (Z) = 0},(19)

and let us denote as Z(t) the trajectory corresponding to an initial condition Z ∈ Z.
By hypothesis, ‖Z(t)‖ → 0 as t → ∞, and we can write as in Remark 1 that there
exist 0 < ξ < 1 and α ≥ 1 such that ‖Z(t)‖ ≤ αξt. Consequently, there exist sd ≥ 0
and 0 ≤ δ < 1 such that ‖Z(sd)‖ < δ for all Z ∈ Z, and we can write

Z ⊂ C̄ = {Z : ‖Z‖ = 1, ‖Z(sd)‖ < δ}.
In this proof, we shall demonstrate that there exists γ > 0 such that, whenever
‖X(sd)‖ ≥ δ, then WT (X) ≥ γ ‖X‖ , and consequently (A,C,Λ) is W-detectable.
Let us deny the assertion and suppose that, for each γ > 0, there exists X, ‖X‖ = 1
such that WT (X) < γ and ‖X(sd)‖ ≥ δ, i.e., X ∈ C, where

C = {X : ‖X‖ = 1, ‖X(sd)‖ ≥ δ}.
Notice that, sinceX(sd) is solution of the differential equation (6), X(sd) is continuous
on the initial condition X, and hence the set C is a compact set. Then we can take a
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sequence Xn ∈ C with γn → 0 as n→ ∞ in such a manner that, from the compactness
of C, there exists a subsequence Xm, which converges to some X̂ ∈ C, and, from the
continuity of WT (see Lemma 18),

lim
m→∞WT (Xm) =WT (X̂) = 0.

In view of (19), X̂ ∈ Z ⊂ C̄, which completes the proof by contradiction.
Necessity. We shall show that, under W-detectability of (A,C,Λ), ‖X(t)‖ → 0

as t → ∞ when WT (X) = 0. Since WT (X) = 0, from Lemma 18, we have that
WT (X(t)) = 0 for all t ≥ 0. Then, in view of the W-detectability of (A,C,Λ), we
have that ‖X(t+ sd)‖ < δ ‖X(t)‖ for all t ≥ 0 and some sd ≥ 0 and 0 ≤ δ < 1;
consequently, ‖X(t+ nsd)‖ < δn ‖X(t)‖ , and hence

lim
n→∞ sup

0≤t≤sd−1
‖X(t+ nsd)‖ ≤ lim

n→∞ δn sup
0≤t≤sd−1

‖X(t)‖ = 0,

and the result follows in a straightforward manner.
The next lemma presents a second version of the previous result, coined here in

terms of the set of observability matrices O.
Lemma 20. (A,C,Λ) is W-detectable if and only if limt→∞E{|x(t)|2} = 0 when-

ever x0 ∈ N (Oθ0).
Proof. Necessity. We show that limt→∞ ‖X(t)‖ = 0 whenever x0 ∈ N (Oθ0),

provided (A,C,Λ) is W-detectable. For the initial condition x0, θ0, we have that
Xj(0) = 0, j �= θ0, and Xθ0(0) = x0x

′
0, and since x0 ∈ N (Oθ0), Corollary 9 yields

W t(X(0)) = 0; Lemma 19 completes the proof.
Sufficiency. Let us assume that WT (X) = 0. Any such X ∈ Mn0 can be written

in the following form (see Theorem 7.5.2 of [12]):

Xi = x1
ix

1′
i + · · ·+ xrii x

ri′
i ,(20)

where xki ∈ R
n, k = 1, . . . , r, and ri = rank(Xi) ≤ n. From (8), we have that

〈X,L(T )〉 = WT (X) = 0, and we can write that WT (xki , i) ≤ 〈X,L(T )〉 = 0 for any
i and k. Thus (i) and (ii) of Corollary 9 provide

xki ∈ N (Oi), i = 1, . . . , N, k = 1, . . . , ri.

Now let vi,k(0) = xki ∈ N (Oi). Let vi,k(t) ∈ R
n, k = 1, . . . , ri, be given by the

differential equation v̇i,k(t) = Aθ(t)v
i,k(t), θ(0) = i. Since xi,k(0) ∈ N (Oθ(0)), from

the assumption of the lemma, we have that

lim
t→∞E{|vi,k(t)|2} = 0, i = 1, . . . , N, k = 1, . . . , ri.(21)

LetXi,k(t) ∈ Mn0 be the second moment matrixXi,k
j (t) = E{vi,k(t)vi,k(t)′1{θ(t)=j}},

j = 1, . . . , N . Notice that Xi,k
i (0) = xki x

k′
i and Xi,k

j (0) = 0 for j �= i; in view of (20),

we can write Xi =
∑N
j=1

∑rj
k=1X

j,k
i . Then, from (6) and the linearity of the operator

T , we have that

Xi(t) =

N∑
j=1

rj∑
k=1

Xj,k
i (t),
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and from (21) we evaluate

lim
t→∞ ‖X(t)‖ ≤

N∑
j=1

rj∑
k=1

lim
t→∞ ‖Xj,k(t)‖ =

N∑
j=1

rj∑
k=1

lim
t→∞E{|vj,k(t)|2} = 0.

We have shown, under the assumption of the lemma, that ‖X(t)‖ → 0 as t → ∞
for each X ∈ Mn0 such that WT (X) = 0; Lemma 19 provides that (A,C,Λ) is
W-detectable.

Corollary 21. If the triplet (A,C,Λ) is not W-detectable, then there exist i ∈ S
and x0 ∈ N (Oi) such that limt→∞E{|x(t)|2} �= 0, for the initial condition x(0) = x0

and θ(0) = i.

4.1. W-detectability and MS-detectability. This section deals with the re-
lation between the concepts of MS-detectability and W-detectability. In the main
result of this section, we show that W-detectability of (A,C,Λ) is equivalent to MS-
detectability of (A,O,Λ). From the main result, we also derive a computational test
for W-observability.

We start by dealing with the following closed-loop version of the MJLS:

Φo : ẋ(t) = (Aθ(t) +Gθ(t)Oθ(t))x(t), x(0) = x0, θ(0) = θ0.(22)

For each i = 1, . . . , N , we set

Gi = (−Ai − I)O+
i ,(23)

where O+
i denotes the pseudoinverse of Oi.

Let us present some properties of system Φo with G given in (23). First, one
has that O+

i Oix is the orthogonal projection of x onto R{O′
i} and I − O+

i Oi is
the projection onto N{Oi}. Notice that we can write x(t) = x̂(t) + x̃(t), where
x̂(t) = O+

θ(t)Oθ(t)x(t) and x̃(t) = (I −O+
θ(t)Oθ(t))x(t), and one can easily check that

x̂(t) ⊥ x̃(t).(24)

In what follows, we study each component x̂ and x̃ separately. For ease of nota-
tion, we denote Oθ(t−) = lims↑tOθ(s) and similarly for x̂(·) and x̃(·). Let us define the
sequence of jump times t1, t2, . . . , as{

t0 = 0,

tm+1 = inf{t > tm : N{Oθ(t−)} �= N{Oθ(t)}}, m ≥ 0.
(25)

Lemma 22. Consider system Φo with G given in (23). Then |x̂(t)| ≤ e−t|x̂(0)|
a.s.

Proof. From (23) and (22), it is a simple matter to check that, for tm−1 ≤ t < tm,
˙̂x(t) = −x̂(t) with a given condition x̂(tm−1) due to the strong Markov property of
MJLS [8] and the linearity of Φo; this means that

x̂(t) = e−(t−tm−1)x̂(tm−1), tm−1 ≤ t < tm a.s.(26)

Regarding the sequence of jump times, from (25) and Lemma 14, we have that
N{θ(t−m)} ⊂ N{θ(tm)} holds strictly, which yields that the projection of x̃(t−m) onto
R{O′

θ(tm)} is null and x̂(tm) is simply the result of the orthogonal projection of x̂(t−m)
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onto R{O′
θ(tm)}. Then the value of the Euclidean norm of x̂(·) decreases at the se-

quence of jump times,

|x̂(tm)| ≤ |x̂(t−m)| a.s.(27)

The result follows from (26) and (27).
Lemma 23. Consider system Φo with G given in (23), and assume that (A,C,Λ)

is W-detectable. Then E{|x̃(t)|2} → 0 as t→ ∞.
Proof. In this proof, Ptm = (I−O+

θ(tm)Oθ(tm)) stands for the orthogonal projection

ontoN{Oθ(tm)}. We start showing inductively that E{|x̃(tm)|2} <∞. Form = 0, the
result is immediate since E{|x̃(0)|2} ≤ |x0|2. Now we assume that E{|x̃(tm−1)|2} <
∞. At time instant tm, the orthogonal projection of x̂(t−m) onto N{Oθ(tm)} is added
to x̃; that is,

x̃(tm) = x̃(t−m) + Ptm x̂(t
−
m).(28)

Notice that Ptm−1Ptm = Ptm−1
since N{Oθ(tm−1)} ⊂ N{Oθ(tm)}, and we write

Ptm−1Ptm x̂(t
−
m) = Ptm−1 x̂(t

−
m) = 0; notice that Ptm x̂(t

−
m) ∈ R{O′

θ(tm−1)
} or, equiva-

lently,

x̃(t−m) ⊥ Ptm x̂(t
−
m).(29)

On the other hand, from (22) and (23), it is easy to check that, for tm−1 ≤ t < tm,
˙̃x(t) = Aθ(t)x̃(t) with given condition x̃(tm−1) due to the strong Markov property of
MJLS [8] and the linearity of Φo. Recalling that x̃(t) ∈ N{Oθ(t)} for tm ≤ t < tm+1,
Lemma 20, Remark 1, and the strong Markov property yield

E{|x̃(t)|21{tm≤t<tm+1}} ≤ αE{ξt−tm |x̃(tm)|21{tm≤t<tm+1}},(30)

where 0 < ξ < 1 and α ≥ 1. Then, from (28), by employing (29) and (30) and from
Lemma 22, we evaluate

E{|x̃(tm)|2} = E{|x̃(t−m) + Ptm x̂(t
−
m)|2} = E{|x̃(t−m)|2}+ E{|Ptm x̂(t−m)|2}(31)

≤ αE{ξt−tm−1 |x̃(tm−1)|2}+ E{|x̂(t−m)|2}
< αE{|x̃(tm−1)|2}+ E{|x̂(t−m)|2} <∞,

and the induction is complete. From (30) and (31), we can find o(t) > 0 for which

E{|x̃(t)|21{tm≤t<tm+1}} ≤ αE{ξt−tm |x̃(tm)|21{tm≤t<tm+1}} ≤ o(t)

holds for each interval tm−1 < t < tm, where o(t) → 0 as t→ ∞. Then we can write

E{|x̃(t)|2} = E{|x̃(t)|21{t0≤t<t1}}+ E{|x̃(t)|21{t1≤t<t2}}+ · · ·
≤ αE{ξt−t0 |x̃(t0)|21{t0≤t<t1}}+ αE{ξt−t1 |x̃(t1)|21{t1≤t<t2}}+ · · ·
≤ o(t) + o(t) + · · · .(32)

Finally, it can be checked that (32) has at most n elements. Indeed, from (25) and
Lemma 14, it is simple to check that N{θ(t0)} ⊂ N{θ(t1)} ⊂ · · · ⊂ N{θ(tm)}
strictly, which yields m ≤ dimN{Oθ(tm)} ≤ n, where the limit comes from the fact

that Oi ∈ Rn(n2N),n for all i. Hence

lim
t→∞E{|x̃(t)|2} ≤ n lim

t→∞ o(t) = 0.
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Now we are ready to present the main result of the section.
Theorem 24. The triplet (A,C,Λ) is W-detectable if and only if the triplet

(A,O,Λ) is MS-detectable.
Proof. Necessity. Consider system Φo, let G be defined as in (23), and assume

that (A,C,Λ) is W-detectable. From (24) and Lemmas 22 and 23, we evaluate

lim
t→∞E{|x(t)|2} = lim

t→∞E{|x̂(t)|2}+ lim
t→∞E{|x̃(t)|2}

≤ lim
t→∞ e−2tE{|x(0)|2}+ lim

t→∞E{|x̃(t)|2} = 0.

Thus (A+GO,Λ) is MS-stable, which implies that (A,O,Λ) is MS-detectable.
Sufficiency. We show that (A,O,Λ) is not MS-detectable provided the triplet

(A,C,Λ) is not W-detectable. Consider i ∈ S and x0 ∈ N (Oi) as in Corollary 21.
For the initial condition x(0) = x0 and θ(0) = i, we have from Corollary 15 that
Oθ(t)x(t) = 0, t ≥ 0. Then the term Gθ(t)Oθ(t)x(t) vanishes in (22), and x(t) evolves
according to ẋ(t) = Aθ(t)x(t) for any G ∈ Mn in such a manner that the system
Φo behaves as its open-loop version Φ no matter how G is chosen. Finally, from
Corollary 21, we have that limt→∞E{|x(t)|2} �= 0, and we conclude that there is no
G ∈ Mn such that A+GO is MS-stable; hence (A,O,Λ) is not MS-detectable.

The relationship between MS-detectability and W-detectability is established as
follows.

Theorem 25. If (A,C,Λ) is MS-detectable, then (A,C,Λ) is W -detectable.
Proof. It follows from the definition of O that N{Oi} ⊂ N{Ci}. In view of this

fact, it is simple to check that, given K ∈ Mn,q, there always exists G ∈ Mn,n3N such
that GiOi = KiCi, i = 1, . . . , N ; hence we have that MS-detectability of (A,C,Λ)
implies MS-detectability of (A,O,Λ). Theorem 24 completes the proof.

Notice that the converse of Theorem 25 does not hold in general since it is a
simple matter to find situations for which N{Ci} ⊂ N{Oi} strictly.

Remark 4. Theorem 24 allows one to test the W-detectability of the triplet
(A,C,Λ) by checking the MS-detectability of the triplet (A,O,Λ). For a downsizing
in the dimensionality, one can check alternatively if the triplet (A,O′O,Λ) is MS-
detectable. The following computational form for the MS-detectability test, posed
in terms of linear matrix inequalities, is an adaptation of the results in [17]: the
MS-detectability of (A,C,Λ) is equivalent to the feasibility of the set

A′
iXi +XiAi + C ′

iL
′
i + LiCi + Ei(X) < 0, i = 1, . . . , N,

in the unknowns Xi ∈ Rn0 and Li of appropriate dimensions.
Example 2. Let N = 2, n = 1, and set

A1 = −2; A2 = 2; C1 = 1; C2 = 0; Λ =

[−1 1
1 −1

]
.

From (9), we evaluate O1 = [1 − 5]′ and O2 = [0 1]′, and Theorem 11 ensures that
(A,C,Λ) is W-observable. Notice also that the condition in Lemma 20 is trivially
satisfied. On the other hand, one can check by employing the result in Remark 4 that
(A,C,Λ) is not MS-detectable.

Remark 5. It can be shown that matrix Oi is full rank if the pair (Ai, Ci) is
observable. From this result and the result in Lemma 14, we conclude that a sufficient
condition for W-observability of (A,C,Λ) is that the pair (Ai, Ci) is observable and
λji > 0 for all j �= i. For instance, this is the scenario in Example 2.



DETECTABILITY OF MARKOV JUMP LINEAR SYSTEMS 1309

Remark 6. For the deterministic linear system described by the pair (Ai, Ci),

let Ni stand for the observability matrix Ni = [Ci
...AiCi

... · · · ...An−1
i Ci]. It is widely

known that the detectability of (Ai, Ni) is equivalent to the detectability of (Ai, Ci).
This property is not mirrored by the MS-detectability concept since Theorem 24 states
that the MS-detectability of (A,O,Λ) is equivalent to the W-detectability of (A,C,Λ),
which is more general than the MS-detectability of (A,C,Λ). The scenario of MJLS
with W-detectability is as follows:

W-detectable (A,O,Λ) ⇔ W-detectable (A,C,Λ) ⇔ MS-detectable (A,O,Λ),
where the first equivalence follows from Lemma 12.

Remark 7. For the degenerate case Λ = 0, we can show that W-detectability is
equivalent to MS-detectability. This relation is exposed by the following equivalencies;
most of them are simple to verify and are stated without further reference. We use a
concise but self-evident notation; as in the remark above, Ni denotes the observability
matrix of the system described by (Ai, Ci).

(i) MS-detec(A,C,Λ) ⇔ detec(Ai, Ci) for all i ⇔ detec(Ai, Ni) for all i;
(ii) N (Ni) ≡ N (Oi) for all i;
(iii) detec(Ai, Ni) ⇔ detec(Ai,Oi);
(iv) detec(Ai,Oi) for all i ⇔ MS-detec(A,O,Λ) ⇔ W-detec(A,C,Λ) (Theo-

rem 24).

5. W-detectability and the LQ problem. In this section, we consider the
linear quadratic control for system Φ. Under the W-detectability assumption, we show
that the closed-loop system is MS-stable if a set of coupled algebraic matrix equations
associated with the closed-loop system has a solution. In particular, we conclude that
the solution to the CARE arising in the LQ problem is a unique stabilizing solution.
Thus W-detectability not only generalizes MS-detectability but also plays the same
role of MS-detectability in optimal LQ problems; see [7] and [9].

We start with some preliminary results for the open-loop system Φ. Consider the
cost functional

JT (X) =

∫ T

0

〈U(τ), S〉dτ = E

{∫ T

0

x(τ)′Sθ(τ)x(τ)dτ |F0

}
(33)

defined whenever U(0) = X, where S ∈ Mn0. Notice that the functionals JT and
WT are closely related. In fact, it is easy to check that, when C = S1/2, WT (X) and
JT (X) coincide.

Let us consider the following coupled equation in the unknown P ∈ Mn:

0 = Li(P ) + Si, i = 1, . . . , N,(34)

with S ∈ Mn0. The following results are derived from [6] and [13].
Proposition 26. Consider system Φ and the set of equations (34). Then the

following assertions hold:
(i) If there exists P ∈ Mn0 satisfying (34), then

J∞(X) = lim
T→∞

JT (X) ≤ 〈X,P 〉.(35)

(ii) Assume that A is MS-stable. Then there exists a unique P satisfying (34)
and P ∈ Mn0; moreover,

J∞(X) = 〈X,P 〉.
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Lemma 27. Assume that (A,S1/2,Λ) is W-detectable and that there exists P ∈
Mn0 such that J∞(X) < 〈X,P 〉. Then A is MS-stable.

Proof. Let td, sd, δ, and γ be as in Definition 16. Let us assume that A is not
MS-stable; in this situation, there exists X(0) �= 0 such that

‖X(t)‖ ≥ βζt ‖X(0)‖(36)

for some 0 < β ≤ 1 and ζ ≥ 1; see Remark 1. Let us define the sequence N =
{n0, n1, . . . }, where n0 = 0 and each nm, m = 1, 2, . . . , is the smallest integer such
that nm > nm−1 and

‖X((nm + 1)sd)‖ ≥ δ ‖X(nmsd)‖
hold. It is easy to check that, if the number of elements of N is finite, then

lim
m→∞ ‖X(msd)‖ = 0,

which contradicts (36) and we conclude that N has infinitely many elements. Hence
we can take a subsequence with infinitely many elements N ′ = {nm0 , nm1 , . . . }, where
nm0

= m0 = 0 and each mk, k = 1, 2, . . . , is the smallest integer, such that nmk
≥

nmk−1
+max{1, td/sd}. In view of the W-detectability, we can evaluate

JT (X) =

∫ T

0

〈X(τ), S〉dτ ≥
k′∑
k=0

∫ nmk
sd+td

nmk
sd

〈X(τ), S〉dτ

=
k′∑
k=0

W td(X(nmk
sd)) ≥

k′∑
k=0

γ ‖X(nmk
sd)‖

≥ γ
k′∑
k=0

βζ(nmk
sd) ‖X(0)‖ ≥ γ βζ(nm0

sd)(k′ + 1) ‖X(0)‖ ,

where k′ is the largest integer for which nmk′ sd + td ≤ T , in such a manner that
k′ → ∞ as T → ∞, and we conclude that J∞(X) = ∞, which, from Proposition
26 (i), contradicts the hypothesis of the lemma.

Now we consider the system Φ in closed-loop form. Recall that we assumed in
section 1 that both the state x and the jump variable θ are accessible for control.
In this situation, it is well known that the optimal control is in linear state feedback
form; see, e.g., [13]. Then we consider the following closed-loop version of system Φ:

Φc : ẋ(t) = (Aθ(t) +Bθ(t)Gθ(t))x(t),(37)

where B ∈ Mn,r is given and G ∈ Mr,n can be regarded as a linear state feedback
control. The associated infinite horizon cost functional is

J∞(X) = lim
t→∞

∫ T

0

〈U(τ), Q+G′RG〉dτ,(38)

where Q ∈ Mn0 and R ∈ Mr+, defined whenever U(0) = X. The system Φc is said
to be MS-stabilizable when there exists G ∈ Mr,n such that A+BG is MS-stable. In
what follows, LG refers to the operator L associated to the closed-loop system with
gain G; namely,

LGi(U) = Â′
iUi + UiÂi +

N∑
j=1

λijUj ,(39)



DETECTABILITY OF MARKOV JUMP LINEAR SYSTEMS 1311

where Âi = Ai +BiGi for each i. The same notation applies to TG.
A question that arises is whether a W-detectable open-loop triplet (A,C,Λ) can

turn into a non-W-detectable closed-loop triplet ((A + BG), C,Λ). The next lemma
gives an answer to this conjecture.

Lemma 28. If (A,Q1/2,Λ) is W-detectable, then (A+BG, (Q+G′RG)1/2,Λ) is
W-detectable for any G ∈ Mr,n and R ∈ Mr+.

Proof. In this proof, T and W refer to the system Φ, and TG and WG refer to
Φc; X(·) represents the trajectory of system Φc. We show that ‖X(t)‖ → 0 as t→ ∞
whenever WT

G (X) = 0. From Lemma 18, we can write for all t ≥ 0 that

0 =W t
G(X) =

∫ t

0

〈X(τ), (Q+G′RG)′1/2(Q+G′RG)1/2〉dτ

=

∫ t

0

〈X(τ), Q+G′RG〉dτ ≥
∫ t

0

〈X(τ), G′RG〉dτ.

(40)

From the continuity of X(t), we can evaluate

〈X(t), G′RG〉 = 〈R1/2GX(t)1/2, R1/2GX(t)1/2〉 = 0

for all t ≥ 0, and, since Ri > 0, we get that GiX(t) = 0 for all t ≥ 0 and i. Then we
can write

TGi(X(t)) = ÂiXi(t) +XiÂ
′
i +

N∑
j=1

λjiXj

= AiXi(t) +XiA
′
i +

N∑
j=1

λjiXj = Ti(X(t))

for all t ≥ 0, and, in view of Proposition 5 with Âi = (Ai + BiGi) for i = 1, . . . , N ,
we have that such trajectories of systems Φc and Φ coincide whenever the initial
conditions coincide. We set C = Q1/2 in system Φ to conclude, similarly to (40), that

WT (X) =

∫ T

0

〈X(τ), C ′C〉dτ =

∫ T

0

〈X(τ), Q〉dτ ≤WT
G (X) = 0

for any s > 0, and the detectability of (A,Q1/2,Λ) ensures that ‖X(t)‖ → 0 as
t→ ∞.

Theorem 29. Consider the closed-loop system Φc with a linear state feedback
control G ∈ Mr,n. Assume that (A,Q1/2,Λ) is W-detectable. If there exists a solution
P ∈ Mn0 of

LGi(P ) +Qi +G′
iRiGi = 0, i = 1, . . . , N,(41)

then A+BG is MS-stable.
Proof. Set S = Q + G′RG, and notice, from Lemma 28 and the assumption in

the theorem, that (Â, S1/2,Λ) is W-detectable, where Â = (A + BG). Then, from

Proposition 26 (i), we have that J∞
G (X) ≤ 〈X,P 〉, and Lemma 27 states that Â is

MS-stable.
Theorem 30. Consider the system

ẋ(t) = Aθ(t)x(t) +Bθ(t)u(t),(42)
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the associated infinite-horizon linear quadratic cost J∞(X), and the CARE in the
unknown P ∈ Mn0:

A′
iPi + PiAi +

N∑
j=1

λijPj − PiBiR
−1
i B′

iPi +Qi = 0.(43)

Assume that (A,Q1/2,Λ) is W-detectable. Then the following assertions hold:
(i) There exists a solution P ∈ Mn0 of (43) if and only if the system is MS-

stabilizable;
(ii) If P is a solution of (43), then it is unique. The optimal state feedback control

u(t) = −R−1
i B′

iPix(t) whenever θ(t) = i(44)

is such that

lim
t→∞E{|x(t)|2} = 0.

Proof. The sufficiency part of assertion (i) is a well-known result; see, e.g., [17,
Theorem 3.1]. Notice that, if we denote Gi = −R−1

i B′
iPi, we can write (43) equiva-

lently as

LGi(P ) +G′
iRiGi +Qi = 0, i = 1, . . . , N,(45)

and, from Theorem 29, we have that A+BG is MS-stable. This argument completes
the proof of assertion (i) and also part of the assertion (ii) regarding the MS-stability
of the closed-loop system defined by (44). Let us show now that P is unique. Suppose
that P̄ ∈ Mn0 is a solution of (43). In a similar fashion to (45), we can write

LḠi(P̄ ) + Ḡ′
iRiḠi +Qi = 0, i = 1, . . . , N,(46)

where Ḡi = −R−1
i B′

iP̄i; notice that, from Theorem 29, the system with gain Ḡ is also
MS-stable. Subtracting (46) from (45), we get, after some manipulations, that

LGi(P − P̄ ) + (Gi − Ḡi)
′Ri(Gi − Ḡi) = 0, i = 1, . . . , N,

and we identify Si = (Gi − Ḡi)
′Ri(Gi − Ḡi) in (34) to get, from Proposition 26 (ii),

that P − P̄ ∈ Mn0; that is, Pi − P̄i ≥ 0, i = 1, . . . , N . Now, subtracting (45) from
(46), we get similarly that P̄i−Pi ≥ 0, i = 1, . . . , N , and we conclude that P̄ = P . It
remains only to show that the feedback control (44) is optimal. Let us suppose that
there exist X ∈ Mn0 and Ḡ ∈ Mr,n such that J∞̄

G
(X) < J∞

G (X). From Proposition
26 (ii), we have that J∞̄

G
(X) < J∞

G (X) = 〈X,P 〉, and, since (A+BḠ,Q+ Ḡ′RḠ,Λ)
is W-detectable (see Lemma 28), Lemma 27 ensures that the closed-loop system with
gain Ḡ is MS-stable. Then, from Proposition 26 (ii), we have that there exists a
unique solution P̄ to (46) and J∞̄

G
(X) = 〈X, P̄ 〉. Once again, subtracting (45) from

(46), we obtain P̄ ≥ P , and we conclude that J∞̄
G
(X) = 〈X, P̄ 〉 ≥ 〈X,P 〉 = J∞

G (X),
which denies the initial hypothesis, and hence

J∞
G (X) ≤ J∞

K (X) ∀K ∈ Mr,n.

The fact that the optimal control action is in linear state feedback form is a well-
established result which comes from dynamic programming arguments and from the
fact that the system is Markovian; see, for instance, [13] and [15].
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6. Conclusions. This paper introduces the concept of W-detectability and the
set of observability matrices O that is related to the concept of W-observability for
continuous-time MJLS.

We show that the concepts of W-observability and W-detectability reproduce
geometric and qualitative properties of the deterministic concepts within the MJLS
setting. In particular, we show how the properties (I)–(IV) mentioned in section 1
extend to MJLS; respectively, we have shown that

• if x(t) ∈ N{Oθ(t)}, then x(s) ∈ N{Oθ(s)} a.s. for all s ≥ t;
• (A,C,Λ) is W-observable if and only if Oi has full rank for each i = 1, . . . , N ;
• (A,C,Λ) is W-detectable if and only if limt→∞E{|x(t)|2} = 0 whenever x0 ∈
N (Oθ0); and

• (A,C,Λ) is W-detectable provided (A,C,Λ) is W-observable.
We also show that those concepts generalize the previous concepts encountered

in the literature and that they play the same role in the quest for stabilizing so-
lutions of quadratic control problems. Regarding the concept of MS-detectability,
in one of the main results of this paper, we show that (A,C,Λ) is W-detectable if
and only if (A,O,Λ) is MS-detectable. The result provides a testable condition for
W-detectability. Moreover, the kernel of O is in general smaller than that of the
original matrices C, henceforth making W-detectability and MS-detectability directly
comparable.

Testable conditions for the concept of W-observability is also developed in terms
of the set of observability matrices O. The test of W-observability in Theorem 11 for
MJLS and the observability test for N deterministic time-invariant linear systems,
each with dimension n, are alike.
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ERRATUM: SENSITIVITY ANALYSIS OF THE VALUE FUNCTION
FOR OPTIMIZATION PROBLEMS WITH VARIATIONAL

INEQUALITY CONSTRAINTS∗

YVES LUCET† AND JANE J. YE‡

SIAM J. CONTROL OPTIM. c© 2002 Society for Industrial and Applied Mathematics
Vol. 41, No. 4, pp. 1315–1319

Abstract. In our paper [SIAM J. Control Optim., 40 (2001), pp. 699–723], due to an error in
the proof, an additional assumption is needed for the conclusion of Theorem 3.6 to hold. In this
erratum, we restate and prove Theorem 3.6 and correct other related mistakes accordingly.

PII. S036301290139926X

In our paper [1], due to an error in the proof, an additional assumption is needed
for the conclusion of Theorem 3.6 to hold. As a consequence, Theorem 4.2 does not
hold, each of Theorems 4.4, 4.8, 4.11, and 4.13 requires an additional assumption, and
the last two lines on page 701 and the first two lines on page 702 should be changed
to

M1 =M1
CD(Σ),M

1
C(Σ),M

1
S(Σ),

M0 =M0
CD(Σ),M

0
C(Σ),M

0
S(Σ).

We first correct Theorem 3.6 by adding the additional assumption (0.1) as follows.
Theorem 3.6. In addition to the basic assumption (BH), assume that there exists

δ > 0 such that the set

{(x, y) ∈ C : Ψ(x, y, ᾱ) ≤ p,H(x, y, ᾱ) = q, r ∈ F (x, y, ᾱ) +NΩ(y), f(x, y, ᾱ) ≤M,

(p, q, r) ∈ B(0; δ)}
is bounded for each M and the following assumption holds:

(γ, β, η, 0) ∈M0(x̄, ȳ, ᾱ) implies γ = 0, β = 0, η = 0.(0.1)

Then the value function V (α) is lower semicontinuous near ᾱ, and

∂V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{−ζ : (γ, β, η, ζ) ∈M1(x̄, ȳ, ᾱ)},

∂∞V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{−ζ : (γ, β, η, ζ) ∈M0(x̄, ȳ, ᾱ)},

whereMλ(x̄, ȳ, ᾱ) is the set of index λ multipliers for problem GP(p, q, r, α) at (0, 0, 0, ᾱ),
i.e., vectors (γ, β, η, ζ) in Rd ×Rl ×Rm ×R satisfying


0 ∈ λ∂f(x̄, ȳ, ᾱ) + ∂〈Ψ, γ〉(x̄, ȳ, ᾱ) + ∂〈H,β〉(x̄, ȳ, ᾱ) + ∂〈F, η〉(x̄, ȳ, ᾱ)
+{0} ×D∗NΩ(ȳ,−F (x̄, ȳ, ᾱ))(η)× {0}+ {(0, 0, ζ)}+NC(x̄, ȳ)× {0},
γ ≥ 0 and 〈Ψ(x̄, ȳ, ᾱ), γ〉 = 0,
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and Σ(ᾱ) is the set of solutions of problem GP(ᾱ).
We now make the correct statements for Theorems 4.4, 4.8, 4.11, and 4.13 by

translating assumption (0.1) to the case of CD, C, P, and S multipliers, respectively.
Unless otherwise indicated, we denote by ∇f(x, y, α) the gradient of function f with
respect to (x, y, α) and not the gradient of f with respect to (x, y) as in section 4 of
[1].

Theorem 4.4. Assume that there exists δ > 0 such that the set

{(x, y) ∈ C :(p, q, r) ∈ B(0; δ),Ψ(x, y, ᾱ) ≤ p,H(x, y, ᾱ) = q,

y ≥ 0, F (x, y, ᾱ) ≥ r, 〈y, F (x, y, ᾱ)− r〉 = 0, f(x, y, ᾱ) ≤M}

is bounded for each M . Assume also that

0 ∈ ∇Ψ(x̄, ȳ, ᾱ)�γ +∇H(x̄, ȳ, ᾱ)�β +∇F (x̄, ȳ, ᾱ)�η + (0, ξ, 0) +NC(x̄, ȳ)× {0},
γ ≥ 0 and 〈Ψ(x̄, ȳ, ᾱ), γ〉 = 0,

ξi = 0 if ȳi > 0 and Fi(x̄, ȳ, ᾱ) = 0,

ηi = 0 if ȳi = 0 and Fi(x̄, ȳ, ᾱ) > 0,

either ξi < 0, ηi < 0 or ξiηi = 0 if ȳi = 0 and Fi(x̄, ȳ) = 0

implies that γ = 0, β = 0, η = 0. Then the value function V is lower semicontinuous
near ᾱ, and

∂V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{∇αf(x̄, ȳ, ᾱ) +∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈M1
CD(x̄, ȳ)},(0.2)

∂∞V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈M0
CD(x̄, ȳ)}.(0.3)

If the set in the right-hand side of inclusion (0.3) contains only the zero vector, then
the value function V is Lipschitz near ᾱ. If the set in the right-hand side of inclusion
(0.3) contains only the zero vector and the set in the right-hand side of inclusion (0.2)
is a singleton, then the value function is strictly differentiable at ᾱ.

Theorem 4.8. Assume that there exists δ > 0 such that the set

{(x, y) ∈ C :(p, q, qm) ∈ B(0; δ),Ψ(x, y, ᾱ) ≤ p,H(x, y, ᾱ) = q,

min{yi, Fi(x, y, ᾱ)} = qmi , i = 1, . . . ,m, f(x, y, ᾱ) ≤M}

is bounded for each M . Assume also that

0 ∈ ∇Ψ(x̄, ȳ, ᾱ)�γ +∇H(x̄, ȳ, ᾱ)�β +∇F (x̄, ȳ, ᾱ)�η + (0, ξ, 0) +NC(x̄, ȳ)× {0},
γ ≥ 0, 〈Ψ, γ〉(x̄, ȳ, ᾱ) = 0,

where

ηi = 0 ∀i ∈ I+,
ξi = 0 ∀i ∈ L,
ηi = ri(1− t̄i), ξi = rit̄i for some t̄i ∈ [0, 1], ∀i ∈ I0
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implies that γ = 0, β = 0, η = 0, ri = 0, i = 1, . . . ,m. Then the value function V is
lower semicontinuous near ᾱ, and

∂V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{∇αf(x̄, ȳ, ᾱ) +∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈M1
C(x̄, ȳ)},(0.4)

∂∞V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈M0
C(x̄, ȳ)}.(0.5)

If the set in the right-hand side of inclusion (0.5) contains only the zero vector, then
the value function V is Lipschitz near ᾱ. If the set in the right-hand side of inclusion
(0.5) contains only the zero vector and the set in the right-hand side of inclusion (0.4)
is a singleton, then the value function is strictly differentiable at ᾱ.

Theorem 4.11. Assume that there exists δ > 0 such that, for (x̄, ȳ) ∈ Σ(ᾱ) and
each index set σ ⊆ I0(x̄, ȳ), the set in Proposition 4.10 is bounded for each M and

{
0 = ∇Ψ(x̄, ȳ, ᾱ)�γ +∇H(x̄, ȳ, ᾱ)�β +∇F (x̄, ȳ, ᾱ)�η + (0, ξ, 0) +NC(x̄, ȳ)× {0},
γJ(Ψ) = 0, ηI+ = 0, ξL = 0, ξσ ≤ 0, ηI0\σ ≤ 0,

implies that γ = 0, β = 0, η = 0. Then the value function V is lower semicontinuous
near ᾱ, and

∂V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{∇αf(x̄, ȳ, ᾱ) +∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈ ∪σ⊆I0M1
σ(x̄, ȳ)},(0.6)

∂∞V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈ ∪σ⊆I0M0
σ(x̄, ȳ)}.(0.7)

If the set in the right-hand side of inclusion (0.7) contains only the zero vector, then
the value function V is Lipschitz near ᾱ. If the set in the right-hand side of inclusion
(0.7) contains only the zero vector and the set in the right-hand side of inclusion (0.6)
is a singleton, then the value function is strictly differentiable at ᾱ.

Theorem 4.13. In addition to the assumptions of Theorem 4.11, assume that
C = Rn×Ra×Rb and, for all (x̄, z̄, ū) ∈ Σ(ᾱ), the partial MPEC linear independence
constraint qualification is satisfied; i.e.,

{
0 = ∇x,yΨ(x̄, ȳ, ᾱ)�γ +∇x,yH(x̄, ȳ, ᾱ)�β +∇x,yF (x̄, ȳ, ᾱ)�η + (0, ξ),

γJ(Ψ) = 0, ηI+ = 0, ξL = 0,

implies that ηI0 = 0, ξI0 = 0, where J(Ψ) := {i : Ψi(x̄, ȳ, ᾱ) < 0}. Further assume
that {

0 = ∇Ψ(x̄, ȳ, ᾱ)�γ +∇H(x̄, ȳ, ᾱ)�β +∇F (x̄, ȳ, ᾱ)�η + (0, ξ, 0),

γJ(Ψ) = 0, ηI+ = 0, ξL = 0, ηI0 ≤ 0, ξI0 ≤ 0,
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implies that γ = 0, β = 0, η = 0. Then the value function V is lower semicontinuous
near ᾱ, and

∂V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{∇αf(x̄, ȳ, ᾱ) +∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈M1
S(x̄, ȳ)},

∂∞V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈M0
S(x̄, ȳ)}.

Note that the additional assumption (0.1) and its corresponding assumptions in
Theorems 4.4., 4.8, 4.11, and 4.13 are automatically satisfied in the case in which the
perturbation is additive. In the case of nonadditive perturbations, they are needed
even in the case of nonlinear programming, i.e., when Ω = Rm in Theorem 3.6.

The main error occurs in the proof of Theorem 3.6 when we applied [1, Propo-
sition 2.6] to obtain the partial subdifferentials from the subdifferentials of the fully
perturbed value function. The positions of vectors ζ and 0 were switched by mistake.
Instead of proving that (ζ, 0) ∈ ∂∞Ṽ (0, ᾱ) implies ζ = 0, we proved that (0, ζ) ∈
∂∞Ṽ (0, ᾱ) implies ζ = 0. Hence, on page 709 in lines 13–18, “For any (0, 0, 0, ζ) ∈
∂∞Ṽ (0, 0, 0, ᾱ), we have (0, 0, 0, ζ) ∈ −M0(x̄, ȳ, ᾱ) for some point (x̄, ȳ, ᾱ) ∈ Σ(0, 0, 0, ᾱ).
Therefore,

(0, 0, ζ) ∈ NC(x̄, ȳ)× {0},

which implies that ζ = 0” should be changed to “For any (−γ,−β,−η, 0) ∈ ∂∞Ṽ (0, 0, 0, ᾱ),
we have (−γ,−β,−η, 0) ∈ −M0(x̄, ȳ, ᾱ) for some point (x̄, ȳ, ᾱ) ∈ Σ(0, 0, 0, ᾱ). Hence
(γ, β, η, 0) ∈M0(x̄, ȳ, ᾱ), which implies γ = 0, β = 0, η = 0 by assumption (0.1).”

Consider the nonlinear programming formulation of (OPCC) in [1, section 4.1].
Assumption (0.1) amounts to the nonexistence of a nonzero vector (γ, β, rF , ry, µ)
such that

0 ∈ ∇Ψ(x̄, ȳ, ᾱ)�γ +∇H(x̄, ȳ, ᾱ)�β
−∇F (x̄, ȳ, ᾱ)�rF − {(0, ry, 0)}+ µ∇〈y, F 〉(x̄, ȳ, ᾱ) +NC(x̄, ȳ)× {(0)},
γ ≥ 0, 〈γ,Ψ(x̄, ȳ, ᾱ)〉 = 0,

rF ≥ 0, ry ≥ 0, 〈rF , F (x̄, ȳ, ᾱ)〉 = 0, 〈ry, ȳ〉 = 0.

However, using [1, Proposition 4.16] with x replaced by (x, α), the above assumption
will never be satisfied, and hence [1, Theorem 4.2] does not hold. Consider the
following example, which is the example in [1] with the extra constraint (x, y) ∈
[−1, 1]× [−1, 1]:

minimize −y
subject to x− y = 0,

x ≥ 0, y ≥ 0, xy = 0, (x, y) ∈ [−1, 1]× [−1, 1].

Note that the growth hypothesis holds since the set [−1, 1]× [−1, 1] is compact. The
normal multiplier setM1

NLP (0, 0) = ∅. So [1, Theorem 4.2] is not true for this example.
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That is, the nonlinear programming multipliers may not be useful in the sensitivity
analysis.

Acknowledgments. The authors would like to thank the anonymous referees,
in particular, referee 2, and the associate editor who suggested listing the statements
that should be corrected in the beginning of the erratum.
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element approximation for the optimal control problems and are implemented in the adaptive ap-
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1. Introduction. Finite element approximation of optimal control problems
has long been an important topic in engineering design work and has been exten-
sively studied in the literature. There have been extensive theoretical and numeri-
cal studies for finite element approximation of various optimal control problems; see
[2, 12, 13, 15, 20, 23, 37, 44]. For instance, for the optimal control problems gov-
erned by some linear elliptic or parabolic state equations, a priori error estimates
of the finite element approximation were established long ago; see, for example,
[12, 13, 15, 20, 23, 37]. Furthermore, a priori error estimates were established for
the finite element approximation of some important flow control problems in [17] and
[11]. A priori error estimates have also been obtained for a class of state constrained
control problems in [43], though the state equation is assumed to be linear. In [29],
this assumption has been removed by reformulating the control problem as an abstract
optimization problem in some Banach spaces and then applying nonsmooth analysis.
In fact, the state equation there can be a variational inequality.

In recent years, the adaptive finite element method has been extensively investi-
gated. Adaptive finite element approximation is among the most important means to
boost the accuracy and efficiency of finite element discretizations. It ensures a higher
density of nodes in a certain area of the given domain, where the solution is more
difficult to approximate. At the heart of any adaptive finite element method is an a
posteriori error estimator or indicator. The literature in this area is extensive. Some
of the techniques directly relevant to our work can be found in [1, 5, 6, 7, 28, 32,
34, 42, 47]. It is our belief that adaptive finite element enhancement is one of the
future directions to pursue in developing sophisticated numerical methods for optimal
design problems.
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Although adaptive finite element approximation is widely used in numerical sim-
ulations, it has not yet been fully utilized in optimal control. Initial attempts in
this aspect have been reported only recently for some design problems; see, e.g.,
[3, 4, 38, 41]. However, a posteriori error indicators of a heuristic nature are widely
used in most applications. For instance, in some existing work on adaptive finite ele-
ment approximation of optimal design, the mesh refinement is guided by a posteriori
error estimators solely from the state equation (or the displacement) for a fixed con-
trol (or design). Thus error information from approximation of the control (design) is
not utilized. Although these methods may work well in some particular applications,
they cannot be applied confidently in general. It is unlikely that the potential power
of adaptive finite element approximation has been fully utilized due to the lack of
more sophisticated a posteriori error indicators.

Very recently, some error estimators of residual type were developed in [8, 9,
30, 31, 33]. These error estimators are based on a posteriori estimation of the dis-
cretization error for the state and the control (design). When there is no constraint
in a control problem, normally the optimality conditions consist of coupled partial
differential equations only. Consequently, one may be able to write down the dual
system of the whole optimality conditions and then apply the weighted a posteriori er-
ror estimation technique to obtain a posteriori estimators for the objective functional
approximation error of the control problem; see [8, 9]. In many applications (like
parameter estimation), it is more interesting to obtain a posteriori error estimators
for the control approximation error [22]. Furthermore, there frequently exist some
constraints for the control in applications. In such cases, the optimality conditions
often contain a variational inequality and then have some very different properties.
Thus it does not always seem to be possible to apply the techniques used in [8, 9] to
constrained control problems.

In our work, constrained cases are studied via residual estimation using the norms
of energy type. A posteriori error estimators are derived for quite general constrained
control problems governed by the elliptic equations (see [30, 31, 33]) with upper error
bounds. However, these error estimators have yet to be applied to adaptive finite
element methods. Indeed, numerical experiments indicated that these estimators tend
to over-refine the computational meshes. Thus the resulting computational meshes
may not be efficient in reducing approximation errors. It seems that one has to
derive sharper error estimators in order to obtain more efficient meshes. This seems
to be possible at least for a class of control problems, which are frequently met in
applications. More details on these will be given in section 3.

In this paper, we consider the convex optimal control problem


min
u∈K
{g(y) + h(u)},

−div(A∇y) = f + Bu in Ω, y|∂Ω = 0,

(1.1)

where g and h are given convex functionals, K is a closed convex set, and B is a
continuous linear operator. The details will be specified later. The main objective
of this work is to derive sharp a posteriori error estimators for some frequently met
optimal control problems. A number of new techniques have to be introduced in
order to obtain such estimators. Our numerical tests indicate that these improved
error estimators indeed lead to efficient computational meshes.

The paper is organized as follows: In section 2, we describe the finite element
approximation for the convex optimal control problem (1.1). In section 3, we derive



ADAPTIVE APPROXIMATION FOR OPTIMAL CONTROL 1323

error estimates for the problem with an obstacle constraint. Both upper bounds
and lower bounds are established with attention on their equivalence. In section 4,
numerical experiments will be carried out, with particular attention to testing the
influence of various indicators on the mesh construction.

2. The elliptic optimal control problem and finite element approxima-
tion. In this section, we describe the elliptic optimal control problem and its finite
element approximation. Let Ω and ΩU be two bounded open sets in Rn(n ≤ 3) with
the Lipschitz boundaries ∂Ω and ∂ΩU . We denote by C0(Ω̄) the space of continuous
functions on Ω̄. We adopt the standard notation Wm,q(Ω) for Sobolev spaces on Ω
with norm ‖·‖m,q,Ω and seminorm |·|m,q,Ω(see (1.2) of [16, p. 2]). For q = 2, we denote
Wm,2(Ω) by Hm(Ω) with norm ‖ · ‖m,Ω := ‖ · ‖m,2,Ω and seminorm | · |m,Ω := | · |m,2,Ω.
We set H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}. In addition, c or C denotes a general
positive constant independent of h.

In the rest of the paper, we shall take the state space Y = H1
0 (Ω), the control space

U = L2(ΩU) with the inner product (·, ·)U , and H = L2(Ω) with the inner product
(·, ·). We wish to study the finite element approximation of the distributed elliptic
convex optimal control problem (1.1). Assume that g and h are convex functionals
which are continuously differentiable on H = L2(Ω) and U = L2(ΩU), respectively,
and h is further strictly convex. Suppose that K is a closed convex set in the control
space U , f ∈ L2(Ω), B is a continuous linear operator from U to H ⊂ Y ′ (the dual
space of Y ), and

A(·) = (ai,j(·))n×n ∈ (L∞(Ω))n×n

such that there is a constant c > 0 satisfying, for any vector ξ ∈ Rn,

(Aξ) · ξ ≥ c|ξ|2.

We further assume that h(u)→ +∞ as ‖u‖0,ΩU
→∞, the functional g(·) is bounded

below, and

|(g′(v)− g′(w), q)| ≤ C‖v − w‖1,Ω‖q‖1,Ω ∀v, w, q ∈ Y.(2.1)

To consider the finite element approximation of the above optimal control prob-
lem, here we give it a weak formula

(CCP)




min
u∈K
{g(y) + h(u)},

a(y, w) = (f + Bu,w) ∀w ∈ Y = H1
0 (Ω),

(2.2)

where

a(v, w) =

∫
Ω

(A∇v) · ∇w ∀v, w ∈ H1(Ω),

(f, w) =

∫
Ω

fw ∀f, w ∈ L2(Ω).

Under these assumptions, the control problem (CCP) has a unique solution (y, u),
and a pair (y, u) is the solution of (CCP) if and only if there is a costate p ∈ Y such
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that the triplet (y, p, u) satisfies the following optimality conditions (see [27]):

(CCP-OPT)




a(y, w) = (f + Bu,w) ∀w ∈ Y = H1
0 (Ω),

a(q, p) = (g′(y), p) ∀q ∈ Y = H1
0 (Ω),

(h′(u) + B∗p, v − u)U ≥ 0 ∀v ∈ K ⊂ U = L2(ΩU),

(2.3)

where B∗ is the adjoint operator of B and g′ and h′ are the derivatives of g and
h. Here g′ and h′ have been viewed as functions in H = L2(Ω) and U = L2(ΩU),
respectively, using the well-known representation theorem in a Hilbert space.

Let us consider the finite element approximation of the above control problem.
For ease of exposition, we consider only n-simplex, conforming Lagrange elements.
Also, we assume that Ω and ΩU are polygonal. Let Th be a partitioning of Ω into
disjoint open regular n-simplices τ so that Ω̄ = ∪τ∈Th τ̄ . Each element has at most
one face on ∂Ω, and the adjoining elements τ̄ and τ̄ ′ have either only one common
vertex or a whole edge or a whole face if τ and τ ′ ∈ Th. Let hτ denote the diameter of
the element τ in Th. Associated with Th is a finite dimensional subspace Sh of C0(Ω̄)
such that vh|τ are polynomials of k-order (k ≥ 1) for all vh ∈ Sh and τ ∈ Th. Denote
{Pi} (i = 1, 2, . . . , J) the vertex set associated with Th. Let Y h = V h

0 := Sh ∩ Y .
Similarly, we have a regular partitioning of ΩU , and we use the following corre-

sponding notation: ThU , τU , hτU and PU
i (i = 1, 2, . . . , JU). Associated with ThU is

another finite dimensional subspace Wh
U of L2(ΩU) such that vh|τU are polynomials of

k-order (k ≥ 0) for all vh ∈Wh
U and τU ∈ ThU . Note here that there is no requirement

for the continuity or boundary conditions. Let Uh = Wh
U ⊂ U = L2(ΩU).

Due to the limited regularity of the optimal control u (at most in H1(ΩU ) in
general), here we will consider only the piecewise constant space for the control ap-
proximation, while higher-order finite spaces may be used for the state and costate.

Then a possible finite element approximation of (CCP) is as follows:

(CCP)h




min
uh∈Kh

{g(yh) + h(uh)},

a(yh, wh) = (f + Buh, wh) ∀wh ∈ Y h,

(2.4)

where Kh is a closed convex set in Uh such that there are vh ∈ Kh converging to
an element v ∈ K in U . It follows that the control problem (CCP)h has a unique
solution (yh, uh) and that a pair (yh, uh) ∈ Y h × Uh is the solution of (CCP)h if
and only if there is a costate ph ∈ Y h such that the triplet (yh, ph, uh) satisfies the
following optimality conditions:

(CCP-OPT)h




a(yh, wh) = (f + Buh, wh) ∀wh ∈ Y h ⊂ Y = H1
0 (Ω),

a(qh, ph) = (g′(yh), qh) ∀qh ∈ Y h ⊂ Y = H1
0 (Ω),

(h′(uh) + B∗ph, vh − uh)U ≥ 0 ∀vh ∈ Kh ⊂ U = L2(ΩU).

(2.5)

It follows that (yh, ph, uh) is uniformly bounded in Y × Y × U . This is because
g(yh)+h(uh) is uniformly bounded due to the above assumption on Kh. Thus ‖uh‖U
is also uniformly bounded. Then it follows from (2.5) and (2.1) that ‖yh‖Y and ‖ph‖Y
are uniformly bounded.
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The finite element approximation solution must be solved by using some mathe-
matical programming algorithms such as the conjugate gradient method, the interior
point method, and the SQP algorithms. This is a very active research area and is too
large to be reviewed here even very briefly. Some of the recent progress in this area
has been summarized in [14].

3. Sharp a posteriori error estimators. Deriving a posteriori error estima-
tors for the finite element approximation of the control problem (CCP) is not an
easy task since the triplet (y, p, u) is the solution of the coupled system (CCP-OPT).
Although there is much work on a priori error estimates for finite element approxima-
tion of optimal control problems, as seen in section 1, there are substantial differences
between a priori error estimates and a posteriori error estimates for such control prob-
lems. Only very recently, some a posteriori error estimators have been derived in the
literature. For the control problem (CCP), for instance, the following error estimators
have been derived in [31] and [35], assuming that (h′(uh) + B∗ph)|τU ∈ H1(τU ) for
any τU ∈ ThU :

‖uh − u‖20,ΩU
+ ‖yh − y‖21,Ω + ‖ph − p‖21,Ω ≤ C

(
η̄2
1 +

5∑
i=2

η2
i

)
= Cη̄2,(3.1)

where

η̄2
1 =

∑
τU∈Th

U

h2
τU ‖∇(h′(uh) + B∗ph)‖20,τU ,(3.2)

η2
2 =

∑
τ∈Th

h2
τ

∫
τ

(f + Buh + div(A∇yh))2,

η2
3 =

∑
l∈∂Th

hl

∫
l

[(A∇yh) · n]2,

η2
4 =

∑
τ∈Th

h2
τ

∫
τ

(g′(yh) + div(A∗∇ph))2,

η2
5 =

∑
l∈∂Th

hl

∫
l

[(A∗∇ph) · n]2,

where hl is the diameter of the face l, and the A-normal derivative jump over the
interior face l is defined by

[(A∇vh) · n]|l = ((A∇vh)|∂τ1
l
− (A∇vh)|∂τ2

l
) · n,

with n being the unit outer normal vector of τ1
l on l = τ̄1

l ∩ τ̄1
l . The A∗-normal

derivative jump is similarly defined for the transposed matrix A∗ of A.
However, major improvements on these error estimators are much needed in order

that they can be used to guide mesh adaptivity efficiently in solving the optimal
control problem numerically. For example, it does not seem that they are always
sharp for the constrained cases, and this can be seen from Figures 4.4 and 4.6 in
Example 4.1 of section 4, where it is clear that |u − uh| has a very different profile
(the left of Figure 4.4) from that of η̄1 (or η̄) (the left of Figure 4.6). Consequently,
the mesh refinement adjustment schemes based on η̄ may be inefficient. In Example
4.1, the state and costate are very smooth, but the optimal control u has the gradient
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jumps across the free boundary, which is the boundary of the zero set {x : u(x) = 0},
as seen in Figure 4.1. This causes large control approximation errors along the free
boundary, as seen from the left of Figures 4.3 and 4.4. Thus an efficient computational
mesh for the control should have a higher density of nodes around the free boundary,
as those in Figure 4.2. However, the mesh adjustment guided by η̄1 did not achieve
this goal well, as seen from Figure 4.5. In fact, the resulting mesh even produced a
larger approximation error for the control than the uniform mesh of the same size. A
sharp error estimator will lead to much more efficient computational meshes, as seen
in Figure 4.2.

In this section, we study sharp error estimates for finite element approximation
of the convex control problem (CCP). It follows that η̄ consists of three parts: The
part η̄1 is contributed from the approximation error of the variational inequality, and
η2
2 +η2

3 , η2
4 +η2

5 result from the approximation error of the state and costate equations.
It is well known that η2

2 + η2
3 and η2

4 + η2
5 are sharp error estimators for the state and

costate equations. Therefore, the key to our purpose is to improve η̄2
1 . However, it

is difficult to derive improved estimates without knowing explicit structures of the
control constraint sets K and Kh; the methods and techniques to be developed will
depend heavily on these details. Here we derive a posteriori error estimators with
both upper bounds and lower bounds for a class of convex sets K of obstacle type,
which are most frequently met in real applications. We achieved this by exploring
the special structure of the constraint sets. The ideas are applicable to some other
control problems, e.g., the boundary control problems.

We shall first consider the constraint of a single obstacle

K = {v ∈ U : v ≥ φ}, Kh = Uh ∩K,

and then we will extend the results to more general cases.
We define the coincidence set (contact set) Ω−

U and the noncoincidence set (non-
contact set) Ω+

U as follows:

Ω−
U = {x ∈ ΩU : u(x) = φ(x)}, Ω+

U = {x ∈ ΩU : u(x) > φ(x)}.
It can be seen that the inequality in (2.3) is equivalent to the following:

h′(u) + B∗p ≥ 0, u ≥ φ, (h′(u) + B∗p)(u− φ) = 0, a.e. in ΩU .(3.3)

We shall show that the quantity (h′(uh) + B∗ph)|Ω−
U

can be mostly removed from

the error indicator η̄ in this case, which enables us to obtain sharp error estimates. To
make the presentation of our approach clearer and less technical, we shall first derive
sharp error estimators containing an a priori quantity and then approximate it using
an a posteriori quantity so that the estimators can be easily applied in numerical
computations. Let us note that some approximations of a priori quantities are also
used in [9].

In the following, we assume that there is a constant c > 0 such that

(h′(v)− h′(w), v − w)U ≥ c‖v − w‖20,ΩU
∀v, w ∈ U.(3.4)

3.1. Upper error bounds. We first consider the case of a constant obstacle
φ(x) ≡ φ0. We define

Ω+
h = {∪τ̄U : τU ⊂ Ω+

U , τU ∈ ThU }, Ω−
h = {∪τ̄U : τU ⊂ Ω−

U , τU ∈ ThU },
Ωbh = ΩU\(Ω+

h ∪ Ω−
h ), Ω+b

h = Ω+
h ∪ Ωbh, Ω−b

h = Ω−
h ∪ Ωbh,
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and denote by χQ the characteristic function of Q. Let ∂Th be the set consisting of
all of the faces l of any τ ∈ Th such that l is not on ∂Ω. Let hl be the diameter of
the face l. We need the following lemmas in deriving residual-type a posteriori error
estimates.

Lemma 3.1 (see [10]). Let πh : C0(Ω̄)→ Sh be the standard Lagrange interpola-
tion operator such that

πhv :=
∑
i

v(ai)ϕi,

where ai are the nodes on Ω̄ and ϕi are the corresponding shape functions. Then, for
m = 0, 1 and n/2 < q ≤ ∞,

‖v − πhv‖m,q,τ ≤ Ch2−m
τ |v|2,q,τ ∀v ∈W 2,q(Ω),(3.5)

where the constant C depends only on Ω and the minimum angle of the simplices in
Th.

Lemma 3.2 (see [21]). For all v ∈W 1,q(Ω), 1 ≤ q ≤ ∞,

‖v‖0,q,∂τ ≤ C(h−1/q
τ ‖v‖0,q,τ + h1−1/q

τ |v|1,q,τ ).(3.6)

We need another operator π̂h: the local averaging interpolation operator defined
in [42], which can be applied to functions not necessarily continuous, preserves the
homogeneous boundary conditions and is stable in the W 1,q-norm. The full definition
of π̂h is rather long. Thus the readers are referred to [42]. Fortunately, we need only
to use one of its properties, which is stated in the following lemma.

Lemma 3.3. Let π̂h : W 1,q(Ω)→ Sh be the local averaging interpolation operator
defined in (2.13) of [42]. For m = 0, 1 and 1 ≤ q ≤ ∞,

|v − π̂hv|m,q,τ ≤ C
∑

τ̄ ′∩τ̄ 	=∅
h1−m
τ |v|1,q,τ ′ ∀v ∈W 1,q(Ω).(3.7)

Lemma 3.4. Let πah : L1(ΩU )→Wh
U be the integral averaging operator such that

(πahv)|τU :=
1

|τU |
∫
τU

v ∀τU ∈ ThU .

Then, for m = 0, 1 and 1 ≤ q ≤ ∞,

‖v − πahv‖0,q,τU ≤ ChmτU |v|m,q,τU ∀v ∈Wm,q(ΩU ).(3.8)

Proof. The result is trivial for m = 0. For m = 1, we note that πahv|τU = v|τU
if v is a constant on τU . Thus (3.8) can be proved by the standard techniques in the
finite element method [10].

We first give some upper bounds for u−uh in the L2-norm and for y− yh, p− ph
in the H1-norm. We shall use the following inequality:

|(Bv,w)| = |(v,B∗w)U | ≤ C‖v‖0,ΩU
‖w‖1,Ω ∀v ∈ U,w ∈ Y,(3.9)

which is held from our assumptions on the operator B.
Theorem 3.1. Let (y, p, u) and (yh, ph, uh) be the solutions of (2.3) and (2.5),

respectively. Let the obstacle φ be a constant φ0. Assume that conditions (3.4), (2.1),
and (3.9) hold, and (h′(uh) + B∗ph)|τU ∈ H1(τU) for any τU ∈ ThU . Then

‖uh − u‖20,ΩU
+ ‖yh − y‖21,Ω + ‖ph − p‖21,Ω ≤ C

5∑
i=1

η2
i ,(3.10)
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where

η2
1 =

∑
τU∈Th

U

h2
τU ‖∇(h′(uh) + B∗ph)χΩ+b

h
‖20,τU ,(3.11)

η2
2 =

∑
τ∈Th

h2
τ

∫
τ

(f + Buh + div(A∇yh))2,

η2
3 =

∑
l∈∂Th

hl

∫
l

[(A∇yh) · n]2,

η2
4 =

∑
τ∈Th

h2
τ

∫
τ

(g′(yh) + div(A∗∇ph))2,

η2
5 =

∑
l∈∂Th

hl

∫
l

[(A∗∇ph) · n]2.

Proof. We first estimate the error ‖u − uh‖20,ΩU
. It follows from the assumption

(3.4) and the inequalities (2.3) and (2.5) that, for any vh ∈ Kh,

c‖u− uh‖20,ΩU

≤ (h′(u), u− uh)U − (h′(uh), u− uh)U

≤ (−B∗p, u− uh)U − (h′(uh), u− uh)U + (h′(uh) + B∗ph, vh − uh)U

= (h′(uh) + B∗ph, vh − u)U + (B∗(ph − p), u− uh)U .(3.12)

We introduce yuh
and puh

, defined by

a(yuh
, w) = (f + Buh, w) ∀w ∈ Y,(3.13)

a(q, puh
) = (g′(yuh

), q) ∀q ∈ Y.(3.14)

It follows from (2.3), (3.13), and (3.14) that

a(yuh
− y, w) = (B(uh − u), w) ∀w ∈ Y,(3.15)

a(q, puh
− p) = (g′(yuh

)− g′(y), q) ∀q ∈ Y.(3.16)

Taking w = puh
− p in (3.15) and q = yuh

− y in (3.16), we have, due to the convexity
of g,

(B(uh − u), puh
− p) = (g′(yuh

)− g′(y), yuh
− y) ≥ 0.

Using (3.12) together with (3.9) gives

c‖u− uh‖20,ΩU

≤ (h′(uh) + B∗ph, vh − u)U + (B∗(ph − puh
), u− uh)U − (puh

− p,B(uh − u))

≤
∑

τU∈Th
U

(h′(uh) + B∗ph, vh − u)τU + C‖ph − puh
‖21,Ω +

c

2
‖u− uh‖20,ΩU

.

Now take vh = πahu ∈ Kh defined in Lemma 3.4. Then we have

(h′(uh) + B∗ph, vh − u)τU = ((I − πah)(h′(uh) + B∗ph), (πah − I)(u− uh))τU

≤ ChτU ‖∇(h′(uh) + B∗ph)‖0,τU ‖u− uh‖0,τU
≤ Ch2

τU ‖∇(h′(uh) + B∗ph)‖20,τU +
c

4
‖u− uh‖20,τU .
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Noting that (vh − u)|τU = (πah − I)u|τU = 0 for any τU ∈ ΩU\Ω+b
h , we obtain

‖u− uh‖20,ΩU
≤ C

∑
τU∈Ω+b

h

h2
τU ‖∇(h′(uh) + B∗ph)‖20,τU + C‖ph − puh

‖21,ΩU

= Cη2
1 + C‖ph − puh

‖21,ΩU
.

(3.17)

The second step is to estimate the error ‖puh
− ph‖1,Ω. Let ep = puh

− ph. Then
it follows from (2.4)2, (3.14), and (2.1) that

c‖puh
− ph‖21,Ω ≤ a(ep, puh

)− a(ep, ph)

= (g′(yuh
), ep)− a(ep − π̂hep, ph)− (g′(yh), π̂hep)

=
∑
τ∈Th

∫
τ

(g′(yh) + div(A∗∇ph))(ep − π̂hep)

−
∑
l∈∂Th

∫
l

[(A∗∇ph) · n](ep − π̂hep) + (g′(yuh
)− g′(yh), ep)

≤ C
∑
τ∈Th

h2
τ

∫
τ

(g′(yh) + div(A∗∇ph))2 + C
∑
l∈∂Th

hl

∫
l

[(A∗∇ph) · n]2

+ C‖yuh
− yh‖21,Ω +

c

2
‖ep‖21,Ω,

where we have used Lemma 3.3 to obtain

‖ep − π̂hep‖0,τ ≤ Chτ


 ∑
τ̄ ′∩τ̄ 	=∅

|ep|21,τ ′




1/2

(3.18)

and Lemmas 3.2 and 3.3 to have, assuming l ⊂ τ̄ ,

‖ep − π̂hep‖0,l ≤ C(h−1/2
τ ‖ep − π̂hep‖0,τ + h1/2

τ |ep − π̂hep|1,τ )(3.19)

≤ Ch1/2
τ


 ∑
τ̄ ′∩τ̄ 	=∅

|ep|21,τ ′




1/2

.

Thus we have

‖puh
− ph‖21,Ω ≤ C(η̂2

4 + η̂2
5) + C‖yuh

− yh‖21,Ω.(3.20)

The third step is thus to estimate the error ‖yuh
−yh‖1,Ω. Let ey = yuh

−yh, and
let π̂h be the interpolator in Lemma 3.3. It can be seen that a(ey, π̂hey) = 0 due to
the Galerkin orthogonality a(ey, wh) = 0 ∀wh ∈ Y h from (2.5)1 and (3.13). Then it
follows from (2.5), (3.13), (3.6), and (3.7) that
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c‖yuh
− yh‖21,Ω ≤ a(ey, ey) = a(ey, ey − π̂hey)

=
∑
τ∈Th

∫
τ

(f + Buh + div(A∇yh))(ey − π̂hey)

−
∑
l∈∂Th

∫
l

[(A∇yh) · n](ey − π̂hey)

≤ C
∑
τ∈Th

h2
τ

∫
τ

(f + Buh + div(A∇yh))2

+ C
∑
l∈∂Th

hl

∫
l

[(A∇yh) · n]2 +
c

2
‖ey‖21,Ω,

where we have bounded ‖ey − π̂hey‖0,τ and ‖ey − π̂hey‖0,l as in (3.18) and (3.19).
Thus we have

‖yuh
− yh‖21,Ω ≤ C(η̂2

2 + η̂2
3).(3.21)

Finally, by noting that, from (3.15), (3.16), (3.9), and (2.1), we have

‖yuh
− y‖1,Ω ≤ C‖uh − u‖0,ΩU

,(3.22)

‖puh
− p‖1,Ω ≤ C‖yuh

− y‖1,Ω ≤ C‖uh − u‖0,ΩU
,(3.23)

we combine (3.17), (3.20), and (3.21) to obtain

‖u− uh‖20,ΩU
+ ‖y − yh‖21,Ω + ‖p− ph‖21,Ω

≤ ‖u− uh‖20,ΩU
+ 2

(‖y − yuh
‖21,Ω + ‖p− puh

‖21,Ω
)

+2
(‖yuh

− yh‖21,Ω + ‖puh
− ph‖21,Ω

)
≤ C‖u− uh‖20,ΩU

+ 2
(‖yuh

− yh‖21,Ω + ‖puh
− ph‖21,Ω

) ≤ C

5∑
i=1

η2
i .

Therefore, the proof is completed.
In many applications, we are mostly interested in computing the values of the

state and the control. In such cases, it is more useful to bound the errors in the
L2-norm to derive sharper estimators, which are given in the following theorem. We
shall use the following condition:

|(Bv,w)| = |(v,B∗w)U | ≤ C‖v‖0,ΩU
‖w‖0,Ω ∀v ∈ U,w ∈ Y,(3.24)

which is held from our assumptions. We shall assume the following condition:

|(g′(v)− g′(w), q)| ≤ C‖v − w‖0,Ω‖q‖2,Ω ∀v, w ∈ Y, q ∈ H2(Ω).(3.25)

Theorem 3.2. Assume that all of the conditions of Theorem 3.1 and (3.25) are
satisfied except that (3.9) is replaced with (3.24). Assume that Ω is convex. Then

‖u− uh‖20,ΩU
+ ‖y − yh‖20,Ω + ‖p− ph‖20,Ω ≤ C

(
η2
1 +

5∑
i=2

η̂2
i

)
,
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where η2
1 is defined in Theorem 3.1 and

η̂2
2 =

∑
τ∈Th

h4
τ

∫
τ

(f + Buh + div(A∇yh))2,

η̂2
3 =

∑
l∈∂Th

h3
l

∫
l

[(A∇yh) · n]2,

η̂2
4 =

∑
τ∈Th

h4
τ

∫
τ

(g′(yh) + div(A∗∇ph))2,

η̂2
5 =

∑
l∈∂Th

h3
l

∫
l

[(A∗∇ph) · n]2.

Proof. Again, we first estimate the error ‖u− uh‖20,ΩU
. By the same argument as

in the proof of Theorem 3.1 but using (3.24), we have

‖u− uh‖20,ΩU
≤ Cη2

1 + C‖ph − puh
‖20,Ω.(3.26)

To estimate ‖ph−puh
‖20,Ω, we use the dual technique. Consider the following auxiliary

problems: Find ξ ∈ H1
0 (Ω) and ζ ∈ H1

0 (Ω) such that

a(w, ξ) = (f1, w) ∀w ∈ Y,(3.27)

a(ζ, q) = (f2, q) ∀q ∈ Y.(3.28)

It follows from the well-known regularity results that

‖ξ‖2,Ω ≤ C‖f1‖0,Ω, ‖ζ‖2,Ω ≤ C‖f2‖0,Ω.

Let f2 = puh
− ph in (3.28) and denote by πh : C0(Ω̄) → Y h the standard Lagrange

interpolation operator. It follows from (2.5)2 and (3.14) that

‖puh
− ph‖20,Ω = (f2, ph(uh)− ph) = a(ζ, puh

)− a(ζ, ph)

= (g′(yuh
), ζ)− a(ζ − πhζ, ph)− (g′(yh), πhζ)

=
∑
τ∈Th

∫
τ

div(A∗∇ph)(ζ − πhζ)−
∑
l∈∂Th

∫
l

[(A∗∇ph) · n](ζ − πhζ)

+ (g′(yuh
), ζ)− (g′(yh), πhζ)

=
∑
τ∈Th

∫
τ

(g′(yh) + div(A∗∇ph))(ζ − πhζ)

−
∑
l∈∂Th

∫
l

[(A∗∇ph) · n](ζ − πhζ) + (g′(yuh
)− g′(yh), ζ).

By using Lemmas 3.1 and 3.2,

‖ζ − πhζ‖0,τ ≤ Ch2
τ |ζ|2,τ ,(3.29)

‖ζ − πhζ‖0,l ≤ C(h−1/2
τ ‖ζ − πhζ‖0,τ + h1/2

τ |ζ − πhζ|1,τ ) ≤ Ch3/2
τ |ζ|2,τ ,(3.30)
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where l ⊂ τ̄ . Then it follows from (3.25) that

‖puh
− ph‖20,Ω ≤ C

∑
τ∈Th

h2
τ‖g′(yh) + div(A∗∇ph)‖0,τ‖ζ‖2,τ

+ C
∑
l∈∂Th

h
3/2
l

(∫
l

[(A∗∇pn) · n]2
)1/2

‖ζ‖2,τ + C‖yuh
− yh‖0,Ω‖ζ‖2,Ω

≤ C
∑
τ∈Th

h4
τ

∫
τ

(g′(yh) + div(A∗∇ph))2 + C
∑
l∈∂Th

h3
l

∫
l

[(A∗∇pn) · n]2

+ C‖yuh
− yh‖20,Ω +

1

2
‖f2‖20,Ω.

Therefore, we have

‖puh
− ph‖20,Ω ≤ C(η̂2

4 + η̂2
5) + C‖yuh

− yh‖20,Ω.(3.31)

The second step is again to estimate ‖yuh
− yh‖20,Ω. Similarly, letting f1 = yuh

− yh
in (3.27) gives

‖yuh
− yh‖20,Ω = (f, yuh

− yh) = a(yuh
− yh, ξ) = a(yuh

− yh, ξ − πhξ)

=
∑
τ∈Th

∫
τ

(f + Buh + div(A∇yh))(ξ − πhξ)

−
∑
l∈∂Th

∫
l

[(A∇yh) · n](ξ − πhξ)

≤ C
∑
τ∈Th

h2
τ

∫
τ

‖f + Buh + div(A∇yh)‖0,τ‖ξ‖2,τ

+ C
∑
l∈∂Th

h
3/2
l

(∫
l

[(A∇yh) · n]2
)1/2

‖ξ‖2,τ

≤ C
∑
τ∈Th

h4
τ

∫
τ

(f + Buh + div(A∇yh))2

+ C
∑
l∈∂Th

h3
l

∫
l

[(A∇yh) · n]2 +
1

2
‖f1‖20,Ω,

where we have estimated ‖ξ − πhξ‖0,τ and ‖ξ − πhξ‖0,l as in (3.29) and (3.30). The
above result leads to

‖yuh
− yh‖20,Ω ≤ C(η̂2

2 + η̂2
3).(3.32)

Then it follows from (3.26), (3.31), and (3.32) that

‖u− uh‖20,ΩU
≤ C

(
η2
1 +

5∑
i=2

η̂2
i

)
.(3.33)

Finally, we estimate ‖yh − y‖0,Ω and ‖ph − p‖0,Ω. It follows from (3.15), (3.16), and
(2.1) that

‖yh − y‖0,Ω ≤ ‖yh − yuh
‖0,Ω + ‖yuh

− y‖0,Ω
≤ ‖yh − yuh

‖0,Ω + C‖uh − u‖0,ΩU
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and

‖ph − p‖0,Ω ≤ ‖ph − puh
‖0,Ω + ‖puh

− p‖0,Ω
≤ ‖ph − puh

‖0,Ω + C‖yuh
− y‖1,Ω

≤ ‖ph − puh
‖0,Ω + C‖uh − u‖0,ΩU

.

The above results, together with (3.31)–(3.33), yield

‖yh − y‖20,Ω + ‖ph − p‖20,Ω ≤ C

(
η2
1 +

5∑
i=2

η̂2
i

)
.(3.34)

Hence the proof is completed by combining (3.33) and (3.34).

3.2. Lower error bounds. In this subsection, we wish to demonstrate that the
error estimates obtained above are quite sharp by establishing lower error bounds
for the finite element approximation. We start with the following lemma about the
bubble functions, the proof of which can be found in [1, 45].

Lemma 3.5. Let τ ∈ Th. Let τ1
l , τ2

l be two elements in Th with a common edge
(face) l = τ̄1

l ∩ τ̄2
l . For any constants Bτ and Dl, there exist polynomials wτ ∈ H1

0 (τ)
and wl ∈ H1

0 (τ1
l ∪ τ2

l ) such that, for m = 0, 1,∫
τ

Bτwτ = h2
τ

∫
τ

B2
τ , |wτ |2m,τ ≤ Ch

2(1−m)+2
τ

∫
τ

B2
τ ,

∫
l

Dlwl = hl

∫
l

D2
l , |wl|2m,τ1

l ∪τ2
l
≤ Ch

2(1−m)+1
l

∫
l

D2
l .

For ease of exposition, we assume that A is a constant matrix and Y h is the
piecewise linear finite element space. We also assume that there exists an integer
k ≥ 0 independent of h such that, for any τU ∈ ThU , (h′(uh)+B∗ph)|τU is a polynomial
of k-order on τU . This assumption is needed to apply the inverse property in our proof
below, and it may impose an implicit relationship between the meshes for the state
and the control. We further assume that

‖h′(v)− h′(w)‖0,ΩU
≤ C‖v − w‖0,ΩU

∀v, w ∈ Y.(3.35)

Theorem 3.3. Let (y, p, u) and (yh, ph, uh) be the solutions of (2.3) and (2.5),
respectively. Assume that A is a constant matrix, Y h is the piecewise linear finite
element space, f ∈ L2(Ω), φ ≡ φ0, (h′(uh) + B∗ph)|τU is a polynomial of k-order on
τU for any τU ∈ ThU with k ≥ 0 independent of h, and the conditions (2.1), (3.24),
and (3.35) hold. Then there exists a constant C depending on the matrix A and those
constants in (2.1), (3.24), (3.35), and Lemma 3.5 such that

5∑
i=1

η2
i ≤ C(‖u− uh‖20,ΩU

+ ‖y − yh‖21,Ω + ‖p− ph‖21,Ω)

+ C
∑
τ∈Th

h2
τ (‖F − F̄‖20,τ + ‖G− Ḡ‖20,τ )

+ C
∑

τU∈Th
U

h2
τU ‖∇(h′(uh) + B∗ph)χΩb

h
‖20,τU ,
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where ηi (1 ≤ i ≤ 5) are defined in Theorem 3.1, F = f + Buh, G = g′(yh), F̄ |τ =∫
τ
F/|τ |, and Ḡ|τ =

∫
τ
G/|τ |.

Proof. From the optimality conditions (2.3), we deduce that (h′(u)+B∗p)|Ω+
U

= 0.

It follows from the inverse property [10], (3.35), and (3.24) that

η2
1 =

∑
τU∈Th

U

h2
τU (‖∇(h′(uh) + B∗ph)χΩ+

h
‖20,τU + ‖∇(h′(uh) + B∗ph)χΩb

h
‖20,τU )

≤ C‖h′(uh) + B∗ph − h′(u)−B∗p‖2
0,Ω+

h
+ C

∑
τU∈Th

U

h2
τU ‖∇(h′(uh) + B∗ph)χΩb

h
‖20,τU

≤ C(‖u− uh‖20,ΩU
+ ‖p− ph‖21,Ω) + C

∑
τU∈Th

U

h2
τU ‖∇(h′(uh) + B∗ph)χΩb

h
‖20,τU .

To bound η2
2 , let wτ be the bubble function as in Lemma 3.5 with Bτ = F̄ |τ . It

follows from (2.5) and (3.13) that

η2
2 =

∑
τ∈Th

h2
τ

∫
τ

F 2 ≤ 2
∑
τ∈Th

h2
τ

∫
τ

{F̄ 2 + (F − F̄ )2}

= 2
∑
τ∈Th

∫
τ

{wτF + wτ (F̄ − F ) + h2
τ (F − F̄ )2}

= 2
∑
τ∈Th

∫
τ

(A∇(yuh
− yh)) · ∇wτ + 2

∑
τ∈Th

∫
τ

{wτ (F̄ − F ) + h2
τ (F − F̄ )2}

≤ C
∑
τ∈Th

|yuh
− yh|21,τ + δ

∑
τ∈Th

(|wτ |21,τ + h−2
τ ‖wτ‖20,τ ) + C

∑
τ∈Th

h2
τ

∫
τ

(F − F̄ )2

≤ C(|yuh
− y|21,Ω + |y − yh|21,Ω) + Cδη2

2 + C
∑
τ∈Th

h2
τ

∫
τ

(F − F̄ )2.

Then it follows from this inequality and (3.22) that

η2
2 ≤ C(‖u− uh‖20,ΩU

+ ‖y − yh‖21,Ω) + C
∑
τ∈Th

h2
τ

∫
τ

(F − F̄ )2.(3.36)

To estimate η3, we define the bubble function wl as in Lemma 3.5 with Dl =
[(A∇yh) · n]|l. By (3.13),

η2
3 =

∑
l∈∂Th

hl

∫
l

D2
l =

∑
l∈∂Th

∫
l

wl[(A∇yh) · n] =
∑
l∈∂Th

∫
τ1
l ∪τ2

l

(A∇yh) · ∇wl

=
∑
l∈∂Th

∫
τ1
l ∪τ2

l

(A∇(yh − yuh
)) · ∇wl +

∑
l∈∂Th

∫
τ1
l ∪τ2

l

(f + Buh)wl

≤ C
∑
τ∈Th

|yuh
− yh|21,τ + δ

∑
l∈∂Th

(|wl|21,τ1
l ∩τ2

l
+ h−2

l ‖wl‖20,τ1
l ∩τ2

l
) + Cη2

2

≤ C(|yuh
− y|21,Ω + |y − yh|21,Ω) + Cδη2

3 + Cη2
2 .

It follows from the above inequality, (3.22), and (3.36) that

η2
3 ≤ C

(‖u− uh‖20,ΩU
+ ‖y − yh‖21,Ω

)
+ C

∑
τ∈Th

h2
τ

∫
τ

(F − F̄ )2.
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For η4, let wτ be set as in Lemma 3.5 with Bτ = Ḡ|τ . It follows from (3.14),
(2.1), (3.23), and (3.22) that

η2
4 =

∑
τ∈Th

h2
τ

∫
τ

G2 ≤ 2
∑
τ∈Th

h2
τ

∫
τ

{Ḡ2 + (G− Ḡ)2}

= 2
∑
τ∈Th

∫
τ

{wτG + wτ (Ḡ−G) + h2
τ (G− Ḡ)2}

= 2
∑
τ∈Th

∫
τ

{(A∇wτ ) · ∇(puh
− ph) + wτ (g′(yh)− g′(yuh

))

+ wτ (Ḡ−G) + h2
τ (G− Ḡ)2}

≤ C|puh
− ph|21,Ω + δ

∑
τ∈Th

(|wτ |21,τ + h−2
τ ‖wτ‖20,τ )

+ C‖yh − yuh
‖21,Ω + C

∑
τ∈Th

h2
τ

∫
τ

(G− Ḡ)2

≤ C
(‖u− uh‖20,ΩU

+ ‖p− ph‖21,Ω + ‖y − yh‖21,Ω
)

+ Cδη2
4 + C

∑
τ∈Th

h2
τ

∫
τ

(G− Ḡ)2.

Thus

η2
4 ≤ C

(‖u− uh‖20,ΩU
+ ‖y − yh‖21,Ω + ‖p− ph‖21,Ω

)
+ C

∑
τ∈Th

h2
τ (G− Ḡ)2.(3.37)

To estimate η5, we set wl as in Lemma 3.5 with Dl = [(A∗∇ph) · n]|l. It follows
from (3.14), (2.1), (3.23), and (3.22) that

η2
5 =

∑
l∈∂Th

hl

∫
l

D2
l =

∑
l∈∂Th

∫
l

wl[(A
∗∇ph) · n] =

∑
l∈∂Th

∫
τ1
l ∪τ2

l

(A∗∇ph) · ∇wl

=
∑
l∈∂Th

∫
τ1
l ∪τ2

l

(A∇wl) · ∇(ph − puh
) +

∑
l∈∂Th

∫
τ1
l ∪τ2

l

g′(yuh
)wl

≤ C|ph − puh
|21,Ω + δ

∑
l∈∂Th

(|wl|21,τ1
l ∩τ2

l
+ h−2

l ‖wl‖20,τ1
l ∩τ2

l
)

+ C‖yuh
− yh‖21,Ω + Cη2

4

≤ C(‖u− uh‖20,ΩU
+ ‖p− ph‖21,Ω + ‖y − yh‖21,Ω) + Cδη2

5 + Cη2
4 .

This inequality, combined with (3.37), implies

η2
5 ≤ C(‖u− uh‖20,ΩU

+ ‖y − yh‖21,Ω + ‖p− ph‖21,Ω) + C
∑
τ∈Th

h2
τ (G− Ḡ)2.

Thus we proved the desirable result.
We believe that the error estimator η2

1 +
∑5
i=2 η̂2

i in Theorem 3.2 is also sharp,
though we are unable to establish any lower error bound for it. As a matter of fact,
to our best knowledge, there exist no lower a posteriori error bounds in the L2-norm
in the literature or for any control problem.
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3.3. Sharp a posteriori error estimators. In the above section, we have
shown the following error bounds:

c

(
5∑
i=1

η2
i −

∑
τ∈Th

h2
τ

∫
τ

{(F − F̄ )2 + (G− Ḡ)2} −
∑
τ∈Ωb

h

h2
τ‖∇(h′(uh) + B∗ph)‖20,τ




≤ ‖u− uh‖20,ΩU
+ ‖y − yh‖21,Ω + ‖p− ph‖21,Ω ≤ C

(
5∑
i=1

η2
i

)
,

(3.38)

provided that the conditions of Theorems 3.1 and 3.3 hold. We note that, if the free
boundary ∂Ω+

U is regular, for instance, if the free boundary consists of a finite number
of smooth surfaces or if the total area of the free boundary is finite, then meas (Ωbh) is
of the order h as h→ 0. Thus the second and third terms of the left side are of higher
order as h → 0 if the data are regular. Take the following typical quadratic control
as one example: let Ω = ΩU ; let Uh and Y h be the piecewise constant and linear
spaces, respectively; let Bu = u, f ∈ H1(Ω), h(u) =

∫
Ω

u2, and g(y) =
∫
Ω

(y − y0)2

with y0 ∈ H1(Ω). Then one has∫
Ω

(F − F̄ )2 + (G− Ḡ)2 ≤ Ch2(|f |2H1 + |y0|2H1) + C

∫
Ω

(Buh −Buh)2,

∑
τ∈Ωb

h

‖∇(h′(uh) + B∗ph)‖20,τ ≤ C

(∫
Ωb

h

|∇B∗p|2 + ‖ph − p‖2H1(Ω)

)
.

Thus it follows that the second and third terms of the left side of (3.38) are not needed
in computations. It can be seen that the above observation still holds even if f, y0 are
only piecewise smooth. For more general objective functionals, one can proceed as
in Remark 3.4. Therefore, (3.38) gives equivalent a posteriori error estimates in the

global sense and thus shows that the estimator
∑5
i=1 η2

i is in general quite sharp.
An obvious problem is that the characteristic function χΩ+b

h
is not a posteriori

in the sense that we usually do not know the position of the free boundary. Never-
theless, one can substitute it with some a posteriori quantities, thus obtaining some
a posteriori error indicators, which can then be used in the adaptive finite element
method.

One possible idea is to approximate χΩ+b
h

by the finite element solution, as sug-

gested in [24] and [32]. The basic idea is to approximate the characteristic function
with the a posteriori quantity χh

Ω+
U

. For α > 0, let

χh
Ω+

U
=

uh − φ0

hα + uh − φ0
.

Thus, in computing, we replace η2
1 by

η̃2
1 =

∑
τ∈Th

U

h2
τU ‖∇(h′(uh) + B∗ph)χh

Ω+
U
‖20,τU .

In the following, we investigate the possible errors caused by this replacement. To
this end, we separate ΩU into three parts:

Ω−
h , Ω

α/2
U := {x ∈ ΩU : uh(x) < φ0 + hα/2, u(x) > φ0}, and Ω+b

h \Ωα/2U .
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Then, for τ ∈ Ω−
h , we have

‖χh
Ω+

U
− χΩ+b

h
‖0,∞,τ =

∥∥∥∥ uh − u

hα + uh − u

∥∥∥∥
0,∞,τ

≤ min{1, h−α‖uh − u‖0,∞,τ},

and, for τ ∈ Ω+b
h \Ωα/2U ,

‖χh
Ω+

U
− χΩ+b

h
‖0,∞,τ =

∥∥∥∥ hα

hα + uh − φ0

∥∥∥∥
0,∞,τ

≤ hα/2.

Therefore, if the error ‖uh−u‖0,∞,τ for τ ⊂ Ω−
h (where u ≡ φ0) is of the order hβ with

β > α, then the difference caused by the replacement is a high-order small quantity

locally for all τ ∈ Ω−
h ∪ (Ω+b

h \Ωα/2U ). The size of the remaining domain Ω
α/2
U depends

on the error ‖uh − u‖0,∞. It can be shown (see, e.g., [32]) that meas (Ω
α/2
U ) → 0, as

long as ‖uh−u‖0,∞,Ω → 0, as h→ 0. Thus χh
Ω+

U

is a good approximator to χΩ+b
h

, and

this is confirmed in our numerical tests; see section 4.
Remark 3.1. Generally speaking, for the problem considered here, the costate

p is more regular than the solution u. Therefore, we may use ph instead of uh to
approximate the characteristic function. It can be seen from (2.3) that

u = max{−(h′)−1(B∗p), φ0}.
Thus, for example, we can define

χ̃h
Ω+

U
=

ũh − φ0

hα + ũh − φ0
,

where ũh = max{−(h′)−1(B∗ph), φ0}. Similarly, we can show

‖χ̃h
Ω+

U
−χΩ+b

h
‖0,∞,τ ≤

{
min{1, h−α‖(h′)−1(B∗ph)− (h′)−1(B∗p)‖0,∞,τ} ∀τ ∈ Ω−

h ,

hα/2 ∀τ ∈ Ω+b
h \Ωα/2U .

3.4. Nonconstant obstacles. If the constraint φ0 is a function φ(x), one could
introduce u∗(x) = u(x) − φ(x). Then the triplet (y, p, u∗) satisfies the following
optimality conditions:



a(y, w) = (f∗ + Bu∗, w) ∀w ∈ Y = H1
0 (Ω),

a(q, p) = (g′(y), p) ∀q ∈ Y = H1
0 (Ω),

((h∗)′(u∗) + B∗p, v − u)U ≥ 0 ∀v ∈ K ⊂ U = L2(ΩU),

(3.39)

where f∗ = f + Bφ, h∗(v) = h(v + φ), and K = {v ∈ U : v ≥ 0}. Thus the problem
is reduced to the case of (2.3) with φ0 = 0.

However, this strategy, although simpler, may affect the efficiency of the resulting
error estimators. Let us try to explain this: the inactive data φ|Ω−

U
on the noncoin-

cidence set does not affect the solution of (CCP) and thus is not expected to play a
major role in a sharp error estimator. However, with the transformation u − φ, this
data may be brought into the resulting error estimators through f∗. Thus we will
directly consider the error u− uh rather than u∗ − u∗

h. Let

K = {v ∈ U : v ≥ φ a.e. in ΩU}, Kh = {vh ∈ Uh : vh ≥ φh a.e. in ΩU},(3.40)
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where φh ∈ Uh is an approximation of φ. Here we take φh = πahφ. It should be
noticed that Kh �⊂ K in general.

Theorem 3.4. Let (y, p, u) and (yh, ph, uh) be the solutions of (2.3) and (2.5),
respectively. Assume that all of the conditions of Theorem 3.1 and (3.35) hold and
Kh is defined as in (3.40) with φ ∈ L2(ΩU) and φh = πahφ. Then

‖uh − u‖20,ΩU
+ ‖yh − y‖21,Ω + ‖ph − p‖21,Ω ≤ C

6∑
i=1

η2
i ,(3.41)

where ηi (i = 1–5) are defined in Theorem 3.1 and

η2
6 =

∑
τU∈Th

U

‖(φh − φ)χΩ−b
h
‖20,τU .

Proof. We will give only the details for the estimation of ‖u−uh‖20,ΩU
. The other

terms can be estimated similarly as in Theorem 3.1. It should be emphasized that
here one cannot take v = uh in (2.3) since uh ≥ φ may not be true. It follows from
(3.3) that

h′(u) + B∗p ≥ 0, (h′(u) + B∗p)χΩ+
U

= 0.(3.42)

Then it follows from the assumption (3.4), the inequality (2.5), and (3.42) that, for
any vh ∈ Kh,

c‖u− uh‖20,ΩU
(3.43)

≤ (h′(u), u− uh)U − (h′(uh), u− uh)U + (h′(uh) + B∗ph, vh − uh)U

= (h′(uh) + B∗ph, vh − u)U + (B∗(ph − p), u− uh)U + (h′(u) + B∗p, u− uh)U

= ((h′(uh) + B∗ph)χΩ+b
h

, vh − u)U + (B∗(ph − p), u− uh)U

+((h′(uh) + B∗ph − (h′(u) + B∗p))χΩ−
h
, vh − u)U

+((h′(u) + B∗p)χΩ−
h
, vh − uh)U + ((h′(u) + B∗p)χΩ−

U\Ω−
h
, u− uh)U

:=

5∑
i=1

Ii.

Take vh = πahu. Then I1 and I2 can be estimated as in the proof of Theorem 3.1 such
that

I1 + I2 ≤ C(η2
1 + ‖ph − puh

‖21,Ω) + δ‖u− uh‖20,ΩU
,

where δ is a small positive constant. It follows from (3.35), (3.24), and (3.23) that

I3 ≤
∑

τU∈Th
U

(‖h′(uh)− h′(u)‖0,τU + ‖B∗(ph − p)‖0,τU )‖(φ− φh)χΩ−
h
‖0,τU

≤ δ(‖u− uh‖20,ΩU
+ ‖ph − puh

‖21,Ω) + Cη2
6 .

We note that I4 ≤ 0 due to (3.42) and the fact that (vh−uh)|Ω−
h

= (φh−uh)|Ω−
h
≤ 0.
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Finally, to estimate I5, we use u|Ω−
U

= φ|Ω−
U

, (3.42) and uh ≥ φh to get

((h′(u) + B∗p)χΩ−
U\Ω−

h
, u− uh)τU = ((h′(u) + B∗p)χΩ−

U\Ω−
h
, φ− uh)τU

≤ ((h′(u) + B∗p)χΩ−
U\Ω−

h
, φ− φh)τU = (h′(u) + B∗p, (φ− φh)χΩb

h
)τU

= (h′(u) + B∗p− (h′(uh) + B∗ph), (φ− φh)χΩb
h
)τU

+ ((I − πah)(h′(uh) + B∗ph), (φ− φh)χΩb
h
)τU .

Thus

I5 ≤ δ(‖u− uh‖20,ΩU
+ ‖ph − puh

‖21,Ω) + C(η2
1 + η2

6).

The rest of the proof is the same as that in Theorem 3.1.
Remark 3.2. We can approximate the characteristic functions χΩ+b

h
and χΩ−b

h
by

χh
Ω+b

h

=
uh − φh

hα+ + uh − φh
, χh

Ω−b
h

=
hα

−

hα− + uh − φh
,

where α+ and α− are positive parameters.

3.5. Double obstacles. We now consider the control problem with the double
obstacles: φ1(x) < φ2(x). Let

K = {v ∈ U : φ1 ≤ v ≤ φ2 a.e. in ΩU},
Kh = {vh ∈ Uh : φh1 ≤ vh ≤ φh2 a.e. in ΩU},(3.44)

where φhi ∈ Uh is an approximation of φi (i = 1, 2). We assume that φhi = πahφi (i =
1, 2). To generalize the ideas used in Theorem 3.4 to this case, we define

Ω−
φi

= {x ∈ ΩU : u(x) = φi(x), }, Ω−
φ = Ω−

φ1
∪ Ω−

φ2
, Ω+

φ = ΩU\Ω−
φ ,

Ω−
φi,h

= {∪τ̄U : τU ⊂ Ω−
φi

, τU ∈ ThU }, Ω−
φ,h = Ω−

φ1,h
∪ Ω−

φ2,h
, Ω+b

φ,h = ΩU\Ω−
φ,h,

Ω−b
φi,h

= {∪τ̄U : τ̄U ∩ Ω−
φi,h
�= ∅, τU ∈ ThU }.

Theorem 3.5. Let (y, p, u) and (yh, ph, uh) be the solutions of (2.3) and (2.5),
respectively. Assume that all of the conditions of Theorem 3.4 hold and K and Kh

are defined as in (3.44) with φi ∈ L2(ΩU) and φhi = πahφi (i = 1, 2). Then

‖uh − u‖20,ΩU
+ ‖yh − y‖21,Ω + ‖ph − p‖21,Ω ≤ C

6∑
i=1

η2
i ,(3.45)

where ηi (i = 2–5) are defined in Theorem 3.1 and

η2
1 =

∑
τU∈Th

U

h2
τU ‖∇(h′(uh) + B∗ph)χΩ+b

φ,h
‖20,τU ,

η2
6 =

∑
τU∈Th

U

∑
i=1,2

‖(φhi − φi)χΩ−b
φi,h
‖20,τU .
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Proof. Again, we give only the details for estimation of the error ‖u − uh‖20,ΩU
.

In this case, we have

(h′(u) + B∗p)χΩ−
φ1

≥ 0, (h′(u) + B∗p)χΩ−
φ2

≤ 0, (h′(u) + B∗p)χΩ+
φ

= 0.(3.46)

As in (3.43), it follows from the assumption (3.4), the inequality (2.5), and (3.46)
that, for any vh ∈ Kh,

c‖u− uh‖20,ΩU
(3.47)

≤ (h′(u), u− uh)U − (h′(uh), u− uh)U + (h′(uh) + B∗ph, vh − uh)U

= (h′(uh) + B∗ph, vh − u)U + (B∗(ph − p), u− uh)U + (h′(u) + B∗p, u− uh)U

= ((h′(uh) + B∗ph)χΩ+b
φ,h

, vh − u)U + (B∗(ph − p), u− uh)U

+((h′(uh) + B∗ph − (h′(u) + B∗p))χΩ−
φ,h

, vh − u)U

+((h′(u) + B∗p)χΩ−
φ,h

, vh − uh)U + ((h′(u) + B∗p)χΩ−
φ \Ω−

φ,h
, u− uh)U

:=

5∑
i=1

Ji.

It is easy to see that for 1 ≤ i ≤ 3, Ji can be estimated as Ii. Thanks to (3.46), we
still have J4 ≤ 0. Also, J5 can be treated similarly to I5. For instance, let us consider
the case that τU ⊂ (Ω−b

φ2,h
\Ω−

φ2,h
). Assume that Ω−b

φ2,h
∩ Ω−

φ1
= ∅ for simplicity. We

then have, from u|Ω−
φ2

= φ2|Ω−
φ2

, (3.46), and uh ≤ φh2 , that

((h′(u) + B∗p)χΩ−b
φ2,h\Ω−

φ2,h
, u− uh)τU

= ((h′(u) + B∗p)χΩ−b
φ2,h\Ω−

φ2,h
, φ2 − uh)τU

≤ ((h′(u) + B∗p)χΩ−b
φ2,h\Ω−

φ2,h
, φ2 − φh2 )τU

= (h′(u) + B∗p− (h′(uh) + B∗ph), φ2 − φh2 )τU

+ ((I − πah)(h′(uh) + B∗ph), φ2 − φh2 )τU .

The rest of the proof is the same as that of Theorem 3.4.
Remark 3.3. In computing, we may approximate the characteristic functions

χΩ+b
h

and χΩ−b
φi,h

by

χh
Ω+b

h

=
(uh − φh1 )(φh2 − uh)

hα+ + (uh − φh1 )(φh2 − uh)
, χh

Ω−b
φi,h

=
hα

−

hα− + |uh − φhi |
,

where α+ and α− are positive parameters.
Remark 3.4. It is clear that the uniform monotonicity conditions and Lipschitz

continuity (2.1), (3.4), (3.25), (3.35), assumed in the proofs of Theorems 3.1–3.3, are
needed to hold only in a neighborhood of the true solutions. This observation is
useful in some applications involving a nonquadratic objective functional like g(y) =∫
Ω

(y − y0)4.
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For (2.1) and (3.25), let us assume that g(y) =
∫
Ω

j(y), where j is twice contin-
uously differentiable on R1, to just fix the idea. Then it follows from the Sobolev
embedding result H1(Ω) → Lβ(Ω) (β < ∞ if n = 2, and β = 6 if n = 3) that we
have, using the Hölder inequality,

|(g′(v)− g′(w), q)| ≤ ‖j′′(z)‖0,β∗,Ω‖v − w‖0,β,Ω‖q‖0,β,Ω
≤ C‖j′′(z)‖0,β∗,Ω‖v − w‖1,Ω‖q‖1,Ω,

where z = θv + (1− θ)w with θ ∈ [0, 1], β∗ = (1− 2/β)−1 for any β > 2 if n = 2 and
β∗ = 3/2 if n = 3.

Also, by using the embedding result H2(Ω)→ L∞(Ω) for n ≤ 3, we have

|(g′(v)− g′(w), q)| ≤ ‖j′′(z)‖0,Ω‖v − w‖0,Ω‖q‖2,Ω.

For example, if g(y) =
∫
Ω

(y−y0)4 with y0 ∈ L4(Ω), we have by H1(Ω)→ L2β∗
(Ω)

that

|(g′(v)− g′(w), q)| ≤ C(‖v2‖0,β∗,Ω + ‖w2‖0,β∗,Ω + ‖y2
0‖0,β∗,Ω)‖v − w‖1,Ω‖q‖1,Ω,

≤ C(‖v‖21,Ω + ‖w‖21,Ω + ‖y0‖2L4(Ω))‖v − w‖1,Ω‖q‖1,Ω
and

|(g′(v)− g′(w), q)| ≤ C(‖v2‖0,Ω + ‖w2‖0,Ω + ‖y2
0‖0,Ω)‖v − w‖0,Ω‖q‖2,Ω,

≤ C(‖v‖21,Ω + ‖w‖21,Ω + ‖y0‖2L4(Ω))‖v − w‖0,Ω‖q‖2,Ω.

Thus (2.1) and (3.25) hold as long as v, w are in a bounded set of Y . One can discuss
(3.4) and (3.35) similarly.

It follows from the proofs of Theorems 3.4–3.5 that Theorem 3.2 can also be
generalized to the nonconstant or double obstacle cases in the same way. Thus one
can just use η2

1 + η2
6 as the error indicator in adaptive finite element methods if only

the values of the control and state are important in an application.

4. Numerical experiments. In this section, we carry out some numerical ex-
periments to demonstrate possible applications of the error estimators obtained in
section 3. In most control problems, the optimal control is often of prime inter-
est. Thus it is important to develop mesh refinement schemes that efficiently reduce
the error ‖u− uh‖. In practice, there are four major types of adaptive finite element
methods—namely, the h-method (mesh refinement), the p-method (order enrichment),
the r-method (mesh redistribution), and the hp-method. A posteriori error estimators
can be used as error indicators to guide the mesh refinement in adaptive finite ele-
ment methods. For our numerical tests, using an adaptive mesh redistribution (AMR)
method is advantageous since it can keep the number of the total nodes unchanged
while adjusting the distribution of the nodes.

4.1. AMR method. The general idea behind the AMR method is to adjust
meshes such that the a posteriori error estimators (the monitor functions to be called)
are equally distributed over the computational meshes, while the total number of the
nodes remains the same. Clearly, this method particularly suits our purposes of testing
the efficiency of the known a posteriori error estimators.

In solving the optimal control problem (1.1), we use an iterative method to move
the meshes and to redistribute the solutions on the new grid points. The procedure
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for the mesh moving part is described in [24, 25, 26]. The key idea here is to use
some kind of equivalent error estimators as the monitor function (or moving mesh
indicator). More precisely, let (x(ξ, η), y(ξ, η)

)
be the mesh map in two dimensions.

Here (ξ, η) are the computational coordinates. Let M > 0 be the monitor function
which depends on the physical solution to be adapted. By solving the Euler–Lagrange
equation

∇ · (M−1∇ξ) = 0, ∇ · (M−1∇η) = 0,(4.1)

a map between the physical domain Ω and the logical domain Ωc can be computed.
Typically, the map transforms a uniform mesh in the logical domain to cluster grid
points at the regions of physical domain where the solutions are of greater physical
interest. One of the crucial issues is what monitor functions are to be used. One
popular choice in the AMR method literature is a gradient-based monitor function
like Mτ =

√
1 + |∇yh|2τ , which moves more grids to the regions of the largest solution

gradients. In [24], it was shown that the gradient-based monitor functions may not
be suitable for free boundary problems, and a monitor function associated with a
posteriori error estimators is introduced which was found particularly useful in ap-
proximating the variational inequalities with free boundaries. In this section, we will
use the same solution procedures as described in [24] to obtain the numerical solutions
with moving grids, except that monitor functions will be based on the error estimators
developed in this work.

4.2. Numerical tests. Our numerical example is the following type of optimal
control problem:

min
1

2

∫
Ω

(y − y0)2 +
1

2

∫
ΩU

(u− u0)2

(OCP)

s.t.



−∆y = Bu + f,

y|∂Ω = y0|∂Ω = 0,

u ≥ 0 in ΩU .

In our example, ΩU = Ω = [0, 1] × [0, 1] and B = I. We also use the same
meshes for the approximation of the state and the control. Thus τU = τ . Let Ωh

be a polygonal approximation to Ω with boundary ∂Ωh. Let Th be a partitioning
of Ωh into a disjoint regular triangular τ so that Ω̄h = ∪τ∈Th τ̄ . Assume that the
state y is approximated in the finite element space Y h with Φi as basis functions and
u is approximated in Uh with Ψi as basis functions. Thus the problem (OCP) is
discretized as the following optimization problem:

min 1
2

{
(Y − Y 0)TQ(Y − Y 0) + (U − U0)TM(U − U0)

}
s.t. AY = BU + F,

U ≥ 0,

(4.2)
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with

Qij =

∫
Ω

ΦiΦjdx, M ij =

∫
Ω

ΨiΨjdx,

Aij =

∫
Ω

∇Φi∇Φjdx, Bij =

∫
Ω

ΦiΨjdx,

Fi =

∫
Ω

fΦidx.

The finite element solution (yh, uh) is given by yh =
∑
i YiΦ

i and uh =
∑
i UiΨ

i, and
(y0, u0) is approximated by yh0 =

∑
i Y

0
i Φi and uh0 =

∑
i U

0
i Ψi.

In solving the above optimization problem, we use a projection gradient method
developed by He [19]. The projection method, though simple, is by no means the
most efficient algorithm for solving our problem, but the purpose of the experiments
in this section is to test the efficiency of the error indicators. The idea in [19] is the
first to introduce the Lagrange multiplier P and then to set

H =


 Q 0 −AT

0 M BT

A −B 0


 , x =


 Y

U
P


 , c =


 QY 0

MU0

F


 .

The algorithm for solving the optimization problem (4.2) is described by the following
pseudocode:

du = beta*(Hx + c)

e = x - max(x-du,b)

error =||e||

do while error >= TOL

d= beta*H^T*e

g = d + du

beta=beta*error/||d||

e = e + d

rho = error^2/||e||^2

x = max(x - gamma \rho g,b)

du = \beta (H x + c)

e = x - max(x-du,b)

error = ||e||

end do

We now briefly describe the solution algorithm to be used for solving the numerical
examples in this section.

Algorithm 0

(i) Solve the optimization problem (4.2) with the above optimization code
on the current mesh, and calculate the error monitor function M;
(ii) move the mesh to a new location, and update the solution on new
meshes using the monitor M, as described in [25].

It is important to note from Theorem 3.2 that the error ‖u−uh‖L2(ΩU ) is largely
controlled by η1. Thus, in Algorithm 0, η1, in (3.11) will be used to construct the
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Fig. 4.1. The surface of the solution u.

monitor function M discussed in section 4.1,

M |τ =
√

1 + λη̃2
1 |τ ,(4.3)

where λ > 0 is a positive constant, and

η̃2
1 |τ = h2

τ‖∇(h′(uh) + B∗ph)χuh
‖20,τ .(4.4)

In general, λ should be chosen such that λ‖η1‖ >> 1. Here we let λ‖η1‖2 = 104. As
discussed in section 3, in our computation, we approximate the characteristic function
used in η1 by the following approximation:

χuh
=

uh
uh + ε

,(4.5)

where ε > 0 is a (small) positive number. In our experiments, we tried a range of
values for ε between 0.1 and 1, and similar computational results were obtained.

Example 4.1. In this example we have

u0 = 1− sin(πx1/2)− sin(πx2/2), y0 = 0, p = Z(x1, x2), f = 4π4Z − u,

where Z = sin πx1 sin πx2. The exact solution of this problem is y = 2π2Z, u =
max(u0 − p, 0).

20×20 nodes solution. We first compute Example 4.1 on a 20×20 uniform mesh
and then adjust the mesh by using Algorithm 0. The parameters λ and ε in (4.3) and
(4.5) are 105 and 0.1, respectively. In Figure 4.1, the exact solution u is plotted. It is
seen that the free boundary for this problem is just a single curve, and the maximum
magnitude of the solution u is 1. The state and costate are approximated by piecewise
linear elements. Both piecewise constant and piecewise linear elements are used to
approximate the control in this example. In Figure 4.2, the 20× 20 adaptive meshes
are displayed. The control approximation errors are presented in Figures 4.3 and 4.4.
It is observed that the maximum errors are distributed along the free boundary, as
seen from Figures 4.3 and 4.4.

The adaptive meshes shown in Figure 4.2 are obtained by using the AMR method
with the monitor function defined by (4.3). It is seen that a higher density of node
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Fig. 4.2. The adaptive mesh obtained by using piecewise constant elements (left) and piecewise
linear elements (right), with 20 × 20 nodes.
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Fig. 4.5. Example 4.1 with 20×20 nodes: Mesh (left) and error (right) obtained by using linear
elements with unsharp error estimator associated with η̄1, as defined by (3.2).
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Fig. 4.6. Profiles of unsharp estimator η̄1 and the sharp estimator η̃1 obtained by using the
linear element with 20 × 20 nodes.

points are now distributed along the free boundary. Furthermore, the approximation
error is substantially reduced, as seen in Figures 4.3 and 4.4. In Figure 4.4, the L2-
norm of u−uh is 4.3×10−3 on the uniform mesh but is reduced 10 times to 4.4×10−4

on the adaptive mesh, while the L2 error of the state approximation becomes slightly
larger. It was found that one would need a 100 × 100 uniform mesh to produce
such an error reduction. Thus efficient adaptive meshes can indeed save substantial
computational work.

However, if we replace the estimator η̃1 in the monitor (4.3) with the estimator
η̄1 given by (3.2), then a very different mesh is obtained; see Figure 4.5. As also
seen in Figure 4.5, such a mesh is not efficient in reducing the control error; the
error is virtually the same as that on the uniform mesh. The main reason is that the
estimator η̄1 may not be sharp in this case. In fact, from Figure 4.6, it is clear that
η̄1 and |u − uh| have very different profiles, while η̃1 has a profile similar to that of
|u− uh|.

40× 40 nodes solution. To see the effect of mesh refinement, numerical solutions
for Example 4.1 are obtained by using 40 × 40 linear elements. The control error
distributions in this case are plotted in Figure 4.7, while the adapted mesh is plotted
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Fig. 4.7. Same as Figure 4.4, except with 40 × 40 nodes.
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Fig. 4.8. The adaptive mesh obtained by using piecewise linear elements with 40 × 40 nodes.

in Figure 4.8. It is clear that the control errors are reduced with the finer mesh and
with the use of the adaptive meshes.

5. Conclusion. In this work, we have derived some sharp a posteriori error
indicators for the distributed elliptic optimal control problems. It is shown that the
error indicators obtained can be applied in adaptive finite element computations and
are found efficient in guiding mesh adjustments for our numerical examples. It is clear
from the numerical experiments that the AMR methods can substantially increase the
approximation accuracy. We point out that the approaches used in this work can be
generalized to study other control problems.
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Abstract. This paper is motivated by the problem of computing the frequency response gain
of general sampled-data systems with noncompact frequency response operators. We first show
that, with the J-unitary transformation, the computation in the noncompact operator case can be
reduced, in principle, to that in the compact operator case, to which an existing efficient and reliable
bisection method can be applied. At the same time, however, we point out that there arise some
critical problems in this reduction to the compact case which could be serious enough to invalidate
the apparent success in the reduction. Through some spectral analysis of operators involving or
related to the frequency response operators, we eventually prove that these critical problems can
be circumvented after all, and we give an explicit result that shows how to compute the frequency
response gain with a bisection method dealing only with finite-dimensional matrices. Extending the
arguments, we also give a bisection method to compute the singular values of the frequency response
operators and the associated compression operators.
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1. Introduction.

1.1. Background and motivation of the study. It is quite common these
days to control a continuous-time plant with a digital controller. In such a case, the
measurement output y of the plant is detected and the control input u is changed
at every sampling period, while the disturbance input w is a continuous-time signal,
and it affects the controlled output z, which is also a continuous-time signal. This
situation is shown in Figure 1, where P and Ψ denote the continuous-time plant
and the digital controller, respectively, and S and H denote the ideal sampler and
the hold device with sampling period h, respectively. Also, the solid lines denote
continuous-time signals, while the dashed lines denote discrete-time signals. Such a
system is called a sampled-data system, especially when close attention is paid to the
intersample behavior of the continuous-time signals w and z.

The analysis and synthesis of sampled-data systems scored a great success in
the past decade, and, for example, the servo problem, the H∞ control problem, the
H2 control problem, as well as the robust stability problem have been studied (see,
e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]). In many of these problems, the frequency
response operators of sampled-data systems (with their intersample behavior taken
into account), introduced in [13, 14], play an important role and/or provide an insight
from the frequency domain, as well as those closely related studies [15, 16] also do.

This paper is motivated by a study on the computation of the gain characteristics
of the frequency response of sampled-data systems. By computing the gain (i.e.,
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Fig. 1. Stable sampled-data system Σs.

norm) of the frequency response operator at each angular frequency, we can draw Bode
diagrams of sampled-data systems with all of the effects of aliasing taken into account,
which should be quite useful for grasping the frequency-domain characteristics of
sampled-data systems. The computation methods for the frequency response gain
of sampled-data systems have been studied quite intensively [13, 14, 17, 18, 19, 20,
21, 22], and a closed-form formula for the computation is given in [13]. Recently,
a quite efficient and reliable method for the computation was derived in [22]. The
feature of the latter method is that it is based on a bisection method so that it can
compute the gain to any degree of accuracy without numerical problems. The main
restriction of this method, however, is that it can be applied only to those sampled-
data systems whose frequency response operators are compact operators. It is often
the case, however, that the frequency response operator is actually noncompact. In
fact, this happens to be the case if and only if there exists a nonzero direct feedthrough
matrix from w to z in the continuous-time plant P [13]. Thus, when we consider, e.g.,
the sensitivity operators of sampled-data systems [14], they are noncompact so that
the bisection method of [22] cannot be applied. Even though a closed-form formula
exists for this special case (i.e., if we confine ourselves to the sensitivity operators),
with which we can compute the frequency response gain exactly [19], more general
cases with noncompact operators are hard to deal with in an efficient and reliable way;
for example, just considering a weighted sensitivity operator makes the computation
quite hard if the weight corresponds to a biproper multivariable system.

1.2. The purpose of this paper. This paper mainly focuses on the case in
which the frequency response operator is noncompact, and the paper aims at giving
a fundamental theoretical result for such a case that readily shows how to compute
the frequency response gain with a bisection method. It is expected that such a
theoretical result is obtained readily by a simple combination of the method for the
compact case [22] and the J-unitary transformation (or the loop-shifting) [5], but, in
fact, this combination turns out to lead to some critical theoretical problems. Namely,
we need to guarantee that we will never encounter, roughly speaking, the following
situations:

• There exists an open interval of positive real numbers such that, for each γ
in that interval, a γ-dependent matrix ejϕhI−Aγ , defined appropriately, has
an eigenvalue at γ.
• There exists an open interval of positive real numbers such that, for each
γ in that interval, a γ-dependent operator Dγ , defined appropriately, has a
singular value at γ.
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Even though it might look unlikely that we will encounter the above situations, the
circumstances here are quite different from the seemingly related case of the H∞
problem [2]; a different nature of the problem here prevents us from applying the
small-gain theorem, which makes it nontrivial to negate the above possibility. Thus
we do need to prove with some new approach that this never occurs, since otherwise
the implication will be that we cannot derive a bisection method for the noncompact
case. Now, the contribution of this paper is twofold: first, we describe the details
of the above critical problems and show how we can circumvent them to arrive at
a bisection method for the noncompact case. In the course of this study, we will
also clarify some useful properties on the singular values of the frequency response
operators and compression operators of sampled-data systems together with some
related spectral properties; this constitutes the second contribution of this paper.

The contents of this paper are as follows. In section 2, we review the results of [13]
about the lifting approach to the frequency response of sampled-data systems with a
slight but crucial extension and derive a few fundamental results about some related
operators. In section 3, we show that the application of the J-unitary transformation
(but in a slightly different way from the H∞ problem case) reduces the treatment of
the noncompact case into that of the compact case in principle, and then we show
that a finite-dimensional test can be obtained to examine if the gain at a given an-
gular frequency is smaller than a prescribed positive number γ, provided that some
assumptions are satisfied. In fact, such assumptions are nothing but the assumptions
that neither of the two situations mentioned above occurs. To validate these assump-
tions, we show in section 4 that the first situation never occurs, while in section 5,
we show that the second situation never occurs either. Combining these arguments,
eventually we will arrive at a fundamental theoretical result that readily leads to a
bisection method for the computation of the frequency response gain. In section 6,
we extend some of the arguments used in the preceding sections and give a bisection
method for the computation of the singular values of the frequency response operators
and the associated compression operators. Finally, in section 7, we summarize the
contributions of this paper.

2. Frequency response of sampled-data systems. In this section, we con-
sider the sampled-data system Σs shown in Figure 1 and review the associated fre-
quency response operator introduced by Yamamoto and Khargonekar [13] with the
lifting technique [1, 2, 3, 13], with a slight but crucial extension. We next study some
properties of the spectra of operators involving or related to the frequency response
operator.

We assume that the state-space descriptions of P and Ψ are given, respectively,
by

dx

dt
= Ax+B1w +B2u,

z = C1x+D11w +D12u,(1)

y = C2x

and

ξk+1 = AΨξk +BΨyk,

uk = CΨξk +DΨyk,(2)

where yk stands for y(kh), while u(t) = uk (kh ≤ t < (k + 1)h) since H is the zero-
order hold. Throughout the paper, the sampled-data system Σs is assumed to be
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internally stable.
With a slight abuse of notation, in the following, the Hilbert space of square

(Lebesgue) integrable vector functions over the time interval [0, h) with the standard
inner product will be denoted by K, whatever the dimension of the vector may be.
Similarly, for notational simplicity, every finite-dimensional Euclidean space will be
denoted by F .

2.1. Frequency response operators. Now we introduce the matrices Ad, Bd2,
and Cd2 and the operators B1, C1, D11, and D12 as follows:

Ad := exp(Ah), Bd2 :=

∫ h

0

exp(Aσ)B2dσ, Cd2 := C2,(3)

B1 : K 
 w �→
∫ h

0

exp (A(h− σ))B1w(σ)dσ ∈ F ,(4)

C1 : F 
 x �→ z ∈ K, z(θ) = C1 exp (Aθ)x,(5)

D11 : K 
 w �→ z ∈ K, z(θ) =

∫ θ

0

C1 exp (A(θ − σ))B1w(σ)dσ +D11w(θ),(6)

D12 : F 
 u �→ z ∈ K, z(θ) =

∫ θ

0

C1 exp (A(θ − σ))B2dσ u+D12u.(7)

Then the lifting-based transfer operator Ĝ(z) of the sampled-data system Σs is defined
by

Ĝ(z) := C(zI −A)−1B +D(8)

with

A :=

[
Ad +Bd2DΨCd2 Bd2CΨ

BΨCd2 AΨ

]
: F → F ,(9)

B :=

[
B1

0

]
: K → F ,(10)

C := [ C1 D12

] [ I 0
DΨCd2 CΨ

]
: F → K,(11)

D := D11 : K → K.(12)

The operator D is called the compression operator.
Note that A is a finite-dimensional matrix, and its eigenvalues all lie inside the

unit circle by the internal stability assumption of Σs. Hence Ĝ(e
jϕh) is well defined for

each ϕ ∈ [0, ωs), where ωs := 2π/h denotes the sampling angular frequency. In fact,
it defines a bounded operator on K for each ϕ and is called the frequency response
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operator at angular frequency ϕ. This terminology is justified by the fact that the
asymptotic output z to the “sampled-data (SD)-sinusoid” w is again an “SD-sinusoid”

and that these two “SD-sinusoids” are related through Ĝ(ejϕh) in a simple way. What
this exactly means is described below in terms of the lifting technique [1, 2, 3, 13];
the discussions here are only a slight modification of that in [13] in the sense that
the treatment of the initial state is considered more explicitly. This consideration,
however, is crucial to giving a solid basis for the subsequent arguments.

Given a (vector) signal w over the nonnegative time interval [0,∞), the well-
known lifting operation of w is defined as

w �→ {ŵk}∞k=0,(13)

where ŵk is given by

ŵk(θ) = w(kh+ θ) (0 ≤ θ < h, k = 0, 1, 2, . . .).(14)

The signal w is called an SD-sinusoid of angular frequency ϕ [14] if its lifted repre-
sentation satisfies

ŵk(θ) = ŵ0(θ)e
jϕkh (0 ≤ θ < h)(15)

for some ŵ0 ∈ K. In this case, the “initial function” ŵ0 represents the “amplitude”
and “phase” of the SD-sinusoid. It is a fact that the asymptotic output z of Σs to
the SD-sinusoid w corresponding to (15) is again an SD-sinusoid of the same angular
frequency, where the “initial function” ẑ0 corresponding to the asymptotic output is
given by

ẑ0 = Ĝ(ejϕh)ŵ0.(16)

Note carefully that ẑ0(θ) (0 ≤ θ < h) above is different from the actual response
z(t) (0 ≤ t < h) of Σs for the zero initial state because z is not exactly an SD-
sinusoid, but it just tends to an SD-sinusoid as t goes to infinity.

However, given any ŵ0 ∈ K, let us take ẑ0 given by (16) and expand both ŵ0 and
ẑ0 into the SD-sinusoids w and z, respectively, with angular frequency ϕ according to
(15) and then (14). Then it is a fact that there exist appropriate initial states x(0)
of P and ξ0 of Ψ such that the above SD-sinusoid input w together with the initial
states yield exactly the above SD-sinusoid output z over the entire nonnegative time
interval [0,∞). Conversely, if, under some initial states x(0) and ξ0, the output z
to some SD-sinusoid w is exactly an SD-sinusoid over the whole nonnegative time
interval [0,∞), then the “initial functions” of these SD-sinusoids satisfy (16).

These facts justify the following alternative definition for the frequency response
gain defined in [13].

Definition 2.1. Suppose that ejϕhI − A is invertible. Then the frequency re-
sponse gain of Σs at angular frequency ϕ is given by

‖Ĝ(ejϕh)‖ = sup
‖ẑ0‖K
‖ŵ0‖K ,(17)

where ŵ0 and ẑ0 are, respectively, the initial functions of the input and output SD-
sinusoids of angular frequency ϕ consistent with the sampled-data system Σs. Here,
the consistency means that these SD-sinusoids can be the solution of Σs under some
appropriate initial states.
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Remark 2.1. Definition 2.1 is a system-theoretic definition as opposed to the
more operator-theoretic one in [13]; unlike the operator-theoretic definition, we can
allow nonzero initial states here and also deal with unstable sampled-data systems.1

This, together with the notion of “consistency,” plays a crucial role in the following
discussions. See, e.g., the proof of Lemma 3.1 and subsection 4.1.

Here, it should be noted that D (and hence Ĝ(ejϕh)) is a compact operator if
and only if D11 = 0 in (1) [13]. In general, noncompact operators are harder to
deal with than compact operators, and we are mainly interested in the computation
of the frequency response gain when Ĝ(ejϕh) is not compact (i.e., D11 �= 0). Such
situations arise, e.g., when we deal with the sensitivity operators [14] among others.
Even though there exists an explicit formula [19] for the frequency response gain of
(unweighted) sensitivity operators, it is hard to compute the frequency response gain
of general sampled-data systems with D11 �= 0. The study in the following subsection
is motivated by such a research direction.

2.2. Spectral analysis related to the frequency response operators. In
this subsection, we derive some facts on the spectra of operators related to the fre-
quency response operator Ĝ(ejϕh). We also study the singular values of Ĝ(ejϕh).
Throughout the remainder of this paper, the angular frequency ϕ ∈ [0, ωs) is regarded
as an arbitrary fixed number.

If D11 = 0 so that Ĝ(ejϕh) is compact, then Ĝ(ejϕh)∗Ĝ(ejϕh) is compact, too, and
hence it has a maximum eigenvalue. The square root of it is the maximum singular
value of Ĝ(ejϕh) and is equal to the frequency response gain ‖Ĝ(ejϕh)‖ [13].

If D11 �= 0, however, the situation becomes much more involved. Although it is
known that ‖Ĝ(ejϕh)‖ is no smaller than ‖D11‖ [13], the properties of the spectra

of operators related to Ĝ(ejϕh), Ĝ(ejϕh)∗Ĝ(ejϕh), or D∗D have not necessarily been
clarified explicitly enough in the literature. Since we need, in the following arguments,
further knowledge on the properties of the spectra of operators involving Ĝ(ejϕh) or
D, the remainder of this subsection is devoted to such a study.

With a slight abuse of notation, given a matrix D11, the operator that maps
w(·) ∈ K to z(·) = D11w(·) ∈ K is also denoted by D11. It will be clear from the
context whether D11 refers to this operator or the underlying matrix. Also, consider
replacing the direct feedthrough matrix D11 by 0 in the generalized plant (1), and

denote the corresponding frequency response operator by Ĝc(e
jϕh). Then we have

Ĝ(ejϕh) = D11 + Ĝc(e
jϕh).(18)

Note that Ĝc(e
jϕh) is a compact operator. In the following, the spectrum of an oper-

ator is denoted by σ(·), and the matrix norm ‖D11‖ is denoted by d11 for simplicity.

Lemma 2.2. Suppose that γ2
1 ∈ ∂σ(Ĝ(ejϕh)D∗

11), where γ1 > d11. Then γ2
1 is an

isolated point of σ(Ĝ(ejϕh)D∗
11).

Proof. Since Ĝc(e
jϕh) is a compact operator, it follows from (18) that

Ĝ(ejϕh)D∗
11 = D11D

∗
11 +K,(19)

1Unless Σs has an unstable mode at ejϕh, every SD-sinusoid input with angular frequency ϕ
yields an SD-sinusoid output with the same angular frequency provided that the initial state of Σs

is set appropriately. This situation is quite similar to what we have in unstable continuous-time
systems with regard to sinusoid signals.
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where K is a compact operator. Hence, by Proposition XI.4.2(e) of [23], we have

σle(Ĝ(e
jϕh)D∗

11) = σle(D11D
∗
11),(20)

σre(Ĝ(e
jϕh)D∗

11) = σre(D11D
∗
11),(21)

σe(Ĝ(e
jϕh)D∗

11) = σe(D11D
∗
11),(22)

where σle(·) and σre(·), respectively, denote the left and the right essential spectra and
σe(·) denotes the essential spectrum. By Proposition XI.4.6 of [23], the right-hand
sides of the above three equations all coincide so that we have

σle(Ĝ(e
jϕh)D∗

11) ∩ σre(Ĝ(e
jϕh)D∗

11) = σe(D11D
∗
11),(23)

which, in turn, is equal to the set of the squared singular values of the matrix D11.
Thus we have

γ2
1 �∈ σle(Ĝ(e

jϕh)D∗
11) ∩ σre(Ĝ(e

jϕh)D∗
11)(24)

since γ1 > d11. Hence the assertion follows readily from Theorem XI.6.8 of [23].

Lemma 2.3. Suppose that γ2 ∈ σ(Ĝ(ejϕh)D∗
11), where γ > d11. Then γ2 is an

isolated point of σ(Ĝ(ejϕh)D∗
11).

Proof. If γ2 ∈ ∂σ(Ĝ(ejϕh)D∗
11), then the assertion follows readily from Lemma 2.2.

If γ2 �∈ ∂σ(Ĝ(ejϕh)D∗
11), on the other hand, then, by definition, there exists some ε-

neighborhood of γ2 that fails to contain a point in the complement of σ(Ĝ(ejϕh)D∗
11)

(i.e., the ε-neighborhood is contained in σ(Ĝ(ejϕh)D∗
11)). This, together with the

compactness (boundedness) of σ(Ĝ(ejϕh)D∗
11), means that we can take some real

number γ1 > γ such that γ2
1 ∈ ∂σ(Ĝ(ejϕh)D∗

11), and, at the same time, γ
2
1 is not an

isolated point of σ(Ĝ(ejϕh)D∗
11). Since γ1 > d11, this contradicts Lemma 2.2, and

thus γ2 �∈ ∂σ(Ĝ(ejϕh)D∗
11) cannot occur. This completes the proof.

Similarly, applying Proposition XI.4.6 of [23], we can readily obtain the following
result.

Proposition 2.4. Every γ ∈ σ(Ĝ(ejϕh)∗Ĝ(ejϕh)) such that γ > d2
11 is an iso-

lated point of σ(Ĝ(ejϕh)∗Ĝ(ejϕh)) and is in fact an eigenvalue of finite multiplicity.
Also, by decomposing D11 given by (6) into D11 = D11 +D11c with a compact

operator D11c, we can derive the following parallel result.

Proposition 2.5. Every γ ∈ σ(D∗D) such that γ > d2
11 is an isolated point of

σ(D∗D) and is in fact an eigenvalue of finite multiplicity.
The square root of each of the eigenvalues of Ĝ(ejϕh)∗Ĝ(ejϕh) described in Propo-

sition 2.4 is a singular value of Ĝ(ejϕh) larger than d11, including multiplicity [24, p.

214]. Furthermore, unless there are infinitely many eigenvalues of Ĝ(ejϕh)∗Ĝ(ejϕh)
strictly larger than d2

11, the number d11 is also a singular value of Ĝ(ejϕh) (in which
case, d11 is the smallest singular value of infinite multiplicity). In the following, the
ith singular value of an operator is denoted by si(·), where s1(·) ≥ s2(·) ≥ · · · ≥ 0.

Then limi→∞ si(Ĝ(e
jϕh)) = d11, and the maximum singular value s1(Ĝ(e

jϕh)) (which

could be equal to d11) equals ‖Ĝ(ejϕh)‖ [24]. The same holds true for Proposition 2.5
regarding the singular values and norm of D. It will be helpful to keep in mind
the above propositions as well as these definitions of singular values in the following
arguments.
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3. Bisection method and problem descriptions. For the case in which
Ĝ(ejϕh) is a compact operator, a quite efficient and reliable method for the computa-

tion of ‖Ĝ(ejϕh)‖ (as well as si(Ĝ(ejϕh))) was developed recently [22]. Given γ > 0,

this method reduces the test of the condition ‖Ĝ(ejϕh)‖ < γ or si(Ĝ(e
jϕh)) < γ

into a finite-dimensional test, through an infinite-dimensional congruence transfor-
mation. Thus a bisection method that deals only with finite-dimensional matrices
was established which allows us to compute ‖Ĝ(ejϕh)‖ or si(Ĝ(ejϕh)) to any degree
of accuracy.

It is also suggested in [22] that this method can be extended to the noncompact

case as well, in principle, to get a finite-dimensional test for ‖Ĝ(ejϕh)‖ < γ. In this
section, we explicitly describe the extension to the noncompact case; the primary
purpose here is to point out that there actually arise a few critical issues in that
extension. As it turns out, one might argue that these issues could be serious enough
to invalidate the apparent extension to the noncompact case. Indeed, this paper was
motivated through an effort to address these issues in full rigor, which will be the
topics of the following sections, whereas this section intends to describe the details of
the issues.

3.1. Reduction to the compact case. The basic idea for the extension to the
noncompact case suggested in [22] is to “remove” the matrix D11 so that the resulting
frequency response operator becomes compact. This is achieved by the introduction of
J-unitary (or unitary) transformations (or loop-shifting) [2, 5]. Note, however, that
the way we apply this transformation is quite different from the seemingly related
treatment in the sampled-data H∞ problem [2] in two respects. The first is that
we apply it to “remove” D11, while in [2] it was applied to “remove” D. From this
difference arises the second difference that γ smaller than ‖D‖ (actually, ‖D11‖ < γ <
‖D‖) should also be used as opposed to the H∞ problem setting. Furthermore, we
are interested not only in the largest singular value (i.e., the norm) but also in other
singular values of the frequency response or compression operator. These differences
necessitate quite different arguments in what follows from those in [2], for which
basically the small-gain theorem was enough. See, e.g., the proof of Lemma 3.1 and
Remark 3.1.

We begin with a routine method of loop-shifting. Suppose that γ > d11(= ‖D11‖).
As is well known, the J-unitary transformation at level γ is[

z
w

]
= Sγ

[
zJ
wJ

]
,(25)

where zJ and wJ are newly introduced signals and Sγ is defined by

Sγ =

[
γ(γ2I −D11D

T
11)

−1/2 γ(γ2I −D11D
T
11)

−1/2D11

γ−1DT
11(γ

2I −D11D
T
11)

−1/2 γ(γ2I −DT
11D11)

−1/2

]
.(26)

Defining Jγ as

Jγ =

[
I 0
0 −γ2I

]
,(27)

we have

S∗
γJγSγ = Jγ .(28)
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Fig. 2. J-unitary transformed sampled-data system ΣJ .

An alternative (equivalent) representation to (25) is[
zJ
w

]
= Uγ

[
wJ
z

]
,(29)

where

Uγ =

[ −D11 γ−1(γ2I −D11D
T
11)

1/2

γ−1(γ2I −DT
11D11)

1/2 γ−2DT
11

]
.(30)

It is easy to see that Uγ is a unitary (orthogonal) matrix when γ = 1.
Now, the J-unitary transformation at level γ applied to the sampled-data system

Σs leads to the sampled-data system ΣJ shown in Figure 2. Here, substituting (25)
into (1), we can see that Pγ shown in Figure 2 is described by

dx

dt
= Aγx+B1γwJ +B2γu,

zJ = C1γx+D12γu,(31)

y = C2γx,

where

Aγ = A+B1D
T
11(γ

2I −D11D
T
11)

−1C1,(32)

B1γ = γB1(γ
2I −DT

11D11)
−1/2, B2γ = B2 +B1D

T
11(γ

2I −D11D
T
11)

−1D12,(33)

C1γ = γ(γ2I −D11D
T
11)

−1/2C1, C2γ = C2,(34)

D12γ = γ(γ2I −D11D
T
11)

−1/2D12.(35)
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Since the sampled-data system ΣJ is nothing but Σs with P replaced by Pγ , we can

readily introduce the frequency response operator Ĝγ(e
jϕh) for ΣJ . Defining Aγ ,

Bγ , Cγ , and Dγ corresponding to (9), (10), (11), and (12), respectively, Ĝγ(e
jϕh) is

formally given by

Ĝγ(e
jϕh) = Cγ(ejϕhI −Aγ)−1Bγ +Dγ .(36)

Also, comparing (31) with (1), we can see that “D11 has been removed.” Therefore,

Dγ and hence Ĝγ(ejϕh) are both compact operators. This is one of the well-known im-
portant properties of the J-unitary transformation; the following lemma gives another
quite important property, which corresponds to the rigorous arguments for what has
been suggested in [17] as to the treatment of nonzero D11 matrices. Note, however,
that the strengthened assertion for the singular values for the sampled-data system is
nontrivial; at least loop-shifting is usually not intended to yield such properties.

Lemma 3.1. For each γ > d11 such that ejϕhI − Aγ is invertible, we have
that ‖Ĝγ(ejϕh)‖ < γ if and only if ‖Ĝ(ejϕh)‖ < γ. More generally, for each γ >
d11 such that e

jϕhI − Aγ is invertible and for every positive integer i, we have that

si(Ĝγ(e
jϕh)) < γ if and only if si(Ĝ(e

jϕh)) < γ.

Since ‖Ĝ(ejϕh)‖ or si(Ĝ(e
jϕh)) is no less than d11 as mentioned in the preced-

ing section, it is enough to use γ larger than d11 when we compute ‖Ĝ(ejϕh)‖ or

si(Ĝ(e
jϕh)) with a bisection method. Thus the above lemma implies that the com-

putation of the norm or singular values of the noncompact operator Ĝ(ejϕh) with
a bisection method can be reduced essentially to the computation of those of the
compact operator Ĝγ(e

jϕh).
Proof of Lemma 3.1. First note that Sγ is invertible with its inverse given by

S−1
γ =

[
γ(γ2I −D11D

T
11)

−1/2 −γ(γ2I −D11D
T
11)

−1/2D11

−γ−1DT
11(γ

2I −D11D
T
11)

−1/2 γ(γ2I −DT
11D11)

−1/2

]
.(37)

Hence it is easy to see from (25) that w and z are SD-sinusoids of angular frequency
ϕ if and only if wJ and zJ are. In other words, for each γ > d11, the J-unitary
transformation induces a one-to-one correspondence between the input and output
SD-sinusoids of angular frequency ϕ consistent with the sampled-data system Σs and
those consistent with the sampled-data system ΣJ .

Now, suppose that si(Ĝ(e
jϕh)) < γ or, equivalently (by the min-max characteri-

zation of singular values [25]),

inf
V
‖Ĝ(ejϕh)|V‖ < γ,(38)

where Ĝ(ejϕh)|V stands for the restriction of Ĝ(ejϕh) to V, and V ranges over the
closed subspaces of K of codimension at most i − 1. Then there exists some V of
codimension at most i − 1 such that ‖Ĝ(ejϕh)|V‖ < γ. Hence we have some ε > 0
such that

‖ẑ0‖2K − (γ2 − ε)‖ŵ0‖2K ≤ 0(39)

for every pair of the input and output SD-sinusoids consistent with the sampled-data
system Σs such that ŵ0 ∈ V. Here, by (27), the inequality (39) can be rearranged as∫ h

0

[
ẑ0(θ)
ŵ0(θ)

]∗
Jγ

[
ẑ0(θ)
ŵ0(θ)

]
dθ + ε‖ŵ0‖2K ≤ 0.(40)
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By (25) and (28), this inequality can be rearranged further as

∫ h

0

[
ẑJ0(θ)
ŵJ0(θ)

]∗
Jγ

[
ẑJ0(θ)
ŵJ0(θ)

]
dθ + ε‖ŵ0‖2K ≤ 0(41)

or, equivalently,

‖ẑJ0‖2K − γ2‖ŵJ0‖2K + ε‖ŵ0‖2K ≤ 0.(42)

Now, denoting the maximum singular value of S−1
γ by σγ , we can see from (25) that

‖ŵJ0‖2K ≤
∥∥∥∥
[

ẑJ0

ŵJ0

]∥∥∥∥
2

K

≤ σ2
γ

∥∥∥∥
[

ẑ0

ŵ0

]∥∥∥∥
2

K
= σ2

γ(‖ẑ0‖2K + ‖ŵ0‖2K)
≤ σ2

γ(1 + γ2)‖ŵ0‖2K.(43)

Substituting the above into (42), we have

‖ẑJ0‖2K − γ2‖ŵJ0‖2K + ε1‖ŵJ0‖2K ≤ 0,(44)

where

ε1 =
ε

σ2
γ(1 + γ2)

> 0.(45)

As ŵ0 ranges over V, it is obvious that ŵJ0 ranges over some closed subspace VJ
of K of codimension at most i− 1 since

S−1
γ

[
Ĝ(ejϕh)

I

]
ŵ0 =

[
Ĝγ(e

jϕh)
I

]
ŵJ0.(46)

Hence (44) implies ‖Ĝγ(ejϕh)|VJ‖ < γ. Thus we have si(Ĝγ(e
jϕh)) < γ.

Conversely, we can show that si(Ĝγ(e
jϕh)) < γ implies si(Ĝ(e

jϕh)) < γ in a
similar way. This completes the proof.

3.2. Reduction to a finite-dimensional problem. Let us defer the computa-
tion of si(Ĝ(e

jϕh)) to section 6 and confine ourselves to the computation of ‖Ĝ(ejϕh)‖
here for simplicity. As mentioned before, Lemma 3.1 shows that computing the norm
of the noncompact operator Ĝ(ejϕh) can be reduced essentially to computing the

norm of the compact operator Ĝγ(e
jϕh). The latter computation has been studied

rather intensively in the literature; see, e.g., [13, 14, 18, 20, 21, 22]. Among them,
the bisection method developed in [22] will be the best method to use in our context,
partly because it is known to be quite efficient, but more importantly because we
need only to know whether or not ‖Ĝγ(ejϕh)‖ < γ for the given number γ; it is mean-

ingless to compute the value itself of ‖Ĝγ(ejϕh)‖ exactly. The techniques developed
in [22] allow us to check if ‖Ĝγ(ejϕh)‖ < γ quite efficiently, whereas other methods

[13, 14, 18, 20, 21] can compute only the value itself of ‖Ĝγ(ejϕh)‖.
Thus, in the following, we focus on the arguments developed in [22]. Also, as in

[22], let us introduce the notation N(·); for a finite-dimensional Hermitian matrix X,
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the expression N(X) = (q1, q2) implies that X has q1 repeated zero eigenvalues, while
it has q2 negative eigenvalues (counted according to multiplicities). Also, the size of
the square matrixA is denoted by n (i.e., n := dim(x)+dim(ξ), where x and ξ are as in
(1) and (2), respectively). Then we can obtain the following theorem, which provides

a method to check if ‖Ĝ(ejϕh)‖ < γ with only finite-dimensional computations.

Theorem 3.2. Let γ > d11. Suppose that e
jϕhI − Aγ is invertible and γ is

not a singular value of Dγ . Let ν be the number (counted according to multiplicities)
of the singular values of Dγ larger than γ. Then the following three conditions are
equivalent:

(i) ‖Ĝ(ejϕh)‖ < γ,(47)

(ii) ‖Ĝγ(ejϕh)‖ < γ,(48)

(iii) N(Fγ(e
jϕh, γ)) = (0, n− ν).(49)

Here Fγ(z, λ) is a Hermitian matrix given by

Fγ(z, λ) =

[
0 zI − Ẽ

z∗I − ẼT 0

]
−
[

B̃ 0

0 C̃T

]
L(λ)

[
B̃T 0

0 C̃

]
,(50)

Ẽ =

[
0 0

BΨC2γ AΨ

]
, B̃ =

[
I
0

]
, C̃ =

[
I 0

DΨC2γ CΨ

]
,(51)

L(λ) =


 Γ21 Γ22 Γ23

I 0 0
Γ41 Γ42 Γ43




 Γ11 Γ12 Γ13

0 I 0
0 0 I



−1

,(52)

with Γij defined by


Γ11 Γ12 Γ13 0
Γ21 Γ22 Γ23 0
0 0 I 0
Γ41 Γ42 Γ43 I


 = exp






−ATγ 1
λC

T
1γC1γ

1
λC

T
1γD12γ 0

1
λB1γB

T
1γ Aγ B2γ 0

0 0 0 0
BT

2γ
1
λD

T
12γC1γ

1
λD

T
12γD12γ 0


h


 .

(53)

In this theorem, the equivalence between (i) and (ii) has been proved in Lemma 3.1.
On the other hand, the equivalence between (ii) and (iii) follows readily by applying
entirely the same arguments as in [22]. Basically, what has been suggested in [22]
as to the extension to the noncompact (i.e., nonzero D11) case is just the qualita-
tive fact that these two equivalence relations will still reduce the computation for the
noncompact case into finite-dimensional computations.

However, in view of the definite statement of Theorem 3.2, it will be natural to
ask the following questions:

• What should we do if ejϕhI −Aγ happens to be noninvertible?
• What should we do if γ happens to be a singular value of Dγ?
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Intuitively, it might be expected that γ could be perturbed slightly to avoid such
situations; a bisection method will still work even with such a perturbation on γ. In
fact, when D11 = 0, the first situation never occurs, and the second situation can
be avoided by such a perturbation, as can be seen easily. In the noncompact case,
however, it is not trivial if a slight perturbation of γ would always resolve the difficulty,
especially because ejϕhI−Aγ and Dγ are dependent on γ. Even though it might look
unlikely, it could possibly be the case that, over an open interval with respect to γ,
ejϕhI − Aγ is noninvertible and/or Dγ has γ as one of its singular values. If this is
really the case, the situation is quite serious since it implies that we have no simple
way to check if ‖Ĝ(ejϕh)‖ < γ for such γ lying on the open interval.

Remark 3.1. The situation here is again quite different from the H∞ problem,
in which case the first type of question is always irrelevant. This is because γ >
‖D‖ can be assumed without loss of generality, and thus the stability of the matrix
corresponding to Aγ can be ensured simply by the small-gain theorem (see [2] for
details). However, here we need to consider much smaller γ, too, and thus Aγ can
become unstable. One trivial example for this instability can be seen by considering
the case with Ψ = 0, dim(x) = dim(w) = dim(z) = 1, and γ ↓ d11. In the H∞
problem, the second question is also irrelevant, which can be seen by Corollary 5.3.

In the first half of the remainder of this paper, we study the above issues and
show that a slight perturbation of γ indeed resolves the difficulty; the first question
will be dealt with in section 4, and the second will be dealt with in section 5. The
second half, section 6, deals with an extension to singular value computations.

4. The case of noninvertible ejϕhI −Aγ . In this section, we study the case
in which ejϕhI − Aγ is noninvertible. We first show that such γ is always a strict

lower bound of the frequency response gain ‖Ĝ(ejϕh)‖. From this fact, we further
show that the invertibility assumption of ejϕhI − Aγ can actually be removed from
Theorem 3.2.

4.1. Characterization of γ as a strict lower bound. Let us consider the
“unforced” sampled-data system Σu shown in Figure 3. It is straightforward to see
that the continuous-time part of this system is described by

dx

dt
= Aγx+B2γu,

y = C2γx,(54)

where Aγ , B2γ , and C2γ are as given in (32), (33), and (34), respectively. Hence
it follows that the state transition matrix of the discrete-time system (which we de-
note by Σud) equivalent to Σu viewed at every sampling period h is equal to Aγ ,
which has been derived through the application of the J-unitary transformation (re-
call subsection 3.1). In other words, the assumption that ejϕhI −Aγ is noninvertible
is nothing but the assumption that Σu (or Σud) has a mode at ejϕh. Thus, in this
case, the unforced system Σud has a nontrivial solution of the following form with
some [x(0)T , ξT0 ]

T (�= 0): [
x(kh)
ξk

]
=

[
x(0)
ξ0

]
ejϕkh.(55)

On the other hand, the lifted representation of w and z for the unforced system Σu
can be described, by the linearity of Σu, as

ŵk(θ) = Lw(θ)

[
x(kh)
ξk

]
, ẑk(θ) = Lz(θ)

[
x(kh)
ξk

]
(0 ≤ θ < h)(56)
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Fig. 3. Unforced sampled-data system Σu.

with some appropriate matrices Lw(θ) and Lz(θ). Substituting (55) into the above
equation, we can see that Σu has a (nontrivial) solution of the form

ŵk = ŵ0e
jϕkh, ẑk = ẑ0e

jϕkh,(57)

where

ŵ0 = Lw

[
x(0)
ξ0

]
, ẑ0 = Lz

[
x(0)
ξ0

]
.(58)

Since (57) are SD-sinusoids, we have

ẑ0 = Ĝ(ejϕh)ŵ0(59)

by the definition of the frequency response operator (recall the discussions above
Definition 2.1).

Now, from Figure 3, we readily have

ŵ0 =
1

γ2
D∗

11ẑ0.(60)

Substituting the above into (59), we have(
I − 1

γ2
Ĝ(ejϕh)D∗

11

)
ẑ0 = 0.(61)

Here we can show that ẑ0 �≡ 0. To see this, suppose the contrary. Then we have
ŵ0 ≡ 0 by (60), which implies that w ≡ 0. In this case, the unforced system Σu is
nothing but the stable sampled-data system Σs so that it can never have the nontrivial
solution like (55). By contradiction, we have that ẑ0 �≡ 0. Hence (61) implies that

γ2 is an eigenvalue of Ĝ(ejϕh)D∗
11 with ẑ0 being the corresponding eigenvector. It

follows that ‖Ĝ(ejϕh)D∗
11‖ ≥ γ2, and thus we have

‖Ĝ(ejϕh)‖ · d11 ≥ γ2.(62)

Since γ > d11 by assumption, we have

‖Ĝ(ejϕh)‖ > γ.(63)
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Namely, we have established that such γ that makes ejϕhI − Aγ noninvertible is a

(strict) lower bound of the frequency response gain ‖Ĝ(ejϕh)‖.
Furthermore, the above arguments, in particular, lead to the following result.
Lemma 4.1. Let Γ be the set of γ > d11 such that e

jϕhI − Aγ is noninvertible
(for a fixed ϕ). Then every point in Γ is an isolated point of Γ .

Proof. The above arguments imply that for every γ ∈ Γ , γ2 is an eigenvalue of
Ĝ(ejϕh)D∗

11. Hence the assertion follows readily from Lemma 2.3.

4.2. Continuity study. The fact shown in the preceding subsection is in some
sense enough to answer the first question raised in the preceding section; with the
knowledge that γ is a lower bound, a bisection method can be continued without any
problem. However, the following further study will be of more interest and value; the
aim of this study is to show that we do not need to check if ejϕhI −Aγ is invertible
after all.

In the following, we assume that γ is such a value that makes ejϕhI − Aγ
noninvertible. Then, by Lemma 4.1, there exists an open interval I on the posi-
tive real axis containing γ such that I contains no point in Γ other than γ. Note that
we can take I so that ‖Ĝ(ejϕh)‖ > γ̃ whenever γ̃ ∈ I because of the strict inequality
(63). Now, for each γ̃ ∈ I \ {γ}, the matrix Aγ̃ is invertible by the construction of
I. Now let us further assume that γ is not a singular value of D. Note that this as-
sumption is almost always satisfied (Proposition 2.5). Furthermore, as we show in the
following section (Proposition 5.1), this assumption is equivalent to the assumption
that γ is not a singular value of Dγ . Hence, by continuity together with compactness
of Dγ , we may assume, by taking the interval I sufficiently small, that the number
of the singular values of Dγ̃ larger than γ̃ is constant over I, which we denote by
ν. Note that this assumption, in particular, implies that γ̃ is not a singular value of
Dγ̃ (for all γ̃ ∈ I). From all of the considerations above, we can apply Theorem 3.2
for γ̃ to get

N(Fγ̃(e
jϕh, γ̃)) �= (0, n− ν) ∀ γ̃ ∈ I \ {γ}.(64)

Now, from the definition of the matrix Fγ̃(z, γ̃) shown in Theorem 3.2 and from
the fact that γ̃ is not a singular value of Dγ̃ (for all γ̃ ∈ I), it follows that the matrix
Fγ̃(e

jϕh, γ̃) has continuous entries over I.
Here let us suppose that Fγ(e

jϕh, γ) is invertible because otherwise we would
obviously have that

N(Fγ(e
jϕh, γ)) �= (0, n− ν).(65)

Then, by continuity, there exists some open interval I1(⊂ I) containing γ such that
Fγ̃(e

jϕh, γ̃) is invertible for every γ̃ ∈ I1. Moreover, the number of the negative
eigenvalues of Fγ̃(e

jϕh, γ̃) must be constant over I1, again by continuity. Since this
constant number is not equal to n − ν by (64), we are led to the same conclusion
as (65) after all. Hence we can conclude that (65) holds whenever ejϕhI − Aγ is
noninvertible as long as γ is not a singular value of Dγ .

Thus we arrive at the following theorem, as claimed.
Theorem 4.2. Suppose that γ > d11 and γ is not a singular value of Dγ . Let

ν be the number of the singular values of Dγ larger than γ. Then conditions (i) and
(iii) of Theorem 3.2 are equivalent.

Proof. Given Theorem 3.2, it is enough to consider the case in which ejϕhI −Aγ
is noninvertible. In this case, however, condition (iii) of Theorem 3.2 never holds as
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Fig. 4. Identity system.

we showed above. Hence it is enough to show that condition (i) never holds either.
However, this follows readily from (63).

5. The relationship between the singular values of D and Dγ . The pur-
pose of this section is to study the second question raised in subsection 3.2. To this
end, the following proposition plays a key role, and thus most of this section is de-
voted to its proof. Note that, unlike in the preceding section, we have no grounds to
introduce a nonzero initial state in the arguments of this section, and thus we indeed
avoid doing so.

Proposition 5.1. Suppose that γ > d11. Then γ is a singular value of Dγ with
multiplicity m if and only if it is a singular value of D with the same multiplicity.

Since each γ > d11 in the set of the singular values of D is an isolated point of
this set by Proposition 2.5, the importance of Proposition 5.1 lies in guaranteeing
that the second question raised in section 3 can always be circumvented by a slight
perturbation of γ. Note that this proposition also played some role in the preceding
section, where the first question raised in section 3 was studied.

To prove the above proposition, the following lemma is quite useful.
Lemma 5.2. Let γ > d11, and consider the system shown in Figure 4, where U

is an operator on K corresponding to the matrix U given by

U =

[ −γ−1D11 (I − γ−2D11D
T
11)

1/2

(I − γ−2DT
11D11)

1/2 γ−1DT
11

]
.(66)

Then we have z0 = z2 and w0 = w2.
Proof. The above matrix U is a unitary matrix with its upper-right block being

invertible. Hence, as is well known, e.g., in the circuit theory, we have z0(t) = z2(t)
and w0(t) = w2(t) for each t. Thus the assertion follows readily.

Given the above lemma, Proposition 5.1 can be proved as follows.
Proof of Proposition 5.1. Comparing the above matrix U with Uγ given in (30),

we can see that

U =

[
γ−1I 0
0 I

]
Uγ

[
I 0
0 γI

]
.(67)

On the other hand, from Figure 4, we have[
z1

w0

]
= U

[
w1

z0

]
.(68)
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Fig. 5. System Σc1.

Fig. 6. System Σc2.

Hence, from (67), we obtain

[
γz1

w0

]
= Uγ

[
w1

γz0

]
.(69)

Here let us consider closing the loop between w0 and z0 by z0 = γ−1Dw0 as in the
system Σc1 shown in Figure 5, and let us rewrite w0 as w. Then we have γz0 = z,
where z = Dw is the output of D to the input w. Hence (69) can be rewritten as

[
γz1

w

]
= Uγ

[
w1

z

]
.(70)

Comparing this equation with (29), we can see that w1 may be identified with wJ ,
while z1 may be identified with γ−1 times zJ . Since the J-unitary transformation
associated with Uγ transforms D into Dγ , we can see that the map from w1 to z1 in
Figure 5 is nothing but γ−1Dγ . Similarly, the map from z1 to w1 in the same figure
is nothing but γ−1D∗

γ . Thus we can see that the signals w1 and z1 in the system Σc1
shown in Figure 5 are equivalent to those in the system Σc2 shown in Figure 6. On
the other hand, the signals w0 and z0 in the system Σc1 are equivalent to those in the
system Σc3 shown in Figure 7 by Lemma 5.2. Now, since (68) can be rearranged as
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Fig. 7. System Σc3.

[
z0

w0

]
= S

[
z1

w1

]
,(71)

where S is given by

S =

[
γ(γ2I −D11D

T
11)

−1/2 (γ2I −D11D
T
11)

−1/2D11

DT
11(γ

2I −D11D
T
11)

−1/2 γ(γ2I −DT
11D11)

−1/2

]
(72)

and is invertible, we can see that Σc1 has m pairs of nontrivial solutions (w0, z0) if and
only if it hasm pairs of nontrivial solutions (w1, z1). Combining the above arguments,
we are led to the conclusion that Σc2 has m nontrivial solutions (w1 and/or z1) if and
only if Σc3 has the same number of nontrivial solutions (w0 and/or z0). Obviously,
this implies that γ2 is an eigenvalue of D∗

γDγ with multiplicity m if and only if it
is an eigenvalue of D∗D with the same multiplicity, which completes the proof of
Proposition 5.1.

Corollary 5.3. Let γ > d11. Then Dγ has ν singular values larger than γ if
and only if D has ν singular values larger than γ.

Proof. The assertion follows readily from Proposition 5.1 if we note that the
system (C1γ , Aγ , B1γ) tends to the γ-independent system (C1, A,B1) as γ → ∞ and
that the singular values of the compact operator Dγ are continuous with respect to γ
[26, p. 57].

The above result is useful for computing the singular values of the noncompact
compression operator D, which will be discussed at the end of the following section.
Furthermore, observe that, by Proposition 5.1 and Corollary 5.3, the statement of
Theorem 4.2 can be restated further in the following “more natural” form.

Theorem 5.4. Suppose that γ > d11 and γ is not a singular value of D. Let ν
be the number of the singular values of D larger than γ. Then conditions (i) and (iii)
of Theorem 3.2 are equivalent.

This theorem shows that we can check if condition (i) is true only by the finite-
dimensional computations regarding condition (iii), where the only difficulty is the
computation of the number ν. As will be discussed at the end of the following subsec-
tion, however, this can also be carried out with only finite-dimensional computations.
Thus the problem of establishing a bisection method for the frequency response gain
computation for the noncompact case has now been resolved completely.

6. Computations of the singular values of the frequency response and
compression operators. In this section, we study a related topic on the singular
values of the frequency response operator Ĝ(ejϕh) and the compression operator D.
First, the following result is a direct consequence of Lemma 3.1.
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Corollary 6.1. Suppose that γ > d11 and ejϕhI − Aγ is invertible. Then

Ĝγ(e
jϕh) has ν singular values larger than γ if and only if Ĝ(ejϕh) has ν singular

values larger than γ.
This, together with Lemma 4.1 and a continuity argument as in the proof of

Corollary 5.3, leads to the following result.
Proposition 6.2. Suppose that γ > d11 and ejϕhI −Aγ is invertible. Then γ is

a singular value of Ĝγ(e
jϕh) with multiplicity m if and only if it is a singular value

of Ĝ(ejϕh) with the same multiplicity.
Observe that the order of the discussions here is the opposite of that in the pre-

ceding section in that Corollary 5.3 was derived from Proposition 5.1 in the preceding
section, while Proposition 6.2 was derived from Corollary 6.1 in this subsection. This
is because, in the preceding section, we had to avoid the introduction of a nonzero
initial state (and hence such a type of argument similar to Lemma 3.1 was not possi-
ble), and thus we had to employ a quite different approach there, even though these
two problems are apparently quite similar.

Now, from the study in the case of compact operators [13, 22], it is known that,
as long as γ is not a singular value of Dγ (or, equivalently, D), the matrix Fγ(e

jϕh, γ)

has m repeated eigenvalues at 0 if and only if γ is a singular value of Ĝγ(e
jϕh)

with multiplicity m. Hence, by Proposition 6.2 (or Corollary 6.1), we are led to
the following result, which can be regarded as a generalization of the state-space
formula given in [13] to the noncompact case (see also [27]). Note that the invertibility
assumption has been removed in the following result, which can be validated by a
continuity argument supported by Lemma 4.1.

Corollary 6.3. Suppose that γ > d11 and that γ is not a singular value of D.
Then γ is a singular value of the frequency response operator Ĝ(ejϕh) with multiplicity
m if and only if the finite-dimensional matrix Fγ(e

jϕh, γ) has m repeated eigenvalues
at 0.

By definition, all of the singular values of Ĝ(ejϕh) are no smaller than d11, with
d11 being the smallest singular value with infinite multiplicity if there are only a
finite number of singular values strictly larger than d11 [24]. This, together with
Corollary 6.3, implies that we can compute, in principle, all of the singular values
of Ĝ(ejϕh), including their multiplicities. A bisection method for their computation
based on Corollary 6.1 is given by the following theorem, which is a generalization of
Theorem 5.4.

Theorem 6.4. Suppose that γ > d11 and γ is not a singular value of D. Let
ν be the number of the singular values of D larger than γ. Then the following two
conditions are equivalent for any nonnegative integer i, where we define s0(·) = +∞:

(i) si+1(Ĝ(e
jϕh)) < γ < si(Ĝ(e

jϕh)),(73)

(ii) N(Fγ(e
jϕh, γ)) = (0, n+ i− ν).(74)

The above theorem follows readily by applying entirely the same arguments as
in [22]. The only obstacle in the extension is that, when ejϕhI − Aγ happens to be

noninvertible, we do not necessarily have si(Ĝ(e
jϕh)) > γ, unlike in (63). Hence it

is not trivial that we can drop the invertibility assumption of ejϕhI − Aγ as we did

in subsection 4.2. However, if si(Ĝ(e
jϕh)) = γ for some i, then we are led to the

conclusion that Fγ(e
jϕh, γ) is noninvertible (Corollary 6.3). Namely, condition (ii) of

the above theorem fails for any i. Thus the statement of the above theorem leads to the
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conclusion that condition (i) fails for any i, as required (because si(Ĝ(e
jϕh)) = γ),

which validates the statement. If si+1(Ĝ(e
jϕh)) < γ < si(Ĝ(e

jϕh)), on the other
hand, we can still develop a continuity argument, as in subsection 4.2, supported by
Lemma 4.1, and, again with the aid of Corollary 6.3, we can show that condition (i)
holds if and only if condition (ii) holds, even if ejϕhI − Aγ is noninvertible. These
considerations show that we can actually drop the invertibility assumption of ejϕhI−
Aγ .

If we apply the above theorem to compute the singular values of Ĝ(ejϕh), then, for
each given γ > 0, we have to know the number ν, which is the number of the singular
values of the compression operator D larger than γ. By Corollary 5.3, the number ν
is equal to the number of the singular values of the compression operator Dγ larger
than γ. Here Dγ is a compact operator, and, for a compact compression operator,
there exists a finite-dimensional method to compute the number of its singular values
larger than given γ > 0; see [22] for details. Hence we can compute the number ν
for each γ > 0, and thus we are led to a bisection method for the computation of the
singular values of Ĝ(ejϕh) with only finite-dimensional computations. It should be
worthwhile emphasizing that the above-mentioned fact that, for each γ > 0, we can
compute the number of the singular values of D larger than γ, implies that we can
actually develop a bisection method for the computation of the singular values (and
hence the norm, as well) of the noncompact compression operator D.

7. Conclusion. In this paper, we studied the problem of computing the fre-
quency response gain (to be more precise, the norm and singular values) of general
sampled-data systems with a direct feedthrough matrix D11. We first reviewed in
section 2 the frequency response operator Ĝ(ejϕh) of such sampled-data systems, and
we made a slight but crucial extension on its definition so that nonzero initial states
and unstable sampled-data systems can also be dealt with. We also gave some re-
sults on the spectra of operators involving or related to Ĝ(ejϕh) for later use. Then,
in section 3, we showed a key result, Theorem 3.2, which is a generalization, to the
noncompact case, of the result derived in [22]. Although this result is expected to
be a theoretical basis for the development of a bisection method for the computation
of the frequency response gain ‖Ĝ(ejϕh)‖ for noncompact Ĝ(ejϕh), we also pointed
out two critical issues that could be serious enough to prevent us from arriving at a
bisection method (subsection 3.2). Regarding these issues, however, we clarified in
section 4 that the first issue (i.e., whether or not ejϕhI −Aγ is invertible) is actually
irrelevant, and we gave a refined result (Theorem 4.2); we further showed in section 5
that the second issue (regarding the way the singular values of Dγ are dependent on
γ) does not either cause a serious problem in the bisection method after all, where the
spectral study in section 2 played important roles for these proofs. Hence, as a whole,
we have proved up to the slightest details that the bisection method for the compu-
tation of the frequency response gain of sampled-data systems with D11 = 0 (i.e., the
compact case) proposed in [22] can be extended to the case of nonzero D11 (i.e., the
noncompact case). Finally, in section 6, the result was extended to the computation

of the singular values of Ĝ(ejϕh) (Theorem 6.4) as well as those of the compression
operator D.

To summarize the results on the singular value computations, we have shown
the following: the singular values si(Ĝ(e

jϕh)) are no smaller than d11(= ‖D11‖), and
given γ > d11, the condition

si+1(Ĝ(e
jϕh)) < γ < si(Ĝ(e

jϕh))(75)
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is equivalent to the condition (in terms of the finite-dimensional matrix given in (50))

N(Fγ(e
jϕh, γ)) = (0, n+ i− ν),(76)

with the only exceptions being for such a countable number of γ that is equal to a
singular value of D (for which the matrix Fγ(z, γ) in (76) cannot be defined), where
ν is the number of the singular values of D larger than γ. Here, once γ is fixed, we
can obtain the number ν by computing the eigenvalues of a single finite-dimensional
Hermitian matrix, as long as γ is not a singular value of D, and we will never encounter
any sort of critical problem in that process, as shown in [22]. Therefore, the condition
(75) can be tested with only finite-dimensional computations, with a possible need
for a slight perturbation on γ to avoid the singular values of D. This establishes a
complete bisection method for the computation of ‖Ĝ(ejϕh)‖ and si(Ĝ(e

jϕh)) even in
the case of D11 �= 0.

Acknowledgments. The author is grateful to Y. Ito for helpful discussions on
this topic. He is also grateful to M. Sawada for his numerical studies supporting the
results of this paper.
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Abstract. We discuss matching control laws for underactuated systems. We previously showed
that this class of matching control laws is completely characterized by a linear system of first order
partial differential equations for one set of variables (λ) followed by a linear system of first order

partial differential equations for the second set of variables ( ĝ, V̂ ). Here we derive a new first
order system of partial differential equations that encodes all compatibility conditions for the λ-
equations. We give four examples illustrating different features of matching control laws. The last
example is a system with two unactuated degrees of freedom that admits only basic solutions to the
matching equations. There are systems with many matching control laws where only basic solutions
are potentially useful. We introduce a rank condition indicating when this is likely to be the case.
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1. Introduction. Effective procedures for designing control laws are very im-
portant in nonlinear control theory. Explicit analytic formulae for control laws play
a role similar to that played by explicit solutions to differential equations. Such for-
mulae exist in only a few special cases, but those that exist serve as simple models to
develop and test more general techniques.

In this paper, we discuss a class of full state feedback control laws for underactu-
ated systems. In [5], we showed that this class of matching control laws is completely
characterized by a linear system of first order partial differential equations for one set
of variables (λ) followed by a linear system of first order partial differential equations

for the second set of variables ( ĝ, V̂ ). These equations always have a simple fam-
ily of solutions which we call basic solutions. The system of equations for the first
set of variables (λ-equations) is overdetermined. Here we derive a new first order
system of partial differential equations that encodes all compatibility conditions for
the λ-equations. (We call these the ν-equations.) If only one degree of freedom is
unactuated, the solutions to all of these systems of partial differential equations can
be completely analyzed. It is often possible to get explicit formulae for the solutions
to these equations. We also provide an example of a system with two unactuated de-
grees of freedom that has only basic solutions. There are systems with many matching
control laws where only basic solutions are potentially useful. We write down a rank
condition indicating when this is likely to be the case (Remark 5.1).

During the last few years, several researchers have investigated control laws in
which the closed loop system assumes a certain structure. Numerous papers have
been written on this subject; see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and the
references therein. The control laws that form the subject of this present paper
are described by (2.4) and (2.6). These equations were independently derived in
[10] and [5]. The λ-equations were first introduced in [5]. Even though the initial

∗Received by the editors August 3, 2001; accepted for publication (in revised form) April 23,
2002; published electronically December 11, 2002. This work was partially supported by grants
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matching equations of [10] and [5] form a highly nonlinear system of partial differential
equations, introduction of the λ variables triangulates the system. The system is
triangulated in the sense that all solutions are obtained by first solving first order
linear equations for λ and then solving first order linear equations for the remaining
variables.

This paper is organized as follows. Section 2 reviews matching control laws and
the λ-equations and introduces the ν-equations. Section 3 specializes to systems with
one unactuated degree of freedom. Sections 4, 5, and 6 contain examples illustrating
three different features of matching control laws. The rank condition appears at the
end of section 5. Later we apply it in section 6. In section 7, we describe the final
example of a system with two unactuated degrees of freedom. We show that this
system has only basic matching control laws.

2. Matching equations. We use the following notation.
• n is the number of the degrees of freedom of the mechanical system.
• x = (x1, . . . , xn) are configuration variables denoting the position of the sys-

tem, and ẋ = (ẋ1, . . . , ẋn) are the corresponding velocities.
• gij(x) is the mass matrix.
• V (x) is the potential energy.
• Ci(x, ẋ) are the dissipation terms.
• ui(x, ẋ) are the control inputs.

Let m ≤ n be the number of unactuated degrees of freedom. We will assume that
degrees of freedom numbered 1 through m are unactuated and use indices a, b, . . . to
indicate unactuated degrees of freedom. The indices i, j, . . . will run from 1 to n. We
adopt the convention of summation over the repeated indices.

Given this, the equations of motion of the system are

grj ẍ
j + [j k, r] ẋj ẋk + Cr +

∂V

∂xr
= ur , r = 1, . . . , n,(2.1)

where [i j, k] is the Christoffel symbol of the first kind,

[i j, k] =
1

2

(
∂gjk
∂xi

+
∂gik
∂xj

− ∂gij
∂xk

)
.(2.2)

Our assumption that the first m degrees of freedom are not actuated means that

u1 = · · · = um = 0.(2.3)

We are looking for control laws ui such that the closed loop system can be written in
the form

ĝrj ẍ
j + ̂[j k, r] ẋj ẋk + Ĉr +

∂V̂

∂xr
= 0, r = 1, . . . , n,

where [̂i j, k] is defined as in (2.2) with ĝ in place of g. Such a control law will be
given by

u� =
(

[j k, �] − g�i ĝ
ir ̂[j k, r]

)
ẋj ẋk +

(
C� − g�i ĝ

ij Ĉj
)

+

(
∂V

∂x�
− g�i ĝ

ij ∂V̂

∂xj

)
, � = 1, . . . , n.(2.4)
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Condition (2.3) translates into(
[j k, a] − gai ĝ

ir ̂[j k, r]
)
ẋj ẋk +

(
Ca − gai ĝ

ij Ĉj
)

+

(
∂V

∂xa
− gai ĝ

ij ∂V̂

∂xj

)
= 0, a = 1, . . . ,m.(2.5)

In order to satisfy these equations, it is sufficient to have

gai ĝ
ir ̂[j k, r] = [j k, a],

gai ĝ
ir Ĉr = Ca,(2.6)

gai ĝ
ir ∂V̂

∂xr
=

∂V

∂xa
.

These are the matching equations; see [5, 10]. Following [5], introduce variables λja
relating the unknown mass matrix ĝ to the original mass matrix g,

λra = gai ĝ
ir.(2.7)

Using λja, the matching equations take the form

λra
̂[j k, r] = [j k, a],

λja Ĉj = Ca,(2.8)

λja
∂V̂

∂xj
=

∂V

∂xa
.

Theorem 2.1. The following equations are equivalent to the matching equations
(2.7), (2.8) in a neighborhood of a point x0.

λ-equations.

∂

∂xk
( gai λ

i
b) − [k a, i] λib − [k b, i] λia = 0,

k = 1, . . . , n,
a, b = 1, . . . ,m.

(2.9)

ĝ-equations.

λ�a
∂ĝij
∂x�

+
∂λ�a
∂xi
· ĝ�j +

∂λ�a
∂xj
· ĝ�i =

∂gij
∂xa

,
a = 1, . . . ,m,
i, j = 1, . . . , n.

(2.10)

V̂ -equations.

λja
∂V̂

∂xj
=

∂V

∂xa
.(2.11)

Ĉ-equations.

λja Ĉj = Ca.(2.12)

Initial compatibility. There exists a hypersurface S containing x0, transverse to
each of the vector-fields λ�a

∂
∂x� , a = 1, . . . ,m, and on which ĝij is invertible and

symmetric (ĝij = ĝji), and gai = λjaĝji.
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That (2.7) and (2.8) imply (2.9), (2.10), (2.11), and (2.12) was originally shown
in [5] (for indicial notation, see [1]). In the opposite direction, we show in [4, p.
33] that (2.9), (2.10), and the condition gai = λjaĝji imply the first equation in
(2.8). Note that the other two equations in (2.8) are (2.11) and (2.12), and, if ĝij is
invertible, then (2.7) follows from gai = λjaĝji. To complete the proof, we will show
now that the initial compatibility conditions of the theorem are preserved in some
neighborhood of the point x0 by virtue of (2.9) and (2.10). Indeed, in view of (2.10),
each difference wij = ĝij − ĝji satisfies m differential equations λ�a

∂
∂x�wij = 0. Each

equation guarantees that wij(x) = 0 in some neighborhood of x0 provided wij(x) = 0
on the initial hypersurface S. The nondegeneracy of ĝ follows by continuity. Now,
denote Ξai = λjaĝji−gai. Multiplying (2.10) by λjb , summing over j, and rearranging
the terms, we obtain

λ�a
∂Ξbi
∂x�

+
∂λ�a
∂xi

Ξb� +

[
∂

∂xi
(λ�agb�)− [ia, �]λ�b − [ib, �]λ�a

]

=

(
λ�a

∂λjb
∂x�

− λ�b
∂λja
∂x�

)
ĝji

− 1

2

{
λ�a

∂gbi
∂x�
− λ�b

∂gai
∂x�

− λ�a
∂gb�
∂xi

+ λ�b
∂ga�
∂xi

+ λ�a
∂gi�
∂xb
− λ�b

∂gi�
∂xa

}
.

Using (2.9), we simplify this to

λ�a
∂Ξbi
∂x�

+
∂λ�a
∂xi

Ξb� = Rab,

with Rab antisymmetric in a, b. If b = a, this equation reduces to

λ�a
∂Ξai
∂x�

+
∂λ�a
∂xi

Ξa� = 0,

where there is no summation over a. By assumption, Ξaj(x) = 0, j = 1, . . . , n, on
the noncharacteristic surface S. Hence Ξaj(x) = 0 in some neighborhood of S. This
completes the proof of the theorem.
Remark 2.2. Note that (2.9), (2.10), (2.11), and (2.12) always have a set of

solutions of the form

λka = κ δka , ĝ =
1

κ
g + go, V̂ =

1

κ
V + V o, Ĉj =

1

κ
Cj

with κ �= 0 any constant, V o an arbitrary function of the variables x�, � = m +
1, . . . , n, and go any symmetric matrix valued function of the variables x� such that
goia = 0. We will call these solutions basic.

The λ-equations are a system of 1
2 m(m+1) ·n equations for n ·m unknowns. It is

not surprising that there are extra compatibility conditions. By viewing system (2.9)
in the correct way, we are able to write down the compatibility conditions. Denote

νab = gai λ
i
b.(2.13)

Because the matrix gij is assumed to be nondegenerate, the matrix comprised of its
m first rows has rank m. This implies that m2 out of m · n λ’s can be expressed as
linear combinations of ν’s; i.e.,

λβb = hβa νab, β ∈ Im,(2.14)
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where Im is some m element subset of {1, . . . , n}. The indices Im are chosen so that
the matrix (gaσ) with a = 1, . . . ,m and σ ∈ Im is nondegenerate; and we denote by
(hβa) the inverse of (gaσ). Substituting (2.14) in the λ-equations, we obtain

∂k νab − [a k, β]hβd νdb − [b k, β]hβd νda = [a k, ρ]λρb + [b k, ρ]λρa,(2.15)

where index ρ varies over the remaining (n −m) indices {1, . . . , n} \ Im. We will
view system (2.15) of 1

2 m(m + 1) · n equations as a linear algebraic system for the
m (n−m) variables λρa, [

A(k,a,b)

]c
ρ
λρc = F(k,a,b).(2.16)

Here [
A(k,a,b)

]c
ρ

= δcb [ak, ρ] + δca [bk, ρ],

and

F(k,a,b) = ∂k νab − [a k, β]hβd νdb − [b k, β]hβd νda

with δcb being the Kronecker delta, as usual. Define a linear map A from the vector
space of m × (n − m) two-dimensional arrays into the vector space of n × m × m
three-dimensional arrays that are symmetric in the last two indices by the coordinate
expression

[Aη ](k,a,b) =
[
A(k,a,b)

]c
ρ
ηρc .

We know that system (2.16) has at least one solution by Remark 2.2. Thus the rank
of the linear map A is at most m · n. In order for system (2.16) to have a solution,
the vector (three-dimensional array) F(k,a,b) must be perpendicular to the kernel of
the adjoint map A�,

F ⊥ ker A�.(2.17)

Let the kernel of the map A� be generated by the vectors (three-dimensional arrays)
ξr . The orthogonality condition (2.17) then takes the form of the following system of
linear first order partial differential equations for νab:

ξ(k,a,b)
r (x)

[
∂k νab − [a k, β]hβd νdb − [b k, β]hβd νda

]
= 0.(2.18)

Theorem 2.3. The general solution to the λ-equations is given by any set of λρa
solving the algebraic system (2.16), and λβb = hβa νab , where νab is any solution to
(2.18).

In general, if m > 1, system (2.17) may be quite complicated, and we do not have
a satisfactory description of its solutions.

3. Systems with one unactuated degree of freedom. If only one degree of
freedom is unactuated, we do have a reasonable description of all solutions to system
(2.18). Assume, for simplicity, that g11(x) > 0. Then, after rescaling x1 if necessary,
we will have g11(x) = 1. More precisely, from the very beginning, we could use,
instead of (x1, x2, . . . , xn), the coordinates (z1, z2, . . . , zn) which are related to x as
follows:

∂z1

∂x1
=
√

g11(x), z2 = x2, . . . , zn = xn.
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In z coordinates, the mass matrix is g̃ij(z) = gk�(x) ∂x
k

∂zi
∂x�

∂zj , and hence g̃11(z) = 1.
On the other hand, the structure of the equations of motion (2.1) does not change
because of their tensorial form, and the condition u1 = 0 remains the same again

because ũ1 = uk
∂xk

∂z1 = u1

√
g11(x). Thus we assume that the coordinates are

chosen appropriately, and g11(x) = 1.

In the case of one unactuated degree of freedom, one is solving for λi1. The
λ-equation reads

∂ν

∂xk
= 2 [k 1, i]λi1,(3.1)

where ν = g1i λ
i
1. Notice that [k 1, 1] = 0. View (3.1) as a system of linear algebraic

equations for the variables λρ1, ρ = 2, . . . , n. In order for this system of n equations
in (n− 1) unknowns to have a solution, the vector

v =


∂1 ν

. . .
∂nν




must be perpendicular to the kernel of the matrix

A� =


 [1 1, 2] . . . [n 1, 2]

. . . . . . . . .
[1 1, n] . . . [n 1, n]


 .

Let the kernel of A� be generated by the vectors ξr = (ξ1
r , . . . , ξ

n
r ). The orthogo-

nality condition for v translates into the system of equations

Xr(ν) ≡ ξ1
r (x)

∂ν

∂x1
+ · · · + ξnr (x)

∂ν

∂xn
= 0.(3.2)

The standard procedure to solve such a system of equations is to complete the system
into an involutive system by adding equations [Xr, Xs](ν) = 0, [[Xr, Xs], Xt](ν) =
0, . . . , where [ηi ∂i, ζ

j ∂j ] =
(
ηi∂i(ζ

k) − ζi ∂i(η
k)
)
∂k is the commutator of vector-

fields. Recall that a system of equations

Y1(ν) = 0, . . . , YK(ν) = 0

is involutive if [Yp, Yq] = frpq(x)Yr.

Thus we have proved the following result.

Theorem 3.1. With one unactuated degree of freedom there is a coordinate
system such that the ν-equations, (2.18), become a homogeneous linear system of
equations for one unknown function. This system, (3.2), can be completed into an
involutive system.

This theorem extends the general analysis in [4] of systems with two degrees of
freedom, one of which is unactuated. Equation (11) of [4] is the analogue of (3.2).

Given any nonzero solution of the λ-equations, there is a local coordinate system
y1, . . . , yn such that

λi1(x)
∂yj

∂xi
= δj1.(3.3)
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Let G and Ĝ represent g and ĝ in the y-coordinates; i.e., Gij = gkl
∂xk

∂yi
∂xl

∂yj and

similarly for Ĝ. From (2.7), one gets g1r = λk1 ĝkr. In y-coordinates, we have

g1r = Gij(y) ∂y
i

∂x1
∂yj

∂xr and λk1 ĝkr = λk1 Ĝij
∂yi

∂xk
∂yj

∂xr = Ĝ1j
∂yj

∂xr . Thus we obtain

Gij(y)
∂yi

∂x1

∂yj

∂xr
= Ĝ1j

∂yj

∂xr
.(3.4)

In a similar fashion, one sees that the ĝ-equations in y-coordinates read

∂Ĝij

∂y1
=

∂gk�
∂x1

∂xk

∂yi
∂x�

∂yj
,(3.5)

and the V̂ -equations become

∂V̂

∂y1
=

∂V

∂x1
.

It is easy to see now that the following result holds.
Theorem 3.2. Given any nonzero solution to the λ-equation, there is a unique

solution to the ĝ- and V̂ -equations with initial data prescribed at y1 = 0.
Remark 3.3. Note that (3.4) directly gives

Ĝk1 = Gki
∂yi

∂x1
,

and so one needs only to solve (3.5) for n (n− 1)/2 quantities Ĝij , 2 ≤ i, j ≤ n.

4. Example 1: Inverted pendulum in a vertical plane. As the first exam-
ple, we consider the inverted pendulum restricted to a vertical plane with horizontal
and vertical actuation of the base; see Figure 4.1.

After rescaling units, the mass matrix and potential energy are given by

g =


 1 −a cos(x1) −a sin(x1)
−a cos(x1) 1 0
−a sin(x1) 0 1


 ,



λ-EQUATIONS 1379

V = b x3 + cos(x1).

Since only x1 is unactuated, we will simplify notation and use λi to denote λi1. The
λ-equations (2.9) are

∂1 ν = 2a sin(x1)λ2 − 2a cos(x1)λ3, ∂2 ν = 0, ∂3 ν = 0,

with ν = λ1 − a cos(x1)λ2 − a sin(x1)λ3. (Note that ∂2 ν = ∂3 ν = 0 are the
ν-equations.) It is not difficult to see that the general solution to these equations is

λ1 = ν(x1) +
1

2
cot(x1) ∂1ν(x1) + a

λ3(x1, x2, x3)

sin(x1)
,

λ2 =
1

2a sin(x1)
∂1ν(x1) + cot(x1)λ3(x1, x2, x3),

λ3 = λ3(x1, x2, x3),

where ν(x1), λ3(x1, x2, x3) are arbitrary. In order to obtain a manageable explicit
solution to the matching equations, we will choose

ν(x1) = aµ0 sin2(x1) + σ0 − aµ0, λ3 = 0,

with free parameters σ0 and µ0. Then

λ1 = σ0, λ2 = µ0 cos(x1).

The coordinates

y1 =
1

σ0
x1, y2 = x2 − µ0 sin(x1), y3 = x3

satisfy (3.3). Following Remark 3.3, we need to solve the ĝ-equations only for ĝ22,
ĝ23, and ĝ33. These equations are

∂

∂y1
ĝ22 =

∂

∂y1
ĝ23 =

∂

∂y1
ĝ33 = 0.

Clearly,

ĝ22 = ĝ22(y2, y3) = ĝ22(x2 − µ0 sin(x1), x3),

ĝ23 = ĝ23(x2 − µ0 sin(x1), x3),

ĝ33 = ĝ33(x2 − µ0 sin(x1), x3).

From gai = λja ĝji , we obtain the rest of ĝij :

ĝ11 =
1

σ0
+

aµ0

σ2
0

cos2(x1) +
µ2

0

σ2
0

cos2(x1) ĝ22,

ĝ12 = − a

σ0
− µ0

σ0
cos(x1) ĝ22,

ĝ13 = − a

σ0
sin(x1) − µ0

σ0
cos(x1) ĝ23.

The V̂ -equation yields

V̂ =
1

σ0
cos(x1) + w(y2, y3).



1380 DAVID AUCKLY AND LEV KAPITANSKI

x

x

0 1

2

x3

Fig. 5.1.

The Ĉ-equation reads λj Ĉj = 0. One solution is

Ĉ = −σ0 R(x)




µ2
0

σ2
0

cos2(x1) − µ0

σ0
cos(x1) − µ0

σ0
cos(x1)

− µ0

σ0
cos(x1) 1 1

− µ0

σ0
cos(x1) 1 1


 ·


ẋ1

ẋ2

ẋ3


 .

The resulting control law can be obtained explicitly from (2.4). The expression is too
long to be included in this paper.

Proposition 4.1. If the functions ĝ22(y2, y3), ĝ23(y2, y3), ĝ33(y2, y3), w(y2, y3),
and R(x) and the parameters µ0 and σ0 are chosen so that

ĝ22(0) > 0, ĝ23(0) = 0, ĝ33(0) = 1,

∂2
y2w(0) > 0, ∂y2∂y3w(0) = 0, ∂2

y3w(0) > 0, R(0) > 0,

σ0 < 0, ĝ22(0)µ2
0 + aµ0 + σ0 > 0, ĝ22(0) (aµ0 − σ0) + a2 < 0,

then x = ẋ = 0 is a locally asymptotically stable equilibrium of the closed loop
system.

It follows from the above inequalities that the function Ĥ(x, ẋ) = 1
2 ĝij(x) ẋiẋj +

V̂ (x) has a strict local minimum at x = ẋ = 0. Also, the matching procedure

automatically ensures that d
dt Ĥ = −ĝ(Ĉ(x, ẋ), ẋ). The above inequalities guarantee

that −ĝ(Ĉ(x, ẋ), ẋ) ≤ 0 in the neighborhood of x = ẋ = 0. In addition, the set

where ĝ(Ĉ(x, ẋ), ẋ) = 0 contains no local solutions of the closed loop system except
for x = ẋ = 0. This proves the proposition.

5. Example 2: Inverted pendulum cart on a seesaw. In the previous
example, the kernel of the matrix A� , (2.16), was two-dimensional. Generically, for
systems with one unactuated degree of freedom, the dimension of the kernel will be
1. The following example illustrates this situation. The inverted pendulum cart on
a seesaw is shown in Figure 5.1. There are several interesting ways to actuate this
system. We will consider the case with actuated cart and pendulum, and unactuated
seesaw.

The rescaled mass matrix and potential energy of the system are given by

g =


 b + (x3)2 a x3 sin(x1 − x2) 0
a x3 sin(x1 − x2) 1 − a cos(x1 − x2)

0 − a cos(x1 − x2) 1
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and

V = x3 sin(x2) + a cos(x1).

The theory in section 3 was presented with special coordinates so that g11 = 1.
However, in practice, this is not necessary.

As before, we write λi for λi1 and ν for g1j λ
j . The λ-equations are

∂1 ν = 2a x3 cos(x1 − x2)λ2 − 2x3 λ3,

∂2 ν = 0,

∂3 ν = 2a sin(x1 − x2)λ2 + 2x3 λ1.

Note that, in this case, the ν-equations (2.17) are simply ∂2ν = 0. Hence ν =
ν(x1, x3). Plug in λ1 = (ν − g12 λ

2 − g13 λ
3)/g11, and solve for λ2 and λ3:

λ1 =
1

2b

(
2ν − x3∂3 ν ),

λ2 =
1

2ab sin(x1 − x2)
(− 2x3 ν + (b + (x3)2) ∂3 ν),

λ3 =
1

2b x3 sin(x1 − x2)
(− 2(x3)2 cos(x1 − x2) ν

+ x3 (b + (x3)2) cos(x1 − x2) ∂3ν − b sin(x1 − x2) ∂2ν).

Notice that λ2 and λ3 blow up as x approaches 0 unless ν = κ (b + (x3)2).
Since g = ĝ λ, one must have det ĝ → 0 as x→ 0; i.e., ĝ degenerates at x = 0. This
means that Ĥ(x, ẋ) = 1

2 ĝij ẋ
i ẋj + V̂ cannot serve as a Lyapunov function unless

ν = κ (b + (x3)2). This ν corresponds exactly to the basic solutions of the matching
equations from Remark 2.2. This illustrates the following general principle.

Remark 5.1. If (x0, 0) is the desired equilibrium of a system and

rankA�(x0) < lim sup
x→x0

rankA�(x),(5.1)

then only basic solutions of the matching equations should be tested to produce a
stabilizing control law from (2.4).

6. Example 3: Inverted pendulum cart on a roller coaster. Consider a
cart with an inverted pendulum on a roller coaster. Special cases of this mechanical
system include the inverted pendulum on a rotor arm, the inverted pendulum on a
vertical disk, and the inverted pendulum cart on an incline. By assuming that the
size of the base of the cart is relatively small, we may neglect the inertia of the base of
the cart. It is therefore sufficient to model the cart with one point mass for the base
and one point mass a fixed distance away for the pendulum. The pendulum joint will
be unactuated.

The configuration of the system may be described by a position and an angle. As-
sume that the shape of the roller coaster is given as a curve x(s) in R

3 parametrized
by arc length, s, from a fixed point. Assume that the pendulum is always in the
plane containing the tangent vector, τ(s), and the vertical direction, e3. Let φ be
the angle between the pendulum and e3. By rescaling mass, length, and time, we will
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write

g =


 1 b sin(α− φ)

b sin(α− φ)
(

1 + k(s)2 sin2 φ
( sin2 α−n2

3

sin4 α

))

 ,

V = a x3 + cosφ,

where a and b are positive parameters, 0 < b < 1, and x3 is the vertical component

of x(s). The (unit) tangent vector to the curve is τ(s) = x′(s)
|x′(s)| , where ′ stands for

the derivative with respect to s. The curvature of the curve is k(s) = |τ ′(s)|. Denote
by n(s) the principal normal to the curve. Recall that τ ′(s) = k(s)n(s). In the
formula above, n3 is the vertical component of the principal normal, and α is the
angle between τ and the vertical direction. Index 1 corresponds to φ, and index 2
corresponds to s. The unactuated degree of freedom corresponds to the φ variable.
The λ-equations (3.1) then read as follows:

∂1 ν = − 2 b cos(α− φ) λ2
1,

∂2 ν = k(s)2 sin(2φ)

(
sin2 α− n2

3

sin4 α

)
λ2

1 .
(6.1)

The orthogonality equation (3.2) then, obviously, is

k(s)2 sin(2φ)

(
sin2 α− n2

3

sin4 α

)
∂ν

∂φ
+ 2 b cos(α− φ)

∂ν

∂s
= 0.(6.2)

It is not clear if all solutions to this equation can be written explicitly for a general
curve. We consider here two particular cases when this is possible. The first case
is when sin2 α = n2

3. This occurs exactly when the roller coaster lies in one vertical
plane. The second case is when α(s) is constant. This occurs when the track is
constantly inclined.

6.1. Case 1: sin2 α = n2
3. Note that this case includes the interesting exam-

ples of an inverted pendulum on a vertical disk and an inverted pendulum cart on an
incline.

As is readily seen from (6.2), the general solution of (6.2) in this case is ν = ν(φ),
an arbitrary function. Then

λ2
1 = − 1

2 b cos(α− φ)

∂ν

∂φ
,

and

λ1
1 = ν(φ) +

1

2
tan(α− φ)

∂ν

∂φ
.

This is a general solution of the λ-equation. From here, one must solve the ĝ- and
V̂ -equations. For special choices of α(s) and/or ν(φ), these equations have explicit
closed form solutions.
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6.2. Case 2: α(s) = α0. Examples with α(s) constant include an inverted
pendulum cart traveling on any path in a horizontal plane and a cart on a vertically
oriented circular helix or any constantly inclined track.

Since dα
ds = −k(s) n3(s)

sin(α) , if α(s) = α0, then we have k(s)n3(s) = 0. To solve (6.2),

we introduce new coordinates

z1 = β(s),

z2 = β(s) + cos(α0) ln | cscφ + cotφ| − sin(α0) ln | secφ + tanφ|,
where

β(s) =

∫ s

0

k2(p)

b sin2(α0)
dp.

Equation (6.2) is equivalent to the fact that ν is an arbitrary function of z2. Thus,
from (6.1) and the definition of ν, we find

λ1
1 = ν(z2)− sin(α0 − φ)

sin(2φ)

d ν

d z2
; λ2

1 =
1

b sin(2φ)

d ν

d z2
.

6.3. End of the roller coaster example. From the computations in case 1
and case 2, one can see that the general solution to the matching equations for the
cart on a roller coaster will be fairly complicated. However, we can show that any
linear control law is the first order germ (linearization) of some matching control law.
In fact, the only requirement for this is that there is no rank drop at the equilibrium;
i.e.,

rankA�(x0) = lim sup
x→x0

rankA�(x).(6.3)

We assume that the dissipative term at the equilibrium satisfies the following natural
assumptions:

C�(x0, 0) = 0,
∂

∂xi

∣∣∣∣
(x0,0)

C� = 0.

Lemma 6.1. If condition (6.3) is satisfied for a two degree of freedom system,
then the first order germs of matching control laws at (x0, 0) exhaust all linear control
laws for which the closed loop system has an equilibrium at (x0, 0).
Proof. Given a linear control input

ulin
j = vj + aij (xi − xi0) + bij ẋ

i

with ulin
1 = 0, we will find a matching control law with the same germ. From the

general expression (2.4) for the matching control law, we see that the first order germ
is

ugerm
j = (Vj − gj� ĝ

�r V̂r) +
(
Vjr − gj� ĝ

�i V̂ir
)

(xr − xr0) +
(
Cji − gj� ĝ

�r Ĉri
)
ẋi,

where

Vj =
∂V

∂xj

∣∣∣∣
x0

, Vjr =
∂2V

∂xj∂xr

∣∣∣∣
x0

, Cji =
∂Cj
∂ẋi

∣∣∣∣
(x0,0)

,
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and V̂j , V̂jr, and Ĉji are defined similarly. Equating like terms gives

V̂�j = ĝ�i g
ir (Vrj − arj), Ĉ�j = ĝ�i g

ir (Crj − brj), V̂� = ĝ�i g
ir (Vr − vr) = 0.

(6.4)

One can see that V̂j , V̂jr, and Ĉji are specified once ĝij(x0) is known. Moreover,

there exists a nondegenerate symmetric ĝij(x0) such that the resulting V̂�j will be
symmetric; see [1, Lemma 1]. To conclude the argument, we now show that any
nondegenerate symmetric ĝij(x0) arises as a zero order germ of a solution to the ĝ-

equation. Also, any V̂� , V̂�j satisfying V̂� = ĝ�i g
ir (Vr−vr) and V̂�j = ĝ�i g

ir (Vrj−
arj) arises as a solution to the V̂ -equation.

Given a nondegenerate ĝij(x0), define the nondegenerate λji (x0) = gik(x0) ĝkj(x0).
Set ν0 = g11(x0)λ1

1(x0) + g12(x0)λ2
1(x0). The λ-equations in this case are

∂1ν − 2 [1 1, 2]
1

g11
ν = 2 [1 1, 2]λ2

1,

∂2ν − 2 [1 2, 1]
1

g11
ν = 2 [2 1, 2]λ2

1.

(6.5)

By the rank condition, we know that the rank of A� in the neighborhood of x0 is either
identically 0 or identically 1. If this rank is 0, then ν can be any constant times g11.
We simply choose ν(x) = (ν0/g11(x0)) g11(x). Any solution to the algebraic equation
ν(x) = g11(x)λ1

1(x) + g12(x)λ2
1(x) is a solution to the λ-equation. If the rank of A�

is 1, then the orthogonality condition, (2.17), is

[2 1, 2] ∂1ν − [1 1, 2] ∂2ν + 2 ([1 1, 2] [1 2, 1] − [2 1, 2] [1 1, 2] )
1

g11
ν = 0.(6.6)

At x = x0, either ∂1 or ∂2 is not parallel to the vector [2 1, 2] ∂1 − [1 1, 2] ∂2. Assume
it is ∂1 . Then initial conditions to (6.6) can be specified along the line x2 = x2

0. In
particular, we can choose the initial values so that(

∂1ν − 2 [1 1, 2]
1

g11
ν

) ∣∣∣∣
x=x0

= 2 [1 1, 2]

∣∣∣∣
x=x0

λ2
1(x0), ν(x0) = ν0.(6.7)

The second equation in (6.5),(
∂2ν − 2 [1 2, 1]

1

g11
ν

) ∣∣∣∣
x=x0

= 2 [2 1, 2]

∣∣∣∣
x=x0

λ2
1(x0),

will be satisfied automatically since the rank of A� is 1. Let ν(x) be a solution of
(6.6) with initial condition, ν(x1, 0) , satisfying (6.7). Now one solves (6.5) for λ2

1(x)
and then ν(x) = g11(x)λ1

1(x) + g12(x)λ2
1(x) for λ1

1(x).
Now that the λ-equations are solved, we turn to the ĝ-equations. These equations

take the form

∂

∂y1
ĝ + R ĝ = S,

where ∂
∂y1 = λ1

1 ∂1 + λ2
1 ∂2. The initial conditions can be set on any line transverse

to ∂
∂y1 , in particular, along the line λ1

1(x0) (x1− x1
0) + λ2

1(x0) (x2− x2
0) = 0. On this
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line, set λi2(x) = λi2(x0) and ĝ(x) = g(x) · (λ(x0))−1. The solution to (2.10) with
this initial data then has the desired value at x = x0.

It remains to show that the V̂ -equation has a solution such that V̂� = 0 and

λ�r(x0) V̂�j = Vrj − arj ,(6.8)

where λ�r(x0) = grk(x0) ĝk�(x0). Since λ�r(x0) is nondegenerate, either λ1
1(x0) �= 0

or λ2
1(x0) �= 0. Consider the case with λ2

1(x0) �= 0. In this case, the line x2 = x2
0 is

noncharacteristic for the V̂ -equation

λ1
1 ∂1 V̂ + λ2

1 ∂2 V̂ = ∂1V.(6.9)

Pick the initial value, V̂
∣∣
x2=x2

0
, so that

V̂1 = 0, V̂11 =
λ2

2 V11 − λ2
1 (V12 − a12)

λ1
1 λ

2
2 − λ1

2 λ
2
1

∣∣∣∣
x=x0

,

and solve (6.9). Since x = x0 is an equilibrium, V1 = 0 and (V2− v2) = 0. From the

differential equation (6.9), we see that V̂2 = 0. Differentiating equation (6.9) with

respect to x1 and x2, we see that Wij = V̂ij satisfies

λ1
1(x0)W11 + λ2

1(x0)W12 =V11,

λ1
1(x0)W12 + λ2

1(x0)W22 = V12.
(6.10)

By construction,

λ1
2(x0)W11 + λ2

2(x0)W12 = V12 − a12.(6.11)

Notice that (6.4) implies that W�j = ĝ�i g
ir (Vrj − arj) also satisfy (6.10) and (6.11).

Since the solution to the algebraic system (6.10), (6.11) is unique, we conclude that
(6.8) is valid, as required.

7. Example 4: A double pendulum on a wheel. Our next example is the
system with two unactuated degrees of freedom depicted in Figure 7.1. Only joint A
is actuated.

After rescaling, the entries gij of the mass matrix are

gij = mij cos(xi − xj),

and the potential energy is

V = a1 cos(x1) + a2 cos(x2) + a3 cos(x3).

The parameters mij = mji and aj are positive.

There are six unknown λia. Define νab = gai λ
i
b. Note that we must have ν12 =

ν21. The computations in this section were performed using Maple. The λ-equations
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(2.9) are

∂1 ν11 = − 2m12 sin(x1 − x2)λ2
1 − 2m13 sin(x1 − x2)λ3

1,

∂2 ν11 = 0,

∂3 ν11 = 0,

∂1 ν22 = 0,

∂2 ν22 = + 2m12 sin(x1 − x2)λ1
2 − 2m23 sin(x2 − x3)λ3

2,

∂3 ν22 = 0,

∂1 ν12 = −m12 sin(x1 − x2)λ2
2 − m13 sin(x1 − x3)λ3

2,

∂2 ν12 = +m12 sin(x1 − x2)λ1
1 − m23 sin(x2 − x3)λ3

1,

∂3 ν12 = 0.

The second step is to express λ1
1, λ1

2, λ2
1, and λ2

2 in terms of ν11, ν12, and ν22.
After substitution into the above equations, we obtain

∂1 ν11 = D1
1, 1 ν11 + D2

1, 1 ν12 + B1
1, 1 λ

3
1,

∂2 ν11 = 0,

∂3 ν11 = 0,

∂1 ν22 = 0,

∂2 ν22 = D2
3, 2 ν12 + D3

3, 2 ν22 + B2
3, 2 λ

3
2,

∂3 ν22 = 0,

∂1 ν12 = D2
2, 1 ν12 + D3

2, 1 ν22 + B2
2,1 λ

3
2,

∂2 ν12 = D1
2,2 ν11 + D2

2,2 ν12 + B1
2,2 λ

3
1,

∂3 ν12 = 0.

(7.1)
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Here the Dk
i, j and Bk

i, j are explicit expressions involving x. In section 2, we de-
scribed a general procedure to obtain compatibility conditions for this system. In
this particular case, however, we use a different tactic: we compute and compare the
mixed derivatives of νab. The first set of equations we obtain is

∂3∂1 ν12 = K11 ∂3λ
3
2 + K12 λ

3
2 = 0,

∂3∂2 ν22 = K21 ∂3λ
3
2 + K22 λ

3
2 = 0.

Direct computation shows that det(Kij) �= 0. Hence λ3
2 = 0. Similarly,

∂3∂1 ν11 = L11 ∂3λ
3
1 + L12 λ

3
1 = 0,

∂3∂2 ν12 = L21 ∂3λ
3
1 + L22 λ

3
1 = 0,

and det(Lij) �= 0. Hence λ3
1 = 0.

Next we substitute λ3
1 = λ3

2 = 0 into (7.1) and solve for ν11, ν12, ν22. This
gives

ν11 = const, ν22 =
m22

m11
ν11, ν12 =

m12

m11
cos(x2 − x1) ν11.

Returning to λ-equations, we see that

λ1
1 = λ2

2 =
1

m11
ν11, λ1

2 = λ2
1 = 0.

Our computation shows that the only solutions of the matching equations are the
basic solutions defined in Remark 2.2.

8. Conclusion. This paper continues the development of the λ-method for ma-
tching control laws for underactuated systems. The matching control laws are those
for which the closed loop system retains the structure of the open loop system. The
general conditions for such control inputs can be expressed as a nonlinear system of
partial differential equations. The λ-method was introduced to replace these non-
linear equations by a sequence of linear systems of partial differential equations, λ-
equations, ĝ-equations, V̂ -equations, and a linear algebraic system (the Ĉ-equations).

The coefficients for the ĝ- and V̂ -equations are obtained from the solutions of the
λ-equations. The λ-equations form an overdetermined system. This paper introduces
a new system of equations (the ν-equations) encoding the compatibility conditions
of the λ-equations. Four examples are presented to illustrate different aspects of the
theory with one or more unactuated degrees of freedom.
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Abstract. We treat the vakonomic dynamics with general constraints within a new geometric
framework, which can be useful in the study of optimal control problems. We compare our for-
mulation with the one of Vershik and Gershkovich in the case of linear constraints. We show how
nonholonomic mechanics also admits a new geometrical description which allows us to develop an
algorithm of comparison between the solutions of both dynamics. Examples illustrating the theory
are treated.
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etry

AMS subject classifications. 34A26, 49K15, 70F25

PII. S036301290036817X

1. Introduction. As is well known, the application of tools from modern differ-
ential geometry in the fields of mechanics and control theory has caused an important
progress in these research areas. For example, the study of the geometrical formulation
of the nonholonomic equations of motion has led to a better comprehension of locomo-
tion generation, controllability, motion planning, and trajectory tracking, raising new
interesting questions in these subjects (see [4, 5, 26, 28, 35, 47, 49, 50] and references
therein). On the other hand, there are by now many papers in which optimal control
problems are addressed using geometric techniques (references [8, 23, 24, 59, 60] are
good examples).

In this context, we present a unified geometrical formulation of the dynamics of
nonholonomic and vakonomic systems. Both kinds of systems have the same mathe-
matical “ingredients”: a Lagrangian function and a set of nonintegrable constraints.
But the way in which the equations of motion are derived differs. In the case of vako-
nomic systems, the dynamics is obtained through the application of a constrained
variational principle [1]. In particular, an optimal control problem can be seen as a
vakonomic one. The term “vakonomic” (“variational axiomatic kind”) is inherited
from Kozlov [29], who proposed this mechanics as an alternative set of equations
of motion for a physical system in the presence of nonholonomic constraints. Non-
holonomic equations of motion are deduced using d’Alembert’s principle when the
constraints are linear or affine.

The two approaches have received a lot of attention in recent years (see [1, 2,
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10, 14, 33, 31, 36, 41, 64, 68] and references therein). Vakonomic mechanics (also
called dynamical optimization subject to nonholonomic constraints) is used in math-
ematical economics (growth economic theory), sub-Riemannian geometry, motion of
microorganisms, etc., while nonholonomic mechanics provides the evolution equations
for wheeled and autonomous vehicles, robotic systems, etc.

Several authors have discussed the domains of validity of both approaches [1, 29,
36, 68]. The solutions of the resulting dynamical systems do not coincide, in gen-
eral, though there are examples in which the nonholonomic solutions can be seen as
solutions of the constrained variational problem. In recent papers [20, 36] the char-
acterization of this situation has been studied. In [36] Lewis and Murray considered
the example of a ball on a rotating table and showed that the subset of solutions
of the nonholonomic problem is not included in the set of vakonomic ones. In [20]
Favretti obtains conditions in some particular cases for the equivalence between both
formulations.

Our project of unifying the comparative studies of both types of dynamics from
a geometrical point of view has brought us to develop a new geometric setting for
vakonomic and nonholonomic mechanics, strongly inspired on the Skinner and Rusk
formulation for singular Lagrangian systems [58]. Herewith, we are able to com-
pare them using an algorithm which gives rise, under appropriate conditions, to a
final constraint submanifold containing all the nonholonomic solutions which are also
vakonomic. As an application of the proposed algorithm, we extend several known
results [4, 20, 36]. In particular, we prove that any solution of the unconstrained prob-
lem which verifies the constraints is simultaneously a solution of the nonholonomic
and the vakonomic problems. This allows us to generalize to arbitrary metrics a result
proven in [20] for bundle-like metrics and kinetic energy Lagrangians, L = 1

2g.
The paper is structured as follows. In section 2, we obtain the equations of

motion for vakonomic mechanics, assuming an admissibility condition, which permits
us to present them in terms of the restriction of the Lagrangian to the constraint
submanifold M . Let us recall that from a geometrical point of view, the Lagrangian
L is defined on the tangent bundle TQ of the configuration manifold Q, and M
represents the submanifold of TQ determined by the vanishing of the nonholonomic
constraint functions. We will deal here with arbitrary submanifolds, that is, the
constraints may be nonlinear. It should also be pointed out that we do not consider
abnormal solutions. It is interesting to note that our derivation of the equations of
motion shows that the information provided by L outside M is completely irrelevant
for the vakonomic problem. This fact is not clearly seen in the classical way of writing
the equations for vakonomic systems [1, 29].

Section 3 is devoted to a reformulation of vakonomic mechanics in geometric
terms. In this section we will use as ambient space the fibered manifold W0 =
T ∗Q×Q M , which is in fact a subbundle of the Whitney sum T ∗Q⊕ TQ (the phase
space in the Skinner and Rusk approach). Since T ∗Q is equipped with a canonical
symplectic form we can induce a presymplectic structure ω on T ∗Q×QM . Moreover,

we can consider the Hamiltonian function HW0
= 〈π1, π2〉 − π∗

2L̃, where π1 and π2

are the canonical projections, 〈·, ·〉 denotes the natural pairing between vectors and
covectors on Q, and L̃ is the restriction of L to M . Then, we prove that the equations
of motion of vakonomic mechanics are intrinsically represented by the presymplectic
Hamiltonian equation iXω = dHW0 . Since the 2-form ω is presymplectic, a constraint
algorithm must be applied in order to obtain well-defined solutions of the dynamics. If
the algorithm stabilizes, we obtain a family of explicit solutions on the final constraint
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submanifold. In addition, a compatibility condition is found which determines when
the first constraint submanifold W1 is symplectic (and therefore the algorithm stabi-
lizes at the first step). We illustrate in subsections 3.1 and 3.2 how this framework
can be of use in the analysis of optimal control problems.

In section 4, we compare our approach with the one of Vershik and Gershkovich
[64] for vakonomic systems with linear constraints. We prove that both are related
by a convenient presymplectomorphism, so that our approach could be considered as
a generalization to the case of nonlinear constraints.

Since we want to compare vakonomic and nonholonomic dynamics, it is neces-
sary to construct a geometrical framework for nonholonomic mechanics using a closed
phase space. Indeed, in section 5 it is proved that the nonholonomic dynamics lives
on a submanifold M̃ of W0. In general, we have again a presymplectic system and
a constraint algorithm is needed to obtain the dynamics on the final constraint sub-
manifold.

In section 6, assuming that the vakonomic and the nonholonomic dynamics live
on W1 and M̃ , respectively, we can compare their solutions by means of the map
Υ : W1 → M̃ , (α, v) �→ (LegL(v), v). We present here an algorithm that selects those
solutions of the nonholonomic problem that can be seen as solutions of the constrained
variational one. Several illustrative examples are worked out in order to illustrate
the different behaviors, showing that our framework provides a generalization and
common context for the equivalence results in [4, 20, 36]. In particular, in the example
of the planar mobile robot, we prove that, under an appropriate design of the system,
every solution of the nonholonomic problem can be seen as a solution of the vakonomic
one.

2. Variational approach to constrained mechanics. Let Q be the config-
uration manifold with dimension n and L : TQ −→ R an autonomous Lagrangian
function. If (qA), 1 ≤ A ≤ n, are coordinates on Q, we denote by (qA, q̇A) the
natural bundle coordinates on TQ in terms of which the tangent bundle projection
τQ : TQ −→ Q reads as τQ(qA, q̇A) = (qA).

Let us suppose that the system is subject to some constraints given by a (2n−m)-
dimensional submanifold M of TQ, locally defined by Φα = 0, 1 ≤ α ≤ m, where
Φα : TQ −→ R. Throughout the paper, we will assume the following admissibility
condition for the submanifold M ⊆ TQ: for all x ∈ M , dimTxM

o = dimS∗TxMo,
where S = dqA ⊗ ∂

∂q̇A
is the canonical vertical endomorphism (see [34]). This is

equivalent to saying that the rank of the matrix

∂(Φ1, . . . ,Φm)

∂(q̇1, . . . , q̇n)

is m for any choice of coordinates (qA, q̇A) in TQ. Consequently, by the implicit
function theorem, we can locally express the constraints (reordering coordinates if
necessary) as

q̇α = Ψα(qA, q̇a),(2.1)

where 1 ≤ α ≤ m, m+1 ≤ a ≤ n, and 1 ≤ A ≤ n. Then, (qA, q̇a) are local coordinates
for the submanifold M of TQ.

We denote the set of twice differentiable curves connecting two points x, y ∈ Q as

C2(x, y) = {c : [0, 1] −→ Q | c is C2, c(0) = x and c(1) = y}.
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This set is a differentiable infinite-dimensional manifold [3].
Let c be a curve in C2(x, y). A variation of c is a curve cs in C2(x, y), that is

a differentiable mapping cs : (−ε, ε) → C2(x, y), s �→ cs(t), such that c0 = c. An
infinitesimal variation of c is the tangent vector of a variation of c, that is,

u(t) =
dcs(t)

ds

∣∣∣
s=0

∈ Tc(t)Q.

The tangent space of C2(x, y) at c is then given by

Tc C2(x, y) = {u : [0, 1] −→ TQ | u is C1, u(t) ∈ Tc(t)Q, u(0) = 0 and u(1) = 0}.

Now, we introduce a special subset C̃2(x, y) of C2(x, y) which consists of those
curves whose velocities belong to the constraint submanifold M :

C̃2(x, y) = {c ∈ C2(x, y) | ċ(t) ∈ Mc(t) = M ∩ τ−1
Q (c(t)) ∀t ∈ [0, 1]}.

Finally, let us consider the action functional J defined by

J : C2(x, y) −→ R, c �→ J (c) =

∫ 1

0

L(ċ(t)) dt.

Definition 2.1. The vakonomic problem associated with (Q,L,M, x, y) consists
of extremizing the functional J among the curves satisfying the constraints imposed
by M , c ∈ C̃2(x, y). Hence, a curve c ∈ C̃2(x, y) will be a solution of the vakonomic
problem if c is a critical point of J|C̃2(x,y).

Remark 2.2. In this paper, we will assume that the solution curves c ∈ C̃(x, y)
admit enough nontrivial variations in C̃(x, y). These solutions are called normal in
the literature, in contrast to the abnormal ones, which are pathological curves which
do not admit sufficient nontrivial variations [1]. Several investigators have shown the
existence of C1, stable under perturbations abnormal J -minimizing solutions [37, 45].

Now, we find a characterization for the solutions of the vakonomic problem.
Proposition 2.3. A curve c ∈ C̃2(x, y) is a normal solution of the vakonomic

problem if and only if there exists µ : [0, 1] → R
m such that




d

dt

(
∂L̃

∂q̇a

)
− ∂L̃

∂qa
= µα

[
d

dt

(
∂Ψα

∂q̇a

)
− ∂Ψα

∂qa

]
+ µ̇α

∂Ψα

∂q̇a
,

µ̇α =
∂L̃

∂qα
− µβ

∂Ψβ

∂qα
,

q̇α = Ψα(qA, q̇a),

(2.2)

where L̃ : M → R is the restriction of L to M .
Proof. The condition for a curve to be a solution of the vakonomic problem is

0 = dJ (c) · u =
d

ds
J (cs)

∣∣∣
s=0

,

for any variation cs in C̃2(x, y) of c, where u = dcs
ds |s=0. Then, we have that

0 =
d

ds
J (cs)

∣∣∣
s=0

=
d

ds

(∫ 1

0

L(ċs(t)) dt

) ∣∣∣
s=0

=

∫ 1

0

d

ds
L(ċs(t))

∣∣∣
s=0

dt.
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In local coordinates, we obtain

0 =

∫ 1

0

(
∂L

∂qA
uA +

∂L

∂q̇a
u̇a +

∂L

∂q̇α
∂Ψα

∂qA
uA +

∂L

∂q̇α
∂Ψα

∂q̇a
u̇a
)
dt

=

∫ 1

0

([
∂L

∂qA
+

∂L

∂q̇α
∂Ψα

∂qA

]
uA +

[
∂L

∂q̇a
+

∂L

∂q̇α
∂Ψα

∂q̇a

]
u̇a
)
dt(2.3)

=

∫ 1

0

(
∂L̃

∂qA
uA +

∂L̃

∂q̇a
u̇a

)
dt.

From (2.1) we know that the infinitesimal variations uA, 1 ≤ A ≤ n, are not arbitrary.
Consider the functions µα defined as the solutions of the following system of first order
differential equations

µ̇α =
∂L̃

∂qα

∣∣∣
c
− µβ

∂Ψβ

∂qα

∣∣∣
c
, 1 ≤ α ≤ m.

Then, using the fact that u̇α = ∂Ψα

∂qA
uA + ∂Ψα

∂q̇a u̇
a, we get

d

dt
(µαu

α) = µαu̇
α +

(
∂L̃

∂qα
− µβ

∂Ψβ

∂qα

)
uα = uα

∂L̃

∂qα
+ µα

∂Ψα

∂qa
ua + µα

∂Ψα

∂q̇a
u̇a,

or, equivalently, uα ∂L̃
∂qα = d

dt (µαu
α)− µα

∂Ψα

∂qa u
a − µα

∂Ψα

∂q̇a u̇
a. Substituting the last ex-

pression in (2.3) and integrating by parts, we obtain

dJ (c) · u =

∫ 1

0

([
∂L̃

∂qa
− µα

∂Ψα

∂qa

]
ua +

[
∂L̃

∂q̇a
− µα

∂Ψα

∂q̇a

]
u̇a

)
dt.

Now, since[
∂L̃

∂q̇a
− µα

∂Ψα

∂q̇a

]
u̇a =

d

dt

([
∂L̃

∂q̇a
− µα

∂Ψα

∂q̇a

]
ua

)
− d

dt

(
∂L̃

∂q̇a
− µα

∂Ψα

∂q̇a

)
ua,

using again integration by parts, we can write

0 =

∫ 1

0

[
∂L̃

∂qa
− µα

∂Ψα

∂qa
− d

dt

(
∂L̃

∂q̇a
− µα

∂Ψα

∂q̇a

)]
ua dt.

As the infinitesimal variations ua are arbitrary, the fundamental lemma of the calculus
of variations applies and we can assert that dJ (c) ·u = 0 if and only if c and µα satisfy
(2.2).

Remark 2.4. The usual way in which the equations of motion for vakonomic
mechanics are presented is the following:


d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
= λ̇α

∂Φα

∂q̇A
+ λα

[
d

dt

(
∂Φα

∂q̇A

)
− ∂Φα

∂qA

]
,

Φα(q, q̇) = 0, 1 ≤ α ≤ m,

(2.4)
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where Φα = Ψα − q̇α and λα = ∂L
∂q̇α − µα, 1 ≤ α ≤ m. Observe that, in contrast to

(2.2), (2.4) are expressed in terms of the ambient Lagrangian L : TQ → R. Equations
(2.2) stress how the information given by L outside M is irrelevant to obtain the
vakonomic equations, a fact that it is not promptly deduced from (2.4). This is in
contrast with what happens in nonholonomic mechanics (see section 5 below).

Equations (2.4) can be seen as the Euler–Lagrange equations for the extended
Lagrangian L = L + λαΦ

α. We will not follow this approach here, which has been
exploited successfully in [20, 28, 42, 43]. Finally, note that if we consider the extended
Lagrangian λ0L+λαΦ

α, with λ0 = 1 or 0, then we recover all the solutions, both the
normal and the abnormal ones [1].

3. Geometric approach to vakonomic mechanics. We will develop a geo-
metric characterization of vakonomic mechanics following an approach similar to the
formulation given by Skinner and Rusk [58] for singular Lagrangians (see also [15, 22,
38]). This characterization is specially interesting, for it enables us to study both lin-
ear and nonlinear constraints in an intrinsic way. Moreover, as we shall discuss later,
this formalism will allow to use ideas from geometric mechanics in the treatment of
optimal control problems.

Consider the Whitney sum of T ∗Q and TQ, T ∗Q⊕TQ, and its canonical projec-
tions pr1 : T ∗Q⊕TQ −→ T ∗Q, pr2 : T ∗Q⊕TQ −→ TQ. Let us take the submanifold
W0 = pr−1

2 (M), where M is the constraint submanifold, locally determined by the
constraint equations Φα = 0, 1 ≤ α ≤ m. We will denote W0 = T ∗Q ×Q M and
π1 = pr1|W0

, π2 = pr2|W0
. Now, define on T ∗Q ×Q M the presymplectic 2-form

ω = π∗
1ωQ, where ωQ is the canonical symplectic form on T ∗Q. Observe that the rank

of this presymplectic form is equal to 2n everywhere. Define also the function

HW0 = 〈π1, π2〉 − π∗
2L̃,

where 〈·, ·〉 denotes the natural pairing between vectors and covectors on Q.
If (qA) are local coordinates on a neighborhood U of Q, (qA, q̇a) coordinates

on TU ∩ M , and (qA, pA) the induced coordinates on T ∗U , then we have induced
coordinates (qA, pA, q̇

a) on T ∗U ×Q (TU ∩ M). Locally, the Hamiltonian function
HW0

reads as

HW0(q
A, pA, q̇

a) = paq̇
a + pαΨ

α − L̃(qA, q̇a),

and the 2-form ω is ω = dqA ∧ dpA.
Now, we will see how the dynamics of the vakonomic system (2.2) is determined

by the solutions of the equation

iXω = dHW0 .(3.1)

This then justifies the use of the following terminology.
Definition 3.1. The presymplectic Hamiltonian system (T ∗Q ×Q M,ω,HW0)

will be called vakonomic Hamiltonian system.
The system (T ∗Q ×Q M,ω,HW0) being presymplectic, we may apply Gotay

Nester’s constraint algorithm [21]. First we consider the set of points W1 of T ∗Q×QM
where (3.1) has a solution. This first constraint submanifold is determined by

W1 = {x ∈ T ∗Q×Q M | dHW0(x)(V ) = 0 ∀V ∈ kerω(x)}.
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Locally, kerω = span〈∂/∂q̇a〉. Therefore, the constraint submanifold W1 is locally
characterized by the vanishing of the constraints

ϕa = pa + pα
∂Ψα

∂q̇a
− ∂L̃

∂q̇a
= 0, m+ 1 ≤ a ≤ n,

or, equivalently,

pa =
∂L̃

∂q̇a
− pα

∂Ψα

∂q̇a
, m+ 1 ≤ a ≤ n.(3.2)

Expanding the expressions in (3.1) the equations of motion along W1 are

q̇A =
∂HW0

∂pA
, ṗA = −∂HW0

∂qA
,

which is equivalent to

q̇α = Ψα(qA, q̇a),(3.3)

ṗα =
∂L̃

∂qα
− pβ

∂Ψβ

∂qα
,(3.4)

d

dt

(
∂L̃

∂q̇a
− pα

∂Ψα

∂q̇a

)
=

∂L̃

∂qa
− pβ

∂Ψβ

∂qa
.(3.5)

Observe that these equations are precisely the vakonomic equations of motion (2.2),
where now pα = µα, 1 ≤ α ≤ m.

Remark 3.2. The momenta pα, 1 ≤ α ≤ m, play the role of the Lagrange
multipliers, but they do not have any physical meaning (see [61]).

Therefore, a vector field X solution of (3.1) will generally be of the form

X = q̇a

(
∂

∂qa
+

(
∂2L̃

∂qa∂q̇b
− pγ

∂2Ψγ

∂qa∂q̇b

)
∂

∂pb

)

+Ψα

(
∂

∂qα
+

(
∂2L̃

∂qα∂q̇b
− pγ

∂2Ψγ

∂qα∂q̇b

)
∂

∂pb

)

+ X̄a

(
∂

∂q̇a
+

(
∂2L̃

∂q̇a∂q̇b
− pγ

∂2Ψγ

∂q̇a∂q̇b

)
∂

∂pb

)

+

(
∂L̃

∂qα
− pβ

∂Ψβ

∂qα

)(
∂

∂pα
− ∂Ψα

∂q̇b
∂

∂pb

)
,

where the coefficients X̄a are still undetermined. The solution on W1 may not be
tangent toW1. In such a case, we have to restrictW1 to the submanifoldW2 where this
solution is tangent to W1. Proceeding further, we obtain a sequence of submanifolds
(we are assuming that all the subsets generated by the algorithm are submanifolds)

· · · ↪→ Wk ↪→ · · · ↪→ W2 ↪→ W1 ↪→ W0 = T ∗Q×Q M.

Algebraically, these constraint submanifolds may be described as

Wi = {x ∈ T ∗Q×Q M | dHW0(x)(v) = 0 ∀v ∈ TxW
⊥
i−1 }, i ≥ 1,(3.6)
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where TxW
⊥
i−1 = {v ∈ Tx(T

∗Q ×Q M) | ω(x)(u, v) = 0 ∀u ∈ TxWi−1 }. If this
constraint algorithm stabilizes, i.e., if there exists a positive integer k ∈ N such that
Wk+1 = Wk �= Wk−1 and dimWk �= 0, then we will have obtained a final constraint
submanifold Wf = Wk on which a vector field X exists such that

(iXω = dHW0)|Wf
.

Note that on Wf we will have an explicit solution of the vakonomic dynamics.
A very important particular case is when the final constraint submanifold is the first
one, i.e., Wf = W1. Observe that the dimension of W1 is even, dimW1 = 2n. In
what follows, we will investigate when this constraint submanifold is equipped with
a symplectic 2-form in order to determine a unique solution X of the vakonomic
equations. Obviously, this geometrical study is related to the explicit or implicit
character of the second order differential equations obtained in (2.2).

Denote by ωW1 the restriction of the presymplectic 2-form ω to W1.
Proposition 3.3. (W1, ωW1) is a symplectic manifold if and only if for any point

of W1,

det

(
∂2L̃

∂q̇a∂q̇b
− pα

∂2Ψα

∂q̇a∂q̇b

)
�= 0.(3.7)

Proof. ωW1
is symplectic if and only if TxW1 ∩ (TxW1)

⊥ = 0 for all x ∈ W1. This
condition is satisfied if and only if the matrix dϕa(

∂
∂q̇b

) is regular, that is,

det

(
∂2L̃

∂q̇a∂q̇b
− pα

∂2Ψα

∂q̇a∂q̇b

)
�= 0

for all x ∈ W1.
In this case, (3.5) can be rewritten in explicit form as

q̈a = −C̄ab
[
q̇A

∂2L̃

∂qA∂q̇b
− q̇Apα

∂2Ψα

∂qA∂q̇b
− ∂L̃

∂qb
+ pα

∂Ψα

∂qb
−
(
∂L̃

∂qγ
− pβ

∂Ψβ

∂qγ

)
∂Ψγ

∂q̇b

]
,

(3.8)

where

C̄ab =
∂2L̃

∂q̇a∂q̇b
− pα

∂2Ψα

∂q̇a∂q̇b
,(3.9)

and (C̄ab) denotes the inverse matrix of (C̄ab).
Remark 3.4. The characterization found in Proposition 3.3 for the symplectic

nature of the manifold (W1, ωW1) implies, by the implicit function theorem, that the
constraint equations

ϕa = pa + pα
∂Ψα

∂q̇a
− ∂L̃

∂q̇a
= 0, m+ 1 ≤ a ≤ n,

locally determine the variables q̇a, m+ 1 ≤ a ≤ n. That is, we have q̇a = ςa(qA, pA),
m+ 1 ≤ a ≤ n. Therefore, we can also consider local coordinates (qA, pA) on W1. In
such a case, the symplectic form and the restriction of the Hamiltonian HW0 to W1

have the following local expressions:

ωW1 = dqA ∧ dpA, HW1 = paς
a + pαΨ

α − L̄(qA, pA),
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where L̄(qA, pA) = L̃(qA, ςa(qA, pA)). Consequently, (3.3)–(3.5) can be rewritten in
Hamiltonian form as

q̇A =
∂HW1

∂pA
, ṗA = −∂HW1

∂qA
.

This choice of coordinates is common in optimal control theory.
Now, observe that, if the constraints are linear in the velocities, we can write

q̇α = Ψα
a (q)q̇

a. Then, from Proposition 3.3, ωW1 is symplectic if and only if

det

(
∂2L̃

∂q̇a∂q̇b

)
�= 0.

Proposition 3.5. Suppose that the constraints are given by q̇α = Ψα
a (q)q̇

a,
1 ≤ α ≤ m, and the Lagrangian L is regular. Denote by (WAB) the inverse matrix
of the Hessian matrix of L. In this case, ωW1 is symplectic on W1 if and only if the
constraints are compatible, that is, the matrix whose entries are

Cαβ = W abΨα
aΨ

β
b −WαbΨβ

b −W aβΨα
a +Wαβ

is nonsingular.
Proof. See the geometrical proof of Theorem IV.3 in reference [33].
Remark 3.6. The compatibility condition guarantees the existence and uniqueness

of the solutions for the nonholonomic problem with Lagrangian L and constraint
submanifold M [33, 57].

Before ending this section, we would like to make some remarks concerning this
geometric approach to vakonomic dynamics. First of all, we must say that it provides
an intrinsic formulation of variational problems subject to both linear and nonlinear
constraints on manifolds. In addition, this formulation belongs to the context of
Symplectic Geometry and Geometric Mechanics, following previous work by Bloch
and Crouch [4, 8, 9], Jurdjevic [23, 24], and others. There is a whole collection of
ideas and methods ensuing from these fields that have been used in the treatment of
optimal control problems. Apart from being of use as a tool for an algorithmic study
of the existence of optimal solutions and their domains of definition, we think that this
formulation has something to contribute in at least three directions: the study of the
symmetry properties of constrained problems [8, 18, 24, 43] (infinitesimal, Noether and
Cartan symmetries, dynamical symmetries, . . . ), the study of higher order variational
problems [6] (since a generalization of our approach to the higher order case seems to
be straightforward), and the development of numerical integrators [19, 55, 65, 66, 67]
that take into account the geometry of the problem (2-form, Hamiltonian, momentum)
and are competitive with the traditional methods.

An immediate outcome of the formulation on T ∗Q ×Q M is that for the study
of problems subject to nonlinear constraints we can use similar techniques to those
used for the linear case. Finally, this framework will allow us in section 6 to compare
vakonomic dynamics with nonholonomic dynamics within a common setting.

In the following, we aim to illustrate some of the above ideas on two examples.

3.1. Applications in economy. The variational calculus is an indispensable
tool in many economic problems [25, 39, 52]. In fact, a typical optimization problem
in modern economics deals with extremizing the functional∫ T

0

D(t)U [f(t, k, k̇)] dt
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subject or not to constraints. Here, D(t) is a discount rate factor, U a utility func-
tion, f a consumption function, and k the capital-labor ratio. It is common to find
dynamical economic models with nonholonomic constraints.

Example 3.7 (closed von Neumann system [53, 54, 56]). Consider the transfor-
mation function F on R

2n which relates n capital goods K1,K2, . . . ,Kn and the net
capital formations K̇1, K̇2, . . . , K̇n as

F (K1, . . . ,Kn, K̇1, . . . , K̇n) = Kα1
1 Kα2

2 · · ·Kαn
n −

[
K̇2

1 + · · ·+ K̇2
n

]1/2
,

with α1 + α2 + · · ·+ αn = 1. The von Neumann problem consists of maximizing∫ T

0

K̇n dt subject to F (K1, . . . ,Kn, K̇1, . . . , K̇n) = 0,

with appropriate initial conditions.
Our formalism makes it possible to write this problem as a presymplectic system

on W0 = R
3n−1. The constraint F = 0 can be rewritten as

K̇1 = ±
(
K2α1

1 · · ·K2αn
n −

n∑
i=2

K̇2
i

)1/2

= ±Ψ(K1, . . . ,Kn, K̇2, . . . , K̇n).

Here, we restrict the analysis to the component K̇1 = Ψ. Taking coordinates (K1, . . . ,
Kn, K̇2, . . . , K̇n, P

1, . . . , Pn) we have that

ω =
n∑
j=1

dKj ∧ dP j , HW0 =

n∑
i=2

P iK̇i + P 1 ·
(
K2α1

1 K2α2
2 · · ·K2αn

n −
n∑
i=2

K̇2
i

)1/2

− K̇n.

Applying the Gotay and Nester algorithm, new constraints arise,

P i = P 1K̇i

(
K2α1

1 K2α2
2 · · ·K2αn

n −
n∑
i=2

K̇2
i

)−1/2

, 2 ≤ i ≤ n− 1,

Pn = 1 + P 1K̇n

(
K2α1

1 K2α2
2 · · ·K2αn

n −
n∑
i=2

K̇2
i

)−1/2

.

Therefore, from (3.3)–(3.5) the initial system is determined by solving the following
n differential equations on the variables (K1, . . . ,Kn, K̇2, . . . , K̇n, P

1):




Ṗ 1 = −P 1α1

(
K2α1−1

1 K2α2
2 · · ·K2αn

n

)
G

0 = Ṗ 1K̇iG

+P 1

[(
K̈i + αi

(
K2α1

1 · · ·K2αi−1
i · · ·K2αn

n

))
G+ K̇i

d

dt
(G)

]
, 2 ≤ i ≤ n,

(3.10)

where G = 1/Ψ. The presymplectic context for these optimal equations provides us
with some new insights into the problem. On the one hand, the existence of well-
defined solutions to (3.10) is not guaranteed in general. It can occur, for instance,
that an optimal curve starting from a point in W1 “escapes” from this phase space
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after some time because the dynamical vector field is no longer tangent to W1. But
one can indeed eliminate this possibility. Consider the case n = 2 for simplicity.
Assume Ψ �= 0. Otherwise the dynamics is fully determined and the optimization
problem is trivial (we have abnormal solutions). The determinant (3.7) is equal to

P 1

Ψ3
(Ψ2 + K̇2

2 ) =
HW1

Ψ2
.(3.11)

Therefore, if the optimal curve starts from any point in x ∈ W1 such that HW1(x) �= 0,
(3.11) guarantees that the dynamics of the vakonomic problem remains tangent to
W1. On the other hand, the optimal solutions with HW1 = 0 are stationary curves,
K1 = const, K2 = const, and K1K2 = 0.

This formulation can also shed light on the aspect of symmetries and conserva-
tion laws. It is known [53, 54, 56] that the closed von Neumann system possesses,
besides the Hamiltonian H, another conservation law, which is usually found by ad
hoc methods. However, it is not difficult to define in our context the notion of Noether
symmetry and verify that the vector field

Y =

n∑
j=1

Ki
∂

∂Ki
∈ X(Q)

indeed corresponds to such a symmetry. The associated conservation law is precisely
given by Φ = P 1(K1Ψ +

∑n
j=2 KjK̇j)/Ψ. In the same way, one can explore the

presence of other types of symmetries, like Cartan symmetries, for example, [32, 34,
48].

Finally, obtaining explicit solutions of (3.10) is, in general, a very difficult task.
The use of numerical integrators can help in analyzing the behavior of the system. In
the last years there has been an increasing activity in the development of integrators
that take into account the geometric structures associated with the problem [19, 55,
65, 66, 67]. The proposed formalism offers the possibility of designing such methods
for a variety of optimal control problems.

3.2. LC-circuits. The dynamics of nonlinear LC electric circuits [44] can be
given a variational interpretation, as discussed in [46]. Here, we treat this class of
systems under our vakonomic formalism and study the well-posedness of the optimal
equations.

Consider a circuit consisting of capacitors and inductors, which are charge and
current controlled. Let C be the collection of n-capacitor branches and L the m-
inductor branches. Denote by q ∈ QC the vector of capacitor charges and by i ∈ QL
the inductor currents. Kirchhoff’s current and voltage laws require that q̇ = ACu,
i = ALu, where AC and AL are appropriate linear maps from a vector space U to
QC and QL characterizing, respectively, the topology of the network and the chosen
current reference directions. The new variables u ∈ U are usually thought of as
a vector of some independent loop currents. The generality of the interconnection
structure of the circuit relies on how general the matrices AC , AL can be. In the
following, we will assume that AL is nonsingular and then the space U will be identified
with QL through AL. Finally, denote by We : QC → R the electric energy and by
W ∗

m : QL → R the magnetic coenergy of the circuit.
The dynamics of the circuit is governed by the element equations, the equations

arising from Kirchhoff’s current law, and those arising from Kirchhoff’s voltage law.
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After some manipulations, these equations may be reduced to

q̇ = ACu, A∗
L
d

dt
(dW ∗

m(ALu)) = −A∗
CdWe(q),(3.12)

where the star superscript denotes the transpose of the corresponding matrix operator.
However, the well-posedness of this mathematical model for the electric circuit is not
guaranteed in general. It could be, for instance, that some specifications of initial
conditions (q(0), u(0)) turn out to be incompatible with the algebraic constraints
embedded in (3.12).

The theoretical setting described above can bring some new insight into this
question. Consider as configuration space the product manifold Q = QC × QL with
coordinates (qα, ua). Let L : TQ → R, L = W ∗

m(ALu) −We(q), be the Lagrangian
and define M ⊆ TQ by q̇α = (AC)αb u

b as the submanifold of constraints. Then, the
dynamics of the LC-circuit is found to be defined on the tertiary constraint subman-
ifold of the presymplectic Hamiltonian system (T ∗Q ×Q M,ω,H). This means that
all initial conditions in W3 are compatible in the sense of the previous paragraph.

Let (qα, ua, ξα, ζa, u̇
a) be the local coordinates in W0 = T ∗Q×Q M . Then,

ω = dqα ∧ dξα + dua ∧ dζa, H = ζau̇
a + ξαA

α
Cbu

b −W ∗
m(ALu) +We(q).

The first submanifold of constraints is given by W1 = {x ∈ W0 | dHx(
∂
∂u̇a ) = ζa = 0 }.

After some computations, we find that

TW1 ∩ TW⊥
1 = span

{
∂

∂ua
,
∂

∂u̇a

}
,

and hence we must continue with the constraint algorithm. Following (3.6), we have
that W2 is described by the new constraints

∂H

∂ua
= [A∗

Cξ −A∗
LdW

∗
m(ALu)]a = 0.(3.13)

Under the additional assumption of invertibility of dW ∗
m, or, equivalently, under the

assumption that the LC-circuit is also flux controlled, we can ensure that there exists
a magnetic energy Wm such that dW ∗

m(ALu) = φ ⇐⇒ ALu = dWm(φ). Then, we
can rewrite (3.13) as

u = A−1
L dWm((A−1

L )∗A∗
Cξ) ≡ F (ξ)

and consider (qα, ξα, u̇
a) as a set of coordinates on W2. The following step of the

algorithm leads us to the constraints

∂H

∂ζa
+
∂F a

∂ξα

∂H

∂qα
= u̇a +

∂F a

∂ξα
dWe(q) = 0.

In this way, we have (qα, ξα) as coordinates on W3, which turns out to be the final
constraint submanifold. The dynamics of the system is described on W3 by the
differential equations

q̇α = ACF (ξ), ξ̇α = −dWe(q).(3.14)

Thus, the application of the algorithm allows us to say that, under the given assump-
tions, the initial conditions in W3 provide us with consistent optimal solutions of the
dynamics of the LC-circuit.
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There are, of course, other optimal control problems that can be interpreted
in a vakonomic setting and for which this formulation can be of some help. We
mention here the optimal control for nonholonomic systems with symmetry, with
interesting applications to the locomotion of kinematic and mixed kinematic and
dynamic systems [18, 28, 49] or sub-Riemannian geometry [11].

4. Comparison of the Vershik–Gershkovich and the vakonomic Hamil-
tonian approaches. In the preceding section we have found an intrinsic geometric
approach to vakonomic dynamics. It is possible to give an alternative geometric for-
mulation of the vakonomic equations of motion, related to the one of Vershik and
Gershkovich [64]. A key element to obtain this alternative description will be the
next fibered morphism

F : T ∗Q⊕ TQ −→ T ∗Q⊕ TQ,
(α, v) �−→ (α− LegL(v), v),

for any α ∈ T ∗
xQ, v ∈ TxQ, and x ∈ Q. Here, LegL : TQ → T ∗Q denotes the Legen-

dre transformation associated with the Lagrangian L, which in local coordinates reads
LegL(q

A, q̇A) = (qA, ∂L
∂q̇A

). It is clear that F (T ∗Q×Q M) = T ∗Q×Q M . We will see
how in the case of linear constraints, we “recover” the Vershik–Gershkovich formula-
tion. As a by-product, we will have obtained a generalization of their formulation to
the case of nonlinear constraints.

Consider on T ∗Q⊕ TQ the presymplectic 2-form Ω = pr∗1ωQ. Let ωL = −dS∗dL
be the Poincaré–Cartan 2-form on TQ associated with L : TQ → R and EL its energy
function. Take also the presymplectic 2-form pr∗2ωL on T ∗Q ⊕ TQ, and define the
functions

H = 〈pr1, pr2〉 − pr∗2L, H̄ = 〈pr1, pr2〉 − pr∗2EL.

Lemma 4.1. The morphism F : T ∗Q⊕ TQ → T ∗Q⊕ TQ is a presymplectomor-
phism from (T ∗Q⊕ TQ,Ω) onto (T ∗Q⊕ TQ,Ω + pr∗2ωL), i.e., F

∗(Ω + pr∗2ωL) = Ω.
Moreover, it verifies F ∗H̄ = H.

Proof. F is clearly invertible with inverse

F−1 : T ∗Q⊕ TQ −→ T ∗Q⊕ TQ,
(α, v) �−→ (α+ Leg(v), v).

A direct computation shows that H ◦ F−1 = H̄. Moreover, in local coordinates,

(F−1)∗(dqA ∧ dpA) = dqA ∧
[
dpA + d

(
∂L

∂q̇A

)]
= dqA ∧ dpA + dqA ∧ d

(
∂L

∂q̇A

)
,

which implies F ∗(Ω + pr∗2ωL) = Ω.
Denote by j : T ∗Q×QM ↪→ T ∗Q⊕TQ and i : M ↪→ TQ the respective canonical

inclusions. Let us define ω̄ = j∗(Ω + pr∗2ωL). Since pr2 ◦ j = i ◦ π2, we have that

ω̄ = ω + (i ◦ π2)
∗ωL.

Proposition 4.2. The solutions of the equations

iXω = dHW0
(4.1)

and

iY ω̄ = d(j∗H̄)(4.2)
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are F|W0
-related; that is, if x ∈ T ∗Q×QM is a point where a solution Y of (4.2) exists,

then TF−1(Y ) is a solution of (4.1) at F−1(x) and, conversely, if X is a solution of
(4.1) at F−1(x), then TF (X) is a solution of (4.2) at x.

Proof. The proof readily follows from Lemma 4.1.
An immediate consequence is the following corollary.
Corollary 4.3. F preserves the constraint submanifolds provided by the presym-

plectic systems (T ∗Q×Q M,ω,HW0
) and (T ∗Q×Q M, ω̄, j∗H̄). That is, if

· · · ↪→ Wk · · · ↪→ W1 ↪→ W0 = T ∗Q×Q M and

· · · ↪→ Pk · · · ↪→ P1 ↪→ P0 = T ∗Q×Q M

are the sequences of submanifolds generated by Gotay and Nester’s algorithm for the
first and the second presymplectic Hamiltonian system, respectively, then Fi = F|Wi

:
Wi −→ Pi, are diffeomorphisms for all i.

In conclusion, Proposition 4.2 and Corollary 4.3 show that solving the vakonomic
Hamiltonian equations (4.1) as in section 3 is equivalent to solving (4.2). Locally, if
(qA(t), pA(t), q̇a(t)) is an integral curve of X, then(

qA(t), pA − i∗
∂L

∂q̇A
(qB(t), q̇b(t)), q̇a(t)

)

is an integral curve of Y .

4.1. Vershik–Gershkovich approach. In [64], Vershik and Gershkovich gave
a formulation for the “nonholonomic variational problem,” i.e., the vakonomic prob-
lem, within the framework of the so-called mixed bundle picture, which we briefly
review in the following (see also [7]).

If D : Q −→ TQ is a differentiable distribution along Q, then the mixed bun-
dle over Q associated with D is given by D ⊕ Do, where Do is the codistribution
annihilating D; the fibers of D ⊕Do −→ Q are Dq ⊕Do

q .

Let {Φα(qA, q̇A) = Ψα
a (q)q̇

a − q̇α, 1 ≤ α ≤ m } be a set of independent functions
whose annihilation defines the distributionD, and let { ηα = Ψα

adq
a−dqα, 1 ≤ α ≤ m }

be the corresponding basis of Do. Regarding D ⊂ TQ as the set of admissible veloci-
ties, Vershik and Gershkovich write the equations of motion (2.4) for the vakonomic
problem (L,D) as follows:



(
d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA

)
dqA = λ̇αη

α + λα(iq̇dη
α),

〈q̇, ηα〉 = 0, 1 ≤ α ≤ m.

(4.3)

In this particular case, we obtain that P1, the first constraint submanifold for the
presymplectic Hamiltonian system (T ∗Q×QM, ω̄, j∗H̄), is just Do ⊕D, since we get
λa + λαΨ

α
a = 0, 1 ≤ α ≤ m.

If (P1 = Do ⊕ D, ωP1) is a symplectic manifold (see Proposition 3.5), then the
equations of motion (4.3) determine a unique vector field on Do⊕D and the Lagrange
multipliers λα are coordinates in Do with respect to the basis ηα.

Consequently, the geometrical picture we have developed in section 3 is equivalent
to the Vershik–Gershkovich approach. As said above, we have obtained a generaliza-
tion of the Vershik–Gershkovich formulation to the case of nonlinear constraints, just
“translating” things from our approach by the diffeomorphism F .
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In the nonlinear case, under the admissibility condition, one can verify that
the first constraint submanifold P1 = F (W1) can be identified with the manifold
S∗(TMo)×Q M . In fact, we have that S∗(TMo) is generated by the 1-forms

S∗dΦα = dqα − ∂Ψα

∂q̇a
dqa, 1 ≤ α ≤ m.

If (qA, λA, q̇
a) ∈ P1, then the 1-form λAdq

A is a linear combination of the 1-forms
S∗dΦα in the following manner: λAdq

A = λαS
∗dΦα.

5. Geometric approach to nonholonomic mechanics. A nonholonomic La-
grangian system consists of a Lagrangian L : TQ → R subject to nonholonomic
constraints defined by m local functions Φα(qA, q̇A), 1 ≤ α ≤ m. The equations
of motion for nonholonomic mechanics are derived assuming that the constraints
satisfy d’Alembert’s principle, in the linear or affine case. In the nonlinear case,
there does not seem to exist a general consensus concerning the correct principle to
adopt [41, 51]. The most widely used model is based on Chetaev’s principle, which
will also be adopted in the present paper. The equations of motion are then given by

d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
= λα

∂Φα

∂q̇A
,(5.1)

together with the algebraic equations Φα(qA, q̇A) = 0. The functions λα, 1 ≤ α ≤
m, are some Lagrange multipliers to be determined. As in the vakonomic case, we
assume the admissibility condition, so it is possible to write the constraints as q̇α =
Ψα(qA, q̇a), where 1 ≤ α ≤ m, m+ 1 ≤ a ≤ n, and 1 ≤ A ≤ n.

The study of nonholonomic systems in the realm of geometric mechanics started
with the work by Vershik and Faddeev [62, 63] and has been an active area of re-
search since then, with many contributions from different authors (see [16] for a re-
cent survey). In particular, the role of symmetry has been treated extensively in the
literature, starting with the work by Koiller [27] and going through the use of the
Hamiltonian formalism [2], Lagrangian reduction [10], the geometry of the tangent
bundle [12, 13, 17, 33], or Poisson methods [40], among others.

Nonholonomic mechanics also admits a nice geometrical description on the space
T ∗Q ⊕ TQ inspired on the Skinner and Rusk formalism [58]. In addition, this novel
description will be appropriate to compare the solutions of the dynamics between the
vakonomic and nonholonomic mechanics. In the following, we will prove that (5.1)
can be intrinsically written as{

(iXΩ − dH)|T∗Q×QM
∈ F o,

X|T∗Q×QM ∈ T (T ∗Q×Q M),
(5.2)

where Ω is the presymplectic 2-form Ω = pr∗1ωQ on T ∗Q ⊕ TQ, H the Hamiltonian
function H = 〈pr1, pr2〉−pr∗2L, and F o the subbundle of T ∗(T ∗Q⊕TQ) along T ∗Q×Q

M defined by F o = pr∗2(S
∗(TMo)), representing the constraint forces.

Indeed, we have in local coordinates

Ω = dqA ∧ dpA, dH = q̇AdpA + pAdq̇
A − ∂L

∂qA
dqA − ∂L

∂q̇A
dq̇A,

and F o is generated by the 1-forms

∂Φα

∂q̇A
dqA =

∂Ψα

∂q̇a
dqa − dqα, 1 ≤ α ≤ m.
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If X = XA ∂
∂qA

+ Y A ∂
∂q̇A

+ ZA
∂

∂pA
was a solution of (5.2), then

XA = q̇A, ZA =
∂L

∂qA
+ λα

∂Φα

∂q̇A
,(5.3)

along with the constraints

pA − ∂L

∂q̇A
= 0, Φα(qA, q̇A) = 0.(5.4)

Observe that these constraints determine a submanifold M̃ of T ∗Q ×Q M . The

submanifold M̃ is diffeomorphic to M since

M −→ M̃,
m �−→ (LegL(m),m)

is a diffeomorphism. M̃ is the first constraint submanifold provided by the constraint
algorithm applied to (5.2). This algorithm will lead to a final constraint submani-
fold on which there exists a well-defined dynamics. Obviously, (5.3) and (5.4) are
equivalent to the nonholonomic equations of motion (5.1).

In terms of the Ψα’s the above equations can be written as

XA = q̇A, Za =
∂L

∂qa
+ λα

∂Ψα

∂q̇a
, Zβ =

∂L

∂qβ
− λβ ,

together with the constraints

pA − ∂L

∂q̇A
= 0, q̇α −Ψα(qA, q̇a) = 0.(5.5)

Therefore, a solution X of (5.2) is of the form

X = q̇a
(

∂

∂qa
+
∂Ψα

∂qa
∂

∂q̇α
+

(
∂2L

∂q̇A∂qa
+
∂Ψα

∂qa
∂2L

∂q̇A∂q̇α

)
∂

∂pA

)

+Ψγ

(
∂

∂qγ
+
∂Ψα

∂qγ
∂

∂q̇α
+

(
∂2L

∂q̇A∂qγ
+
∂Ψα

∂qγ
∂2L

∂q̇A∂q̇α

)
∂

∂pA

)

+Y a

(
∂

∂q̇a
+
∂Ψα

∂q̇a
∂

∂q̇α
+

(
∂2L

∂q̇A∂q̇a
+
∂Ψα

∂q̇a
∂2L

∂q̇A∂q̇α

)
∂

∂pA

)
.

Under the regularity assumption, which here means that the matrix

C̃ab =
∂2L̃

∂q̇a∂q̇b
− i∗

(
∂L

∂q̇α

)
∂2Ψα

∂q̇a∂q̇b
(5.6)

is invertible (see [57]), there is a unique solution of the dynamics on M̃ . In particular,
after some computations we obtain

Y a = −C̃ab
[
q̇A

∂2L̃

∂qA∂q̇b
− q̇Ai∗

(
∂L

∂q̇α

)
∂2Ψα

∂qA∂q̇b
− ∂L̃

∂qb
+ i∗

(
∂L

∂qα

)(
∂Ψα

∂qb
− ∂Ψα

∂q̇b

)]
,

where i : M → TQ is the canonical inclusion and (C̃ab) the inverse matrix of (C̃ab).
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Taking coordinates (qA, q̇a) on M̃ , the equations of motion for a nonholonomic
system will be




q̇α = Ψα(qA, q̇a),

q̈a =−Cab
[
q̇A

∂2L̃

∂qA∂q̇b
− q̇Ai∗

(
∂L

∂q̇α

)
∂2Ψα

∂qA∂q̇b
− ∂L̃

∂qb
+ i∗

(
∂L

∂qα

)(
∂Ψα

∂qb
− ∂Ψα

∂q̇b

)]
.

(5.7)

6. Vakonomic and nonholonomic mechanics: Equivalence of dynamics.
In this section, we shall investigate the relation between vakonomic and nonholonomic
dynamics. Consider a physical system with Lagrangian L : TQ → R and constraint
submanifold M ⊂ TQ. Let us assume that the vakonomic problem lives on the first
constraint submanifold, W1, and that the nonholonomic one lives on M̃ (this will be
the case if the constraints are linear and the admissibility and compatibility conditions
are satisfied). As a consequence, we have well-defined vector fields Xvk on W1 and
Xnh on M̃ . It is clear that the mapping (π2)|W1

: W1 → M is a surjective submersion

and that we can define the mapping Υ : W1 → M̃ as

Υ : W1 −→ M̃,
(α, v) �−→ (LegL(v), v).

In coordinates, Υ reads as Υ(qA, q̇a, pα) = (qA, q̇a).
Our aim is to know whether, given a solution of the nonholonomic problem, we

can find initial conditions in the vakonomic Lagrange multipliers, pα, so that the
curve can also be seen as a solution of the vakonomic problem. In order to capture
the common solutions to both systems, we have developed the following algorithm. It
is inspired on the idea of the Υ-relation of Xvk and Xnh and the constraint algorithm
developed by Krupková [30]. If both fields were Υ-related, then the projection to M̃ of
all the vakonomic solutions would be nonholonomic. So, selecting those points where
both vector fields are related, we are picking up all the possible good candidates. We
write W1 = S0 and define

S1 = {w ∈ S0 | TwΥ(Xvk(w)) = Xnh(Υ(w))}.

In general, S1 is not a submanifold. If S1 = ∅, there is no relation between the
vakonomic and nonholonomic dynamics. If S1 �= ∅, we apply the following algorithm:

• Step 1: For any w ∈ S1, consider C(w) = ∪iC(w)i, the union of all con-
nected submanifolds C(w)i of maximal dimension lying in S1, contained in a
neighborhood U of w, and passing through w. (Maximal dimension means
that if N is a connected submanifold lying in S1 ∩ U passing through w and
C(w)i ⊆ N , then C(w)i = N .)
Suppose that C(w) �= {w}. For each i we consider the subset of C(w)i,

C̃(w)i = {v ∈ C(w)i | Xvk(v) ∈ TvC(w)i}.

If C̃(w)i = C(w)i then we call the submanifold C(w)i a final constraint sub-

manifold at w. If C̃(w)i = ∅, we exclude C(w)i from the collection C(w). If

∅ � C̃(w)i � C(w)i, then we proceed to the next step.

• Step 2: Repeat the Step 1 with C̃(w)i instead of S1.
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After a sufficient number of steps in this algorithm either we obtain a collection
of final constraint submanifolds at w or we find that there is no final constraint
submanifold passing through w. Collecting all the points where there exist such
final constraint submanifolds, we obtain the subset of W1 where there is equivalence
between vakonomic and nonholonomic dynamics.

Suppose that the constraints Φα, 1 ≤ α ≤ m, are linear in the velocities so we
can write them as q̇α = Ψα

a (q)q̇
a. In such a case, the matrices C and C̃ defined in (3.9)

and (5.6), respectively, are the same (even for constraints affine in the velocities).
Proposition 6.1. S1 is locally characterized by the vanishing of the n − m

constraints functions on W1:

gb = q̇a
(
pα − i∗

∂L

∂q̇α

)[
∂Ψα

b

∂qa
− ∂Ψα

a

∂qb
+ Ψβ

a

∂Ψα
b

∂qβ
−Ψβ

b

∂Ψα
a

∂qβ

]
, m+ 1 ≤ b ≤ n.

(6.1)

Proof. The comparison between the vector fields Xvk and Xnh consists of taking
the difference between q̈a’s in the expressions (3.8) and (5.7) and equating the result
to zero.

Consider the local projection ρ(qa, qα) = (qα) and the connection Γ on ρ such
that the horizontal distribution H is given by prescribing its annihilator to be Ho =
〈dqα−Ψα

adq
a, 1 ≤ α ≤ m〉. Then the curvature R of this connection (see [34]) is given

by R( ∂
∂qa ,

∂
∂qb

) = Rα
ab

∂
∂qα , where

Rα
ab =

∂Ψα
b

∂qa
− ∂Ψα

a

∂qb
+ Ψβ

a

∂Ψα
b

∂qβ
−Ψβ

b

∂Ψα
a

∂qβ
.

We say that Γ is flat if the curvature R vanishes identically. The tensor R measures
the lack of integrability of the horizontal distribution H, which in our case is the
constraint manifold. Then, we can write the constraints determining S1 as

gb = q̇a
(
pα − i∗

∂L

∂q̇α

)
Rα
ab, m+ 1 ≤ b ≤ n.

From this expression we deduce that if the constraints are holonomic, then R = 0
and the final constraint submanifold is equal to S0 = W1. Therefore, every solution
of the nonholonomic problem is also a vakonomic solution. Indeed, (3.3)–(3.5) will
read as 



q̇α = Ψα
a q̇

a,

ṗα =
∂L̃

∂qα
− pβ

∂Ψβ
a

∂qα
q̇a,

d

dt

(
∂L̃

∂q̇a

)
− ∂L̃

∂qa
= Ψα

a

∂L̃

∂qa
.

(6.2)

The first and the third set of equations determine the trajectory in M . The Lagrange
multipliers pα are determined by the second set of equations once we know the solution
in M . This is the typical behavior of the holonomic case [1, 36]. But, in general, for
linear constraints, the first constraint subset in the algorithm is determined by

S1 = {gb = 0, m+ 1 ≤ b ≤ n},
where gb(q

A, q̇a, pα) = q̇aRα
ab(q)(pα − ∂L

∂q̇α ). Note that S1 will not be a submanifold,
because 0 is not a regular value of the functions gb, b = m + 1, . . . , n. Anyway, the
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geometric context we have developed can be very useful to tackle the problem of the
comparison of the two methods.

Proposition 6.2. If c(t) = (qA(t)) is a solution of the unconstrained problem
which, in addition, verifies all the constraints, i.e.,

q̇α(t) = Ψα
a (q(t))q̇

a(t), 1 ≤ α ≤ m,

then c(t) is a solution of the nonholonomic and vakonomic problems simultaneously.
Proof. Let us consider the submanifold S := {pα = i∗( ∂L∂q̇α )}, which is contained

in S1. A natural question is whether the vakonomic vector field will be tangent to
S, that is, Xvk ∈ TS. From (3.3)–(3.5), we have along any integral curve of the
vakonomic vector field

Xvk ∈ TS ⇐⇒ d

dt

(
pα − i∗

∂L

∂q̇α

)
= 0 ⇐⇒ ṗα = q̇A

∂2L

∂qA∂q̇α
+ q̈a

∂2L

∂q̇a∂q̇α
.

On S, we have that

ṗα =
∂L̃

∂qα
− pβ

∂Ψβ

∂qα
=

∂L̃

∂qα
− ∂L

∂q̇β
∂Ψβ

∂qα
=

∂L

∂qα
.

Then the above condition can be rewritten as

∂L

∂qα
=

d

dt

(
∂L

∂q̇α

)
,

that with (3.5) are precisely the Euler–Lagrange equations. Then, we have proved
that a solution c(t) of the unconstrained problem satisfies the constraints if and only
if (

qA(t), i∗
(
∂L

∂q̇α

)
, q̇a(t)

)

is a solution of the vakonomic equations (3.3). Since the constraints gb = 0 are
automatically satisfied for all the points in S we deduce that c(t) is also a solution of
the nonholonomic problem.

Remark 6.3. As a consequence of Proposition 6.2 we obtain that if g is a Rieman-
nian metric on Q, with kinetic energy L = 1

2g, and if we assume that we are given a
distribution D on Q which is geodesically invariant with respect to the Levi–Civita
connection ∇g, then all the nonholonomic solutions can be seen as vakonomic ones.
In fact, they all are solutions of the free problem. This last result was first stated
in [20, Theorem 3.2] with additional hypothesis on the nature of the metric g and the
integrability of D⊥g , which are not essential, as we have seen.

Remark 6.4. Let Θ : G × Q −→ Q be a free and proper action on Q. Then
π : Q −→ Q/G is a principal G-bundle. Assume that the Lagrangian L : TQ −→ R

is G-invariant and is subject to equivariant affine constraints, M , such that its linear
part D is the horizontal distribution of a principal connection γ on π : Q −→ Q/G.
Then, we have the following result, which is an adaptation of Theorem 3.1 in [20] to
our geometric description of vakonomic and nonholonomic mechanics.

Proposition 6.5. Assume that the admissibility and compatibility conditions
hold. Then, the following are equivalent:

1. The solution of the nonholonomic problem (qA(t), q̇a(t)) ∈ M̃ verifies the
condition gb(q

A(t), q̇a(t), p0) = 0 for some p0, m+ 1 ≤ b ≤ n.



1408 J. CORTÉS, M. DE LEÓN, D. MART́iN DE DIEGO, S. MART́iNEZ

2. The curve (qA(t), q̇a(t), p0) ∈ W1 is a vakonomic solution.
Example 6.6 (rolling penny [4]). Consider a vertical penny constrained to roll

without slipping on a horizontal plane. Let (x, y) denote the position of contact of
the disk in the plane, θ the orientation of a chosen material point P with respect to
the vertical, and φ the heading angle of the penny. The configuration space is then
Q = R

2 × S
1 × S

1. The Lagrangian may be written as L = (ẋ2 + ẏ2 + θ̇2 + φ̇2)/2 and
the constraints are given by ẋ = θ̇ cosφ, ẏ = θ̇ sinφ. For simplicity, we assume that
the mass m, the moments of inertia I, J , and the radius of the penny R are 1.

Applying the algorithm, we obtain the final constraint submanifolds

Cf 1 = {w ∈ W1 | φ̇ = 0}, Cf 2 = {w ∈ W1 | 2θ̇ = px cosφ+ py sinφ},
Cf 3 = {w ∈ W1 | θ̇ = 0, φ̇ = 0}.

The nonholonomic solutions living on Cf 1 are motions of the penny along a straight
line in the horizontal plane. The nonholonomic solutions in Cf 3 are stationary posi-
tions. However, any nonholonomic solution can be seen as a vakonomic one contained
in Cf 2, with Lagrange multipliers px = 2θ̇ cosφ and py = 2θ̇ sinφ. In terms of the
extended Lagrangian formalism mentioned in Remark 2.4, we have the following La-
grange multipliers:

λx =
∂L

∂x
− px = ẋ− px = −θ̇ cosφ, λy =

∂L

∂y
− py = ẏ − py = −θ̇ sinφ,

which is just the result of Bloch and Crouch [4].
Example 6.7 (planar mobile robot). Consider the motion of a two-wheeled planar

mobile robot which is able to move in the direction in which it points and, in addition,
can spin about a vertical axis [26, 29, 33]. Let P be the intersection point of the
horizontal symmetry axis of the robot and the horizontal line connecting the centers of
the two wheels. The position and orientation of the robot is determined by (x, y, θ) ∈
SE(2), where θ ∈ S

1 is the heading angle and the coordinates (x, y) ∈ R
2 locate

the point P . Let ψ1, ψ2 ∈ S
1 denote the rotation angles of the wheels which are

assumed to be controlled independently and roll without slipping on the floor. The
configuration space of this system is Q = S

1 × S
1 × SE(2).

The Lagrangian function is the kinetic energy of the system

L =
1

2
m(ẋ2 + ẏ2) +m0lθ̇(cos θẏ − sin θẋ) +

1

2
Jθ̇2 +

1

2
J2(ψ̇

2
1 + ψ̇2

2),

where m = m0 + 2m1, m0 is the mass of the robot without the wheels, J its moment
of inertia with respect to the vertical axis, m1 the mass of each wheel, J2 the axial
moments of inertia of the wheels, and l the distance between the center of mass C of
the robot and the point P . The constraints are induced by the conditions that there
is no lateral sliding of the robot and that the motion of the wheels also consists of a
rolling without sliding,

ẋ = −R cos θ(ψ̇1 + ψ̇2)/2, ẏ = −R sin θ(ψ̇1 + ψ̇2)/2, θ̇ = R(ψ̇2 − ψ̇1)/(2c),

where R is the radius of the wheels and 2c the lateral length of the robot.
This example is very interesting because its qualitative behavior changes com-

pletely depending on the parameters. If l = 0 (namely, the point P is the center
of mass of the robot), application of the algorithm yields the following constraint
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submanifolds:

Cf 1 = {w ∈ W1 | px sin θ − py cos θ = 0, ψ̇1 = ψ̇2},
Cf 2 = {w ∈ W1 | px = 0, py = 0}, Cf 3 = {w ∈ W1 | ψ̇1 = 0, ψ̇2 = 0}.

If l �= 0 and K1 �= K2
2 , with K1 = J2(J2 + mR2/2 + R2J/2c2) + mR3J/4c2, K2 =

m0lR
2/2c, we find that

Cf 1 = {w ∈ W1 | px sin θ − py cos θ = 0, ψ̇1 = ψ̇2},
Cf 2 = {w ∈ W1 | ψ̇1 = 0, ψ̇2 = 0},

whereas if K1 = K2
2 , we obtain an additional final constraint submanifold

Cf 3 = {w ∈ W1 | px = K2(ψ̇1 − ψ̇2) sin θ/R− 2K2
2 (ψ̇1 + ψ̇2) cos θ/R(2K1/J2 −mR2),

py = −2K2
2 (ψ̇1 + ψ̇2) sin θ/R(2K1/J2 −mR2)−K2(ψ̇1 − ψ̇2) cos θ/R}.

Therefore, in the cases l = 0 and l �= 0, K1 = K2
2 , every nonholonomic solution can be

seen as a vakonomic one. This has the following interesting physical interpretation:
under an appropriate design of the robot (i.e., choice of the parameters), the trajecto-
ries that it describes between two points are optimal, in the sense that they minimize
the energy cost among all the other possible trajectories satisfying the constraints and
connecting the given points.

Example 6.8 (ball on a rotating table [36]). Applying the algorithm to this
example, one can recover the result found in [36]. The configuration space is Q = R

2×
SO(3) with coordinates (x, y,R). We denote the spatial angular velocity by ξ ∈ R

3,

where ξ̂ = ṘRT . The Lagrangian is L = I((ξ1)2 + (ξ2)2 + (ξ3)2)/2 + m(ẋ2 + ẏ2)/2,
where I and m are the moment of inertia and mass of the ball, respectively. The
constraints are ẋ = rξ2 −Ωy, ẏ = −rξ1 + Ωx, where r is the radius of the ball and Ω
is the angular velocity of the table.

Applying the algorithm, one finds the following final constraint submanifolds

Cf 1 = {w ∈ W1 | ẋ = ẏ = px = py = 0}, Cf 2 = {w ∈ W1 | ξ3 = Ω}.

There are nonholonomic solutions that can not be seen as vakonomic ones (see [36]).
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Abstract. We consider problems related to the generalization of the classical Fourier basis to a
basis of rational functions with prescribed poles outside the unit disk. We give some generalizations
about the convergence and estimation of the Fourier coefficients with respect to this generalized
basis. We also consider a rational generalization of the classical Toeplitz matrices and consider the
asymptotic distribution of their spectrum. These bases and general Toeplitz matrices were considered
by Ninness et al. in the context of least-squares system estimation where the prescribed poles allow
to incorporate a priori knowledge into the system dynamics of the model.
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1. Introduction. It is well known that {ejnω}n∈Z forms an orthonormal basis
in the Hilbert space L2(T) of square integrable functions on the unit circle. This
basis is also complete in the space C2π of 2π-periodic functions. Moreover, if such a
function f ∈ C2π has absolutely integrable nth derivative, then its Fourier expansion
f(ω) =

∑
r∈Z

crejrω with cr =
〈
f, ejrω

〉
converges uniformly and |c±r| ≤ ‖f (n)‖1/rn

for r > 0.
For f ∈ C2π, one can define the Toeplitz matrices associated with the symbol f as

Mp(f) =
1

2π

∫ 2π

0

Γp(ω)f(ω)Γ∗
p(ω)dω, p ≥ 1,

where Γp(ω) = [1, e−jω, . . . , e−j(p−1)ω]∗. (The superscript ∗ denotes complex conju-
gate transpose.) This integral can be approximated by a quadrature formula whose
nodes are, for example, the pth roots of unity ω0, . . . , ωp−1. This leads to an ap-
proximation of the form ΥpFpΥ∗

p, where Υp is a FFT matrix with entries (Υp)k,l =

ejkωl/
√
p, for k, l = 0, . . . , p− 1, and Fp = diag(f(ω0), . . . , f(ωp−1)). A bound for the

approximation error in this matrix problem can be used in the study of the following
asymptotic problems for the matrices.

For general functions f ∈ C2π, the convergence of the Fourier series may not be
uniform, and then other summation techniques like Cesàro means are used. It takes
only a little thought to see that such a sum can be written as (see, for example, [14])

1

p
Γ∗
p(ω)Mp(f)Γp(ω) =

p−1∑
k=−(p−1)

(
1− |k|

p

)
ckejωk,
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where the ck are the Fourier coefficients of f . We know that the limit as p → ∞ in
the right-hand side (RHS) gives f(ω), so that we know the limit in the left-hand side
(LHS). This leads to the study of asymptotics for bilinear forms

lim
p→∞

(
1

p

)
Γ∗
p(σ)Mp(f)Γp(µ),

or even more general forms where Mp(f) is replaced by T (Mp(f)) with T being an
analytic function. Even more general forms are needed. For example, when Mp(f)
is replaced by Mp(f)Mp(g), then the limit gives f(ω)g(ω) for σ = µ = ω under
appropriate conditions for f and g. So we should be interested in replacing Mp(f)
by some analytic multivariate function T (Mp(f [1]), . . . ,Mp(f [p])), involving several,
possibly different, Toeplitz matrices.

In many applications (see, e.g., [14] and the references mentioned there) it is
important to know the asymptotic distribution of the spectrum of these Toeplitz
matrices. It is well known that under appropriate conditions on f the eigenvalues of
Mp(f) are in the range of f for all p. In this paper we shall generalize results such as
the fact that the average of the spectrum of Mp(f) converges to the average value of
f , a result due to Grenander and Szegő [11, p. 65].

In this paper we discuss technical results concerning general Toeplitz matrices
related to the unifying construction of orthonormal bases presented in [13, 14]. The
generalization consists of using rational basis functions where it is allowed to have
poles somewhere in the complex plane outside the unit circle. The orthonormal basis
functions ejnω of classical Fourier analysis shall be replaced by orthonormal functions
of the form (1.2) below, where the ξi are assumed to be arbitrary points in the open
unit disk. The motivation for this generalized basis and for the interest in generalizing
the above-mentioned properties can be found in papers by Ninness and coworkers
[12, 13, 14, 15]; see also [5].

The properties in their generalized form will be summarized in the next section
and will be analyzed and proved in the subsequent ones. But let us first recall some
of the notation used in [14].

We consider the complex unit circle T = {z ∈ C : |z| = 1} and the Hilbert space
L2(T) of square integrable complex functions defined on T with inner product

〈F,G〉 =
1

2π

∫ 2π

0

F (ejω)G(ejω)dω = 〈f, g〉 =
1

2π

∫ 2π

0

f(ω)g(ω)dω,(1.1)

where the overbar stands for complex conjugation and f(ω) = F (ejω) and g(ω) =
G(ejω). For simplicity reasons, we shall identify the function F (z) for z = ejω ∈ T

with the 2π-periodic function f(ω), i.e., f(ω) = F (ejω). We shall, for example, abuse
the notation and write f ∈ L2(T).

Now, with D = {z ∈ C : |z| < 1}, let H2(D) ⊂ L2(T) be the Hardy space of
complex functions analytic in D, i.e., for which all the negative Fourier coefficients
vanish: H2(D) = {f ∈ L2(T) :

〈
f, e−jkω

〉
= 0, k = 1, 2, . . .}. Obviously, ‖f‖2 < ∞

for all f ∈ H2(D) where ‖ ·‖2 is the norm induced by the scalar product in (1.1). Also
here we identified the 2π-periodic boundary function f(ω) = F (ejω) and the function
F , depending on a complex variable (which is perfectly justified if F is continuous in
D ∪ T).

The basis function Bn(z) with integer n ≥ 0 is defined as follows:

Bn(z) =

√
1− |ξn|2
1− ξnz

n−1∏
k=0

z − ξk

1− ξkz
, z ∈ C,(1.2)
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where it is assumed that |ξn| ≤ c < 1 for all n ≥ 0. This ξn is called the nth zero.
Let us assume that ξ0 = 0, so that B0 is just the constant 1. Hereby we guarantee
that {Bn}n≥0 can be a basis for H2(D) given some technical condition (see below).
It is called the Malmquist basis [16, p. 227]. Note that if all the ξi are equal to zero,
then Bn(z) = zn and we are back in the classical Fourier case. It is easily seen that
these general basis functions satisfy 〈Bn,Bm〉 = δn−m with δi, the Kronecker symbol.
In other words, they form an orthonormal set.

An important property of the basis functions Bn is that the set {Bn(ejω) : n ≥ 0}
constitutes an orthonormal basis for H2(D) if and only if

∑
n≥0(1− |ξn|) =∞. This

means that, under this condition, the following expansion converges on T:

f(ω) =
∞∑

n=0

〈f,Bn〉 Bn(ejω),

where f is any function in H2(D). This means that the orthonormal basis {Bn(z), n ≥
0} is complete in H2(D). For a proof see [1, p. 244], [5, Chap. 7], or [13, App. C].

Moreover, from these references, it also follows that, for any function f ∈ L2(T),
the following expansion holds:

f(ω) =
∑
n∈Z

〈f,Bn〉 Bn(ejω), where B−n(ejω) = Bn(ejω).(1.3)

This means that the infinite set {Bk : k ∈ Z} constitutes an orthonormal basis for
L2(T) under the same condition on the zeros ξn; see also [3]. One of our concerns
will be to prove convergence and order of convergence properties of the above series
given some smoothness conditions of the function f , generalizing the classical Fourier
results that we mentioned in the beginning of this section.

However, our main concern will be the spectral properties of general Toeplitz
matrices. First we introduce the vector

Γp(ω) =
[
B0(ejω), . . . ,Bp−1(ejω)

]∗
,(1.4)

where the superscript ∗ stands for the conjugate transpose. Then a general Toeplitz
matrix is defined as

Mp(f) =
1

2π

∫ 2π

0

Γp(ω)f(ω)Γ∗
p(ω)dω,(1.5)

where f(ω) is a 2π-periodic function. It is easily seen that, if f(ω) is real-valued, then
the matrix Mp(f) is Hermitian, i.e., Mp(f) = M∗

p (f).
Let γp(ω) = Γ∗

p(ω)Γp(ω) be the squared 2-norm of the vector Γp. It will be shown
that the set of associated normalized vectors

Γ̃p(ω) =
Γp(ω)

γ
1/2
p (ω)

,(1.6)

evaluated at frequencies ωi (with 0 ≤ i < p) for which the phase of the Blaschke
product

ϕp(z) =

p−1∏
k=0

z − ξk

1− ξkz
(1.7)
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is constant (modulo 2π), induces an orthonormal basis in C
p. The matrix containing

these normalized vectors as columns will be denoted Υp, i.e., the ith column is (Υp)i =

Γ̃p(ωi) with ωi ∈ [0, 2π). This notion generalizes the classical situation where the ωi

are the roots of unity (or a constant rotation thereof) and the matrices Υp are the
(unitary) FFT matrices.

Here, we intend to study the approximation of this general Toeplitz matrix Mp(f)
by the matrix ΥpFpΥ∗

p with Fp = diag(fp(ω0), . . . , fp(ωp−1)), where fp(ω) is the
truncated expansion

fp(ω) =
∑
|n|<p

〈f,Bn〉 Bn(ejω).(1.8)

The tool for this will be quadrature formulas on the unit circle. Indeed, we can
consider

ΥpFpΥ∗
p =

p−1∑
i=0

Γ̃p(ωi)fp(ωi)Γ̃
∗
p(ωi)(1.9)

as a quadrature formula with nodes ωi for the integral (1.5). It is a special case of a
rational Szegő formula as studied in [3, 4, 5, 6].

These results will be used in analyzing the asymptotics of bilinear forms whose
matrix is a generalized Toeplitz matrix. For reasons that we have given above in the
classical Toeplitz case, it is useful to give more general versions of this problem. In
summary, it will be shown that

lim
p→∞ Γ̃∗

p(σ)T (Mp(f [1]), . . . ,Mp(f [n]))Γ̃p(µ) =

{ [
T (f [1], . . . , f [n])(µ)

]
, if σ = µ,

0, otherwise,
(1.10)
where T (·) is an n-variable analytic function (i.e., having convergent Taylor expan-
sion) on the range of the f [k]’s and these f [k]’s are 2π-periodic functions satisfying
appropriate smoothness assumptions that, at least, make the associated error func-

tions ep,k(ω) = f [k](ω)− f
[k]
p (ω) converge to zero uniformly.

Concerning the asymptotics of the average of the spectrum, it will be furthermore
shown that if f(ω) is also positive (real-valued), then it turns out that the eigenvalue
distribution of Mp(f) is given by the distribution of the underlying function, i.e.,

lim
p→∞

1

p

p−1∑
i=0

T (λi (Mp(f))) =
1

2π

∫ 2π

0

T
(
f
(
χ̃−1 (ω)

))
dω,(1.11)

where now T (·) stands for a continuous function on the range of f(ω) and χ̃(ω)
denotes the asymptotic normalized phase of the Blaschke product evaluated over the
(fundamental) unit circle, i.e., χ̃(ω) = limp→∞ χp(ω)/p with χp(ω), the phase of
ϕp(ejω) for ω ∈ [0, 2π) where ϕp(z) is the Blaschke product (1.7). In the classical
Fourier case where all ξi = 0, χ̃(ω) is just ω because ϕp(z) = zp, and hence χp(ω) =
pω. Thus if T is the identity, this property says that the average of the eigenvalues
of Mp(f) converges to the average of f ∈ C2π.

Obviously all these results are of crucial importance when studying these specific
rational generalized Fourier series. Thus they are important for rational approxima-
tion in general, but our main interest is motivated by the paper [14] and the arguments
given there, particularly in the context of system identification and models derived
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from orthonormal rational bases as they were introduced by several authors with dif-
ferent degrees of generality (see, e.g., [14] for some history). The equation (1.10)
is a far reaching generalization of the simple Cesàro sum that we started out with
in the classical Fourier case. But as formulated in section 2, we also get bounds
for the generalized Fourier coefficients and therefrom obtain the convergence of the
generalized Fourier series, including an estimate for the speed of convergence. The
spectral properties of the matrix Mp(f) are important from a numerical point of view
because the condition number of this matrix will dictate the numerical robustness of
the least-squares estimation problem in the underlying model identification.

The structure of the paper is as follows. In section 2, we give a detailed formu-
lation of the results we have obtained. Their proofs are presented in the subsequent
sections. In section 3, we consider the convergence of the approximation of 2π-periodic
functions by their expansion over the rational basis functions Bn(z). In section 4, we
extract from reproducing kernel properties orthonormal bases of C

p made of sets of
the normalized vector Γ̃p(ω) for appropriate ω. This is performed by analyzing the
phase of the Blaschke product ϕp(z) evaluated over the unit circle. In section 5,
we introduce the concept of quadrature formulas on the unit circle and apply it to
approximate particular integrals of the basis functions Bn(z) by use of the derived
orthonormal basis of C

p. In section 6, we apply these tailored quadrature formulas to
approximate general Toeplitz matrices. Several upper bounds for the norm of the ap-
proximation error are also given. By using these bounds, we derive the results about
bilinear forms based on functionals of general Toeplitz matrices in section 7. Finally,
in section 8, we consider the eigenvalue distribution of general Toeplitz matrices.

2. Main results. In this section, we summarize the results we have achieved
concerning the algebraic and spectral properties of general Toeplitz matrices as in-
troduced in (1.5). We give more detailed formulations here. The derivation of these
results will be obtained in the subsequent sections.

Before proceeding, let us state a fundamental assumption concerning the poles of
the rational basis functions.
Assumption 1. The points ξi defining the basis functions Bp(z) lie in a closed

disk of radius c < 1, i.e., |ξi| ≤ c for i = 0, 1, . . . . Further, ξ0 = 0.
In fact, this is a key assumption for deriving all the results presented in this paper.

2.1. Rational function approximation. Here, we aim at characterizing the
functional approximation properties of the rational basis functions. Therefore, we
consider the orthonormal set

Sp = {Bk : |k| < p} with B0 ≡ 1 and B−n(z) = Bn(1/z).

Let an = 〈f,Bn〉 stand for the generalized Fourier coefficient of the function with re-
spect to the rational basis function Bn(ejω). The convergence analysis of the expansion
coefficients a±n has led us to the following theorem.

Theorem 1. Let Assumption 1 be satisfied. Let f(ω) be a 2π-periodic func-
tion having a continuous qth derivative with q > 2. Then the generalized Fourier
coefficients satisfy

|a0| ≤ ‖f‖1 and |a±n| ≤
(
K1

1

ln ρ̃
+ K2(c)

ε n

q − 1

) ‖f (q)‖1
(ε n)q

, n ≥ 1,
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where K2(0+) = 0. Furthermore, ε � ε(ρ, c) = ln((ρ + c)/(1 + ρ c))/ ln ρ for

ρ � ρ(c, q, n) = min

([(
q

n− 1

−4

ln c

)q/4

+
(n

2

)q/(n−2)
]

+

[
1 + c√

cq
+

1

c(q − 1)

]
, eq/2

)

and ρ̃ � ρ̃(c, q) = limn→∞ ρ(c, q, n).
This result can be seen as the generalization of the Fourier case for which c is

identically zero. It will not be a surprise that the proof is based on the Fourier
expansion of the function f(ω). The proof is given in section 3.

Now, let us denote by fp(ω) the partial sum in the expansion of a 2π-periodic
function f ∈ L2(T) (see expression (1.8)). Then, as a consequence of Theorem 1, the
approximation error

ep(ω) = f(ω)− fp(ω)

of the truncated expansion of the function f(ω) over the orthonormal set Sp has the
following convergence property.

Corollary 2. With the same assumptions as in Theorem 1, the approximation
error ep(ω) converges to zero uniformly in ω with increasing values of p, i.e.,

lim
p→∞ |ep(ω)| = 0 for all ω

with a convergence rate at least as fast as 1/pq−2.
Similar to the Fourier case, this result is based on the fact the expansion (1.3) is

absolutely convergent and that the limiting set S =
⋃∞

p=1 Sp constitutes an orthonor-
mal basis for L2(T) (see [3] where no result about the convergence of ep(ω) to zero is
found).

2.2. General Toeplitz matrix properties. Now, let us concentrate on our
contributions to the analysis of the general Toeplitz matrix properties. Let Γ̃p(ω) ∈ C

p

be the normalized vector corresponding to Γp(ω) as defined in (1.4) and (1.6). Note
that γp(ω) = Kp(ω, ω), where

Kp(µ, σ) =

p−1∑
n=0

Bn(ejµ)Bn(ejσ)

is the reproducing kernel [2] of the p-dimensional subspace spanned by the basis func-
tions in Γp(ω). By using the Blaschke product ϕp(ejω) as defined in (1.7), it can be
brought into a Christoffel–Darboux form (see, e.g., [14, 5]):

Kp(µ, σ) =
1− ϕp(ejµ)ϕp(ejσ)

ej(σ−µ) − 1
.(2.1)

In section 4, we shall analyze some properties of Kp(µ, σ). The main result is as
follows.

Lemma 3. Let χp(ω) be the phase of the Blaschke product ϕp(ejω) with its zeros
satisfying Assumption 1. Define for arbitrary real θ

Ωp(θ) = {ω ∈ [0, 2π) : χp(ω) = θ mod 2π} .

Then, the set {Γ̃p(ωi) : ωi ∈ Ωp(θ)} constitutes an orthonormal basis for C
p.
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Note that there is an infinite number of such orthonormal bases because the value
of the reference phase θ ∈ [0, 2π) has been left free.

Before formulating our main results on general Toeplitz matrices, let us state the
following assumption on the regularity of the function f(ω).
Assumption 2. Let f(ω) be a 2π-periodic function having a continuous qth deriva-

tive with q > 4.
Theorem 4. Let Assumption 1 be satisfied. Let the function f [k](ω) (with k =

1, . . . , n) satisfy Assumption 2. Let T (·) be an n-variable analytic function (i.e., having
convergent Taylor expansion) on the range of the f [k](ω)’s. Then,

lim
p→∞ Γ̃∗

p(σ)T
(
Mp(f [1]), . . . ,Mp(f [n])

)
Γ̃p(µ) =

{ [
T (f [1], . . . , f [n])(µ)

]
, if σ = µ,

0, otherwise.

The convergence rate to the limiting value is at least as fast as 1/p if σ = µ and as
ln p/p otherwise.

Note that the order in which the matrices appear in the serial expansion does not
matter for the asymptotic expression since Mp(f [i])Mp(f [j]) converges to Mp(f [i]f [j])
in the Hilbert Schmidt norm as p→∞.

Let λi(X) denote the ith (in any order) eigenvalue of the Hermitian matrix X.
Theorem 5. Let Assumption 1 be satisfied. Let the real function f(ω) satisfy

Assumption 2. Let T (·) stand for a continuous function on the range of f(ω). Fur-
thermore, let χp(ω) be the phase of ϕp(ejω) for ω ∈ [0, 2π) where ϕp(z) is the Blaschke
product (1.7). Then, χ̃(ω) = limp→∞ χp(ω)/p exists and

lim
p→∞

1

p

p−1∑
i=0

T
(
λi

(
Mp(f)

))
=

1

2π

∫ 2π

0

T
(
f
(
χ̃−1(ω)

))
dω.

The convergence rate to the limiting value is at least as fast as 1/p.
These results are seen as straightforward generalizations of the properties of the

Toeplitz matrices based on the Fourier basis functions.

3. Expansion with respect to rational bases. In this section, we analyze the
functional approximation properties of the orthonormal basis set Sp = {Bk : |k| < p}.
Note from the introduction that, under Assumption 1, the set

S = {Bk : k ∈ Z} = {. . . ,B−p, . . . ,B−1,B0,B1, . . . ,Bp, . . .},(3.1)

where B0 = 1 and B−n(z) = Bn(1/z), is an orthonormal basis for L2(T).
More precisely, we show that, under suitable assumptions on the function f(ω),

the approximation error ep(ω) = f(ω)−fp(ω) with fp(ω) as in (1.8) converges to zero
uniformly as p becomes unbounded.

First, we focus our attention on the expansion coefficients

an = 〈f,Bn〉 , n ∈ Z,

and the asymptotic behavior of these coefficients as presented in Theorem 1. Then,
we consider the convergence of the approximation error ep(ω) to zero for increasing
values of p as in Corollary 2.

Therefore, we should recall some results about Fourier series of 2π-periodic
functions (see Edwards [8, 9]). Namely (from Assertions 2.3.2, 2.3.5, and 2.4.3 in



1420 A. BULTHEEL AND P. CARRETTE

[8, Chap. 2]), for any function f(ω) ∈ Cq, i.e., with continuous qth derivative (with
q ≥ 2), we have that

f(ω) =
∑
k∈Z

wkejkω with wk =
1

2π

∫ 2π

0

f(ω)e−jkωdω.

The convergence of the Fourier series is uniform in ω and the Fourier coefficients are
bounded as

|w0| ≤ ‖f‖1 and |w±k| ≤ ‖f (q)‖1/kq, k > 0,(3.2)

where f (q)(ω) stands for the qth derivative of the function f(ω).
Prior to prove Theorem 1, let us state the following working result.
Lemma 6. Let x2 > x1 > 0 and q ≥ 2; then

q

∫ x2

x1

eq(x−ln x) dx ≤ Ix1<1

[
α−1

1

(
1− (x1/x̃)

(q−1)α1

)] q

q − 1
eqx1−(q−1) ln x1

+ Ix2>1

[
α−1

2

(
1− e−qα2(x2−x̃)

)]
eq(x2−ln x2),

where x̃ = max(x1,min(1, x2)) while

α1 = 1− q

q − 1
x̃

1− x1/x̃

ln(x̃/x1)
and α2 = 1− x−1

2

ln(x2/x̃)

1− x̃/x2
.

The indicator function Ix<y is one if x < y and zero otherwise.
Proof. Let us separate the integration interval in two parts, i.e.,

q

∫ x2

x1

eq(x−ln x) dx = q

∫ x̃

x1

eq(x−ln x) dx + q

∫ x2

x̃

eq(x−ln x) dx

with x̃ as defined above. Note that the cases where x̃ = x2 (resp., x1) correspond to
the situations where the second (resp., first) term in the above RHS is trivially zero
because the associated integration interval reduces to one point only.

More generally, the first term is upper bounded as

q

∫ x̃

x1

eq(x−ln x) dx = q eqx1−(q−1) ln x1

∫ 1

x1/x̃

e(q−2) ln t−qx1(1−1/t)dt

≤ q eqx1−(q−1) ln x1

∫ 1

x1/x̃

e((q−1)α1−1) ln tdt

=
[
α−1

1

(
1− (x1/x̃)

(q−1)α1

)] q

q − 1
eqx1−(q−1) ln x1

with t = x1/x. Similarly, an upper bound for the second term is found as follows:

q

∫ x2

x̃

eq(x−ln x) dx ≤ q eq(x2−ln x2)

∫ x2

x̃

eqα2(x−x2)dx

=
[
α−1

2

(
1− e−qα2(x2−x̃)

)]
eq(x2−ln x2).

The proof is complete after summing up the above two upper bounds.
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Proof of Theorem 1. The statement for a0 is trivial, so we only consider an with
|n| > 0. Without loss of generality, let us focus on the expansion coefficient an with
n > 0. Indeed, a−n is simply the conjugate of the expansion coefficient of f(ω) with
respect to Bn(ejω). Hence, finding a upper bound for |a−n| is similar to finding an
upper bound for |an|.

First, we consider three parts in the Fourier series of f(ω), i.e.,

f(ω) =
∑
k≤k1

wkejkω +

k3−1∑
k=k1+1

wkejkω +
∑
k≥k3

wkejkω

for integers k3 > k1 > 0 to be specified below. So, using B−n(ejω) = Bn(ejω) we
successively obtain

an =
1

2π

∫ 2π

0

f(ω)Bn(ejω)dω

=
1

2πj

∮
|z|=1


∑

k≤k1

wkz
k +

k3−1∑
k=k1+1

wkz
k +

∑
k≥k3

wkz
k


B−n(z)

dz

z

=
1

2πj

[
k1∑
k=2

wk

∮
|z|=ρ1

zkB−n(z)
dz

z
+

k3−1∑
k=k1+1

wk

∮
|z|=1

zkB−n(z)
dz

z

+
∑
k≥k3

wk

∮
|z|=ρ3

zkB−n(z)
dz

z




with appropriate ρ1 ≥ 1 and c < ρ3 ≤ 1. Note that the summation terms for k < 2
have been cancelled out by the residue theorem using the fact that ξ0 = 0.

Then, we upper bound each sum in the brackets separately:
(First sum) The modulus of the first sum can thus be bounded as follows:∣∣∣∣∣ 1

2πj

k1∑
k=2

wk

∮
|z|=ρ1

zkB−n(z)
dz

z

∣∣∣∣∣ ≤
k1∑
k=2

|wk|ρk1
(

1 + ρ1c

ρ1 + c

)n−1
1

2π

∫ 2π

0

βn

|ρ1ejω − ξn|dω

≤ ‖f (q)‖1
(

1 + ρ1c

ρ1 + c

)n−1

ρ−1
1

k1∑
k=2

ρk1
kq

,(3.3)

where we made use of the fact that if z = ρ ejω with |ξ| < c < 1 ≤ ρ, then∣∣∣∣1− ξz

z − ξ

∣∣∣∣ ≤ 1 + ρ|ξ|
ρ + |ξ| ≤

1 + ρc

ρ + c
≤ 1,

and that, by the Cauchy–Schwarz inequality,[
1

2π

∫ 2π

0

βn

|ρejω − ξn|dω
]2

≤ 1

2π

∫ 2π

0

β2
n

|ρejω − ξn|2 dω

=
β2
n

ρ2 − |ξn|2 ≤ ρ−2 for ρ ≥ 1

with βn =
√

1− |ξn|2. We have also used the upper bound for the Fourier coefficients,
i.e., |wk| ≤ ‖f (q)‖1/kq for k > 0.
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The summation factor in expression (3.3) is first simplified into

k1∑
k=2

ρk1
kq
≈ q (ln ρ1)

q−1
e−q ln q

∫ k1 ln ρ1/q

2 ln ρ1/q

eq(x−ln x) dx

with x = k ln ρ1/q. By use of Lemma 6 (see notation therein), we then obtain

q (ln ρ1)
q−1

e−q ln q

∫ x2

x1

eq(x−ln x) dx

≤ Ix1<1

[
α−1

1

(
1−

(x1

x̃

)(q−1)α1
)]

2

q − 1

ρ2
1

2q

+ Ix2>1

[
α−1

2

(
1− e−qα2(x2−x̃)

)] 1

ln ρ1

ρk1
1

k1
q ,(3.4)

where x1 = 2 ln ρ1/q and x2 = k1 ln ρ1/q while x̃ = max(x1,min(1, x2)). Note that
increasing values of ρ1 make x1 (resp., x2) closer to (resp., farther away from) one
from below (resp., above) so that the second term in the RHS of expression (3.4)
becomes dominant.

The last step of the derivation is to choose the values of ρ1 and k1. The choice of
k1 is such that it makes the quantity

ρk1−1
1

(
1 + ρ1c

ρ1 + c

)n−1

less than one, independently of n. This is done by imposing k1 = �ε1(n− 1) + 1� with

0 < ε1 = [ln(ρ1 + c)− ln(1 + ρ1c)]/ ln ρ1 ≤ 1 (because c < 1 ≤ ρ1)

and �x� denoting the largest integer not greater than x. Note that if ρ1 � 1/c, then
ε1 becomes close to zero.

The choice for ρ1 is

ρ1 = min
(

[(ρ11 − 1) + ρ12] + (ρ13 − 1), eq/2
)
,(3.5)

where

ρ11 = 1 +

(
q

n− 1

−4

ln c

)q/4

, ρ12 =
(n

2

)q/(n−2)

, and ρ13 = 1 +
1 + c√

cq
+

1

c(q − 1)
.

The reason for this choice is the following. For n � (−4/ ln c) q, the upper bound
(3.3) receives its main contribution from the second term in the RHS expression (3.4)
for which a minimum is obtained for ρ1 = ρ13 (given k1(ε1, n) as above). In the other
cases, i.e., n �� (−4/ ln c) q, a small value of the upper bound (3.3) is obtained by
compromising the contributions of the two terms in the RHS expression (3.4) while
adjusting ρ1. Depending on values of c, q, and n, the resulting ρ1 may become very
large or stay close to one: namely, ρ11 (resp., ρ12) describes the behavior of ρ1 when
it is far from (resp., close to) one. It is further seen that ρ11 � ρ12 � ρ13 for
n� (−4/ ln c) q. The minimum operator in expression (3.5) limits the value of ρ1 to
a maximum of eq/2 for which x1 = 1 in expression (3.4) so that only its second term
remains. Finally, the expression for ρ1 sums up the different ρ1.’s whose contributions
apply in particular n intervals.
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Provided these choices for k1 and ρ1, the expression (3.3) leads to∣∣∣∣∣ 1

2πj

k1∑
k=2

wk

∮
|z|=ρ1

zkB−n(z)
dz

z

∣∣∣∣∣ ≤
[

C1

ln ρ̃1

]
‖f (q)‖1/(ε1n)q,(3.6)

where ρ̃1(c, q) = limn→∞ ρ1(c, q, n). Note that ε1 explicitly appears in the upper
bounding expression (3.6). The reason for that is that it is smaller than one and
depends on the triplet (c, q, n) via ρ1.

(Third sum) Similarly, the modulus of the third sum in the expression of an can
be upper bounded as follows:∣∣∣∣∣∣

1

2πj

∑
k≥k3

wk

∮
|z|=ρ3

zkB−n(z)
dz

z

∣∣∣∣∣∣ ≤
∑
k≥k3

|wk|ρk3
(

1− ρ3c

ρ3 − c

)n
1

2π

∫ 2π

0

βn

|ρ3ejω − ξn|dω

≤ ‖f (q)‖1
(

1− ρ3c

ρ3 − c

)n+1/2 ∑
k≥k3

ρ
k−1/2
3

kq

≤ ‖f (q)‖1
(

1− ρ3c

ρ3 − c

)n+1/2
1

1− ρ3

ρ
k3−1/2
3

kq
3

,(3.7)

where we have used the fact that for z = ρejω and |ξ| < c ≤ ρ < 1 we have∣∣∣∣1− ξz

z − ξ

∣∣∣∣ ≤ 1− ρ|ξ|
ρ− |ξ| ≤

1− ρc

ρ− c

and also (by the Cauchy–Schwarz inequality as above)

[
1

2π

∫ 2π

0

βn

|ρejω − ξn|dω
]2

≤ 1− c2

ρ2 − c2
≤ ρ−1

(
1− ρc

ρ− c

)
for c < ρ ≤ 1.

The choice for k3 is such that it makes

ρ
k3−1/2
3

(
1− ρ3c

ρ3 − c

)n+1/2

≤ 1

independently of n. This is done by imposing k3 = �ε3(n + 1/2) + 1/2� with

ε3 = [ln(ρ3 − c)− ln(1− ρ3c)]/ ln ρ3 ≥ 1 (because c < ρ3 ≤ 1)

and �x� denoting the smallest integer not smaller than x.
Then, by choosing ρ3 = 1 − (1 − c)q (as it has been left free so far) with q > 2,

the expression (3.7) becomes∣∣∣∣∣∣
1

2πj

∑
k≥k3

wk

∮
|z|=ρ3

zkB−n(z)
dz

z

∣∣∣∣∣∣ ≤ ‖f (q)‖1 (1− (1− c)q)
τ3

(1− c)q

⌈
ε3

(
n +

1

2

)
+

1

2

⌉−q

≤
[

2

1 + ε3

1

1− c

]q ‖f (q)‖1
nq

≤ ‖f
(q)‖1
nq

,(3.8)

where 0 ≤ τ3 = �ε3(n + 1/2) + 1/2� − [ε3(n + 1/2) + 1/2] < 1. The last expression
comes from the fact that ε3 ≥ (1 + c)/(1− c) for the chosen ρ3 value. It further tends
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to this lower limit for increasing q. Note that, as before, the rate of convergence to
zero with n is 1/nq.

(Second sum) The second sum in expression of an is treated as follows:∣∣∣∣∣ 1

2πj

k3−1∑
k=k1+1

wk

∮
|z|=1

zkB−n(z)
dz

z

∣∣∣∣∣ ≤ ‖f (q)‖1
k3−1∑

k=k1+1

1

kq

≤ ‖f (q)‖1 C2

q − 1

[
1− εq−1

1

εq−1
1

+
εq−1
3 − 1

εq−1
3

]
1

nq−1
,(3.9)

where we divided the summation interval [k1 + 1, k3 − 1] into two subintervals, i.e.,
[k1 + 1, n] and [n + 1, k3 − 1].

(Overall) When putting the expression (3.6), (3.8), and (3.9) together, we finally
obtain the following upper bound:

|an| ≤
[(

C1

ln ρ̃1
+ εq1

)
+ C2

ε1n

q − 1

(
(1− εq−1

1 ) +

(
ε1
ε3

)q−1

(εq−1
3 − 1)

)]
‖f (q)‖1
(ε1n)q

≤
[
K1

1

ln ρ̃1
+ K2(c)

ε1n

q − 1

] ‖f (q)‖1
(ε1n)q

,(3.10)

where K1 and K2(c) are defined so that K2(0+) = 0.
The proof is completed when identifying ε, ρ, and ρ̃ to ε1, ρ1, and ρ̃1,

respectively.
Proof of Corollary 2. As the function f(ω) is continuous, the proof requires only

the uniform convergence of limp→∞ fp(ω). This immediately implies that the limiting
function is f , and thus that the error ep converges uniformly to zero. Indeed, by
completeness of the basis (3.1) on which this expansion is constructed, we can derive
that if f(ω) is continuous and all the expansion coefficients are zero, then the function
must be identically zero (similar to Assertion 2.4.1 in [8]). Then, in case the expansion
fp(ω) converges uniformly in ω, this limiting function is continuous and has expansion
coefficients identical to those of the expansion itself. Thus, this limiting function and
the original function f(ω) coincide identically (see [8, Assertion 2.4.3]).

Hence, it remains to show that the convergence limp→∞ fp(ω) = f(ω) is uniform
in ω. For p large enough, we have that

|ep(ω)| =
∣∣∣ lim
r→∞ fr(ω)− fp(ω)

∣∣∣ =

∣∣∣∣∣∣
∑
n≥p

(
anBn(ejω) + a−nBn(ejω)

)∣∣∣∣∣∣
≤ 2

∑
n≥p

max(|an|, |a−n|)|Bn(ejω)|

≤ 2‖f (q)‖1
∑
n≥p

(
K1

1

ln ρ̃
+ K2

ε n

q − 1

)
/(ε n)q,

where K1, K2, and ρ̃ do not depend on n or ω (see the notation in Theorem 1). As
q > 2, the sum in the RHS converges to zero for p→∞. Furthermore, the convergence
rate is at least as fast as 1/pq−2. This completes the proof.

4. Reproducing kernel and orthonormal bases of C
p. In section 2.2, we

have introduced vectors Γ̃p(ω) ∈ C
p. Their unit norm easily follows from the definition
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of γp(ω), i.e.,

Γ̃∗
p(ω)Γ̃p(ω) =

1

γp(ω)

p−1∑
n=0

∣∣Bn(ejω)
∣∣2 = 1.

Now, in order to prove Lemma 3, let us show how to construct orthonormal bases of
C

p consisting of p such vectors. Therefore we remember that Kp(ω, σ) = Γ∗
p(σ)Γp(ω)

so that by (2.1)

Γ∗
p(σ)Γp(ω) = 0 ⇐⇒ ϕp(ejσ)ϕp(ejω) = 1

for appropriate σ �= ω. By the Blaschke product expression, this implies the following
condition:

Φ
(
ϕp(ejσ)

)
= Φ

(
ϕp(ejω)

)
,

where Φ(ξ) denotes the phase of ξ ∈ C. The phase of ϕp(ejω), that we denote from
now on by χp(ω), is written as

χp(ω) = pω − 2

p−1∑
n=0

Φ
(
1− ξnejω

)
.

It satisfies χp(ω + 2π) = p2π + χp(ω). Furthermore, the following result holds for its
derivative.

Lemma 7. Let the zeros of the Blaschke product ϕp(ejω) lie inside the unit disk,
i.e., |ξn| ≤ c < 1 with n = 0, . . . , p− 1. Then,

0 <
p

Kc
≤ dχp(ω)

dω
≤ pKc(4.1)

with 1 ≤ Kc := (1 + c)/(1− c) <∞.
Proof. From the expression of χp(ω), we successively have

dχp(ω)

dω
= p− 2

p−1∑
n=0

dΦ
(
1− ξnejω

)
dω

= p− 2

p−1∑
n=0

|ξn| |ξn| − cos(ω − Φ(ξn))

1 + |ξn|2 − 2|ξn| cos(ω − Φ(ξn))
,

where Φ(ξn) stands for the phase of ξn. Hence

p− 2

p−1∑
n=0

|ξn|
1 + |ξn| ≤

dχp(ω)

dω
≤ p + 2

p−1∑
n=0

|ξn|
1− |ξn| .

Then, the proof is completed by noting that the worst lower and upper bounding case
occurs when |ξn| = c for all n.

The consequence of this is twofold. First, for a given θ ∈ [0, 2π), there are exactly
p distinct frequencies ω0, . . . , ωp−1 in [0, 2π) for which the phase χp(ω) of the Blaschke
product takes this value θ modulo 2π, i.e.,

Ωp(θ) = {ω ∈ [0, 2π) : χp(ω) = θ mod 2π} = {ω0, . . . , ωp−1}.(4.2)
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Second, the distance ∆ between two successive frequencies in Ωp(θ) is lower bounded
by 2π/(pKc). Indeed,

2π = χp(µ + ∆)− χp(µ) =

∫ µ+∆

µ

dχp(ω)

dω
dω ≤ Kcp∆(4.3)

for any µ, µ + ∆ ∈ Ωp(θ).
As p increases, this distance decreases because the phase of ϕp(ejω) is turning

(under the modulo operator) more rapidly in the interval [0, 2π). In the limit as p tends
to infinity, there is a (countably) infinite number of frequencies in Ωp(θ) (included
within [0, 2π)) and they become infinitely close to each other without inducing any
limiting point.

Hence, we have proven the result in Lemma 3.
From now on, we denote by Υp the matrix representing such an orthonormal

basis. Its ith column is given by (Υp)i = Γ̃p(ωi). This is a unitary matrix so that, by
the orthonormality of its rows, we derive that

p−1∑
i=0

1

γp(ωi)
Bn(ejωi)Bm(ejωi) = δn−m.(4.4)

Finally, as the function χp(ω) becomes unbounded for increasing p, it is worth defining
the following normalized limiting function as mentioned in Theorem 5:

χ̃(ω) = lim
p→∞χp(ω)/p.

This function χ̃(ω) has values in the interval

[χ̃(0), χ̃(0) + 2π) with χ̃(0) = −2 lim
p→∞

p−1∑
n=0

Φ(1− ξn)/p

when ω lies in [0, 2π). Note that if each complex-valued ξn has a conjugate counter-
part, then this initial value of χ̃(ω) vanishes.

Before ending this section, let us evaluate the decomposition of any normalized
vector Γ̃p(ω) in the orthonormal basis {Γ̃p(ωi) : ωi ∈ Ωp(θ)}.

Lemma 8. Let αp,i(ω) denote the ith decomposition coefficient of Γ̃p(ω) in the

orthonormal set {Γ̃p(ωi) : ωi ∈ Ωp(θ)}, i.e., αp,i(ω) = Γ̃∗
p(ωi)Γ̃p(ω). Then, αp,i(ωk) =

δk−i and

|αp,i(ω)| ≤ min

(
1,

Kc

p

∣∣∣∣sin ωi − ω

2

∣∣∣∣
−1
)

for ω �∈ Ωp(θ)

with Kc = (1 + c)/(1− c).
Proof. The case where ω = ωk belongs to Ωp(θ) is trivial. When ω �∈ Ωp(θ), we

have by 2-norm properties that |αp,i(ω)| ≤ ‖Γ̃∗
p(ωi)‖2‖Γ̃p(ω)‖2 ≤ 1. But, by definition

of Γ̃p(ω), we also have that

|αp,i(ω)| = |Kp(ω, ωi)|
γ

1/2
p (ω)γ

1/2
p (ωi)

≤
∣∣∣∣sin ωi − ω

2

∣∣∣∣
−1

max
ω

γ−1
p (ω)(4.5)
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with

γp(ω) =

p−1∑
i=0

1− |ξi|2
|1− ξiejω|2 ≥

p

Kc

so that the proof is completed.
Furthermore, it is worth evaluating the 1-norm of the sequence of the decompo-

sition coefficients. We have the following result.
Lemma 9. With a notation similar to Lemma 8 and αp(ω) = {αp,i(ω) : 0 ≤ i <

p}, we have that

‖αp(ω)‖1 ≤ 2− 2(K2
c /π) ln[tan(π/2pKc)] for p ≥ 4,

where ‖αp‖1 stands for the 1-norm
∑p−1

k=0 |αp,i|.
Proof. First, assume that the two frequency points surrounding ω are ωk and

ωk+1. Without loss of generality, we may assume they are somewhere in the middle
of the set Ωp(θ) for p ≥ 4. So, we can successively write

p−1∑
i=0

|αp,i| =
k+2∑

i=k−1

|αp,i|+
[
k−2∑
i=0

+

p−1∑
i=k+3

]
|αp,i|

≤ 2 +
Kc

p

[ −2∑
i′=−k

+

p−k−2∑
i′=2

] ∣∣∣∣sin i′π
pKc

∣∣∣∣
−1

≤ 2 + 2
Kc

p

p/2∑
i′=2

1

sin(i′π/pKc)
≤ 2 + 2

K2
c

π

∫ π/2

π/pKc

dx

sinx

≤ 2− 2

(
K2

c

π

)
ln

[
tan

(
π

2pKc

)]
,

where we have used the fact that
∑

i |αp,i|2 = 1 in upper bounding the first sum in
the first expression. We have also taken advantage of

p

Kc
|αp,i| ≤

∣∣∣∣sin
(
ωi − ω

2

)∣∣∣∣
−1

≤
∣∣∣∣sin

(
(k − i)π

pKc

)∣∣∣∣
−1

or

∣∣∣∣sin
(

(i− (k + 1))π

pKc

)∣∣∣∣
−1

as the difference between two successive frequency points ωi is larger than
2π/pKc.

Hence, for large p, the 1-norm of the sequence αp(ω) diverges like 2(K2
c /π) ln p.

5. Quadrature formulas. In the present section, we intend to find approximate
quadrature formulas to evaluate integrals of the form1

1

2π

∫ 2π

0

Bk(ejω)Bl(ejω)Br(ejω)dω,(5.1)

where 0 ≤ k, l, r < p.

1This generic integral originates from the definition (1.5) of general Toeplitz matrices with the
expansion (1.3) for the function f(ω).
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To recall, quadrature formulas [7] are used to approximate the integral of functions
as the sum of values of these functions at appropriate points of the integration interval,
i.e., generically

∫ b

a

f(x)dx ≈
∑
n

Anf(xn),

where xn are the sampling points inside [a, b] and An are appropriate constants related
to the functional class to which f(x) belongs. In the case where the integration
corresponds to an integration over the complex unit circle, we refer to papers by
Bultheel et al. [3, 4, 6].

In the preceding section, we have already derived the quadrature formula corre-
sponding to the integral (5.1) in the particular case where r is zero. Indeed, from the
orthonormality of the functions Bn(z) and of the rows of the unitary matrix Υp in
(4.4), we obtain that

1

2π

∫ 2π

0

Bn(ejω)Bm(ejω)dω = δn−m =

p−1∑
i=0

1

γp(ωi)
Bn(ejωi)Bm(ejωi)(5.2)

with ωi in Ωp(θ) for some θ. The rightmost sum obviously forms a quadrature formula
for the leftmost integral.

Now, for z ∈ T, let us write the basis function Bn(z) as

Bn(z) = βn
1

µp(z)

µp(z)

µn+1(z)
νn(z),

where β2
n = 1− |ξn|2 while

νn(z) =

n−1∏
i=0

(z − ξi) and µn(z) =

n−1∏
i=0

(1− ξiz).

Similarly, we have

Bm(z) = βm
z

νp(z)
µm(z)

νp(z)

νm+1(z)
.

Hence, we can write

Bn(z)Bm(z) =
z

µp(z)νp(z)

[
(βnβm)

µp(z)µm(z)

µn+1(z)

νn(z)νp(z)

νm+1(z)

]
(5.3)

while

Bk(z)Bl(z)Br(z) =
z

µp(z)νp(z)

[
(βkβlβr)

µp(z)µl(z)

µk+1(z)µr+1(z)

νk(z)νr(z)νp(z)

νl+1(z)

]
.

In order to have this last expression written as a sum of terms as in (5.3), i.e.,

Bk(z)Bl(z)Br(z) =

p−1∑
n,m=0

κn,mBn(z)Bm(z),
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Fig. 5.1. Admissible (k, l) areas for the quadrature formulas of BkBlBr (left) and
BkBlB−r (right) to hold, as functions of r.

we need that l > min(k, r) so that the expression between the brackets of its RHS
reduces to a polynomial in z only. The coefficients κn,m of this expansion are found
by imposing that the zeros of the LHS (being either ξi or 1/ξi) are reproduced in the
RHS.

Hence, the quadrature formula in (5.2) can be applied as follows:

1

2π

∫ 2π

0

Bk(ejω)Bl(ejω)Br(ejω)dω =

p−1∑
n,m=0

κn,m
1

2π

∫ 2π

0

Bn(ejω)Bm(ejω)dω

=

p−1∑
n,m=0

κn,m

p−1∑
i=0

1

γp(ωi)
Bn(ejωi)Bm(ejωi)

=

p−1∑
i=0

1

γp(ωi)
Bk(ejωi)Bl(ejωi)Br(ejωi).(5.4)

To summarize, we state the following result.
Lemma 10. For 0 ≤ k, r, l < p, we have that

〈BkBr,Bl〉 =

p−1∑
i=0

1

γp(ωi)
Bk(ejωi)Bl(ejωi)Br(ejωi)

provided that l > min(k, r).

With the help of Bk(z)Bl(z)B−r(z) = Bl(z)Bk(z)Br(z) (for z ∈ T) and provided
that k > min(l, r), we can similarly write the following quadrature formula:

〈BkB−r,Bl〉 =

p−1∑
i=0

1

γp(ωi)
Bk(ejωi) Bl(ejωi) Br(ejωi).(5.5)

Before considering the situation where the index l (resp., k) does not satisfy the pre-
viously mentioned condition for 〈BkBr,Bl〉 (resp., 〈BkB−r,Bl〉), let us draw a picture
representing the zones in the (k, l) plane where it indeed satisfies it. It appears in
Figure 5.1 that the smaller the value of r, the larger the admitted area in the plane.
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Now, let us focus on the other situations, e.g., l ≤ min(k, r) when evaluating the
quantity in (5.1). Therefore, we first express the product Bk(z)Br(z) lying in H2(D)
as an expansion over the basis function Bn(z) with integer n ≥ 0, i.e.,

Bk(z)Br(z) =

p−1∑
n=0

〈BkBr,Bn〉 Bn(z) +
∑
n≥p

〈BkBr,Bn〉 Bn(z).

Then, we evaluate this expression at z = ejωi , we multiply both sides by [Bl(ejωi)/γp(ωi)]
and we sum over i = 0, . . . , p− 1. Hence, by taking advantage of the quadrature for-
mula in (5.2), we obtain that

1

2π

∫ π

−π

Bk(ejω)Bl(ejω)Br(ejω)dω =

p−1∑
i=0

1

γp(ωi)
Bk(ejωi)Bl(ejωi)Br(ejωi)

−
∑
n≥p

〈BkBr,Bn〉
p−1∑
i=0

1

γp(ωi)
Bn(ejωi)Bl(ejωi).(5.6)

In order to analyze the last summation term in the RHS of this expression, it is helpful
to make the following (temporary) assumption.
Assumption 3. The zeros in Bn(z) for n ≥ p are obtained by cyclically repeating

the p zeros of ϕp(z) in their original order.
Under this assumption, the basis functions Bn(z) for n ≥ p can easily be written

as Bn(z) = Bs(z)ϕn′
p (z) for n = s + n′p with 0 ≤ s < p. Furthermore, we have the

following result.
Theorem 11. For 0 ≤ k, r, l < p, Assumption 3 leads to

〈BkBr,Bl〉 =

p−1∑
i=0

1

γp(ωi)
Bk(ejωi)Bl(ejωi)Br(ejωi)− ejθD(k,r),l,(5.7)

where D(k,r),l = 〈BkBr,Bl+p〉 for l ≤ min(k, r) and is identical to zero otherwise.
Proof. First, we have that

p−1∑
i=0

1

γp(ωi)
Bn(ejωi)Bl(ejωi) = ejn′θ

p−1∑
i=0

1

γp(ωi)
Bs(ejωi)Bl(ejωi) = ejn′θδl−s,

where θ is the reference phase of the Blaschke product ϕp(z) while constructing the
orthonormal bases of C

p (see section 4). This implies that n is restricted to n = l+n′p
in expression (5.6). Second, it is not difficult to show that〈BkBr,Bmin(k,r)+p+k′

〉
= 0, for k′ > 0,

because the integrand corresponding to this scalar product has no poles outside the
unit circle so that the residue formula makes the associated integral vanish.

By putting these two results together, we have that n is restricted to n = l + p.
Then, the proof is completed by making use of Lemma 10.

As Assumption 3 has no consequences on the first p points ξi, the quantity D(k,r),l

actually stands for a closed form expression of the last term in the RHS of the ex-
pression (5.6).
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By complex conjugation, we similarly derive that

〈BkB−r,Bl〉 =

p−1∑
i=0

1

γp(ωi)
Bk(ejωi)Bl(ejωi)Br(ejωi)− e−jθD(l,r),k,

for k ≤ min(l, r).
Finally, it is of interest to derive an upper bound on the modulus of D(k,r),l

(identical to D(r,k),l by product commutativity) in the case that it is nonzero. This
is the purpose of the two following lemmas.

Lemma 12. For 0 ≤ l ≤ k < p, we have

|D(k,l),l| ≤ c β−1
c η(p−1)−k,

where β2
c = 1− c2 and η = 2c/(1 + c2) < 1 as 0 ≤ c < 1.

Proof. This comes from the residue theorem. Without loss of generality, we shall
again make use of Assumption 3. In detail, we successively have

D(k,l),l =
1

2π

∫ 2π

0

Bk(ejω)Bl(ejω)Bp+l(e
jω)dω

=
1

2πj

∮
|z|=1

[
βk

1− ξkz

p−1∏
i=k+1

z − ξi

1− ξiz

]
β2
l z

(z − ξl)(1− ξlz)
dz

=
βk

1− ξkξl

p−1∏
i=k+1

ξl − ξi

1− ξiξl
ξl

because of the contribution of the pole at z = ξl only. Then, we easily find that

|D(k,l),l| = βk

|1− ξkξl|
p−1∏

i=k+1

∣∣∣∣ ξl − ξi

1− ξiξl

∣∣∣∣ |ξl| ≤ c β−1
c η(p−1)−k.

This completes the proof.
Before going into the second lemma, let us introduce the following notation. While

denoting by c̃i the ith largest value within the set of the zero moduli, i.e., {|ξk|, 0 ≤
k < p}, we define

ζ−m(ρ) =

m∏
i=1

ρ + c̃i
1 + ρc̃i

and ζ+
n (ρ) =

n∏
i=1

1− ρc̃i
ρ− c̃i

.(5.8)

Then, we have the following result.
Lemma 13. For 0 ≤ l < r ≤ k < p, we have

|D(k,r),l| ≤ Kc min
c<ρ≤1

[
ζ−m(ρ)ζ+

n (ρ)I(ρ, c)
]
,

where Kc = (1 + c)/(1− c) while

I(ρ, c) =
(1− c)2

√
1− c2

(1− cρ)2
√

1− c2/ρ2
.

Further, the pair (m,n) (with m ≥ n) is as follows:

(m,n) =

{
(p− k, r − l), if p− k > r − l,
(r − l − 1, p− k − 1), otherwise.
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Proof. The derivation of the proof originates from the upper bounding of the
value of the unimodular functions (appearing in the definition of the basis functions)
outside the unit circle, i.e., z = ρ ejω with ρ �= 1.

First, we can write

Bk(z)Br(z)Bp+l(z) =

[
βkz

1− ξkz

p−1∏
i=k+1

z − ξi

1− ξiz

][
βrz

z − ξr

βl

1− ξlz

r−1∏
i=l

1− ξiz

z − ξi

]
.

Now, let us consider the case where p − k > r − l for which we choose c < ρ ≤ 1 in
the definition of z. It is easily seen that

ρ− |ξ|
1− ρ|ξ| ≤

∣∣∣∣ z − ξ

1− ξz

∣∣∣∣ ≤ ρ + |ξ|
1 + ρ|ξ| ≤ 1

for any |ξ| ≤ c. The LHS (resp., RHS) inequality of this expression decreases (resp.,
increases) with |ξ| going from zero to c. It yields

|D(k,r),l| ≤ 1

2πj

∮
|z|=ρ

∣∣∣Bk(z)Br(z)Bp+l(z)
∣∣∣ dz

z

≤ ζ−(p−1)−k(ρ)ζ+
r−l(ρ)

ρ2

2πj

∮
|z|=ρ

βk

|1− ξkz|
βr

|z − ξr|
βl

|1− ξlz|
dz

z

≤ ζ−(p−1)−k(ρ)ζ+
r−l(ρ)

β2
cρ

2

(1− cρ)2

[
1

2π

∫ 2π

0

β2
r

|ρejω − ξr|2 dω

]1/2

by use of βi/|1 − ξiz| ≤ βc/(1 − cρ) for |z| = ρ ∈ (c, 1] and the Cauchy–Schwarz
inequality for the last expression. With the help of the residue theorem

1

2π

∫ 2π

0

β2
i

|ρejω − ξi|2 dω =
β2
i

ρ2 − |ξi|2 ≤
β2
c

ρ2 − c2
,(5.9)

we obtain

|D(k,r),l| ≤ ζ−p−k(ρ)ζ+
r−l(ρ)

β3
cρ

(1− cρ)2
√

ρ2 − c2

[
ρ

1 + cρ

ρ + c

]

≤ ζ−p−k(ρ)ζ+
r−l(ρ)

β3
c

(1− cρ)2
√

1− c2/ρ2
(5.10)

as the expression in brackets is less than or identical to one for all ρ ∈ (c, 1]. This last
expression is straightforwardly put into the form stated in the lemma.

In the case p− k ≤ r− l, we choose 1 ≤ ρ′ < 1/c for defining z = ρ′ejω. Then, by
using the fact that

1 ≤ ρ′ + |ξ|
1 + ρ′|ξ| ≤

∣∣∣∣ z − ξ

1− ξz

∣∣∣∣ ≤ ρ′ − |ξ|
1− ρ′|ξ|

for which the LHS (resp., RHS) inequality of this expression decreases (resp., in-
creases) with |ξ| going from zero to c, we derive that

|D(k,r),l| ≤ ζ+
(p−1)−k

(
1

ρ′

)
ζ−(r−l)−1

(
1

ρ′

)
(ρ′)2

2πj

∮
|z|=ρ′

βk

|1− ξkz|
βr

|z − ξr|
βl

|z − ξl|
dz

z

≤ ζ+
(p−1)−k

(
1

ρ′

)
ζ−(r−l)−1

(
1

ρ′

)
β2
c (ρ′)2

(ρ′ − c)2

[
1

2π

∫ 2π

0

β2
k

|1− ξkρ
′ejω|2 dω

]1/2

.
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Fig. 5.2. Characteristics of the convex function I(ρ, c) as functions of c . Left: ρ∗(c) such that
I(ρ∗, c) = 1 (—) and ρ̃(c) such that I(ρ̃, c) is minimal (−−). Right: The value of I(ρ̃(c), c) (−−).

From this with ρ = 1/ρ′, we obtain that

|D(k,r),l| ≤ ζ+
(p−1)−k(ρ)ζ−(r−l)−1(ρ)

β3
c

(1− cρ)2
√

1− c2/ρ2
.(5.11)

Finally, as ρ is chosen arbitrarily in the interval (c, 1], we can ask for the minimum
of the RHS expression (5.10) and (5.11) with respect to such ρ. This completes the
proof.

A characterization of the function I(ρ, c) is given in the following proposition.
Proposition 14. The function I(ρ, c) is convex for c < ρ ≤ 1. Furthermore,

I(ρ, c) = 1 at ρ∗ ∈ (c, 1) for appropriate values of ρ∗ = ρ∗(c). Thus, I(ρ, c) < 1 for
ρ ∈ (ρ∗, 1).

In the left part of Figure 5.2, we have drawn the function ρ∗(c) as well as the
value of ρ ∈ [ρ∗(c), 1], denoted ρ̃(c), at which I(ρ, c) is minimal. In its right part, we
have displayed the value of this minimum, i.e., I(ρ̃(c), c).

From this proposition, we can state the following lemma.
Lemma 15. Let us take the same notation as in Lemma 13 and in Proposition 14.

Then,

|D(k,r),l| ≤ Kc η
m−min(m,nε0)
0 ,

where ρ0 ∈ [ρ∗, 1), η0 = (ρ0 + c)/(1 + ρ0c) < 1 and ε0 = ε(ρ0, c) is defined as

ε(ρ0, c) =

⌈
ln(1− ρ0c)− ln(ρ0 − c)

ln(1 + ρ0c)− ln(ρ0 + c)

⌉

with �x� denoting the smallest integer not less than x.
Proof. First, from the discussion about the function I(ρ, c), we have that I(ρ0, c) ≤

1. Thus, Lemma 13 yields

|D(k,r),l| ≤ Kc min(1, ζ−m(ρ0)ζ+
n (ρ0)).

Then, by the definition of ζ−m(ρ) and ζ+
n (ρ) (see expression (5.8)), the second argument

in the RHS minimization is upper bounded as

ζ−m(ρ0)ζ+
n (ρ0) ≤

(
ρ0 + c

1 + ρ0c

)m(
1− ρ0c

ρ0 − c

)n

.
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It is easily seen that the RHS expression is less (or identical) to one for m = nε0 as
defined above. Hence, for m ≥ nε0, we successively have

ζ−m(ρ0)ζ+
n (ρ0) =

[
ζ−m(ρ0)/ζ−nε0(ρ0)

] [
ζ−nε0(ρ0)ζ+

n (ρ0)
]

≤ ζ−m(ρ0)/ζ−nε0(ρ0) ≤ ηm−nε0
0 .

Together with the above RHS minimization, this completes the proof.
In summary, in this section we have given exact quadrature formulas (5.7) for

the integral of BkBrBl if l > min(k, r). In the case where l ≤ min(k, r), we assume a
cyclic repetition of the ξk (Assumption 3), and then some error term D(k,r),l appears,
which has been bounded in subsequent lemmas. This bound depends on how well the
ξk are bounded away from the unit circle, which is measured by the paramater c from
Assumption 1.

Similar results were obtained for integrals of the form BkB−rBl, in which case a
distinction has to be made between k > min(l, r) and k ≤ min(l, r).

6. General Toeplitz matrix approximation. In this section, we consider
general Toeplitz matrices constructed by use of a 2π-periodic function f(ω). Such a
matrix was introduced in section 1 as

Mp(f) =
1

2π

∫ 2π

0

Γp(ω)f(ω)Γ∗
p(ω)dω.

With the help of the quadrature formulas derived in the preceding section, we shall
show that any general Toeplitz matrix can be approximated by the matrix ΥpFpΥ∗

p

of (1.9). Note that the eigenpairs of this matrix are precisely the orthonormal vectors
Γ̃p(ωi) with corresponding eigenvalue fp(ωi) (see definition (1.8)) for those particular
ω values ωi ∈ Ωp(θ) (defined in (4.2)) that were generalizations of the pth roots of
unity. The eigenvalue decomposition is in fact the quadrature formula (1.9), namely,

ΥpFpΥ∗
p =

p−1∑
i=0

Γ̃p(ωi)fp(ωi)Γ̃
∗
p(ωi).(6.1)

The approximation error is written as

∆p(f) = Mp(f)−ΥpFpΥ∗
p.

Its (k, l)-element is written as

[∆p(f)]k,l =
1

2π

∫ π

−π

Bk(ejω)f(ω)Bl(ejω)dω −
p−1∑
i=0

1

γp(ωi)
Bk(ejωi)fp(ωi)Bl(ejωi)

= −
p−1∑
r=0

(
arejθD(k,r),l + a−re−jθD(l,r),k

)
,(6.2)

where we have used the fact that Mp(ep) = 0 by the residue theorem (recall ep =
f − fp). So, it is seen that the closer the position of the ∆p(f)-elements to the top-
right and/or bottom-left corners of the matrix, the larger their modulus because of
the contribution of larger |D(k,r),l| terms.

Finally, for future use, let us upper bound the scalar quantities derived from the
error matrix ∆p(f). The following results hold.
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Lemma 16. Given expression (6.2) together with Lemma 15, we have that∣∣∣Γ̃∗
p(σ)∆p(f)Γ̃p(µ)

∣∣∣ ≤ K2
cKf,p/p for any σ, µ ∈ [0, 2π)(6.3)

as well as

‖∆p(f)‖F ≤ Kf,p and ‖∆p(f)Γ̃p(ω)‖2 ≤ KcKf,p/p
1/2 for ω ∈ [0, 2π),

where ‖.‖F denotes the Frobenius norm operator while

Kf,p = 2Kc

p−1∑
r=0

K0(r) max(|ar|, |a−r|)

with K0(r) = [r2(ε0 − 1) + (2r + 1)/(1− η0)].
Proof. First, we write∣∣∣Γ̃∗

p(σ)∆p(f)Γ̃p(µ)
∣∣∣ ≤∑

k,l

∣∣∣[Γ̃∗
p(σ)

]
k

[∆p(f)]k,l

[
Γ̃p(µ)

]
l

∣∣∣
≤ max

ω,l

∣∣Bl(ejω)
∣∣2

γp(ω)

∑
k,l

∣∣∣[∆p(f)]k,l

∣∣∣ ≤ K2
cKf,p

p
,

where Kf,p is evaluated as follows:

∑
k,l

∣∣∣[∆p(f)]k,l

∣∣∣ ≤ p−1∑
r=0

ãr

∑
k,l

(|D(k,r),l|+ |D(l,r),k|
) ≤ 2

p−1∑
r=0

ãr

∑
k,l

|D(k,r),l|

≤ 2Kc

p−1∑
r=0

K0(r)ãr =: Kf,p,

where ãr = max(|ar|, |a−r|). This last expression has been obtained by taking ad-
vantage of Figure 5.1 in order to evaluate the contribution of the nonzero elements
D(k,r),l. It is found that

∑
k,l

|D(k,r),l| =
r−1∑
l=0

p−1∑
k=l+1

|D(k,r),l|+
p−1∑
k=r

|D(k,r),r|+
r−1∑
l=0

|D(l,r),l|

≤
r−1∑
l=0


(p−1)−(r−l)∑

k=l+1

|D(k,r),l|+
p−1∑

k=(p−1)−(r−l)+1

|D(k,r),l|



+c β−1
c

[
1

1− η
+ rη(p−1)−r

]

≤ Kcr

[
r(ε0 − 1) +

1 + η0

1− η0

]
+ c β−1

c

[
1

1− η
+ rη(p−1)−r

]

≤ Kc

[
r2(ε0 − 1) +

2r + 1

1− η0

]
≤ KcK0(r),

where we have used Lemma 12 and the results in Lemma 15 as follows:

r−1∑
l=0

(p−1)−(r−l)∑
k=l+1

|D(k,r),l| ≤ Kc

r∑
n=1

(p−1)−(r−n)∑
m=n+1

η
m−min(m,nε0)
0
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≤ Kc

r∑
n=1


n(ε0 − 1) +

(p−1)−(r−n)∑
m=nε0+1

ηm−nε0
0




≤ Kc r

[
r + 1

2
(ε0 − 1) +

η0

1− η0

]

as well as

r−1∑
l=0

p−1∑
k=(p−1)−(r−l)+1

|D(k,r),l| ≤ Kc

r−1∑
n=0

r−1∑
m=n

η
m−min(m,nε0)
0

≤ Kc

r−1∑
n=0

[
n(ε0 − 1) +

r−1∑
m=nε0

ηm−nε0
0

]

≤ Kcr

[
r − 1

2
(ε0 − 1) +

1

1− η0

]
.

Similarly, it is easy to show that the Frobenius norm of ∆p(f) is readily upper bounded
by Kf,p as well as ∥∥∥∆p(f)Γ̃p(ω)

∥∥∥
2
≤ KcKf,p/p

1/2

so that the proof is completed.
Note that this lemma puts into light the dependence between the asymptotic (with

p) behavior of the upper bound Kf,p and the regularity of the underlying function
f(ω) that is traced in the convergence properties of the decomposition coefficients ar

and a−r (see Theorem 1).
It is also worth mentioning that the (polynomial) upper bound K0(r) depends on

the value of ρ0 ∈ [ρ∗, 1) on which a minimization could be performed.

7. General Toeplitz matrix functional. In the present section, we give a
proof of Theorem 4. So we consider evaluating quantities of the form

Γ̃∗
p(σ)Mp(f)Γ̃p(µ),

making use of the results obtained in the preceding sections. Therefore, we first choose
the reference phase θ of the Blaschke product ϕp(ejωi) so that the frequency point µ

belongs to Ωp(θ). In other words, we impose Γ̃p(µ) to be one of the column of the
related unitary matrix Υp.

Then, we immediately have that

Γ̃∗
p(σ)Mp(f)Γ̃p(µ) = fp(µ)Γ̃∗

p(σ)Γ̃p(µ) + Γ̃∗
p(σ)∆p(f)Γ̃p(µ),

where we have used the fact that [ΥpFpΥ∗
p]Γ̃p(µ) = fp(µ)Γ̃p(µ). With the help of the

upper bound (6.3), the last term in the RHS converges to zero like 1/p while the first
one is identical to f(µ) if σ = µ. If σ �= µ, this term decreases like 1/p by use of the
result derived in Lemma 8. More generally, we can derive the following result.

Lemma 17. Let Assumptions 1 and 2 hold. Then

lim
p→∞ Γ̃∗

p(σ)T (Mp(f))Γ̃p(µ) =

{
T (f(µ)), if σ = µ,
0, otherwise,

(7.1)
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where T (·) is an analytic function (i.e., having convergent Taylor expansion) on the
range of f(ω). The convergence rate to the limiting value is at least as fast as 1/p for
σ = µ and as ln p/p in the other cases.
Proof. First, we look for the nth term in the Taylor expansion of T (x), say

Tnx
n/n!. Therefore, we consider Mn

p (f) := [Mp(f)]n and fn
p (µ) := [fp(µ)]n and show

that Γ̃∗
p(σ)Mn

p (f)Γ̃p(µ) converges to fn
p (µ)Γ̃∗

p(σ)Γ̃p(µ). Indeed, we have that∣∣∣Γ̃∗
p(σ)

(
Mn

p (f)− fn
p (µ)Ip

)
Γ̃p(µ)

∣∣∣
=
∣∣∣Γ̃∗

p(σ)
((

ΥpFpΥ∗
p + ∆p(f)

)n −ΥpF
n
p Υ∗

p

)
Γ̃p(µ)

∣∣∣
≤

p−1∑
i=0

|αp,i|
∣∣∣Γ̃∗

p(ωi)
(

(ΥpFpΥ∗
p + ∆p(f))n −ΥpF

n
p Υ∗

p

)
Γ̃p(µ)

∣∣∣
≤

p−1∑
i=0

|αp,i|
[
n‖Fp‖n−1

2

∣∣∣Γ̃∗
p(ωi)∆p(f)Γ̃p(µ)

∣∣∣
+

n∑
k=2

Cn
k ‖Fp‖n−k

2 ‖∆p(f)‖k−2
2 ‖∆∗

p(f)Γ̃p(ωi)‖2‖∆p(f)Γ̃p(µ)‖2
]

≤ (K2
c /p)

[
(fp,+ + Kf,p)n − fn

p,+

] p−1∑
i=0

|αp,i|,

where Ip denotes the p-dimensional identity matrix, fp,+ = maxω |fp(ω)| and αp,i =

Γ̃∗
p(σ)Γ̃p(ωi) while Cn

k = n!/k!(n − k)! is the binomial function. For bounding the
contribution of the αp,i’s, we used the results of section 4: namely, the 1-norm of the
αp,i sequence is identical to one for σ = µ and diverges at most like ln p in the other
cases. By use of the results in Lemma 16 together with Theorem 1 under Assumption
2, it is easily shown that the term Kf,p has bounded limiting values for increasing p.
Putting the Taylor expansion terms together, we obtain that

Γ̃∗
p(σ)T (Mp(f))Γ̃p(µ) =

{
T (fp(µ)) + O(1/p), if σ = µ,
O(ln p/p), otherwise.

Finally, as per Assumption 2, the approximation function fp(ω) uniformly converges to
f(ω) for unbounded p (see Corollary 2), so does T (fp(ω)) to T (f(ω)). This completes
the proof.

It can also be shown that

lim
p→∞ Γ̃∗

p(σ)Mp(f)Mp(g)Γ̃p(µ) =

{
f(µ)g(µ), if σ = µ,
0, otherwise,

where g(ω) is a 2π-periodic function satisfying Assumption 2 and for which we define
a diagonal matrix Gp and a residual matrix ∆p(g) having the same properties as those
related to the function f(ω). This is done as follows:∣∣∣Γ̃∗

p(σ)
(
Mp(f)Mp(g)− fp(µ)gp(µ)

)
Γ̃p(µ)

∣∣∣
≤
∣∣∣Γ̃∗

p(σ)
((

ΥpFpΥ∗
p + ∆p(f)

) (
ΥpGpΥ∗

p + ∆p(g)
)−ΥpFpGpΥ∗

p

)
Γ̃p(µ)

∣∣∣
≤ (K2

c /p)

[
Kg,pfp,+

p−1∑
i=0

|αp,i|+ Kf,pgp,+ + Kf,pKg,p

]
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with the convergence rate at least as fast as 1/p when σ = µ and as ln p/p in the
other cases. Note that this last expression is not symmetric with respect to f and g.
The reason for this is that µ ∈ Ωp(θ) while nothing similar has been assumed for σ;
see also [14, section 5].

Finally, the more general result of Theorem 4 follows easily. It should now be
clear that

lim
p→∞ Γ̃∗

p(σ)T
(
Mp(f [1]), . . . ,Mp(f [n])

)
Γ̃p(µ) =

{
T
(
f [1], . . . , f [n]

)
(µ), if σ = µ,

0, otherwise,

where T (·) is a multivariable analytic function on the range of the functions f [i](ω)
satisfying Assumption 2. The same remark holds for the convergence rate to the
limiting values.

8. General Toeplitz matrix spectrum. For what concerns the spectrum of
the general Toeplitz matrix Mp(f), it is possible to derive a result that stipulates that
the distribution of its eigenvalues is asymptotically (with p) given by the distribution
of those in the diagonal approximation matrix Fp. Remember that these diagonal
elements are eigenvalues which are values of the underlying function fp(ω) for appro-
priate frequency points ωi. Furthermore, a closed form expression can be derived for
the asymptotic distribution of these particular values fp(ωi). Here, we assume that
the function f(ω) is not only 2π-periodic but also positive real-valued. We now give
the proof of Theorem 5.
Proof of Theorem 5. This result is obtained using the same arguments as for the

case of equivalent Toeplitz matrices (see Grenander and Szegő [11, Chap. 5]). Let us
expose it in some detail.

First, we denote the ith (in any order) eigenvalue of any Hermitian matrix X by
λi(X). Then, it can be written that

1

p

p−1∑
i=0

λi (Mp(f)) =
1

p
tr
(
Υ∗

pMp(f)Υp

)
=

1

p

[
p−1∑
i=0

fp(ωi) + tr
(
Υ∗

p∆p(f)Υp

)]

=

p−1∑
i=0

fp(ωi)

p
+ O

(
1

p

)
,

where we have used results from the preceding section for bounding the contributions
of the error matrix ∆p(f), i.e., p|Γ̃∗

p(ω)∆p(f)Γ̃p(ω)| ≤ K2
cKf,p that is upper bounded

for all p under Assumption 2 (see Lemma 16 with Theorem 1).
Furthermore, such an expression also holds for any analytic function of the eigen-

values, i.e.,

1

p

p−1∑
i=0

T (λi (Mp(f))) =

p−1∑
i=0

T (fp(ωi))

p
+ O

(
1

p

)
,(8.1)

where T (·) is analytic over the interval [fp,−, fp,+] = [minω f(ω),maxω f(ω)]. In fact,
by Weierstrass–Stone’s theorem (see, e.g., Gray [10]), this result can be extended to
any continuous function over the interval [fp,−, fp,+].

Now, let us write this result in a more convenient way. Therefore, remember from
section 4 that the frequency point ωi corresponds to χ−1

p (θ − i2π) where θ ∈ [0, 2π)
denotes the reference phase taken for the Blaschke product. This implies that

p−1∑
i=0

T (f(ωi))

p
=

1

2π

p−1∑
i=0

T

(
fp

(
χ−1
p

(
p

[
θ

p
− i∆

])))
∆,
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where ∆ = 2π/p. This expression is obviously the discretization of the following
integral:

1

2π

∫ θ/p

θ/p−2π

T
(
fp
(
χ−1
p (pω)

))
dω.

By continuity of the functions involved and the uniform convergence of the approx-
imation fp(ω) to f(ω) for unbounded p (see Corollary 2 under Assumption 2), we
finally end up with an asymptotic expression of the distribution of the eigenvalues of
the general Toeplitz matrix Mp(f). It is written as

lim
p→∞

1

p

p−1∑
i=0

T (λi (Mp(f))) =
1

2π

∫ 2π

0

T
(
f
(
χ̃−1 (ω)

))
dω,

where χ̃(ω) satisfies χ̃−1(ω) = limp→∞ χ−1
p (pω) (see section 4).
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EXISTENCE FOR SHAPE OPTIMIZATION PROBLEMS IN
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Abstract. We discuss some existence results for optimal design problems governed by second
order elliptic equations with the homogeneous Neumann boundary conditions or with the interior
transmission conditions. We show that our continuity hypotheses for the unknown boundaries yield
the compactness of the associated characteristic functions, which, in turn, guarantees convergence
of any minimizing sequences for the first problem. In the second case, weaker assumptions of mea-
surability type are shown to be sufficient for the existence of the optimal material distribution. We
impose no restriction on the dimension of the underlying Euclidean space.

Key words. uniform segment property, compactness, existence of optimal shapers

AMS subject classifications. 49D37, 65K10
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1. Introduction. In this paper, we study existence for two shape optimization
problems. The first is the following optimal shape design problem:

(SONB) min
Ω∈O

∫
Ω

(y − yd)2 dx(1.1)

−∆y + y = f, ∂y
∂n
|∂Ω = 0,(1.2)

where O is a class of admissible open sets inside a fixed open set D in Rm, and
f, yd ∈ L2(D).

The second problem is the following material distribution design problem:

(SOTB) min
Ω∈O

∫
E∩Ω

|y1 − zd|2 dx+
∫
E∩(D\Ω)

|y2 − zd|2 dx(1.3)

−a1∆y1 + b1y1 = f in Ω,(1.4)

−a2∆y2 + b2y2 = f in D \ Ω,(1.5)

a1
∂y1
∂n

= a2
∂y2
∂n
, y1 = y2 in ∂Ω \ (∂Ω ∩ ∂D),(1.6)

ai
∂yi
∂n

= 0 in Γ1, yi = 0 in Γ2, i = 1, 2,(1.7)

where E ⊂ D are two given bounded domains in Rm, Γ1∪Γ2 = ∂D with Γ1∩Γ2 = ∅,
zd ∈ L2(E), and O is a class of admissible open sets inside D. The details of the
above two problems will be specified in sections 3 and 4.

It is well known that, in general, such shape optimization problems have no
solutions without assuming further regularity conditions on the boundaries of the
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domain classes; see Pironneau [20] for some counterexamples. Assuming the cone
property on O uniformly, for example, one can prove that the above optimal shape
design problem indeed has solutions; see Chenais [6] and Pironneau [20] for the details.
Furthermore, much effort has been devoted in the scientific literature to the relaxation
of the regularity conditions required for the boundaries of the unknown domains in
optimal design problems. This question is discussed in detail in the monographs
by Pironneau [20], Haslinger and Neittaanmäki [8], Sokolowski and Zolesio [21], and
Tiba [24], for instance. As the range of optimal design problems is very wide, including
as well control into coefficients problems, optimization of certain evolution systems,
some problems originating in mechanics, etc., there is a rich variety of existence results
of interest. We quote here just the recent papers by Sverak [23], Bucur and Zolesio
[4, 3, 5], and Henrot [9], where the question of the dependence of solutions of elliptic
equations on the underlying domain of definition is discussed in a general setting
and various sufficient compactness conditions are introduced. However, a complete
solution of the problem seems not to be known, to our knowledge.

In this work, we first prove existence for the above optimal shape design prob-
lem governed by the Neumann boundary value problems, under the mere assumption
that the unknown open sets are of class C (or, equivalently, they have the segment
property—see Maz’ja [17] and Adams [1]) with some uniformity with respect to the
parameters—see section 3 for the details. Our conditions allow cusps or certain oscil-
lations of the boundaries, but cracks or oscillations dense in a set of positive measure
(in the sense of Hausdorff–Pompeiu) are not permitted. Then, in section 4, it is shown
that, for the material distribution problem, i.e., in the transmission boundary value
problems, much weaker assumptions of measurability type are sufficient to obtain
existence of the optimal sets. Moreover, all of our results are valid in any space di-
mension. This is an advantage over much of the existing literature, where very often
the case of space dimension two is studied.

The approach that we are using is described in detail in section 2 and has its
origin in our previous works—Liu [13], Liu and Rubio [15], Mäkinen, Neittaanmäki,
and Tiba [16], and Neittaanmäki and Tiba [19]. Roughly speaking, we replace the
extension technique for passing to the limit in the PDEs defined in a sequence of
open sets by a local convergence analysis (see Lemma 3.2 and its proof). For set
convergence, we introduce a concept of parametric convergence, which can be easily
adapted to various possible representations of open sets and preserves some needed
properties. As an example, the Hausdorff–Pompeiu convergence is a special case of the
parametric convergence, choosing a certain distance function as the parametric rep-
resentation. Notice that this is essentially different from the one used by Sverak [23];
see Proposition 2.5 and the subsequent remark.

It is recognized in the scientific literature that the a.e. convergence of the corre-
sponding characteristic functions is an essential step in any convergence result for the
PDEs defined in a sequence of open sets. Our treatment of this question, appearing
mainly in sections 2 and 4, is based on a new technique using the maximal monotone
extension of the Heaviside mapping in R×R and the closure properties of monotone
operators. We also propose, in this setting, a new approximation procedure for the
characteristic functions by means of the Yosida approximation and of the Friedrichs
mollifiers. In this respect, we point out the constructive character of our method.
Some numerical experiments together with an approximation result are reported in
Mäkinen, Neittaanmäki, and Tiba [16].

Finally, we mention that, in the recent paper by Sprekels and Tiba [22], some
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design problems, which are formulated as control into coefficients problems, are dis-
cussed. It is shown (by different methods) that the boundedness of the coefficients
is sufficient to prove existence. An announcement of some of the results from the
present work was published in Liu, Neittaanmäki, and Tiba [14] without proofs.

2. Convergence of open sets and of mappings. Let A,B be two open sets
contained in the bounded domain D of Rm, m ∈ N . The distance δ between A and B
is defined by

ρ(A,B) = sup
x∈D̄−A

inf
y∈D̄−B

‖x− y‖Rm ,(2.1)

δ(A,B) = max{ρ(A,B), ρ(B,A)},(2.2)

and it is the Hausdorff–Pompeiu distance between the closed sets D̄ \ A and D̄ \ B;
see Pironneau [20] and Kuratowski [11]. We shall denote by Hlim the limit in the
sense of Hausdorff–Pompeiu.

Another frequently used distance notion is

µ(A,B) = meas[(A \B) ∪ (B \A)],(2.3)

defined by the Lebesgue measure of the symmetric set difference between A and B;
see Hewitt and Stromberg [10, p. 144]. It should be noted that µ coincides with the
well-known Ekeland metric in L∞(D) applied to characteristic functions:

dE(χA, χB) = meas{x ∈ D | χA(x) �= χB(x)} = µ(A,B).(2.4)

Relations (2.3), (2.4) are defined up to sets of measure zero. Without supplementary
regularity assumptions on the boundaries of the sets, there is no connection between
δ and µ. For instance, let S(0, 1) be the closed unit ball in Rm. Add n (closed) rays
of length 2, starting from the origin, into the ball such that the union of the rays is
dense in S(0, 2) as n→∞, and denote the resulting (closed) sets by An. Then

Hlim(An) = S(0, 2) for n→∞,(2.5)

µ(An, S(0, 1))→ 0 for n→∞.(2.6)

In Chenais [6], it was proved that, for uniformly Lipschitz domains, convergence in
the metric (2.2) yields convergence in the metric (2.4) with the same limit (up to a
set with zero measure).

Let us now introduce the mappings dΩ : D̄ → R, based on the Euclidean distance
functions associated with the domain Ω and its complementary:

dΩ(x) =



dist(x, D̄ \ Ω) if x ∈ Ω,
0 if x ∈ ∂Ω,
−dist(x,Ω) if x ∈ D̄ \ Ω.

(2.7)

The mapping dΩ is uniformly Lipschitzian in D̄ for any open subset Ω ⊂ D̄;
see Clarke [7]. Let Ωn ⊂ D be a sequence of open sets, not necessarily connected.
Let dn = dΩn be the associated mappings via (2.7). By the Ascoli theorem, on a

subsequence again denoted by n, we have dn → d̂ uniformly in D̄. However, d̂ is
not necessarily a function of the same type since, in general, the Hlim’s of Ωn and
of D̄ \ Ωn may be not complementary to each other (see the above example with the
sets An). Let Ω̂ = {x ∈ D | d̂(x) > 0} (possibly void).
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Proposition 2.1.

Ω̂ = D \Hlim(D̄ \ Ωn).

Proof. Let x ∈ D\Hlim(D̄\Ωn) so that x /∈ Hlim(D̄\Ωn). Then limn→∞ dist(x, D̄\
Ωn) > 0. Thus limn→∞ dn(x) > 0; i.e., x ∈ Ω̂.

Conversely, assume that x ∈ Ω̂ and x /∈ D \ Hlim(D̄ \ Ωn). Then d̂(x) > 0,

and x ∈ Hlim(D̄ \ Ωn). That is, d̂(x) > 0, and there are xn ∈ D̄ \ Ωn such that
xn → x. This means that d̂(x) > 0, dn(xn) ≤ 0, and xn → x. By the uniform

convergence, we have d̂(x) > 0 and d̂(x) ≤ 0, which lead to a contradiction. It follows
that Ω̂ = D \Hlim(D̄ \ Ωn), which is the desired conclusion.

Remark. The above proposition shows that the well-known compactness property
of the Hausdorff–Pompeiu distance is a direct consequence of the Ascoli compactness
criteria. A variant of the mapping dΩ (identically zero outside Ω) was considered by
Sverak [23], who also proved a result similar to Proposition 2.1.

Proposition 2.2. If Hlim(D̄ \Ωn) = D̄ \ Ω̂, then, for any compact K ⊂ Ω̂, there
is an nK = n(K) ∈ N such that K ⊂ Ωn for n ≥ nK.

Proof. We use the same notation as in Proposition 2.1. Since d̂ is continuous
on D̄ and strictly positive on K, there is a cK > 0 such that

d̂(x) ≥ cK > 0 ∀x ∈ K.

By the uniform convergence, for n ≥ nK, we obtain dn(x) ≥ 1
2cK > 0 for all x ∈ K.

That is, K ⊂ Ωn for n ≥ nK, as required.
Remark. This property is called the Γ-property by Liu [13] and Liu and Rubio [15],

and it plays an essential role in the local convergence theory for the solutions of
PDEs defined in sequences of bounded domains. The same property is also proved
in Pironneau [20], by different methods, together with other domain convergence
results.

Definition 2.3. We say that the sequence of open sets Ωn ⊂ D is parametrically
convergent to the open set Ω̃ ⊂ D if there is a sequence of continuous mappings
pn : D̄ → R such that pn → p̃ uniformly in D̄ and

Ωn = {x ∈ D | pn(x) > 0},
D \ Ωn = {x ∈ D | pn(x) < 0},

Ω̃ = {x ∈ D | p̃(x) > 0},
D \ Ω̃ = {x ∈ D | p̃(x) < 0}.

We denote the limit by Ω̃ = p− limΩn.
Remark. The “parametrization” pn associated with the domain Ωn is not unique,

and the distance mapping dn is just one example. The p-limit and the convergence
properties depend on the parametrization. If it is different from the function dΩ, then
the convergence may differ from the Hausdorff–Pompeiu convergence. For instance,
we choose p̌ : R→ R by

p̌(x) =



−(x− 1)2 + 1

2 , x ≥ 1
2 ,

x2, |x| ≤ 1
2 ,

−(x+ 1)2 + 1
2 , x ≤ − 1

2 ,
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and we rotate its graph to define a continuous mapping p : R2 → R. Take pn : R
2 →

R, pn(x) = p(x) +
1
n . Then the corresponding domains are Ωn = {x ∈ R2 | |x|R2 <

1 +
√

n+2
2n } and Ω = {x ∈ R2 | 0 < |x|R2 < 1 + 1√

2
}. Notice that Ω is nonsmooth,

Ω = p − limΩn, and Ω̄ �= Hlim Ω̄n. If p̌ is zero around x = 0 on some interval, then
p− limΩn will be a circular crown, etc. By taking sup(pn, pk) or inf(pn, pk), one can
easily “parametrize” Ωn ∪ Ωk or Ωn ∩ Ωk.

Proposition 2.4. The parametric convergence has the Γ-property for any pa-
rametrization.

Proof. This is similar to the proof of Proposition 2.2.

Remark. It is possible to weaken the conditions in Definition 2.3 by replacing the
uniform convergence with other types of functional convergence for the mapping pn.
This will be used in section 4 (see Theorem 4.1 and its subsequent remarks).

Proposition 2.5. If Ω = p− limΩn and the closed set C = {x ∈ D̄ | p̃(x) = 0}
has zero measure, then χΩn → χΩ a.e. in D.

Proof. If x ∈ Ω, then p̃(x) > 0 so that pn(x) > 0 for n ≥ nx (depending on x).
Thus χΩn(x) = χΩ(x) = 1 for n ≥ nx. If x ∈ D \ Ω, then p̃(x) < 0 and pn(x) < 0 for
n ≥ nx; i.e., x ∈ D \ Ωn for n ≥ nx. Consequently, χΩn

(x) = χΩ(x) = 0 for n ≥ nx.
As the set C has zero measure, we get that χΩn(x)→ χΩ(x) a.e. in D.

Remark. The family of distance-type mappings used by Sverak [23] does not
satisfy this property.

Definition 2.6. Assume that Ω = p− limΩn, and let yn ∈ H1(Ωn) be such that
{|yn|H1(Ωn)} is bounded. We say that {yn} is locally convergent to y ∈ H1(Ω), and
we write y = L− lim yn if, for any G ⊂⊂ Ω (open set compactly embedded in Ω), we
have

yn|G −→ y|G weakly in H1(G).(2.8)

Remark. This definition is motivated by Proposition 2.4. The limit mapping y is
uniquely determined. The convergence in (2.8) is also valid in L2(G) strongly for any
G ⊂⊂ Ω.

Theorem 2.7 (compactness). Assume Ω = p − limΩn. Suppose that yn ∈
H1(Ωn) and |yn|H1(Ωn) is uniformly bounded. Then there are a y ∈ H1(Ω) and a
subsequence still denoted by yn such that y = L− lim yn.

Proof. Take a sequence Gj ⊂⊂ Ω such that Gj ⊂ Gj+1 and
⋃
Gj = Ω. For each j,

we take subsequences (one after another and all denoted by n) such that yn|Gj −→ yj

weakly in H1(Gj). We define y on Ω by y(x) = y
j(x) a.e. x ∈ Gj , which is possible by

the properties of {Gj}j∈N . Clearly, y ∈ L2(Ω) since |yn|L2(Gj) is uniformly bounded

with respect to n and j. Consider any ϕ ∈ D(Ω). There is a j0 such that ϕ ∈ D(Gj)
for all j ≥ j0. Therefore,∫

Gj

∇yϕ =
∫

Ω

∇yϕ = −
∫

Ω

y∇ϕ = −
∫
Gj

yj∇ϕ =
∫
Gj

∇yjϕ.

This yields that ∇y = ∇yj in Gj for all j ≥ j0. As |yj |H1(Gj) is bounded with
respect to j, we obtain that ∇y ∈ L2(Ω)m; i.e., y ∈ H1(Ω). Relation (2.8) then
follows, and the proof is completed.

Theorem 2.8 (lower semicontinuity). If l : Rm ×R×Rm → R is nonnegative
and measurable, l(x, ·, ·) is continuous on R × Rm, l(x, s, ·) is convex on Rm, and
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Ω = p− limΩn, then∫
Ω

l(x, y,∇y) dx ≤ lim inf
n→∞

∫
Ωn

l(x, yn,∇yn) dx(2.9)

provided that y = L− lim yn.
Proof. Let {Gj} be selected as in the previous proof. Then we have χGj → χΩ

a.e. in D. For any fixed Gj , we have that yn → y weakly in H1(Gj), and we obtain∫
Gj

l(x, y,∇y) dx ≤ lim inf
n→∞

∫
Gj

l(x, yn,∇yn) dx

since weak lower semicontinuity is a well-known property of the convex integrals in
the fixed domains. Next, Fatou’s lemma gives∫

Ω

l(x, y,∇y) dx =
∫

Ω

lim
j→∞

χGj l(x, y,∇y) dx

≤ lim inf
j→∞

∫
Gj

l(x, y,∇y) dx

≤ lim inf
j→∞

lim inf
n→∞

∫
Ωn

l(x, yn,∇yn) dx

= lim inf
n→∞

∫
Ωn

l(x, yn,∇yn) dx.

The positivity of l is essential in the above proof.
Remark. Theorems 2.7 and 2.8 are variants or results previously proved by Liu

and Rubio [15] and Liu [13]. It should be noted that it is enough to assume the
Γ-property for the open sets Ωn and Ω to prove Theorems 2.7 and 2.8.

3. Equicontinuity. We consider the model problem (SONB). The problem is
formulated as

min
Ω

∫
Ω

(y − yd)2 dx,(3.1)

subject to the following variational equation with the homogeneous Neumann bound-
ary condition: ∫

Ω

∇y∇v +
∫

Ω

yv =

∫
Ω

fv ∀v ∈ H1(Ω),(3.2)

where Ω is a variable open set such that Ω ⊂ D with D being a fixed bounded open
set in Rm, and yd ∈ L2(D). For the admissible class of open sets denoted by O, we
require that they have the C-property (or, equivalently, the segment property) with
some uniform constants:
(H1) We consider a family F of equibounded and equiuniformly continuous func-

tions g : S(0, k) → R, with k > 0 fixed and S(0, k) ⊂ Rm−1 an open ball.
For any Ω ∈ O, there is a subset FΩ ⊂ F , and, for any g ∈ FΩ, we associate
an orthogonal system of axes of center og ∈ ∂Ω, “vertical” vector lg ∈ Rm of
unit length, and a rotation Rg in Rm such that lg = Rg(0, 0, . . . , 0, 1) and⋃

g∈FΩ

{Rg(s, 0) + og + g(s)lg | s ∈ S(0, k)} = ∂Ω.
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(H2) There is an a > 0 such that, for any Ω ∈ O and any g ∈ FΩ, the uniform
segment property is valid:

Rg(s, 0) + og + (g(s) + t)lg ∈ Rm \ Ω ∀s ∈ S(0, k), ∀t ∈ ]0, a[ ,
Rg(s, 0) + og + (g(s)− t)lg ∈ Ω ∀s ∈ S(0, k), ∀t ∈ ]0, a[ .

These two conditions represent the usual definition of boundaries of class C with
added uniformity assumptions. Notice that, due to the compactness of ∂Ω, it can be
covered by a finite number of local charts; therefore, both conditions are automatically
satisfied, and the only real requirement is the uniformity with respect to the whole
family O, which does not allow the local charts to shrink.

Our specific requirement is that there is a constant r ∈ ]0, k[ such that

(H3)
⋃
g∈FΩ

{Rg(s, 0) + og + g(s)lg | s ∈ S(0, r)} = ∂Ω

for any Ω ∈ O. This is a uniform restriction (or extension) property for the whole
family F of the local charts. It avoids, for instance, clustering of singularities (like
cusps) near the boundary of any local chart. Notice that, due to the finite numbers
of the local charts, a positive number 0 < rΩ < k can be found in each Ω with the
above property. We just assume that it can be chosen independent of Ω.

Example. Take g(x) = x
1
2 , x ∈ ]−α, α[, to be a local chart with Hölder regularity

for some domain in R2. In x = 0, we have a cusp, and the segment property is
fulfilled only by the vertical segments. Thus the segment choice for local charts with
cusps is unique, and only cusps with the same “axis” may belong to the same local
chart. Hypothesis (H3) requires, in particular, that cusps with different “axes” do
not cluster. In the common part (which cannot shrink) of neighboring local charts,
no cusp can occur.

Remark. In the counterexample of Pironneau [20], with infinitely many oscilla-
tions of the boundary in a rectangular region, all of the conditions in (H1)–(H3) are
fulfilled except the equicontinuity of the local charts. This shows the essential impor-
tance of this assumption, reflected by the title of the section. Examples of continuous
oscillating boundaries which are not even of class C may be found in the book by
Maz’ja [17]. It is also known that domains with cuts are not of class C. Notice, how-
ever, that our assumptions allow infinitely many oscillations with vanishing amplitude
(to preserve equicontinuity).

Theorem 3.1 (compactness and existence). Let {Ωn} be a minimizing sequence
of open sets for the problem (3.1) satisfying the assumptions (H1)–(H3). Then there

is an open set Ω̂ of class C which is a solution of the problem (3.1) and which satisfies
(H1)–(H3). Furthermore, χΩn → χΩ̂ a.e.

Proof. We may assume that D̄ is large enough to include Ωn and the seg-
ments defined in (H2). Denote by dn the distance-type functions introduced in (2.7)

corresponding to Ωn and by d̂ their uniform limit, d̂ ∈ C(D̄). Let Λ = {x ∈
D̄ | d̂(x) ≥ 0} be a closed set, which is clearly nonvoid. Take x̂ ∈ Λ such that

d̂(x) = 0. Then dn(x̂) → 0, by the definition of d̂. By the definition of dn, there
are xn ∈ ∂Ωn, xn → x̂ (and dn(xn) = 0). By (H3), there are gn ∈ FΩn such that
xn = Rgn(sn, 0) + ogn + gn(sn)lgn , dn(ogn) = 0, and sn ∈ S(0, r). Under our condi-
tions, we may assume that sn → ŝ ∈ S(0, r) and gn → ĝ uniformly in S(0, k), with

ĝ being continuous in D̄, Rgn → R̂, ogn → ô with d̂(ô) = 0, lgn → l̂ as matrices or
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vectors (since all are bounded) with R̂(0, 0, . . . , 0, 1) = l̂, and |l̂| = 1. We have
x̂ = limxn = lim(Rgn(sn, 0) + ogn + gn(sn)lgn) = R̂(ŝ, 0) + ô+ ĝ(ŝ)l̂,(3.3)

dn(Rgn(s, 0) + ogn + gn(s)lgn)→ d̂(R̂(s, 0) + ô+ ĝ(s)l̂) = 0 ∀s ∈ S(0, k).(3.4)

We show the segment property.
Take any ε ∈ ]0, a[, and consider the point R̂(s, 0) + ô + (ĝ(s) − ε)l̂ ∈ Rm.

We have that Rgn(s, 0) + ogn + (gn(s) − ε)lgn → R̂(s, 0) + ô + (ĝ(s) − ε)l̂; that is,
R̂(s, 0) + ô+ (ĝ(s)− ε)l̂ ∈ D̄ for s ∈ S(0, k). As Rgn(s, 0) + ogn + (gn(s)− ε)lgn ∈ Ωn
by (H2), we have dn(Rgn(s, 0) + ogn + (gn(s) − ε)lgn) > 0 for s ∈ S(0, k), ε ∈ ]0, a[,
n ≥ 1. It follows that d̂(R̂(s, 0) + ô + (ĝ(s) − ε)l̂) ≥ 0 for s ∈ S(0, k), ε ∈ ]0, a[; i.e.,
(R̂(s, 0) + ô+ (ĝ(s)− ε)l̂) ∈ Λ for such values of the parameters s, ε.

For the outside segment property, a sharper estimate is needed. By the equicon-
tinuity of gn, there is an δ > 0 (depending only on ε and independent of s ∈ S(0, k)
or n ∈ N) such that

|gn(t)− gn(s)| < ε

2
∀n, ∀t ∈ S(s, δ) ∩ S(0, k).(3.5)

Then, for ε < 2
3a, we get

dist[Rgn(s, 0) + ogn + (gn(s) + ε)lgn , ∂Ωn](3.6)

≥ min
{
ε

2
, δ, a− 3

2
ε,dist(s, ∂S(0, k)

}
.

Here we use the uniform outside segment property for Ωn, i.e., Rgn(s, 0) + ogn +
(gn(s) + ε)lgn ∈ D \ Ωn, for all s ∈ S(0, k) and for all ε ∈ ]0, a[. The inequality (3.6)
comes from (3.5), which simply says that the cylinder [S(0, k) ∩ S(s, δ)] × [gn(s) +
ε
2 , gn(s) + a − ε

2 ] after translation ogn and rotation Rgn cannot intersect ∂Ωn for
any n. And the right-hand side in (3.6) estimates from below the distance between
(s, gn(s) + ε) and the boundary of this cylinder. (This point is inside the cylinder for
ε < 2

3a.)
Then it yields

dn(Rgn(s, 0) + ogn + (gn(s) + ε)lgn) ≤ −min
{
ε

2
, δ, a− 3

2
ε,dist(s, ∂S(0, k))

}
.(3.7)

Inequality (3.7) is independent of n, and we can take the limit, by the uniform con-
vergence, to obtain

d̂(R̂(s, 0) + ô+ (ĝ(s) + ε)l̂) ≤ −min
{
ε

2
, δ, a− 3

2
ε,dist(s, ∂S(0, k))

}
;(3.8)

that is, d̂(R̂(s, 0) + ô + (ĝ(s) + ε)l̂) < 0 for all s ∈ S(0, k) and for all ε ∈ ]0, 2
3a
[
,

and, consequently, (R̂(s, 0) + ô + (ĝ(s) + ε)l̂) /∈ Λ for these values of the parameters
s, ε. By choosing a smaller δ > 0, if necessary, we can replace ε

2 by
ε
l , l ∈ N , and 3

2ε

by l+1
l ε in inequalities (3.5)–(3.8). Finally, we have that R̂(s, 0) + ô+ (ĝ(s) + ε)l̂ /∈ Λ

for s ∈ S(0, k) and ε ∈ ]0, a[.
Notice that estimates like (3.8) can also be obtained for d̂(R̂(s, 0)+ ô+(ĝ(s)−ε)l̂),

s ∈ S(0, k), ε ∈ ]0, a[, with the reversed sign. Then
Ω̂ = {x ∈ D | d̂(x) > 0} = intΛ(3.9)
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is a nonvoid open subset of D. The above argument shows that ∂Ω̂ = {x ∈ D | d̂(x) =
0} is of class C and satisfies (H1)–(H3) with the same constants a, r, k and the same
modulus of continuity.

By Proposition 2.1, we see that Ω̂ = D \ Hlim(D̄ \ Ωn) (and Ω̂ = p − limΩn),
which proves the compactness of the family O.

Let us also remark that, by Proposition 2.5, we have χΩn → χΩ̂ a.e. in D, and,
by the Lebesgue theorem, this convergence is valid in any Lq(D), q ≥ 1. Here we also
use the fact that ∂Ω̂ = {x ∈ D | d̂(x) = 0} has zero measure in Rm since it can be
represented as a finite union of graphs of continuous functions.

The fact that Ω̂ is a solution of the problem (3.1) follows from the subsequent
lemma and Theorem 2.8.

Lemma 3.2. Let yn, ŷ denote the unique solutions of (3.2) associated with Ωn, Ω̂.
Then ŷ = L− lim yn on a subsequence.

Proof. Clearly, yn ∈ H1(Ωn), ŷ ∈ H1(Ω̂), and {|yn|H1(Ωn)} is bounded. By
Proposition 2.4, for any open set G ⊂⊂ Ω̂, there are nG such that G ⊂ Ωn, n ≥ nG.
We have ∫

G

(∇yn∇v + ynv)−
∫
D

χΩnfv =

∫
Ωn\G

(∇yn∇v + ynv) ∀v ∈ C1(D̄).(3.10)

We can estimate∣∣∣∣
∫

Ωn\G
(∇yn∇v + ynv)

∣∣∣∣ ≤ |v|C1(D̄)|yn|H1(Ωn)µ(Ωn −G) 1
2 .(3.11)

Taking the limit n→∞ in (3.11), we have that (3.10) yields∣∣∣∣
∫
G

∇ỹ∇v +
∫
G

ỹv −
∫

Ω̂

fv

∣∣∣∣ ≤M |v|C1(D̄)µ(Ω̂−G)
1
2(3.12)

(due to the convergence of the characteristic functions of Ωn), where ỹ denotes the
L-limit of yn given by Theorem 2.7. We can take an increasing sequence of open sets
Gj ⊂⊂ Ω̂ such that ∪Gj = Ω̂ and (3.12) gives∫

Ω̂

∇ỹ∇v +
∫

Ω̂

ỹv =

∫
Ω̂

fv ∀v ∈ C1(D̄).(3.13)

Since Ω̂ has the segment property, C1(D̄) is dense in H1(Ω̂) (see Adams [1]) and
(3.13) shows that ỹ = ŷ. This ends the proof.

The semicontinuity result from Theorem 2.8 ensures that Ω̂ is the desired mini-
mizer for (3.1).

Remark. The above proof does not use the uniform extension property for func-
tions in H1(Ω). We replace it by a density property, which is, in fact, an approximate
extension result. This is one of the reasons that we can renounce the cone property
for ∂Ω and use the segment property instead. A more general cost functional, as
in (2.9), may be considered in the problem (3.1).

Remark. If we impose uniform Hölder conditions for the family O, the limit do-
main will satisfy a similar Hölder property. In this case, trace theorems are known
(see, e.g., Ladyzenskaya and Uraltseva [12], Pironneau [20]), and the result of Theo-
rem 3.1 can be then extended to Dirichlet boundary value problems.
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Example. A special simple case of the family O is obtained when global represen-
tations are given by

O1 = {Ωg | g ∈ F1},
Ωg = {(s, λ) ∈ D | λ < g(s)},

where D = U×]0, b[, U ⊂ Rm−1 open domain, and F1 = {g : U → R+ | 0 < c ≤ g ≤ b
in U}.

By Theorem 3.1, one can immediately prove the following corollary.
Corollary 3.3. Assume that the family F1 is equicontinuous. Then the asso-

ciated problem (3.1) has at least one solution in O1.
Proof. We indicate a direct argument. The family F1 is equibounded by definition.

We take a minimizing sequence of domains Ωn associated with gn. We may assume
that gn → ĝ uniformly in U and, clearly, ĝ ∈ F1. Here it is possible to define the
continuous mappings on D̄, pn(s, λ) = gn(s) − λ, p̂(s, λ) = ĝ(s) − λ, and pn → p̂

uniformly; Ωn = {(s, λ) ∈ D | pn(s, λ) > 0), Ω̂ = {(s, λ) ∈ D | p̂(s, λ) > 0}. Finally,
Ω̂ = p − limΩn, and the results of section 2 may be used directly to end the proof
without using the distance functions.

Remark. Another family of domains of interest may be obtained by considering
a domain D ⊂ Rm such that D ⊃ B(0, 1) (the unit ball) and then defining

O2 = {Ω ⊂ D | Ω = h(B(0, 1))},

where h : D → D is any homeomorphism, i.e., h and h−1 are continuous. This
would be a generalization of the mapping method of Murat and Simon [18], where
the mappings h were assumed diffeomorphisms.

If Ωh = hn(B) and hn → h, h−1
n → h−1 uniformly in D, and Ω = h(B), then

it is easy to see that these domains have the Γ-property, and simple representation
formulae are valid for Ω = hh−1

n (Ωn), ∂Ω = hh−1
n (∂Ωn). However, examples from

Maz’ja [17] show that, conceptually, ∂Ω may not be of class C even when ∂Ωn satisfies
this assumption. Also, the compactness of O2 is not clear.

Remark. The examples of the families O1 and O2 also indicate that the con-
cept of parametric convergence has enough flexibility to take into account various
representation methods of open sets.

4. Measurability. We consider the material distribution problem (SOTB). In
this case, it makes sense and is of interest to consider the case where the sets occupied
by each material are merely measurable.

We fix E ⊂ D to be two given bounded domains inRm and Ω ⊂ D to be a variable
measurable subset in some prescribed class O, occupied by one material, while D \Ω
is occupied by another material. Then the physical properties of the two regions are
different, and this is expressed by the fact that different coefficients appear in the
elliptic equations describing the problem, which (formally) read as

−a1∆y1 + b1y1 = f in Ω,(4.1)

−a2∆y2 + b2y2 = f in D \ Ω,(4.2)

a1
∂y1
∂n

= a2
∂y2
∂n
, y1 = y2 in ∂Ω \ (∂Ω ∩ ∂D),(4.3)

ai
∂yi
∂n

= 0 in Γ1, yi = 0 in Γ2, i = 1, 2,(4.4)
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where Γ1 ∪ Γ2 = ∂D is assumed Lipschitz, Γ1 ∩ Γ2 = ∅, ai, bi > 0, i = 1, 2, are some
constants, and f ∈ L2(D).

Let yΩ be defined by

yΩ(x) =

{
y1(x) in Ω,

y2(x) in D \ Ω.(4.5)

Then the weak formulation of the transmission problem (4.1)–(4.4) reads∫
D

{[a1χΩ + a2(1− χΩ)]∇yΩ · ∇w + [b1χΩ + b2(1− χΩ)]yΩw} dx

=

∫
D

fw dx ∀w ∈ V,(4.6)

V = {w ∈ H1(D) | w = 0 in Γ2}.(4.7)

For any measurable subset Ω ⊂ D, the bilinear form governing (4.6) is bounded
and coercive in V , and there exists a unique solution yΩ ∈ V , which formally satisfies
relations (4.1)–(4.5).

In Pironneau [20], by directly interpreting the characteristic function χΩ as a
control parameter, the following optimization problem is discussed:

min
Ω∈O

∫
E

|yΩ − zd|2 dx,(4.8)

subject to (4.6) and with some prescribed zd ∈ L2(E). However, it is very difficult
to impose the constraint that the control should take only the values 0 and 1 in the
whole D.

Our approach is to specify the set O of admissible Ω by requiring that χΩ is of
the form H(pΩ), where pΩ ∈ Uad (some admissible set of mappings will be defined
later), and H ⊂ R×R is the maximal monotone extension of the Heaviside function:

H(p) =



1, p > 0,

[0, 1], p = 0,

0, p < 0.

(4.9)

Notice that by taking, for instance, pΩ = χΩ, we have representations via H for any
measurable Ω. If meas(∂Ω) = 0, then we may take pΩ = dΩ, which is even Lipschitzian
in D.

For the optimization problem (4.8), we define the class of admissible sets Ω by
χΩ = H(pΩ), where pΩ ∈ Uad ⊂ H1

loc(D), and p ∈ Uad iff

|p|H1+θK (K) ≤MK ∀K ⊂⊂ D, θK > 0,(4.10)

|p(x)|+ |∇p(x)|Rm ≥ ν > 0 a.e. in D.(4.11)

If meas(∂Ω) = 0, the mappings dΩ satisfy (4.11) (see Clarke [7, p. 66]) but do not
satisfy (4.10) in general.

Conversely, the condition (4.11) ensures that the set

{x ∈ D | p(x) = 0}(4.12)

has zero measure for p ∈ H1
loc(D); see Brezis [2, p. 195].
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Remark. Under some stronger smoothness assumptions, condition (4.11) ensures
the application of the implicit function theorem and a characterization of the “bound-
ary” given by {x ∈ D | p(x) = 0}. However, our regularity hypotheses are so weak
that even the implicit theorem in Clarke [7, p. 255] for Lipschitzian mappings cannot
be applied. The only properties that we have are (4.12) and the measurability of Ω’s,
which are, in fact, defined up to sets of zero measure. Notice, as well, that the local
character of (4.10) allows oscillations of ∂Ω, even under the smoothness assumptions.

We reformulate the problem (4.6)–(4.8) as follows:

min
p∈Uad

∫
E

|yp − zd|2 dx,(4.13) ∫
D

{[a1H(p) + a2(1−H(p))]∇yp∇w + [b1H(p)

+ b2(1−H(p))]ypw} dx =
∫
D

fw dx ∀w ∈ V.(4.14)

Theorem 4.1. Under the hypotheses (4.10)–(4.11), the problem (4.13)–(4.14)
has at least one optimal pair [ȳ, p̄] ∈ V × Uad .

Proof. Obviously, Uad �= ∅ (as constant functions are in Uad), and we may consider
a minimizing sequence [yn, pn] ⊂ V × Uad . By taking an increasing sequence of open
sets Kl ⊂ D such that ∪Kl = D, and by the compactness of {pn|Kl

} in H1(Kl), we
may define p ∈ Uad such that pn → p strongly in H1(Kl) for all l ∈ N , pn → p, and
∇pn → ∇p a.e. in D.

Since a1H(pn)+a2(1−H(pn)) ≥ ct > 0 and b1H(pn)+b2(1−H(pn)) ≥ ct > 0, it
is easy to infer that {yn} is bounded in V ⊂ H1(D), and we may assume that yn → y
weakly in H1(D) on a subsequence.

Obviously, H(pn) is bounded in L
∞(D); therefore, we may also assume that

H(pn)→ H(p) weakly star in L∞(D). The identification of the limit is a consequence
of the demiclosedness of the maximal monotone operator H, applied in L2(K)×L2(K)
for any K ⊂⊂ D. Notice that, by p ∈ Uad and by (4.12), it follows that H(p) is a
characteristic function in D.

We also have that H(pn) → H(p) a.e. in D. We know that pn(x) → p(x) �= 0
a.e. in D. If p(x) > 0, then pn(x) > 0 for n ≥ nx and H(pn(x)) = H(p(x)) = 1
for n ≥ nx. If p(x) < 0, similarly, we obtain H(pn(x)) = H(p(x)) = 0 for n ≥ nx.
Consequently, we get that H(pn) → H(p) strongly in Ls(D) for all s ≥ 1 by the
Lebesgue dominated convergence theorem.

As [yn, pn] satisfies (4.14), the above convergence allows to take the limit and
to see that [y, p] also satisfies (4.14) and p ∈ Uad ; i.e., the pair [y, p] is admissible.
Moreover, for the minimizing sequence, we have

lim
n→∞

∫
E

|yn − zd|2 dx =
∫
E

|y − zd|2 dx,

which shows that the pair [y, p] is optimal for the problem (4.13), (4.14), and we
redenote it by [ȳ, p̄].

Remark. The above argument remains valid for any weakly lower semicontinu-
ous cost functional on H1(D)—for instance, for boundary cost functionals. Other
boundary conditions may be imposed on ∂D as well.

It is possible to impose (4.10) only for K ⊂⊂ D \ C, where C ⊂ D is a given
closed set of zero measure. This allows cracks in the corresponding ∂Ω’s; see Bucur
and Zolesio [3].
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Remark. Considering the measurable sets Ωn = {x ∈ D | pn(x) > 0}, the
proof of Theorem 4.1 uses a property of parametric convergence for Ωn based on
a.e. convergence in D of pn and ∇pn, and a variant of Definition 2.3.

We continue by describing an approximation procedure which is suggested by our
approach to characteristic functions. We denote by Hε the Yosida approximation
of H, given in this case by

Hε(p) =



1, p > ε,
p
ε , p ∈ [0, ε],
0, p < 0.

(4.15)

Notice that Hε is Lipschitzian with Lipschitz constant
1
ε . The approximation of the

optimization problem (4.13), (4.14) is obtained by replacing (4.14) with∫
D

{[a1Hε(p) + a2(1−Hε(p))]∇yεp∇w + [b1Hε(p) + b2(1−Hε(p))]yεpw} dx(4.14’)

=

∫
D

fw dx ∀w ∈ V.

By a variant of Theorem 4.1, we have existence of at least one optimal pair [yε, pε] ∈
H1(D)× Uad for the problem (4.13), (4.14’).

Theorem 4.2. For any open set K ⊂⊂ D, we have [yε, pε]→ [ŷ, p̂] in the weak-
strong topology of H1(D)×H1(K) on a subsequence, and [ŷ, p̂] is an optimal pair for
the problem (4.13), (4.14).

Proof. By (4.10), we have pε → p̂ strongly in H1(K) on a subsequence, and
pε → p̂, ∇pε → ∇p̂ a.e. in D for some p̂ ∈ Uad . As 1 ≥ Hε(p) ≥ 0 a.e. in D, we
also obtain that {yε} is bounded in H1(D) by fixing w = yε in (4.14’). We may
assume that yε → ŷ weakly in H1(D) on a subsequence. Moreover, it is known from
the theory of maximal monotone operators that Hε(pε)→ H(p̂) weakly in L2(K) for
any K ⊂⊂ D since {Hε(pε)} is bounded in L∞(D) and pε → p̂ strongly in L2(K),
for instance. By the fact that p̂ ∈ Uad and by (4.12), (4.9), we know that H(p̂) is a
characteristic function in D. We can also prove the pointwise convergence of Hε(pε)
a.e. in D. If p̂(x) > 0, then pε(x) >

1
2 p̂(x) for ε < εx; that is, pε(x) > ε for ε < εx

and Hε(pε(x)) = H(p̂(x)) = 1 by (4.15). If p̂(x) < 0, then pε(x) < 0 for ε < εx
and Hε(pε(x)) = H(p̂(x)) = 0 for ε < εx. These two situations are valid a.e. in D
by p̂ ∈ Uad and (4.12). Combining these with the Lebesgue theorem, we obtain that
Hε(pε)→ H(p̂) strongly in Ls(D) for all s ≥ 1. Then we can take the limit in (4.14’)
and infer that the pair [ŷ, p̂] is admissible for the problem (4.13), (4.14). To show that
it is optimal, we note that∫

E

|yε − zd|2 dx ≤
∫
E

|yεp − zd|2 dx,(4.16)

where yεp denotes the solution of (4.14’) corresponding to some p ∈ Uad . By an
argument of the same type as above, we can prove that yεp → yp weakly in H

1(D) on
a subsequence, where yp is the solution of (4.14) associated with p. Taking the limit
in (4.16) yields the optimality of [ŷ, p̂] in the problem (4.13)–(4.14) and completes the
proof.

Corollary 4.3. On a subsequence, we have

yε → ŷ strongly in H1(D),(4.17)
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where ŷ is some optimal state for the problem (4.13)–(4.14).

Proof. There is a constant c > 0 such that

c |yε − ŷ|2H1(D) ≤
∫
D

[a1Hε(pε) + a2(1−Hε(pε))]|∇(yε − ŷ)|2Rm dx

+

∫
D

[b1Hε(pε) + b2(1−Hε(pε))](yε − ŷ)2 dx

=

∫
D

{[a1Hε(pε) + a2(1−Hε(pε))]∇yε∇(yε − ŷ)
+ [b1Hε(pε) + b2(1−Hε(pε))]yε(yε − ŷ)} dx

−
∫
D

{[a1Hε(pε) + a2(1−Hε(pε))]∇ŷ∇(yε − ŷ))
+ [b1Hε(pε) + b2(1−Hε(pε))]ŷ(yε − ŷ)} dx

=

∫
D

f(yε − ŷ) dx−
∫
D

{[a1Hε(pε)
+ a2(1−Hε(pε))]∇ŷ∇(yε − ŷ))
+ [b1Hε(pε) + b2(1−Hε(pε))]ŷ(yε − ŷ)} dx

= I1 + I2.

(4.18)

By Theorem 4.2, we may assume that I1 → 0 on a sequence as ε→ 0. For I2, we first
estimate the term

∫
D

[a1Hε(pε) + a2(1−Hε(pε))]∇ŷ∇(yε − ŷ) dx,(4.19)

which is the most difficult. We know that ∇ŷ∇(yε − ŷ) is weakly convergent in
L1(D) and the coefficients a1Hε(pε) + a2(1 − Hε(pε)) are bounded in L∞(D) and
strongly convergent in Ls(D) for all s ≥ 1. On a subsequence, we may assume that
[a1Hε(pε)+a2(1−Hε(pε))]∇(yε− ŷ)→ u weakly in L2(D)m. Egorov’s theorem gives
that a1Hε(pε) + a2(1 − Hε(pε)) → a1H(p̂) + a2(1 − H(p̂)) uniformly in Dδ for any
δ > 0 and some measurable subset Dδ ⊂ D with meas(D −Dδ) < δ. Combining this
with ∇(yε− ŷ)→ 0 weakly in L2(D), we have that u = 0 a.e. in D. Then the limit of
the integral (4.19) is zero, and the same is true, by a similar reasoning, for I2. Finally,
(4.18) has limit zero, and this achieves the proof.

Remark. It is possible to further smooth Hε by means of a Friedrichs mollifier
and to compute the gradient of the smoothed cost functional (4.13) with respect to
p ∈ Uad . This shows the constructive character of our approach presented in this
paper. Numerical tests for the problem in this section were reported in Mäkinen,
Neittaanmäki, and Tiba [16] together with an approximation result.

Remark. In Pironneau [20, p. 134], it is mentioned that, by taking a2 → 0, b2 → 0
in (4.14), the Neumann boundary value is approximated. Therefore, the results of this
section may open a way to relax the continuity assumptions from section 3. A similar
idea is possible for Dirichlet boundary value problems, which could be obtained by
taking a2 →∞, b2 →∞. The hypotheses under which such passages to the limit can
be performed are not clear yet.



1454 W. B. LIU, P. NEITTAANMÄKI, AND D. TIBA
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Abstract. The paper is concerned with patchy vector fields, a class of discontinuous, piecewise
smooth vector fields that were introduced by the authors to study feedback stabilization problems.
We prove the stability of the corresponding solution set w.r.t. a wide class of impulsive perturbations.
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1. Introduction and basic notation. The aim of this paper is to establish
the stability of the set of trajectories of a patchy vector field w.r.t. various types of
perturbations and the robustness of patchy feedback controls.

Patchy vector fields were introduced in [A-B] in order to study feedback sta-
bilization problems. The underlying motivation is the following: The analysis of
stabilization problems by means of Lyapunov functions usually leads to stabilizing
feedbacks with a wild set of discontinuities. On the other hand, as shown in [A-B],
by patching together open-loop controls one can always construct a piecewise smooth
stabilizing feedback whose discontinuities have a very simple structure. In particular,
one can develop the whole theory by studying the corresponding discontinuous ODEs
within the classical framework of Carathéodory solutions. We recall here the main
definitions.

Definition 1.1. By a patch we mean a pair
(
Ω, g

)
, where Ω ⊂ R

n is an open
domain with smooth boundary ∂Ω and g is a smooth vector field defined on a neigh-
borhood of the closure Ω, which points strictly inward at each boundary point x ∈ ∂Ω.

Calling n(x) the outer normal at the boundary point x, we thus require〈
g(x), n(x)

〉
< 0 for all x ∈ ∂Ω.(1.1)

Definition 1.2. We say that g : Ω �→ R
n is a patchy vector field on the open

domain Ω if there exists a family of patches
{
(Ωα, gα); α ∈ A} such that

• A is a totally ordered set of indices;
• the open sets Ωα form a locally finite covering of Ω, i.e., Ω = ∪α∈AΩα and

every compact set K ⊂ R
n intersect only a finite number of domains Ωα, α ∈ A;

• the vector field g can be written in the form

g(x) = gα(x) if x ∈ Ωα \
⋃
β>α

Ωβ .(1.2)
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By setting

α∗(x) .= max
{
α ∈ A ; x ∈ Ωα

}
,(1.3)

we can write (1.2) in the equivalent form

g(x) = g
α∗(x)

(x) for all x ∈ Ω.(1.4)

Remark 1.1. The patches (Ωα, gα) are not uniquely determined by the patchy
vector field g. Indeed, whenever α < β, by (1.2) the values of gα on the set Ωα ∩ Ωβ

are irrelevant. Therefore, if the open sets Ωα form a locally finite covering of Ω and
we assume that, for each α ∈ A, the vector field gα satisfies (1.1) at every point
x ∈ ∂Ωα \

⋃
β>αΩβ , then the vector field g defined according with (1.2) is again a

patchy vector field. To see this, it suffices to construct vector fields g̃α which satisfy
the inward-pointing property (1.1) at every point x ∈ ∂Ωα and such that g̃α = gα
on Ωα\

⋃
β>αΩβ . To accomplish this, for each α we first consider a smooth vector field

vα such that vα(x) = −n(x) on ∂ Ωα. Then we construct a smooth scalar function
ψα : Ω �→ [0, 1] such that

ψα(x) =

{
1 if x ∈ Ωα \

⋃
β>αΩβ ,

0 if x ∈ ∂Ωα,
〈
g(x), n(x)

〉 ≥ 0.

Finally, for each α ∈ A we define the interpolation

g̃α(x)
.
= ψα(x)gα(x) +

(
1− ψα(x)

)
vα(x).

The vector fields g̃α thus defined satisfy our requirements.
We shall occasionally adopt the longer notation

(
Ω, g, (Ωα, gα)α∈A

)
to indicate

a patchy vector field, specifying both the domain and the single patches. If g is a
patchy vector field, the differential equation

ẋ = g(x)(1.5)

has many interesting properties. In particular, in [A-B] it was proved that the set of
Carathéodory solutions of (1.5) is closed in the topology of uniform convergence but
possibly not connected. Moreover, given an initial condition

x(t0) = x0,(1.6)

the Cauchy problem (1.5)–(1.6) has at least one forward solution and at most one
backward solution. For every Carathéodory solution x = x(t) of (1.5), the map
t �→ α∗(x(t)) is left continuous and nondecreasing.

In this paper we study the stability of the solution set for (1.5) w.r.t. various
perturbations. Most of our analysis will be concerned with impulsive perturbations,
described by

ẏ = g(y) + ẇ.(1.7)

Here w = w(t) is any left continuous function with bounded variation. By a solution
of the perturbed system (1.7) with an initial condition

y(t0) = y0,(1.8)
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we mean a measurable function t �→ y(t) such that

y(t) = y0 +

∫ t

t0

g
(
y(s)

)
ds+

[
w(t)− w(t0)

]
(1.9)

(see [B1]). If w(·) is discontinuous, the system (1.7) has impulsive behavior and the
solution y(·) will be discontinuous as well. We choose to work with (1.7) because
it provides a simple and general framework to study robustness properties. Indeed,
consider a system with both inner and outer perturbations of the form

ẋ = g
(
x+ e1(t)

)
+ e2(t).(1.10)

The map t �→ y(t)
.
= x(t) + e1(t) then satisfies the impulsive equation

ẏ = g(y) + e2(t) + ė1(t) = g(y) + ẇ,

where

w(t) = e1(t) +

∫ t

t0

e2(s) ds.

Therefore, from the stability of solutions of (1.7) w.r.t. perturbations w that have small
total variation, one can immediately deduce a result on the stability of solutions of
(1.10), when Tot.Var.{e1} and ‖e2‖L1 are suitably small. Here, Tot.Var.{e1} denotes
the total variation of the function e1 over the whole interval where it is defined,
while Tot.Var.

{
e1 ; J

}
denotes the total variation of e1 over a subset J . We shall also

denote by BV the space of all functions of bounded variation. Any function of bounded
variation w = w(t) can be redefined up to L1-equivalence. For the sake of definiteness,
throughout the paper we shall always consider left continuous representatives, so that
w(t) = w(t−)

.
= lims→t− w(s) for every t. The Lebesgue measure of a Borel set J ⊂ R

will be denoted by meas(J).
We observe that since the Cauchy problem for (1.5) does not have forward unique-

ness and continuous dependence, one clearly cannot expect that a single solution of
(1.5) be stable under small perturbations. What we establish here is a different sta-
bility property, involving not a single trajectory but the whole solution set: If the
perturbation w is small in the BV norm, then every solution of (1.7) is close to some
solution of (1.5). This is essentially an upper semicontinuity property of the solution
set. Namely, we will prove in section 2 the following results.

Theorem 1.3. Let g be a patchy vector field on an open domain Ω ⊂ R
n.

Consider a sequence of solutions yν(·) of the perturbed system
ẏν = g(yν) + ẇν , t ∈ [0, T ],(1.11)

with Tot.Var.{wν} → 0 as ν → ∞. If the yν : [0, T ] �→ Ω converge to a function
y : [0, T ] �→ Ω, uniformly on [0, T ], then y(·) is a Carathéodory solution of (1.5)
on [0, T ].

Corollary 1.4. Let g be a patchy vector field on an open domain Ω ⊂ R
n.

Given any closed subset A ⊂ Ω, any compact set K ⊂ A, and any T, ε > 0, there
exists δ = δ(A,K, T, ε) > 0 such that the following holds. If y : [0, T ] �→ A is a
solution of the perturbed system (1.7), with y(0) ∈ K and Tot.Var.{w} < δ, then
there exists a solution x : [0, T ] �→ Ω of the unperturbed equation (1.5) with∥∥x− y∥∥

L∞([0,T ])
< ε .(1.12)
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We remark that the type of stability described above is precisely what is needed
in many feedback control applications. As an example, consider the problem of sta-
bilizing to the origin the control system

ẋ = f(x, u).(1.13)

Given a compact set K and ε > 0, assume that there exists a piecewise constant
feedback u = U(x) such that g(x)

.
= f

(
x, U(x)

)
is a patchy vector field and such that

every solution of (1.5) starting from a point x(0) ∈ K is steered inside the ball Bε
centered at the origin with radius ε, within a time T > 0. By Corollary 1.4, if the
perturbation w is sufficiently small (in the BV norm), every solution of the perturbed
system (1.7) will be steered inside the ball B2ε within time T . In other words, the
feedback still performs well in the presence of small perturbations. Applications to
feedback control will be discussed in more detail in section 3.

Throughout the paper, by B(x, r) we denote the closed ball centered at x with
radius r and, for every given set A, we let B(A, r)

.
= ∪x∈AB(x, r). The closure, the

interior, and the boundary of a set Ω are written as Ω,
◦→ Ω and ∂Ω, respectively.

2. Stability of patchy vector fields. We begin by proving a local existence
result for solutions of the perturbed system (1.7).

Proposition 2.1. Let g be a patchy vector field on an open domain Ω ⊂ R
n.

Given any compact set K ⊂ Ω, there exists χ = χK > 0 such that, for each y0 ∈
K, t0 ∈ R, and for every Lipschitz continuous function w = w(t), with Lipschitz
constant ‖ẇ‖L∞ < χ, the Cauchy problem (1.7)–(1.8) has at least one local forward
solution.

Proof. Fix some compact subset K ′ ⊂ Ω whose interior contains K. To prove
the local existence of a forward solution to (1.7), first observe that because of the
inward-pointing condition (1.1) and the smoothness assumptions on the vector fields
gα, one can find for any α ∈ A some constant χα > 0 such that

sup
x∈∂Ωα∩K′

|v|≤χα

〈
gα(x) + v, nα(x)

〉
< 0,(2.1)

where nα(x) is the outer normal to ∂Ωα at the boundary point x. Since K ′ is a
compact set and {Ωα}α is a locally finite covering of Ω, there will be only finitely
many elements of {Ωα}α that intersect K ′. Let{

α1, . . . , αN
}
=
{
α ∈ A : Ωα ∩K ′ �= ∅},(2.2)

and, by possibly renaming the indices αi, assume that

α1 < · · · < αN .(2.3)

Choose a constant χ > 0 such that

χ ≤ inf
{
χαi

: i = 1, . . . , N
}
.(2.4)

For any fixed y0 ∈ K, consider the index

α̂(y0)
.
= max

{
α : y0 ∈ Ωα

}
.

By the definition of χ, any solution y = y(·) to the Cauchy problem

ẏ = gα̂(y) + ẇ, y(t0) = y0,
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associated to a piecewise Lipschitz map w = w(t) with ‖ẇ‖L∞ < χ, remains inside
Ωα̂ for all t ∈ [t0, t0 + δ] for some δ > 0. Hence, it provides also a solution to (1.6) on
some interval [t0, t0 + δ′], 0 < δ′ ≤ δ.

Toward a proof of Theorem 1.3, we first derive an intermediate result. By the
basic properties of a patchy vector field, for every solution t �→ x(t) of (1.5) the
corresponding map t �→ α∗(x(t)) in (1.3) is nondecreasing. Roughly speaking, a
trajectory can move from a patch Ωα to another patch Ωβ only if α < β. This
property no longer holds in the presence of an impulsive perturbation. However, the
next proposition shows that for a solution y of (1.7) the corresponding map t �→
α∗(y(t)) is still nondecreasing, after a possible modification on a small set of times.
Alternatively, one can slightly modify the impulsive perturbation w, say replacing it
by another perturbation w♦, such that the map t �→ α∗(y♦(t)

)
is monotone along the

corresponding trajectory t �→ y♦(t).

Proposition 2.2. Let g be a patchy vector field on an open domain Ω ⊂ R
n

determined by the family of patches
{
(Ωα, gα); α ∈ A

}
. For any T > 0 and any

compact set K ⊂ Ω, there exist constants C, δ > 0 and an integer N such that the
following hold.

(i) For every w ∈ BV with Tot.Var.{w} < δ, and for every solution y : [0, T ] �→ Ω
of the Cauchy problem (1.7)–(1.8) with y0 ∈ K, there is a partition of [0, T ],
0 = τ1 ≤ τ2 ≤ · · · ≤ τN+1 = T, and indices

α1 < α2 < · · · < αN(2.5)

such that

α∗(y(t)) ≥ αi for all t ∈ ]τi, τi+1], i = 0, . . . , N,(2.6)

meas
( ⋃
i≥0

{
t ∈ [τi, τi+1] : α∗(y(t)) > αi

})
< C · Tot.Var.{w}.(2.7)

(ii) For every BV function w = w(t) with Tot.Var.{w} < δ, and for every solution
y : [0, T ] �→ Ω of the Cauchy problem (1.7)–(1.8) with y0 ∈ K, there is a BV
function w♦ = w♦(t) and a solution y♦ : [0, T ] �→ Ω of

ẏ♦ = g(y♦) + ẇ♦(2.8)

so that the map t �→ α∗(y♦(t)) is nondecreasing and left continuous, and there
holds

Tot.Var.{w♦} ≤ C · Tot.Var.{w},∥∥y♦ − y∥∥
L∞([0,T ])

≤ C · Tot.Var.{w}.
(2.9)

Proof. (i) The proof of (i) will be given in three steps.

Step 1. Since each gα is a smooth vector field and we are assuming a uniform
bound on the total variation of every perturbation w = w(t), there will be some
compact subset K ′ ⊂ Ω that contains every solution y : [0, T ] �→ Ω of (1.7) starting
at a point y0 ∈ K. We will assume without loss of generality that every domain Ωα

is bounded since, otherwise, one can replace Ωα with its intersection Ωα ∩ Ω′ with a
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bounded domain Ω′ ⊂ Ω that contains K ′, preserving the inward-pointing condition
(1.1) (cf. Remark 1.1). For each α ∈ A, define the map ϕα : Ω �→ R by setting

ϕα(x)
.
=

{
d(x, ∂Ωα) if x ∈ Ωα,

−d(x, ∂Ωα) otherwise,
(2.10)

and let

ϕ+
α (x)

.
= max{ϕα(x), 0}

denote the positive part of ϕα(x). The regularity assumptions on the patch (Ωα, gα)
guarantee that ϕα is smooth if restricted to a sufficiently small neighborhood of the
boundary ∂Ωα. Thus, if {Ωαi

: i = 1, . . . , N} denotes the finite collection of domains
that intersect the compact set K ′ as in (2.2)–(2.3), there will be some constant ρ > 0
so that, setting

Ωρ
α
.
=
{
x ∈ Ω : d(x, ∂Ωα) ≥ ρ

}
,(2.11)

the restriction of any map ϕαi to the domain Ω \ Ωρ
αi

will be smooth. In particular,
for any i = 1, . . . , N, we will have

∇ϕαi(x) = −nαi

(
παi(x)

)
for all x ∈ Ω \ Ωρ

αi
,(2.12)

where nαi
represents as usual the outer normal to ∂Ωαi , while παi

(x) denotes the
projection of the point x onto the set ∂Ωαi . On the other hand, thanks to the inward-
pointing condition (1.1), we can choose the constant ρ so that

sup
i=1,...,N

x∈Ωαi
\Ωρ

αi

〈
gαi(x), nαi

(παi(x))
〉 ≤ −c′(2.13)

for some c′ > 0. Moreover, the smoothness of the fields gα on Ω implies the existence
of some c′′ > 0 such that

sup
i=1,...,N,j>i

x∈Ωαi

∣∣∣〈gαj
(x), nαi

(παi
(x))

〉∣∣∣ ≤ c′′.(2.14)

Step 2. Consider now a left continuous BV function w = w(t) and let y : [0, T ] �→
Ω be a solution of the corresponding Cauchy problem (1.7)–(1.8), with y0 ∈ K.
Observe that, for any i = 1, . . . , N, and for any interval J ⊂ [0, T ] such that

y(t) ∈ Ω \ Ωρ
αi

for all t ∈ J,

the composed map ϕ+
αi
◦ y : J �→ R is also a left continuous BV function whose distri-

butional derivative µi
.
= D(ϕ+

αi
◦y) is a Radon measure, which can be decomposed into

an absolutely continuous µaci and a singular part µsi w.r.t. the Lebesgue measure dt.
One can easily verify that for any Borel set E ⊂ J , the absolutely continuous part of
µi is given by

µaci (E) =

∫
E+

〈∇ϕαi(y(t)), g(y(t)) + ẇ(t)
〉
dt, E+ .

= {t ∈ E ; y(t) ∈ Ωαi}.
(2.15)
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Moreover, calling µacw and µsw, respectively, the absolutely continuous and the singular
part of µw

.
= ẇ, the following bounds hold:∣∣∣∣
∫
E+

〈∇ϕαi
(y(t)), ẇ(t)

〉
dt+ µsi (E)

∣∣∣∣ ≤ c′′′ · {∣∣µacw (E)
∣∣+ ∣∣µsw(E)

∣∣}
≤ c′′′ · Tot.Var.{w}(2.16)

for some constant c′′′ > 0 that depends only on the compact set K ′ and on the time
interval [0, T ]. Let Ci, *i, i = N,N − 1, . . . , 1, be the constants recursively defined by

CN
.
= 1 + c′′′, *N

.
=

2CN
c′
,(2.17)

Ci
.
= c′′ · *i+1 +

N∑
j=i+1

Cj , *i
.
=

1

c′


2Ci + c

′′ ·
N∑

j=i+1

*j


 if i < N.(2.18)

Lemma 2.3. Assume that

Tot.Var.{w} < δ .= ρ

2C1
,(2.19)

and assume that there exists some interval [t1, t2] ⊂ [0, T ] and some index i ∈
{1, . . . , N} such that

meas
{
t ∈ [t1, t2] : α∗(y(t)) = αj

} ≤ *j · Tot.Var.{w} for all j > i(2.20i)

together with one of the following two conditions:
(a)i

ϕαi
(y(t)) < 2Ci · Tot.Var.{w} for all t ∈ [t1, t2],(2.21i)

meas
{
t ∈ [t1, t2] : α∗(y(t)) = αi

}
> *i · Tot.Var.{w}.(2.22i)

(b)i There exists τ ∈ [t1, t2] such that

ϕαi(y(τ)) ≥ 2Ci · Tot.Var.{w}.(2.23i)

Then one has

ϕαi(y(t2)) ≥ Ci · Tot.Var.{w}.(2.24i)

Proof of Lemma 2.3. Observe first that the recursive definition (2.17)–(2.18) of
the constants Ci, *i and the bound (2.19) clearly imply

Ci ≥ 1 + c′′′ + c′′ ·
N∑

j=i+1

*j ,(2.25)

2Ci · Tot.Var.{w} < ρ.(2.26)
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Assume now that (2.20i)–(2.22i) hold. Then, using (2.13)–(2.16) and recalling (2.25)–
(2.26), we obtain

ϕ+
αi
(y(t2)) ≥ ϕ+

αi
(y(t1)) +

∫
{t∈[t1,t2] : α∗(t)=αi}

〈∇ϕαi
(y(t)), gαi

(y(t))
〉
dt

−
N∑

j=i+1

∫
{t∈[t1,t2] : α∗(t)=αj}

∣∣∣〈∇ϕαi(y(t)), gαj (y(t))
〉∣∣∣ dt− c′′′ · Tot.Var.{w}

≥
∫
{t∈[t1,t2] : α∗(t)=αi}

−〈nαi
(παi(y(t))), gαi(y(t))

〉
dt

−
(
c′′ ·

N∑
j=i+1

*j + c
′′′
)
· Tot.Var.{w}

≥
(
*i · c′ − c′′ ·

N∑
j=i+1

*j − c′′′
)
· Tot.Var.{w}

≥ Ci · Tot.Var.{w},(2.27)

proving (2.24i). Next, assume that (2.20i) and (2.23i) hold, and let

τ ′ .= sup
{
t ∈ [t1, t2] : ϕαi

(y(t)) > 2Ci · Tot.Var.{w}}.(2.28)

Clearly, the bound (2.24i) is satisfied if τ ′ = t2 since the map ϕαi
is left continuous.

Next, consider the case τ ′ < t2. By computations similar to those in (2.27), using
(2.13)–(2.16), and thanks to (2.20i), (2.25)–(2.26), we get

ϕ+
αi
(y(t2)) ≥ ϕ+

αi
(y(τ ′)) +

∫
{t∈[τ ′,t2] : α∗(t)=αi}

〈∇ϕαi
(y(t)), gαi

(y(t))
〉
dt

−
N∑

j=i+1

∫
{t∈[τ ′,t2] : α∗(t)=αj}

∣∣∣〈∇ϕαi
(y(t)), gαj

(y(t))
〉∣∣∣ dt− c′′′ · Tot.Var.{w}

≥

2Ci − 1− c′′′ − c′′ ·

N∑
j=i+1

*j


 · Tot.Var.{w}

≥ Ci · Tot.Var.{w},(2.29)

thus concluding the proof of Lemma 2.3.

Step 3. Assume that the bound (2.19) on the total variation of w = w(t) holds.
Set τ1 = 0, τ

N+1

.
= T, and define recursively the points τN , τN−1, . . . , τ2 by setting, for

every 1 < i ≤ N ,

Ti .=
{
t ∈ [0, τi+1] : ϕαi(y(s)) ≥ Ci · Tot.Var.{w} for all s ∈ [t, τi+1]

}
,

τi
.
=

{
inf Ti if Ti �= ∅,
τi+1 if Ti = ∅.

(2.30i)

Applying Lemma 2.3 and proceeding by backward induction on i = N,N − 1, . . . , 2,
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we show now that for any t < τi, i = 2, . . . , N, one has

meas
{
s ∈ [0, t] : α∗(y(s)) = αi

} ≤ *i · Tot.Var.{w},
ϕαi(y(t)) < 2Ci · Tot.Var.{w}.

(2.31i)

Indeed, if (2.31i) is not satisfied, one of the two conditions (a)N or (b)N must be true
on some interval [0, t ], t < τN . But then, by (2.24)N , we have

ϕαN
(y(s)) ≥ CN · Tot.Var.{w} for all s ∈ [ t, T ],

which contradicts the definition (2.30i). On the other hand, if we assume that (2.31)j
holds for j = i + 1, . . . , N but not for j = i, then one of the two conditions (a)i or
(b)i must be true on some interval [0, t ], t < τi. Moreover, the inductive assumptions
(2.31)j , j > i, imply (2.20i) and hence, as above, thanks to (2.24i), we get

ϕαi(y(s)) ≥ Ci · Tot.Var.{w} for all s ∈ [t, T ],

reaching a contradiction with the definition (2.30i).
To conclude the proof of property (i) stated in Proposition 2.2, observe that,

thanks to (2.31i), i = 2, . . . , N, we have

meas
{
s ∈ [τi, τi+1] : α∗(y(s)) > αi

} ≤

∑

j>i

*j


 · Tot.Var.{w} for all i ≥ 1.

(2.32)

Therefore, recalling the definitions of the map ϕαi at (2.10), taking δ as in (2.19),
and

C > (N + 1) ·
N∑
j=1

*j ,(2.33)

from (2.31i) and (2.32) we deduce that the partition τ1 = 0 ≤ τ2 ≤ · · · ≤ τN+1 = T
of [0, T ], defined at (2.30i), satisfies the properties (2.5)–(2.7).

(ii) Concerning (ii), let C, δ > 0 be the constants defined according to (i) and,
given a BV function w = w(t) with Tot.Var.{w} < δ, and a solution y : [0, T ] �→ Ω
of the Cauchy problem (1.7)–(1.8) with y0 ∈ K, consider the partition 0 = τ1 ≤ τ2 ≤
· · · ≤ τN+1 = T, of [0, T ], with the properties in (i). Setting

τ ′i
.
= inf

{
t ∈ [τi, τi+1] : α∗(y(t)) = αi

}
, i = 1, . . . , N,

define the map

τ(t)
.
=




τ ′i if t ∈ ]τi, τ
′
i ],

sup
{
s ∈ [τ ′, t] : α∗(y(s)) = αi

}
if t ∈ ]τ ′i , τi+1]

(2.34)

over any interval ]τi, τi+1], i = 1, . . . , N. Notice that in the particular case where
α∗(y(t)) > αi for all t ∈ ]τi, τi+1], by the above definitions one has τ(t) = τ ′i = τi+1

for any t ∈ ]τi, τi+1]. Then let y♦ : [0, T ] �→ Ω be the map recursively defined by
setting

y♦(t)
.
= y(t) for all t ∈ ]τN , T ],(2.35)
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y♦(t)
.
=



y♦(τi+1+) if τ ′i = τi+1,

y(τ(t)+) if τ ′i < τi+1, α∗(y(τ(t))) > αi,

y(τ(t)) if τ ′i < τi+1, α∗(y(τ(t))) = αi,

for all t ∈ ]τi, τi+1], i < N,

(2.36)

y♦(0)
.
= y♦(0+),(2.37)

and let w♦ = w♦(t) be the function defined as

w♦(t)
.
= y♦(t)−

∫ t

0

g
(
y♦(s)

)
ds for all t ∈ [0, T ].(2.38)

Clearly y♦, w♦ are both BV functions as well as y, w. Moreover, y♦ is a solution of
the perturbed equation (2.8). By construction, for every 1 ≤ i ≤ N there holds

α∗(y♦(t)) =




αi if τ ′i < τi+1,

α∗(y♦(τ +
i+1

)) if τ ′i = τi+1,
for all t ∈ ]τi, τi+1].

(2.39)

Hence the map t �→ α∗(y♦(t)) is nonincreasing and left continuous. Next, recalling
(2.6) and observing that

α∗(y(t)) = αi =⇒
τ(t) = t,

y♦(t) = y(t),
for all t ∈ ]τi, τi+1](2.40)

and defining

I .=
⋃
i

{
t ∈ ]τi, τi+1] : α∗(y(t)) > αi

}
,(2.41)

we have

y(t) = y♦(t) for all t ∈ (0, T ) \ I.(2.42)

On the other hand, by the above definitions, calling M
.
= supy∈Ω |g(y)|, we derive∣∣τ(t)− t∣∣ ≤ meas(I) for all t ∈ I,(2.43)

∣∣y♦(t)− y(t)∣∣ ≤ ∫ t

τ(t)

∣∣g(y(s))∣∣ ds+ Tot.Var.
{
w ; [0, t]

}
≤M ·meas(I) + Tot.Var.{w} for all t ∈ I,(2.44)

and ∣∣∣Tot.Var.{y♦} − Tot.Var.{y}
∣∣∣ ≤ Tot.Var.

{
y ; I}

≤M ·meas(I) + Tot.Var.{w}.(2.45)
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Then, using (2.44)–(2.45), we obtain

∣∣∣Tot.Var.{w♦} − Tot.Var.{w}
∣∣∣ ≤ ∫

I

∣∣∣∣∣g(y♦(s)
)∣∣− ∣∣g(y(s))∣∣∣∣∣ ds

+
∣∣∣Tot.Var.{y♦} − Tot.Var.{y}

∣∣∣
≤M ′ ·

{
meas(I) + Tot.Var.{w}

}
(2.46)

for some constant M ′ > 0, depending only on the field g. Hence, from (2.42), (2.44),
(2.46), and applying (2.7), it follows that y♦(·) satisfies the estimates in (2.9) for some
constant C ′ > 0, which concludes the proof of (ii).

We can now take δ as in (2.19) and choose C > C ′ according to (2.33). Both
properties (i) and (ii) are then satisfied, completing the proof of Proposition 2.2.

Proof of Theorem 1.3. For a given sequence of solutions yν : [0, T ] �→ Ω of the
perturbed system (1.11) with Tot.Var.{wν} ≤ δν , δν → 0 as ν →∞, assume that the
yν(·) converge to a function y : [0, T ] �→ Ω uniformly on [0, T ] and that yν(0) belongs
to some compact set K ⊂ Ω for every ν. Thanks to property (ii) of Proposition 2.2,
in connection with any pair wν(·), yν(·), there will be a BV function w♦

ν (·) and a
solution y♦ν (·) of (2.8) that satisfy

Tot.Var.{w♦
ν } ≤ C ′ · δν ,

∥∥y♦ν − yν∥∥L∞([0,T ])
≤ C ′ · δν(2.47)

for some constant C ′ > 0 independent of ν. Moreover there exists a partition 0 =
τ
1,ν ≤ τ2,ν ≤ · · · ≤ τN+1,ν

= T of [0, T ] such that

α∗(y♦ν (t)) = αi for all t ∈ ]τ
i,ν
, τ

i+1,ν
], i = 1, . . . , N.(2.48)

Recalling (1.4) and (1.9), because of (2.48) we have

y♦ν (t) = y♦ν (0) +

i−1∑
�=1

∫ τ
	+1,ν

τ
	,ν

gα
	
(y♦ν (s)) ds +

∫ t

τ
i,ν

gαi
(y♦ν (s)) ds + [w♦

ν (t)− w♦
ν (0)]

for all t ∈ [τi,ν, τi+1,ν ], i = 1, . . . , N.(2.49)

By possibly taking a subsequence, we can assume that every sequence (τ
i,ν )ν≥1 con-

verges to some limit point, say

τ i
.
= lim

ν→∞ τi,ν , i = 1, . . . , N + 1.

We now observe that

]τ i, τ i+1[ ⊆
∞⋃
µ=1

∞⋂
ν=µ

]τi,ν , τi+1,ν ] for all i.

Moreover, the second inequality in (2.47) and the uniform convergence yν(·) → y(·)
yield

lim
ν→∞

∥∥y♦ν − y∥∥L∞([0,T ])
= 0.(2.50)
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From the first inequality in (2.47), and from (2.48)–(2.49), we now deduce

y(t) ∈ Ωαi \
⋃
β>αi

Ωβ ,

y(t) = y(0) +

i−1∑
�=1

∫ τ	+1

τ	

g
α
	
(y(s)) ds+

∫ t

τ i

gαi
(y(s)) ds

for all t ∈ ]τ i, τ i+1], for all i.

(2.51)

In particular, on each interval [τ i, τ i+1], the function y(·) is a classical solution of
ẏ = gαi(y) and satisfies

ẏ(s−) = gαi(y(s)) for all s ∈ ]τ i, τ i+1].

Moreover, observe that because of the inward-pointing condition (1.1), the set{
t ∈ [τ i, τ i+1] : y(t) ∈ ∂ Ωαi

}
is nowhere dense in [τ i, τ i+1]. Thus, if s is any

point in ]τ i, τ i+1] such that y(s) ∈ ∂ Ωαi , there will be some increasing sequence
(sn)n ⊂ ]τ i, τ i+1[ converging to s and such that y(sn) ∈ Ωαi

for any n. But this
yields a contradiction with (1.1), because

0 ≤ lim
n→∞

〈y(s)− y(sn)
s− sn , nαi

(
y(s)

)〉
=
〈
ẏ(s−), n(y(s))〉 =

〈
gαi

(
y(s)

)
, nαi

(
y(s)

)〉
.

Hence, recalling the definition (1.2), from (2.51) we conclude

y(t) ∈ Ωαi \
⋃
β>αi

Ωβ for all t ∈ ]τ i, τ i+1], i = 1, . . . , N,

y(t) = y(0) +

∫ t

0

g
(
y(s)

)
ds for all t ∈ [0, T ],

proving that y : [0, T ] �→ Ω is a Carathéodory solution of (1.5) on [0, T ].
Proof of Corollary 1.4. Assuming that statement is false, we shall reach a contra-

diction. Fix any closed subset A ⊂ Ω, any compact set K ⊂ A, and assume that, for
some T, ε > 0, there exists a sequence of solutions yν : [0, T ] �→ A of the perturbed
system (1.7), with yν(0) ∈ K, Tot.Var.{wν} ≤ δν , δν → 0 as ν → ∞, such that the
following property holds.

(P) Every solution x : [0, T ] �→ Ω of the unperturbed equation (1.5) satisfies∥∥x− yν∥∥L∞([0,T ])
≥ ε for all ν.(2.52)

For each ν, call y♦ν : [0, T ] �→ R
n the polygonal curve with vertices at the points

yν(*δν), * ≥ 0, defined by setting

y♦ν (t)
.
= yν

(
*δν
)
+
t− *δν
δν

·
(
yν
(
(*+ 1)δν

)− yν(*δν))
for all t ∈ [*δν , (*+ 1)δν ] ∩ [0, T ], 0 ≤ * ≤ �T/δν�,(2.53)

where �T/δν� denotes the integer part of T/δν . Since every yν(·) is a BV function
that solves (1.7), it follows that there will be some constant C > 0, independent of ν,
such that

Tot.Var.{yν ; J} ≤ C ·meas(J) + Tot.Var.{wν ; J}(2.54)
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for any interval J ⊂ [0, T ]. Then, using (2.54), we derive for any fixed 0 ≤ * < *′ ≤
�T/δν� the bound∣∣∣y♦ν (*′δν)− y♦ν (*δν)

∣∣∣ = ∣∣∣yν(*′δν)− yν(*δν)∣∣∣
≤ Tot.Var.

{
yν ; [*δν , *

′δν ]
}

≤ (1 + C) · (*′ − *)δν .(2.55)

Therefore y♦ν (·) is a uniformly bounded sequence of Lipschitz maps, having Lipschitz
constant Lip(y♦ν ) ≤ (1 + C). Hence, applying the Ascoli–Arzelà theorem, we can
find a subsequence, which we still denote y♦ν (·), that converges to some function
y : [0, T ] �→ R

n, uniformly on [0, T ]. On the other hand, by construction, and thanks
to (2.54), for any fixed 0 ≤ t ≤ T, with *δν ≤ t < (*+ 1)δν , the following holds:∣∣∣yν(t)− y♦ν (t)

∣∣∣ ≤ ∣∣∣yν(t)− yν(*δν)∣∣∣+ ∣∣∣yν(*δν)− y♦ν (t)
∣∣∣

≤
∣∣∣yν(t)− yν(*δν)∣∣∣+ ∣∣∣yν((*+ 1)δν

)− yν(*δν)∣∣∣
≤ 2 · Tot.Var.

{
yν ; [*δν , (*+ 1)δν ]

}
≤ 2(1 + C) · δν .(2.56)

Thus, since δν → 0 as ν →∞, the uniform convergence of y♦ν (·) to y(·) implies

lim
ν→∞

∥∥yν − y∥∥L∞([0,T ])
= 0.(2.57)

By assumption, Range(yν) ⊂ A ⊂ Ω for every ν, and hence from (2.57) we deduce
also that the limit function y(·) takes values inside Ω. We can thus apply Theorem 1.3
to the sequence yν(·) and conclude that the function y : [0, T ] �→ Ω is a Carathéodory
solution of the unperturbed equation (1.5) with∥∥y − yν∥∥L∞([0,T ])

< ε

for all ν sufficiently large. We thus obtain a contradiction with (2.52), concluding the
proof.

3. Robustness of patchy feedbacks. In this section we apply the previous
results on patchy vector fields with impulsive perturbations and construct (discontin-
uous) stabilizing feedback controls that enjoy robustness properties in the presence of
measurement errors and external disturbances. Consider the nonlinear control system
on R

n

ẋ = f(x, u), u(t) ∈ K,(3.1)

assuming that the control set K ⊂ R
m is compact and that the map f : R

n×R
m �→ R

n

is smooth. We seek a feedback control u = U(x) ∈ K that stabilizes the trajectories
of the closed-loop system

ẋ = f
(
x, U(x)

)
(3.2)

at the origin. It is well known that even if every initial state x ∈ R
n can be steered

to the origin by an open-loop control u = ux(t), a topological obstruction can prevent
the existence of a continuous feedback control u = U(x) which (locally) stabilizes the
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system (3.1). This fact was first pointed out by Sussmann [Su] for a two-dimensional
system (n = 2, K = R

2) and by Sontag and Sussmann [SS] for one-dimensional
systems (n = 1, K = R). For general nonlinear systems, it was further analyzed by
Brockett [Bro] and Coron [Cor1], [Cor2]. It is thus natural to look for a stabilizing
control within a class of discontinuous functions. However, this leads to a theoretical
difficulty, because when the function U is discontinuous, the differential equation (3.2)
may not admit any Carathéodory solution. To cope with this problem, two different
approaches have been pursued.

1. An algorithm is defined which constructs approximate trajectories in connec-
tion with an arbitrary (discontinuous) feedback control function. For example, one
can sample the feedback control at a discrete set of times. The resulting trajectory,
called a sampling solution, was first studied by Krasovskii and Subbotin in the context
of positional differential games (see [KS]). In this case, one is not concerned with the
existence of exact solutions but only in the asymptotic stabilization properties of all
approximate solutions.

2. Alternatively, by the asymptotic controllability to the origin of system (3.1)
by means of open-loop controls, one proves the existence of a stabilizing feedback u =
U(x) having only a particular type of discontinuities. This feedback thus generates a
patchy vector field, and the corresponding system (3.2) always admits Carathéodory
solutions.

The first approach was initiated in [CLSS] and further developed in [Ri1], [Ri2],
[Ri3], [CLRS], [So2]. The second was introduced in [A-B], defining the following class
of piecewise constant feedback controls:

Definition 3.1. Let
(
Ω, g, (Ωα, gα)α∈A

)
be a patchy vector field. Assume that

there exist control values kα ∈ K such that for each α ∈ A, there holds

gα(x)
.
= f(x, kα) for all x ∈ Dα

.
= Ωα \

⋃
β>α

Ωβ .(3.3)

Then the piecewise constant map

U(x)
.
= kα if x ∈ Dα(3.4)

is called a patchy feedback control on Ω and referred to as
(
Ω, U, (Ωα, kα)α∈A

)
.

Remark 3.1. From Definitions 1.2 and 3.1, it is clear that the field

g(x) = f
(
x, U(x)

)
defined in connection with a given patchy feedback

(
Ω, U, (Ωα, kα)α∈A

)
is precisely

the patchy vector field
(
Ω, g, (Ωα, gα)α∈A

)
associated with a family of fields

{
gα :

α ∈ A} satisfying (1.1) Clearly, the patches (Ωα, gα) are not uniquely determined by
the patchy feedback U . Indeed, whenever α < β, by (3.3) the values of gα on the
set Ωα \ Ωβ are irrelevant. Moreover, recalling the notation (1.3) we have

U(x) = kα∗(x) for all x ∈ Ω.(3.5)

Here, we address the issue of robustness of a stabilizing feedback law u = U(x)
w.r.t. small internal and external perturbations

ẋ = f
(
x, U(x+ ζ(t))

)
+ d(t),(3.6)
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where ζ = ζ(t) represents a state measurement error and d = d(t) represents an exter-
nal disturbance of the system dynamics (3.2). Since we are dealing with a discontinu-
ous ODE, one cannot expect the full robustness of the feedback U(x) w.r.t. measure-
ment errors because of possible chattering behavior that may arise at discontinuity
points (see [He1], [Ry], [So1], [L-S1], [L-S2], [CR]). Therefore, we shall consider state
measurement errors which are small in BV norm, avoiding such phenomena.

Before stating our main result in this direction, we recall here some basic defini-
tions and Proposition 4.2 in [A-B]. This provides the semiglobal practical stabilization
(steering all states from a given compact set of initial data into a prescribed neighbor-
hood of zero) of an asymptotically controllable system by means of a patchy feedback
control which is robust w.r.t. external disturbances. We consider as (open-loop) ad-
missible controls all the measurable functions u : [0, ∞)→ R

m such that u(t) ∈ K for
a.e. t ≥ 0.

Definition 3.2. The system (3.1) is globally asymptotically controllable to the
origin if the following holds.

1. Attractiveness. For each x ∈ R
n there exists some admissible (open-loop)

control u = ux(t) such that the corresponding trajectory of

ẋ(t) = f
(
x(t), ux(t)

)
, x(0) = x,(3.7)

either reaches the origin in finite time or tends to the origin as t→∞.
2. Lyapunov stability. For each ε > 0 there exists δ > 0 such that the following

holds. For every x ∈ R
n with |x| < δ, there is an admissible control ux as in 1 steering

the system from x to the origin, so that the corresponding trajectory of (3.7) satisfies
|x(t)| < ε for all t ≥ 0.

Proposition 3.3 (see [A-B, Proposition 4.1]). Let system (3.1) be globally
asymptotically controllable to the origin. Then, for every 0 < r < s, one can find
T > 0, χ > 0, and a patchy feedback control U : D �→ K defined on some domain

D ⊃ {x ∈ R
n ; r ≤ |x| ≤ s}(3.8)

so that the following holds. For any measurable map d : [0, T ] �→ R
n such that∥∥d∥∥

L∞([0, T ])
≤ χ,

and for any initial state x0 with r ≤ |x0| ≤ s, the perturbed system
ẋ = f

(
x, U(x)

)
+ d(t)(3.9)

admits a (forward) Carathéodory trajectory starting from x0. Moreover, for any such
trajectory t �→ γ(t), t ≥ 0, one has

γ(t) ∈ D for all t ≥ 0,(3.10)

and there exists tγ < T such that ∣∣γ( tγ)∣∣ < r.(3.11)

Relying on Corollary 1.4 of Theorem 1.3 and on Proposition 3.3, we obtain here
the following result concerning robustness of a stabilizing feedback w.r.t. both internal
and external perturbations.

Theorem 3.4. Let system (3.1) be globally asymptotically controllable to the
origin. Then, for every 0 < r < s, one can find T ′ > 0, χ′ > 0, and a patchy
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feedback control U ′ : D′ �→ K defined on some domain D′ satisfying (3.8) so that the
following holds. Given any pair of maps ζ ∈ BV ([0, T ′]), d ∈ L∞([0, T ′]) such that

Tot.Var.{ζ} ≤ χ′, ∥∥d∥∥
L∞([0, T ′]) ≤ χ′ ,(3.12)

and any initial state x0 with r ≤ |x0| ≤ s, for every solution t �→ x(t), t ≥ 0, of the
perturbed system (3.6) starting from x0, one has

x(t) ∈ D′ for all t ∈ [0, T ′],(3.13)

and there exists tx < T
′ such that ∣∣x( tx)∣∣ < r.(3.14)

Proof. 1. Fix 0 < r < s. Then, according to Proposition 3.3, we can find T ′ > 0
and a patchy feedback control U ′ : D′ �→ K defined on some domain

D′ ⊃ {x ∈ R
n ; r/3 ≤ |x| ≤ s}(3.15)

so that the following holds. For every Carathéodory solution t �→ x(t), t ≥ 0, of the
unperturbed system (3.2) (with U = U ′ ) starting from a point x0 in the compact set

K
.
=
{
x ∈ R

n ; r ≤ |x| ≤ s},(3.16)

one has

x(t) ∈ Dρ
.
=
{
x ∈ D′ : d

(
x, ∂D′) > ρ} for all t ≥ 0(3.17)

for some constant ρ > 0. Moreover, there exists tx < T
′ such that

∣∣x( tx)∣∣ < r
3
.(3.18)

According with Definition 3.1, the field

g(x)
.
= f

(
x, U ′(x)

)
(3.19)

is a patchy vector field associated to the family of fields
{
gα : α ∈ A} defined as in

(3.3). The smoothness of f guarantees that for BV perturbations w = w(t) having
some uniform bound Tot.Var.{w} ≤ χ̂ on the total variation, every (left continuous)
solution y : [0, T ′] �→ R

2 of the impulsive equation (1.7), starting at a point x0 ∈ K,
takes values in the closed set

A
.
= B(Dρ, ρ/2).(3.20)

Therefore, thanks to Corollary 1.4 of Theorem 1.3, there exists some constant

0 < χ̂′ = χ̂′(A, K, T ′, r/3) < χ̂(3.21)

such that the following holds. If y : [0, T ′] �→ R
2 is a (left continuous) solution of the

impulsive equation (1.7), with y(0) ∈ K and Tot.Var.(w) < χ̂′, then one has

y(t) ∈ A for all t ∈ [0, T ′] ,(3.22)
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and there exists ty < T
′ such that

∣∣y( ty)∣∣ < 2r

3
.(3.23)

2. In connection with the patchy feedback U ′ introduced above, define the map

h(y, z)
.
= f

(
y − z, U ′(y)

)− f(y, U ′(y)
)

(3.24)

and observe that, by the smoothness of f, there will be some constant c > 0 such that∣∣h(y, z)∣∣ ≤ c · |z| for all y ∈ A, |z| ≤ χ̂′.(3.25)

Consider now a pair of maps ζ ∈ BV ([0, T ′]), d ∈ L∞([0, T ′]) satisfying (3.12) with

χ′ < min

{
χ̂′

2(1 + T ′c′)
,
r

3
,
ρ

2

}
,(3.26)

and let x = x(t) be any Carathéodory solution of the perturbed system (3.6), with
an initial condition x(0) = x0 ∈ K. Then, as observed in the introduction, the map

t �→ y(t)
.
= x(t) + ζ(t)(3.27)

satisfies the impulsive equation (1.7), where

w(t)
.
= ζ(t) +

∫ t

0

(
h
(
y(s), ζ(s)

)
+ d(s)

)
ds.(3.28)

But then, since (3.12), (3.25), (3.26) together imply

Tot.Var.
{
w ; [0, T ′]

} ≤ Tot.Var.
{
ζ ; [0, T ′]

}
+T ′c · ∥∥ζ∥∥

L∞([0, T ′])+T
′ · ∥∥d∥∥

L∞([0, T ′])

≤ (1 + T ′c
) · Tot.Var.

{
ζ ; [0, T ′]

}
+
∥∥d∥∥

L∞([0, T ′])

< χ̂′,

from (3.22)–(3.23) and (3.12), (3.20), (3.26), (3.27) it follows that

x(t) ∈ B(A, ρ/2) ⊂ D′ for all t ∈ [0, T ′],(3.29)

∣∣x( ty)∣∣ < r for some ty < T
′,

which completes the proof of the theorem, taking χ′ as in (3.26).
Remark 3.2. For discontinuous stabilizing feedbacks constructed in terms of

sampling solutions, an alternative concept of robustness was introduced in [CLRS],
[So1], [So2]. In this case, one considers a partition of the time interval and applies
a constant control between two consecutive sampling times. To preserve stability,
the measurement error should be sufficiently small compared to the maximum step
size. Moreover, each step size should be big enough to prevent possible chattering
phenomena. The next result shows that the feedback provided by [A-B, Proposition
4.2] also enjoys this type of robustness. Before stating this result we describe now the
concept of a sampling trajectory associated to the perturbed system (3.6) that was
introduced in [CLRS], [So2].
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Let an initial condition x0 and a partition π = {0 = τ0 < τ1 < · · · < τm+1 = T} of
the interval [0, T ] be given. A sampling trajectory xπ of the perturbed system (3.6),
corresponding to a set of measurement errors {ei}mi=0 and an external disturbance
d ∈ L∞([0, T ]), is defined in a step-by-step fashion as follows. Between τ0 and τ1, let
xπ(·) be a Carathéodory solution of

ẋ = f
(
x, U(x0 + e0)

)
+ d(t), t ∈ [τ0, τ1],(3.30)

with initial condition xπ(0) = x0. Then, xπ(·) is recursively obtained by solving the
system

ẋ = f
(
x, U(xπ(τi) + ei)

)
+ d(t), t ∈ [τi, τi+1], i > 0.(3.31)

The sequence {xπ(τi) + ei}mi=0 corresponds to the nonexact measurements used to
select control values.

Theorem 3.5. Let system (3.1) be globally asymptotically controllable to the
origin. Then, for every 0 < r < s, one can find T ′′ > 0, χ′′ > 0, δ > 0, k > 0, and
a patchy feedback control U ′′ : D′′ �→ K defined on some domain D′′ satisfying (3.8)
so that the following holds. Given an initial state x0 with r ≤ |x0| ≤ s, a partition
π = {τ0 = 0, τ1, . . . , τm+1 = T ′′} of the interval [0, T ′′ ] having the property

δ

2
≤ τi+1 − τi ≤ δ for all i for some δ ∈ ]0, δ ],(3.32)

a set of measurement errors {ei}mi=0, and an external disturbance d ∈ L∞([0, T ′′ ])
that satisfy

max
i
|ei| ≤ k · δ,(3.33)

∥∥d∥∥
L∞ ≤ χ′′,(3.34)

the resulting sampling solution xπ(·) starting from x0 has the property

xπ(t) ∈ D′′ for all t ∈ [0, T ′′ ].(3.35)

Moreover, there exists txπ < T
′′ such that∣∣xπ( txπ

)
∣∣ < r.(3.36)

Proof. 1. Fix 0 < r < s. Then, according with Proposition 3.4, we can find
T ′ > 0, χ′ > 0, and a patchy feedback control U ′′ : D′′ �−→ K defined on a domain

D′′ ⊃ {x ∈ R
n ; r/3 ≤ |x| ≤ 2s

}
so that the following holds. For every external disturbance d ∈ L∞ satisfying (3.34)
with χ′′ ≤ χ′, and for any Carathéodory solution t �→ x(t), t ≥ 0, of the perturbed
system (3.9) (with U = U ′′), starting from a point x0 with r ≤ |x0| ≤ s, one has

x(t) ∈ Dρ1

.
=
{
x ∈ D′′ : d

(
x, ∂D′′) > ρ1} for all t ≥ 0(3.37)

for some constant ρ1 > 0. Moreover, there exists tx < T
′ such that∣∣x( tx)∣∣ < r

3
.(3.38)
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Let {
(Ωα, gα) : α = 1, . . . , N

}
, gα(x) = f(x, kα), kα ∈ K,(3.39)

be the collection of patches associated with the patchy vector field

g(x) = f
(
x, U ′′(x)

)
.(3.40)

We may assume that every vector field gα is defined on a neighborhood B(Ωα, ρ2),
0 < ρ2 ≤ ρ1, of the domain Ωα so that, setting

Ωρ
α
.
=
{
x ∈ Ωα ; d

(
x, ∂Ωα

)
> ρ

}
,(3.41)

one has

Ωρ2
α �= ∅,

and that every gα is uniformly nonzero on the domain Dα defined in (3.3). Moreover,
thanks to the inward-pointing condition (1.1), we may choose the constants 0 < ρ2 <
r/3 and χ′′ ≤ χ′ so that the following hold:∣∣gα(x)∣∣ ≥ 2χ′′ for all x ∈ B(Dα, ρ2)(3.42)

and 〈
gα(x) + v, n(x)

〉
< 0 for all x ∈ B(∂Ωα, ρ2), |v| ≤ χ′′.(3.43)

For every d ∈ L∞, we denote by t �→ xα
(
t; t0, x0, d

)
the solution of the Cauchy

problem

ẋ = gα(x) + d(t), x(t0) = x0,(3.44)

and let [t0, t
max] be the domain of definition of the maximal (forward) solution

of (3.44) that is contained in B(Dα, ρ2).
Observe that since every Carathéodory solution of the perturbed system (3.9)

(with U = U ′′), starting from a point x0 ∈ B(0, s)\◦ → B(0, r), reaches the interior
of the ball B(0, r/3) in finite time, and because of (3.42), for any α = 1, . . . , N one
can find Tα > 0 with the following property.

(P)1 For every x0 ∈ B(Dα, ρ/2), 0 < ρ < ρ2, and for any d ∈ L∞ satisfying
(3.34), there exists some time tρ

.
= tρ(x0, d) < Tα such that either one has

∣∣xα(t0 + tρ; t0, x0, d
)∣∣ < 2r

3
(3.45)

or else the following holds:

xα
(
t; t0, x0, d

) ∈ B(Dα, ρ2) \B(Dα, ρ) for all t ∈ [t0 + tρ, t
max].(3.46)

On the other hand, relying on the inward-pointing condition (3.43), we deduce
two further properties of the solutions of (3.44).

(P)2 The sets Ωρ
α, 0 < ρ ≤ ρ2, defined in (3.41) are positive invariant regions for

trajectories of (3.44), i.e., for every x0 ∈ Ωρ
α, and for any d ∈ L∞ satisfying (3.34),

one has

xα
(
t; t0, x0, d

) ∈ Ωρ
α for all t ≥ t0.(3.47)
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(P)3 There exists some constant c > 0 so that, for every x0 ∈ B(Ωα, ρ), 0 < ρ ≤
ρ2, such that d

(
x0, ∂Ωα

) ≤ ρ, and for any d ∈ L∞ satisfying (3.34), one has

xα
(
t; t0, x0, d

) ∈ Ω2ρ
α for all t ≥ t0 + c · ρ .(3.48)

2. Consider an initial state x0 ∈ B(0, s)\◦ → B
(
0, r

)
and a partition π = {τi}i≥0

of [0, ∞[ having the property (3.32), with

0 < δ ≤ δ .= min
{
c · ρ2, ρ1

M

}
,(3.49)

M
.
= sup

{|gα(x)| : x ∈ B(Ωα, ρ2), α = 1, . . . , N
}
.

Let xπ : [0, ∞[ �→ R
n be a sampling solution starting from x0 and corresponding to

a set of measurement errors {ei}mi=0 and to an external disturbance d(·) ∈ L∞ that
satisfy (3.33)–(3.34) with

k
.
=

1

2c
.(3.50)

We will first show the following.
Lemma 3.6. The map

i �−→ α∗(τi)
.
= α∗(xπ(τi) + ei), i ≥ 0,(3.51)

is nondecreasing.
Indeed, assume that α∗(τi) = α̂, which by definitions (1.3), (3.3), (3.5) implies

xπ(τi) + ei ∈ Dα̂,(3.52)

xπ(τi+1) = xα̂
(
τi+1; τi, xπ(τi), d �[τi, τi+1]

)
.(3.53)

Then, because of (3.33), (3.49)–(3.50), one has

xi
.
= xπ(τi) ∈ B(Dα̂, kδ) ⊂ B(Ωα̂, ρ2).(3.54)

We shall consider separately the case in which

xi ∈ Dkδ
α̂ ⊂ Ωkδ

α̂ , kδ ≤ ρ2,(3.55)

and the case where

xi ∈ B(Dα̂, kδ), d
(
xi , ∂Ωα̂

) ≤ kδ ≤ ρ2.(3.56)

In the first case, using (3.53) and applying (P)2 we deduce that xπ(τi+1) ∈ Ωkδ
α̂ , which,

in turn, because of (3.33), (3.49)–(3.50), implies

xπ(τi+1) + ei+1 ∈ Ωα̂.(3.57)

From (3.57), by definition (1.3) we derive

α∗(τi+1) ≥ α̂,(3.58)
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proving the lemma whenever (3.55) holds. On the other hand, when (3.56) is verified,
since by (3.32), (3.50) one has

τi+1 − τi ≥ δ
2

= ck · δ,

applying (P)3, we deduce xπ(τi+1) ∈ Ω2kδ
α̂ . This again implies (3.57)–(3.58), complet-

ing the proof of Lemma 3.6.
Next, relying on (P)1 and setting

i′α
.
= min

{
i ≥ 0 ; α∗(τi) = α, xπ(τi) /∈ B(0, 2r/3)

}
,(3.59)

i′′α
.
= max

{
i ≥ 0 ; α∗(τi) = α , xπ(τi) /∈ B(0, 2r/3)

}
, α ∈ Range(α∗),

we deduce

τ
i′′α
− τ

i′α
≤ Tα for all α ∈ Range(α∗).(3.60)

Indeed, if (3.60) does not hold, by definitions (3.3), (3.5) one has

xi′α
.
= xπ(τi′α

) ∈ B(Dα, kδ) ⊂ B(Ωα, ρ2/2),(3.61)

xπ(t) = xα
(
t; τ

i′α
, xi′α , d �[τ

i′α
, τ

i′′α+1
]

)
for all t ∈ [τ

i′α
, τ

i′′α+1
].(3.62)

But then, applying (P)1, one could find some î ≤ i′′α such that

xπ(t) ∈ B(Dα, ρ2) \B(Dα, 2kδ) for all t ∈ [τ
î
, τ

i′′α+1
].

By definitions (1.3), (3.51) and because of (3.33), this implies

α∗(τi) > α for all î ≤ i ≤ i′′α,

providing a contradiction with (3.59).
To conclude the proof of Theorem 3.5, we observe that the monotonicity of the

map (3.51), together with the estimate (3.60), implies that there exists some time

txπ < T
′′ .=

∑N
α=1 Tα such that (3.36) is verified. Moreover, (3.35) clearly follows

from (3.37) and (3.49).
Remark 3.3. Consider a partition π = {τ0 = 0, τ1, . . . , τm+1 = T} of the inter-

val [0, T ] having the property (3.32). If we associate to a set of measurement errors
{ei}mi=1 satisfying (3.33) the piecewise constant function ζ : [0, T ] �→ R

n defined as

ζ(t) = ei for all t ∈ ]τi, τi+1],

then

Tot.Var.{ζ} ≤ 4k · T.

Thus, taking the constant k sufficiently small we may reinterpret the discrete internal
disturbance allowed for a sampling solution in Theorem 3 as a particular case of the
measurement errors with small total variation considered in Theorem 3.4.
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Abstract. The finite difference multigrid solution of an optimal control problem associated with
an elliptic equation is considered. Stability of the finite difference optimality system and optimal-
order error estimates in the discrete L2 norm and in the discreteH1 norm under minimum smoothness
requirements on the exact solution are proved. Sharp convergence factor estimates of the two grid
method for the optimality system are obtained by means of local Fourier analysis. A multigrid
convergence theory is provided which guarantees convergence of the multigrid process towards weak
solutions of the optimality system.
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1. Introduction. Optimal control problems involving partial differential equa-
tions [17, 18] are nowadays receiving much attention because of their importance in
the industrial design process. Especially, the need for accurate and efficient solution
methods for these problems has become an important issue.

We consider a finite difference framework and multigrid methods for the case of
distributed optimal control of an elliptic problem and provide for this case optimal
estimates for the accuracy of the solution and for the convergence factor of the multi-
grid process. The present work is characterized by the fact that we extend known
analytic tools for scalar elliptic problems to the case of a (nonsymmetric) system of
elliptic partial differential equations, called an optimality system.

In our finite difference analysis, based on results stated in [14, 20], we prove stabil-
ity of the finite difference optimality system and prove optimal-order error estimates
in the discrete L2 norm and in the discrete H1 norm under minimum smoothness
requirements on the analytic solution.

It is known that multigrid methods [5, 13, 21] solve elliptic problems with optimal
computational order, i.e., the number of computer operations required scales linearly
with respect to the number of unknowns. This fact has been demonstrated in the case
of multigrid applied to a singular optimal control problem associated with a nonlinear
elliptic equation [2]. In particular, results in [2] show that the convergence properties
of the multigrid method do not deteriorate as the weight of the cost of the control
tends to zero, demonstrating the robustness of this method.

We prove convergence of the multigrid method applied to the optimality system
within two analytic frameworks which have complementary features. We use two grid
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local Fourier analysis [21, 10] with simplifying assumptions on the boundary conditions
to obtain sharp convergence estimates of the multigrid method. These convergence
estimates agree very well with results of numerical experiments and appear to be
independent of the mesh size and of the value of the control parameter.

While the extension of two grid local Fourier analysis to systems of partial dif-
ferential equations may be considered straightforward, the extension of the multigrid
theory provided in [6, 8, 9, 15] to the case of optimality systems requires additional
analysis, which is presented in this paper. The resulting multigrid theory does not
require special assumptions on the boundary, it applies to polygonal domains, and
guarantees convergence of the multigrid method to weak solutions of the optimality
system.

In the following section we introduce and analyze our model problem. The finite
difference discretization of this model problem and the corresponding stability and
accuracy analysis are considered in section 3. In section 4 we describe the multigrid
method and define and analyze its components. Two grid local Fourier analysis is
presented in section 5. In section 6, a general convergence theory for multigrid applied
to the optimality system is provided.

2. Optimal control problem. We consider the optimal control problem

minJ(y, u) =
1

2
||y − z||2L2(Ω) +

ν

2
||u||2L2(Ω),(2.1)

subject to u ∈ L2(Ω) and

−∆y = u + g in Ω,(2.2)

y = 0 on ∂Ω,

where Ω = (0, 1) × (0, 1), g ∈ L2(Ω), z ∈ L2(Ω) is the objective function, and ν > 0
is the weight of the cost of the control. Existence of a unique solution to (2.1) and
its characterization are well known. Let us, for the sake of completeness, give a short
derivation and denote by Ĵ(u) = J(y(u), u), where y(u) denotes the solution of (2.2) as
a function of u. Recall that ∆ : H1

0 (Ω)∩H2(Ω)→ L2(Ω) is a homeomorphism. Here
we use the fact that Ω is convex. The mapping u→ y(u) from L2(Ω) to H1

0 (Ω)∩H2(Ω)
is affine and continuous. Let us denote its first derivative at u in the direction δu by
y′(u, δu). It is characterized as the solution to

−∆y′(u, δu) = δu in Ω,(2.3)

y′(u, δu) = 0 on ∂Ω.

The second derivative of u→ y(u) is zero. Hence we find for the second derivative of
u→ Ĵ(u)

Ĵ ′′(u)(δu, δu) = ||y′(u, δu)||2L2(Ω) + ν||δu||2L2(Ω),

and thus u → Ĵ(u) is uniformly convex. This implies existence of a unique solution
u∗ to (2.1). Moreover, the solution is characterized by Ĵ ′(u)(u∗; δu) = 0 for all δu
and consequently

Ĵ ′(u∗, δu) = (y∗ − z, y′(u∗, δu))L2(Ω) + ν(u∗, δu)L2(Ω) = 0 for all δu ∈ L2(Ω),

where y∗ = y(u∗). Introduce λ∗ ∈ H1
0 (Ω) ∩H2(Ω) as the unique solution to

−∆λ∗ = −(y∗ − z) in Ω,(2.4)

λ∗ = 0 on ∂Ω.
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Then by (2.3) and (2.4) we have

Ĵ ′(u∗, δu) = −(λ∗, δu)L2(Ω) + ν(u∗, δu)L2(Ω) = 0 for all δu ∈ L2(Ω),(2.5)

which constitutes the necessary and sufficient optimality condition for (2.1). In (2.5),
λ∗ is defined via (2.2) and (2.4).

For later reference let us summarize (2.2), (2.4), and (2.5):

−∆y =
1

ν
λ + g in Ω,

y = 0 on ∂Ω,

−∆λ = −(y − z) in Ω,(2.6)

λ = 0 on ∂Ω,

νu− λ = 0 in Ω.

Here, for convenience, we dropped the ∗-notation. System (2.6) is referred to as the
optimality system for (2.1). From the optimality system one concludes the following
regularity property.

Corollary 2.1. If z, g ∈ L2(Ω), then (y∗, u∗, λ∗) ∈ (H1
0 (Ω) ∩H2(Ω))3.

In the following section we address finite difference approximations to (2.1) and
(2.6).

3. Finite difference approximation of the optimality system. While finite
element approximations to (2.1) are rather well investigated, see [18] and the references
given there, much less rigorous analysis is available for finite difference methods. Thus,
before addressing multigrid methods in the remainder of the paper, we investigate
convergence of finite difference approximations to (2.1). We consider a sequence of
grids {Ωh}h>0 defined by

Ωh = {x ∈ R2 : xi = si h, si ∈ Z} ∩ Ω.

Here and below we follow the notation and terminology of [14], especially section 9.
To avoid certain technicalities we assume also in this section that Ω is a square and
that the values of h are chosen such that the boundaries of Ω coincide with grid lines.
The case of general convex domains is addressed in Remark 1 below. The negative
Laplacian with homogeneous Dirichlet boundary conditions is approximated by the
common five-point stencil as in [14, section 4] and denoted by −∆h.

For grid functions vh and wh defined on Ωh we introduce the discrete L2-scalar
product

(vh, wh)L2
h

= h2
∑
x∈Ωh

vh(x)wh(x),

with associated norm |vh|0 = (vh, vh)
1/2

L2
h

. We require as well the discrete H1-product

given by

|vh|1 =

(
|vh|20 +

2∑
i=1

|∂−
i vh|20

)1/2

,

where ∂−
i denotes the backward difference quotient in the xi direction and vh is

extended by 0 on grid points outside of Ω. The spaces L2
h and H1

h consist of the sets
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of grid functions vh endowed with |vh|0, respectively, |vh|1, as norm. Further denote
with Mh the vector space of nodal functions vh defined on Ωh which are zero on the
boundary. The system of nodal functions (vh, wh) is denoted by Mh = Mh ×Mh.

We need the following lemma.
Lemma 3.1 (Poincaré–Friedrichs inequality for finite differences). For any grid

function vh ∈Mh, there exists a constant c∗, independent of vh and h, such that

|vh|20 ≤ c∗
2∑
i=1

|∂−
i vh|20,(3.1)

where c∗ = 1
4 .

Proof. For the proof see [20].
Functions in L2(Ω) and H2(Ω) are approximated by grid functions defined through

their mean values with respect to elementary cells [x1−h
2 , x1+h

2 ]×[x2−h
2 , x2+h

2 ]. This

gives rise to the restriction operators R̃h : L2(Ω)→ L2
h and Rh : H1

0 (Ω)∩H2(Ω)→ L2
h

defined in [14, p. 232]. For the definition of H2
h we refer to [14], as well. Further, we de-

fine R̃2
h : L2(Ω)×L2(Ω)→ L2

h×L2
h by R̃2

h = (R̃h, R̃h) and analogously R2
h = (Rh, Rh).

The discrete optimal control problems are specified next:{
min 1

2 |yh − R̃hz|20 + ν
2 |uh|20,

−∆hyh = uh + R̃hg, uh ∈ L2
h.

(3.2)

Let u∗
h denote the unique solution to (3.2) and set y∗h = yh(u∗

h). The optimality
system related to (3.2) is found to be

−∆hy
∗
h = u∗

h + R̃hg,

−∆hλ
∗
h = −(y∗h − R̃hz),(3.3)

νu∗
h − λ∗

h = 0.

We can eliminate u∗
h from this system and obtain, dropping the superscript ∗,{ −ν ∆hyh − λh = ν R̃hg,

−∆hλh + yh = R̃hz.
(3.4)

To investigate the convergence of the solution of (3.4) to the solution of (2.6) as
h→ 0+, we introduce the family of operators

Ah =

( −ν ∆h −Ih
Ih −∆h

)
,(3.5)

where Ih is the identity operator on grid functions vh. The operators Ah are defined
between product spaces of grid functions. For us the casesAh : H1

h×H1
h → H−1

h ×H−1
h

and Ah : H2
h × H2

h → L2
h × L2

h are important. Here H−1
h denotes the dual space of

H1
h with L2

h as pivot space.
The family {Ah}h>0 is called H1

h-regular if Ah is invertible and there exists a
constant C1 independent of h such that

||A−1
h ||L(H−1

h
×H−1

h
,H1

h
×H1

h
) ≤ C1,

and analogously it is called H2
h-regular if

||A−1
h ||L(L2

h
×L2

h
,H2

h
×H2

h
) ≤ C2,



SOLUTION OF THE OPTIMAL CONTROL PROBLEM 1481

for C2 independent of h.
Lemma 3.2. The family of operators {Ah}h>0, with h such that the boundaries

of Ω are grid lines, is H1
h-regular.

Proof. Let (vh, wh) ∈Mh be a pair of grid functions. Then

(Ah(vh, wh), (vh, wh))L2
h
×L2

h
= ν(−∆hvh, vh)L2

h
+ (−∆hwh, wh)L2

h

≥ min(ν, 1)C

2∑
i=1

(|∂−
i vh|20 + |∂−

i wh|20),(3.6)

where C is independent of h and arises from the coercivity estimate for −∆h, i.e.,

(−∆hvh, vh)L2
h
≥ C

2∑
i=1

|∂−
i vh|20 for all vh;(3.7)

see, e.g., [14, p. 231]. Using Poincaré inequality in (3.6) results in

(Ah(vh, wh), (vh, wh))L2
h
×L2

h
≥ C−2

1 |(vh, wh)|2H1
h
×H1

h
for all (vh, wh) ∈ L2

h × L2
h,

with C−2
1 = min(ν, 1)C c0. Due to the Lax–Milgram lemma Ah is invertible. More-

over,

||A−1
h ||L(H−1

h
×H−1

h
,H1

h
×H1

h
) ≤ C1 for all h.

The infinite dimensional analogue of Ah is the operator

A =

( −ν ∆ −I
I −∆

)
,(3.8)

where ∆ is understood with homogeneous Dirichlet boundary conditions. It is well
defined from H1

0 (Ω)×H1
0 (Ω) to H−1(Ω)×H−1(Ω) as well as from (H2(Ω)∩H1

0 (Ω))×
(H2(Ω) ∩H1

0 (Ω)) to L2(Ω)× L2(Ω). We have the following consistency result.
Lemma 3.3. There exists a constant CK independent of h such that

||AhR2
h − R̃2

hA||L((H2∩H1
0 )2,(H−1

h
×H−1

h
)) ≤ CK h.

Proof. Let (v, w) ∈ (H2(Ω) ∩ H1
0 (Ω))2 and note that, due to the consistency

property of −∆h as discretization of −∆, we have

|AhR2
h(v, w)− R̃2

hA(v, w)|2
H−1

h
×H−1

h

≤ ν |(−∆h)Rhv − R̃h(−∆)v|2
H−1

h

+ |(−∆h)Rhw − R̃h(−∆)w|2
H−1

h

+ |Rhv − R̃hv|2H−1
h

+ |Rhw − R̃hw|2H−1
h

≤ C2
K h2 |(v, w)|H2(Ω)2 ;

see [14, p. 232].
Theorem 3.4. There exists a constant K1, depending on Ω, g, z, and indepen-

dent of h, such that

|y∗h −Rhy
∗|1 + |u∗

h −Rhu
∗|1 + |λ∗

h −Rhλ
∗|1 ≤ K1 h.



1482 ALFIO BORZÌ, KARL KUNISCH, AND DO Y. KWAK

Proof. From (2.6) and (3.4) we have

(y∗h, λ
∗
h)−R2

h (y∗, λ∗) = A−1
h (R̃2

hA−AhR2
h) (y∗, λ∗).(3.9)

Lemmas 3.2 and 3.3 imply the existence of K̄1 such that

|y∗h −Rhy
∗|1 + |λ∗

h −Rhλ
∗|1 ≤ K̄1h.

Using ν u∗ = λ∗ and its discrete analogue, we have the following claim.
Remark 1. In the case of a general convex domain attention must be paid to

the discretization of −∆ along the boundary. The literature offers several options.
For the Shortley–Weller discretization, as described in [14, p. 78], −∆h is H1

h-regular
and consistent with −∆ from H2(Ω) to H−1

h . Using these facts the generalization of
Theorem 3.4 to convex domains is straightforward.

In the following result the assumption that the boundaries of Ω coincide with grid
lines is used.

Theorem 3.5. There exists a constant K2, depending on Ω, g, z, and indepen-
dent of h, such that

|y∗h −Rhy
∗|0 + |u∗

h −Rhu
∗|0 + |λ∗

h −Rhλ
∗|0 ≤ K2 h

2.

Proof. We start by showing that ATh is H2
h-regular. For this purpose it suffices

to show the existence of a constant C2 independent of h such that for all (fh, gh) ∈
L2
h × L2

h

|(vh, wh)|H2
h
×H2

h
≤ C2 |(fh, gh)|L2

h
×L2

h
,(3.10)

where ATh (vh, wh) = (fh, gh). Proceeding as in Lemma 3.2 one shows that ATh is

H1
h-regular. In particular, there exists C̃2 ≥ 1, independent of h, such that

|(vh, wh)|H1
h
×H1

h
≤ C̃2 |(fh, gh)|L2

h
×L2

h
.(3.11)

Since −∆h is H2
h-regular [14, p. 242], C̃2 can also be chosen such that

||(−∆h)−1||L(L2
h
,H2

h
) ≤ C̃2.(3.12)

Note that vh satisfies ν vh = (−∆h)−1(fh − wh). Hence by (3.11) and (3.12)

|vh|H2
h
≤ 2

ν
C̃2

2 |(fh, gh)|L2
h
×L2

h
.(3.13)

Similarly wh = (−∆h)−1(gh + vh) and hence

|wh|H2
h
≤ 2 C̃2

2 |(fh, gh)|L2
h
×L2

h
.(3.14)

Combining (3.13) and (3.14) we have (3.10). From (3.10) it follows by duality that

||A−1
h ||L(H−2

h
×H−2

h
,L2

h
×L2

h
) ≤ C2.(3.15)

Turning to consistency, due to the assumption that the boundary of Ω coincides with
grid lines, we have

||(−∆h)Rh − R̃h(−∆)||L(H2,H−2
h

) ≤ K h2,(3.16)

||Rh − R̃h||L(H2,L2
h
) ≤ K h2,(3.17)
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for a constant K independent of h. Estimate (3.16) is given in [14, p. 239] and (3.17)
follows from a direct computation. From (3.9) and (3.16) we have

|(y∗h, λ∗
h)−R2

h (y∗, λ∗)|L2
h
×L2

h
≤ C2 |(R̃2

hA−AhR2
h) (y∗, λ∗)|H−2

h
×H−2

h
.(3.18)

Using (3.16) and (3.17), we proceed as in the proof of Lemma 3.3 to obtain the desired
result.

The approximation results stated in Theorem 3.5 are demonstrated in numerical
experiments with global mesh refinement (multigrid); see [2].

4. The multigrid method. Multigrid methods have been extensively used to
solve discretized partial differential equations; see, e.g., [21] and the references given
there. This fact has motivated intensive research towards the determination of conver-
gence properties of multigrid schemes; see [5, 6, 9, 10, 11, 14, 15]. Multigrid methods
have also been used to solve optimal control problems. Most of these contributions
except for [12] are rather recent, e.g., [1, 2, 3, 4, 19]. Concerning the convergence the-
ory of multigrid applied to systems of partial differential equations and, in particular,
to optimality systems, the theory is far from being complete.

The purpose of the present work is to analyze a multigrid algorithm that solves
the optimality system (2.6) with typical multigrid efficiency. We briefly describe the
multigrid framework to keep this paper self-contained. Let us index the operators
and variables defined on the grid with mesh size h = hk = 1/2k, k = 1, . . . , L, with
the index k, and for simplicity of presentation let us introduce vector notation: we
let w = (u, v) and |w|0 = |(u, v)|0, etc.

Consider the discrete problem (3.4) expressed as

Akφk = fk on Ωk,(4.1)

where φk = (yk, λk) and fk = (gk, zk) are defined on the mesh Ωhk
.

For the purpose of multigrid methods it is important to utilize the fact that the
solution of (4.1) is equivalent to solve Akφek = rk, where φek = φ̄k − φk is the error
grid function between the solution φ̄k to (4.1) and its current approximation φk, and
rk is the residual defined by

rk = fk −Akφk.(4.2)

In fact, the multigrid strategy is to solve for all frequency components of the error
using multiple grids.

On the grid of level k, a smoothing procedure is applied in order to solve for
the high-frequency components of the error. This is an iterative scheme denoted by

φ
(m)
k = (Sk)m(φk, fk), where (Sk)m is a linear smoothing operator applied m times.

One sweep of this iteration is written in the form φ
(m)
k = φ

(m−1)
k +Rk (fk−Akφ(m−1)

k ),
where the operator Rk applies to the residual.

To correct for the smooth components of the error, a coarse grid correction (CGC)
is defined. For this purpose a coarse grid problem for the error function is constructed
on the grid with mesh size hk−1:

Ak−1φk−1 = Ik−1
k rk,(4.3)

where φk−1 aims to represent, on the coarse grid Ωk−1, the error φek on the next finer
grid. Because of Dirichlet boundary conditions, we have φk−1 = 0 at the boundary.
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The operator Ik−1
k : Mk → Mk−1 restricts the residual computed at level k to the

grid with level k − 1.
Once the coarse grid problem is solved, the CGC follows:

φnewk = φk + Ikk−1 φk−1,(4.4)

where Ikk−1 : Mk−1 → Mk is an interpolation operator. Here φk represents the
current approximation at level k as it was obtained by the smoothing process and
before coarsening. If the high-frequency components of the error on the finer grid k
were well damped, then the solution at level φk−1 should provide enough resolution
for the error of φk through Ikk−1φk−1.

The idea of transferring to a coarser grid can be applied along the set of nested
meshes. One starts at level k with a given initial approximation (zero) and applies
the smoothing iteration m1 times. The residual is then computed and transferred
to the next coarser grid while φk obtained by smoothing is left unchanged. On the
coarse grid with index k − 1 the smoothing process is again applied. This procedure
is repeated until the coarsest grid is reached.

On the coarsest grid, one solves the problem exactly and the result is used to
improve φk via (4.4). The CGC is then followed by m2 postsmoothing steps at level
k before the CGC procedure followed by postsmoothing is repeated for the next (if
any) finer level. This entire process represents one multigrid V (m1,m2)-cycle.

A compact description of the multigrid method is given in section 6.
In the following sections we specify and analyze the multigrid components intro-

duced here.

4.1. Smoothing iterations. Numerical experience [2] has shown that in order
to obtain a multigrid algorithm which is robust with respect to changes of ν, care
must be taken in the choice of the smoother. For example, when using the Picard–
Gauss–Seidel iteration [1, 2], difficulties arise when the value of the weight of the
cost of the control is smaller than h2, which may easily occur when coarse grids are
used. On the other hand, the collective Gauss–Seidel (CGS) scheme appears to be a
reasonable choice [2]. Notice that this iterative method belongs to the class of Vanka
smoothers [22].

To analyze the CGS scheme, let us introduce some notation:

A+
h =

[
ν Σ+

h 0
0 Σ+

h

]
, A−

h =

[
ν Σ−

h 0
0 Σ−

h

]
, Dh =

[
ν 4
h2 Ih −Ih
Ih

4
h2 Ih

]
,(4.5)

where Ih is the identity operator on Ωh and the operators Σ+
h and Σ−

h are given in
stencil form by

Σ+
h =

1

h2


 0 0 0

1 0 0
0 1 0


 , Σ−

h =
1

h2


 0 1 0

0 0 1
0 0 0


 .(4.6)

Thus a sweep of the forward CGS scheme and of a backward CGS scheme are expressed
by

(Dh −A+
h )φ(1) −A−

h φ
(0) = f and (Dh −A−

h )φ(2) −A+
h φ

(1) = f ,(4.7)

respectively. In the symmetric version of the CGS smoother, the forward CGS step
is followed by a backward CGS step. The resulting iteration can be written in the
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linear form

φ(2) = φ(0) +Rh [fh −Ahφ(0)], where Rh = (Dh −A−
h )−1Dh (Dh −A+

h )−1,

which gives the smoothing operator Sh = Ih −RhAh.

We analyze this iteration by local Fourier analysis [10, 21]. Consider the Fourier
space spanned by the functions

φ(θ,x) = a eiθ1x/h eiθ2y/h, θ = (θ1, θ2),

where a = (1, 1)T . One defines

φ low-frequency component ⇐⇒ θ ∈ [−π

2
,
π

2
)2,

φ high-frequency component ⇐⇒ θ ∈ [−π, π)2 \ [−π

2
,
π

2
)2.

In the Fourier space consider the symbols of the discrete operators (Dh − A+
h ) and

A−
h for the forward CGS iteration. We have

(Dh −A+
h )(θ) = − 1

h2

[
ν (e−iθ1 + e−iθ2 − 4) h2

−h2 (e−iθ1 + e−iθ2 − 4)

]
,(4.8)

(A−
h )(θ) = − 1

h2

[
ν (eiθ1 + eiθ2) 0

0 (eiθ1 + eiθ2)

]
.(4.9)

Thus, the symbol of the forward CGS scheme is given by

S+
h (θ) = ((Dh −A+

h )(θ))−1 (A−
h )(θ).

In this framework, the smoothing factor of the forward CGS scheme for the optimality
system is defined by

µ = µ(S+
h ) = sup{|ρ(S+

h (θ))| : θ high frequency },(4.10)

where ρ denotes the spectral radius. In the same way one defines the smoothing factor
for the backward CGS step: S−h = (Dh −A−

h )−1 (A+
h ). The symmetric CGS scheme

is then given by Ssh = S−h S+
h . Since the symbols associated with the CGS iterative

schemes considered here are 2 × 2 operators with entries being functions of (θ1, θ2),
it is possible, by any symbolical package, to obtain the eigenvalues of the symbols.
Thus we have the following.

Remark 2. By inspection in the range of high frequencies for h ∈ [0.01, 0.25]
and ν ranging in the interval [10−6, 1], the following upper bounds for the smoothing
factor are found:

µ(S+
h ) ≤ 0.5, µ(S−h ) ≤ 0.5, and µ(Ssh) ≤ 0.25.

Therefore, we can conclude that the forward CGS, the backward CGS, and the
symmetric CGS are all good smoothers for the purpose of the multigrid scheme.
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4.2. Intergrid transfer operators. Among two grids Ωk and Ωk−1, corre-
sponding to mesh sizes hk and hk−1, we define a prolongation operator, Ikk−1 : Mk−1 →
Mk, given in stencil form by

Ikk−1 =
1

4


 1 2 1

2 4 2
1 2 1


 .(4.11)

This choice is consistent with the assumption of bilinear finite elements on each square
partition of the discretization. That is, on each square partition [xi, xi+1]× [yj , yj+1]
of Ωk−1, the piecewise bilinear function which interpolates U at the nodes is given by

ũ(x̃, ỹ) = (1− x̃)(1− ỹ)uij + x̃(1− ỹ)ui+1 j + ỹ(1− x̃)uij+1 + x̃ỹ ui+1 j+1.

Here, 0 ≤ x̃, ỹ ≤ 1 are local coordinates such that x = xi+ x̃ hk−1 and y = yj+ ỹ hk−1.
Thus the prolongation of u on a grid point of Ωk is the value of ũ corresponding to
that grid point.

Next, we define the full-weighting restriction operator, Ik−1
k : Mk →Mk−1, given

in stencil form by

Ik−1
k =

1

16


 1 2 1

2 4 2
1 2 1


 ,(4.12)

with the inner product

(v, w)k =

Nk∑
i=2

Nk∑
j=2

h2
k vkij wkij ,(4.13)

where Nk = 2k. We have that the restriction operator is the adjoint of the prolonga-
tion operator [13], in the sense that

(Ik−1
k vk, wk−1)k−1 = (vk, I

k
k−1wk−1)k for all vk ∈Mk, wk−1 ∈Mk−1.

The action of Ikk−1 (resp., Ik−1
k ) on pairs of grid functions is denoted by Ikk−1 (resp.,

Ik−1
k ).

In order to extend the multigrid convergence theory formulated in [9, 15, 6] to the
present multigrid method for optimality systems, we need the following lemma [9].

Lemma 4.1. Let us introduce the bilinear form ak(u, v) = (−∆ku, v)k, u, v ∈Mk.
The prolongation operator (4.11) satisfies the following conditions:

ak(Ikk−1uk−1, I
k
k−1uk−1) ≤ ak−1(uk−1, uk−1) for all uk−1 ∈Mk−1,(4.14)

(Ikk−1uk−1, I
k
k−1uk−1)k ≤ (uk−1, uk−1)k−1 for all uk−1 ∈Mk−1.(4.15)

In particular, the result of Lemma 4.1 applied to the operator (3.5) results in the
following:

(Ak Ikk−1wk−1, Ikk−1wk−1)k ≤ (Ak−1wk−1,wk−1)k−1(4.16)

for all wk−1 = (uk−1, vk−1) ∈Mk−1.
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5. Two grid local Fourier analysis. In this section we perform local Fourier
analysis [10, 21] of the two grid solution process for the optimal control optimality
system. That is, we apply the local Fourier analysis to the two grid operator given by

TGk−1
k = Sm2

k [Ik − Ikk−1 (Ak−1)−1 Ik−1
k Ak]Sm1

k .(5.1)

Here, the coarse grid operator is CGk−1
k = [Ik − Ikk−1 (Ak−1)−1 Ik−1

k Ak].
The local Fourier analysis considers infinite grids, Gk = {(ihk, jhk), i, j ∈ Z},

and therefore the influence of boundary conditions is not taken into account. Never-
theless, experience shows that local Fourier analysis provides predictions of multigrid
convergence which are very sharp. This analysis is based on the quadruples of Fourier
components

φk(θ,x) = eiθ1x/hk eiθ2y/hk

that coincide on Gk−1. For any low frequency θ = (θ1, θ2) ∈ [−π/2, π/2)2, we consider

θ(0,0) := (θ1, θ2), θ(1,1) := (θ1, θ2),

θ(1,0) := (θ1, θ2), θ(0,1) := (θ1, θ2),

where

θi =

{
θi + π if θi < 0,
θi − π if θi ≥ 0.

We have φ(θ(0,0), ·) = φ(θ(1,1), ·) = φ(θ(1,0), ·) = φ(θ(0,1), ·) for θ(0,0) ∈ [−π/2, π/2)2

and (x, y) ∈ Gk−1. Denote withα = (α1, α2) and considerα ∈ {(0, 0), (1, 1), (1, 0), (0, 1)};
then on Gk−1 we have φk(θα,x) = φk−1(2θ(0,0),x). The four components φk(θα, ·)
are called harmonics. For a given θ = θ(0,0) ∈ [−π/2, π/2)2, the four dimensional
space of harmonics is defined by

Eθ
k = span[φk(θα, ·) : α ∈ {(0, 0), (1, 1), (1, 0), (0, 1)}].

For each θ, the spaces Eθ
k ×Eθ

k are invariant under the action of TGk−1
k ; see [21]. We

now study the action of TGk−1
k on an arbitrary couple (ψy, ψλ) ∈ Eθ

k × Eθ
k , where

ψy =
∑
α

Aα φk(θα, ·) and ψλ =
∑
α

Bα φk(θα, ·).

We analyze how the vector of coefficients (A(0,0), . . . , B(0,0), . . . ) is transformed if the
two grid iteration (5.1) is applied to (ψy, ψλ). We use the following theorem, which
is an extension of Theorem 4.4.1 of [21] to our system of equations.

Theorem 5.1. Under the assumption that all multigrid components in (5.1) are
linear and that (Ak−1)−1 exists, the coarse grid operator CGk−1

k is represented on Eθ
k

by the 8× 8 matrix ĈG
k−1

k (θ),

ĈG
k−1

k (θ) = [Îk − Îkk−1(θ) (Âk−1(2θ))−1 Îk−1
k (θ) Âk(θ)],

for each θ ∈ [−π/2, π/2)2. Here, Îk and Âk(θ) are 8× 8 matrices, Îk−1
k (θ) is a 2× 8

matrix, Îkk−1(θ) is a 8× 2 matrix, and Âk−1(2θ) is a 2× 2 matrix.
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If the spaces Eθ
k × Eθ

k are invariant under the smoothing operator Sk, i.e., (the
8 × 8 matrix) Ŝk(θ) : Eθ

k × Eθ
k → Eθ

k × Eθ
k for all θ ∈ [−π/2, π/2)2, we also have a

representation of TGk−1
k on Eθ

k × Eθ
k by a 8× 8 matrix given by

T̂G
k−1

k (θ) = Ŝk(θ)m2 ĈG
k−1

k (θ) Ŝk(θ)m1 .

We now give the symbols of the operators above in explicit form.
The coarse grid operator Ak−1 is

Âk−1(2θ) =


 ν 4−2(cos(2θ1)+cos(2θ2))

h2
k−1

−1

1 4−2(cos(2θ1)+cos(2θ2))
h2
k−1


 .

The fine grid operator is Ak. The symbol Âk(θ) is given by


ν l(θ(0,0)) 0 0 0 −1 0 0 0

0 ν l(θ(1,1)) 0 0 0 −1 0 0

0 0 ν l(θ(1,0)) 0 0 0 −1 0

0 0 0 ν l(θ(0,1)) 0 0 0 −1

1 0 0 0 l(θ(0,0)) 0 0 0

0 1 0 0 0 l(θ(1,1)) 0 0

0 0 1 0 0 0 l(θ(1,0)) 0

0 0 0 1 0 0 0 l(θ(0,1))



,

where

l(θα) =
4− 2(cos(θα1

1 ) + cos(θα2
2 ))

h2
k

.

The restriction operator is Ik−1
k . The symbol Îk−1

k (θ) is given by[
I(θ(0,0)) I(θ(1,1)) I(θ(1,0)) I(θ(0,1)) 0 0 0 0

0 0 0 0 I(θ(0,0)) I(θ(1,1)) I(θ(1,0)) I(θ(0,1))

]
,

where

I(θα) = Ik−1
k (θα) =

1

4
(1 + cos(θα1

1 ))(1 + cos(θα2
2 )).

For the prolongation operator we have Îkk−1(θ) = Îk−1
k (θ)T .

For the smoothing iteration Sk consider the forward CGS scheme as described in

section 4.1. On Eθ
k×Eθ

k it is given by ((Dh −A+
h )(θ))−1 (A−

h )(θ), where ((Dh −A+
h )(θ))

is as follows:

1

h2




ν s+(θ(0,0)) 0 0 0 −h2 0 0 0

0 ν s+(θ(1,1)) 0 0 0 −h2 0 0

0 0 ν s+(θ(1,0)) 0 0 0 −h2 0

0 0 0 ν s+(θ(0,1)) 0 0 0 −h2

h2 0 0 0 s+(θ(0,0)) 0 0 0

0 h2 0 0 0 s+(θ(1,1)) 0 0

0 0 h2 0 0 0 s+(θ(1,0)) 0

0 0 0 h2 0 0 0 s+(θ(0,1))


 ,

and the operator (A−
h )(θ) is given by

1

h2




ν s−(θ(0,0)) 0 0 0 0 0 0 0

0 ν s−(θ(1,1)) 0 0 0 0 0 0

0 0 ν s−(θ(1,0)) 0 0 0 0 0

0 0 0 ν s−(θ(0,1)) 0 0 0 0

0 0 0 0 s−(θ(0,0)) 0 0 0

0 0 0 0 0 s−(θ(1,1)) 0 0

0 0 0 0 0 0 s−(θ(1,0)) 0

0 0 0 0 0 0 0 s−(θ(0,1))


 ,
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Table 5.1
Convergence factors and smoothing factors.

Local Fourier analysis Experim.

(m1,m2) µm1+m2
loc

η(TGk−1
k
) V (m1,m2)

(1,1) 0.25 0.25 0.30

(2,1) 0.125 0.12 0.12

(2,2) 0.06 0.08 0.08

(3,2) 0.03 0.06 0.06

(3,3) 0.01 0.05 0.05

where

s+(θα) = 4− e−iθ
α1
1 − e−iθ

α2
2 and s−(θα) = −eiθα1

1 − eiθ
α2
2 .

Based on the representation on TGk−1
k by a 8 × 8 matrix T̂G

k−1

k (θ), we can
calculate the convergence factor:

η(TGk−1
k ) = sup{ρ(T̂G

k−1

k (θ)) : θ ∈ [−π/2, π/2)2}.

Here, ρ(T̂G
k−1

k (θ)) is the spectral radius of T̂G
k−1

k (θ).
Under the invariance property advocated by Theorem 5.1, to measure the smooth-

ing property of the iteration one can assume an ideal coarse grid correction which
annihilates the low-frequency error components and leaves the high-frequency error
components unchanged. That is, one defines the projection operator Qk−1

k on Eθ
k by

Qk−1
k φ(θ, ·) =

{
0 if θ = θ(0,0) ∈ [−π/2, π/2)2,

φ(θ, ·) if θ ∈ {θ(1,1),θ(1,0),θ(0,1)}.

On the space Eθ
k × Eθ

k we then have

Q̂k−1
k (θ) =

[
Qk−1
k 0

0 Qk−1
k

]
for θ ∈ [−π/2, π/2)2.(5.2)

In this framework the smoothing property of Sk is defined as follows:

µloc = µ(Sk,m) = sup

{
m

√
|ρ(Q̂k−1

k Ŝk(θ)m)| : θ ∈ [−π/2, π/2)2
}
.(5.3)

Notice that, assuming an ideal CGC takes place, the convergence factor of the two
grid scheme is given by µm1+m2

loc .

We complete this section by reporting in Table 5.1 the values of η(TGk−1
k ) and

those of µ(Sk,m) obtained with the two grid analysis described above. Here the
forward Gauss–Seidel smoother is used. For comparison, the observed value of con-
vergence factor defined as the “asymptotic” value of the ratio between the discrete L2

norms of residuals resulting from two successive multigrid cycles on the finest mesh
is reported. Notice that the values reported in Table 5.1 are typical of the standard
Poisson model problem. These values have been obtained considering the mesh size
value h ranging in the interval [0.01, 0.25] corresponding to the interval of mesh sizes
used in the multigrid code. The value of the weight ν has been taken in the interval
[10−6, 1].
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6. General multigrid convergence theory. In this section, we prove multi-
grid convergence for the optimal control problem in a more general functional setting.
We use the framework in [6, 9, 11] adapted to the nonsymmetric system above. This
framework applies directly to elliptic problems with prescribed boundary conditions
on bounded polygonal domains.

For the purpose of our analysis, we briefly describe multigrid convergence theory
for scalar Poisson equation discretized by the finite difference method on a unit square.
Consider

−∆y = f in Ω,
y = 0 on ∂Ω.

(6.1)

The matrix form of this problem is

Âkyk = fk.(6.2)

Let P̂k−1 : Mk →Mk−1 (resp., Ik−1
k : Mk →Mk−1) be the Âk (resp., L2

k) projections
defined by

(Âk−1P̂k−1u, v)k−1 = (Âku, I
k
k−1v)k (resp., (Ik−1

k u, v)k−1 = (u, Ikk−1v)k)

for all u ∈Mk and v ∈Mk−1. Let R̂k : Mk →Mk be an iteration operator. Then the
V -cycle multigrid algorithm to solve (6.2) in recursive form is given as follows.

Multigrid Algorithm V (m1,m2).
Set B̂1 = Â−1

1 . For k ≥ 2 define B̂k : Mk →Mk in terms of B̂k−1 as follows. Let
g ∈Mk.

1. Set y0 = 0.
2. Define yl for l = 1, . . . ,m1 by

yl = yl−1 + R̂k(g − Âk y
l−1).

3. Set ym1+1 = ym1 + Ikk−1q, where

q = B̂k−1I
k−1
k (g − Âk y

m1).

4. Set B̂kg = ym1+m2+1, where y� for 9 = m1 + 2, . . . ,m1 + m2 + 1 is given by
step 2 (R̂tk instead of R̂k).

For the purpose of analysis, we take m1 = 1 and m2 = 0.
From the definition of P̂k−1, we see that

Ik−1
k Âk = Âk−1P̂k−1.

Let Ŝk = Ik − R̂kÂk for k > 1, where Ik denotes the identity on Mk. Then Ŝk y =
y − y1. Now for y ∈Mk, k = 2, . . . , L, we have

(Ik − B̂kÂk) y = y − y1 − Ikk−1q

= Ŝk y − Ikk−1B̂k−1Âk−1P̂k−1Ŝk y(6.3)

= [Ik − Ikk−1B̂k−1Âk−1P̂k−1] Ŝk y

= [(Ik − Ikk−1P̂k−1) + Ikk−1(Ik−1 − B̂k−1Âk−1) P̂k−1]Ŝk y.

The convergence results of the multigrid method are expressed in terms of the
error operators Êk := Ik − B̂kÂk and Ê := ÊL. In the following, let C denote a
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generic constant independent of k that can have different values in different places,
unless otherwise stated.

In order to prove convergence of the multigrid algorithm, the following two con-
ditions are required. There exists a constant C̄R̂ independent of y and k such that

|y|20
µ(Âk)

≤ C̄R̂(
¯̂
Ry, y) for all y ∈Mk,(6.4)

where µ(Âk) denotes the maximum eigenvalue of Âk,
¯̂
R = (Ik − Ŝ∗

k Ŝk) Â−1
k , Ŝ∗

k =

I − R̂tkÂk, and ∗ denotes adjoint with respect to the inner product (Âk·, ·). Next,

for k > 1 define T̂k = R̂kÂk. We assume that there exists a constant θ, 0 < θ < 2,
independent of y such that

(ÂkT̂k y, T̂k y)k ≤ θ(ÂkT̂k y, y)k for all y ∈Mk.(6.5)

In this paper, we are dealing with multigrid for finite difference method applied to the
Poisson equation on rectangular domains. In this case the stiffness matrix is exactly
the same as that arising from the finite element case. Hence we have the following
result from [9].

Theorem 6.1. Let R̂k satisfy (6.4) and (6.5) for k > 1. Then there exists a

positive constant δ̂ < 1 such that

(ÂLÊLy, ÊLy)L ≤ δ̂2 (ÂLy, y)L for all y ∈ML,

where δ̂ = CL/(CL + 1).

Remark 3. The dependence of δ̂ on L can be removed by a perturbation analysis
given in [16].

Remark 4. For the multigrid algorithm V (m, 0) one obtains δ̂ = CL/(CL + m);
see [9]. The constant C depends linearly on C̄R̂; see [7, 8, 9] to find estimates of

these constants. As discussed in [7], the δ̂ estimate in Theorem 6.1 is pessimistic, in

the sense that the observed δ̂ is smaller than the theoretical one and their difference
becomes larger for larger values of m.

To prove convergence of multigrid for the optimal control optimality system, we
first consider the decoupled symmetric system:

−ν∆y = νg in Ω,
y = 0 on ∂Ω,

−∆λ = z in Ω,
λ = 0 on ∂Ω.

(6.6)

This system is exactly two copies of Poisson equation, hence the multigrid convergence
theory for this system inherits the properties of the scalar case. In fact, if we define

Âk =

(
ν Âk 0

0 Âk

)
,(6.7)

and analogously B̂k, Êk, etc., as the system counterparts of B̂k, Êk, etc., then the
multigrid algorithm has exactly the same form as (6.3) with B̂k, Âk, etc., replacing
B̂k, Âk, etc. As a consequence we have the following theorem.
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Theorem 6.2. Under the assumption of Theorem 6.1, there exists a positive
constant δ̂ < 1 such that

(ÂLÊL(y, λ), ÊL(y, λ))L ≤ δ̂2(ÂL(y, λ), (y, λ))L for all (y, λ) ∈ML,(6.8)

where δ̂ has the same form as in Theorem 6.1.
To analyze the optimality system we let

Ak = Âk + dk,

where

dk =

(
0 −Ik
Ik 0

)
.

We note that

|(dk(u, v), (y, λ))| ≤ C |(u, v)|0 |(y, λ)|0,(6.9)

for some constant C. Now, the multigrid algorithm corresponding to this nonsymmet-
ric problem has exactly the same recursive form as (6.3) with Bk, Ak, etc., replacing
B̂k, Âk, etc., and thus,

Ek = Ik − BkAk = [Ik − Ikk−1Pk−1 + Ikk−1(Ik−1 − Bk−1Ak−1)Pk−1]Sk,(6.10)

where Ik is the identity operator onMk. We need a subspace decomposition ofMk.
Let

Mk =

�∑
i=1

Mi
k,(6.11)

where 9 is the number of grid points of the discrete domain and Mi
k is a two dimen-

sional subspace of Mk consisting of nodal functions with zero nodal values except
at the grid point i. Denote the decomposition of Ak (resp., Âk) with respect to the
subspace Mi

k by Aik :Mi
k →Mi

k (resp., Âik), satisfying

(Aikw,χ)k = (Akw,χ)k for all χ ∈Mi
k, w ∈Mi

k.

Define Pik :Mk →Mi
k (resp., P̂ik) by

(AkPikw,χ)k = (Akw,χ)k for all χ ∈Mi
k, w ∈Mk.(6.12)

We use the notation (w,χ)0,i = (w,χ)0 and (w,χ)1,i = (w,χ)1 for χ ∈ Mi
k. In the

case of a CGS smoother, we obtain a product representation (see [8]) of Sk: For this
purpose we set w0 = 0, for i = 1, . . . , 9,

wi = wi−1 + (Aik)−1Qik (fk −Akwi−1),(6.13)

and Rkfk = w�. From the identity AikPik = QikAk on Mi
k it follows that Sk =

Ik − RkAk =
∏�
i=1(Ik − Pik). Here, the operator Qik : Mk → Mi

k represents the
orthogonal projection ontoMi

k with respect to (·, ·)k. Theorem 3.2 of [8] applies here
to prove that (6.13) satisfies (6.4) and (6.5).
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Lemma 6.3. For v,w ∈Mk, we have

|(ÂkP̂ikw,v)k| ≤ C |w|1 |v|1(6.14)

and

|(Âk(P̂ik − Pik)w,v)| ≤ C hk |w|1 |v|1.(6.15)

Proof. By coercivity, Lemma 3.2, and the Poincaré inequality, it follows that there
exists a positive constant α such that

α |P̂ikw|21 ≤ (ÂkP̂ikw, P̂ikw)k = (Âkw, P̂ikw)k

≤ C |w|1 |P̂ikw|1.

Hence P̂ik is bounded in the discrete energy norm and (6.14) is obtained by the
Cauchy–Schwarz inequality. For (6.15), we have

(Âk(P̂ik − Pik)w,v)k = (Âk(P̂ik − Pik)w, P̂ikv)k

= (Âkw, P̂ikv)k − (ÂkPikw, P̂ikv)k

= (Âkw, P̂ikv)k − (Akw, P̂ikv)k + (dk Pikw, P̂ikv)k

= −(dkw, P̂ikv)k + (dk Pikw, P̂ikv)k

= −(dk (Ik − Pik)w, P̂ikv)k.

Taking the absolute value we get by the Poincaré inequality,

|(Âk(P̂ik − Pik)w,v)k| ≤ C |(Ik − Pik)w|0,i |P̂ikv|1,i
≤ C hk |w|1 |v|1,

where the boundedness of P̂ik is used for the second inequality.

The proof of the following lemma is based on subspace decomposition and proved
with the aid of Lemma 6.3 exactly in the same way as that of Theorem 3.1 in [11].
We skip the details.

Lemma 6.4. There exists some constant CS independent of k such that

|(Âk(Sk − Ŝk)w,v)k| ≤ CS hk |w|1 |v|1(6.16)

for all w,v ∈Mk.

Lemma 6.5. The following inequalities hold:

|(Âk−1(P̂k−1 − Pk−1)w,v)k−1| ≤ CP hk−1 |w|1|v|1 for w ∈Mk, v ∈Mk−1(6.17)

and

|(Âk(Ik − Ikk−1Pk−1)w,v)k| ≤ CI hk |w|1 |v|1 for w ∈Mk, v ∈Mk,(6.18)

where CP and CI are some constants independent of k.
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Proof. Let us first prove (6.17) with Âk−1 replaced by Ak−1. We have forw ∈Mk

and v ∈Mk−1,

|(Ak−1P̂k−1w,v)k−1 − (Ak−1Pk−1w,v)k−1|
= |(Âk−1P̂k−1w,v)k−1 + (dk−1 P̂k−1w,v)k−1 − (Akw, Ikk−1v)k|
= |(Âkw, Ikk−1v)k + (dk−1 P̂k−1w,v)k−1 − (Akw, Ikk−1v)k|
= |(dk−1 P̂k−1w,v)k−1 − (dkw, Ikk−1v)k|
= |(dk−1 P̂k−1w,v)k−1 − (dk−1 Ik−1

k w,v)k−1|
= |(dk−1 (P̂k−1 − Ik−1

k )w,v)k−1|
≤ C |(P̂k−1 − Ik−1

k )w|0 |v|1,

where the last inequality is obtained as follows: Let us denote by
¯̂Pk−1 the elliptic

projection of the linear finite element method and denote by Īk−1 :Mk →Mk−1 the
fine-to-coarse injection. We have

|(P̂k−1 − Ik−1
k )w|0 ≤ |(P̂k−1 − ¯̂Pk−1)w|0 + |( ¯̂Pk−1 − Īk−1)w|0 + |(Īk−1 − Ik−1

k )w|0.

Here, inequality (6.7), (6.8), (6.9), and (6.11) of [9], and the approximation property
of Ik−1

k , are used to obtain the estimate |(P̂k−1 − Ik−1
k )w|0 ≤ C hk−1 |w|1.

It follows that ‖P̂k−1 − Pk−1‖Ak−1
≤ C hk−1, where ‖ · ‖Ak−1

denotes the usual

operator norm induced by Ak−1. Because (Ak−1v,v)k−1 = (Âk−1v,v)k−1 from the
definition of dk−1, we also have ‖P̂k−1 − Pk−1‖Âk−1

≤ C hk−1, which is the desired

result.
The second assertion (6.18) follows directly from (6.17).
With these preparations we can show the following theorem.
Theorem 6.6. There exist positive constants h0 and δ < 1 such that for all

h1 < h0 we have

(ÂLELw, ELw)L ≤ δ2(ÂLw,w)L for all w ∈ML,

where δ = δ̂ + Ch1 and δ̂ is as in Theorem 6.2.
Proof. Denoting the operator norm ‖·‖Âk

by ‖·‖, we show that ‖Ek−Êk‖ ≤ ckh1,
where ck is uniformly bounded. The error operator Ek can be written as

Ek = (Ik − Ikk−1Bk−1Ak−1Pk−1)Sk,

and Êk has similar representation. We compare the error operators and write their
difference as

Ek − Êk = (Ik − Ikk−1Bk−1Ak−1Pk−1) (Sk − Ŝk)

− Ikk−1Bk−1Ak−1(Pk−1 − P̂k−1) Ŝk + Ikk−1(Ek−1 − Êk−1) P̂k−1 Ŝk.

Thus in terms of the operator norm, we have by (4.16)

‖Ek − Êk‖ ≤ ‖Ik − Ikk−1Bk−1Ak−1Pk−1‖ ‖Sk − Ŝk‖(6.19)

+ ‖Bk−1Ak−1‖ ‖Pk−1 − P̂k−1‖ ‖Ŝk‖
+ ‖Ek−1 − Êk−1‖ ‖P̂k−1Ŝk‖.
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Let us make the induction hypothesis: ‖Ek−1 − Êk−1‖ ≤ ck−1h1, where ck−1 is a
constant to be defined below. By the triangle inequality and Theorem 6.2,

‖Ek−1‖ ≤ δ̂ + ck−1h1(6.20)

and

‖Bk−1Ak−1‖ ≤ 1 + δ̂ + ck−1h1.(6.21)

Using the induction hypothesis, (4.14), Lemma 6.4, and Lemma 6.5, we have

‖Ik − Ikk−1Bk−1Ak−1Pk−1‖
≤ ‖Ik − Ikk−1Pk−1‖+ ‖Ik−1 − Bk−1Ak−1‖ ‖Pk−1‖(6.22)

≤ CIhk−1 + ‖Ek−1‖ (1 + CPhk−1)(6.23)

≤ CI (hk−1 + δ̂ + ck−1h1),(6.24)

where we assumed CI sufficiently large so that 1+CPhk−1 ≤ CI . To prove the second
inequality (6.23) we used the fact that ‖P̂k−1‖ ≤ 1 and the chain of inequalities
‖Pk−1‖ ≤ ‖P̂k−1‖+‖Pk−1−P̂k−1‖ ≤ 1 +CPhk−1. The stability of P̂k−1 results from
Lemma 4.1 and the identity (Âk−1P̂k−1w,v)k−1 = (Âkw, Ikk−1v)k.

Collecting (6.19) through (6.21), and using (4.14), Lemma 6.4, Lemma 6.5, and
(6.22)–(6.24), we see that

‖Ek − Êk‖ ≤ CI CS (hk−1 + δ̂ + ck−1h1)hk

+ CP (1 + δ̂ + ck−1h1)hk−1 + ck−1h1

≤
(
CICS

2
+ CP

)
hk−1 (1 + δ̂ + ck−1h1) + ck−1h1

for all k.
Now let Ĉ := CICS

2 + CP and define

ck := ck−1 + Ĉh−1
1 hk−1(1 + δ̂ + ck−1h1).(6.25)

To see that the sequence ck is uniformly bounded in k, one notes that cj ≤ ck for
j ≤ k and hence

ck = ck−1 + Ĉh−1
1 (1 + δ̂ + ck−1h1)hk−1

= c1 + Ĉh−1
1

k∑
j=2

(1 + δ̂ + cj−1h1)hj−1

≤ c1 + Ĉh−1
1

k∑
j=2

(1 + δ̂ + ckh1)hj−1

≤ c1 + 2Ĉ(1 + δ̂) + 2Ĉh1ck.

Now move the ck term to the left to get

ck ≤ (c1 + 2Ĉ(1 + δ̂))/(1− 2Ĉh1),

provided that h1 is small enough. Therefore, if the coarsest grid is sufficiently fine,
we have δ = δ̂ + Ch1 < 1.
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We conclude this section with remarks on some of the constants appearing in the
proofs. In case of collective CGS iteration, the constant C̄R̂ appears to be almost
independent from the value of the weight of the cost of the control. Its value is close
to that of the Gauss–Seidel scheme applied to the scalar Poisson problem.

The constants in (6.16), (6.17), and (6.18) depend on the features of the optimality
system as, for example, nonsymmetry. They account for the induction hypothesis
where the coarsest mesh size, h1, enters in the analysis and results in the estimate
δ = δ̂ + C h1. The requirement for a sufficiently small h1 has no correspondence to
our numerical experience (using CGS). However, the estimate of Theorem 6.6 states

that, for sufficiently small h1, we have δ ≈ δ̂, that is, the convergence factor of the
multigrid method applied to the optimality system is close to the convergence factor
of the multigrid scheme applied to the scalar Poisson problem. This fact agrees with
our numerical experience and the results reported in Table 5.1.

7. Conclusions. We have presented a systematic study of a finite difference
multigrid method for a class of optimality systems arising from optimal control of
elliptic partial differential equations. In this emerging field of scientific computing
there is an increasing interest in the development of accurate and efficient solution
methods for optimal control problems. In the first part we have proved optimal-order
error estimates in the discrete L2 norm and in the discrete H1 norm under minimum
regularity requirements on the data. In the second part, two complementary analyti-
cal tools for multigrid convergence theory have been discussed. In the framework of
local Fourier analysis it is possible to obtain sharp convergence estimates which are
very important in the first phase of development of the multigrid components. The
other analytical tool presented here is important from the theoretical point of view.
It makes it possible to prove optimal convergence of the multigrid process under weak
regularity assumptions. The general multigrid convergence theory discussed in this
paper is developed in two steps. First, the multigrid method applied to the uncoupled
differential system is considered. Then, the nondifferential coupling part character-
izing the optimality system is introduced. By analyzing the difference between the
operators obtained with and without coupling, we are able to estimate the conver-
gence factor of multigrid for optimality systems based on the estimates available for
the uncoupled problem.
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Abstract. We study the feedback group action on single-input nonlinear control systems. We
follow an approach of Kang and Krener based on analyzing, step by step, the action of homogeneous
transformations on the homogeneous part of the same degree of the system. We construct a dual
normal form and dual invariants with respect to those obtained by Kang. We also propose a canonical
form and a dual canonical form and show that two systems are equivalent via a formal feedback if
and only if their canonical forms (resp., their dual canonical forms) coincide. We give an explicit
construction of transformations bringing the system to its normal, dual normal, canonical, and dual
canonical forms. We illustrate our results by simple examples on R

3 and R
4.
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1. Introduction. The problem of transforming the nonlinear control single-
input system

Σ : ξ̇ = f(ξ) + g(ξ)u

by a feedback transformation of the form

Γ :
x = φ(ξ),
u = α(ξ) + β(ξ)v

to a simpler form has been extensively studied during the last twenty years. The
transformation Γ brings Σ to the system

Σ̃ : ẋ = f̃(x) + g̃(x)v,

whose dynamics are given by

f̃ = φ∗(f + gα),
g̃ = φ∗(gβ),

where for any vector field f and any diffeomorphism φ we denote

(φ∗f)(x) = dφ(φ−1(x)) · f(φ−1(x)).

A natural question to ask is whether we can find a transformation Γ such that the
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transformed system Σ̃ is linear, that is, whether we can linearize the system Σ via
feedback. Necessary and sufficient geometric conditions for this to be the case have
been given in [13] and [18]. Those conditions, except for the planar case, turn out
to be restrictive, and a natural problem that arises is to find normal forms for non-
linearizable systems. Although natural, this problem is very involved and has been
extensively studied during the last twenty years. Four basic methods have been pro-
posed for studying feedback equivalence problems. The first method is based on the
theory of singularities of vector fields and distributions, and their invariants, and using
this method a large variety of feedback classification problems have been solved; see,
e.g., [4], [7], [14], [15], [18], [19], [27], [29], [32], [38]. The second approach, proposed
by Gardner [9], uses Cartan’s method of equivalence [6] and describes the geometry of
feedback equivalence [10], [11], [12], [28]. The third method, inspired by the Hamilto-
nian formalism for optimal control problems, was developed by Bonnard [3], [4] and
Jakubczyk [16], [17] and has led to a very nice description of feedback invariants in
terms of singular extremals. Finally, a very fruitful approach was proposed by Kang
and Krener [26] and then followed by Kang [21], [22]. Their idea, which is closely
related with Poincaré’s classical technique for linearization of dynamical systems (see,
e.g., [1]), is to analyze the system Σ and the feedback transformation Γ step by step
and, as a consequence, to produce a simpler equivalent system Σ̃ also step by step.

Our paper is deeply inspired by those of Kang and Krener [26], [21] and can be
considered as a completion of their results. In [21], Kang constructed a normal form
for single-input nonlinear control systems with controllable linearization using succes-
sively homogeneous feedback transformations, and he proved that the homogeneous
terms of a given degree of his normal form are unique under homogeneous feedback
transformations of the same degree. He also showed that a nonlinear system can
admit different normal forms under feedback resulting from the action of lower order
terms of the feedback transformation on higher order terms of the system. The main
goal of our paper is to propose a canonical form for the class of single-input systems
with controllable linearization and to prove that two systems are equivalent, via a
formal feedback, if and only if their canonical forms coincide.

In [26] Kang and Krener constructed two normal forms for the quadratic part of
a single-input system. In the first normal form, all components of the linear part of
the control vector field are annihilated and all nonremovable quadratic nonlinearities
are grouped in the drift; in the second normal form, all quadratic terms of the drift
are annihilated and all nonremovable nonlinearities are present in the control vector
field. Kang normal form is a generalization, for higher order terms, of the first normal
form. In this paper, we generalize the second one and produce a dual normal form
for higher order terms. We also construct dual invariants of homogeneous feedback
transformations. They contain the same information, as Kang invariants, encoded in
a different way. We also give a dual canonical form and prove that two systems are
equivalent, via formal feedback, if and only if their dual canonical forms coincide.

The third aim of the paper is to construct explicit homogeneous feedback trans-
formations which bring the homogeneous part of the system of the same degree into
its normal, or dual normal, form. For any fixed degree, our transformations are easily
computable via differentiation and integration of polynomials. A successive appli-
cation of those transformations gives formal feedbacks that bring any system to its
normal form, dual normal form, canonical form, and dual canonical form.

The theory of normal forms initialized and developed by Kang and Krener [26]
and Kang [21], [22] and continued in the present paper (and in [33], [34]) has proved
to be very useful in analyzing structural properties of nonlinear control systems. It
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has been used to study bifurcations of nonlinear systems [23], [24], [25], has led to a
complete description of symmetries around equilibrium [30], [31], and has allowed us
to characterize systems equivalent to feedforward forms [35], [36], [37].

The paper is organized as follows. In section 2 we will introduce, following [21]
and [26], homogeneous feedback transformations. We give a normal form obtained by
Kang and discuss invariants of homogeneous transformations, also obtained by him.
We provide an explicit construction of transformations bringing the system to Kang
normal form. In section 3 we construct a canonical form and give one of our main
results stating that two control systems are feedback equivalent if and only if their
canonical forms coincide. Proofs of results presented in sections 2 and 3 are given in
section 4.

Section 5 dualizes the main results of section 2: we give a dual normal form,
explicitly construct transformations bringing the system to that form, and define dual
invariants of homogeneous transformations. Similarly to normal forms, a given system
can admit different dual normal forms. In section 6 we thus dualize the results of
section 3 by constructing a dual canonical form and proving that two control systems
are feedback equivalent if and only if their dual canonical forms coincide. Section 7
contains proofs of results presented in sections 5 and 6. Throughout the paper, we
illustrate our results by simple examples on R

3 and R
4.

2. Normal form and m-invariants. All objects, that is, functions, maps,
vector fields, control systems, etc., are considered in a neighborhood of 0 ∈ R

n and
assumed to be C∞-smooth. Let h be a smooth R-valued function. By

h(x) = h[0](x) + h[1](x) + h[2](x) + · · · =
∞∑
m=0

h[m](x)

we denote its Taylor series expansion at 0 ∈ R
n, where h[m](x) stands for a homoge-

neous polynomial of degree m.
Similarly, for a map φ of an open subset of R

n to R
n (resp., for a vector field f on

an open subset of R
n) we will denote by φ[m] (resp., by f [m]) the homogeneous term

of degree m of its Taylor series expansion at 0 ∈ R
n, that is, each component φ

[m]
j of

φ[m] (resp., f
[m]
j of f [m]) is a homogeneous polynomial of degree m in x.

We will denote by H [m](x) the space of homogeneous polynomials of degree m
of the variables x1, . . . , xn and by H≥m(x) the space of formal power series of the
variables x1, . . . , xn starting from terms of degree m.

Analogously, we will denote by R[m](x) the space of homogeneous vector fields
whose components are in H [m](x) and by R≥m(x) the space of vector fields formal
power series whose components are in H≥m(x).

Consider the Taylor series expansion of the system Σ given by

Σ∞ : ξ̇ = Fξ +Gu+

∞∑
m=2

(
f [m](ξ) + g[m−1](ξ)u

)
,(2.1)

where F = ∂f
∂ξ (0) and G = g(0). We will assume throughout the paper that f(0) = 0

and g(0) �= 0.
Consider also the Taylor series expansion Γ∞ of the feedback transformation Γ
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given by

Γ∞ :

x = Tξ +

∞∑
m=2

φ[m](ξ),

u = Kξ + Lv +

∞∑
m=2

(
α[m](ξ) + β[m−1](ξ)v

)
,

(2.2)

where T is an invertible matrix and L �= 0. Let us analyze the action of Γ∞ on the
system Σ∞ step by step.

To start with, consider the linear system

ξ̇ = Fξ +Gu.

Throughout the paper we will assume that it is controllable. It can be thus trans-
formed by a linear feedback transformation of the form

Γ1 :
x = Tξ,
u = Kξ + Lv

to the Brunovský canonical form (A,B); see, e.g., [20]. Assuming that the linear
part (F,G), of the system Σ∞ given by (2.1), has been transformed to the Brunovský
canonical form (A,B), we follow an idea of Kang and Krener [26], [21] and apply
successively a series of transformations

Γm :
x = ξ + φ[m](ξ),

u = v + α[m](ξ) + β[m−1](ξ)v
(2.3)

for m = 2, 3, . . . . A feedback transformation defined as a series of successive compo-
sitions of Γm, m = 1, 2, . . . , will also be denoted by Γ∞ because, as a formal power
series, it is of the form (2.2). We will not address the problem of convergence and will
call such a series of successive compositions a formal feedback transformation.

Observe that each transformation Γm for m ≥ 2 leaves invariant all homogeneous
terms of degree smaller than m of the system Σ∞, and we will call Γm a homogeneous
feedback transformation of degree m. We will study the action of Γm on the following
homogeneous system:

Σ[m] : ξ̇ = Aξ +Bu+ f [m](ξ) + g[m−1](ξ)u.(2.4)

Consider another homogeneous system, Σ̃[m], given by

Σ̃[m] : ẋ = Ax+Bv + f̃ [m](x) + g̃[m−1](x)v.(2.5)

We will say that the homogeneous system Σ[m] is feedback equivalent to the homoge-
neous system Σ̃[m] if there exists a homogeneous feedback transformation of the form
(2.3), which brings Σ[m] into Σ̃[m] modulo terms in R≥m+1(x, v).
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Notation. Because of various normal forms and various transformations that
are used throughout the paper, we will keep the following notation. We will denote,
respectively, by Σ[m] and Σ∞ the following systems:

Σ[m] : ξ̇ = Aξ +Bu+ f [m](ξ) + g[m−1](ξ)u,

Σ∞ : ξ̇ = Aξ +Bu+

∞∑
k=2

(
f [k](ξ) + g[k−1](ξ)u

)
.

The systems Σ[m] and Σ∞ will stand for the systems under consideration. Their state
vector will be denoted by ξ and their control by u. The system Σ[m] (resp., the system
Σ∞) transformed via feedback will be denoted by Σ̃[m] (resp., by Σ̃∞). Its state vector
will be denoted by x, its control by v, and the vector fields, defining its dynamics, by
f̃ [k] and g̃[k−1]. Feedback equivalence of homogeneous systems Σ[m] and Σ̃[m] will be
established via a smooth feedback, that is, precisely, via a homogeneous feedback Γm.
On the other hand, feedback equivalence of systems Σ∞ and Σ̃∞ will be established
via a formal feedback Γ∞.

We will introduce two kinds of normal forms, Kang normal forms and dual normal
forms, as well as canonical forms and dual canonical forms. The “bar” symbol will

correspond to the vector field f̄ [m] defining the Kang normal forms Σ
[m]
NF and Σ∞

NF

and the canonical form Σ∞
CF as well as to the vector field ḡ[m−1] defining the dual

normal forms Σ
[m]
DNF and Σ∞

DNF and the dual canonical form Σ∞
DCF . Analogously,

the m-invariants (resp., dual m-invariants) of the system Σ[m] will be denoted by

a[m]j,i+2 (resp., by b
[m−1]
j ) and the m-invariants (resp., dual m-invariants) of the

normal form Σ
[m]
NF (resp., dual normal form Σ

[m]
DNF ) by ā

[m]j,i+2 (resp., by b̄
[m−1]
j ).

The starting point is the following result, proved by Kang [21].
Proposition 1. The homogeneous feedback transformation Γm, defined by (2.3),

brings the system Σ[m], given by (2.4), into Σ̃[m], given by (2.5), if and only if the
relations




LAξφ
[m]
j (ξ)− φ[m]

j+1(ξ) = f̃
[m]
j (ξ)− f [m]

j (ξ),

LBφ
[m]
j (ξ) = g̃

[m−1]
j (ξ)− g[m−1]

j (ξ),

LAξφ
[m]
n (ξ) + α[m](ξ) = f̃

[m]
n (ξ)− f [m]

n (ξ),

LBφ
[m]
n (ξ) + β[m−1](ξ) = g̃

[m−1]
n (ξ)− g[m−1]

n (ξ)

(2.6)

hold for any 1 ≤ j ≤ n− 1, where φ
[m]
j are the components of φ[m].

This proposition represents the essence of the method developed by Kang and
Krener and used in our paper. The problem of studying the feedback equivalence
of two systems Σ and Σ̃ requires, in general, solving a system of first order partial
differential equations. On the other hand, if we perform the analysis step by step,
then the problem of establishing the feedback equivalence of two systems Σ[m] and
Σ̃[m] reduces to solving the algebraic system (2.6).

Using the above proposition, Kang [21] proved the following result.
Theorem 1. The homogeneous system Σ[m] can be transformed, via a homoge-

neous feedback transformation Γm, into the normal form
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Σ
[m]
NF :




ẋ1 = x2 +
n∑
i=3

x2iP
[m−2]
1,i (x1, . . . , xi),

...

ẋj = xj+1 +
n∑

i=j+2

x2iP
[m−2]
j,i (x1, . . . , xi),

...

ẋn−2 = xn−1 + x
2
nP

[m−2]
n−2,n (x1, . . . , xn),

ẋn−1 = xn,

ẋn = v,

(2.7)

where P
[m−2]
j,i (x1, . . . , xi) are homogeneous polynomials of degree m− 2 depending on

the indicated variables.
In order to construct invariants of homogeneous feedback transformations, let us

define

Xm−1
i (ξ) = (−1)iadiAξ+f [m](ξ)(B + g[m−1](ξ))

and let X
[m−1]
i be its homogeneous part of degree m − 1. By πi we will denote the

projection on the subspace

Wi = {ξ ∈ Rn : ξi+1 = · · · = ξn = 0} ,(2.8)

that is,

πi(ξ) = (ξ1, . . . , ξi, 0, . . . , 0).

Following Kang [21], we denote by a[m]j,i+2(ξ) the homogeneous part of degree m−2
of the polynomials

CAj−1
[
Xm−1
i , Xm−1

i+1

]
(πn−i(ξ)),

where C = (1, 0, . . . , 0)T ∈ R
n and (j, i) ∈ ∆ ⊂ N× N, defined by

∆ = {(j, i) ∈ N× N : 1 ≤ j ≤ n− 2, 0 ≤ i ≤ n− j − 2} .
The homogeneous polynomials a[m]j,i+2 for (j, i) ∈ ∆ will be called m-invariants of
Σ[m].

The following result of Kang [21] asserts that m-invariants a[m]j,i+2 for (j, i) ∈
∆ are complete invariants of homogeneous feedback and, moreover, illustrates their

meaning for the homogeneous normal form Σ
[m]
NF .

Consider two homogeneous systems Σ[m] and Σ̃[m] and let

{ a[m]j,i+2 : (j, i) ∈ ∆ }
and

{ ã[m]j,i+2 : (j, i) ∈ ∆ }
denote, respectively, their m-invariants. The following theorem was proved by Kang
[21].

Theorem 2. The m-invariants have the following properties:
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(i) Two homogeneous systems Σ[m] and Σ̃[m] are equivalent via a homogeneous
feedback transformation Γm if and only if

a[m]j,i+2 = ã[m]j,i+2

for any (j, i) ∈ ∆.

(ii) The m-invariants ā[m]j,i+2 of the homogeneous normal form Σ
[m]
NF , defined

by (2.7), are given by

ā[m]j,i+2(x) =
∂2

∂x2n−i
x2n−iP

[m−2]
j,n−i (x1, . . . , xn−i)(2.9)

for any (j, i) ∈ ∆.
Our first aim is to find explicitly feedback transformations bringing the homo-

geneous system Σ[m] to its normal form Σ
[m]
NF . Define the homogeneous polynomials

ψ
[m−1]
j,i (ξ) by setting ψ

[m−1]
j,0 (ξ) = ψ

[m−1]
1,1 (ξ) = 0,

ψ
[m−1]
j,i (ξ) = −CAj−1

(
adn−iAξ g

[m−1] +

n−i∑
t=1

(−1)tadt−1
Aξ adAn−i−tBf

[m]

)
(2.10)

if 1 ≤ j < i ≤ n and

ψ
[m−1]
j,i (ξ) = LAn−iBf

[m]
j−1(πi(ξ)) + LAξψ

[m−1]
j−1,i (πi(ξ))(2.11)

+ ψ
[m−1]
j−1,i−1(πi−1(ξ)) +

∫ ξi

0

LAn−i+1Bψ
[m−1]
j−1,i (πi(ξ))dξi

if 1 ≤ i ≤ j, where ψ[m−1]
j,i (πi(ξ)) is the restriction of ψ

[m−1]
j,i (ξ) to the submanifold

Wi. Define the components φ
[m]
j of φ[m] for 1 ≤ j ≤ n and the feedback (α[m], β[m−1])

by

φ
[m]
j (ξ) =

n∑
i=1

∫ ξi

0

ψ
[m−1]
j,i (πi(ξ))dξi, 1 ≤ j ≤ n− 1,

φ[m]
n (ξ) = f

[m]
n−1(ξ) + LAξφ

[m]
n−1(ξ),

(2.12)

α[m](ξ) = −
(
f [m]
n (ξ) + LAξφ

[m]
n (ξ)

)
,

β[m−1](ξ) = −
(
g[m−1]
n (ξ) + LBφ

[m]
n (ξ)

)
.

We have the following result.
Theorem 3. The homogeneous feedback transformation

Γm :
x = ξ + φ[m](ξ),

u = v + α[m](ξ) + β[m−1](ξ)v,

where α[m], β[m−1], and the components φ
[m]
j of φ[m] are defined by (2.12), brings the

homogeneous system Σ[m] into its normal form Σ
[m]
NF given by (2.7).

Proof of Theorem 3. Denote by

Σ̃[m] : ẋ = Ax+Bv + f̃ [m](x) + g̃[m−1](x)v
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the system Σ[m] transformed via the feedback transformation Γm defined by (2.12).
From the expressions of α[m](ξ) and β[m−1](ξ) given by (2.12) and the last two

equations of (2.6), we get

f̃ [m]
n (x) = 0 and g̃[m−1]

n (x) = 0.

Plugging φ
[m]
j , defined by (2.12), into the second equation of (2.6) gives

ψ
[m−1]
j,n (x) = g̃

[m−1]
j (x)− g[m−1]

j (x),

which, by (2.10), implies g̃
[m−1]
j (x) = 0 for 1 ≤ j ≤ n − 1. Now we consider the

first equation of (2.6). From the expression of φ
[m]
n we get f̃

[m]
n−1(x) = 0, and for any

1 ≤ i ≤ n, we obtain by differentiating

∂f̃
[m]
j

∂xi
=
∂f

[m]
j

∂xi
+ LAx

∂φ
[m]
j

∂xi
+
∂φ

[m]
j

∂xi−1
− ∂φ

[m]
j+1

∂xi
.(2.13)

In the above formula, the term
∂φ

[m]
j

∂xi−1
is not present in the case i = 1.

If i ≥ j + 1, we get

∂f̃
[m]
j

∂xi
(πi−1(x)) =

(
∂f

[m]
j

∂xi
+ LAx

∂φ
[m]
j

∂xi
+
∂φ

[m]
j

∂xi−1
− ∂φ

[m]
j+1

∂xi

)
(πi−1(x))

=
∂f

[m]
j

∂xi
(πi−1(x)) + LAxψ

[m−1]
j,i (πi−1(x))

+ ψ
[m−1]
j,i−1 (πi−1(x))− ψ[m−1]

j+1,i (πi−1(x)).

Hence, by an induction argument, we obtain

∂f
[m]
j

∂xi
(πi−1(x)) + LAxψ

[m−1]
j,i (πi−1(x)) + ψ

[m−1]
j,i−1 (πi−1(x))− ψ[m−1]

j+1,i (πi−1(x)) = 0

and, finally, we get

∂f̃
[m]
j

∂xi
(πi−1(x)) = 0.(2.14)

If 1 ≤ i ≤ j, then, using (2.12) and (2.13), we obtain

∂f̃
[m]
j

∂xi
(πi(x)) =

(
∂f

[m]
j

∂xi
+ LAx

∂φ
[m]
j

∂xi
+
∂φ

[m]
j

∂xi−1
− ∂φ

[m]
j+1

∂xi

)
(πi(x))

=
∂f

[m]
j

∂xi
(πi(x)) + LAxψ

[m−1]
j,i (πi(x)) + ψ

[m−1]
j,i−1 (πi−1(x))

+

∫ xi

0

∂ψ
[m−1]
j,i (πi(x))

∂xi−1
dxi − ψ[m−1]

j+1,i (πi(x)).
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Using the expression (2.11), it follows that

∂f̃
[m]
j

∂xi
(πi(x)) = 0.(2.15)

From the relations (2.14) and (2.15), we conclude that

f̃
[m]
j (x) =

n∑
i=j+2

x2iP
[m−2]
j,i (x1, . . . , xi),

which proves that Σ̃[m] is a normal form satisfying (2.7). Thus the system Σ[m] given

by (2.4) is feedback equivalent to the normal form Σ
[m]
NF given by (2.7).

Example 1. To illustrate results of this section, we consider the system Σ[m],
given by (2.4) on R

3. Theorem 1 implies that the system Σ[m] is equivalent, via a

homogeneous feedback transformation Γm defined by (2.12), to its normal form Σ
[m]
NF

(see (2.7))

ẋ1 = x2 + x
2
3P

[m−2](x1, x2, x3),

ẋ2 = x3,

ẋ3 = v,

where P [m−2](x1, x2, x3) is a homogeneous polynomial of degree m−2 of the variables
x1, x2, x3.

We would like now to discuss the interest of Theorem 3. As we have already
mentioned, Poincaré’s method allows us to replace a partial differential equation
by solving successively linear algebraic equations defined by the homological equa-
tion (2.6); see [26] and [21], and Proposition 1. The solvability of this equation was
proved in [26] and [21], while Theorem 3 provides an explicit solution (in the form
of the transformations (2.12), which are easily computable via differentiation and
integration of homogeneous polynomials) to the homological equation. As a conse-
quence, for any given control system, Theorem 3 gives transformations bringing the
homogeneous part of the system to its normal form. For example, if the system
is feedback linearizable, up to order m0 − 1 (see [27]), then a diffeomorphism and
a feedback compensating all nonlinearities of degree lower than m0 can be calcu-
lated explicitly without solving partial differential equations. More generally, by a
successive application of transformations given by (2.12) we can bring the system,
without solving partial differential equations, to its normal form given in Theorem 4
below.

Consider the system Σ∞ of the form (2.1) and recall that we assume the linear part
(F,G) to be controllable. Apply successively to Σ∞ a series of transformations Γm,

m = 1, 2, . . . , such that each Γm brings Σ[m] to its normal form Σ
[m]
NF ; for instance

we can take a series of transformations defined by (2.12). Successive repeating of
Theorem 1 gives the following result of Kang [21].

Theorem 4. There exists a formal feedback transformation Γ∞ which brings the
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system Σ∞ to a normal form Σ∞
NF given by

Σ∞
NF :




ẋ1 = x2 +

n∑
i=3

x2iP1,i(x1, . . . , xi),

...

ẋj = xj+1 +

n∑
i=j+2

x2iPj,i(x1, . . . , xi),

...
ẋn−2 = xn−1 + x

2
nPn−2,n(x1, . . . , xn),

ẋn−1 = xn,

ẋn = v,

(2.16)

where Pj,i(x1, . . . , xi) are formal power series depending on the indicated variables.
Example 2. Consider a system Σ defined on R

3 whose linear part is controllable.
Theorem 4 implies that the system Σ is equivalent, via a formal feedback transforma-
tion Γ∞, to its normal form Σ∞

NF

ẋ1 = x2 + x
2
3P (x1, x2, x3),

ẋ2 = x3,

ẋ3 = v,

where P (x1, x2, x3) is a formal power series of the variables x1, x2, x3.

3. Canonical form. As proved by Kang and recalled in Theorem 2, the normal

form Σ
[m]
NF is unique under homogeneous feedback transformation Γm. The normal

form Σ∞
NF is constructed by a successive application of homogeneous transformations

Γm for m ≥ 1 which bring the corresponding homogeneous systems Σ[m] into their

normal forms Σ
[m]
NF . Therefore a natural and fundamental question which arises is

whether the system Σ∞ can admit two different normal forms, that is, whether the
normal forms given by Theorem 4 are in fact canonical forms under a general formal
feedback transformations of the form Γ∞. It turns out that a given system can admit
different normal forms, as the following example of Kang [21] shows. The main reason

for the nonuniqueness of the normal form Σ∞
NF is that, although the normal form Σ

[m]
NF

is unique, homogeneous feedback transformation Γm bringing Σ[m] into Σ
[m]
NF is not. It

is this small group of homogeneous feedback transformations of order m that preserve

Σ
[m]
NF (described by Proposition 2 below), which causes the nonuniqueness of Σ∞

NF .
The aim of this section is thus to construct a canonical form for Σ∞ under feedback

transformation Γ∞.
Example 3. Consider the system

ξ̇1 = ξ2 + ξ
2
3 − 2ξ1ξ

2
3 ,

ξ̇2 = ξ3,(3.1)

ξ̇3 = u

on R
3. Clearly, this system is in Kang normal form (compare with Theorem 4). The
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feedback transformation

Γ≤3 :

x1 = ξ1 − ξ21 − 4
3ξ

3
2 ,

x2 = ξ2 − 2ξ1ξ2,

x3 = ξ3 − 2(ξ22 + ξ1ξ3)− 2ξ2ξ
2
3 ,

u = v + 6ξ2ξ3 + 12ξ1ξ2ξ3 − 4ξ33 + 2(ξ1 + 2ξ21 + 2ξ2ξ3)v

brings the system (3.1) into the form

ẋ1 = x2 + x
2
3,

ẋ2 = x3,

ẋ3 = v

modulo terms in R≥4(x, v). Applying successively homogeneous feedback transfor-
mations Γm given, for any m ≥ 4, by (2.12), we transform the above system into the
normal form

ẋ1 = x2 + x
2
3 + x

2
3P (x),

ẋ2 = x3,(3.2)

ẋ3 = v,

where P is a formal power series whose 1-jet at 0 ∈ R
3 vanishes. The systems (3.1)

and (3.2) are in their normal forms and, moreover, feedback equivalent, but the latter
system does not contain any term of degree 3. As a consequence, the normal form
Σ∞
NF is not unique under formal feedback transformations.

Consider the system Σ∞ of the form (2.1). Since its linear part (F,G) is assumed
to be controllable, we bring it, via a linear transformation and linear feedback, to
the Brunovský canonical form (A,B). Let the first homogeneous term of Σ∞ which
cannot be annihilated by a feedback transformation be of degree m0. As proved by
Krener [27], the degree m0 is given by the largest integer p such that all distribu-
tions Dk = span {g, . . . , adk−1

f g} for 1 ≤ k ≤ n − 1 are involutive modulo terms of
order p− 2. We can thus, due to Theorems 1 and 2, assume that, after applying a
suitable feedback, Σ∞ takes the form

ξ̇ = Aξ +Bu+ f̄ [m0](ξ) +

∞∑
m=m0+1

(
f [m](ξ) + g[m−1](ξ)u

)
,

where (A,B) is in Brunovský canonical form and the first nonvanishing homogeneous
vector field f̄ [m0] is of the form

f̄
[m0]
j (ξ) =




n∑
i=j+2

ξ2i P
[m0−2]
j,i (ξ1, . . . , ξi), 1 ≤ j ≤ n− 2,

0, n− 1 ≤ j ≤ n.
Let (i1, . . . , in−s), where i1 + · · · + in−s = m0 and in−s ≥ 2, be the largest, in
the lexicographic ordering, (n − s)-tuple of nonnegative integers such that for some
1 ≤ j ≤ n− 2, we have

∂m0 f̄
[m0]
j

∂ξi11 · · · ∂ξin−s

n−s
�= 0.
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Define

j∗ = sup

{
j = 1, . . . , n− 2 :

∂m0 f̄
[m0]
j

∂ξi11 · · · ∂ξin−s

n−s
�= 0

}
.

We have the following result.
Theorem 5. The system Σ∞ given by (2.1) is equivalent by a formal feedback

Γ∞ to a system of the form

Σ∞
CF : ẋ = Ax+Bv +

∞∑
m=m0

f̄ [m](x),(3.3)

where, for any m ≥ m0,

f̄
[m]
j (x) =




n∑
i=j+2

x2iP
[m−2]
j,i (x1, . . . , xi), 1 ≤ j ≤ n− 2,

0, n− 1 ≤ j ≤ n;
(3.4)

additionally, we have

∂m0 f̄
[m0]
j∗

∂xi11 · · · ∂xin−s

n−s
= ±1(3.5)

and, moreover, for any m ≥ m0 + 1,

∂m0 f̄
[m]
j∗

∂xi11 · · · ∂xin−s

n−s
(x1, 0, . . . , 0) = 0.(3.6)

The form Σ∞
CF satisfying (3.4), (3.5), and (3.6) will be called the canonical form

of Σ∞. The name is justified by the following.
Theorem 6. Two systems Σ∞

1 and Σ∞
2 are formally feedback equivalent if and

only if their canonical forms Σ∞
1,CF and Σ∞

2,CF coincide.
Proofs of Theorems 5 and 6 are given in section 4.
Kang [21], generalizing [26], proved that any system Σ∞ can be brought by a

formal feedback into the normal form (3.3) for which (3.4) is satisfied. He also observed
that his normal forms are not unique; see Example 3. Our results, Theorems 5 and 6,
complete his study. We show that for each degree m of homogeneity we can use a one-
dimensional subgroup of feedback transformations which preserves the “triangular”
structure of (3.4) and at the same time allows us to normalize one higher order term.
The form of (3.5) and (3.6) is a result of this normalization. These one-dimensional
subgroups of feedback transformations are given by the following proposition.

Proposition 2. The transformation Γm given by (2.3) leaves invariant the sys-
tem Σ[m] defined by (2.4) if and only if

φ
[m]
j = amL

j−1
Aξ ξ

m
1 , 1 ≤ j ≤ n,

α[m] = −amLnAξξm1 ,(3.7)

β[m−1] = −amLBLn−1
Aξ ξ

m
1 ,
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where am is an arbitrary real parameter.
Proof of Proposition 2. Observe that, following Proposition 1, the transformation

Γm leaves invariant the system Σ[m] if and only if it satisfies the following system of
equations: 



LAξφ
[m]
j − φ[m]

j+1(ξ) = 0, 1 ≤ j ≤ n− 1,

LBφ
[m]
j = 0, 1 ≤ j ≤ n− 1,

LAξφ
[m]
n + α[m](ξ) = 0,

LBφ
[m]
n + β[m−1](ξ) = 0.

In order to solve the above system, let us remark, using the second equation of the

system, that for any j such that 1 ≤ j ≤ n− 1, the component φ
[m]
j does not depend

to the variable ξn. Putting j = n− 2 into the first equation, we get

∂φ
[m]
n−2

∂ξ1
ξ2 + · · ·+

∂φ
[m]
n−2

∂ξn−1
ξn = φ

[m]
n−1.

Since φ
[m]
n−1 and φ

[m]
n−2 do not depend on the variable ξn, we conclude that φ

[m]
n−2 does

not depend on the variable ξn−1. An inductive argument shows that φ
[m]
1 depends

only on the variable ξ1, that is, φ
[m]
1 (ξ) = amξ

m
1 . Now, all equations of (3.7) follow

easily.
Theorem 5 establishes an equivalence of the system Σ∞ with its canonical form

Σ∞
CF via a formal feedback. Its direct corollary yields the following result for equiva-

lence under a smooth feedback of the form

Γ :
x = φ(ξ),
u = α(ξ) + β(ξ)v,

up to an arbitrary order.
Corollary 1. Consider a smooth control system

Σ : ξ̇ = f(ξ) + g(ξ)u.

For any positive integer k we have the following:
(i) There exists a smooth feedback Γ transforming Σ, locally around 0 ∈ R

n,

into its canonical form Σ≤k
CF given by

Σ≤k
CF : ẋ = Ax+Bv +

k∑
m=m0

f̄ [m](x),

modulo O(x, v)k+1, where f̄ [m](x), for any m0 ≤ m ≤ k, satisfies (3.4), (3.5), (3.6).
(ii) Feedback equivalence of Σ and Σ≤k

CF , modulo O(x, v)k+1, can be established
via a polynomial feedback transformation Γ≤k of degree k.

(iii) Two smooth systems Σ1 and Σ2 are feedback equivalent modulo terms of

order O(x, v)k+1 if and only if their canonical forms Σ≤k
1,CF and Σ≤k

2,CF coincide.
This corollary follows directly from Theorem 5 and its proof, given in section 4,

which provides explicit polynomial transformations (4.4)–(4.5) bringing, step by step,
the system into its canonical form.
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We will illustrate results of this section by two examples.
Example 4. Let us reconsider the system Σ given by Example 2. It is feedback

equivalent to the normal form

ẋ1 = x2 + x
2
3P (x1, x2, x3),

ẋ2 = x3,

ẋ3 = v,

where P (x1, x2, x3) is a formal power series. Assume, for simplicity, that m0 = 2,
which is equivalent to the following generic condition: g, adfg, and [g, adfg] are
linearly independent at 0 ∈ R

3. This implies that we can express P = P (x1, x2, x3)
as

P = c+ P1(x1) + x2P2(x1, x2) + x3P3(x1, x2, x3),

where c �= 0 and P1(0) = 0. Observe that any P (x1, x2, x3), of the above form, gives a
normal form Σ∞

NF . In order to get the canonical form Σ∞
CF , we use Theorem 5, which

ensures the existence of a feedback transformation Γ∞ of the form

x̃ = φ(x),

v = α(x) + β(x)ṽ,

which normalizes the constant c and annihilates the formal power series P1(x1). More
precisely, Γ∞ transforms Σ into its canonical form Σ∞

CF ,

˙̃x1 = x̃2 + x̃
2
3P̃ (x̃1, x̃2, x̃3),

˙̃x2 = x̃3,

˙̃x3 = ṽ,

where the formal power series P̃ (x̃1, x̃2, x̃3) is of the form

P̃ (x̃1, x̃2, x̃3) = 1 + x̃2P̃2(x̃1, x̃2) + x̃3P̃3(x̃1, x̃2, x̃3).

Now, we give an example of constructing the canonical form for a physical model of
variable length pendulum.

Example 5. Consider the variable length pendulum of Bressan and Rampazzo [5]
(see also [2] and [8]). We denote by ξ1 the length of the pendulum, by ξ2 its velocity,
by ξ3 the angle with respect to the horizontal, and by ξ4 the angular velocity. The
control u = ξ̇4 = ξ̈3 is the angular acceleration. The mass is normalized to 1. The
equations are (compare [5] and [8])

ξ̇1 = ξ2,

ξ̇2 = −g sin ξ3 + ξ1ξ24 ,
ξ̇3 = ξ4,

ξ̇4 = u,

where g denotes the gravity. Notice that if we suppose to control the angular velocity
ξ4 = ξ̇3, which is the case of [5] and [8], then the system is three-dimensional but the
control enters nonlinearly.

At any equilibrium point ξ0 = (ξ10, ξ20, ξ30, ξ40)
T = (ξ10, 0, 0, 0)

T , the linear part
of the system is controllable. Our goal is to produce, for the variable length pendulum,
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a normal form and the canonical form as well as to answer the question whether
the systems corresponding to various values of the gravity constant g are feedback
equivalent. In order to get a normal form, put

x1 = ξ1,

x2 = ξ2,

x3 = −g sin ξ3,
x4 = −gξ4 cos ξ3,
v = gξ24 sin ξ3 − ug cos ξ3.

The system becomes

ẋ1 = x2,

ẋ2 = x3 + x
2
4

x1
g2 − x23

,

ẋ3 = x4,

ẋ4 = v,

which gives a normal form. Indeed, we rediscover Σ∞
NF , given by (2.16), with P1,3 = 0,

P1,4 = 0, and

P2,4 =
x1

g2 − x23
.

In order to bring the system to its canonical form Σ∞
CF , first observe that m0 = 3.

Indeed, the function x24
x1

g2−x2
3
starts with third order terms, which corresponds to the

fact that the invariants a[2]j,i+2 vanish for any 1 ≤ j ≤ 2 and any 0 ≤ i ≤ 2− j. The
only nonzero component of f [3] is f

[3]
2 = x24P

[1]
2,4. Hence j

∗ = 2 and the only, and thus
largest, quadruplet (i1, i2, i3, i4) of nonnegative integers, satisfying i1+ i2+ i3+ i4 = 3
and such that

∂3f
[3]
2

∂xi11 · · · ∂xi44
�= 0,

is (i1, i2, i3, i4) = (1, 0, 0, 2). In order to normalize f
[3]
2 , put

x̃i = a1xi, 1 ≤ i ≤ 4,

ṽ = a1v,

where a1 = 1/g. We get the following canonical form for the variable length pendulum:

˙̃x1 = x̃2,

˙̃x2 = x̃3 + x̃
2
4

x̃1
1− x̃23

,

˙̃x3 = x̃4,

˙̃x4 = ṽ.

Independently of the value of the gravity constant g, all systems are feedback equiv-
alent to each other.
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4. Proofs of Theorems 5 and 6.
Proof of Theorem 5. The proof of this theorem will be done in two steps. In the

first step we will deal with terms of degree m0. Then we will prove the general step
by an induction argument.

First step. Let us consider the system Σ∞ given by (2.1) and let m0 be the degree
of the first nonlinearizable homogeneous part. We can assume that (see Theorems 1
and 2), after applying a suitable feedback transformation, the system Σ∞ given by
(2.1) takes the form

ξ̇ = Aξ +Bu+ f̄ [m0](ξ) +

∞∑
m=m0+1

(
f [m](ξ) + g[m−1](ξ)u

)
,(4.1)

where (A,B) is in Brunovský canonical form and the first nonvanishing vector field
f̄ [m0] is of the form

f̄
[m0]
j (ξ) =




n∑
i=j+2

ξ2i P
[m0−2]
j,i (ξ1, . . . , ξi), 1 ≤ j ≤ n− 2,

0, n− 1 ≤ j ≤ n.
Notice that the linear feedback transformation

Γ1 :
x = a1ξ,

u = 1
a1
v,

where a1 ∈ R and a1 �= 0, brings the system (4.1) into the following one:

ẋ = Ax+Bv +
1

am0−1
1

f̄ [m0](x) +

∞∑
m=m0+1

(
f̃ [m](x) + g̃[m−1](x)v

)
.

By the definitions of (i1, . . . , in−s) and j∗, we have

∂m0 f̄
[m0]
j∗

∂xi11 · · · ∂xin−s

n−s
�= 0,

and thus we can suitably choose the parameter a1 such that

∂m0 f̄
[m0]
j∗

∂xi11 · · · ∂xin−s

n−s
= ±1.

General step. Now, we assume that, for some l ≥ 1, the system Σ∞ given by
(2.1), takes the form

Σ∞ : ξ̇ = Aξ +Bu+

m0+l−1∑
m=m0

f̄ [m](ξ) + f [m0+l](ξ) + g[m0+l−1](ξ)u+ r(ξ, u),(4.2)

where r(ξ, u) ∈ R≥m0+l+1(ξ, u) and the vector fields f̄ [m](ξ) for any m such that
m0 ≤ m ≤ m0 + l− 1 satisfy the conditions (3.4), (3.5), and (3.6). We will construct
a transformation Γ∞ which preserves all terms of degree smaller than m0 + l while
taking those of degree m0 + l into the canonical form defined by (3.4) and (3.6).
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Consider the following feedback transformation

Γ∞ :

x = ξ +

∞∑
m=l+1

φ[m](ξ),

u = v +

∞∑
m=l+1

(
α[m](ξ) + β[m−1](ξ)v

)
,

(4.3)

where, for any m such that m0 ≤ m ≤ m0 + l − 1, the triplet (φ[m], α[m], β[m−1]) is
given by (3.7) and φ[m] = 0, α[m] = 0, and β[m−1] = 0 for m ≥ m0 + l + 1.

The transformation Γ∞ is actually a polynomial transformation Γ≤m0+l and can
be viewed as a composition of a transformation Γ≤m0+l−1 and a homogeneous trans-
formation Γm0+l defined, respectively, by

Γ≤m0+l−1 :

y = ξ +

m0+l−1∑
m=l+1

φ[m](ξ),

u = w +

m0+l−1∑
m=l+1

(
α[m](ξ) + β[m−1](ξ)w

)(4.4)

and

Γm0+l :
x = y + φ[m0+l](y),

w = v + α[m0+l](y) + β[m0+l−1](y)v.
(4.5)

Let us denote by Σ̃∞ the system Σ∞, given by (4.2), transformed via Γ≤m0+l−1. Since

f̄ [m0](ξ) = f̄ [m0](y − φ[l+1](y)− · · · ) = f̄ [m0](y)− ∂f̄
[m0]

∂y
φ[l+1](y) + r1(y),

where r1(y) ∈ R≥m0+l+1(y) and for any m ≥ m0 + 1,

f̄ [m](ξ) = f̄ [m](y − φ[l+1](y)− · · · ) = f̄ [m](y) + r2(y),

where r2(y) ∈ R≥m0+l+1(y), we get

Σ̃∞ : ẏ = Ay +Bw +

m0+l−1∑
m=m0

f̄ [m](y) + f̃ [m0+l](y) + g̃[m0+l−1](y)w + r3(y, w),

(4.6)

where r3(y, w) ∈ R≥m0+l+1(y, w) and

f̃ [m0+l] = f [m0+l] + [f̄ [m0], φ[l+1]],

g̃[m0+l−1] = g[m0+l−1].

Let {
a[m0+l]j,i+2 : (j, i) ∈ ∆

}
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and {
ã[m0+l]j,i+2 : (j, i) ∈ ∆

}
denote, respectively, the sets of (m0 + l)-invariants associated with the homogeneous
parts of degree m0 + l of the systems (4.2) and (4.6). We have

ã[m0+l]j,i+2 = a[m0+l]j,i+2 + â[m0+l]j,i+2,(4.7)

where

â[m0+l]j,i+2 = CAj−1

[
i∑

k=0

(−1)i+k
(
adAiBad

i−k
Aξ adAkB

[
f̄ [m0], φ[l+1]

])
(πn−i(ξ))

+

i−1∑
k=0

(−1)i+k
(
adAi+1Bad

i−k−1
Aξ adAkB

[
f̄ [m0], φ[l+1]

])
(πn−i(ξ))

]
.

Since the identity

adkAn−1Bad
i
Aξh = ad

i
Aξad

k
An−1Bh

holds for any vector field h and any k, i ≥ 0, we get by differentiating

Li1+lAn−1B â
[m0+l]j,i+2(4.8)

= CAj−1

[
i∑

k=0

(−1)i+k
(
adAiBad

i−k
Aξ adAkBad

i1+l
An−1B

[
f̄ [m0], φ[l+1]

])
(πn−i(ξ))

+

i−1∑
k=0

(−1)i+k
(
adAi+1Bad

i−k−1
Aξ adAkBad

i1+l
An−1B

[
f̄ [m0], φ[l+1]

])
(πn−i(ξ))

]
.

Due to the definition of the (n− s)-tuple (i1, . . . , in−s), we obtain
adi1+lAn−1B

[
f̄ [m0], φ[l+1]

]
= c1

[
adi1An−1B f̄

[m0], adlAn−1Bφ
[l+1]

]
(4.9)

+ c2

[
adi1−1
An−1B f̄

[m0], adl+1
An−1Bφ

[l+1]
]
,

where c1 and c2 are strictly positive integers. From the relations

adlAn−1Bφ
[l+1] = al+1(l + 1)!(ξ1, ξ2, . . . , ξn)

T ,

adl+1
An−1Bφ

[l+1] = al+1(l + 1)!(1, 0, . . . , 0)T ,

one can easily deduce that identity (4.10) can be rewritten as

adi1+lAn−1B

[
f̄ [m0], φ[l+1]

]
= γlad

i1
An−1B f̄

[m0],

where we set γl = −al+1(l + 1)! (c1(m0 − i1 + 1) + c2). Plugging the above identity
into the formula (4.8), we obtain

Li1+lAn−1B â
[m0+l]j,i+2

= γlCA
j−1

[
i∑

k=0

(−1)i+k
(
adi1An−1BadAiBad

i−k
Aξ adAkB f̄

[m0]
)
(πn−i(ξ))

+

i−1∑
k=0

(−1)i+k
(
adi1An−1BadAi+1Bad

i−k−1
Aξ adAkB f̄

[m0]
)
(πn−i(ξ))

]
.
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Since f̄ [m0] is of the form (3.4), we get for any k such that 0 ≤ k ≤ i− 1,

adAkB f̄
[m0](πn−i(ξ)) = 0

and for any t ≥ 0, (
adtAξadAkB f̄

[m0]
)
(πn−i(ξ)) = 0.

Thus, we can deduce the relation

∂i1+lâ[m0+l]j,i+2

∂ξi1+l1

= γlCA
j−1 ∂

i1+2f̄ [m0]

∂ξi11 ∂ξ
2
n−i

(πn−i(ξ)),

which leads, after differentiating and setting j = j∗ and i = s, to the following one:

∂m0+l−2â[m0+l]j
∗,s+2

∂ξi1+l1 ∂ξi22 · · · ∂ξin−s−2
n−s

= γl
∂m0 f̄

[m0]
j∗

∂ξi11 ∂ξ
i2
2 · · · ∂ξin−s

n−s
.

Differentiating (4.7) and using the above identity, we get

∂m0+l−2ã[m0+l]j
∗,s+2

∂ξi1+l1 ∂ξi22 · · · ∂ξin−s−2
n−s

=
∂m0+l−2a[m0+l]j

∗,s+2

∂ξi1+l1 ∂ξi22 · · · ∂ξin−s−2
n−s

+ γl
∂m0 f̄

[m0]
j∗

∂ξi11 ∂ξ
i2
2 · · · ∂ξin−s

n−s
.

We can choose suitably the parameter al+1 (recall the definition of γl) such that we
obtain

∂m0+l−2ã[m0+l]j
∗,s+2

∂ξi1+l1 ∂ξi22 · · · ∂ξin−i−2
n−i

= 0.

Now, transforming the homogeneous part of degree m0 + l of the system (4.6) to
its normal form via a homogeneous transformation Γm0+l and taking into account
Theorem 2, we bring the system (4.6) into the form

Σ∞ : ẋ = Ax+Bv +

m0+l∑
m=m0

f̄ [m](x) + r(x, v),

where r(x, v) ∈ R≥m0+l+1(x, v) and the vector fields f̄ [m], for any m such that m0 ≤
m ≤ m0 + l, satisfy the conditions (3.4), (3.5), and (3.6). This completes the proof of
Theorem 5.

In our proof of Theorem 6, we will use the following result.
Lemma 1. A transformation Γ∞ leaves invariant all terms of degree smaller than

m0 + l of the system (4.2) if and only if Γ∞ is of the form

Γ∞ :

x = ξ +

∞∑
m=l+1

φ[m](ξ),

u = v +

∞∑
m=l+1

(
α[m](ξ) + β[m−1](ξ)v

)
,

(4.10)

where, for any m such that m0 ≤ m ≤ m0 + l − 1, the triplet (φ[m], α[m], β[m−1]) is
given by (3.7).



FEEDBACK CLASSIFICATION OF NONLINEAR SYSTEMS 1517

Proof of Lemma 1. We have shown, when proving Theorem 5, that the transfor-
mation Γ∞, defined by (4.10) and (3.7), leaves invariant all terms of degree smaller
than m0 + l of the system (4.2).

Conversely, assume that the transformation Γ∞ leaves invariant all terms of degree
smaller than m0 + l of the system (4.2). Without loss of generality, we can take

Γ∞ :

x = ξ +

∞∑
m=k+1

φ[m](ξ),

u = v +

∞∑
m=k+1

(α[m](ξ) + β[m−1](ξ)v),

where k+1 denotes the smallest degree among degrees of all nonvanishing components

φ
[m]
j of the transformation Γ∞. There is nothing to prove if k + 1 ≥ m0 + l. We thus

focus our attention on the case k+2 ≤ m0 + l. Since Γ
∞ leaves invariant all terms of

degree smaller than m0 + l of the system (4.2), in particular it leaves invariant terms
of degree k + 1, which implies that (φ[k+1], α[k+1], β[k]) satisfies the condition (3.7).
By induction, we show that (φ[m], α[m], β[m−1]) also satisfies the condition (3.7) for
any m such that k + 1 ≤ m ≤ m0 + k − 1. Thus it remains only to prove that k ≥ l.
Assume this is false; that is, suppose k ≤ l − 1. We can see that the transformation
Γ∞ brings the system (4.2) into the following one:

ẋ = Ax+Bv +

m0+k−1∑
m=m0

f̄ [m](x) + f̃ [m0+k](x) + r(x, v),(4.11)

where r(x, v) ∈ R≥m0+k+1(x, v) and the vector field f̄ [m](x), for any m such that
m0 ≤ m ≤ m0 + k − 1, is of the form (3.4) and (3.6) and

f̃ [m0+k] = f̄ [m0+k] + [f̄ [m0], φ[k+1]].

Since the transformation Γ∞ leaves invariant all terms of degree smaller than m0 + l
of the system (4.2), in particular it leaves invariant all terms of degree m0 + k, which
is equivalent to

[f̄ [m0], φ[k+1]] = 0.

Repeating the calculations done in the proof of Theorem 5 we deduce, by differenti-
ating, the identity

∂m0+kCAj
∗−1[f̄ [m0], φ[k+1]]

∂xi1+k1 ∂xi22 · · · ∂xin−s

n−s
= γk

∂m0 f̄
[m0]
j∗

∂xi11 ∂x
i2
2 · · · ∂xin−s

n−s
= 0.

Thus, due to the fact that

∂m0 f̄
[m0]
j∗

∂xi11 ∂x
i2
2 · · · ∂xin−s

n−s
�= 0,

we obtain γk = 0 and hence (φ[k+1], α[k+1], β[k]) = 0, which contradicts the definition
of k + 1. As a conclusion, it follows that the transformation Γ∞ is of the form (4.10)
and (3.7).
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Proof of Theorem 6. Let us consider two systems Σ∞
1 and Σ∞

2 and let

Σ∞
1,CF : ẋ = Ax+Bv +

∞∑
m=m0

f̄ [m](x)

and

Σ∞
2,CF : ż = Az +Bw +

∞∑
m=m1

f̃ [m](z)

denote, respectively, their canonical forms, wherem0 andm1 denote the degrees of the
first nonlinearizable homogeneous parts. It is obvious that Σ∞

1 and Σ∞
2 are feedback

equivalent if their canonical forms Σ∞
1,CF and Σ∞

2,CF coincide. To prove the converse,
we assume that the systems Σ∞

1 and Σ∞
2 are feedback equivalent while their canonical

forms fail to coincide. Since Σ∞
1 and Σ∞

2 are feedback equivalent, so are their canonical
forms Σ∞

1,CF and Σ∞
2,CF . It means that there exists a transformation Γ∞ which brings

Σ∞
1,CF into Σ∞

2,CF . First remark that, from the definition of the integers m0 and m1,
we necessarily have m0 = m1. Then, Theorem 2 and the fact that the components

f̄
[m0]
j∗ and f̃

[m0]
j∗ are normalized (see (3.5)) ensure that f̄ [m0] = f̃ [m1]. Let l be the

largest integer such that for any i ≤ l, we have f̄ [m0+i−1] = f̃ [m0+i−1]. This means
that the transformation Γ∞ leaves invariant all terms of degree smaller than m0+ l of
the system Σ∞

1,CF . Then Lemma 1 shows that the transformation Γ∞ is of the form
(4.10). Since the transformation Γ∞ brings Σ∞

1,CF into Σ∞
2,CF , we deduce that

f̃ [m0+l] = f̄ [m0+l] + [f̄ [m0], φ[l+1]].(4.12)

Following arguments in the proof of Theorem 5, we obtain

∂m0+l−2ã[m0+l]j
∗,s+2

∂xi1+l1 ∂xi22 · · · ∂xin−s−2
n−s

=
∂m0+l−2ā[m0+l]j

∗,s+2

∂xi1+l1 ∂xi22 · · · ∂xin−s−2
n−s

+ γl
∂m0 f̄

[m0]
j∗

∂xi11 ∂x
i2
2 · · · ∂xin−s

n−s
,

where {
ā[m0+l]j,i+2 : (j, i) ∈ ∆

}
and {

ã[m0+l]j,i+2 : (j, i) ∈ ∆
}

denote, respectively, the set of (m0 + l)-invariants associated with the homogeneous
parts of degree m0 + l of the systems Σ∞

1,CF and Σ∞
2,CF . Using Theorem 2, the last

identity can be rewritten as

∂m0+lf̃
[m0+l]
j∗

∂xi1+l1 ∂xi22 · · · ∂xin−s

n−s
=

∂m0+lf̄
[m0+l]
j∗

∂xi1+l1 ∂xi22 · · · ∂xin−s

n−s
+ γl

∂m0 f̄
[m0]
j∗

∂xi11 ∂x
i2
2 · · · ∂xin−s

n−s
.(4.13)

Since

∂m0 f̃
[m0+l]
j∗

∂xi11 · · · ∂xin−s

n−s
(x1, 0, . . . , 0) =

∂m0 f̄
[m0+l]
j∗

∂xi11 · · · ∂xin−s

n−s
(x1, 0, . . . , 0) = 0,
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the identity (4.13) gives

γl
∂m0 f̄

[m0]
j∗

∂xi11 ∂x
i2
2 · · · ∂xin−s

n−s
= 0,

which implies γl = 0, that is (recall the definition of γl), we have al+1 = 0, and
consequently (φ[l+1], α[l+1], β[l]) = 0. Then the identity (4.12) reduces to

f̃ [m0+l] = f̄ [m0+l],

which contradicts the definition of l. We conclude that the canonical forms Σ∞
1,CF

and Σ∞
2,CF coincide.

5. Dual normal form and dualm-invariants. In the normal form Σ
[m]
NF given

by (2.7), all the components of the control vector field g[m−1] are annihilated and all
nonremovable nonlinearities are grouped in f [m]. Kang and Krener in their pioneering
paper [26] showed that it is possible to transform, via a transformation Γ2 of degree
2, the homogeneous system

Σ[2] : ξ̇ = Aξ +Bu+ f [2](ξ) + g[1](ξ)u

into a dual normal form. In that form the components of the drift f [2] are annihilated,
while this time all nonremovable nonlinearities are present in g[1]. The aim of this
section is to propose, for an arbitrary m, a dual normal form for the system Σ[m]

and a dual normal form for the system Σ∞. Our dual normal form on the one hand
generalizes, for higher order terms, that given in [26] for second order terms, and

on the other hand dualizes the normal form Σ
[m]
NF . The structure of this section will

follow that of section 2: we will give the dual normal form, then define and study dual
m-invariants; finally, we give an explicit construction of transformations bringing the
system into its dual normal form.

Our first result asserts that we can always bring Σ[m] to a dual normal form.
Theorem 7. The homogeneous system Σ[m] is equivalent, via a homogeneous

feedback transformation Γm, to the dual normal form Σ
[m]
DNF given by

Σ
[m]
DNF :




ẋ1 = x2,

ẋ2 = x3 + vxnQ
[m−2]
2,n (x1, . . . , xn),

...

ẋj = xj+1 + v
n∑

i=n−j+2

xiQ
[m−2]
j,i (x1, . . . , xi),

...

ẋn−1 = xn + v
n∑
i=3

xiQ
[m−2]
j,i (x1, . . . , xi),

ẋn = v,

(5.1)

where Q
[m−2]
j,i (x1, . . . , xi) are homogeneous polynomials of degree m− 2 depending on

the indicated variables.
Theorem 7 follows from Theorem 9, which gives explicit transformation bringing

Σ[m] to its dual normal form Σ
[m]
DNF , and thus we omit its proof.
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Now we will define dual m-invariants. To start with, recall that the homogeneous

vector field X
[m−1]
i is defined by taking the homogeneous part of degree m− 1 of the

vector field

Xm−1
i = (−1)iadiAξ+f [m](B + g[m−1]).

ByX
[m−1]
i (πi(ξ)) we will denote the vector fieldX

[m−1]
i evaluated at the point πi(ξ) =

(ξ1, . . . , ξi, 0, . . . , 0) of the submanifold

Wi = {ξ ∈ R
n : ξi+1 = · · · = ξn = 0 } .

Consider the system Σ[m] and, for any j such that 2 ≤ j ≤ n − 1, define the

polynomial b
[m−1]
j by setting

b
[m−1]
j = g

[m−1]
j +

j−1∑
k=1

LBL
j−k−1
Aξ f

[m]
k −

n∑
i=1

LBL
j−1
Aξ

∫ ξi

0

CX
[m−1]
n−i (πi(ξ))dξi.

The homogeneous polynomials b
[m−1]
j for 2 ≤ j ≤ n − 1 will be called the dual m-

invariants of the homogeneous system Σ[m].
Consider two systems Σ[m] and Σ̃[m] of the form (2.4) and (2.5). Let

{ b[m−1]
j : 2 ≤ j ≤ n− 1 }

and

{ b̃[m−1]
j : 2 ≤ j ≤ n− 1 }

denote, respectively, their dual m-invariants. The following result gives a dualization
of Theorem 2.

Theorem 8. The dual m-invariants have the following properties:
(i) Two systems Σ[m] and Σ̃[m] are equivalent via a homogeneous feedback trans-

formation Γm if and only if

b
[m−1]
j = b̃

[m−1]
j

for any 2 ≤ j ≤ n− 1.

(ii) The dual m-invariants b̄
[m−1]
j of the dual normal form Σ

[m]
DNF , defined by

(5.1), are given by

b̄
[m−1]
j (x) =

n∑
i=n−j+2

xiQ
[m−2]
j,i (x1, . . . , xi)

for any 2 ≤ j ≤ n− 1.
The above result asserts that the dual m-invariants, as do the m-invariants, form

a set of complete invariants of the homogeneous feedback transformation. Notice,
however, that the same information is encoded in both sets of invariants in different
ways. We will give a proof of Theorem 8 in section 7.
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Now, we define the following homogeneous polynomials:

φ
[m]
1 = −

n∑
i=1

∫ ξi

0

CX
[m−1]
n−i (πi(ξ))dξi,

φ
[m]
j+1 = f

[m]
j + LAξφ

[m]
j , 1 ≤ j ≤ n− 1,

(5.2)

α[m] = −
(
f [m]
n + LAξφ

[m]
n

)
,

β[m−1] = −
(
g[m−1]
n + LBφ

[m]
n

)
.

The next result gives an explicit construction of feedback transformations bringing

the system Σ[m] to its dual normal form Σ
[m]
DNF .

Theorem 9. The feedback transformation

Γm :
x = ξ + φ[m](ξ),

u = v + α[m](ξ) + β[m−1](ξ)v,

where α[m], β[m−1], and the components φ
[m]
j of φ[m] are defined by (5.2), brings the

system Σ[m] into its dual normal form Σ
[m]
DNF given by (5.1).

6. Dual canonical form. Consider the system Σ∞ of the form (2.1) and as-
sume that its linear part (F,G) is controllable. Apply successively to it a series of
transformations Γm, m = 1, 2, . . . , such that each Γm brings Σ[m] to its dual normal

form Σ
[m]
DNF ; for instance we can take a series of transformations defined by (5.2).

Successive repeating of Theorem 9 gives the following dual normal form.
Theorem 10. The system Σ∞ can be transformed via a formal feedback trans-

formation Γ∞ into the dual normal form Σ∞
DNF given by

Σ∞
DNF :




ẋ1 = x2,
ẋ2 = x3 + vxnQ2,n(x1, . . . , xn),

...

ẋj = xj+1 + v

n∑
i=n−j+2

xiQj,i(x1, . . . , xi),

...

ẋn−1 = xn + v

n∑
i=3

xiQj,i(x1, . . . , xi),

ẋn = v,

(6.1)

where Qj,i(x1, . . . , xi) are formal power series depending on the indicated variables.
Naturally, as with normal forms, a given system can admit different dual normal

forms. We are thus interested in constructing a dual canonical form. Assuming that
the linear part (F,G) of the system Σ∞, of the form (2.1), is controllable, we denote
by m0 the degree of the first homogeneous term of the system Σ∞ which cannot be
annihilated by a feedback transformation. Thus, using Theorems 8 and 9, we can
assume, after applying a suitable feedback, that Σ∞ takes the form

Σ∞ : ξ̇ = Aξ +Bu+ ḡ[m0−1](ξ)u+

∞∑
m=m0+1

(
f [m](ξ) + g[m−1](ξ)u

)
,
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where (A,B) is in Brunovský canonical form and the first nonvanishing homogeneous
vector field ḡ[m0−1] is of the form

ḡ
[m0−1]
j (ξ) =




n∑
i=n−j+2

ξiQ
[m0−2]
j,i (ξ1, . . . , ξi), 2 ≤ j ≤ n− 1,

0, j = 1 and j = n.

Define

j∗ = inf
{
j = 2, . . . , n− 1 : ḡ

[m0−1]
j (ξ) �= 0

}
and let (i1, . . . , in) such that i1+ · · ·+ in = m0−1 be the largest, in the lexicographic
ordering, n-tuple of nonnegative integers such that

∂m0−1ḡ
[m0−1]
j∗

∂ξi11 · · · ∂ξinn
�= 0.

We get the following result.
Theorem 11. There exists a formal feedback transformation Γ∞ which brings

the system Σ∞ into the following one:

Σ∞
DCF : ẋ = Ax+Bv +

∞∑
m=m0

ḡ[m−1](x)v,

where for any m ≥ m0,

ḡ
[m−1]
j =




n∑
i=n−j+2

xiQ
[m−2]
j,i (x1, . . . , xi), 2 ≤ j ≤ n− 1,

0, j = 1 and j = n.

(6.2)

Moreover,

∂m0−1ḡ
[m0−1]
j∗

∂xi11 · · · ∂xinn
= ±1,(6.3)

and for any m ≥ m0 + 1

∂m0−1ḡ
[m−1]
j∗

∂xi11 · · · ∂xinn
(x1, 0, . . . , 0) = 0.(6.4)

The form Σ∞
DCF , which satisfies (6.2), (6.3), and (6.4), will be called the dual

canonical form of Σ∞. The name is justified by the following.
Theorem 12. The two systems Σ∞

1 and Σ∞
2 are formally feedback equivalent if

and only if their dual canonical forms Σ∞
1,DCF and Σ∞

2,DCF coincide.
Example 6. Let us consider the system

Σ : ξ̇ = f(ξ) + g(ξ)u, ξ(·) ∈ R
3, u(·) ∈ R,
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whose linear part is assumed to be controllable. Theorem 10 ensures that the system
Σ is formally feedback equivalent to the dual normal form Σ∞

DNF given by

ẋ1 = x2,

ẋ2 = x3 + vx3Q(x1, x2, x3),

ẋ3 = v,

where Q(x1, x2, x3) is a formal power series of variables x1, x2, x3.
Assume for simplicity that m0 = 2, which is equivalent to the condition that g,

adfg, and [g, adfg] are linearly independent at 0 ∈ R
3. This implies that we can

represent Q = Q(x1, x2, x3) by

Q = c+ x1Q1(x1) + x2Q2(x1, x2) + x3Q3(x1, x2, x3),

where c ∈ R, c �= 0.
Observe that any Q of the above form gives a dual normal form Σ∞

DNF . In order
to get the dual canonical form we use Theorem 11, which ensures that the system Σ
is formally feedback equivalent to its dual canonical form Σ∞

DCF defined by

˙̃x1 = x̃2,

˙̃x2 = x̃3 + ṽx̃3Q̃(x̃1, x̃2, x̃3),

˙̃x3 = ṽ,

where Q̃(x̃1, x̃2, x̃3) is a formal power series such that

Q̃(x̃1, x̃2, x̃3) = 1 + x̃2Q̃2(x̃1, x̃2) + x̃3Q̃3(x̃1, x̃2, x̃3).

7. Proofs of dual results. In this section, we prove our dual results. The proof
of Theorem 7 will be omitted because in the proof of Theorem 9 we give an explicit
homogeneous feedback transformation bringing a given homogeneous system into its
dual normal form. Theorem 10 follows from a successive application of Theorem 7.
We will thus prove Theorems 8, 9, 11, and 12.

Proof of Theorem 8. (i) We will prove that if the system Σ[m] is equivalent to

Σ̃[m] via a transformation Γm, then their dualm-invariants b
[m−1]
j and b̃

[m−1]
j coincide.

The action of Γm can be decomposed into that of a pure feedback of the form

u = v + α[m](ξ) + β[m−1](ξ)v

followed by that of a diffeomorphism

x = ξ + φ[m](ξ)

of the state space. Since the first n−1 components of the vector fields f [m] and g[m−1],

as well as those of X
[m−1]
n−i , are invariant under pure feedback, we can conclude that

the functions b
[m−1]
j for 2 ≤ j ≤ n− 1 are invariant under pure feedback. It remains

to prove that they are also invariant under any diffeomorphism x = Φ(ξ) of the form
Φ(ξ) = ξ + φ[m](ξ).

The diffeomorphism Φ brings the system Σ[m] into the form

Σ̃[m] : ẋ = Ax+Bu+ f̃ [m](x) + g̃[m−1](x)u,
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where

f̃ [m] = f [m] + [Ax, φ[m]],

g̃[m−1] = g[m−1] + LBφ
[m].

Denoting by b
[m−1]
j and b̃

[m−1]
j for 2 ≤ j ≤ n − 1 the dual m-invariants associated,

respectively, with the homogeneous systems Σ[m] and Σ̃[m], we get

b̃
[m−1]
j = b

[m−1]
j + b̂

[m−1]
j ,

where

b̂
[m−1]
j (x) = LBφ

[m]
j (x) +

j−2∑
k=0

LBL
j−k−2
Ax CAkadAxφ

[m]

−
n∑
i=1

LBL
j−1
Ax

∫ xi

0

CX̂
[m−1]
n−i (πi(x))dxi

and

X̂
[m−1]
n−i (x) = (−1)n−iadn−i

Ax+[Ax,φ[m]]
(B + LBφ

[m]) = (−1)n−i(Φ∗adn−iAξ (B))(x)

= An−iB + LAn−iBφ
[m](x).

We can deduce that

b̂
[m−1]
j (x) = LBφ

[m]
j (x) +

j−1∑
k=1

LBL
j−k
Ax φ

[m]
k −

j∑
k=2

LBL
j−k
Ax φ

[m]
k

−
n∑
i=1

LBL
j−1
Ax

∫ xi

0

LAn−iBφ
[m]
1 (πi(x))dxi

= LBφ
[m]
j (x) +

j−1∑
k=1

LBL
j−k
Ax φ

[m]
k −

j∑
k=2

LBL
j−k
Ax φ

[m]
k − LBLj−1

Ax φ
[m]
1 (x) = 0,

which gives

b̃
[m−1]
j = b

[m−1]
j .

Thus the functions b
[m−1]
j are invariant under any diffeomorphism of the form x =

Φ(ξ) = ξ + φ[m](ξ). Therefore they remain invariant under the transformation Γm.
The fact that two homogeneous systems, whose dual m-invariants coincide, are

feedback equivalent follows clearly from item (ii) of the theorem, which will be proved
below. Indeed, by item (ii), both systems coincide when transformed to their canonical
forms.

(ii) Denote by b̄
[m−1]
j for 2 ≤ j ≤ n− 1 the dual m-invariants associated with the

dual normal form Σ
[m]
DNF . They are given by

b̄
[m−1]
j = ḡ

[m−1]
j −

n∑
i=1

LBL
j−1
Ax

∫ xi

0

CX̄
[m−1]
n−i (πi(x))dxi,
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where the components ḡ
[m−1]
j are given by (5.1) and

CX̄
[m−1]
n−i = (−1)n−iCadn−iAx ḡ

[m−1].

It suffices to observe (see Lemma 2 below) that, on the one hand, CX̄
[m−1]
n−i is a linear

combination of functions LsAxḡ
[m−1]
j for 0 ≤ s ≤ n − i and 1 ≤ j ≤ n− i+ 1 and,

on the other hand, ḡ
[m−1]
j (πi(x)) = 0 for all j such that 1 ≤ j ≤ n− i+ 1. We thus

conclude that CX̄
[m−1]
n−i (πi(x)) = 0, which implies

b̄
[m−1]
j = ḡ

[m−1]
j

for any j such that 2 ≤ j ≤ n− 1.
Proof of Theorem 9. Denote by

Σ̃[m] : ẋ = Ax+Bv + f̃ [m](x) + g̃[m−1](x)v

the system Σ[m] transformed via a homogeneous feedback transformation Γm defined
by (5.2). From Proposition 1, it follows that for Σ̃[m] we have

f̃
[m]
j = 0 for 1 ≤ j ≤ n,

g̃
[m−1]
j = 0 for j = 1 and j = n,(7.1)

g̃
[m−1]
j = g

[m−1]
j + LBφ

[m]
j for 2 ≤ j ≤ n− 1.

It thus suffices to show that the components g̃
[m−1]
j for 2 ≤ j ≤ n− 1 are in the

dual normal form (5.1). We prove easily by an induction argument that

φ
[m]
j+1 =

j∑
k=1

Lj−kAξ f
[m]
k + LjAξφ

[m]
1 ,

LBL
j
Aξφ

[m]
1 =

j∑
k=0

(jk)L
j−k
Aξ LAkBφ

[m]
1 ,

which allows us to show that

g̃
[m−1]
j+1 = g

[m−1]
j+1 +

j∑
k=1

LBL
k−1
Aξ f

[m]
j−k+1 +

j∑
k=0

(jk)L
j−k
Aξ LAkBφ

[m]
1 .

Now, from the identity

LAkBφ
[m]
1 = −CX [m−1]

k (πn−k(ξ))−
n∑

i=n−k+1

∫ ξi

0

∂CX
[m−1]
n−i (πi(ξ))

∂ξn−k
dξi,

we can deduce that

g̃
[m−1]
j+1 = g

[m−1]
j+1 +

j∑
k=1

LBL
k−1
Aξ f

[m]
j−k+1 −

j∑
k=0

(jk)L
j−k
Aξ CX

[m]
k (πn−k(ξ))

−
j∑

k=1

n∑
i=n−k+1

(jk)L
j−k
Aξ

(∫ ξi

0

∂CX
[m−1]
n−i (πi(ξ))

∂ξn−k
dξi

)
.
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Taking into account that for any k such that 0 ≤ k ≤ j we have

Lj−kAξ CX
[m]
k (πn−k ◦ πn−j(ξ)) = Lj−kAξ CX

[m]
k (πn−j(ξ))

and that for any i ≥ n− j + 1 we have(∫ ξi

0

∂CX
[m−1]
n−i (πi(ξ))

∂ξn−k
dξi

)
(πn−j(ξ)) = 0,

we can conclude that

g̃
[m−1]
j+1 (πn−j(ξ)) =

(
g
[m−1]
j+1 +

j∑
k=1

LBL
j−k
Aξ f

[m]
k −

j∑
k=0

(jk)L
j−k
Aξ CX

[m]
k

)
(πn−j(ξ)).

Using Lemma 2 given below, we thus obtain

g̃
[m−1]
j+1 (πn−j(ξ)) = 0,

which proves that g̃
[m−1]
j is in the dual normal form (5.1).

Lemma 2. Let X
[m−1]
i be the homogeneous part of degree m− 1 of

Xm−1
i = (−1)iadiAξ+f [m](B + g[m−1]).

Then the following identities hold:
(i) For any j ≥ 1, we have

CAjX
[m−1]
1 =

j∑
k=1

LABL
j−k
Aξ f

[m]
k −

j∑
k=0

(jk)L
j−k
Aξ CX

[m−1]
k+1 .

(ii) For any j such that 0 ≤ j ≤ n− 1, we have

j∑
k=0

(jk)L
j−k
Aξ CX

[m−1]
k = g

[m−1]
j+1 +

j∑
k=1

LBL
j−k
Aξ f

[m]
k .

Both identities can be proved by a direct calculation.
Proof of Theorem 11. In the first step we will normalize terms of degree at most

m0 while in the general step we will normalize terms of order m0 + l.
First step. Consider the system Σ∞ and recall that m0 is the degree of the first

nonlinearizable homogeneous part. We can assume (see Theorems 7 and 8) that after
applying a suitable feedback transformation, the system Σ∞ takes the form

ξ̇ = Aξ +Bu+ ḡ[m0−1](ξ)u+

∞∑
m=m0+1

(
f [m](ξ) + g[m−1](ξ)u

)
,(7.2)

where the vector field ḡ[m0−1] defined by

ḡ
[m0−1]
j (ξ) =




n∑
i=n−j+2

ξiQ
[m0−2]
j,i (ξ1, . . . , ξi), 2 ≤ j ≤ n− 1,

0, j = 1 or j = n,
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is the first nonlinearizable homogeneous part. We can notice that the linear feedback
transformation

Γ1 :
x = a1ξ,

u = 1
a1
v,

where a1 ∈ R and a1 �= 0, brings the system (7.2) into the following one:

ẋ = Ax+Bv +
1

am0−1
1

ḡ[m0−1](x)v +

∞∑
m=m0+1

(
f̃ [m](x) + g̃[m−1](x)v

)
.

Due to the definitions of (i1, . . . , in) and j∗, we can suitably choose the parameter a1
such that

∂m0−1ḡ
[m0−1]
j∗

∂xi11 · · · ∂xinn
= ±1.

General step. Now we assume that, for some l ≥ 1, the system Σ∞ takes the form

ξ̇ = Aξ +Bu+

m0+l−1∑
m=m0

ḡ[m−1](ξ)u+ f [m0+l](ξ) + g[m0+l−1](ξ)u+ r(ξ, u),(7.3)

where r(ξ, u) ∈ R≥m0+l+1(ξ, u) and, for any m such that m0 ≤ m ≤ m0 + l − 1 and

any 1 ≤ j ≤ n, the components ḡ
[m−1]
j satisfy the conditions (6.2), (6.3), and (6.4).

Consider the transformation Γ∞ given by (4.3), satisfying (3.7), and its decomposition
Γ∞ = Γ≤m0+l = Γm0+l ◦ Γ≤m0+l−1 given by (4.4)–(4.5). We can easily see that the
transformation Γ≤m0+l−1 brings the system (7.3) into the system

ẏ = Ay +Bw +

m0+l−1∑
m=m0

ḡ[m−1](y)w + f̃ [m0+l](y) + g̃[m0+l−1](y)w + r(y, w),(7.4)

where r(y, w) ∈ R≥m0+l+1(y, w) and

f̃ [m0+l] = f [m0+l] + ḡ[m0−1]α[l+1],

g̃[m0+l−1] = g[m0+l−1] +
[
ḡ[m0−1], φ[l+1]

]
+ ḡ[m0−1]β[l].

Let b
[m0+l−1]
j and b̃

[m0+l−1]
j be the dual (m0 + l)-invariants associated, respectively,

to the homogeneous parts of degree m0 + l of the systems (7.3) and (7.4). We thus
deduce that

b̃
[m0+l−1]
j = b

[m0+l−1]
j + b̂

[m0+l−1]
j ,(7.5)

where

b̂
[m0+l−1]
j = CAj−1

[
ḡ[m0−1], φ[l+1]

]
+ β[l]ḡ

[m0−1]
j −

n∑
i=1

LBL
j−1
Ay

∫ yi

0

CX̂
[m−1]
n−i (πi(y))dyi

and

X̂
[m−1]
n−i = (−1)n−iadn−iAy

([
ḡ[m0−1], φ[l+1]

]
+ ḡ[m0−1]β[l]

)

+

n−i−1∑
k=0

(−1)kadkAyadAn−i−k−1B

(
ḡ[m0−1]α[l+1]

)
.
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First notice (see Lemma 2) that CX̂
[m−1]
n−i is a linear combination, over the ring of

polynomials, of the components CAj−1ḡ[m0−1] and CAj−1
[
ḡ[m0−1], φ[l+1]

]
, 1 ≤ j ≤

n− i+ 1, and their derivatives. Since

CAj−1
[
ḡ[m0−1], φ[l+1]

]
=

j∑
k=1

∂φ
[l+1]
j

∂yk
ḡ
[m0−1]
k − ∂ḡ

[m0−1]
j

∂y
φ[l+1],

it follows that CX̂
[m−1]
n−i is a linear combination, over the ring of polynomials, of the

components ḡ
[m0−1]
j , 1 ≤ j ≤ n− i+1, and their derivatives. Taking into account the

fact that ḡ[m0−1] satisfies (6.2), we obtain, for any 1 ≤ j ≤ n− i+ 1,

ḡ
[m0−1]
j (πi(y)) = 0.

Thus, we deduce that

X̂
[m−1]
n−i (πi(y)) = 0,

which leads to the identity

b̂
[m0+l−1]
j = CAj−1

[
ḡ[m0−1], φ[l+1]

]
+ β[l]ḡ

[m0−1]
j .

Putting j = j∗ and due to the fact that ḡ
[m0−1]
1 = · · · = ḡ[m0−1]

j∗−1 = 0, we get

b̂
[m0+l−1]
j∗ = −∂ḡ

[m0−1]
j∗

∂y
φ[l+1] + LAn−j∗B(φ

[l+1]
j∗ )ḡ

[m0−1]
j∗ + β[l]ḡ

[m0−1]
j∗ .

Since the triplet (φ[l+1], α[l+1], β[l]) satisfies the condition (3.7), it is easy to see that
for any 1 ≤ j ≤ n− 1, we have

LAn−jBφ
[l+1]
j + β[l] = 0

and then conclude that

b̂
[m0+l−1]
j∗ = −∂ḡ

[m0−1]
j∗

∂y
φ[l+1].

Now, let us differentiate this last expression, taking into account that (i1, . . . , in) is
the largest n-tuple of nonnegative integers such that

∂m0−1ḡ
[m0−1]
j∗

∂yi11 · · · ∂yinn
�= 0.

We obtain

∂i1+lb̂
[m0+l−1]
j∗

∂yi1+l1

= −
(
d1
∂i1+1ḡ

[m0−1]
j∗

∂y∂yi11

∂lφ[l+1]

∂yl1
+ d2

∂i1 ḡ
[m0−1]
j∗

∂y∂yi1−1
1

∂l+1φ[l+1]

∂yl+1
1

)
,(7.6)

where d1 and d2 are strictly positive integers. Since

∂lφ[l+1]

∂yl1
= al+1(l + 1)!(y1, y2, . . . , yn)

T
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and

∂l+1φ[l+1]

∂yl+1
1

= al+1(l + 1)!(1, 0, . . . , 0)T ,

and due to the fact that

n∑
k=2

∂ḡ
[m0−1]
j∗

∂yk
yk = (m0 − i1 − 1)ḡ

[m0−1]
j∗ ,

the identity (7.6) gives

∂i1+lb̄
[m0+l−1]
j∗

∂yi1+l1

= θl
∂i1 ḡ

[m0−1]
j∗

∂yi11
,

where θl = −al+1(l + 1)! (d1(m0 − i1 − 1) + d2). Plugging this last expression into
(7.5), where we put j = j∗, we obtain, after differentiating, the following relation:

∂m0+l−1b̃
[m0+l−1]
j∗

∂yi1+l1 ∂yi22 · · · ∂yinn
=
∂m0+l−1b̄

[m0+l−1]
j∗

∂yi1+l1 ∂yi22 · · · ∂yinn
+ θl

∂m0−1ḡ
[m0−1]
j∗

∂yi11 ∂y
i2
2 · · · ∂yinn

.

Because of the definition of θl, we can choose suitably the parameter al+1 such that

∂m0+l−1b̃
[m0+l−1]
j∗

∂yi1+l1 ∂yi22 · · · ∂yinn
= 0,

which is equivalent to

∂m0−1b̃
[m0+l−1]
j∗

∂yi11 ∂y
i2
2 . . . ∂y

in
n

(y1, 0, . . . , 0) = 0.

Now, transforming the homogeneous part of degree m0 + l of the system (7.4) to
its normal form via a homogeneous transformation Γm0+l and taking into account
Theorem 8, we bring the system (7.4) into the form

ẋ = Ax+Bv +

m0+l∑
m=m0

ḡ[m−1](x)v + r(x, v),(7.7)

where r(x, v) ∈ R≥m0+l+1(x, v), and for any m such that m0 ≤ m ≤ m0 + l, the

components ḡ
[m−1]
j for 2 ≤ j ≤ n − 1 satisfy the conditions (6.2), (6.3), and (6.4).

This ends the proof of Theorem 11.
Proof of Theorem 12. The proof of this theorem follows the same line as that of

Theorem 6. We notice only that the transformation Γ∞ leaves invariant all terms of
degree smaller than m0 + l of the system (7.3) if and only if it is of the form (4.10),
given by Lemma 1.
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ON THE GLOBAL CONTROLLABILITY OF NONLINEAR
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Abstract. In this paper, a form of open local accessibility for nonlinear control systems is
introduced called the continuous fountain condition. Subject to the conditions that (i) the states of
a system are continuous fountains and (ii) one of various recurrence conditions holds, it is established
that the system state space is (globally) controllable. It is shown that these controllability results
imply the controllability of certain subsets of the state space of Hamiltonian control systems called
energy slices. The relations between the notion of a fountain and (i) local accessibility and (ii)
the full Lie algebra rank condition for control affine systems are investigated. Finally, the results
in this paper are shown to have application to hierarchical hybrid control theory in that they give
conditions for a finite analytic partition to satisfy the so-called in-block controllability property; this
is illustrated with a linear mass-spring system example.

Key words. nonlinear control systems, controllability, attainable sets, recurrence, hierarchical
systems, fountains, accessibility, reachability
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1. Introduction. There is an extensive literature on various forms of the con-
trollability problem for nonlinear systems (see, for example, the texts by Isidori [10],
Nijmeijer and van der Schaft [24], and Jurdjevic [11]). In particular, in [11], [12], [13],
and [19], it has been shown that control affine systems satisfying a dense recurrence
condition and a full Lie algebra rank condition (LARC) are (globally) controllable.
In [20], sufficient conditions for the global controllability of conservative systems on
a compact manifold are presented. Other results on global controllability based on
Poisson stability and local accessibility are presented in [1], [2], and [7]. The notion
of weak positive Poisson stability is employed in [18] and [22] for the analysis of the
controllability of control affine systems.

In this paper, a form of open local accessibility and coaccessibility for nonlinear
control systems is introduced called the continuous fountain condition. Subject to the
conditions that (i) the states of a system are continuous fountains and (ii) one of var-
ious recurrence conditions holds, it is shown that the system state space is (globally)
controllable. As demonstrated in sections 4 and 5, the fountain condition is partially
ordered with respect to the local accessibility condition and the LARC condition (i.e.,
it is not strictly weaker or stronger). In fact, the topological nature of the fountain
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notion allows it to be invoked in controllability analysis even for systems that have
nonsmooth dynamics. These characteristics of the fountain notion permit it a differ-
ent domain of application than the classical results based on a recurrence property
and the LARC condition. Furthermore, for various classes of smooth systems, we
establish several algebraic conditions that give straightforward algorithmic methods
for verifying whether a system state is fountain.

In addition to the general relevance of these results to the study of nonlinear
systems, they have value in hierarchical hybrid control theory (HHCT) (see section
8). This is because the theory presented in [5], [15], [16], and the references therein
invokes the so-called hybrid in-block controllability (HIBC) hypothesis; this requires
that each of the blocks of a certain class of decompositions (called finite analytic
partitions) of the system state space forms a controllable subsystem. To verify the
HIBC condition using the theory of this paper, it is sufficient to establish that the
fountain condition and one of the recurrence conditions hold. Furthermore, for the
so-called energy slice partitions of Hamiltonian control systems, the dense recurrence
condition under a distinguished control is an inherent property which does not need
explicit verification whenever each slice is precompact.

The paper is organized as follows. In section 2, we introduce the notion of a
(continuous) fountain; then we show that, for a large class of nonlinear systems, the
fountain condition taken together with an additional condition such as (i) existence
of orbits, (ii) control recurrence, or (iii) weak positive Poisson stability, implies the
global controllability of the systems. In section 3, we generalize the results obtained
in section 2 by employing the weaker notion of a fountain with respect to a trajec-
tory. In sections 4 and 5, we investigate the relation of the fountain property to
that of local accessibility and, for a control affine system, to the LARC condition.
It is shown that, in general, the fountain condition is not strictly weaker or stronger
than the local accessibility and the LARC conditions. In section 6, some algebraic
criteria for verifying the fountain property are presented. These include controllable
linearization, symmetry, and full rank conditions. Section 7 is devoted to the global
controllability of Hamiltonian control affine systems which satisfy the fountain con-
dition. In this context, the developed results are applied to certain subsets of the
state space of Hamiltonian control systems called energy slices in order to establish
their controllability. Furthermore, applications of the results of this paper to HHCT
as presented in [5], [15], and [16] are discussed in section 8, and, finally, in section 8.2,
the theory is illustrated by use of a linear mass-spring system example.

2. Fountains, recurrence, and controllability. We consider nonlinear differ-
ential systems on an open connected state space E ⊂ R

n of the form

S :
ẋ = f(x, u), x(0) = x0 ε E,
x ε E, u ε R

m, f ε Cr(E × R
m,Rn),

r ε {1, 2, · · · ,∞, ω},
(2.1)

where Cω denotes the class of analytic functions on E, and where the set of admissible
control functions U satisfies either
(a) U = Uq(R;Rm), q ε {1, 2, . . . ,∞, ω}, the set of all R

m valued bounded piecewise
Cq functions of time which are continuous from the right, or

(b) U = Uq(Rn;Rm), q ε {1, 2, . . . ,∞, ω}, the set of all R
m valued bounded Cq

functions of x ε R
n.
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Unless otherwise stated, U = Uq(R;Rm). We note, however, that, if u is specified
to lie in the state feedback class Uq(Rn;Rm), then, as a function of time along the
system trajectory, the resulting function u(·) lies in Uq(R;Rm). Furthermore, unless
otherwise stated, all definitions, theorems, etc. are stated for some system S of the
form (2.1) with the class of controls U .

Take an arbitrary control u ε U and any ε > 0. We shall say that ū is an ε-
approximation of u if (i) ū belongs to the class of piecewise constant functions which
are continuous from the right (denoted Upwc) and (ii) for any t in the domain of u,
‖u(t)− ū(t)‖ ≤ ε. From the standard results on the continuity of a solution trajectory
of a differential equation S with respect to small perturbations of the control function
in Uq(R,Rm), it follows that the solution of S under u can be approximated (with
any required accuracy) by the solution of S under ε-approximating controls in Upwc.
In this context, certain properties (such as local accessibility and controllability) of
S with control functions taken in U can be studied by considering only piecewise
constant controls.

Throughout the paper, we use the term orbit to denote any nontrivial, possibly
self-intersecting, trajectory φx joining x to itself; i.e., for some T > 0, φx : [0, T ]→ E
is any nonconstant trajectory satisfying φx(0) = φx(T ) = x. All sets specified in this
paper are taken to be nonempty; the term “nonempty set” is merely used for emphasis
or to avoid ambiguity. In addition, the symbol ⊂ denotes not necessarily strict set
inclusion.

Definition 2.1. The set AV
T (x) of accessible (at time T ) from x states (with

respect to V ⊂ E) is defined by

AV
T (x) ∆ {z ε E; ∃u ε U , x(0) = x, φ(T, x, u) = z,

φ(t, x, u) ε V for all 0 ≤ t ≤ T}.

The set of accessible states (at time T ) from x is AT (x) ∆ AE
T (x); further, A

V (x) ∆⋃
0≤T<∞AV

T (x) with A(x) ∆ AE(x). The set RV
T (x) of reachable states from x in

time T (with respect to V ) is defined by RV
T (x) ∆

⋃
0≤t≤T A

V
t (x). A state x is called

locally accessible if the set RV
T (x) contains an open set for every neighborhood V and

every time T > 0.
Dually, we have the following definitions.
Definition 2.2. The set CAV

T (x) of coaccessible (at time T ) to x states (with
respect to V ⊂ E) is defined by

CAV
T (x) ∆ {z ε E; ∃u ε U , x(0) = z, φ(T, z, u) = x,

φ(t, z, u) ε V for all 0 ≤ t ≤ T}.

The set of coaccessible states (at time T ) to x is CAT (x) ∆ CAE
T (x); further,

CAV (x) ∆
⋃

0≤T<∞ CAV
T (x) with CA(x) ∆ CAE(x).

Definition 2.3. We say that E is controllable (with respect to the class of
controls U) if A(x) = E for all x ε E, and that E is controllable on the interval [0, T ]
if AT (x) = E for all x ε E. We say that the system is locally controllable at p if, for
all sufficiently small ρ′ > 0, there exists ρ, 0 < ρ < ρ′, such that any two states x, x′

in the open ball Bρ(p) are mutually accessible with respect to Bρ′(p).
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CA(x)

x

δB  

φx

A(x)

(x)

CA(x) A(x)

Fig. 2.1. The fountain condition is satisfied at x.

Definition 2.4. A state x ε E is called a fountain if
(i) there exists µ > 0 such that, for all δ, 0 < δ < µ, the open ball neighborhood Bδ(x)

is contained in E and Aδ(x)− {x} is an open set, where Aδ(x) ∆ ABδ(x)(x)
(in which case x is called a positive fountain); and

(ii) there exists µ′ > 0 such that, for all δ′, 0 < δ′ < µ′, Bδ′(x) ⊂ E and
CAδ′

(x) − {x} is an open set, where CAδ′
(x) ∆ CABδ′ (x)(x) (in which case

x is called a negative fountain).
Finally, sup{µ; such that (i) holds at x} shall be denoted ρ+(x), and sup{µ′; such
that (ii) holds at x} shall be denoted ρ−(x); when (i) and (ii) hold at x, that is, when
x is a fountain, min(ρ+(x), ρ−(x)) shall be denoted ρ(x).

If a set of states C ⊂ E (in particular, E) is such that each x ε C is a fountain,
the set C is called a fountain.

Evidently, the fountain definition above requires that, locally (i.e., with respect to
all sufficiently small Bδ(x)) the entire accessible set (from a given x, less {x}) is open;
this implies, in particular, that a trajectory φx passing through x must depart from
x within the interior of the accessible set. Clearly, the definition also requires that,
locally, the entire coaccessible set (to x, less {x}) is open, and so such a trajectory
φx must arrive at x within the interior of the coaccessible set. (See Figure 2.1, where
the accessible and coaccessible sets are not open, but, at the same time, there exists
a sufficiently small neighborhood Bδ(x) such that the accessibility and coaccessibility
sets are open with respect to that neighborhood.)

Example 2.1. Consider the double integrator system

ẋ = u, x(0) = x0,
ẏ = x, y(0) = y0,

(2.2)

where we take E = R
2. Let p = (x0, y0) be an arbitrary point in E. In the case

when x0 > 0, take δ > 0 sufficiently small so that Bδ(p) ⊂ {(x, y); x > 0}. Then,
with respect to this δ-ball neighborhood, the accessible set Aδ(p) = ({(x, y); y >
y0}∪{p})∩Bδ(p), and the coaccessible set CAδ(p) = ({(x, y); y < y0}∪{p})∩Bδ(p).
This is readily verified by use, for instance, of the parabolic family of controlled
trajectories. For any x0 < 0, the situation is reversed with the accessible set lying
below and the coaccessible set lying above the y0 axis. Further, at p = (0, y0),
Aδ(p) = Bδ(p) and CA

δ(p) = Bδ(p). In all cases, the sets A
δ(p)−{p} and CAδ(p)−{p}

are open. Hence any p ε E is a fountain.
The definition of a positive fountain x is not strictly stronger or weaker than the

standard definition of local accessibility from x (see [24]), in that the set of states
accessible from a fountain x (relative to the ρ+ neighborhood in arbitrary time), with
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Fig. 2.2. Throughput function ηφ(·).

the state x removed, is required to be open; whereas a system is locally accessible
from x if, for every time T > 0 and every neighborhood V of x, the set RV

T (x) of
states reachable from x in time less than or equal to T (with respect to V ) contains
an open set. The relation of the fountain property to that of local accessibility shall
be further discussed in section 4.

Remark. A set of fountains is not necessarily open, which is shown, for instance,
by the differential system ẋ = g(x, y)u, ẏ = 1, E = R

2, where the function

g : E → R is defined to be g(x, y) =

{
(x2 − y2)2 if x2 < y2,
0 otherwise.

Definition 2.5. Let C ⊂ E be an open set of fountains. A state x ε C is called a
continuous positive fountain if ρ+(x) is continuous at x, and it is called a continuous
negative fountain if ρ−(x) is continuous at x, where a function which is unbounded for
all x ε E is taken to be continuous. A fountain is continuous if it is both a continuous
positive and a continuous negative fountain.

The set C is called a continuous fountain if each x ε C is a continuous fountain.
We observe that, if x is a continuous fountain, then ρ(x) is continuous at x.
For a trajectory φ through x, we now introduce a measure of the maximum radius

of a ball centered at x which contains an entire segment of φ lying in Aρ(x)(x) and
CAρ(x)(x) and is such that the end points of the trajectory segment lie in the boundary
of the ball.

Definition 2.6. For a fountain x ε E, the throughput function on the trajectory
φ(t, x, u) is defined by ηφ(x) ∆ sup{µ, µ ≤ ρ(x); there exists T1 > 0 such that, for all
τ , 0 ≤ τ < T1, φ(τ, x, u) ε A

µ(x) with φ(T1, x, u) ε ∂Bµ(x); and there exists T2 < 0
such that, for all τ , T2 < τ ≤ 0, φ(τ, x, u) ε CAµ(x) with φ(T2, x, u) ε ∂Bµ(x)}.
If ηφ(x) is strictly positive and continuous at x, then x is said to have continuous
strictly positive throughput on the trajectory φ.

We observe that throughput functions are strictly positive on any nontrivial tra-
jectory. The definition above is illustrated in Figure 2.2, where ηφ1 , ηφ2

represent
throughput functions on different trajectories.

Lemma 2.7. Let C be an open set of continuous fountains. Then every x ε C has
a continuous strictly positive throughput ηφ(x) on any nontrivial trajectory φ passing
through x; that is, ηφ(x) > 0 and

lim
n→∞ ‖ηφ(yn)− ηφ(x)‖ = 0

for any sequence {yn; yn ε φ} converging to x, as n→∞.
Theorem 2.8. Assume that a system S on the open connected state space E is

such that E is a continuous fountain and through each x in E there exists a nontrivial
orbit. Then E is controllable.
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Proof. Let Φx denote the set of orbits through x. First, we claim that the set
Ox ∆ {z; ∃φx ε Φx s.t. z ε φx} is open. This is established by showing that any
z ε Ox has a neighborhood N(z) contained in Ox.

Consider any φx ε Φx. Take an arbitrary point z ε φx, and let z = φx(τ),
0 ≤ τ ≤ T , where the continuous map φx(·) takes [0, T ] into the orbit φx with
φx(0) = φx(T ) = x. Since all states in E are continuous fountains and since φx is
compact (as a continuous image of [0, T ] in E), there exists a strictly positive minimum
η > 0 for the function ηφx(·), which is continuous on φx by Lemma 2.7.

Then there exist τa and τb, τa < τ < τb, such that a = φx(τa) ε Bη(z) and b =
φx(τb) ε Bη(z). By the definition of η on φx, the point z lies in the open set (Aη(a)−
{a}) and lies in the open set (CAη(b)− {b}). Hence there exist open neighborhoods
N1(z) and N2(z) such that N1(z) ⊂ (Aη(a) − {a}) and N2(z) ⊂ (CAη(b) − {b}).
Define N(z) = N1(z) ∩N2(z). Then, for any p ε N(z), there exists a trajectory from
a to p and from p to b; i.e., p lies on a nontrivial orbit through x. Hence N(z) ⊂ Ox.
Since this holds for any φx ε Φx and any z ε φx, we conclude that Ox is open.

Second, we say that x, y ε E are equivalent, denoted x ∼ y, if there exists an
orbit φ such that x, y ε φ. It is clear that ∼ is reflexive, symmetric and transitive.
Hence the relation ∼ defines an equivalence relation on the set E. Thus there exists a
partition of the set E into disjoint equivalence classes denoted by [·]. For any x, y ε E,
y ε [x] if and only if y ε Ox, i.e., [x] = Ox. It follows that the state space E is the
disjoint union of open sets. However, E is connected, and hence E consists of just
one such orbit class. Now all states x, y ε E lie on orbits passing through each other,
and so A(x) = E for all x ε E; i.e., E is controllable.

Example 2.2. Consider the double integrator system described in Example 2.1.
As has been shown, every state p = (x, y) ε R

2 is a fountain. Moreover, ρ(p) is
unbounded at each p, and hence all states are continuous fountains. Further, applying
the state dependent control function u(x, y) = −y, we see that there exists a nontrivial
orbit trajectory through every state in R

2. Hence, by Theorem 2.8, the system (2.2)
is controllable in the space R

2.

2.1. Control recurrence.
Definition 2.9. A state x ε E is called control recurrent if it lies in its non-

trivial positive limit set under some control u ε U ; i.e., x is not an equilibrium point
under u and x = limn→∞ φ(tn, x, u) for some sequence {tn; n = 1, 2, · · ·} such that
limn→∞ tn =∞.

Versions of control recurrence have been employed by Lobry [19], [20], Kunita
[12], and Jurdjevic [11] to establish the controllability of control affine systems. Using
the notion of control recurrence, we obtain the following generalization of Theorem
2.8.

Theorem 2.10. Assume that a system S on the open connected state space E
is such that E is a continuous fountain, and, for every x in E there exists a control
ux ε U(Rn;Rm) such that x is control recurrent under ux. Then E is controllable.

Proof. Let x be an arbitrary point in E. Consider the associated ux(·) controlled
trajectory φ through x. By the fountain condition, there exists a strictly positive
radius δ such that the set N δ(x) ∆ (CAδ(x) − {x}) is open. Take any p such that
p ε φ and p ε N δ(x); such a p exists since φ is a nontrivial trajectory. Further, let
the time interval for the state to pass from p to x be ε. Since x lies in the closure
of the forward trajectory, there exists a sequence of instants {tn; n = 1, 2, . . .} such
that limn→∞ tn =∞ and limn→∞ φ(tn, x, u) = x.
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Now consider the sequence {φ(tn − ε, x, ux); n = 1, 2, . . .}. By the continuity of
solution trajectories with respect to final conditions, this sequence of states converges
to p as n → ∞. Hence, for some sufficiently large N , the trajectory φ through x
over the time interval [tn − ε; tn] for all n > N lies in the neighborhood N δ(x).
Hence, for any such n, the state φ(tn − ε, x, ux) can be joined to x by a trajectory,
using a possibly time-dependent control, where this trajectory segment lies entirely
in N δ(x) ∪ {x}. This yields a nontrivial orbit through x, and the same construction
yields an orbit through any state y ε E.

Applying Theorem 2.8, we conclude that E is controllable.
A vector field F is called positively Poisson stable (PPS ) on E (see [24]) if the

set of all states x ε E which are control recurrent under F is dense in E. Positive
Poisson stability is used by various authors in order to establish the controllability of
nonlinear systems. In particular, in [12], it is proven that, if the drift vector field of a
control affine system is PPS and the system possesses the LARC condition, then the
system is (globally) controllable.

We note that, in the case of the existence of a control u such that the vector field
F ∆ f(·, u(·)) is PPS (in particular, in the case of a control affine system with a PPS
drift), the recurrence condition of Theorem 2.10 is satisfied.

Definition 2.11. A set R is called a uniform control recurrent set if there is
some state dependent control v such that each x ε R lies in its nontrivial positive limit
set under v.

Theorem 2.12. Assume that a system S on the open connected state space E is
such that E is a continuous fountain and there exists a uniform control recurrent set
R which is dense in E. Then E is controllable.

Proof. Take any x ε E. By the fountain condition, there exists a strictly positive
ρ such that the accessible set (Aρ(x)− {x}) and the coaccessible set (CAρ(x)− {x})
are open.

Since R is dense in E, there exists a sequence {xn; n = 1, 2, · · ·} ⊂ R∩(CAρ(x)−
{x}) of control recurrent states converging to x. All xn are continuous fountains;
hence, as has been proved in Theorem 2.10, each xn lies on a nontrivial orbit φxn

.
Moreover, by the recurrence property, the cross-over link creating each orbit can
be chosen so that it forms a segment with xn as the right-hand end point. Hence
there exists some interval [0, ε], where ε is independent of n, such that the trajectory
segments commencing at each xn, subject to the control v, converge uniformly to
the trajectory subject to v through x, as n → ∞. So, for some sufficiently large
N , the orbit φxN

passes through the set (Aρ(x) − {x}), and, since each xn lies in
(CAρ(x)− {x}), the trajectory also passes through this latter set.

Consider any two points p1 and p2 such that p1, p2 ε φxN
, p1 ε (Aρ(x) − {x}),

p2 ε (CA
ρ(x)−{x}). Then there exists an orbit φx from x to p1 (since p1 is accessible

from x) to p2 (since p1, p2 ε φxN
), and then back to x (since p2 is coaccessible to x).

Hence every state x ε E lies on a nontrivial orbit. Applying Theorem 2.8, we
conclude that E is controllable.

2.2. Weak positive Poisson stability. Let F be a Cr, r ≥ 1, vector field
defined on E×R

1, and let φF (t, x) denote the flow of F at the time t with the initial
condition x; i.e.,
(i) φF (0, x) = x,
(ii) d

dtφ
F (t, x)|t=τ = F (φF (τ, x), τ) for all τ ε R

1.
Define the set φF (t, A) for A ⊂ E to be {z; ∃y ε A, z = φF (t, y)}.
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Fig. 2.3. Theorem 2.15: Weak positive Poisson stability.

Definition 2.13 (see [18]). A state x ε E is called a nonwandering state of
F if, for any T > 0 and any neighborhood N(x) ⊂ E, there exists a time instant
t > T , such that φF (t,N(x)) ∩ N(x) �= ∅. In other words, φF (t, y) ε N(x) for some
y ε N(x).

Definition 2.14 (see [18]). A smooth (i.e., Cr, r ≥ 1) vector field F is called
weakly positively Poisson stable (PPS) if the set of all states which are nonwandering
points of F is dense in E.

The notion of weak positive Poisson stability is employed in [18] and [22] for the
analysis of the controllability of control affine systems.

Theorem 2.15. For a system S, let there exist a control ũ ε U(Rn,Rm) such that
the vector field X̃ = f(·, ũ) is weakly PPS. Further, let E be a continuous fountain.
Then
(i) there exists a nontrivial orbit passing through each x ε E, and
(ii) E is controllable.

Proof.
(i) Let x be an arbitrary point in E. Choose ρ > 0 so that (Aρ(x) − {x}) and

(CAρ(x)−{x}) are open. Such ρ exists since x is a fountain. Consider the flow
φX̃ with the initial condition x. Take p = φX̃(t1, x) and q = φX̃(t2, x), where
t1 > 0 and t2 < 0 are chosen so that p ε Aρ(x)− {x} and q ε CAρ(x)− {x}.
Let t∗ = t1− t2 denote the time needed to reach p from q under the flow φX̃ .
By the continuity of the solution trajectory with respect to initial conditions,
there exists an open γ-ball neighborhood Bγ(q) ⊂ CAρ(x) − {x} such that

φX̃(t∗, Bγ(q)) ⊂ Aρ(x)− {x}.
Further, since the vector field X̃ is weakly PPS, there exist ξ, ξ̄ ε Bγ(q) ⊂
CAρ(x)−{x} such that ξ = φX̃(T ∗, ξ̄) for some T ∗ > t∗ (see Figure 2.3). By
construction, there exists s = φX̃(t∗, ξ̄) ε Aρ(x)−{x}. Hence ξ = φX̃(T ∗, ξ̄) =
φX̃(T ∗− t∗, s), where T ∗− t∗ > 0; i.e., ξ is accessible from s. Therefore, given
the facts that ξ is coaccessible to x and s is accessible from x, we conclude
that there exists an orbit from x to s to ξ to x.

(ii) The (global) controllability of the state space E follows from part (i) and Theo-
rem 2.8.

Each recurrent point of a vector field F is a nonwandering point of F . Hence we
observe that, if a vector field F is PPS (i.e., the set of recurrent points is dense in E),
then the nonwandering set is E.

3. Fountains with respect to trajectories. In this section, we assume there
exists a compact set U ⊂ R

m such that all functions in the set of admissible control
functions U take values in U .
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Definition 3.1. Let x be an arbitrary state in E, and let φx be an arbitrary
trajectory of a system S passing through x. The state x is called a fountain with
respect to the trajectory φx if there exists a time instant T = T (x, φx) > 0 such that
(i) φx((0;T )) lies in the interior of A(x), and
(ii) φx((−T ; 0)) lies in the interior of CA(x).

Further, if T ∗ ∆ sup{T ; φx((0;T )) ⊂ [A(x)]◦ and φx((−T ; 0)) ⊂ [CA(x)]◦} is a
continuous function of x, then x is called a continuous fountain with respect to the
trajectory φx.

Note that, by the compactness hypothesis on the set U , T ∗ is always finite.
Let x ε E be a fountain. Then, as has been noted in section 2, each nontrivial

trajectory φx passing through x has to depart from x within the interior of the acces-
sible set, and it has to arrive at x within the interior of the coaccessible set. Hence
x is a fountain with respect to φx, so Definition 3.1 is a weaker version of Definition
2.4. To illustrate this fact, we consider a simple differential system acting on R

2,

ẋ = u+ 1,
ẏ = u2x,

(3.1)

with the initial condition p0 = (1, 0). Take a neighborhood Bδ(p0) in the open right-
half plane R

2
+. Then the accessible set Aδ(p0) for all sufficiently small δ > 0 contains

a boundary, namely, the set D ∆ {(x, y); x > 1; y = 0} ∩ Bδ(p0). This is because
each state p in the topological boundary of D is accessible from p0 using the control
u = 0. On the other hand, A(p0) = R

2, and hence each trajectory lies within the
interior of the accessible set. This shows that, for the system (3.1), the state p0 is not
a fountain, but at the same time p0 is a positive (and, similarly, negative) fountain
with respect to any trajectory passing through p0.

Observe that the fountain property with respect to a specified trajectory is less
restrictive than the notion of the local controllability along a reference trajectory φ
(see, for example, [9]), in which the requirement is that all points in some open
neighborhood of φ(t, x0), t ≥ 0, can be reached at time t by solutions initiating
from x0. In [23], a sufficient condition for the local controllability along a reference
trajectory of an affine control system is formulated in the special case where the
reference trajectory is a closed orbit.

Theorem 3.2. Assume that a system S on an open connected state space E is
such that, through each state x ε E, there exists a nontrivial orbit and every x ε E is
a continuous fountain with respect to any orbit φx ε Φ(x) passing through x. Then E
is controllable.

Proof. Let Φx denote the set of orbits through x. First, as in the proof of
Theorem 2.8, we claim that the set Ox ∆ {z; ∃φx ε Φx s.t. z ε φx} is open. Consider
any φx ε Φx. Take an arbitrary point z ε φx, and let z = φx(τ), 0 ≤ τ ≤ T , where the
continuous map φx(·) takes [0, T ] into the orbit φx with φx(0) = φx(T ) = x. Since
z is a continuous fountain with respect to all orbits passing through z, it is possible
to find some q and p on φx such that some nonempty open neighborhood N(z) is a
subset in [A(q)]◦ ∩ [CA(p)]◦ and hence N(z) ⊂ Ox. We conclude that Ox is open.

As in the proof of Theorem 2.8, the fact that the set Ox is open for any x implies
the global controllability of the state space E.

The notion of the fountain with respect to a trajectory can be utilized to es-
tablish results similar to the results formulated earlier in this section, namely, in
Theorems 2.10, 2.12, and 2.15.
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4. Fountain condition for control affine systems. Consider a system S of
the input-linear or control affine class of nonlinear time-invariant control systems (see
[24]),

S : ẋ = f(x) +

m∑
i=1

gi(x)ui,(4.1)

where we assume that f, g1, g2, . . . , gm are smooth mappings from R
n into R

n.
The question of global controllability for control affine systems has been exten-

sively addressed. One of the essential conditions, used for instance in [18] and [20], to
establish the controllability of such systems is the (Chow–Hermann) LARC. In [20], it
has been proven that any Poisson stable system satisfying the LARC is controllable.
An extension of this result is presented in [22], where the Poisson stability condition
is weakened to the requirement of Poisson stability on the drift vector field f(x) only.
One of the most recent of this set of results is to be found in the paper by Lian, Wang,
and Fu [18].

Theorem 4.1 (see [18]). Consider the system (4.1) on the state space E. Suppose
that f is a weakly PPS vector field (see Definition 2.14). Then E is controllable if the
LARC is satisfied.

Related results can be also found in [3], [1], and [8]. In [21], the LARC condition is
used to establish the small-time local controllability for a planar body with unilateral
thrusters.

Consequently, it is of interest to investigate the relation between the LARC and
the fountain notion. In this section, we show that the fountain condition for con-
trol affine systems does not imply the LARC condition and, conversely, the LARC
condition does not imply the fountain condition. These facts are illustrated by the
following examples.

Example 4.1. Let h1(x, y), h2(x, y) be C
∞(R× R) functions such that

(i) h1(x, y) �= 0, if (x, y) ε S1, and h1(x, y) = 0 if (x, y) ε R
2 − S1, and

(ii) h2(x, y) �= 0, if (x, y) ε S2, and h2(x, y) = 0 if (x, y) ε R
2 − S2,

where S1 ⊂ R
2 is the open unit disk with the center at (0,1) and S2 ⊂ R

2 is the open
unit disk with the center at (0,−1).

Consider the following control affine system:

ẋ = (h1(x, y) + h2(x, y))u,
ẏ = 1.

(4.2)

Then the accessible set from p0 = (0, 0) and the coaccessible set to p0 are such that
Aδ(p0)−{p0} and CAδ(p0)−{p0} are open for any δ > 0. Hence p0 is a fountain. On
the other hand, the LARC fails at p0 since the function g(x, y) ∆ h1(x, y) + h2(x, y)
and all of its partial derivatives are equal to zero at p0 and thus the dimension of the
associated Lie algebra of the system (4.2) at p0 is equal to 1.

Example 4.2. Consider the differential system

ẇ = z2Iw + Jw,
ż = u,

(4.3)

where w = [x, y]T , I =
[

1 0
0 1

]
, and J =

[
0 −1
1 0

]
.

The system in this example is in the class of control affine systems described by
(4.1) with f = [(z2x− y) (z2y + x) 0]T , m = 1, and g = [0 0 1]T .
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Fig. 4.1. Example 4.1: Fountain condition does not imply LARC.
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Fig. 4.2. Example 4.2: Fountain condition fails, while the LARC property holds at p.

The LARC condition holds at the state p = (1, 0, 0). Indeed, [[f, g], g] = [2x 2y 0]T ,
and hence, at p, dimL(f, g) = dim span{[[f, g], g], f, g, } = 3.

However, the fountain condition fails at p since the accessible set from p with
respect to any neighborhood Bδ(p) contains accessible boundary states that lie in
the set D ∆ {(x, y, 0); x2 + y2 = 1} (see Figure 4.2). To verify this, we note that
u ≡ 0 implies z ≡ 0, in which case the motion is a rotation around the unit circle,
and so there certainly exist states p′ ε D ∩ Bδ(p) accessible under the zero control
from p. Next we consider the function R ∆ 1

2 (x
2 + y2) along any system trajectory.

Since dR = 2z2Rdt, R is nondecreasing along all trajectories, and hence any state
p′ ε {(x, y, 0);x2 + y2 < 1} is not accessible from p. It follows that any accessible
point p′ ε D ∩ Bδ(p) does not lie in the interior of the accessible set from p which is
consequently not a fountain.

The above examples show that the fountain condition is neither strictly stronger
nor strictly weaker than the LARC.

5. Fountains and local accessibility. As has been noted in section 2, the
definition of a positive fountain x is not strictly stronger or weaker than the standard
definition of local accessibility from x (see [24]). To illustrate this fact, we present in
this section two examples in which only one of these properties is satisfied.

Example 5.1.

ẋ = sin2 u+ v1z, ẏ = sin4 u+ v2z, ż = g(x, y, z)v3,
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Fig. 5.1. Example 5.1: The local accessibility property fails at the fountain p = (0, 0, 0).

where w ∆ (u, v1, v2, v3) ε U and the function g ε Cs(R3;R1), s ≥ 1, is defined in such
a way that g(x, y, z) = 0 if (x, y, z) ε S ∆ {(x, y, 0); 0 ≤ x ≤ 1, x2 ≤ y ≤ x} (S is
shown in Figure 5.1) and g(x, y, z) > 0 otherwise.

For the initial condition p = (0, 0, 0) and an arbitrary control w ε U , denote the
corresponding system trajectory as (x(t), y(t), z(t)), t ≥ 0. Then, for any t ε [0, 1],

x(t) =

∫ t

0

sin2 u(τ, x(τ))dτ, y(t) =

∫ t

0

sin4 u(τ, x(τ))dτ, z(t) = 0.(5.1)

It can be shown (using the Cauchy–Schwarz inequality) that x(t) and y(t) defined by
(5.1) satisfy

x2(t) ≤ y(t) ≤ x(t),

and hence (x(t), y(t), z(t)) ε S for any t ε [0, 1].
Hence the system trajectories under various control functions w stay in the set S

for any 0 ≤ t ≤ 1. This set has an empty interior, and hence the local accessibility
condition fails at the origin.

On the other hand, under constant control u and (v1, v2, v3) = (0, 0, 0), the tra-
jectory is such that y(t) = ax(t) (where a = sin2 u) and y(1) = x2(1). Hence, for any
δ > 0 and any time T > 1, there exists a control w under which the trajectory can
leave S (in time less than T ) without leaving Bδ(p) and, since g �= 0 outside of S,
attain any point in Bδ(p).

We conclude that the set of accessible from p states (with respect to an arbitrary
δ-ball neighborhood Bδ(p), δ > 0) is equal to the whole Bδ(p). Hence the fountain
condition at the origin is satisfied.

Example 5.2. Consider the system

ẋ = u2, x(0) = x0,
ẏ = 1, y(0) = y0,

where we take E = R
2.

For any δ > 0, the accessibility set is Aδ
T (x0, y0) = {(x, y) ε R

2; x ≥ x0; y >
y0;T ≥ 0}. This set has a nonempty interior, and hence the local accessibility property
is satisfied for any state (x0, y0) ε E. On the other hand, the accessibility set (with
the initial state (x0, y0) removed) is not open, and thus the positive fountain condition
fails.

For nonlinear systems for which the fountain condition is satisfied at some state
x0 ε E, it is interesting to investigate under what additional assumptions the local
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accessibility property is satisfied at x0, as well. In this connection, we state the
following two lemmas.

Lemma 5.1 (see [14]). Assume that, for a system S, there exists a state x0 ε E
at which the fountain condition is satisfied but the local accessibility condition fails.
Then

inf
uεU

max
tε[0,T∗]

‖φ(t, x0, u)− x0‖ = 0(5.2)

for some T ∗, 0 < T ∗ <∞.
Lemma 5.2 (see [14]). Assume that, for a system S, there exists a state x0 ε E

at which the fountain condition is satisfied but the local accessibility condition fails.
Then

inf
uεU
‖f(x0, u)‖ = 0,(5.3)

where f(·, ·) is the vector field of the system S and U = R
m is the set of values of

admissible control functions.
We conclude that the fountain property, taken together with either of the condi-

tions

for all T ∗ > 0, inf
uεU

max
tε[0,T∗]

‖φ(t, x0, u)− x0‖ > 0(5.4)

or

inf
uεU
‖f(x0, u)‖ > 0,(5.5)

implies local accessibility.

6. Algebraic criteria for the fountain condition. In this section, we treat
certain classes of nonlinear systems for which it is possible to verify the fountain
condition without analyzing the actual geometry of the accessible sets.

6.1. Controllable linearizations. In this section, we take U to be the set of
all admissible time-dependent controls Us(R;Rm), s ≥ 1. Let p be an arbitrary state
in E, and let a state q ε E be accessible from p. Then there exist a control function
u0 ε U and a time instant T such that q = φ(T, p, u0). Consider the linearization of
the system S along the trajectory φ(t, p, u0) on the time interval [0, T ] given by

d

dt
z = A(t)z +B(t)v, t ε [0, T ].(6.1)

The matrices A and B are defined on [0, T ] as the derivatives of f with respect to the
arguments x and u, respectively:

A(t) ∆

[
∂f(x, u)

∂x

] ∣∣∣ x=φ(t,p,u0)

u=u0(t)

, B(t) ∆

[
∂f(x, u)

∂u

] ∣∣∣ x=φ(t,p,u0)

u=u0(t)

.(6.2)

Theorem 6.1. Suppose that a system S is such that, for each p ε E ⊂ R
n and

any q ε Aρ(p)− {p} (ρ > 0), the linearization of S along a trajectory φ, joining p to
q over a finite time interval [0, T ], is controllable on [0, T ]. Then each state in E is
a continuous positive fountain.

Proof. Take an arbitrary ρ > 0 and any q ε Aρ(p)− {p}, where p ε E. Let u0 ε U
be such that q = φ(T, p, u0) (0 < T < ∞), where the system (6.1) is controllable
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along φ(t, p, u0) on [0, T ]. Then there are controls v1, v2, . . . , vn ε U defined on [0, T ]
such that the corresponding states zi(·), 1 ≤ i ≤ n, of (6.1) are linearly independent
at time T ; i.e.,

d

dt
zi = A(t)zi +B(t)vi, zi(0) = 0, t ε [0, T ]; and

for all γ ε R
n [z1(T ) · · · zn(T )]γ = 0⇒ γ = 0.

Define u(t, γ) = [v1(t) · · · vn(t)]γ + u0(t), γ ε R
n, t ε [0, T ], and consider the state

z(t, p, γ) of S corresponding to u. Following the standard arguments (see, e.g., [25]),
it can be shown that, for each x = q+ δq ε N(q), there exist γ = g(x) ε R

n and hence
a control u = u(t, γ) such that the corresponding trajectory with the initial condition
p reaches q + δq at time T .

We conclude the proof by noting that

for all ε > 0 ∃ δ > 0 such that ‖u1 − u2‖C[0,T ]
< δ ⇒

for all t ε [0, T ] ‖φ(t, x0, u1)− φ(t, x0, u2)‖ < ε.
(6.3)

Choose ε > 0 to be sufficiently small so that (i) the ε-cylinder of the nominal trajectory
φ([0, T ], p, u0) lies in Bρ(p), i.e.,

{x; ‖φ([0, T ], p, u0)− x‖ < ε} ⊂ Bρ(p),

and, furthermore, (ii) Bε(q) ⊂ N(q). For that ε, take δ > 0 for which the property
(6.3) is satisfied, and then take α (ε > α > 0) such that, for all x ε Bα(q), ‖u(t, g(x))−
u0‖ = ‖[v1 · · · vn]g(x)‖ < δ (such an α exists since g(q) = 0 and g(·) is continuous).

By this construction, the open α-ball neighborhood of q is accessible from p with
respect to Bρ(p). Hence A

ρ(p)−{p} is open. Moreover, since this property is satisfied
for an arbitrary ρ > 0, p is a continuous positive fountain.

Assume that, for a system S : ẋ = f(x, u) on the state space E, x0 ε E is
a fountain. Let Ψ : E → Ẽ ∆ Ψ(E) be a diffeomorphism. Consider the system
S̃ : ż = ∂Ψ

∂x (z)f(Ψ
−1(z), u) on Ẽ. Since the fountain property is a topological

property of the attainable sets, it is preserved under diffeomorphic transformations.
Hence the state Ψ(x0) ε Ẽ is also a fountain. In particular, in the case of the existence
of a feedback control which, together with a diffeomorphism of the state space, gives
rise to a controllable linear system (see [10]), both E and Ẽ are fountains, with respect
to S and S̃, respectively.

6.2. The fountain condition for symmetric systems.
Definition 6.2. We shall say that a system S is symmetric at x ε E if there

exists ρ > 0 such that for all y ε Bρ(x) and u ε U , there exists u′ ε U such that
f(y, u(y)) = −f(y, u′(y)).

We note that the definition above is somewhat weaker than the standard definition
of a symmetric system (see, for instance, [26]), in which the requirement is that, for
all x ε E and u ε R

n, there exists u′ ε R
n such that f(x, u) = −f(x, u′).

In [26], a condition for symmetric systems to possess the local controllability
property at x is formulated in terms of the Lie algebra of the family L0 ∆ {f(·, u); u ε
R

n}. Namely, for j = 1, 2, . . . , let

Lj ∆ Lj−1 ∪ {[f, g](·); f(·) ε Lj−1, g(·) ε L0 or g(·) ε Lj−1, f(·) ε L0}.
In addition, define Lj(x) ∆ {g(x); g ε Lj}.
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Theorem 6.3 (see [26]). Suppose that a system (2.1) is symmetric at x and the
fields f(·, u), u ε R

n, are of the class Ck, k ≥ 2. If, for some j ≤ k,

dimLj(x) = n,(6.4)

then the system is locally controllable at x.
Theorem 6.4. Suppose that a system S is such that the fields f(·, u), u ε U , are

of the class Ck, k ≥ 2. Further, let x ε E be such that, for some δ > 0 and for all
states y ε Aδ(x)− {x},
(i) S is symmetric at y;
(ii) the condition (6.4) is satisfied at y.

Then x is a positive fountain.
Proof. The local controllability at any accessible state y ε Aδ(x) − {x} (which

follows from Theorem 6.3) implies that each y′ ε Bγ(y) (for sufficiently small γ) is
accessible from y, and hence from x, with respect to Bδ(x). Hence the set A

δ(x)−{x}
is open, and so x is a positive fountain.

The negative fountain property can be verified by assuming the condition (6.4)
and the symmetry property for the reverse time dynamics.

6.3. Full rank condition for systems with time-dependent controls. In
this section, the class of admissible control functions, denoted Uω, is assumed to be
the set of all time-dependent analytic functions taking values in R

m.
Let f(·, ·) be an analytic function of the arguments (x, u) ε E × R

m. Denote the
solution trajectory, with the initial condition x0 ε E under a specified control u0(·),
by x(·). Then x(·) is analytic, and x(·), u0(·) can be represented locally by the series

x(t) = x0 +

∞∑
i=1

x(i)(0)
ti

i!
, u0(t) = u0(0) +

∞∑
i=1

u
(i)
0 (0)

ti

i!
.(6.5)

Denoting si = (x, λ0, . . . , λi−1), we define the functions Di : R
n × R

im → R
n, i =

1, 2, · · ·, in the following way:

D1(s
1) = f(x, λ0),

D2(s
2) =

∂D1

∂x
(s1)f(x, λ0) +

∂D1

∂λ0
(s1)λ1

· · ·

Di(s
i) =

∂Di−1

∂x
(si−1)f(x, λ0) +

∂Di−1

∂λ0
(si−1)λ1 + · · ·+ ∂Di−1

∂λi−2
(si−1)λi−1 · · · .

Theorem 6.5. Let x0 ε E, and let u0 be a time-dependent control in Uω. Suppose
that there exist some δ > 0 and some integer q ≥ 0 such that, for all 0 < t < δ,

rank




 ∞∑

i=1

Di(s
i
0)

ti−1

(i− 1)!

...

∞∑
i=1

∂Di

∂λ0
(si

0)
ti

i!

... · · · ...
∞∑

i=q+1

∂Di

∂λq
(si

0)
ti

i!




 = n,(6.6)

where we use u0 = u0(0), u
(1)
0 = d

dtu0(0), . . . , u
(q)
0 = dq

dtq u0(0), . . . , s
i
0 ∆ (x0, u0, u

(1)
0 , . . . ,

u
(i−1)
0 ), i ≥ 1, to simplify the notation. Then x0 is a positive fountain with respect

to the trajectory under u0 control.



GLOBAL CONTROLLABILITY OF NONLINEAR SYSTEMS 1547

Proof. Observe that the functions Di are defined in such a way that Di(s
i
0) is

equal to the full ith derivative of x(t) with respect to time, evaluated at t = 0. Hence
the decomposition (6.5) can be rewritten as

x(t) = x0 +

∞∑
i=1

Di(s
i
0)
ti

i!
.

Next define the function F : R
n × R

1 × R
(q+1)m → R

n, q ≥ 0, as

F (x, t, λ0, λ1, . . . , λq) ∆ x−
{
x0 +

∞∑
i=1

Di(p
i)
ti

i!

}
,(6.7)

where pi = (λ0, . . . , λi−1), 1 ≤ i ≤ q + 1, and pi = (λ0, . . . , λq, u
(q+1), . . . , u(i−1)), i >

q+1. Taking an arbitrary 0 < t̄ < δ and setting x̄ ∆ x(t̄), p0 ∆ (x̄, t̄, u0, u
(1)
0 , . . . , u

(q)
0 ),

we note that
(i) F (p0) = x̄− x(t̄) = 0.
(ii) All first order partial derivatives of F with respect to x, t, λ0, . . . , λq are

continuous in a neighborhood of the point p0.
(iii) [

∂F

∂t
(p0)

...
∂F

∂λ0
(p0)

... · · · ...
∂F

∂λq
(p0)

]

=


 ∞∑

i=1

Di(s
i
0)

t̄i−1

(i− 1)!

...
∞∑

i=1

∂Di

∂λ0
(si

0)
t̄i

i!

... · · · ...
∞∑

i=q+1

∂Di

∂λq
(si

0)
t̄i

i!


 ,

which, by the condition (6.6), has full rank.
From the implicit function theorem applied to F , it follows that there exist con-

tinuous functions t(r) > 0 and λ0(r), . . . , λq(r) such that

F (x̄+ r, t(r), λ0(r), . . . , λq(r)) = 0

for all sufficiently small r ε R
n. Further, define the time-dependent control vr ε Uω

to be

vr(t) = (λ0(r)− u0) + (λ1(r)− u(1)
0 )t+ · · ·+ (λq(r)− u(q)

0 )
tq

q!
+ u0(t)

=

q∑
i=1

λi(r)
ti

i!
+

∞∑
i=q+1

u
(i)
0

ti

i!
.

(6.8)

Then the solution trajectory under the control vr drives x0 to x(t̄) + r at time t(r).
Hence each state x(t) (where t > 0 is sufficiently small) lies in the interior of the states
accessible from x0, and thus x0 is a positive fountain with respect to the trajectory
under u0.

The full rank condition (6.6) can be rewritten (in obvious notation) as

rank

{ ∞∑
i=0

Ait
i

}
= n
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or, equivalently, as

there exists an n-tuple k = (k1, k2, . . . , kn),

1 ≤ ki ≤ n+ (q + 1)m, ki �= kj , i �= j, i, j = 1, 2, . . . n, such that

det

( ∞∑
i=0

P k
i t

i

)
=

∞∑
i=0

pk
i t

i �≡ 0,

where P k
i ε R

n × R
n, i ≥ 0, denotes the submatrix of Ai consisting of the columns

k1, k2, . . . , kn. We further observe that, for a given k,

pk
0 = detP k

0 , pk
( =

d(()

dt(

{
det

(
(∑

i=0

P k
i t

i

)}
|t=0, ; ≥ 1.

Hence a sufficient condition for the fountain property with respect to a specified
trajectory to hold can be formulated in terms of the existence of an n-tuple k and an
integer 0 ≤ j <∞, such that the coefficient pk

j (the calculation of which involves only
the matrices D0, . . . , Dj) is nonzero.

Corollary 6.6. Let x0 be an arbitrary state in E. Assume that there exists
δ > 0 such that the full rank condition (6.6) is satisfied for all u ε Uω, for all x
in some open neighbourhood N(x0), and for all t, t �= 0, in the symmetric interval
(−δ, δ), uniformly in x and u (i.e., δ does not depend on x or u). Then x0 is a
fountain.

Proof. Consider the set of all states accessible from x0 with respect to Bγ(x0),
where γ > 0 is chosen so that Bγ(x0) ⊂ N(x0). Suppose that there exists a boundary
state y ε Aγ(x0). Hence there exists a control u0 ε Uω and a time instant 0 < T <∞
such that y = φ(T, x0, u0). Take z ∆ φ(T − δ/2, x0, u0). Then, since z ε N(x0),
any state y′ ε Bε(y) can be attained from z (and hence from x0) under the control
vr (defined by (6.8)), r = y′ − y, in time t(r). Moreover, by the continuity of the
functions t(r), λ0(r), . . . , λq(r), ε > 0 can be chosen so that ‖u0 − vr‖ is sufficiently
small and the solution trajectory under vr does not leave Bγ(x0) on the time interval
[0, t(r)]. Hence Bε(y) ⊂ Aγ(x0), and x0 is a positive fountain.

The fact that x0 is a negative fountain follows from considering the reversed time
dynamics.

Example 6.1. To illustrate the use of Theorem 6.5, we consider the system

ẋ = 1 + u, ẏ = ux2, u ε R
1,

and test whether the state p0 = (1, 0) is a fountain with respect to the trajectory
under u0 ≡ 1 control. We consecutively compute Di, i = 1, 2, 3:

D1(s
1) = [λ0 + 1 λ0x

2]T ; D2(s
2) = [0 2λ0(λ0 + 1)x]T ; D3(s

3) = [0 2λ0(λ0 + 1)2]T ;

∂D1

∂λ0
= [1 x2]T ;

∂D2

∂λ0
= [0 (4λ0 + 2)x]T .

To check the full rank condition, we have to determine the rank of the matrix[
D1(s

1
0) +D2(s

2
0)t+D3(s

3
0)t

2/2 + o(t) | ∂D1

∂λ0
(s10)t+

∂D2

∂λ0
(s10)t

2/2 + o(t)

]
,
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where s10 = (1, 1), s2 = (1, 1, 0), s3 = (1, 1, 0, 0).

rank

[[
2
1

]
+

[
0
4

]
t+

[
0
8

]
t2/2

|
|
[
1
1

]
t+

[
0
6

]
t2/2

]

= rank

[
2 t

1 + 4t+ 4t2 t+ 3t2

]
= 2

for all sufficiently small 0 < t < δ, and hence p0 is a fountain with respect to the
trajectory under the control u0 ≡ 1.

7. Hamiltonian control systems. In this section, we consider an application
of the results of section 3 to affine Hamiltonian control systems (see [24]), i.e., Hamil-
tonian control systems with a smooth Hamiltonian of the form

H(q, p, u) = H0(q, p)−
m∑

j=1

Hj(q, p)uj ,

where H0(q, p) is the internal Hamiltonian (energy) and Hj , j = 1, 2, . . . ,m, are the
interaction or coupling Hamiltonians.

For affine Hamiltonian control systems, we have the equations of motion

q̇i =
∂H0

∂pi
(q, p)−

m∑
j=1

∂Hj

∂pi
(q, p)uj ,

ṗi = −∂H0

∂qi
(q, p) +

m∑
j=1

∂Hj

∂qi
(q, p)uj ,

(7.1)

where i = 1, 2, . . . , n.
Definition 7.1. A u0 energy slice ES(H

−, H+) of a Hamiltonian control system
is the set of states for which the value of H, under the state-dependent control u0 ε
U(Rn;Rm), lies between some fixed values H− and H+,

ES(H−, H+) ∆ {(p, q); (p, q) ε E and H− < H(p, q, u)|u=u0
< H+},

where H(p, q, u) is the Hamiltonian function associated with the system (7.1).
We note that, while Definition 7.1 is given in terms of the class U(Rn;Rm), the

controllability in the following theorem is with respect to controls in U = U(R;Rm).
Theorem 7.2. An affine Hamiltonian control system for which all states are

fountains and all equilibrium points under some constant control u0 ε R
m are isolated

is such that any precompact connected component of a u0 energy slice is controllable
with respect to U .

Proof. Consider any precompact connected energy slice ES(H−, H+), and let
ES0(H

−, H+) be obtained from ES(H−, H+) by removing the (necessarily finite)
equilibrium points of the flow under u0. Since the state space necessarily has di-
mension greater than 1, we observe that ES0(H

−, H+) is also open, precompact,
and connected. Now, since ES0(H

−, H+) has compact closure, it has finite measure
under the density given by H, and, furthermore, the u0 (i.e., Hamiltonian) flow is
Lebesgue measure preserving. It follows by Poincaré’s recurrence theorem that al-
most all states in ES0(H

−, H+) are recurrent under the u0 flow. However, since
every state of ES0(H

−, H+) is a fountain, and since no state is an equilibrium state
under the u0 flow, Theorem 2.12 implies that ES0(H

−, H+) is controllable.
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Next consider any equilibrium point y ε ES(H−, H+) − ES0(H
−, H+) (under

u0). Since all equilibria under u0 are isolated, there exists a neighborhood N(y) such
that (N(y) − {y}) ε ES0(H

−, H+). Take any p ε (AN(y)(y) − {y}), which is not
empty by the positive fountain condition at y. Then ES0(H

−, H+) is a subset A(p)
and p ε A(y). Hence ES0(H

−, H+) ⊂ A(y). Finally, consider any equilibrium point
z ε ES(H−, H+) − ES0(H

−, H+) (under u0). Using analogous arguments and the
negative fountain condition at the point z, it can be shown that ES0(H

−, H+) ⊂
CA(z). Since these properties hold for arbitrary equilibria y and z under u0, it
follows that for any x ε ES(H−, H+), ES(H−, H+) ⊂ A(x); i.e., ES(H−, H+) is
controllable.

We note that the arguments above can be applied to all systems for which there
is a measure preserving flow that satisfies the conditions of Theorem 7.2; the theorem
is stated for affine Hamiltonian systems because of their importance. We also remark
that, in the affine Hamiltonian case, the expression of the linearization condition of
section 6.1 for the fountain property takes an interesting symmetric form in terms of
the second order partial derivatives of H.

In the case of the existence of a first integral F (which is not necessarily the
total energy function) for a dynamical system S, the analogous arguments can be
applied to slices based on F or, in the case of the existence of multiple first integrals
F1, . . . , Fk, to intersections of slices based on F1, . . . , Fk. An example of this is given
in [16], where the results of the theory developed in this paper are applied to hybrid
systems with disturbances and, in particular, are illustrated on a simplified air traffic
system.

8. Applications to hierarchical hybrid control theory (HHCT). The the-
ory developed in this paper is directly applicable in the analysis of hierarchical hybrid
control systems because several of the main results in [5] and [15] employ the HIBC
hypothesis (see below). This hypothesis requires that each of the blocks of a given
finite analytic partition of the system state space forms a controllable subsystem.

To verify the HIBC condition using the theory of this paper, it is sufficient to es-
tablish that the fountain condition holds in E and that one of the recurrence conditions
holds for each block of the finite analytic partition under consideration. Furthermore,
for the so-called energy slice partitions of affine Hamiltonian systems, the dense recur-
rence condition under a distinguished constant control is an inherent property which
does not need explicit verification whenever each slice is precompact. In this section,
we first briefly overview the main concepts of the HHCT developed in [5] and then
consider an application of HHCT to a mass-spring system.

8.1. Overview of HHCT. Consider a system S of the form (2.1) on some state
space D ε R

n. All of the definitions and results here are taken from [5].
Definition 8.1 (see [5]). A finite analytic partition of the state space D ⊂ R

n of
S is a pairwise disjoint collection of subsets π = {X1, X2, . . . , X|π|} such that each Xi

is nonempty, open, and path-connected and is such that D =
⋃|π|

i=1(Xi ∪ ∂Xi), where,
further, the boundary ∂Xi of every block Xi is a locally finite union of connected
components of n− p dimensional, p ≥ 1, analytic manifolds (possibly with boundary),

such that ∂Xi =
⋃ki

m=1 C
i
m.

Henceforth we shall use the following notation for the partition boundary: ∂π =⋃|π|
i=1 ∂Xi.
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Definition 8.2 (see [5]). Let π be a finite analytic partition of D, and let Xi,
1 ≤ i ≤ |π|, be any block of π. Then the interior boundary ∂Xint

i of Xi is the set of

points x ε ∂Xi ∆ Xi−
◦
Xi= Xi−Xi for which there exists a neighborhood Nx meeting

only Xi, and the exterior boundary ∂Xext
i of Xi is the set complementary to ∂Xint

i

in ∂Xi; that is, ∂Xext
i is the set of points x ε ∂Xi for which every neighborhood Nx

meets X
c

i .
For the definition of dynamical consistency, we need the following notion: a state

y ε ∂Xi ∩ ∂Xj is said to be a facial (boundary) state of the pair of blocks Xi, Xj if
y lies in the relative interior of the n − 1 dimensional connected components of the
boundaries ∂Xi and ∂Xj . Facial(∂Xi ∩ ∂Xj) shall denote the set of all states that
are facial states of the pair Xi, Xj . NF (π) shall denote the set of all nonfacial states.

Definition 8.3 (see [5]). Given a partition π of the set D, 〈Xi, Xj〉 ε π × π
is said to be a dynamically consistent (DC) pair (with respect to S) if and only if
either i = j or, if i �= j, for all x in Xi, there exists ux(·) ε U , defined upon [0;Tx],
0 < Tx <∞, and there exists a facial boundary state y ε ∂Xi ∩ ∂Xj, such that

(i) for all t ε [0, Tx), φ(t, x, ux) ε Xi, and limt→T−
x
φ(t, x, ux) = y,

and, for the state y in (i), there exists uy ε U defined on [0, Ty), 0 < Ty < ∞, such
that

(ii) for all t ε (0, Ty), φ(t, y, uy) ε Xj,
where φ(·, ·, ·) in (i) and (ii) are the integral curves of the vector field f(·, ·) with
respect to the controls ux, uy ε U and the initial conditions x, y, respectively.

Definition 8.4 (see [5]). Given a partition π of the set D, the hybrid DC

partition machine Mπ = 〈Xπ = {X1, · · · , X |π|}, U = {U j

i ; 1 ≤ i, j ≤ |π|},Φπ〉, based
upon the system S, is the finite state machine defined by Φπ(Xi, U

j

i ) = Xj for all i, j,
1 ≤ i, j ≤ |π|, if and only if 〈Xi, Xj〉 is DC.

We note that, in the notation introduced in Definition 8.4, if 〈Xi, Xj〉 is not DC,
then the symbol U

j

i is not defined.
Definition 8.5 (see [5]). A hybrid partition machine Mπ is called hybrid in-

block controllable (HIBC) if and only if, for every Xi ε π and for all x, y ε Xi, the
following holds:

∃u(·) ε U ,∃T, 0 ≤ T <∞, (φ([0;T ], x, u) ⊂ Xi) ∧ (φ(T, x, u) = y);

i.e., each block Xi ε π is controllable for the system S.
Definition 8.6. A hybrid partition machineMπ is called hybrid between-block

controllable (HBBC) if any block state Xi can be reached from any other block state
Xj by applying a finite number of block transitions.

We now recall the following result from [5] which characterizes the global control-
lability of a system S in terms of the controllability properties of a hierarchical system
based upon S. As illustrated in section 8.2, it permits the application of a global con-
trollability analysis to the blocks of a hierarchical system to yield information about
the base system and vice versa.

Theorem 8.7. An HIBC machine Mπ is HBBC if and only if D∗ ∆ D − ∂π is
controllable for S with respect to D̃ ∆ D −NF (π), i.e., any two states x, y ε D∗ are
mutually accessible with respect to D− (nonfacial boundary states).

8.2. Application to a mass-spring system. In this section, we present an
illustration of the methodology described in the previous sections for constructing
HIBC partitions and the associated partition machines.
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ConsiderN controlled interlinked linear mass-spring systems attached to a moving
frame, where the input u determines the velocity of the frame.

Let qi, i = 1, . . . , N , denote the distance between the ith mass and the frame.
Then the Hamiltonian function is given by

H(q, p, u) =
1

2

N∑
i=1

1

mi
p2

i +
1

2

N∑
i=2

ki(qi − qi−1)
2 +

1

2
k1q

2
1 −

N∑
i=1

piu.

The dynamics of the system evolves according to the Hamiltonian system

q̇i =
∂H

∂pi
(q, p, u) =

1

mi
pi − u,

ṗi = −∂H
∂qi

(q, p, u) + vi = −ki(qi − qi−1) + ki+1(qi+1 − qi) + vi,

(8.1)

where the external forces are interpreted as control variables v = [v1 · · · vN ]T ε R
N

and where we set q0 = 0, qN+1 = 0, and kN+1 = 0 to simplify the notation.
We assume that all masses and spring constants of the system are strictly positive.

Then the u0 = 0, v0 = 0 energy slices ES(H−, H+) are ellipsoids in the space R
2N

(in an appropriate coordinate system {q̃1, . . . , q̃N , p1, . . . , pn}); that is, they have the
form {

(q̃, p); H− <
1

2

N∑
i=1

1

mi
p2

i +
1

2

N∑
i=1

kiq̃
2
i < H+

}
,

where {q̃1 = q1, q̃i = qi − qi−1, 2 ≤ i ≤ N} is a nonsingular transformation of coordi-
nates.

Let {H1, H2, . . . , Hn} be an arbitrary sequence of increasing positive real val-
ues. Then π given by the family {X1, X2, . . . , Xn−1}, where Xi is defined to be
ES(Hi, Hi+1), 1 ≤ i < n, is a finite analytic partition of the state space R

2N .
The fountain property for the system (8.1) can be verified using the technique

discussed in section 6.1. The strict positiveness of the masses and spring constants
implies that the fountain condition is satisfied for each state x ε R

2N . In addition, it
can be verified that there exists a unique equilibrium state under the u0 = 0, v0 = 0
control. Consequently, as follows from Theorem 7.2, each block of the partition π ∆
{X1, X2, . . . , Xn−1} constitutes a controllable set for the linear spring-mass system.

Hence the partition machineMπ based on the energy slice partition π is HIBC.
Moreover, by applying the energy slice controllability result of section 7 once more to
E(H) defined as the interior of the closure of

⋃n−1
i=1 ES(Hi, Hi+1), i.e., to the interior

of the closure of the union of the energy slices, we see that E(H) is controllable.
Further, applying Theorem 8.7, we can conclude that, for the mass-spring system,

Mπ is HBBC.
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Abstract. For the linear wave equation with time-invariant coefficients on a connected compact
Riemannian manifold (Ω, g) with C3 boundary, the geodesics condition of Bardos, Lebeau, and Rauch
[SIAM J. Control Optim., 30 (1992), pp. 1024–1065] is characterized in terms of escape functions,
which are some Lyapunov functions on the phase space S∗Ω̄ (the unit sphere cotangent bundle).
Differentiable escape functions yield a sufficient condition which is slightly less sharp but does not
refer to geodesics. The escape function condition yields a straightforward geometric proof that the
geodesics condition holds in the situations where first order differential multiplier methods apply.
Using microlocal control results, it allows us to generalize some control results (that were obtained
by multiplier methods) to variable coefficients and lower order terms. It also allows us to prove, in
some class of simple situations (e.g., in R

2 with constant coefficients), that no first order differential
multiplier method can reach the optimal control time or control regions.

Key words. wave equation, exact controllability, stabilization, multiplier method, geometric
optics, escape function
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1. Introduction. This paper is concerned with the widely cited and scarcely
used sharp sufficient bicharacteristics condition for the observation, control, and sta-
bilization of the wave equation from the interior or the boundary introduced by Bar-
dos, Lebeau, and Rauch (cf. [2] and the appendix of [21]). Since we shall restrict
ourselves to the time-independent coefficients case, this condition can be stated in
terms of generalized geodesics (i.e., the rays of geometrical optics) and we shall refer
to it as the geodesics condition.

While superseding in sharpness and scope earlier results obtained by the “multi-
plier method” (cf. section 4), the results of [2] are often discarded for reasons already
put forward in the introduction of [2]. In the first place, a lot of smoothness is re-
quired in [2]. As reviewed in section 1.2, some improvements in this respect have been
made thanks to microlocal measures techniques in the last decade. Thus, microlocal
techniques apply to the most general geometric situations and have been refined to
require less regularity assumptions. The second—more serious—reason is that the ex-
plicit computation of the constants appearing in the observation inequalities (which
allow us to predict how much energy is needed to control waves of given energy) are
out of reach of the closed graph argument in [2] (or the argument by contradiction
in the microlocal measures technique). We refer to [23] and [34] for recent significant
contributions in this respect using multiplier methods. The third point—to which
this article contributes—is that the conditions obtained may not be easy to verify for
complicated operators and geometry as acknowledged in [2]. We may add that, even
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in applications in Euclidean geometry (where geodesics are straight lines) of dimen-
sion two or three, we are often in the awkward situation in which it is intuitively clear
whether the geodesics condition is satisfied but quite intricate to prove rigorously.
Other (sufficient) geometric conditions have been obtained independently by first or-
der multiplier methods in the last decade (e.g., [22], [31], [23], [33]). Thus, multiplier
methods apply under the most general regularity assumptions and have been refined
to cope with more intricate geometric situations.

This paper bridges the geometric gap between the microlocal results and the
multiplier results. In section 3, we introduce a new way of formulating the geodesics
condition in terms of escape functions. For waves evolving on an n-dimensional space,
they can be regarded as functions of 2n variables which are Lyapunov functions for
the phase space dynamics associated with geometrical optics (technically, on the unit
sphere cotangent bundle). The definition of differentiable escape functions, which is
enough to formulate a sufficient condition, does not even refer to geodesics (cf. the re-
marks of section 3). In section 4, we consider the geometric conditions that have been
obtained by state-of-the-art multiplier methods and obtain them as direct applications
of the microlocal results surveyed in section 1.2 by mere examination of well-chosen
escape functions (under stronger smoothness assumptions than in [22], [31], [23] but
for variable coefficients). This emphasizes that these geometric conditions provide
valuable means to verify the geodesics condition and can be obtained without specific
P.D.E. analysis. As a by-product, we extend an exact controllability result due to
Yao (in [33] by his innovative Riemann multiplier method) to lower order terms and
weaker smoothness assumptions (cf. Remark 4 of section 4).

The interest of our paper in terms of applications is twofold. On the one hand, we
give some criteria in section 5 which could save us some time by preventing us from
trying to apply first order differential multiplier methods to situations which are out
of their scope. On the other hand, the escape function condition is a unified geometric
framework, which should help experts at the control of P.D.E. problems make new
applications of the microlocal results, or detailed comparisons of their results with the
microlocal ones. Since it proves so efficient in the linear case (corresponding to first
order multipliers; cf. section 4), we intend it as a track to find sufficient geometric
conditions (based on explicit classes of nonlinear escape functions and not referring
to geodesics) that would be sharper than those obtained by the multiplier methods
and easier to verify—albeit less sharp—than the geodesics condition of [2].

In our time-independent coefficients case, it is well known that the tools of sym-
plectic geometry used in [2] can be formulated in the language of Riemannian geometry
(e.g., used in [33]). Since it does not appear explicitly in [2], we have included a con-
cise and thorough presentation of this in section 2 for the reader’s convenience. In
particular, we emphasize the role of the second fundamental form for gliding geodesics
(and give an application in a remark). We hope that this paper will contribute to a
better understanding of the geometry involved in the control of P.D.E. problems. For
some recent contributions in this direction, we refer to [12] and other papers in the
same proceedings.

1.1. P.D.E. problems. Let us recall two simple examples of the P.D.E. prob-
lems under consideration.

Our first example is a problem of exact controllability from the boundary. Let Ω
be a bounded open connected subset of R

n, with C1 boundary ∂Ω, inside which waves
propagate according to the wave equation ✷u = 0, where ✷ = ∂2

t − ∆ is the speed
one d’Alembertian. Let T > 0 and θ ∈ C0

c (]0, T [ × ∂Ω) define the boundary region
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Σ = {(t, x) ∈ R × ∂Ω| θ(t, x) �= 0}, where the Dirichlet boundary condition is con-
trolled. The function θ is said to control Ω exactly if for all (u0, u1) ∈ L2(Ω)×H−1(Ω)
and all (w0, w1) ∈ L2(Ω) ×H−1(Ω) there is a control function v ∈ L2(R × ∂Ω) such
that the solution of the mixed Dirichlet–Cauchy problem,

✷u = 0 in ]0, T [× Ω, u = θ × v on ]0, T [× ∂Ω,(1.1)

with Cauchy data (u, ∂tu) = (u0, u1) at t = 0, satisfies (u, ∂tu) = (w0, w1) at t = T .
Our second example is a problem of exponential internal stabilization. Let (M, g)

be a smooth connected compact Riemannian manifold with boundary ∂M and let ✷g

denote the associated d’Alembertian (cf. section 2 for geometric definitions). Let Ω be
the complementary set of the support of a nonnegative a ∈ C∞(M̄). The function a
defines the damping region {x ∈ M̄ | a(x) > 0} = M̄ \ Ω̄ (cf. Figure 1.1). It is said
to stabilize M exponentially if for all (u0, u1) ∈ H1

0 (M) × L2(M) the energy of the
solution to the mixed Dirichlet–Cauchy problem,

✷gu + 2a∂tu = 0 in R+ ×M, u = 0 on R+ × ∂M,(1.2)

with Cauchy data (u, ∂tu) = (u0, u1) at t = 0, decays exponentially, i.e., there exist
β > 0 and β′ � 1 such that for all t � 0

E(t) =
1

2

∫
M

{|∂tu(t, x)|2 + |∇u(t, x)|2x
}
dgx � β′e−βtE(0).(1.3)

Fig. 1.1. Ω is light, the damping region
M̄ \ Ω̄ is dark, Γ is the frontier light/dark. The
geodesics condition holds.

G

D

N

Fig. 1.2. Two generalized geodesics.
Γ is dotted. N : nondiffractive, D: diffractive,
G: gliding.

1.2. Geodesics condition. The common geometric features of these examples
are a compact Riemannian manifold (Ω, g) and an open subset Γ of its boundary, if we
restrict the first example to a time-independent control region Σ = ]0, T [× Γ, where
Γ is an open subset of ∂Ω, and if, in the second example, we denote the part of the
boundary of the damping region inside M by Γ = ∂Ω ∩M (cf. Figure 1.1).

In this context, the generalized geodesics (cf. Figure 1.2 and Definition 2.1) are
continuous trajectories t �→ x(t) ∈ Ω̄ which follow geodesic curves at unit speed in Ω
(so that on these intervals t �→ ẋ(t) is continuous); if they hit ∂Ω \ Γ transversely at
time t0, then they reflect as light rays or billiard balls (and t �→ ẋ(t) is discontinuous
at t0); if they hit Γ transversely at time t0, then for times t > t0 they have “escaped”
from Ω̄; if they hit ∂Ω tangentially at time t0, then either there exists a geodesic in Ω
which continues t �→ (x(t), ẋ(t)) continuously and they branch onto it, or there is no
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such geodesic curve in Ω and—depending on where ∂Ω was hit—if x(t0) ∈ Γ, then
they have “escaped” from Ω̄ at times t > t0; if x(t0) ∈ Ω \ Γ, then they glide at unit
speed along the geodesic of ∂Ω, which continues t �→ (x(t), ẋ(t)) continuously until
they may branch onto a geodesic in Ω, otherwise they reach ∂Γ at a time t1 and have
“escaped” from Ω̄ at times t > t1.

Giving (x(t0), ẋ(t0)) does not always define a unique generalized geodesic (cf.
Ex. 24.3.11 in [14] due to M. Taylor). Each of the following assumptions is known to
ensure the unique continuation of generalized geodesics (we refer to [4] for (1.6)):

g and ∂Ω are real analytic.(1.4)

g and ∂Ω are C∞ and ∂Ω has no contacts of infinite order with its tangents.(1.5)

g is C2, ∂Ω is Ck for some integer k � 3,(1.6)
and ∂Ω has no contacts of order k − 1 with its tangents.

The bicharacteristics condition of Bardos, Lebeau, and Rauch roughly says that
every generalized bicharacteristics escapes R× Ω̄ through Σ. In our context of time-
independent coefficients and region Σ = ]0, T [ × Γ, we rephrase the bicharacteristics
condition by saying that the time T and the boundary region Γ satisfy the geodesics
condition if every generalized geodesic starting in Ω̄ has escaped Ω̄ through Γ at time
t = T ; in short, every generalized geodesic of length T escapes Ω̄ through Γ. (E.g., in
Figure 1.1, this condition is “easily seen” to hold for some T .)

When θ is the characteristic function 1Σ of Σ, it is proved in [2], under (1.4) or
(1.5), using microlocal techniques (i.e., the results of [24] and [25] on the propaga-
tion of singularities at the boundary and a lifting lemma at nondiffractive points),
that the bicharacteristics condition is sufficient and almost necessary for the exact
controllability of problem (1.1). Using microlocal measures techniques of Gérard,
Tartar, Lions, and Paul (cf. [5] for a survey), Burq obtained the same result in [4]
when Σ = ]0, T [ × Γ but ∂Ω is only C3 (cf. [11] for propagation results when Ω
is convex with C1,1 boundary and [6] for results about corners). Moreover, when
θ ∈ C0

c (]0, T [× ∂Ω), it is proved with the same techniques in [7] under (1.6) that the
bicharacteristics condition is both necessary and sufficient for θ to control Ω exactly
in problem (1.1), where Σ = {(t, x) ∈ R× ∂Ω| θ(t, x) �= 0}. (Note well, if 1Σ controls
Ω exactly, then θ does, and if θ does, then so does 1Σ′ for any open Σ′ containing Σ̄.)

Concerning the stabilization problem in section 1.1 (cf. Figure 1.1), another result
of Bardos, Lebeau, and Rauch is that, under (1.4) or (1.5), if there exists a time T > 0
such that the geodesics condition holds in Ω with Γ = ∂Ω ∩M , then a nonnegative
a ∈ C∞(M̄) stabilizes M exponentially in problem (1.2) whenever the corresponding
damping region {x ∈ M̄ | a(x) > 0} contains M̄ \ Ω̄. (Note well, the stabilization of a
compact manifold M without boundary corresponds to Γ = ∂Ω.) No regularity of ∂Ω
at points of Γ̄ is required here because there is no boundary condition on Γ. This
is the context in which microlocal measures techniques were first applied to control
theory, namely by Lebeau in [20], to bound from below the best rate β of exponential
decay in (1.3) by some means of a over generalized geodesics.

We refer to [18], [2], [19], [3] for more results allowing observation and stabilization
from the boundary, time-dependent coefficients, lower order terms, Neumann and
mixed-type boundary conditions, Schrödinger and plate equations, and more. We
refer to [27], [26] for results on general boundary conditions and transmission problems
and to [8] for general results on systems.
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1.3. Escape functions. In this paper, we dwell on pages 1030 and 1031 of [2]
which “illustrate the controllability criterion” and end with the following remark:
“Our contention is not that we could not do any one of these three [results] with a
sufficiently clever differential multiplier. Quite the contrary, the methods of Morawetz,
Ralston, and Strauss would surely suffice. However, to create a general result, we
would be led inevitably to the same geometric considerations, and avoiding pseudo-
differential techniques would only make the task more complicated.”

This quote refers to [30], where the decay of solutions of the wave equation outside
obstacles with constant coefficients is deduced from some “escape function” which is
proved to exist in dimension three under the geodesics condition that the obstacle is
“nontrapping.” (Melrose later improved on this paper by using the microlocal results
of [24] and [25].) Increasingly clever first order differential multipliers had been applied
earlier to this problem (radial in [28], gradient of a convex function in [29], “expansive”
vector field in [32]) which all correspond to linear escape functions. As Morawetz,
Ralston, and Strauss write in [30], “The major point of the present work is that a
linear escape function is too special.” In the context of resonances for Schrödinger
operators with a potential, the same point was made by Helffer and Sjöstrand in [13],
where they introduced nonlinear escape functions generalizing the radial case treated
earlier by Aguilar and Combes in [1].

Section 5 of this paper makes the same point in the context of the observation,
control, and stabilization of waves from the interior or the boundary. In particular, it
completes the analysis of [2] by proving that exact controllability cannot be obtained
“with a sufficiently clever differential multiplier” of order one in the situation described
in Figure 4, p. 1031, of [2]—a disk with some disconnected “minimal” boundary control
region which we reproduce in Figure 5.2. This emphasizes the need for new methods
to compute explicitly the constants appearing in the observation inequalities in such
simple situations.

2. Generalized geodesics. Let (Ω, g) be a connected compact oriented n-
dimensional Riemannian manifold with metric g of class C2 and boundary ∂Ω of
class C3. Let ν denote the exterior normal vector field and D the Levi–Civita con-
nection of g.

Let J : X �→ ξ denote the “flat” isomorphism between the tangent bundle T Ω̄
and cotangent bundle T ∗Ω̄ defined by ξ(Y ) = g(X,Y ), and let a denote the metric
on T ∗Ω̄ defined by a(ξ, η) = g(X,Y ), where ξ = J(X) and η = J(Y ). In local
coordinates (x1, x2, . . . , xn), we write a vector field, X =

∑
iX

i ∂
∂xi , a 1-form, ξ =∑

i ξidx
i, and for each x ∈ Ω̄ we write the scalar product on the tangent space,

〈X,Y 〉x =
∑
i,j gi,j(x)XiY j , so that J(X)j =

∑
i gi,jX

i and J−1(ξ)j =
∑
i a
i,jξi,

where the matrix A = (ai,j) is defined by A−1 = (gi,j). We keep the same notation
for the scalar product on the cotangent space 〈ξ, η〉x = tξAη and denote the associated
norms by | · |x.

Let ∇ = J−1d denote the gradient operator and ∆g denote the Laplace–Beltrami
operator in (Ω, g). The Sobolev spaces and the energy (1.3) are defined with respect
to the measure dxg. In local coordinates (x1, x2, . . . , xn), dxg =

√
det gdx1 · · · dxn

and ∆gf = (
√

det g)−1
∑
i,j ∂xj (ai,j

√
det g∂xif). Let p ∈ C2(T ∗(R × Ω̄)) denote

the principal symbol of the d’Alembertian ✷g = ∂2
t − ∆g. In local coordinates,

p(t, x, τ, ξ) =
∑
i,j a

i,j(x)ξiξj − τ2 so that p is also the principal symbol of the opera-

tor P defined in [2] by P = ∂2
t −

∑
i,j a

i,j(x)∂xj∂xi + lower order terms.

To link the bicharacteristics of p with the geodesics, it is convenient to consider
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the Hamiltonian function h = p/2 instead of p. Let Hh denote its Hamiltonian
vector field, in local coordinates, Hh = ∂τ,ξh∂t,x − ∂t,xh∂τ,ξ. The bicharacteristics
are integral curves s �→ (t(s), x(s), τ(s), ξ(s)) = exp(sHh)(t(0), x(0), τ(0), ξ(0)) of Hh

along which h = 0. Since p is time-independent, τ is constant along bicharacteristics.
By a linear change of parameter, we may restrict ourselves to the bicharacteristics
defined on S = {(t, x, τ, ξ) ∈ h−1(0)| −τ = |ξ|x = 1}. They satisfy ṫ(s) = −τ(s) = 1
and |ẋ(s)|x = |J−1(ξ(s))|x = |ξ(s)|x = 1. Therefore, pushing them through the
projections π : T ∗(R × Ω̄) → Ω̄ and Π : T ∗(R × Ω̄) → T ∗Ω̄ (well defined since t is a
global coordinate on R×Ω̄), we recover the geodesics curves parametrized at unit speed
t �→ x(t) = π exp(tHh)(0, x(0), 0, ξ(0)) starting from x(0) in the direction ξ(0), which
we will sometimes consider as strips t→ (x(t), J(ẋ(t))) = Π exp(tHh)(0, x(0), 0, ξ(0))
on the cosphere bundle S∗Ω̄ = {(x, ξ) ∈ T ∗Ω̄| |ξ|x = 1}.

Under one of the assumptions (1.4), (1.5), or (1.6), the generalized bicharacteris-
tics introduced in [24] (cf. section 24.3 in [14]) are uniquely defined through each point
of h−1(0) (cf. [4] about (1.6)). Let B denote the second fundamental form, i.e., the
symmetric bilinear form Bx(X,Y ) = −〈DXν, Y 〉x. Let ∂Ω = φ−1(0) be locally defined
by a submersion φ such that Ω = {φ(x) > 0}. Then ∇φ = −|∇φ|ν, Hessφ(X,Y ) :=
Ddφ(X,Y ) = −|∇φ|Bx(X,Y ), and H2

hφ(x, J(X)) = −|∇φ|xBx(X,X). Therefore
the strictly gliding points of the boundary are the points of T ∗∂Ω at which the sec-
ond fundamental quadratic form is positive (cf. Figure 1.2). The Hamiltonian field
of h restricted to the symplectic space where φ = Hhφ = 0 is the gliding vector
field HG

h = Hh + (H2
hφ/H

2
φh)Hφ. The gliding bicharacteristics are the trajectories

of HG
h and their image through Π are the geodesic curves of the restriction of g to ∂Ω

parametrized at unit speed.

On a bicharacteristic t �→ (t, x(t), τ(t), ξ(t)), the one-sided deleted neighborhoods
of the fixed time t0 are the images of I ∩ {t > t0} and the images of I ∩ {t < t0}
for all neighborhoods I of t0 in R. Recall that a generalized bicharacteristic pieces
together trajectories of Hh in Ω and gliding bicharacteristics in the set Gg of strictly
gliding points: in particular, if at time t it is at ρ ∈ T ∗∂Ω, then in a one-sided
deleted neighborhood of t it coincides with either a bicharacteristic in Ω or a gliding
bicharacteristic in Gg. Recall that the hyperbolic points of the boundary are the
transversal ones (i.e., not in T ∗∂Ω). Recall that ρ = (x, ξ) ∈ T ∗Ω̄ such that x ∈ ∂Ω is
nondiffractive (cf. [2]) if the (nongeneralized) bicharacteristic through ρ at time t is
out of Ω̄ at least in one of the one-sided deleted neighborhoods of t (cf. Figure 1.2),
i.e., either ρ /∈ T ∗∂Ω is hyperbolic or ρ ∈ T ∗∂Ω and the generalized bicharacteristic
through ρ at time t is a gliding bicharacteristic in Gg at least in one of the one-sided
deleted neighborhoods of t.

Definition 2.1. The generalized geodesic strips are the images of the generalized
bicharacteristics of h = (|ξ|x − τ2)/2 over S = {−τ = |ξ|x = 1} through the bijection
Π : S → S∗Ω̄. The generalized geodesic curves are the projections of the generalized
geodesic strips on Ω̄.

The generalized geodesic curves are described in section 1.2 for readers not familiar
with generalized bicharacteristics. In section 3, it will be convenient to think of
generalized geodesics hitting Γ at a nondiffractive point at time t = t0 as having
escaped Ω̄ at times t > t0. This interpretation is natural when Ω is an open subset
of a larger manifold (M, g): ∂Ω \ Γ is a border “obstacle” which confines geodesics
inside Ω̄ and Γ is a border “hole” through which the geodesics may “escape” out of Ω̄.

Definition 2.2. The geodesics condition G(T,Γ) for the time T > 0 and the
open region Γ ⊂ ∂Ω holds if every generalized geodesic of length greater than T passes
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through Γ at a nondiffractive point (i.e., every generalized geodesic of length greater
than T escapes Ω̄ through Γ).

As recalled in section 1, G(T,Γ) implies, for instance, that all T ′ > T has the
following control property: for all (u0, u1) ∈ L2(Ω) × H−1(Ω) there exists a control
function v ∈ L2(]0, T ′[ × Γ) such that the solution of the mixed Dirichlet–Cauchy
problem,

✷gu = 0 in ]0, T ′[× Ω, u = v on ]0, T ′[× Γ, u = 0 on ]0, T ′[× ∂Ω \ Γ,(2.1)

with Cauchy data (u, ∂tu) = (u0, u1) at t = 0, satisfies u = ∂tu = 0 at t = T ′.
Moreover, if T ′ satisfies this property, then G(T ′,Γ) holds. When k < ∞, these
results are implicit in [4].

Remark 1. If we also assume Ω to be convex, then the second fundamental form B
is nonnegative on T ∗∂Ω, so that all generalized geodesics starting from T ∗∂Ω keep
gliding on ∂Ω forever. This answers the question raised in Remark 4.7 of [22]: in
a convex open Ω ⊂ R

n satisfying (1.4), (1.5), or (1.6), there is never internal exact
controllability for the wave equation with Dirichlet condition on ∂Ω from a control
region G such that Ḡ ⊂ Ω.

3. Escape function condition. In [30], a notion of “escape function” was in-
troduced to characterize the “nontrapping” geodesics condition of Lax and Phillips
for exterior problems in R

3 with the Euclidean metric (roughly, Γ = ∅ and there
is no specific time, as for stabilization). We adapt the notion of escape function
to the geodesics condition of Bardos, Lebeau, and Rauch on a connected compact
oriented n-dimensional Riemannian manifold (Ω, g) (with metric g of class C2 and
boundary ∂Ω of class C3) by taking T into account.

Definition 3.1. An escape function adapted to T > 0 and Γ ⊂ ∂Ω is a real
function f defined on S∗Ω̄ such that

(i) for all (x, ξ) and (y, η) in S∗Ω̄, |f(x, ξ)− f(y, η)| � T ;
(ii) f increases at least as fast as the distance along the closure of any finite

interval of geodesic strip in Ω;
(iii) for all (x, ξ) ∈ S∗Ω̄ such that x ∈ ∂Ω \ Γ and ξ(ν) > 0, f(x, ξ′) � f(x, ξ)

for ξ′ = ξ − 2ξ(ν)J−1(ν);
(iv) f increases at least as fast as the distance along the closure of any finite

interval of geodesic strip in ∂Ω \ Γ on which the second fundamental quadratic form
is positive.

The escape function condition E(T,Γ) holds if there is an escape function adapted to
T and Γ.

Note that (i) says that f takes its values in an interval of length less than or
equal to T and that (iii) says that f is nondecreasing at reflections on ∂Ω \ Γ. As
such, this definition may appear more intricate than the geodesics condition. If one is
only interested in it as a sufficient condition, then it can be simplified by considering
only differentiable functions. In the following remarks, the definition of differentiable
escape functions is expressed in terms of the values of f and its derivatives and does
not refer to geodesics.

Remark 2. When f ∈ C1(T ∗Ω̄), then (ii) says that for all (x, ξ) ∈ S∗Ω,
Hhf(x, ξ) � 1, and (iv) says that for all (x, ξ) ∈ S∗Ω̄ such that x ∈ ∂Ω \ Γ, ξ(ν) = 0,
and Bx(J−1(ξ), J−1(ξ)) > 0, HG

h f(x, ξ) � 1. Moreover, (ii) and (iii) imply (iv) by
taking a limit as ξ(ν) tends to 0. Lastly, (iii) is implied by ν.∂ξf(x, ξ) � 0 for all
x ∈ ∂Ω \ Γ.
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Remark 3. When g is the Euclidean metric, we may consider the unit sphere
cotangent bundle as a subspace of R

2n, i.e., S∗Ω̄ = Ω̄ × {ξ ∈ R
n | ∑n

j=1 ξ
2
j = 1}. If

f ∈ C1(Ω̄× R
n), then the four conditions in Definition 3.1 are equivalent to

(i) f(S∗Ω̄) is an interval of length less than or equal to T ;
(ii) for all (x, ξ) ∈ S∗Ω̄, ξ.∂xf(x, ξ) � 1;
(iii) for all (x, ξ) ∈ S∗Ω̄ such that x ∈ ∂Ω \ Γ and ξ.ν > 0, f(x, ξ′) � f(x, ξ) for

ξ′ = ξ − 2(ξ.ν)ν.
Theorem 3.2. E(T,Γ) implies G(T,Γ). Under the additional assumption that

the generalized geodesics have the uniqueness property (e.g., under one of the as-
sumptions (1.4), (1.5), or (1.6)), G(T,Γ) implies E(T,Γ); moreover, f can be chosen
continuous outside Γ̄ and at hyperbolic and strictly gliding points of Γ.

Proof. We first prove E(T,Γ) ⇒ G(T,Γ). Assume E(T,Γ) holds. Let x :
[0, T ′]→ Ω̄ be a generalized geodesic of length T ′ > T which does not pass through Γ
at a nondiffractive point. From (ii), (iii), and (iv) we deduce that t �→ f(x(t), J(ẋ(t)))
increases at least as fast as t. Hence, f(x(T ′), J(ẋ(T ′)))− f(x(0), J(ẋ(0))) � T ′ > T ,
which contradicts (i). This proves that such an x does not exist, and therefore G(T,Γ)
also holds.

We now prove G(T,Γ) ⇒ E(T,Γ). Assume G(T,Γ) holds. Let T ′ > 0 and con-
sider a generalized geodesic curve x which does not pass through Γ at a nondiffractive
point for t ∈ ]0, T ′[, such that x(t) ∈ Γ̄ for t ∈ {0, T ′} and there exists ε > 0 satisfying
the following properties. If x(0) ∈ Γ, then we assume x(t) ∈ Γ for t ∈ ]−ε, 0[ (in
particular, x(0) is nondiffractive) and x(t) ∈ Ω for t ∈ ]0, ε[. If x(0) ∈ ∂Γ, then we
assume x(t) ∈ Γ for t ∈ ]−ε, 0[ and x(t) /∈ Γ for t ∈ ]0, ε[. If x(T ′) ∈ Γ, then we assume
x(t) ∈ Γ for t ∈ ]T ′, T ′ + ε[ (in particular, x(T ′) is nondiffractive) and x(t) ∈ Ω for
t ∈ ]T ′−ε, T ′[. If x(T ′) ∈ ∂Γ, then we assume x(t) ∈ Γ for t ∈ ]T ′, T ′ +ε[ and x(t) /∈ Γ
for t ∈ ]T ′ − ε, T ′[.

For each such x, we set f(x(t), J(ẋ(t))) = t for t ∈ [0, T ′], where the equality is
understood as valid for derivatives from both sides at points of reflection except when
t ∈ {0, T ′}. G(T,Γ) ensures that T ′ < T and therefore this f satisfies (i). By defi-
nition, this f also satisfies (ii), (iii), and (iv) (with equalities instead of inequalities).
The only points of S∗Ω̄ where f has not been yet defined are the points ρ ∈ S∗Γ̄ such
that the generalized bicharacteristic through ρ at time t is a gliding bicharacteristic
in Gg in both one-sided deleted neighborhoods of t. We set f = 0 at those points and
recall that strictly gliding points of Γ have this property. The uniqueness property of
generalized geodesics ensures that f is well defined.

The continuity of compressed generalized bicharacteristics ensures that f is con-
tinuous outside Γ̄ and at hyperbolic points of Γ. For any point ρ ∈ Gg ∩ S∗Γ and
for δ > 0 small enough, there is a neighborhood of ρ in Γ included in the union of
Gg ∩ S∗Γ and hyperbolic points of Γ which are endpoints of a generalized geodesic x
of the preceding type with T ′ < δ. Therefore f is also continuous at strictly gliding
points.

4. Linear escape functions and the multiplier methods. We discuss the
geometrical relationship between the geodesics condition and the situations where
first order multiplier techniques apply (cf. the books [21] and [15]). In the framework
of escape functions, first order multipliers correspond to escape functions f which are
linear with respect to the cotangent variable ξ.
Definition 4.1. Consider a time T > 0 and an open region Γ ⊂ ∂Ω. The escape

vector field condition EV (T,Γ) holds if there is a C1 section L of T Ω̄ such that
(i) for all x ∈ Ω̄, |L(x)|x � T/2;
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(ii) for all (x,X) ∈ SΩ̄, 〈DXL,X〉x � 1;
(iii) {x ∈ ∂Ω | 〈L(x), ν〉x > 0} ⊂ Γ.

The escape potential condition EP(T,Γ) holds if there is a function ϕ ∈ C2(Ω̄) such
that

(i) for all x ∈ Ω̄, |dϕ|x � T/2;
(ii) for all (x,X) ∈ SΩ̄, Hessϕ(X,X) := Ddϕ(X,X) � 1;
(iii) {x ∈ ∂Ω | ∂ϕ∂ν (x) := dxϕ(ν) > 0} ⊂ Γ.

When Ω is a submanifold of R
n with the Euclidean metric, the radial condition

R(T,Γ) holds if there is a point x0 ∈ R
n such that

(i) R(x0) := sup{|x− x0| |x ∈ Ω̄} � T/2;
(ii) {x ∈ ∂Ω | 〈x− x0, ν〉 > 0} ⊂ Γ.

Thanks to Theorem 3.2, a straightforward computation is enough to prove that
these conditions are sufficient to apply the microlocal results surveyed in section 1.2.

Proposition 4.2. R(T,Γ)⇒ EP(T,Γ)⇒ EV (T,Γ)⇒ E(T,Γ).

Proof. To prove R(T,Γ) ⇒ EP(T,Γ), take ϕ(x) = |x − x0|2/2: dϕ(x) = x − x0

and Hessϕ is the identity matrix. To prove EP(T,Γ) ⇒ EV (T,Γ), take L(x) = ∇ϕ:
〈L,X〉x = dϕ(X) and 〈DXL,X〉x = Hessϕ(X,X).

Assume EV (T,Γ) holds. To prove E(T,Γ), take f(x, ξ) = ξ(L(x)) and, since
this function is C1, use Remark 2 after Definition 3.1. For all (x, ξ) ∈ S∗Ω̄, we
have |f(x, ξ)| � |ξ|x|L(x)|x = |L(x)|x � T/2, so that (i) in E(T,Γ) holds. Let
t �→ x(t) be a geodesic curve, i.e., Dẋẋ = 0. Since D is the Levi–Civita connection
of g, DX〈L,X〉x = 〈DXL,X〉x + 〈L,DXX〉x. In particular, Dẋf = 〈DẋL, ẋ〉x �
1, so that (ii) in E(T,Γ) holds. By linearity, f(x, ξ − 2ξ(ν)J−1(ν)) − f(x, ξ) =
−2ξ(ν)f(x, J−1(ν)) = −2ξ(ν)〈L(x), ν〉x < 0 whenever ξ(ν) > 0, so that (iii) in
E(T,Γ) holds.

The radial multiplier was introduced by Morawetz in [28] for exterior problems
and condition R(T,Γ) is a variation on her “star-shape” condition. Using this ra-
dial multiplier, sufficient conditions for exact controllability from the boundary were
obtained by Chen (1979) and Ho (1986) and condition R(T,Γ) is their sharper form
due to Lions (cf. [21] and [15]). The condition EP(T,Γ) is adapted from the convex
function condition of Morawetz in [29] for exterior problems with Euclidean metric.
There are interesting remarks about global conditions for the existence of potential
escape functions in [33]. The condition EV (T,Γ) is adapted from the condition of
Strauss in [32] for exterior problems with Euclidean metric. The condition of Strauss
was used by Chen in [9] for boundary stabilization with Euclidean metric, and later
by Lagnese in [16] with less restrictive assumptions and hints for general metrics.

Remark 4. In [33], Yao introduced a “Riemann multiplier method” under the
condition EV (T,Γ) for smooth ∂Ω and g. His Theorem 1.1 proves exact control-
lability under these geometric and regularity assumptions, i.e., for all (u0, u1) ∈
L2(Ω) × H−1(Ω) there is a control function v ∈ L2(R × Γ) such that the solution
of the problem, ✷gu = 0 in ]0, T [×Ω, u = 0 on ]0, T [× (∂Ω \ Γ), u = v on ]0, T [× Γ,
with Cauchy data (u, ∂tu) = (u0, u1) at t = 0, satisfies u = ∂tu = 0 at t = T . Under
the stronger geometric condition EP(T,Γ), the same result has been proved in [17]
when ∂Ω is only C2 and the operator is ∂2

t −
∑
i,j a

i,j(x)∂xj∂xi + lower order terms,

where ai,j are C1 coefficients and lower order terms have bounded coefficients. On the
contrary, it is mentioned on p. 19 of [17] that “in its original form [33], this approach
also cannot handle genuine first-order” terms. On the one hand, Theorem 3.2 and
Proposition 4.2 prove that Yao’s theorem is still true with first order terms, thanks
to [2]. On the other hand, Theorem 3.2 and Proposition 4.2 prove that Yao’s theorem
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is still true when ∂Ω is of class C3 and g is of class C2, thanks to [4]. Moreover, the
microlocal measure method of [4] extends to lower order terms (cf. [8]) and should
allow us to prove Yao’s theorem with lower order terms when ∂Ω is of class C3 and
g is of class C2.

Remark 5. If L2 is a vector field satisfying 〈DXL2, X〉x = 0 for all (x,X) ∈ SΩ̄,
then adding L2 to an escape vector field L1 modifies the boundary condition (iii)
without modifying the interior condition (ii). Hence the escape vector field L = L1+L2

yields control regions which could not be obtained with L1. The “multipliers with
rotated direction” introduced by Osses (e.g., L(x) = M(θ)(x − x0) where M(θ) is
the rotation of angle θ) build on this remark: in [31], Ω is a submanifold of R

n

with the Euclidean metric, L1(x) = x − x0, and L2(x) = A(x − x0), where A is a
skew-symmetric matrix.

Remark 6. In [22], Liu introduced a “piecewise multiplier method” for internal
exact controllability in a bounded connected open M ⊂ R

n with Euclidean metric,
with Dirichlet condition on ∂M , from a control region G ⊂ M under the following
geometric condition: there exist open sets Ωj ⊂ M and points xj ∈ R

n (for j =
1, . . . , J) such that Ωi ∩ Ωj = ∅ for i �= j and G ⊃ M ∩ Nε[(∪jΓj) ∪ (M \ ∪jΩj)]
for some ε > 0, where Nε[S] denotes an ε neighborhood of the set S and Γj =
{x ∈ ∂Ωj | 〈x− xj , νj〉 > 0}, where νj is the unit exterior normal to ∂Ωj . Remark 4.7
of [22] calls for a geometric argument proving that this condition implies the geodesics
condition when ∂M is sufficiently smooth. Let Ω denote a connected component of
M̄ \G and Γ = ∂Ω∩∂G ⊂ ∂G∩M . It is included in one of the Ωj only and we fix this j
henceforth. (Tj , ∂Ωj ∩G) satisfies the radial condition in Ωj with Tj = 2R(xj) since
Γj ⊂ G, hence it also satisfies the geodesics condition. Every generalized geodesic
of length Tj starting in Ω̄ and reflecting on ∂Ω \ ∂G ⊂ ∂Ωj \ (∂Ωj ∩ G) ⊂ ∂M
reaches ∂Ωj ∩ G and a fortiori escapes Ω̄ through Γ. Therefore every generalized
geodesics in M̄ of length greater than maxj Tj reaches G, which proves that the
condition of Liu implies the geodesics condition. (No regularity of ∂Ωj outside ∂M is
needed since it carries no boundary condition.) In the framework of escape functions,
the corresponding idea is to consider f(x, ξ) = (x −∑j 1Ωj (x)xj).ξ on S∗(M̄ \ G).
Note that the lower bound maxj 2R(xj) on the control time could be improved by the
microlocal results, e.g., if Ω1 is star-shaped with respect to x1, then we can replace
2R(x1) by the length diam(Ω̄1) of the longest segment in Ω̄1. (diam(Ω̄1) � 2R(x1)
always holds, and the equality does not hold for any x1 in Figure 5.1, for example.)

Remark 7. In [23], Martinez introduced the “almost star-shaped” condition for
boundary stabilization when g is the Euclidean metric: there exists φ ∈ C2(Ω̄) and
c > 0 such that ∆φ = 1 in Ω; λ1(x) � c in Ω; ∂φ

∂ν (x) � 0 on ∂Ω \ Γ; ∂φ
∂ν (x) � 0 on Γ,

where λ1(x) is the smallest eigenvalue of the matrix Hessφ of second order partial
derivatives of φ. Taking ϕ = φ/c, the second and third requirements are equivalent to
the requirements (ii) and (iii) in condition EP(T,Γ). This emphasizes that the first
requirement ∆φ = 1 is only useful for explicit computation of the stabilization rate.

5. Linear escape functions are too special. We describe situations where
linear escape functions (and therefore all the multiplier methods discussed in section 4)
are too special to reach the optimal control time (cf. Proposition 5.1 and Figure 5.1)
or the optimal control region (cf. Proposition 5.2 and Figure 5.2). This contrasts with
the context of exterior problems where the geodesics condition implies the existence
of a linear escape function in dimension n = 2 (cf. section 4 of [30]).

Let diamg(Ω̄) denote the supremum of the lengths of the geodesics in Ω. A
diameter of Ω̄ is a geodesic in Ω whose closure is of length diamg(Ω̄). (If diamg(Ω̄) is
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Fig. 5.1. Segments are diameters of
length T . By Proposition 5.1, G(T, ∂Ω) holds
but EV (T, ∂Ω) does not. Here g is Euclidean.
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Fig. 5.2. Segments explain why G(T,Γ)
holds for some T . EV (T,Γ) does not hold for
any T by Proposition 5.2, with J = 3 and g Eu-
clidean.

finite, then there are no closed geodesics and there is at least one diameter of Ω̄ since
it is compact.)
Proposition 5.1. If there exist y ∈ Ω̄ and two distinct geodesics in Ω of length

T > 0 issued from y, then EV (T, ∂Ω) does not hold. In particular, if T = diamg(Ω̄)
and there are two diameters of Ω̄ issued from the same point y ∈ Ω̄, then E(T, ∂Ω)
holds but EV (T, ∂Ω) does not.

Proof. Assume L satisfies EV (T, ∂Ω). Denote by [0, T ] � t �→ x(t) the geodesic
from x(0) = z to x(T ) = y. By (ii), 〈L(y), ẋ(T )〉y − 〈L(z), ẋ(0)〉z � T , and by (i),
we know that 〈L(y), ẋ(T )〉y � |L(y)|y � T/2 and −〈L(z), ẋ(0)〉z � |L(z)|z � T/2,
so that 〈L(y), ẋ(T )〉y = |L(y)|y = T/2 = |L(z)|z = −〈L(z), ẋ(T )〉z and therefore
L(y) = ẋ(T ). The same argument with the other geodesic proves both geodesics have
the direction L(y) at y which contradicts that they are distinct.
Proposition 5.2. If there are J geodesics in Ω which are issued from points

xj ∈ ∂Ω \ Γ (j = 1, . . . , J) with directions normal to the boundary and cross at
y ∈ Ω with directions ξj such that the complementary set in TyΩ of their polar cone
C = {Y ∈ TyΩ | ∀j, ξj(Y ) � 0} is empty, then EV (T,Γ) does not hold for any T > 0.

Proof. Assume L satisfies EV (T,Γ). Denote by [0, T ] � t → x(t) the geodesic
from x(0) = xj to x(T ) = y. Since ẋ(0) = −ν(xj), (iii) implies 〈L(xj), ẋ(0)〉xj � 0.
But by (ii), we know that 〈L(y), ẋ(T )〉y > 〈L(xj), ẋ(0)〉xj , so that 〈L(y), ξj〉y > 0
since ẋ(T ) = ξj . Repeating the argument with all j proves L(y) /∈ C, which is a
contradiction.

Note that the proofs of these propositions also apply to escape functions of the
escape vector field form f(x, ξ) = ξ(L(x)) without assuming any regularity on the
section L of T Ω̄. Also note that Figure 5.1 is a counterexample to the conjecture
(cf. Remark 3.2 in [17]) that the control time in the escape potential condition is
optimal.

Remark 8. In the introduction to chapter four of their book Controllability of
Evolution Equations [10], Fursikov and Imanuvilov mention “a very interesting (and
still open to the author’s knowledge) question: Does the fulfillment of non-trapping
condition imply the existence of pseudoconvex function?”. Proposition 5.2 and Fig-
ure 5.2 answer this question negatively once it is translated in our terms. On the one
hand, the nontrapping condition for the control region Γ means that the geodesics
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condition G(T,Γ) holds for some time T > 0, or equivalently (cf. Theorem 3.2) that
E(T,Γ) holds for some time T > 0. On the other hand, the existence of a pseudo-
convex function adapted to Γ means that the escape potential condition EP(T,Γ)
holds for some time T > 0, and implies (cf. Proposition 4.2) that EV (T,Γ) holds
for some time T > 0. Therefore, the situation described in Figure 5.2 (a disk with
some disconnected boundary control region as in Figure 4, p. 1031, of [2]) satisfies the
nontrapping condition but precludes any pseudoconvex function.
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for stimulating discussions. N. Burq triggered this investigation by mentioning the
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ematics and its applications. This is certainly the case for optimization theory, including calculus
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1. Introduction. The need to verify positive definiteness or semidefiniteness of
(real) polynomial homogeneous forms arises in numerous fields of mathematics and its
applications. In particular, this is certainly the case for optimization theory, including
calculus of variations and optimal control. For instance, second-order optimality
conditions are normally stated in terms of positive semidefiniteness or definiteness of
particular quadratic forms. Moreover, sometimes one has to deal with forms of an
even degree higher than 2. As will be shown below, for the quadratic form arising
from calculus of variations on an infinite time interval, the analysis can be reduced to
the corresponding considerations for the particular finite-dimensional form of degree 4.
Efficient methods intended to obtain a reliable answer to the question about the “sign”
for a given form are of doubtless theoretical and practical interest. Unfortunately, in
most cases it is not possible to find the answer by analytical considerations only, and
numerical methods have to be involved.

Procedures for verification of second-order optimality conditions can be used as
(part of) a stopping test in numerical optimization, but this seems too costly. Prob-
ably, main applications of such procedures arise in the context of “postoptimal anal-
ysis”: they can help when one needs to check whether the candidate for a solution
(found by analytic or numerical methods) is an actual solution.

Note that in the optimal control theory, it is often needed to test the definiteness of
a certain quadratic form on a subspace rather than on the entire space. However, this
problem can be reduced to the case of the entire space using, e.g., Finsler’s theorem [3],
or by “reducing” the Hessian. In [8, 9, 17], the definiteness of the reduced Hessian for
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discretized optimal control problems is analyzed by means of numerical approximation
of the eigenvalues.

First let us give a few words about basic assumptions and notation. All matrices
in this paper are supposed to have real entries. LetM(n, m) stand for the set of all
n×m matrices, let S(n) stand for the set of symmetric n× n matrices, and let A(n)
stand for the set of antisymmetric n×nmatrices. A real homogeneous form defined on
a linear space is referred to as positively semidefinite if it is nonnegative everywhere on
this space, and positively definite if it is positive everywhere on this space except the
zero point. Recall that finite-dimensional quadratic forms are generated by symmetric
matrices, and it is commonly accepted to use the term “positive definiteness” or
“semidefiniteness” with respect to such matrices rather than only with respect to
forms. In what follows, we use the same symbol for the (polynomial homogeneous)
form of degree l and the corresponding symmetric l-linear form.

In what follows (excluding the last section), we basically consider two main ob-
jects. The first one is an abstract continuous quadratic form q : U → R defined
on a Hilbert space U . Let Q : U → U stand for the (uniquely defined) continuous
self-adjoint linear operator such that

q(u) = 〈Qu, u〉, u ∈ U.(1.1)

We assume that q is at least weakly lower semicontinuous. In particular, special
attention will be paid to the case of finite-dimensional U .

Another object is the quadratic form arising from optimal control, and it is much
more specific:

q(u) =

∫ 1

0

(〈A(t)u(t), u(t)〉(1.2)

+ 2〈C(t)u(t), x(t)〉+ 〈B(t)x(t), x(t)〉) dt, u ∈ U,

with U = L2, r[0, 1]. Here x(·) ∈W 1
2,m[0, 1] is defined by the initial value problem

ẋ = G(t)x+ Γ(t)u(t), x(0) = 0.(1.3)

The matrix functions A : [0, 1] → S(r), B : [0, 1] → S(m), C : [0, 1] → M(m, r),
G : [0, 1] → M(m, m), and Γ : [0, 1] → M(m, r) are supposed to be piecewise
continuous. It is well known that this quadratic form is weakly lower semicontinuous
on U if and only if the so-called Legendre condition is satisfied, i.e., the matrix A(t)
is positively semidefinite for almost all t ∈ [0, 1]. The Legendre condition is also
necessary (but certainly not sufficient) for q to have a finite index and, in particular, to
be positively semidefinite (for the detailed discussion of these questions, see [13, 15]).

For the quadratic form q on the finite-dimensional U , several traditional algebraic
approaches to the problem under consideration are well known, such as the Sylvester
criterion, numerical methods for computing or approximating the eigenvalues of Q,
etc. However, these approaches are too costly, especially when the dimension n is
large. Note that the methods for computing the eigenvalues are iterative by nature
[21], while the methods we discuss below are finite.

Apparently, the most effective known finite method appropriate for our purpose is
the Cholesky (square root) algorithm. For the case of positively definite q, application
of this algorithm to Q results in its LLT decomposition, and this requires approxi-
mately n3/6 multiplication and the same number of additions [21]. (Here L is a lower
triangular matrix with positive diagonal entries.) If q is not positively definite, then
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the algorithm will be terminated at some stage because of the necessity to compute
the square root from a negative number or to divide by zero.

However, all approaches mentioned above are completely finite-dimensional and,
in particular, cannot be applied directly to the quadratic form q given by (1.2), (1.3).
Moreover, these approaches assume that the matrix Q is given explicitly, while deter-
mination of this matrix can be a rather complicated problem. In particular, this is
normally the case for finite-dimensional approximations of q given by (1.2), (1.3) (see
section 4). Finally, all these approaches are applicable to quadratic forms only and
cannot be applied to forms of an even degree higher than 2.

The alternative approach (free from the disadvantages mentioned above) can be
based on optimization methods for the following problem:

minimize q(u)
subject to u ∈ D,

(1.4)

where D ⊂ U is a closed convex set such that 0 ∈ intD or is the boundary of such a
set. For instance, one can take the unite ball or the unite sphere in U as D. With this
choice, each local solution to problem (1.4) is actually global. Hence, every method
which is (globally) convergent to a (local) minimizer will yield the needed result. Note,
however, that for forms of degree 4, this is already not the case: such a form can have
local minimizers on the unite sphere with positive values of q and, at the same time,
can be even not positively semidefinite; see section 5.

This observation is one of the reasons why we propose in this paper to take
D = U , i.e., to consider the unconstrained optimization problem, q being the objective
function. Note that if q is not positively semidefinite, then problem (1.4) with D = U
has no (even local) solutions. Nevertheless, as we are going to show, application of the
standard unconstrained optimization technique can help to distinguish between cases
when q is positively definite, positively semidefinite, or not positively semidefinite,
and can do so quite effectively.

Specifically, we consider the steepest descent and the conjugate gradient methods
(see, e.g., [18, 20, 12, 5, 7]), though there is a wide range of different unconstrained
optimization algorithms applicable in this context. Note that both methods use gra-
dients of q at particular points only, and computation of Q is not necessary for that
purpose. Moreover, both methods are correctly defined in the infinite-dimensional
setting, at least formally, and both are applicable not only to quadratic forms. Both
methods will be described in the next section in the framework of the basic algorithm.

2. The basic algorithm. We introduce our basic algorithm for an abstract
quadratic form q : U → R, U being a Hilbert space. The initial step 0 of the algorithm
consists of fixing two index sets K1 and K2 such that K1 ∪K2 = {0, 1, . . .}, 0 ∈ K1,
with an arbitrary initial point u0 ∈ U \ {0}.

After k steps of the algorithm, the following elements are supposed to be com-
puted: u0, u1, . . . , uk ∈ U and g0, g1, . . . , gk−1 ∈ U , and if k ≥ 1, then

q(ui) > 0, q(gi) > 0 ∀ i = 0, 1, . . . , k − 1,(2.1)

and

〈q′(uk), gk−1〉 = 0.(2.2)

Step k+1. Compute q(uk). If q(uk) < 0, then stop. Let q(uk) ≥ 0, then compute
q′(uk) = 2Quk. If q′(uk) = 0, then stop. Let q′(uk) �= 0. If q(uk) = 0, then stop. Let



1570 ARAM V. ARUTYUNOV AND ALEXEY F. IZMAILOV

q(uk) > 0, then compute

gk = −q′(uk) + βk−1g
k−1,(2.3)

where

βk−1 =

{
0 if k ∈ K1,
〈q′(gk−1), q′(uk)〉

2q(gk−1)
if k ∈ K2.

(2.4)

(It is known that βk−1 > 0 for k ∈ K2; see (5.4) below.) Compute q(g
k). If q(gk) ≤ 0,

then stop. Let q(gk) > 0, then take

uk+1 = uk + αkg
k,

with αk ≥ 0 being defined by the condition
q(uk + αkg

k) = min
α≥0

q(uk + αgk),

and proceed to the next step.
Note that αk can be given by the explicit formula

αk = −〈q
′(uk), gk〉
2q(gk)

> 0,

where the inequality follows from (2.2) and (2.3), as 〈q′(uk), gk〉 = 〈q′(uk), −q′(uk)+
βk−1g

k−1〉 = −‖q′(uk)‖2.
Obviously, if K2 = ∅, then the underlying iteration of the algorithm described

above is the pure steepest descent iteration. We refer to this variant as the SD-
algorithm. In the opposite caseK1 = {0}, the algorithm is based on the pure conjugate
gradient method. This variant will be referred to as the CG-algorithm.

Suppose that the algorithm was stopped at step k + 1. The following cases are
possible. If q(uk) < 0, then q is not positively semidefinite. Let q(uk) ≥ 0. If q′(uk) =
0, then with uk = 0 we claim q to be positively definite, and with uk �= 0 we claim it to
be positively semidefinite but not definite. Let q′(uk) �= 0. If q(uk) = 0, then q is not
positively semidefinite. Indeed, in this case q(uk+αgk) = q(gk)α2−‖q′(uk)‖2α < 0 for
each α > 0 sufficiently small. Let q(uk) > 0. If q(gk) ≤ 0, then again q is not positively
semidefinite. Indeed, if q(gk) = 0, then q(uk + αgk) = −‖q′(uk)‖2α + q(xk) < 0 for
each α > 0 sufficiently large.

To apply the algorithm to quadratic form q given by (1.2), (1.3), one needs a
formula for the gradient of q. This formula is well known [18, 20]; we provide it here
for the sake of completeness:

q′(u) = 2(A(·)u(·) + (C(·))Tx(·))− (Γ(·))Tψ(·), u ∈ U,

where ψ(·) ∈W 1
2,m[0, 1] is defined by the initial value problem

ψ̇ = −(G(t))Tψ + 2(C(t)u(t) +B(t)x(t)), ψ(1) = 0.(2.5)

Of course, implementation of the algorithm in this case will require solving the (linear)
initial value problems (1.3) and (2.5) and evaluating the integrals (in particular, in
(1.2)) on each step. This can hardly be done precisely, except in the most simple
cases; hence, some approximation technique will have to be involved.
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We proceed with justification of the algorithm. In the rest of this section, we
deal mainly with the SD-algorithm, even though some results for the basic algorithm
will also be provided. In the next section, the CG-algorithm will be justified in the
finite-dimensional setting, and computational results will be reported. Section 4 is
devoted to the application of the algorithms to quadratic form defined by (1.2), (1.3)
via the direct finite-dimensional approximation. Finally, in section 5, we present the
application of the basic algorithm to forms of degree 4.

The following lemma will play a central role in justification of the algorithm.
Lemma 2.1. Let q : U → R be a continuous quadratic form, and let Q : U → U

be the continuous self-adjoint linear operator associated with q according to (1.1).
Assume that q is weakly lower semicontinuous and is not positively semidefinite. Then

(i) Q has an eigenvalue λ < 0 with the associated eigenelement v ∈ U ;
(ii) if the basic algorithm was not stopped on the first k steps, then there exist

numbers µi > 0 such that

〈ui, v〉 =

1 + i∑

j=1

µj


 〈u0, v〉 ∀ i = 1, . . . , k.

Proof. Consider the optimization problem

minimize q(u)
subject to ‖u‖2 ≤ 1.

By weak semicontinuity of q, this problem has a solution v. Obviously, ‖v‖ = 1, and
from the Lagrange principle it easily follows that v is an eigenelement of Q associated
with some eigenvalue λ. Moreover,

0 > q(v) = 〈Qv, v〉 = λ‖v‖2 = λ.

This completes the proof of (i).
Assertion (ii) can be proved by induction. For k = 1,

〈u1, ξ〉 = 〈u0 − 2α0Qu0, v〉 = 〈u0, v〉 − 2α0λ〈u0, v〉 = (1 + µ1)〈u0, v〉
with µ1 = −2α0λ > 0.

Suppose that (ii) holds true ∀ k ∈ {1, . . . , s} with some s, and let k = s+1. Then
there exist numbers µi > 0 such that

〈ui, v〉 =

1 + i∑

j=1

µj


 〈u0, v〉 ∀ i = 1, . . . , s.

Hence

〈us+1, v〉 = 〈us + αsg
s, v〉

=

〈
us + αs

(
−2Qus +

βs−1

αs−1
(us − us−1)

)
, v

〉

= 〈us, v〉 − 2αsλ〈us, v〉+ αs
αs−1

βs−1(〈us, v〉 − 〈us−1, v〉)

= (1− 2αsλ)
(
1 +

s∑
i=1

µi

)
〈u0, v〉+ αs

αs−1
βs−1µs〈u0, v〉

=

(
1 +

s+1∑
i=1

µi

)
〈u0, v〉,
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where

µs+1 = −2αsλ
(
1 +

s∑
i=1

µi

)
+

αs
αs−1

βs−1µs > 0.

This completes the proof of (ii).
The following theorem shows that if q is not positively semidefinite, this fact will

be identified by the SD-algorithm after a finite number of steps for any choice of the
initial point u0, except the points from a proper closed linear subspace in U .

Theorem 2.2. Let q : U → R be a continuous quadratic form, and let Q : U → U
be the continuous self-adjoint linear operator associated with q according to (1.1).
Then

(i) for every u0 ∈ U , either the SD-algorithm will be stopped on some step or
{q′(uk)} = {2Quk} → 0 as k →∞;

(ii) if q is weakly lower semicontinuous and is not positively semidefinite, then
the set of initial points u0 ∈ U—such that either the basic algorithm will be stopped
at some point in kerQ or {Quk} → 0 as k → ∞—is contained in a proper closed
linear subspace in U . Specifically, this subspace is the orthogonal complement to the
subspace spanned by the eigenelements of Q associated with the negative eigenvalues.

Proof. Let us prove (i). Suppose that the algorithm generates the infinite sequence
{uk}. Then

q(uk)− q(uk+1) ≥ ‖Q‖−1‖Quk‖2 ∀ k = 0, 1, . . . .(2.6)

This estimate for the steepest descent trajectories is well known. (One should take
into account that q′(·) is Lipschitz-continuous on U with the constant 2‖Q‖.) On the
other hand, this estimate can be easily derived by direct evaluation.

The sequence {q(uk)} is bounded from below, because in the opposite case there
would exist some k such that q(uk) < 0, and the algorithm would be stopped. Hence,
taking into account the monotonicity of this sequence, it converges, and from (2.6) it
follows that {Quk} → 0 as k →∞.

To prove (ii), suppose again that the algorithm generates the infinite sequence
{uk}. Fix an arbitrary eigenelement v ∈ U of Q associated with a negative eigenvalue
λ (which exists, according to assertion (i) of Lemma 2.1). According to assertion (ii)
of Lemma 2.1, there exist numbers νk ≥ 0 such that

〈Quk, v〉 = λ〈uk, v〉 = λ(1 + νk)〈u0, v〉 ∀ k = 0, 1, . . . .
Hence, {Quk} → 0 as k →∞ takes place if and only if 〈u0, v〉 = 0. This is certainly
also true for the case when Qxk = 0 for some k. This completes the proof.

When q is positively definite or semidefinite, the behavior of the steepest descent
is well known (see, e.g., [18, 20, 12, 5, 7]). First, let U be finite-dimensional. If q is
positively definite, then ∀u0 ∈ U the SD-algorithm will either be stopped on some
step at the zero point 0 or will generate the sequence {uk} such that {uk} → 0 as
k → ∞, and the rate of convergence is geometric. If q is positively semidefinite but
not definite, then ∀u0 ∈ U the SD-algorithm will either be stopped on some step at
the point ū = ū(u0), which is a unique intersection point of kerQ and u0 + (kerQ)⊥,
or generate the sequence {uk} converging geometrically to ū. Here we take into
account the following observation: q′(u) = 2Qu ∈ (kerQ)⊥ ∀u ∈ U ; hence, all
the points generated by the SD-algorithm (and the CG-algorithm as well) belong to
u0 + (kerQ)⊥. Note that ū(u0) = 0 if and only if u0 ∈ (kerQ)⊥; hence, the set of



POSITIVE DEFINITENESS OF FORMS 1573

“bad” initial points u0 (such that the SD-algorithm will incorrectly identify the form
q as positively definite) is a proper subspace in U .

Hence, in the finite-dimensional setting, the SD-algorithm can be used for our
purposes as soon as it is equipped with an additional procedure intended to analyze
convergence properties of the sequence being generated. The main problem here is
that the number of steps needed to identify the absence of positive semidefiniteness
can be arbitrary large, even though it is always finite. This problem will be resolved
in the next section in the context of the CG-algorithm.

In the case of infinite-dimensional U , the situation is somewhat more involved, of
course. Namely, for our justification above to hold true, one should additionally as-
sume the following property: if q is positively semidefinite, then it is strongly positive
on (kerQ)⊥, i.e., there exists γ > 0 such that

q(u) ≥ γ‖u‖2 ∀u ∈ (kerQ)⊥.
Without this condition, the behavior of the algorithm in the positively semidefinite
case can be quite unpredictable.

3. Conjugate gradient method for the finite-dimensional case. In this
section, let U = Rn. Let q : Rn → R be an abstract quadratic form, and let Q ∈ S(n)
be the matrix associated with q. The following simple lemma will be needed.

Lemma 3.1. Let q : Rn → R be a quadratic form. If q is nonnegative everywhere
on a linear manifold (plane) V ⊂ Rn, then it is positively semidefinite on spanV .

Proof. For an arbitrary integer s, fix arbitrary points v1, . . . , vs ∈ V and numbers
λ1, . . . , λs such that µ =

∑s
i=1 λi �= 0. Since

∑s
i=1(λi/µ)v

i ∈ V (as V is a linear
manifold), for the point u =

∑s
i=1 λiv

i we have

q(u) = q

(
µ

s∑
i=1

λi
µ
vi

)
= µ2q

(
s∑
i=1

λi
µ
vi

)
≥ 0.

Obviously, spanV is the closure of the set of such points u. Positive semidefiniteness
of q on spanV follows now from continuity of q.

Recall that the index ind q of a quadratic form q is the maximum dimension of
a subspace in Rn such that q is negatively definite on this subspace. The equiva-
lent definition for ind q is the minimum codimension of the subspace such that q is
positively semidefinite on this subspace.

The following theorem coupled with assertion (ii) of Theorem 2.2 shows that if
q is not positively semidefinite, this fact will be identified by the CG-algorithm after
not more than n− ind q + 1 steps for almost any choice of the initial point u0.

Theorem 3.2. Let q : Rn → R be a quadratic form. Then for every u0 ∈ U , the
CG-algorithm will be stopped not later than on step n− ind q + 1.

Proof. Suppose that the CG-algorithm was not stopped on the first k steps,
and the elements u0, u1, . . . , uk ∈ Rn and g0, g1, . . . , gk−1 ∈ Rn were generated,
satisfying (2.1). We can consider the case k ≥ 2 only, because n− ind q+1 ≥ 1, and if
the inequality holds as equality, the algorithm would necessarily be stopped on step 1.

By the standard argument for the conjugate gradient method for quadratic func-
tions (see, e.g., [20]), the following can be shown: the vectors g0, g1, . . . , gk−1 are
linearly independent, and for the linear manifolds Vi = u0 + span{g0, g1, . . . , gi−1}
it holds that

q(ui) = min
u∈Vi

q(u) ∀ i = 1, . . . , k.
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In particular, according to (2.1),

0 < q(uk−1) = min
u∈Vk−1

q(u);(3.1)

hence

q(u) > 0 ∀u ∈ Vk−1.

By Lemma 3.1, it follows that

q(u) ≥ 0 ∀x ∈ spanVk−1.(3.2)

Suppose for a moment that u0 ∈ span{g0, g1, . . . , gk−2}. Then Vk−1 is a lin-
ear subspace in Rn, which is in contradiction with (3.1), as q(0) = 0. Hence,
u0 �∈ span{g0, g1, . . . , gk−2}, and dim spanVk−1 = k. Thus, according to (3.2), q
is positively semidefinite on the subspace of dimension k. Hence, k ≤ n− ind q. This
completes the proof.

For example, if n = 2, then the absence of positive semidefiniteness will be iden-
tified by the algorithm for almost any initial point after, at worst, one step (actually,
this will be the steepest descent step). This assertion can also be easily verified
directly, using the canonical representation of a quadratic form.

If q is positively definite, then ∀u0 ∈ Rn the CG-algorithm will be stopped at 0
not later than on step n+1, and positive definiteness will be identified. If q is positively
semidefinite but not definite, then ∀u0 ∈ U the CG-algorithm will be stopped at ū
not later than on step n (recall that ū = ū(u0) is the intersection point of kerQ and
u0+(kerQ)⊥). Similarly to the SD-algorithm, the set of “bad” initial points u0 (such
that the CG-algorithm will incorrectly identify the form q as positively definite) is
contained in a proper subspace (kerQ)⊥ in Rn.

Summarizing, we have proved that for almost any choice of the initial point u0,
the CG-algorithm will completely identify the presence or the absence of positive
definiteness or semidefiniteness of a quadratic form after not more than n steps. (If
the algorithm was not stopped after n steps, it is not necessary to make step n + 1,
as by necessity xn = 0, and the form should be claimed positively definite.)

Note that the conjugate gradient step is not much more costly than the steepest
descent step, and the CG-algorithm seems to be definitely preferable when compared
with the SD-algorithm, at least in the finite-dimensional setting.

Another point is that our justification of the algorithm deals with the idealized
situation: it is assumed that all the computations are precise. The question about
the influence of computational errors and perturbations of another kind is beyond
the scope of this paper, even though this question is certainly important, especially
for those forms which are degenerate or nearly degenerate. Here, we mention only
that in our computational experiments, any failure evidently caused by inexactness
of computations never occurred.

We complete this section with a brief report on computational experiments which
were carried out in order to confirm the theoretically justified properties of the algo-
rithm and to compare the two variants of the algorithm with each other and with the
Cholesky method (for the latter, the standard realization in Maple V Release 5 was
used).

Dimensions in the experiments being reported were up to n = 100. The following
scheme was used to generate the matrix Q ∈ S(n): Q = STQ̂S, where Q̂ is a fixed
diagonal n × n matrix, and S is a nondegenerate n × n matrix. The effectiveness of
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our algorithms can depend drastically on the choice of the initial point, which is why
a comparison of our algorithms with the Cholesky method has restricted reliability,
of course.

In our experiments, various Q̂ were taken, though special attention was paid
to matrices with a small number of negative diagonal elements. The algorithms
were multiply started with random initial points, and the average characteristics
were computed. General conclusions are as follows. For any dimension, both the
SD-algorithm and the CG-algorithm are quite competitive in comparison with the
Cholesky method, and the CG-algorithm normally requires substantially less CPU
time than the Cholesky method. This can be explained by the observation that in
large dimensions, the number of steps required by the CG-algorithm is normally sub-
stantially less than one guaranteed by the estimate in Theorem 3.2. Moreover, the
number of steps needed for the SD-algorithm is usually also substantially less than n.
This compensates the necessity of two costly matrix-vector multiplications on every
step of the algorithm.

As an example, let us report the typical results for one of the series of experiments.
One diagonal entry of Q̂ was taken equal to −1, and the others were taken as random
numbers in (0, 10). Clearly, this choice of Q̂ is quite unfavorable for identification of
the absence of positive semidefiniteness. Next, S was taken as the random matrix with
entries in (−1, 1). These two objects where used to compute Q as suggested above,
and the algorithms were multiply started with random initial points with components
in (−10, 10). For n = 100, the minimum number of steps for the SD-algorithm is 17,
the maximum number is 93, and the average number is 46. For the CG-algorithm,
the corresponding numbers are 8, 24, and 14.

4. Finite-dimensional approximation for the optimal control quadratic
form. In this section, we deal with the quadratic form q : U → R given by (1.2),
(1.3), U = L2, r[0, 1]. Recall that the matrix functions A(·), B(·), C(·), G(·), and Γ(·)
in (1.2), (1.3) are supposed to be piecewise continuous.

Consider the simplest finite-dimensional approximation of q. Namely, for every
integer n, take a mesh {tn0 , tn1 , . . . , tnn} on [0, 1] such that 0 = tn0 < tn1 < . . . tnn = 1
and the following hypotheses are satisfied:

(H1) All points of discontinuity of A(·), B(·), C(·), G(·), and Γ(·) belong to the
mesh for n sufficiently large. (We emphasize that this requirement is the only
serious reason why we consider the mesh which is not uniform, in general.)

(H2) There exists a constant c > 0 such that ∆n ≤ c/n ∀n, where

∆n = max
i=0, 1, ..., n−1

∆ni , ∆ni = tni+1 − tni , i = 0, 1, . . . , n− 1.

Take Un =
∏n−1
i=0 Rr, Xn =

∏n
i=0 R

m, qn : Un → R,

qn(u
n) =

n−1∑
i=0

∆ni (〈Ani uni , uni 〉(4.1)

+ 2〈Cn
i u

n
i , x

n
i 〉+ 〈Bn

i x
n
i , x

n
i 〉), un = (un0 , u

n
1 , . . . , u

n
n−1) ∈ Un,

where xn = (xn0 , x
n
1 , . . . , x

n
n) ∈ Xn is defined by the discrete initial value problem

given by the explicit Euler scheme for (1.3):

xni+1 = xni +∆
n
i (G

n
i x

n
i + Γ

n
i u

n
i ), i = 0, 1, . . . , n− 1, xn0 = 0.(4.2)
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Here Ani = A(tni + 0), i = 0, 1, . . . , n − 1, and the same notation is used for matrix
functions B(·), C(·), G(·), and Γ(·).

Theorem 4.1. Under the assumptions imposed, the following hold:
(i) If q is not positively semidefinite, then qn is not positively semidefinite for

every n sufficiently large.
(ii) If q is strongly positive, i.e., there exists γ > 0 such that

q(u) ≥ γ‖u‖2 ∀u ∈ U,(4.3)

then for any ε > 0,

qn(u
n) ≥ (γ − ε)‖un‖2 ∀un ∈ Un

for every n sufficiently large.
As is well known, condition (4.3) is equivalent to saying that q is positively defi-

nite, and the strengthened Legendre condition is satisfied, i.e., there exists γ̃ > 0 such
that the matrix A(t)− γ̃E is positively semidefinite for almost all t ∈ [0, 1].

Results similar to Theorem 4.1 can be found in the literature (see, e.g., [11, 16]).
In particular, Lemma 11 in [11] contains our assertion (ii), assuming the continuity
of the matrix functions involved. However, we include the proof for the sake of
completeness.

Proof. In order to prove (i), let us fix u ∈ U such that q(u) < 0. Since continuous
functions comprise a dense subset in L2, r[0, 1] (see [19]) and q is continuous, we can
suppose u(·) to be continuous on [0, 1].

Next, let x(·) ∈ W 1
2,m[0, 1] be defined by (1.3) for the given u(·). For each n,

take un = (u(tn0 ), u(t
n
1 ), . . . , u(t

n
n−1)) ∈ Un and define xn ∈ Xn according to (4.2).

Clearly, it suffices to show that

qn(u
n)→ q(u) as n→∞.

According to (1.2) and (4.1), ∀n

qn(u
n)− q(u) =

n−1∑
i=0

∫ tni+1

tn
i

(〈Ani uni , uni 〉 − 〈A(t)u(t), u(t)〉
+ 2(〈Cn

i u
n
i , x

n
i 〉 − 〈C(t)u(t), x(t)〉)

+ 〈Bn
i x

n
i , x

n
i 〉 − 〈B(t)x(t), x(t)〉

)
dt

=

n−1∑
i=0

∫ tni+1

tn
i

(〈Ani u(tni ), u(tni )〉 − 〈A(t)u(t), u(t)〉
+ 2(〈Cn

i u(t
n
i ), x(t

n
i )〉 − 〈C(t)u(t), x(t)〉)

+ 〈Bn
i x(t

n
i ), x(t

n
i )〉 − 〈B(t)x(t), x(t)〉

)
dt

+

n−1∑
i=0

∫ tni+1

tn
i

(
2〈Cn

i u(t
n
i ), x

n
i − x(tni )〉

+ 〈Bn
i x

n
i , x

n
i 〉 − 〈Bn

i x(t
n
i ), x(t

n
i )〉
)
dt.

From continuity of u(·) and x(·), piecewise continuity of A(·), B(·), C(·), the definition
of Ani , B

n
i , C

n
i , i = 0, 1, . . . , n, and the hypotheses (H1) and (H2), it follows that
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the first sum on the right-hand side of the last equality tends to zero as n → ∞. To
prove that the second sum also tends to zero, it suffices to show that

max
i=0, 1, ..., n

|xni − x(tni )| → 0 as n→∞.

But under our assumptions, this is the standard convergence result for the Euler
scheme (see, e.g., [11] or [20, p. 358]). This completes the proof of (i).

We proceed with the proof of (ii). Suppose that for every n sufficiently large, there
exists un ∈ Un \ {0} such that qn(un) ≤ 0. We may suppose that un is normalized in
the following sense:

‖un‖ =
√√√√n−1∑

i=0

∆ni |uni |2 = 1.

Define the piecewise constant function un(·) : [0, 1]→ Rr, un(t) = uni , t ∈ [tni , tni+1),
i = 0, 1, . . . , n− 1. Note that

∆ni |uni | =
√
∆ni

√
∆ni |uni |2 ≤

√
∆ni ‖un‖ =

√
∆n ∀ i = 0, 1, . . . , n− 1,(4.4)

n−1∑
i=0

∆ni |uni | = ‖un‖L1 ≤ ‖un‖L2 = ‖un‖ = 1.(4.5)

In particular, from (4.3) it follows that q(un) ≥ γ. Now it is clear that in order to
come to a contradiction, it suffices to show that

qn(u
n)− q(un)→ 0 as n→∞.

For every n sufficiently large, let xn ∈ Xn be defined according to (4.2), and let
xn(·) ∈W 1

2,m[0, 1] be defined by (1.3) for u(·) = un(·). Let Ḡ = supt∈[0, 1] ‖G(t)‖, Γ̄ =
supt∈[0, 1] ‖Γ(t)‖. Now, from the Gronwall inequality (in its discrete and continuous
forms; see [20]), hypothesis (H2), and (4.5), the following estimates can be derived:

max
i=0, 1, ..., n

|xni | ≤ Γ̄ecḠ, ‖xn‖C ≤ Γ̄eḠ.(4.6)

According to (1.2) and (4.1), for every n sufficiently large

qn(u
n)− q(un) =

n−1∑
i=0

∫ tni+1

tn
i

(〈Ani uni , uni 〉 − 〈A(t)un(t), un(t)〉
+ 2(〈Cn

i u
n
i , x

n
i 〉 − 〈C(t)un(t), xn(t)〉)

+ 〈Bn
i x

n
i , x

n
i 〉 − 〈B(t)xn(t), xn(t)〉

)
dt

=

n−1∑
i=0

∫ tni+1

tn
i

(〈(Ani −A(t))uni , u
n
i 〉

+ 2〈(Cn
i − C(t))uni , x

n
i 〉+ 〈(Bn

i −B(t))xni , x
n
i 〉
)
dt

+

n−1∑
i=0

∫ tni+1

tn
i

(〈C(t)uni , xni − xn(t)〉

+ 〈B(t)(xni − xn(t)), x
n
i 〉+ 〈B(t)xn(t), xni − xn(t)〉

)
dt.
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The first sum on the right-hand side of the last equality tends to zero as n → ∞.
This follows from piecewise continuity of A(·), B(·), C(·), the definition of Ani , Bn

i ,
Cn
i , i = 0, 1, . . . , n, hypotheses (H1) and (H2), and (4.5), (4.6). To prove that the
second sum also tends to zero, it suffices to show that

max
i=0, 1, ..., n−1

max
t∈[tn

i
, tn

i+1
]
|xni − xn(t)| → 0 as n→∞.

For every n sufficiently large, and for arbitrary t ∈ [tni , tni+1), i = 0, 1, . . . , n− 1,
set ϕn(t) = |xni − xn(t)|. Then, according to (1.3) and (4.2),

ϕn(t) ≤
i−1∑
j=0

∫ tnj+1

tn
j

(|Gn
j x

n
j −G(τ)xn(τ)|+ |Γnj unj − Γ(τ)unj |) dτ

+

∫ t

tn
i

(|G(τ)xn(τ)|+ |Γ(τ)uni |) dτ

≤
i−1∑
j=0

∫ tnj+1

tn
j

(‖Gn
j −G(τ)‖|xnj |+ ‖Γnj − Γ(τ)‖|unj |) dτ

+

i−1∑
j=0

∫ tnj+1

tn
j

Ḡϕn(τ) dτ +

∫ t

tn
i

Ḡϕn(τ) dτ

+

∫ t

tn
i

(Ḡ|xni |+ Γ̄|uni |) dτ

≤
i−1∑
j=0

|xnj |
∫ tnj+1

tn
j

‖Gn
j −G(τ)‖ dτ +

i−1∑
j=0

|unj |
∫ tnj+1

tn
j

‖Γnj − Γ(τ)‖ dτ

+∆ni (Ḡ|xni |+ Γ̄|uni |) +
∫ t

0

Ḡϕn(τ) dτ

= ωn +

∫ t

0

Ḡϕn(τ) dτ,

where ωn → 0 as n → ∞. This follows from piecewise continuity of G(·), Γ(·), the
definition of Gn

i , Γ
n
i , i = 0, 1, . . . , n, hypotheses (H1) and (H2), and (4.4)–(4.6). By

the Gronwall inequality,

ϕn(t) ≤ ωne
Ḡ → 0 as n→∞.

This completes the proof of (ii).
By Theorem 4.1, the question about the “sign” of q is reduced to the same question

for the finite-dimensional form qn for n sufficiently large. More precisely, by analyzing
the “sign” of qn, one can distinguish between the case when q is strongly positive and
the case when it is not positively semidefinite.

For finite-dimensional qn, the SD-algorithm and the CG-algorithm are applicable.
For that purpose, a formula for the gradient of qn is needed:

(q′n(u
n))i = 2∆

n
i (A

n
i u

n
i +(C

n
i )

Txni )−∆ni (Γni )Tψni+1, i = 0, 1, . . . , n−1, un ∈ Un,

where ψn ∈ Xn is defined by the discrete initial value problem

ψni−1 = ψni +∆
n
i−1(G

n
i−1)

Tψni −2∆ni (Cn
i−1u

n
i−1+Bn

i−1x
n
i−1), i = 1, . . . , n−1, ψnn = 0
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(see [18, 20]). Again we emphasize that we do not need the symmetric matrix associ-
ated with qn and that it would by quite costly to compute this matrix, especially for
large n.

5. Forms of degree 4. Consider the following quadratic form, arising in various
applications, particularly in the study of degenerate quadratic forms in calculus of
variations [22, 1]: q :W → R,

q(x) =

∫ +∞

0

(〈Aẋ(t), ẋ(t)〉+ 2〈Cẋ(t), x(t)〉+ 〈Bx(t), x(t)〉) dt, x ∈W,

where W is the space comprised by absolutely continuous functions x(·) : [0, +∞)→
Rm such that x(·) and ẋ(·) belong to L2,m[0, 1], A, B ∈ S(m), C ∈ A(m), and A
is assumed to be positively semidefinite (Legendre condition). It follows from the
results in [22, 1, 10] that q is positively definite (semidefinite) if and only if the form
q̃ : U → R is positively definite (semidefinite), where U = Rm ×Rm,

q̃(u) = q̃A,B,C(u)(5.1)

= (〈Aξ, ξ〉+ 〈Aη, η〉)(〈Bξ, ξ〉+ 〈Bη, η〉)
−4〈Cξ, η〉2, u = (ξ, η) ∈ U.

Thus, the question about the “sign” for the infinite-dimensional quadratic form q is
reduced to the same question for the form q̃ of degree 4 on the space U of dimension
2m.

Clearly, for q̃ to be positively definite, the matrices A and B should be positively
definite. For m = 2, the simple criterion for positive definiteness of q̃ is known.

Proposition 5.1. If m = 2 and matrices A and B are positively definite, then
the form q̃ defined by (5.1) is positively semidefinite if and only if

4 detC ≤ detA
(
tr
√

A−1/2BA−1/2
)2

,(5.2)

and positively definite if and only if (5.2) holds as a strict inequality.
Inequality (5.2) can be rewritten in the form

4detC ≤ detB tr(B−1A) + 2
√
detAdetB.

Note that the right-hand side of the last inequality is actually symmetric with re-
spect to A and B, as for 2 × 2 matrices the following holds: detB tr(B−1A) =
detA tr(A−1B).

The proof of Proposition 5.1 is quite long and involved; see [2]. Moreover, to our
knowledge, for m > 2 no analytical criterion is available. That is why it would be
desirable to develop a numerical technique appropriate for identification of positive
definiteness of q̃.

From now on, let U = Rn, and let q : Rn → R be a (polynomial homogeneous)
form of degree 4. The basic algorithm introduced in section 2 can be formally extended
to this case with the following natural modifications.

First, q′(·) is now defined by the relation
〈q′(u), v〉 = 4q(u, u, u, v), u, v ∈ Rn.

Note that normally it is not that difficult to obtain explicit formulas for the gradient
and higher differentials of a given form.
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Next, if the algorithm will be stopped on step k + 1 because of the equality
q′(uk) = 0, one should be more careful with conclusions (the same is true for the
case when {q′(uk)} → 0 as k → ∞). For example, the form q : R2 → R, q(u) =
u1u2(u1 − u2)

2 is not positively semidefinite, though at the same time all the points
on the line u1 = u2 are zeros and local minimizers for q. If u

k belongs to this line,
then q′(uk) = 0, and the algorithm will be stopped with the wrong conclusion that
q is positively semidefinite. Moreover, it is easy to see that in this example, the set
of initial points such that the algorithm will be stopped on the mentioned line after
one step is quite wide. The need to consider such situations can be avoided by the
assumption that q is nondegenerate, namely,

q′(u) �= 0 ∀u ∈ Rn \ {0}.(5.3)

Note that nondegeneracy is a generic condition in the corresponding space of forms;
this follows from the parametric transversality theorem [14]. On the other hand, if
one assumes this condition to be satisfied, then the cases of semidefiniteness, but not
definiteness, are immediately excluded from consideration. Under the nondegeneracy
condition, equality q′(uk) = 0 means that uk = 0 (respectively, relation {q′(uk)} → 0
as k → ∞ means that {uk} → 0 as k → ∞), and q is declared positively definite in
this case.

If k ∈ K2, then one of the following formulas can be used for βk−1 instead of
(2.4):

βk−1 =
〈q′(uk), q′(uk)− q′(uk−1)〉

|q′(uk−1)|2 ,

βk−1 =
|q′(uk)|2
|q′(uk−1)|2 ,(5.4)

or

βk−1 =
〈q′′(uk)gk−1, q′(uk)〉
〈q′′(uk)gk−1, gk−1〉 .

(In the quadratic case, all these representations of βk−1 are actually the same and are
equivalent to (2.4).) Furthermore, in the literature on the conjugate gradient method,
it is usually recommended to take an infinite K1 in the nonquadratic case. The most
customary choice is K1 = {0, n, 2n, . . .}, i.e., the method is “renewed” after every n
steps, and we accept this choice in what follows.

If q(uk) > 0, q(gk) = 0, the algorithm should not be stopped automatically on
step k + 1. One should compute

c2 =
1

3!
(q′′′(uk))(gk, gk, gk) = 4q(uk, gk, gk, gk).

If c2 �= 0, then q is not positively semidefinite, because q(xk + αgk) is a polynomial
of degree 3 with respect to α, and it always takes negative values. Let c2 = 0, then
compute

c1 =
1

2!
〈q′′(uk)gk, gk〉 = 6q(uk, uk, gk, gk).
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If c1 ≤ 0, then q is evidently not positively semidefinite. On the other hand, if c1 > 0,
then the algorithm should not be stopped. Note that in this case,

αk =
c0
2c1

,

where

c0 = −〈q′(uk), gk〉 = |q′(uk)|2.
Finally, if q(uk) > 0, q(gk) > 0, then αk should be computed as the nonnegative

minimizer to the polynomial

q(uk + αgk) = q(gk)α4 + c2α
3 + c1α

2 + c0α+ q(uk)

of degree 4.
Of course, the algorithm can be applied to forms of an even degree higher than

4, but in that case, in order to compute the step-length parameter, one would have
to deal with the polynomial equation of degree 5 or higher.

A form q of degree 4 satisfying the nondegeneracy condition (5.3) has a unique
critical point at zero. This point is a global minimizer, provided q is positively definite,
and is not even a local minimizer, provided q is not positively definite. Because of
this observation, one can expect the reasonable behavior of the algorithm.

Note that the gradient of a nontrivial form of degree 4 cannot be Lipschitzian on
the entire space. This fact results in additional difficulties in theoretical analysis of
the algorithm for such forms; for instance, results from [6] cannot be applied here.

Theorem 5.2. Let q : Rn → R be a nondegenerate form of degree 4.
Then for every u0 ∈ Rn, either the SD-algorithm will be stopped on some step or

{uk} → 0 as k →∞.
Proof. Suppose that the SD-algorithm generates an infinite sequence {uk}. If

this sequence is bounded, then from the results in [4] it follows that {q′(uk)} → 0 as
k →∞. Taking into account nondegeneracy of q, {uk} converges to zero.

Thus, we have only to prove that {uk} is bounded. Suppose that this is not the
case, i.e., there exists a subsequence {uki} such that |uki | → ∞ as i→∞.

From (5.3) it follows that

|q′(u)| ≥ γ|u|3 ∀u ∈ Rn

with some γ > 0. It is easy to see now that there exist constants C1, C2, C3 > 0 such
that ∀α ≥ 0

q(uki − αq′(uki)) ≤ q(uki)− |q′(uki)|2α+ C1|uki |8α2(5.5)

+ C2|uki |10α3 + C3|uki |12α4

≤ |uki |4
(
q(uki)

|uki |4 − γ2α|uki |2 + C1α
2|uki |4

+ C2α
3|uki |6 + C3α

4|uki |8
)
.

Choose t > 0 satisfying the inequality −γ2 + C1t + C2t
2 + C3t

3 < 0, and set α =
t|uki |−2; then

q(uki − αq′(uki)) ≤ |uki |4
(
q(uki)

|uki |4 − γ2t+ C1t
2 + C2t

3 + C3t
4

)
< 0(5.6)
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for i large enough. Here we take into account that |uki |−4q(uki) → 0 as i → ∞, be-
cause {q(uk)} is a bounded sequence (as it is monotonically decreasing and composed
of positive numbers).

Inequality (5.6) means that the algorithm would be stopped on step ki+1, which
contradicts the assumption that {uk} is infinite. This completes the proof.

Unfortunately, for the CG-algorithm, a complete analogue of Theorem 5.2 was
not proved by the authors. It can be shown that for a nondegenerate form, if the CG-
algorithm generates an infinite sequence, then the latter can have a limit point only
at zero. This follows from results in [4], and it is important here that the algorithm
is “renewed” on steps kn, k = 0, 1, . . . . Moreover, the argument used in the proof of
Theorem 5.2 actually shows that {ukn} → 0 as k →∞, and hence 0 is indeed a limit
point for {uk}. At the same time, we cannot prove that the entire sequence {uk} is
bounded, even though in our computational experiments, the case of unbounded {uk}
has never occurred.

Generally speaking, the advantages of the conjugate gradient method in the non-
quadratic case are normally theoretically justified only locally, near the solution being
sought. Reasonable global behavior (which is of primary interest in the context of this
paper) is usually ensured precisely by the “renewing” gradient steps; see [4]. That
is why theoretical questions are discussed below mainly for the SD-algorithm, even
though, by the evidence of computational experiments, the CG-algorithm is preferable
here, as well as in the quadratic case.

Unfortunately, however, even for the SD-algorithm, in the nonquadratic case one
cannot guarantee the correct identification with almost any choice of the initial point.
If q is positively definite, then for every initial point, the SD-algorithm will either be
stopped at zero on some step or generate the sequence convergent to zero. Note that
the rate of convergence is normally rather low, as zero is a degenerate critical point
for q. However, if q is not positively semidefinite, computational experiments show
that there can exist “wide” sets (of nonzero measure) such that starting from them,
the SD-algorithm will generate a sequence convergent to zero, and the form will be
incorrectly identified as positively definite. We proceed with the example for which
this “bad” behavior can be detected.

First, consider the form q : R2 → R, q(u) = (au2
1+u2

2)(u
2
1−u2

2), with 0 < a < 1/3.
This form is not positively semidefinite. Note that for problem (1.4) with D equal to
the unit sphere inR2, the points ±(1, 0) are local solutions, and the value of q at these
points is positive (recall that this is not possible for quadratic forms). To construct
the example we need, let us now increase the dimension by 1, and take q : R3 → R,
q(u) = (au2

1 + u2
2 + bu2

3)(u
2
1 − u2

2 + u2
3), with b > 0 being large enough. Geometrical

analysis of level surfaces for this form, combined with numerical experiments, shows
that the point (1, 0, 0), e.g., belongs to the closure of an open set of “bad” initial
points.

According to the discussion above, the estimates for sets of appropriate initial
points can be of interest. The next proposition contains the estimates for the sets
of initial points such that the SD-algorithm will give a correct answer not later than
steps 2 and 3, respectively. Set

θ = max
t≥0

t(γ2 − C1t− C2t
2 − C3t

3) > 0,

where γ, C1, C2, and C3 are taken from the proof of Theorem 5.2.
Proposition 5.3. Assume that a nondegenerate form q : Rn → R of degree 4 is

not positively semidefinite.
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Then for every u0 ∈ Rn \ {0} such that

q(u0/|u0|) + 32θϕ2(u0)(1− 8ϕ2(u0)) < 2θ(5.7)

with

ϕ(u0) =
q(u0/|u0|)
|q′(u0/|u0|)| ,

the SD-algorithm will be stopped at some point distinct from zero not later than step
3. In particular, if

q(u0/|u0|) < θ,(5.8)

then the algorithm will be stopped not later than step 2.
It is easy to see that the second term on the left-hand side of (5.7) is less than or

equal to θ, and hence (5.8) implies (5.7).
Proof. Suppose that the SD-algorithm was not stopped on the first k + 1 steps,

and the following points were generated: u0, u1, . . . , uk ∈ Rn (distinct from zero)
and uk+1 ∈ Rn. Replace uki in (5.5) by xi and set t = α|uki |2; then

q(ui+1) = min
α≥0

q(ui − αq′(ui))

≤ q(ui)− |ui|4max
t≥0

(γ2t− C1t
2 − C2t

3 − C3t
4)

= q(ui)− θ|ui|4
≤ · · ·

≤ q(u0)− θ

i∑
j=0

|uj |4 ∀ i = 0, 1, . . . , k.

Hence, provided

q(u0)− θ

k∑
i=0

|ui|4 < 0,(5.9)

on step k + 2 the algorithm will necessarily be stopped at a point distinct from zero.
In particular, under the condition (5.8), (5.9) holds with k = 0; i.e., the algorithm
will be stopped on step 2, unless it was stopped on step 1.

Furthermore,

|ui+1|2 = |ui|2 − 2〈q′(ui), ui〉αi + |q′(ui)|2α2
i

= |ui|2 − 8q(ui)αi + |q′(ui)|2α2
i

≥ |ui|2 −max
α≥0

α(8q(ui)− |q′(ui)|2α)

= |ui|2 − 16
(

q(ui)

|q′(ui)|
)2

∀ i = 0, 1, . . . , k.

It follows that

q(u0)− θ(|u0|4 + |u1|4) ≤ q(u0)− θ

(
2|u0|4 − 32

(
q(u0)

|q′(u0)|
)2

|u0|2

+ 162
(

q(u0)

|q′(u0)|
)4
)

= q(u0) + 32θϕ2(u0)(1− 8ϕ2(u0))|u0|4 − 2θ|u0|4,
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and hence (5.7) implies (5.9) with k = 1; i.e., the algorithm will be stopped on step
3, unless it was stopped earlier. This completes the proof.

In several series of computational experiments, the forms of the following type
were considered:

q(u) = 〈Q1u, u〉〈Q2u, u〉, u ∈ Rn,

where matrices Q1, Q2 ∈ S(n) were generated in the same manner as Q in the exper-
iments with quadratic forms. For instance, let Q̂1 and Q̂2 be diagonal n×n matrices.
Let the diagonal entries of the first matrix be random numbers in (0, 10), and for the
second matrix, let it be the same, except for one diagonal entry equal to −1. Fix
random n×n matrices S1 and S2 with entries in (−1, 1), and then set Q1 = ST

1 Q̂1S1,
Q2 = ST

2 Q̂2S2. Further, the algorithms were multiply started with random initial
points with components in (−1, 1). For n = 10, computations were terminated if the
number of steps exceeded 50. (It was considered that in this case, the algorithm failed
to identify the absence of positive semidefiniteness.) Typical results are as follows.
The SD-algorithm failed for 36% of trials, and when it did not fail, identification
required 8 steps on average. For the CG-algorithm, the last number is 11, though
the algorithm failed for 8% of trials only. Thus, the CG-algorithm turns out to be
more robust with respect to the choice of the initial point, though the required num-
ber of steps for the CG-algorithm can even exceed the corresponding number for the
SD-algorithm.

Recall the form q̃ = q̃A,B,C : U → R defined in (5.1). Let P(m) ⊂ S(m) stand
for the cone of positively definite matrices, equipped with the metrics induced from
S(m).

Proposition 5.4. The set of triples (A, B, C) ∈ P(m) × P(m) × A(m) such
that the form q̃A,B,C of degree 4 defined in (5.1) is nondegenerate is open and dense
in P(m)× P(m)×A(m).

The proof easily follows from the parametric transversality theorem [14].
In the computational experiments, matrices A, B, and C were generated, e.g., in

the following way. Fix diagonal m×m matrices Â and B̂, the diagonal entries of both
being random numbers in (0, 10), except for the first two diagonal entries. Let the
first two diagonal entries of Â be equal to 1, and let the corresponding diagonal entries
b1 and b2 of B̂ be considered as parameters. Further, define a matrix Ĉ ∈ A(m) such
that the upper left 2× 2 submatrix of Ĉ is(

0 c
−c 0

)
,

c being a parameter. Fix random m×m matrix S with elements in (−1, 1), and set
A = STÂS, B = STB̂S, C = STĈS. Choosing parameters b1, b2, and c in accordance
with criteria from Proposition 5.1, one can obtain the form with the known answer
to the question about the “sign” for any m.

The algorithms were multiply started with random initial points with components
in (−1, 1). For n = 10, computations were terminated if the number of steps exceeded
100. Let us report the typical results for b1 = 1, b2 = 4, c = 2 (the form is not
positively semidefinite with this choice). The SD-algorithm failed for 35% of trials,
and when it did not fail, identification required 28 steps on average. The CG-algorithm
never failed, and the required number of steps was 16 on average. Note that for the
same b1 and b2, and c = 1.6, the SD-algorithm failed for 87% of trials, though the
CG-algorithm failed for 3% of trials only. (The form is still not positively semidefinite
with this choice, but c is close to the “critical” value 1.5.)
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IDENTIFICATION FOR CONTROL: OPTIMAL INPUT DESIGN
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Abstract. Parameter identification experiments deliver an identified model together with an
ellipsoidal uncertainty region in parameter space. The objective of robust controller design is thus
to stabilize all plants in the identified uncertainty region. The subject of the present contribution is
to design an identification experiment such that the worst-case ν-gap over all plants in the resulting
uncertainty region between the identified plant and plants in this region is as small as possible.
The experiment design is performed via input power spectrum optimization. Two cost functions
are investigated, which represent different levels of trade-off between accuracy and computational
complexity. It is shown that the input optimization problem with respect to these cost functions is
amenable to standard numerical algorithms used in convex analysis.

Key words. identification for control, worst-case ν-gap, parametric uncertainty region
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1. Introduction. This paper continues the line of research that aims at con-
necting prediction error identification methods with robust control theory ([2], [3],
[4], [10]). Subject to investigation are discrete time SISO real-rational stable linear
time invariant (LTI) plants, which are to be identified in open loop within an autore-
gressive with exogeneous input (ARX) model structure. We assume the true plant to
lie in the model set. Hence the model error is determined only by the covariance of
the estimated parameter vector.

Since the aim of the identification experiment is control design, it is desirable
to obtain an uncertainty region with good stability robustness properties. By this
is meant that the set of controllers that stabilize all models in the uncertainty set
should be as large as possible. A suitable measure of robust stability that allows
one to connect the “size” of an uncertainty set with a set of robustly stabilizing
controllers is the worst-case ν-gap δWC(Ĝ,D) introduced in [10]. It is the supremum
of the Vinnicombe ν-gap (see, e.g., [28]) between the identified model Ĝ and all plants
in the uncertainty set D. Specifically, if δWC(Ĝ,D) = β, then all controllers C that
stabilize the model Ĝ with a stability margin bĜ,C > β stabilize all plants in D.

In previous papers ([3], [4], [10]) a special type of uncertainty set D of trans-
fer functions, which emerges from prediction error identification experiments, was
described and investigated. It is given by an ellipsoid in parameter space and is
determined by the covariance matrix of the parameter vector and the prespecified
confidence level. The latter is defined to be the probability with which the true plant
is lying inside the considered uncertainty set.
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The goal of this paper is to minimize the worst-case ν-gap of such uncertainty
regions D by choosing a suitable input u(t) for the identification experiment. To
restrict the class of admissible inputs we assume the total input energy to be bounded.

The problem setting of experiment design first arose in statistics and was exten-
sively studied throughout the last century. Important results were obtained by Kiefer
[15], Kiefer and Wolfowitz [16], Fedorov (e.g., [9]), Mehra (e.g., [20], [21]), Goodwin,
Zarrop, and Payne [12], Zarrop [30], and others.

We shall adopt the most common viewpoint and study input optimization in the
frequency domain, i.e., optimize the input power spectrum with respect to a cost
function that depends on the average per data sample information matrix M̄ of the
experiment. This matrix is defined as the limit of the ratio between the information
matrix and the number of data as the number of data tends to infinity (see, e.g.,
[30]). For typical number of data, this leads to a sufficiently good approximation of
the optimal input. The latter can be obtained only by computationally expensive time
domain optimization (see, e.g., [11], [23], [26], [6]). Thus we will essentially regard the
average information matrix instead of the input power spectrum as the quantity that
is going to be optimized. Once the optimal average information matrix, i.e., the one
that minimizes the considered cost function, is found, we proceed by construction of
an input power spectrum that produces this information matrix.

For different classes of cost functions iterative procedures were designed to find
the optimal input power spectrum up to a prespecified precision. Most common cost
functions are ln(det M̄−1) (D-optimality), trM̄−1 (A-optimality), trWM̄−1, where
W ≥ 0 (L-optimality), λmax(M̄

−1) (E-optimality), Φs = (p−1trM̄−s)1/s, where p
is the dimension of the parameter vector and s = 0, 1, . . . ,∞ (Φ-optimality). All
mentioned cost functions except Φ∞ = λmax(M̄

−1) depend analytically on the entries
of M̄ and Kiefer–Wolfowitz theory can effectively be applied to them (see [15]). All
above-mentioned criteria are convex and monotonic with respect to M̄ (see [30, p.
39]).

In this paper, we optimize the input power spectrum with respect to the worst-
case ν-gap of the uncertainty region D. This is a nonstandard cost function, which is
nonsmooth and thus more difficult to treat than the common above-mentioned crite-
ria. We shall also introduce another cost function, which approximates the worst-case
ν-gap, but is somewhat simpler. Nevertheless, both cost functions are compound cri-
teria (see [15, section 4G]) and application of Kiefer–Wolfowitz theory does not make
them more tractable. However, the proposed criteria satisfy the natural condition of
monotonicity with respect to M̄ , as well as the condition of quasiconvexity, which is
slightly weaker than convexity.

It follows from a classical result on trigonometric moment spaces (see [14, Chap-
ter VI, Theorem 4.1]) that the set of possible average information matrices M̄ can
be represented as the feasible set of a linear matrix inequality (LMI). For a survey
on LMIs, see, e.g., [5]. Since the worst-case ν-gap and the other proposed criteria
are quasiconvex with respect to the input power spectrum, the apparatus of convex
analysis and the theory of LMIs can be applied to solve this optimization problem.
For recent results in convex optimization, see, e.g., [22].

In the last years several authors successfully treated input design problems aris-
ing in identification for control with convex optimization methods. In [18], the input
spectrum for an open loop identification experiment was designed to minimize the
closed loop system performance. By a Taylor series truncation, the cost function re-
duced to the weighted-trace criterion (L-optimality). However, the input spectra
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were restricted to those which can be realized by white noise filtered through a
finite impulse response (FIR) filter. An LMI description of the corresponding set
of information matrices can be derived from the positive-real lemma [5], [29].

In this paper we optimize over the whole set of nonnegative input power spectra.
It can be shown [30] that under the assumptions made above the corresponding set of
admissible average information matrices, over which the optimization is performed,
represents a moment space of a trigonometric Tchebycheff system. The foundations of
the theory of moment spaces are classical. In the last century important contributions
were made by Krein (see, e.g., [17]), Karlin and Shapley [13], and others. For a
comprehensive treatment, see the textbook [14] by Karlin and Studden. It follows from
a well-known fact of Tchebycheff system theory (see, e.g., [14]) that any admissible
average information matrix M̄ can be obtained by applying an input with discrete
power spectrum, and that there exist admissible M̄ which can be realized only by
discrete power spectra. A restatement of this assertion is provided in Theorem 3.6 in
this paper. In view of this, we propose an algorithm that yields optimal input power
spectra which are discrete. Given the result just quoted, this is in no way a restriction.
There are different ways to choose an input sequence with a desired power spectrum.
We can choose the input, e.g., as a multisine function. However, in many cases one
could use also binary signals (see, e.g., [30, p. 29]) or other functions.

Another approach, which leads to a suboptimal discrete input power spectrum,
was proposed by Schoukens, Guillaume, and Pintelon [25] and van den Eijnde and
Schoukens [27]. Here a finite subset of frequencies is prespecified and the optimal
input power spectrum is sought within this subset. Advantages of this suboptimal
method are less computational effort and an easier way to generate an input signal
with the desired spectrum.

Let us also mention the paper [7], where identification in the ν-gap metric was
treated outside the context of input design. The identification of a model was per-
formed from a set of frequency response measurements in a way that aimed at mini-
mizing the ν-gap between the true plant and the model.

We stress that the assumption of an ARX model structure and an input en-
ergy constraint are in no way restrictive. The ideas and methods proposed in the
present paper easily carry over to other model structures and to input power or out-
put power/energy constraints.

The remainder of the paper is structured as follows. In the next section the
considered identification problem as well as the cost functions will be formally de-
fined. In section 3 we will show that the set over which the optimization takes place is
amenable to an LMI formulation. In section 4 we prove that the optimization problem
is quasiconvex. In section 5 we show how to construct cutting planes to the different
cost functions. Sections 3 to 5 are the key parts of the paper. The results obtained
therein allow the problem to be treated with standard convex analysis methods. In
section 6 we provide some results that are useful for designing stopping criteria for
iterative search algorithms and quality assessment of the solution. Since the opti-
mization takes place in an abstract parameter space, it is necessary to convert values
in this space into power spectra and input sequences. This task is accomplished in
section 7. In section 8 we present a simulation example, which demonstrates the
superiority of the proposed cost functions over the classical design criteria D- and
E-optimality. Finally, in section 9 we draw some conclusions.

2. Problem setting. Let us consider an ARX model structure

y(t)+a1y(t− 1)+ · · ·+anay(t−na) = b1u(t−nk)+ · · ·+ bnb
u(t−nk−nb+1)+ e(t),
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where u(t) is the input signal, y(t) is the output signal, both one-dimensional, θ =
(a1, . . . , ana , b1, . . . , bnb

)T is the parameter vector, and e(t) is normally distributed
white noise with covariance λ0. Let us assume that the true system dynamics can be
described within this structure and corresponds to a parameter value θ = θ0. Assume
further that the true system is stable. Denote by z−1 the delay operator. Then we
can write

y = z−nk+1 b1z
−1 + · · ·+ bnb

z−nb

1 + a1z−1 + · · ·+ anaz
−na

u+
1

1 + a1z−1 + · · ·+ anaz
−na

e

= z−nk+1B(θ)

A(θ)
u+

1

A(θ)
e = G(θ)u+

1

A(θ)
e,

where A,B are obviously defined polynomials in the delay operator with coefficients
depending on the parameter vector. Note that by our stability assumption A has no
zeros on the unit circle and hence |A|2 is strictly positive there.

Suppose an identification experiment with input (u(1), . . . , u(N)) is performed,
leading to an observed output (y(1), . . . , y(N)) with N data samples, where u(t) is a
realization of a quasi-stationary stochastic process with power spectrum Φu. Suppose
a parameter estimate θ̂ is obtained by least squares prediction error minimization.
Then it is well known (see [19]) that the estimate θ̂ is asymptotically unbiased as N →
∞ and its covariance for large N is given by E(θ0− θ̂)(θ0− θ̂)T ≈ λ0

N (ĒψψT )−1, where
ψT = (−z−1y, . . . ,−z−nay, z−nku, . . . , z−nk−nb+1u) is the gradient of the predictor
with respect to θ at θ = θ0. The power spectrum of ψ is given by

Φψ =




−z−nk B
A

...
−z−na−nk+1B

A
z−nk

...
z−nk−nb+1




Φu

(
−znk

B̄

Ā
· · · znk+nb−1

)
+




− z−1

A
...

− z−na

A
0
...
0



λ0

(
− z
Ā
· · · 0

)
.

This yields the following asymptotic expression for the parameter covariance:

E(θ0 − θ̂)(θ0 − θ̂)T ≈



N

2π

∫ π

−π

1

|A|2



Φu

λ0




−z−1B
...

−z−naB
z−1A

...
z−nbA







−z−1B
...

−z−naB
z−1A

...
z−nbA




∗

+




−z−1

...
−z−na

0
...
0







−z−1

...
−z−na

0
...
0




∗

dω




−1

=M−1,

where z = ejω. The inverse of the parameter covariance matrix is the Fisher informa-
tion matrix. Let us denote the asymptotic expression for the information matrix by
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M and the average information matrix per data sample (see, e.g., [30, p. 24]) by M̄ ,
M̄ = 1

NM . We obtain

M̄ =
1

2π

∫ π

−π

Φu

λ0|A|2




|B|2



1 · · · zna−1

...
. . .

...
z−na+1 · · · 1


 −BĀ




1 · · · znb−1

...
. . .

...
z−na+1 · · · znb−na




−B̄A




1 · · · zna−1

...
. . .

...
z−nb+1 · · · zna−nb


 |A|2




1 · · · znb−1

...
. . .

...
z−nb+1 · · · 1







+
1

|A|2




1 · · · zna−1

...
. . .

...
z−na+1 · · · 1

0

0 0


 dω.(2.1)

Note that in the expansion of M̄ , we have A = A(θ0), B = B(θ0). Since the

parameter estimate θ̂ is asymptotically normally distributed (see [19]), we can assume,
following [10], that the true parameter vector θ0 lies with a prespecified probability
α ∈ (0, 1) in the uncertainty ellipsoid

U =

{
θ| N

χ2
na+nb

(α)
(θ − θ̂)T M̄(θ − θ̂) < 1

}
,(2.2)

where χ2
l is the χ2 probability distribution with l degrees of freedom.

The uncertainty ellipsoid U corresponds to an uncertainty set

D =

{
G(z, θ) = z−nk+1B(θ)

A(θ)
|θ ∈ U

}
=

{
G(z, θ) =

ZN (z)θ

1 + ZD(z)θ
|θ ∈ U

}

in the space of transfer functions. Here

ZN = z−nk+1(0 · · · 0 z−1 · · · z−nb), ZD = (z−1 · · · z−na 0 · · · 0)(2.3)

are row vectors of dimension na + nb. The set D belongs to the class of generic
prediction error model uncertainty sets as defined in [10].

The worst-case ν-gap between the identified model G(θ̂) and the uncertainty
region D is defined by

δWC(G(θ̂),D) = sup
θ∈U

δν(G(θ̂), G(θ)),(2.4)

where δν denotes the Vinnicombe ν-gap between two plants (see [28]). Since G(θ̂)
belongs to D, the worst-case ν-gap can be expressed in the following way (see [10,
Lemma 5.1]):

δWC(G(θ̂),D) = sup
ω∈[0,π]

κWC(G(e
jω, θ̂),D),(2.5)

where κWC(G(e
jω, θ̂),D) is called the worst-case chordal distance between G(θ̂) and

D at frequency ω and is defined by

κWC(G(e
jω, θ̂),D) = sup

θ∈U

|G(ejω, θ̂)−G(ejω, θ)|√
(1 + |G(ejω, θ̂)|2)(1 + |G(ejω, θ)|2)

.(2.6)
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The worst-case ν-gap is directly related to the robustness properties of the un-
certainty region D. The smaller it is, the larger is the set of controllers stabilizing
simultaneously all plants in D. Therefore our primary goal shall be to minimize the
quantity δWC(G(θ̂),D) = maxω∈[0,π] κWC(G(e

jω, θ̂),D) by choosing an input with an
appropriate power spectrum.

To be more precise, by input spectrum we mean a nonnegative measure on [−π, π]
such that the equality

∫ π
−π

Φuϕ(ω) dω =
∫ π
−π

Φuϕ(−ω) dω holds for all functions
ϕ(ω) ∈ C∞([−π, π]). To any such measure Φu on [−π, π] corresponds a unique

nonnegative measure Φ̄u on [0, π] such that
∫ π
−π

Φuϕ(ω) dω =
∫ π
0
Φ̄u

ϕ(ω)+ϕ(−ω)
2 dω

for all ϕ ∈ C∞([−π, π]). For details on constructing Φ̄u from Φu, see, e.g., [30, p.
23]. In what follows we will denote the single-sided measure Φ̄u also by Φu. Since the
measures are defined on different intervals, confusion is excluded.

To restrict the class of admissible power spectra we impose an input energy con-
straint

1

2π

∫ π

−π

Φu(ω)dω ≤ c,(2.7)

where c > 0 is a prespecified positive constant.
The worst-case ν-gap depends on Φu via the average per data sample information

matrix M̄ , which enters in the expression for the set U . Furthermore, it depends via
M̄ on the unknown true parameter value θ0 and noise covariance λ0. In addition it
depends on the identified parameter value θ̂, which is naturally not available before
the identification experiment is performed. All these three quantities have to be
approximated with values derived from previous knowledge about the system, for
instance from a preliminary identification experiment. Since the expectation of θ̂
equals θ0, these two quantities can be approximated by the same value. Denote this
value by θ̄, and denote the approximation of λ0 by λ̄.

We can now formulate our main problems.
Problem 1. Find Φu satisfying (2.7) such that M̄(Φu) defined by (2.1) minimizes

the cost function J1 = δWC(G(θ̂),D) defined by (2.5), (2.6).
Along with the worst-case ν-gap of the uncertainty region D, we will consider

another cost function, which is easier to compute and is an approximation of δWC .
Let us approximate cost function J1 = J1(M̄) by its asymptotic expression for

large information matrices. For a fixed positive definite matrix M̄0 the size of the
parameter ellipsoid U defined by any multiple M̄ = βM̄0 of M̄0, where β > 0, is
proportional to β−1/2. Since for small ellipsoids the worst-case ν-gap is asymptotically
proportional to the size of the former, it follows that for large β the value of J1(M̄)
diminishes asymptotically proportionately to β−1/2. Thus we can approximate J1 by

J2 = lim
ε→0

J1(ε
−2M̄)

ε
.(2.8)

Problem 2. Find Φu satisfying (2.7) such that M̄(Φu) defined by (2.1) minimizes
cost function J2 defined by (2.8).

The goal of the present paper is the development of numerical algorithms for solv-
ing both Problems 1 and 2. There is a twofold reason for introducing cost function
J2. Beside its much lower computational complexity, it turns out that identification
with an input power spectrum minimizing J2 in many cases gives better results than
one with an input power spectrum minimizing J1. This apparently counterintuitive
observation has the following reason. Both cost functions depend on the identified
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parameter value θ̂, the true parameter value θ0, and the noise covariance λ0. As
mentioned above, these quantities are unknown and must be replaced by estimates
obtained, e.g., from a preliminary identification experiment. This approximation in-
troduces an error to the argument of the minimum of the cost functions J1 and J2,
i.e., to the solutions of Problems 1 and 2. Now simulations show that the impact of
this effect on argminJ2 is lower than that on argminJ1 and that this difference as
a rule outweighs the error introduced by approximating cost function J1 by J2. We
will address this issue again in the simulation section.

3. LMI description of the search space. In this section we shall describe
the set of possible average information matrices M̄ , over which the optimization takes
place, as the feasible set of an LMI.

The following fact is due to Payne and Goodwin [24].

Proposition 3.1. The average information matrix M̄ is contained in a (na+nb)-
dimensional affine subspace of the space of symmetric (na+nb)× (na+nb)-matrices.

We find it convenient to give a proof here in order to provide explicit expressions
that clarify the structure of M̄ .

Proof. Define a0 = 1 and n = na + nb − 1. Then we have

|B|2 =

nb−1∑
k=−(nb−1)


min(nb,nb−k)∑

j=max(1,1−k)

bj+kbj


 zk,

−BĀ =

na−1∑
k=−nb


min(nb,na−k)∑

j=max(1,−k)

−aj+kbj


 zk,

|A|2 =

na∑
k=−na


min(na,na−k)∑

j=max(0,−k)

aj+kaj


 zk.(3.1)

Using (3.1) in (2.1) and ordering by powers of z, we can rewrite (2.1) as M̄ =
1
2π

∫ π
−π

Φu

λ0|A|2 (
∑n

i=−n M̃iz
i) dω + M̃ . The matrices M̃i are constant and depend only

on the coefficients of A and B. By M̃ the integral over the second term in (2.1) is
denoted. It is a constant matrix and independent of Φu. M̃ is most easily computed
using the method proposed in [19, p. 50]. Note that M̃i = M̃T

−i. Hence we obtain

M̄ =
1

2π

∫ π

−π

Φu

λ0|A|2 dωM̃0 +

n∑
i=1

(
1

2π

∫ π

−π

Φu

λ0|A|2 z
i dω(M̃i + M̃T

i )

)
+ M̃

=
1

π

∫ π

0

Φu

λ0|A|2 dω
M̃0

2
+

n∑
i=1

(
1

π

∫ π

0

Φu

λ0|A|2 cos(iω) dω
M̃i + M̃T

i

2

)
+ M̃.(3.2)

Thus M̄ is contained in the (n + 1)-dimensional affine subspace that is spanned by
M̃0, M̃i + M̃T

i , i = 1, . . . , n, and shifted by M̃ . This completes the proof.

Let us compose a vector x̃ ∈ Rn+1 of real numbers x̃i, i = 0, . . . , n, defined by
x̃i =

1
π

∫ π
0

Φu

λ0|A|2 cos(iω) dω.

Definition 3.2. The quantities x̃k = 1
π

∫ π
0

Φu

λ0|A|2 cos(kω) dω, k ∈ N, are called
trigonometric moments of the measure Φu

πλ0|A|2 .

Since 1
πλ0|A|2 is strictly positive on ω ∈ [0, π], we have the following result [30].
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Proposition 3.3. The set {x̃(Φu) |Φu is a nonnegative measure on [0, π]} equals
the moment spaceM(n+1) of the Tchebycheff system {1, cosω, . . . , cosnω} on [0, π].

For definition and properties of moment spaces, see, e.g., [14].
The characterization of the spaceM(n+1) is a special case of the extensively stud-

ied classical trigonometric moment problem. The following theorem is a consequence
of the general result [14, Chapter VI, Theorem 4.1]. It asserts that M(n+1) can be
characterized as the feasible set of an LMI.

Theorem 3.4. A point x̃ ∈ Rn+1 belongs to the spaceM(n+1) if and only if the
Töplitz matrix composed of the elements of x̃ is positive semidefinite, i.e.,

T (x̃) =




x̃0 x̃1
. . . x̃n

x̃1 x̃0
. . . x̃n−1

. . .
. . .

. . .
. . .

x̃n x̃n−1
. . . x̃0



≥ 0.(3.3)

Since n+ 1 ≥ 2, the strict LMI T (x̃) > 0 is feasible. Hence the feasible set of the
strict version is the interior ofM(n+1) (see [5, section 2.5]). ByM denote the set of
average information matrices corresponding to the interior ofM(n+1). From (3.2) we
have

M =

{
M̄(x̃) = x̃0

M̃0

2
+

n∑
i=1

x̃i
M̃i + M̃T

i

2
+ M̃ |T (x̃) > 0

}
.

Definition 3.5. Let Φu be a discrete double-sided power spectrum with support
suppΦu ⊂ [−π, π]. The number of points in the intersection suppΦu∩[−π, π), divided
by two, is called the index of Φu: index(Φu) = 1

2#(suppΦu ∩ [−π, π)). The index
of a single-sided nonnegative discrete measure on [0, π] is defined as the index of the
corresponding double-sided power spectrum.

Remark. This definition of the index is consistent with its definition for nonneg-
ative discrete measures on the interval [0, π] (see, e.g., [14]).

The notion of the index also allows us to characterize the interior of the moment
spaceM(n+1). The following theorem is a standard result on moment spaces.

Theorem 3.6 (see, e.g., [14]). Let x̃ be a point in M(n+1). Then the following
conditions hold:
(i) x̃ ∈ Bd(M(n+1)) if and only if there exists a discrete nonnegative measure

on [0, π] with index less than n+1
2 that induces x̃. This measure is unique.

(ii) x̃ ∈ Int(M(n+1)) if and only if there exists a discrete nonnegative measure
on [0, π] with index n+1

2 that induces x̃. There are exactly two such measures.
Exactly one of them contains the frequency π.

(iii) Let x̃ ∈ Int(M(n+1)) and ω ∈ [0, π]. Then there exists a unique discrete
nonnegative measure on [0, π] which induces x̃, has index not exceeding
n+2

2 , and contains the frequency ω.

Remark. Measures with index n+1
2 which induce x̃ are called principal realiza-

tions of x̃. The one containing π is called upper principal, the other lower principal,
realization. Measures with index not exceeding n+2

2 are called canonical.

We see that the interior ofM(n+1) is characterized by those points x̃ which can
be represented by a discrete measure with index not less than n+1

2 .
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Now we shall characterize the set of input power spectra Φu that lead to nonsin-
gular average information matrices M̄ .

Proposition 3.7. Let Φu be a power spectrum and M̄ the corresponding average
information matrix. Then M̄ is singular if and only if Φu is discrete and its index is
less than nb

2 .
Proof. “⇒”: Suppose M̄(Φu) is singular. Then there exists a nonzero vector

v = (v1, . . . , vna+nb
)T ∈ Rna+nb such that vT M̄v = 0. Expanding M̄ , we obtain

vTM̄v =
1

2π

π∫
−π

(
Φu

λ0|A|2 |−v1z
−1B−· · ·−vnaz

−naB+vna+1z
−1A+· · ·+vna+nb

z−nbA|2

+
1

|A|2 | − v1z
−1 − · · · − vna

z−na |2
)
dω = 0

with z = ejω. This yields −v1z−1 − · · · − vnaz
−na = 0 for all z on the unit circle and

−v1z−1B−· · ·−vnaz
−naB+vna+1z

−1A+ · · ·+vna+nb
z−nbA = 0 for all z = ejω such

that ω ∈ suppΦu. From the first identity we obtain v1 = · · · = vna
= 0. Inserting

this in the second equality, we get vna+1 + · · ·+ vna+nb
z−nb+1 = 0. Since v �= 0, this

equation can have at most nb − 1 different roots. Since Φu has to be concentrated at
these roots, it is discrete and its index cannot exceed nb−1

2 .
“⇐”: Suppose Φu is discrete with index less than nb

2 . Denote the frequencies of
Φu by ω1, . . . , ωk′ . They correspond to k different points z1, . . . , zk on the unit circle,
where k < nb. We have

M̄ =
1

2π

k∑
i=1

αi
λ0|A(zi)|2




−z−1
i B(zi)
...

−z−na
i B(zi)
z−1
i A(zi)

...
z−nb
i A(zi)







−z−1
i B(zi)
...

−z−na
i B(zi)
z−1
i A(zi)

...
z−nb
i A(zi)




∗

+
1

2π

π∫
−π

1

|A|2




−z−1

...
−z−na

0
...
0







−z−1

...
−z−na

0
...
0




∗

dω.

Here αi > 0 are the weightings of the different frequencies. It is easily seen that
the matrices under the sign of the sum are of (complex) rank one, while the integral
is a matrix which has a rank of at most na. Thus the rank of M̄ does not exceed
na + nb − 1 and M̄ is singular. This concludes the proof.

Corollary 3.8. Any M̄ ∈M is strictly positive definite.
This corollary ensures the existence of the inverse M̄−1 in the interior of the

search space.
By inspecting (2.2), (2.4), and (2.8), the reader will have no difficulty in proving

the following monotonicity property.
Proposition 3.9. Let M̄1, M̄2 be two positive semidefinite average information

matrices, and suppose M̄1 ≤ M̄2. Then the values of the cost functions J1,J2 at M̄2

do not exceed the respective values at M̄1.
Now we shall include the input energy constraint (2.7) into our framework. By

Proposition 3.9, for any constant β > 1 the value of each of the considered cost
functions at a particular input power spectrum Φu will be not less than its value at
the input power spectrum βΦu. Thus we can replace constraint (2.7) by

1

2π

∫ π

−π

Φu(ω)dω = c.(3.4)
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In [30] it was shown that relations like (3.4) determine affine hyperplanes in the
space of feasible average information matrices. Indeed, we have

1

2π

∫ π

−π

Φu(ω)dω =
λ0

2π

∫ π

−π

Φu

λ0|A|2
(

na∑
i=0

a2
i +

na∑
i=1

(
2

na−i∑
k=0

ak+iak

)
cos iω

)
dω

= λ0

(
x̃0

na∑
i=0

a2
i +

na∑
i=1

x̃i

(
2

na−i∑
k=0

ak+iak

))
= c.

Thus we get

x̃0 =
1∑na

i=0 a
2
i

(
c

λ0
−

na∑
i=1

x̃i

(
2

na−i∑
k=0

ak+iak

))
.(3.5)

Inserting (3.5) into (3.3), we obtain an LMI on the variables x̃1, . . . , x̃n, i.e., in an
n-dimensional space instead of the initial n + 1-dimensional one. The feasible set of
LMI (3.5), (3.3) is a subset of Rn, parametrized by new variables x1, . . . , xn, which we
define by x1 = x̃1, . . . , xn = x̃n. Denote by Xc the interior of this set and byMc the set
of average information matrices corresponding to points in Xc. Thus the optimization
takes place over the closure of Xc. Let us stack the variables x1, . . . , xn into a vector
x ∈ Rn, to be distinguished from x̃ ∈ Rn+1. While the latter parametrizes the set
M, the former parametrizes the setMc or Xc.

Using (3.5), we can represent average information matrices in the closure ofMc

as affine functions of the variables x1, . . . , xn. We have

M̄ = M̄0 +

n∑
i=1

xiM̄i,(3.6)

where

M̄0 =
c

2λ0

∑na

i=0 a
2
i

M̃0 + M̃,

M̄i =
M̃i + M̃T

i

2
−
∑na−i

k=0 ak+iak∑na

i=0 a
2
i

M̃0, i = 1, . . . , na,

M̄i =
M̃i + M̃T

i

2
, i = na + 1, . . . , n.

Thus the closure ofMc is contained in an n-dimensional affine subspace of the space
of symmetric (na + nb)× (na + nb)-matrices.

Proposition 3.10. The search space of Problems 1 and 2 can be represented
as a section of the trigonometric moment cone M(n+1) and is thus a bounded closed
n-dimensional convex set. It is parametrized by the variables x1, . . . , xn.

Proof. What is left to prove is that relation (3.5) defines a section of the moment
cone M(n+1). Let x̃ be an arbitrary nonzero moment point and Φu(ω) a measure
generating this moment point. Then the ray βx̃, β > 0, will be generated by the
ray βΦu(ω) of measures. On the latter, exactly one measure satisfies relation (3.4).
Therefore exactly one point on the ray βx̃ satisfies relation (3.5).

In this section we reduced the infinite-dimensional problem of searching the min-
imum of the cost functions over the set of all admissible input power spectra to the
finite-dimensional problem of searching the minimum over a section of a moment cone.
Moreover, we described the search space as an LMI, namely (3.3), (3.5), and showed
that it is bounded.
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4. Quasiconvexity. In the previous section we proved the search space to be a
bounded convex set. In this section we prove quasiconvexity of cost functions J1,J2

and thus of Problems 1 and 2.
Proposition 4.1. OnM cost function J1 is quasiconvex with respect to M̄ .
Proof. The worst-case chordal distance can be expressed as a solution to a gener-

alized eigenvalue problem (GEVP) [10, Theorem 5.1]. We have κWC(G(e
jω, θ̂),D) =√

γopt, where γopt is the solution of the GEVP

minimize γ subject to F0 + γF1 + τR ≥ 0, τ ≥ 0.(4.1)

Here F0, F1, R are symmetric matrices given by

F0 = V




−1 0 −ImG(ejω, θ̂) ReG(ejω, θ̂)

0 −1 ReG(ejω, θ̂) ImG(ejω, θ̂)

−ImG(ejω, θ̂) ReG(ejω, θ̂) −|G(ejω, θ̂)|2 0

ReG(ejω, θ̂) ImG(ejω, θ̂) 0 −|G(ejω, θ̂)|2


V T ,

F1 = (1 + |G(ejω, θ̂)|2)V V T ,

R =

(
Ina+nb

−θ̂T
)
M̄
(
Ina+nb

− θ̂
)
−




0 · · · 0
...

. . .
...

0 · · · χ2
na+nb

(α)

N


 ,(4.2)

where V is a (na + nb + 1)× 4 -matrix defined by

V =

(
ReZT

N ImZT
N ImZT

D ReZT
D

0 0 0 1

)

with ZN , ZD given by (2.3).
We will now show that γopt is quasiconvex with respect to R. Choose λ ∈ (0, 1)

and let R1, R2 be symmetric matrices of appropriate dimension. Suppose γ, τ1, τ2 are
nonnegative numbers such that F0 + γF1 + τ1R1 ≥ 0, F0 + γF1 + τ2R2 ≥ 0. We have
to show that there exists τ ≥ 0 such that F0 + γF1 + τ(λR1 + (1 − λ)R2) ≥ 0. If
τ1 = 0 or τ2 = 0, then we can choose τ = 0. Let τ1τ2 > 0. Define

λ′ =
λτ2

λτ2 + (1− λ)τ1 , τ =
τ1τ2

λτ2 + (1− λ)τ1 .

Obviously λ′ ∈ (0, 1) and τ > 0. It is easily verified that λτ = λ′τ1, (1 − λ)τ =
(1− λ′)τ2. Hence we have

F0+γF1+τ(λR1+(1−λ)R2) = λ′(F0+γF1+τ1R1)+(1−λ′)(F0+γF1+τ2R2) ≥ 0.

Thus if γ is feasible for R = R1 and for R = R2, then it is also feasible for
any linear convex combination of R1, R2. It follows that γopt|R=λR1+(1−λ)R2

≤
max{γopt|R=R1 , γopt|R=R2}, i.e., quasiconvexity of γopt with respect to R.

Suppose ω ∈ [0, π] is fixed. Note that R affinely depends on M̄ , while F0 and F1

are constant for given ω. Therefore γopt is quasiconvex with respect to M̄ for fixed ω.
But quasiconvexity is preserved under the operation of taking the maximum over a
family of functions and under rescaling by a strictly monotonic function (in this case
the square root). This completes the proof.

Proposition 4.2. OnM, cost function J2 is quasiconvex with respect to M̄ .
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Proof. Let us compute cost function J2.

J2 = lim
ε→0

J1(ε
−2M̄)

ε
= sup

ω∈[0,π]

lim
ε→0


ε−1 sup

z∈Uε(ω)

|G(ejω, θ̂)− z|√
1 + |G(ejω, θ̂)|2√1 + |z|2




= sup
ω∈[0,π]

d

dε
|ε=0 sup

z∈Uε(ω)

|G(ejω, θ̂)− z|√
1 + |G(ejω, θ̂)|2√1 + |z|2

.

Here Uε(ω) denotes the set {z = G(ejω, θ)| N
χ2
na+nb

(α)
(θ − θ̂)T M̄(θ − θ̂) < ε2}. The

expression
√
1 + |z|2 tends to

√
1 + |G(ejω, θ̂)|2 as ε→ 0; therefore

J2 = sup
ω∈[0,π]

d
dε |ε=0 supz∈Uε(ω) |z −G(ejω, θ̂)|

1 + |G(ejω, θ̂)|2 = sup
ω∈[0,π]

ε−1 supz∈Uε(ω) |T (θ − θ̂)|
1 + |G(ejω, θ̂)|2 ,

where the 2× (na + nb)-matrix T is given by

T =

(
Re∂G(ejω,θ)

∂θ |θ=θ̂

Im∂G(ejω,θ)
∂θ |θ=θ̂

)
.

If T has full rank, then, following [2], we can write the term ε−1 supz∈Uε(ω) |T (θ−
θ̂)| as

λmin



(
T

(
N

χ2
na+nb

(α)
M̄

)−1

TT

)−1





−1/2

=

√
χ2
na+nb

(α)

N
(λmax(TM̄

−1TT ))1/2.

By λmin and λmax the minimal and maximal eigenvalues, respectively, are denoted.
If T is rank deficient, we can find vectors w ∈ Rna+nb and w1 ∈ R2 such that

|w1| = 1 and T = w1w
T . We exclude the trivial case T = 0 from consideration and

assume w �= 0. Then

ε−1 sup
z∈Uε(ω)

|T (θ − θ̂)| =


(
wT

(
N

χ2
na+nb

(α)
M̄

)−1

w

)−1



−1/2

=

√
χ2
na+nb

(α)

N
(wT M̄−1w)1/2.

But we have anyway wT M̄−1w = λmax(TM̄
−1TT ).

Hence in either case we obtain

J2 =

√
χ2
na+nb

(α)

N
sup

ω∈[0,π]

(λmax(T (ω)M̄
−1T (ω)T ))1/2

1 + |G(ejω, θ̂)|2 .(4.3)

It is well known that the inverse P−1 of a symmetric positive definite matrix
P and the maximal eigenvalue λmax(Q) of a symmetric positive semidefinite matrix
Q are convex functions with respect to P or Q, respectively (see, e.g., [8]). Hence
λmax(TM̄

−1TT ) is convex with respect to M̄ for fixed ω. Since the operation of taking
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the maximum over a family of functions preserves convexity, we have that J 2
2 is a

convex function with respect to M̄ . By strict monotonicity of the square root, this
yields quasiconvexity of J2.

In the preceding two sections we have shown that Problems 1 and 2 stated in
section 2 are quasiconvex. In the next section we will provide the necessary tools
that allow the user to apply standard convex algorithms to solve these problems
numerically.

5. Cutting planes. Most methods in convex analysis are based on the notion
of a cutting plane (see, e.g., [5]). Suppose S ⊂ Rm is a convex set and f : S → R is
a quasiconvex function defined on S.

Definition 5.1. A cutting plane to f at a point x(0) ∈ S is defined by a nonzero
vector g ∈ Rm such that f(x(0)) ≤ f(x) for any x ∈ S satisfying the inequality
gT (x− x(0)) ≥ 0.

Thus the global minimum of f on S lies in the half-space {x | gT (x− x(0)) ≤ 0}.
By definition of quasiconvexity, a cutting plane always exists.

In this section we will compute cutting planes for cost functions J1,J2 at an
arbitrary point x(0) ∈ Xc.

Let M̄ (0) be the average information matrix corresponding to x(0). By Corollary
3.8 the matrix M̄ (0) is positive definite.

We shall now compute a cutting plane for J1 = maxω∈[0,π] κWC(G(e
jω, θ̂),D).

Denote by ω(0) the frequency where the worst-case chordal distance κWC attains its
maximum. The value of ω(0) can be found, e.g., by a grid search with subsequent
refinement using a denser grid in the vicinity of the maximum. It is easily seen that a

cutting plane to the function κWC(G(e
jω(0)

, θ̂),D) or its square will also be a cutting
plane to J1. In what follows we will assume that ω is equal to ω(0) and omit it as an
argument.

Thus our goal is to find a cutting plane for the optimum value γopt of GEVP (4.1),
(4.2), considered as a function of x. Note that F0, F1 are independent of x, while R
depends on x via M̄ . By (3.6), we can represent R as R(x) = R0 +

∑n
i=1 xiRi with

R0 =

(
Ina+nb

−θ̂T
)
M̄0

(
Ina+nb

− θ̂
)
−




0 · · · 0
...

. . .
...

0 · · · χ2
na+nb

(α)

N


 ,

Ri =

(
Ina+nb

−θ̂T
)
M̄i

(
Ina+nb

− θ̂
)
.

Let γ
(0)
opt, τ

(0)
opt be the optimal values for γ, τ in GEVP (4.1), (4.2) at x = x(0). Then

the matrix F0 + γ
(0)
optF1 + τ

(0)
optR is both singular and positive semidefinite. Let V 0 be

the nullspace of this matrix.

Proposition 5.2. If τ
(0)
opt > 0, then there exists a unit length vector v ∈ V 0 such

that vTRv = 0. If τ
(0)
opt = 0, then there exists a unit length vector v ∈ V 0 such that

vTRv ≤ 0. In either case the vector g ∈ Rn given componentwise by gi = −vTRiv, if
it is nonzero, defines a cutting plane for the function J1. If g is zero, J1 achieves a
minimum at x(0).

The proof of this proposition can be found in the appendix.
Let us now compute a cutting plane for cost function J2, which is given by (4.3).

Denote by ω(0) the frequency at which the function λmax(T (ω)M̄−1T (ω)T )

(1+|G(ejω,θ̂)|2)2 attains its
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maximum. Let v ∈ R2 be a unit length eigenvector to the maximal eigenvalue of the
matrix T (ω(0))M̄−1T (ω(0))T .

Proposition 5.3. Let g ∈ Rn be defined componentwise by gi = −vTT (ω(0))·
M̄−1M̄iM̄

−1T (ω(0))T v. Then g defines a cutting plane for the cost function J2 at
x(0), if g �= 0, and J2 attains a minimum at x(0), if g = 0.

Proof. Consider

f(x) =

√
χ2
na+nb

(α)

N

(
vTT (ω(0))

(
M̄0 +

∑n
i=1 xiM̄i

)−1
T (ω(0))T v

)1/2

1 + |G(ejω(0) , θ̂)|2 .

By definition we have f(x(0)) = J2(x
(0)), but f(x) ≤ J2(x) for any x ∈ Xc.

Let x ∈ Xc be a point such that gT (x− x(0)) ≥ 0. We shall show that f(x(0)) ≤
f(x), which would imply J2(x

(0)) ≤ J2(x). This is equivalent to f̃(x(0)) ≤ f̃(x),
where f̃ is defined by

f̃(x) =
N

χ2
na+nb

(α)
(1 + |G(ejω(0)

, θ̂)|2)2f2(x)

= vTT (ω(0))

(
M̄0 +

n∑
i=1

xiM̄i

)−1

T (ω(0))T v

= tr


T (ω(0))T vvTT (ω(0))

(
M̄0 +

n∑
i=1

xiM̄i

)−1

 .

In other words, we have to show that g defines a cutting plane for f̃ . It is well known
(see, e.g., [30, p. 39]) that f̃ , being of the form trWM̄−1 with W ≥ 0, is a smooth
convex function on Xc. Hence a cutting plane to f̃ is defined by its gradient, which
is identical to g.

If g = 0, then f̃ attains a minimum at x(0). Hence f attains a minimum at x(0),
which yields J2(x

(0)) ≤ J2(x) for any x ∈ Xc. This concludes the proof.
The results of sections 3 to 5, i.e., the LMI description of the feasible set and

the knowledge of cutting planes, allow the user to apply a whole range of convex
optimization methods for solving Problems 1 and 2. For a description of different
methods, see, e.g., [5], [22].

6. Error assessment of the solution. Suppose we seek the minimum of a
quasiconvex cost function J (x) on the closure of Xc. Let us assume that with some
method an approximation x(0) ∈ Xc of the optimal value x∗ was obtained together
with an upper bound on the scalar product gT (x(0) − x∗) (which is usually delivered
by standard convex analysis methods), where g is a vector defining a cutting plane to
J at x(0).

In this section we assess the quality of the approximation x(0), i.e., we derive a
bound on the error J (x(0))−J (x∗). The results presented can be used for designing
termination criteria for iterative optimization algorithms, guaranteeing a prespecified
level of accuracy.

Proposition 6.1. Let x(0) ∈ Xc be a feasible point and ω(0) a frequency at
which the worst-case chordal distance κWC(G(e

jω, θ̂),D(x(0))) attains its maximum.
Suppose cost function J1 attains its minimum at x∗. Let vectors v and g be defined
as in Proposition 5.2. If vTF1v > 0, then the following bound on the error J1(x

(0))−
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J1(x
∗) holds:

J 2
1 (x

(0))−J 2
1 (x

∗) ≤ N J 2
1 (x

(0))

χ2
na+nb

(α)vTF1v
(1+ |G(ejω(0)

, θ̂)|2)2|1+ZD θ̂|2gT (x(0)− x∗),

where ZD is defined in (2.3).
Note that the condition vTF1v > 0 is satisfied whenever J1(x

(0)) < 1. This
inequality holds at least in the vicinity of x∗ if J1 is not identically 1 on Xc.

Proof of Proposition 6.1. Denote by γ∗opt the square of the worst-case chordal

distance κWC(G(e
jω(0)

, θ̂),D(x∗)) at frequency ω(0) and at the point x∗. Let τ∗opt be
the corresponding optimal value of τ . Then we have J 2

1 (x
∗) ≥ γ∗opt.

By definition we have at frequency ω(0) the relations vT (F0+γ
(0)
optF1+τ

(0)
optR)v = 0,

(τ − τ (0)
opt)v

TR(x(0))v ≤ 0 for any τ ≥ 0, and vT (R(x)−R(x(0)))v ≤ −gT (x−x(0)) for
any x. Hence

vT (F0 + γ∗optF1 + τ∗optR(x
∗))v ≤ (γ∗opt − γ(0)

opt)v
TF1v − τ∗optgT (x∗ − x(0)).

Since the left-hand side of this inequality is nonnegative, we obtain

J 2
1 (x

(0))− J 2
1 (x

∗) ≤ γ(0)
opt − γ∗opt ≤

τ∗opt
vTF1v

gT (x(0) − x∗).

Let us now derive a bound on τ∗opt. We have (v′)T (F0 + γ
∗
optF1 + τ

∗
optR)v

′ ≥ 0 for

any vector v′ ∈ Rna+nb+1. Choose v′ = (θ̂T 1)T . By direct calculation one can show

that (v′)TF0v
′ = 0, (v′)TF1v

′ = (1 + |G|2)2|1 + ZD θ̂|2, (v′)TRv′ = −χ2
na+nb

(α)

N . Thus
we have

τ∗opt ≤
N

χ2
na+nb

(α)
γ∗opt(1 + |G|2)2|1 + ZD θ̂|2 ≤ N

χ2
na+nb

(α)
γ

(0)
opt(1 + |G|2)2|1 + ZD θ̂|2.

Combining the obtained inequalities, we complete the proof.
Proposition 6.2. Let x(0) ∈ Xc be a feasible point. Let ω(0) be a frequency

at which the quantity λmax(T (ω)M̄−1(x(0))T (ω)T )

(1+|G(ejω,θ̂)|2)2 attains its maximum. Suppose cost

function J2 attains its minimum at x∗. Let g be defined as in Proposition 5.3. Then
the following bound on the error J2(x

(0))− J2(x
∗) holds:

J 2
2 (x

(0))− J 2
2 (x

∗) ≤ χ2
na+nb

(α)

N(1 + |G(ejω(0) , θ̂)|2)2 g
T (x(0) − x∗).

Proof. Recall that we defined two functions f(x), f̃(x) in the proof of Proposition
5.3 and identified g as the gradient of f̃ . Since f̃ is convex, we can bound it by its
first order Taylor polynomial, i.e., f̃(x(0))− f̃(x∗) ≤ gT (x(0)−x∗). Therefore we have

J 2
2 (x

(0))− J 2
2 (x

∗) ≤ f2(x(0))− f2(x∗) =
χ2
na+nb

(α)

N(1 + |G(ejω(0) , θ̂)|2)2 (f̃(x
(0))− f̃(x∗))

≤ χ2
na+nb

(α)

N(1 + |G(ejω(0) , θ̂)|2)2 g
T (x(0) − x∗).

The propositions proven in this section enable the user to tell whether a given
solution x(0), delivered, e.g., by the current iteration step, satisfies the prespecified
accuracy requirements. This information can be used, e.g., to decide whether further
iterations are necessary.
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7. Design of input signals. Let us now turn to the question of how to design
an input signal from x(0). By Theorem 3.6, there exist moment points which can
be realized only by discrete spectra. On the other hand, any moment point can be
realized by a discrete spectrum. Therefore we propose here the following two-step
procedure. First a discrete input power spectrum generating the moment point x(0)

is computed, and then a multisine input with the desired spectrum is generated. This
procedure in no way restricts the optimality of the solution.

We weaken the condition x(0) ∈ Xc and suppose that x(0) is in the closure of Xc.
The point x(0) corresponds to a point x̃ = (x̃0, x̃1, . . . , x̃n) in moment spaceM(n+1).
Here x̃i equals the ith component of x(0) for i = 1, . . . , n, and x̃0 is given by (3.5).

Our goal will be to construct a realization of x̃. By Theorem 3.6, there exists a
discrete realization with index not greater than n+1

2 .

Denote by x̃s(ω) ∈ M(n+1) the moment point induced by the design measure
that satisfies constraint (3.4) and concentrates all power at the single frequency ω.
Then the ith entry of x̃s(ω) is given by c

λ0|A(ω)|2 cos(iω). Since (3.4) defines an affine

section of the convex coneM(n+1) and x̃ satisfies (3.4), x̃ is a convex combination of
points on the curve {x̃s(ω) |ω ∈ [0, π]}.

If x̃ equals x̃s(π), then we have already found a realization of index 1
2 . In this

case this is the only possible realization.
Suppose now that x̃ is not equal to x̃s(π). To construct a realization of x̃, we will

exploit an idea that is used to prove Theorem 3.6 (see, e.g., [14]).
Consider the line going through the points x̃ and x̃s(π). This line has an interval

in common with the convex setM(n+1). This interval is finite, because it lies on the
section defined by (3.4), and nondegenerated, because it contains two different points
x̃ and x̃s(π). By Theorem 3.6 part (i), x̃s(π) is one of the endpoints of this interval.
Denote the other endpoint by x̃bd. The computation of x̃bd from x̃ and x̃s(π) can
be reduced to a standard GEVP using LMI description (3.3) of the setM(n+1). For
treatment of this type of problem, see, e.g., [5].

Thus x̃ is a linear convex combination of the points x̃s(π) and x̃bd. Any realization
of x̃bd will deliver us a realization of x̃. Note that x̃bd lies on the boundary ofM(n+1).
By Theorem 3.6 part (i) it has only one realization, which is of index less than n+1

2 .
Hence the realization of x̃ that we obtain with the described procedure will have an
index not exceeding n+1

2 . If x̃ lies in the interior of M(n+1), then this realization
contains the frequency π and is therefore the upper principal realization of x̃.

We shall now construct the realization of x̃bd. Denote the frequencies which are
involved in this realization by ωi, i = 1, . . . , k. Then the point x̃bd is a nondegenerated
linear convex combination of x̃s(ω1), . . . , x̃

s(ωk). We can write x̃bd =
∑k

i=1 λix̃
s(ωi),

where λi > 0 and
∑k

i=1 λi = 1.
Since x̃bd lies on the boundary of M(n+1), there exists a supporting hyperplane

E at x̃bd. Note that E is a linear subspace, because M(n+1) is a convex cone. The
construction of a supporting hyperplane proceeding from LMI description (3.3) of
M(n+1) is a standard procedure and is described, e.g., in [5].

Lemma 7.1. The points x̃s(ω1), . . . , x̃
s(ωk) lie in E.

Proof. Denote by nE the normal vector to E that points toward M(n+1) and
by LE the linear functional x �→ 〈nE , x〉 defined by nE . For any ω ∈ [0, π] we have

LE(x̃
s(ω)) ≥ 0. On the other hand, LE(x̃

bd) =
∑k

i=1 λiLE(x̃
s(ωi)) = 0, because x̃bd

lies in E. Hence for all i we have LE(x̃
s(ωi)) = 0, i.e., x̃s(ωi) ∈ E.

Lemma 7.2. There exist maximally n
2 +1 frequencies such that the corresponding

points x̃s(ω) lie in E.
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Proof. Consider pE : [0, π] → R defined by pE(ω) = LE(x̃
s(ω))λ0|A(ω)|2

c . By
definition, pE is a trigonometric polynomial. Since LE(x̃

s(ω)) is nonnegative for all
ω, pE is too. Now we can apply a classical result from Tchebycheff system theory
which states that pE can have at most n

2 +1 zeros. But the zeros of pE lie exactly at
those frequencies whose corresponding points x̃s(ω) lie in E.

Now we are able to obtain a finite set of frequencies that is guaranteed to contain
ω1, . . . , ωk. Namely, we have to find the zeros, which are at the same time local
minima, of the trigonometric polynomial pE(ω).

Once we have found a set of frequencies ω1, . . . , ωk, ωk+1, . . . , ωk+k′ such that
the convex hull of the points x̃s(ω1), . . . , x̃

s(ωk+k′) contains x̃bd, it is a standard
linear quadratic (LQ) programming problem to find the weights associated with
the different frequencies. Namely, the weights λj minimize the squared distance

|x̃bd −∑k+k′

j=1 λj x̃
s(ωj)|2, which is a quadratic polynomial in the λj . Note that the

number of frequencies involved is not greater than n
2 + 1 and hence not greater than

n. Therefore the points x̃s(ω1), . . . , x̃
s(ωk+k′) are linearly independent and the min-

imized polynomial has a positive definite quadratic part. An efficient algorithm for
solving this type of problems is, e.g., the Beale algorithm (see [1]).

Suppose that a discrete realization of x̃ with frequencies ω1, . . . , ωm and associated
weights λ1, . . . , λm is available. Then the multisine input u(t) =

∑m
i=1 αi sin(tωi+φi)

with αi =
√
2cλi, φi arbitrary, if ωi �= 0, π, and αi =

√
cλi, φi = ±π

2 , if ωi ∈ {0, π},
has the desired input power spectrum (see, e.g., [30]).

Often it is also possible to obtain the desired power spectrum by using binary
signals (see [30, p. 29] and references cited therein).

8. Simulation results. Consider the true system y = G0u + H0e = B(z)
A(z)u +

1
A(z)e with G0 = B(z)

A(z) = 0.1047z−1+0.0872z−2

1−1.5578z−1+0.5769z−2 . Here u is the input, subject to the

energy constraint Ēu2(t) = 1, and e is white Gaussian noise with variance 0.1.
The system is to be identified within an ARX model structure of order two. The

number of data points to be collected is N = 1000. The aim is to minimize the
worst-case ν-gap of the uncertainty region around the identified model corresponding
to a confidence level of α = 0.95.

In a Monte-Carlo simulation, 500 runs were performed. Each run consisted of
five identification experiments: one preliminary experiment and four mutually inde-
pendent secondary experiments based on this preliminary experiment, corresponding
to the four different cost functions J1, J2, D-optimality, and E-optimality.

In the preliminary experiment, the input was chosen to be white Gaussian noise
with variance 1. The parameter vector and noise variance identified in the prelimi-
nary experiment were used as a priori estimates of the true parameter vector and the
true noise variance for designing the input power spectrum for the series of second
experiments. In two of the second experiments, the input power spectrum minimized
the cost functions J1,J2, respectively. The actual input sequence was a multisine
having the evaluated optimal power spectrum. For comparison, two other second
experiments with D-optimal and E-optimal input power spectra were performed. Af-
ter each identification experiment the worst-case ν-gap of the identified uncertainty
region was recorded.

The noise realizations for the five experiments within one run and for different
runs were different, as well as the input realizations for the preliminary experiments
of the different runs.

In Figure 8.1 the worst-case ν-gap obtained from the preliminary experiment with
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Fig. 8.1. Identification with white and subsequently estimated optimal input.

white noise input, as well as from the experiments with inputs optimized with respect
to J1 and J2, respectively, is shown for the first 50 simulation runs. The mean
over 500 runs of the worst-case ν-gap resulting from the preliminary experiments
equals 0.1345. The means of the worst-case ν-gap resulting from the experiments
with multisine input optimized with respect to criteria J1,J2 are 0.0937 and 0.0927,
respectively. The difference between them is statistically significant (2×1.64 standard
deviations). The means of the worst-case ν-gap resulting from the experiments with
D- and E-optimal multisine input are equal to 0.1434 and 0.1055, respectively.

It is evident that using inputs optimized with respect to criteria J1,J2 gives better
results than using white noise input or input optimized with respect to the classical
D- and E-optimality criteria. Note also that the inputs optimized with respect to the
cost function J2, which is a first order approximation of the exact cost function J1,
give better results than J1, despite the fact that the plotted quantity is in fact J1. As
mentioned already in section 2, this tendency was observed also in simulations with
other systems. The reason is that the optimum of the input power spectrum with
respect to J2 is less dependent on the preliminary estimate θ̄ of the true parameter
vector than the optimum with respect to J1. Given the lower complexity of J2 and
hence the lower computational effort in comparison with J1, it is preferable to use
primarily the former.

9. Conclusions. Let us summarize the results obtained in the present paper.
We have to design an input sequence for an identification experiment that makes the
worst-case ν-gap between the identified model and the uncertainty region around it
as small as possible. The design takes place via power spectrum optimization. Two
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nonstandard cost criteria J1 and J2 are defined, which reflect the optimization task
with different accuracy. J1 is the exact worst-case ν-gap one would want to minimize,
while J2 is an approximation of J1. These functions fulfill the natural conditions of
monotonicity and quasiconvexity with respect to the power spectrum.

It was shown that optimization of the input power spectrum with respect to these
cost criteria can be reduced to a standard convex optimization problem involving LMI
constraints. In Propositions 5.2 and 5.3 we demonstrate how to construct cutting
planes to the cost functions J1,J2, which is essential for applying standard numerical
methods such as the ellipsoid algorithm. In Propositions 6.1 and 6.2 we derive bounds
on the difference between the actually achieved and the optimal value of the cost
functions, which allows us to estimate the quality of the optimization result and to
design stopping criteria for iterative search algorithms. We have also briefly touched
on the problem of designing an input sequence with a prespecified power spectrum.

Simulations show clearly the superiority of the proposed cost functions over clas-
sical design criteria. They also suggest using cost function J2 rather than J1, due to
both lower computational effort and higher performance.

Appendix A. Proof of Proposition 5.2.
Lemma A.1. Let γopt, τopt be the optimal values of γ, τ in GEVP (4.1), (4.2).

Then the following conditions hold:
(i) The matrix F0 is negative semidefinite.
(ii) The nullspace of F1 is a subset of the nullspace of F0.
(iii)The matrix F0 + F1 is positive semidefinite.
(iv)The nullspace of F1 is a strict subset of the nullspace of F0 + F1.
(v) τopt > 0 if and only if the restriction of R on the nullspace of F0 + F1 is

strictly positive definite.
(vi) γopt = 1 if and only if τopt = 0.

Proof. (i) follows from the representation F0 = −VWWTV T , where W is a
4× 2-matrix given by

W =




1 0
0 1

ImG(θ̂) −ReG(θ̂)
−ReG(θ̂) −ImG(θ̂)


 .

The nullspace of F1 is given by the kernel of V T . The latter is contained in the
kernel of F0, which yields (ii).

(iii) follows from the representation

F0 + F1 = V



|G(θ̂)|2 0 −ImG(θ̂) ReG(θ̂)

0 |G(θ̂)|2 ReG(θ̂) ImG(θ̂)

−ImG(θ̂) ReG(θ̂) 1 0

ReG(θ̂) ImG(θ̂) 0 1


V T = VW⊥WT

⊥V
T ,

where W⊥ is a 4× 2-matrix given by

W⊥ =




|G(θ̂)| 0

0 |G(θ̂)|
− sin argG(θ̂) cos argG(θ̂)

cos argG(θ̂) sin argG(θ̂)


 .
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Here argG(θ̂) is an arbitrary number if G(θ̂) = 0. Note that WTW = (1+ |G(θ̂)|2)I2,
WTW⊥ = 0, and WT

⊥W⊥ = (1 + |G(θ̂)|2)I2.
By (ii) the nullspace of F1 is a subset of the nullspace of F0 + F1. We shall now

show that the vector v = (ζ, 0, . . . , 0, 1, 0, . . . , 0,− cosnkωReG(θ̂) + sinnkωReG(θ̂)−
ζ cosω)T ∈ Rna+nb+1, where ζ = −cotnkω ImG(θ̂) − ReG(θ̂) if ω ∈ (0, π) and ζ
arbitrary otherwise, is not contained in the kernel of V T but is contained in the
kernel of WT

⊥V
T . The “1” in v is situated at position na + 1. Indeed, by (2.3) we

obtain

V T v =




cosnkω
− sinnkω
−ζ sinω

− cosnkωReG(θ̂) + sinnkω ImG(θ̂)




= cosnkω




1
0

ImG(θ̂)

−ReG(θ̂)


− sinnkω




0
1

−ReG(θ̂)
ImG(θ̂)


 �= 0,

because cosnkω, − sinnkω cannot both vanish. In case ω ∈ {0, π} the equality holds

by ImG(θ̂) = 0. On the other hand, we haveWT
⊥V

Tv =WT
⊥W (cosnkω,− sinnkω)

T =
0. This concludes the proof of (iv).

Let us prove (v) and (vi). Denote the nullspace of F0+F1 by V̄
0 and its orthogonal

complement by V̄ ⊥. By definition there exists a positive number β1 such that for any
v⊥ ∈ V̄ ⊥ we have (v⊥)T (F0 + F1)v

⊥ ≥ β1|v⊥|2.
Suppose the restriction of R on V̄ 0 is strictly positive definite. Then there exists

a positive number β2 such that for any v0 ∈ V̄ 0 we have (v0)TRv0 ≥ β2|v0|2. Let
v = v0 + v⊥ be an arbitrary vector with v0, v⊥ being its orthogonal projections on
V̄ 0, V̄ ⊥, respectively. Let τ > 0 be a positive number. Then we have

vT (F0 + F1 + τR)v = (v⊥)T (F0 + F1)v
⊥ + τ((v⊥)TRv⊥ + 2(v0)TRv⊥ + (v0)TRv0)

≥ β1|v⊥|2 + τ(λmin(R)|v⊥|2 − 2min{λmin(R),−λmax(R)}|v⊥||v0|+ β2|v0|2)

=

(|v⊥|
|v0|

)T (
β1 + τλmin(R) −τ min{λmin(R),−λmax(R)}

−τ min{λmin(R),−λmax(R)} τβ2

)(|v⊥|
|v0|

)
.

It is easily seen that the 2 × 2-matrix in the middle is positive definite if τ is small
enough. Therefore there exists τ > 0 such that the matrix F0 + F1 + τR is strictly
positive definite, while the matrix F0 + F1 is not. Thus in this case we have τopt �= 0
and γopt < 1.

Now suppose the restriction of R on V̄ 0 is not strictly positive definite. Since M̄
is strictly positive definite, it follows from expression (4.2) that R has na+nb positive
eigenvalues and one negative eigenvalue. Thus it can be represented as a difference
R = R+ − R−, where R+, R− are positive semidefinite matrices of rank na + nb, 1,
respectively, and the linear hulls V̄+, V̄− of their columns are orthogonal to each other.
The whole space Rna+nb+1 splits into a direct sum V̄+ ⊕ V̄−.

Let v0 ∈ V̄ 0 be a nonzero vector such that (v0)TRv0 ≤ 0. The vector v0 can be
represented as a sum v0 = v+ + v−, where v+ ∈ V̄+, v− ∈ V̄−. Since (v0)TRv0 =
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(v+)
TR+v+ − (v−)TR−v− ≤ 0, the assumption v− = 0 would imply v+ = 0, which

contradicts v0 �= 0. Hence v− �= 0. We can represent v− as a sum v− = v0
−+v⊥− , where

v0
− ∈ V̄ 0, v⊥− ∈ V̄ ⊥. Let ε > 0 be a positive number and consider the vector v = v0 +
εv−. We have v = v++(1+ε)v−. Hence vTRv = (v+)

TR+v+−(1+ε)2(v−)TR−v− =
(v0)TRv0 − (2ε + ε2)(v−)TR−v−. On the other hand, v = (v0 + εv0

−) + εv⊥− . Since
v0 + εv0

− ∈ V̄ 0, this yields vT (F0 + F1)v = ε2(v⊥−)
T (F0 + F1)v

⊥
− . We obtain

vT (F0 + F1 + τR)v ≤ ε2(v⊥−)T (F0 + F1)v
⊥
− − τ(2ε+ ε2)(v−)TR−v−.

Note that (v−)TR−v− is strictly positive. Hence for any prespecified τ > 0 we can
choose a small ε > 0 such that vT (F0 + F1 + τR)v < 0. Thus for any positive τ
the matrix F0 + F1 + τR is not positive semidefinite, while F0 + F1 is. This implies
τopt = 0. γopt = 1 now follows from (iv).

The proof of the lemma is complete.
Proof of Proposition 5.2. Denote the orthogonal complement of V 0 by V ⊥. Then

the restriction on V ⊥ of the quadratic form defined by the matrix F0+γ
(0)
optF1+ τ

(0)
optR

is strictly positive definite. Hence there exists a positive number β1 such that for any

vector v⊥ ∈ V ⊥ we have (v⊥)T (F0 + γ
(0)
optF1 + τ

(0)
optR)v

⊥ ≥ β1|v⊥|2.
Suppose the restriction on V 0 of the quadratic form defined by the matrix R is

strictly positive definite. Then there exists a positive number β2 such that for any
vector v0 ∈ V 0 we have (v0)TRv0 ≥ β2|v0|2.

Let v = v0 + v⊥ be an arbitrary vector, where v0 ∈ V 0 and v⊥ ∈ V ⊥ are its
orthogonal projections on the subspaces V 0 and V ⊥, respectively. Let ε > 0 be a
positive number. Then we have

vT (F0 + γ
(0)
optF1 + (τ

(0)
opt + ε)R)v

= (v⊥)T (F0 + γ
(0)
optF1 + τ

(0)
optR)v

⊥ + ε((v⊥)TRv⊥ + 2(v0)TRv⊥ + (v0)TRv0)

≥ β1|v⊥|2 + ε(λmin(R)|v⊥|2 + 2min{λmin(R),−λmax(R)}|v⊥||v0|+ β2|v0|2)

=

(|v⊥|
|v0|

)T (
β1 + ελmin(R) εmin{λmin(R),−λmax(R)}

εmin{λmin(R),−λmax(R)} εβ2

)(|v⊥|
|v0|

)
.

It is easily seen that the 2 × 2-matrix in the middle is positive definite if ε is small

enough. This implies that there exists a number τ > τ
(0)
opt such that the matrix

F0 + γ
(0)
optF1 + τR is strictly positive definite. This contradicts the optimality of γ

(0)
opt.

In a similar way it is shown that if the restriction on V 0 of the quadratic form
R is strictly negative definite, then there exists a number ε > 0 such that for any

τ ∈ [τ
(0)
opt − ε, τ (0)

opt) the matrix F0 + γ
(0)
optF1 + τR is strictly positive definite.

Thus the restriction on V 0 of the quadratic form R is neither strictly positive nor

strictly negative definite if τ
(0)
opt > 0 and it is negative semidefinite if τ

(0)
opt = 0. This

proves the first part of the proposition.
Now let v ∈ V 0 be a unit length vector satisfying the conditions of Proposition

5.2. Let g ∈ Rn be given componentwise by gi = −vTRiv. Let x ∈ Xc be a vector
satisfying the inequality gT (x− x(0)) ≥ 0. Let τ be a nonnegative number and let γ

be strictly less than γ
(0)
opt.

By assumption we have vT (F0 + γ
(0)
optF1 + τ

(0)
optR(x

(0)))v = 0. We obtain

vT (F0 + γF1 + τR(x))v = vT ((γ − γ(0)
opt)F1 + τ(R(x)−R(x(0))) + (τ − τ (0)

opt)R(x
(0)))v
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= (γ − γ(0)
opt)v

TF1v + (−τgT (x− x(0))) + (τ − τ (0)
opt)v

TR(x(0))v ≤ 0.

The last inequality follows from the fact that none of the three terms on the left-hand
side exceeds zero. The first term is nonpositive because F1 is positive semidefinite.
The second term does not exceed zero by assumption on x. The third term is not
greater than zero because by assumption on v we have vTR(x(0))v ≤ 0 and the

condition τ − τ (0)
opt < 0 yields τ

(0)
opt > 0 and hence vTR(x(0))v = 0. If the inequality is

strict, then F0 + γF1 + τR(x) is not positive semidefinite.
Now assume that vT (F0 + γF1 + τR(x))v = 0. Then we have vTF1v = 0 and v

is an element of the nullspace of F1. By Lemma A.1, part (iv), it is also an element
of the nullspace of F0 + F1. Note that vTR(x(0))v ≤ 0. By Lemma A.1, part (v),

we then have τ
(0)
opt = 0 and by part (vi) γ

(0)
opt = 1. Further we have either τ = τ

(0)
opt or

vTR(x(0))v = 0.

If τ = τ
(0)
opt = 0, then by Lemma A.1, parts (iii) and (iv), the matrix F0 + γF1 =

F0 + γF1 + τR(x) is not positive semidefinite.
If τ > 0, then vTR(x(0))v = 0 and vTR(x)v = vT (R(x) − R(x(0)))v = −gT (x −

x(0)) ≤ 0. Since v belongs to the nullspace of F0 + F1, by Lemma A.1, part (v) we
have τopt(x) = 0 and by part (vi) γopt(x) = 1 > γ. Hence the pair (γ, τ) is again not
feasible for GEVP (4.1), (4.2) at x.

Thus in any case γopt(x) is not less than γ
(0)
opt and the vector g, if nonzero, defines

a cutting plane for γopt and hence for J1.
If g = 0, however, then any x satisfies the relation gT (x − x(0)) ≥ 0 and

γ
(0)
opt does not exceed γopt at any other point x ∈ Xc. Hence we have J1(x) ≥
κWC(G(e

jω(0)

, θ̂),D) =
√
γopt(x) ≥

√
γ

(0)
opt = J1(x

(0)) and J1 attains a minimum

at x(0).
This concludes the proof of the second part of Proposition 5.2.
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Abstract. We study the stability of second-order switched homogeneous systems. Using the
concept of generalized first integrals we explicitly characterize the “most destabilizing” switching-law
and construct a Lyapunov function that yields an easily verifiable, necessary and sufficient condition
for asymptotic stability. Using the duality between stability analysis and control synthesis, this also
leads to a novel algorithm for designing a stabilizing switching controller.
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1. Introduction. We consider the switched homogeneous system

ẋ(t) ∈ Ω(x(t)), Ω(x) := Co{f1(x), f2(x), . . . , fq(x)},(1.1)

where x(t) = (x1(t), . . . , xn(t))
T , the fi(·)’s are homogeneous functions (with equal

degree of homogeneity), and Co denotes the convex hull. An important special case
is fi(x) = Aix, i = 1, . . . , q, for which (1.1) reduces to a switched linear system.

Switched systems appear in many fields of science ranging from economics to
electrical and mechanical engineering [15], [18]. In particular, switched linear systems
were studied in the literature under various names, e.g., polytopic linear differen-
tial inclusions [4], linear polysystems [6], bilinear systems [5], and uncertain linear
systems [20].

If fi(0) = 0 for all i, then 0 is an equilibrium point of (1.1). Analyzing the
stability of this equilibrium point is difficult because the system admits infinitely
many solutions for every initial value.1

Stability analysis of switched linear systems can be traced back to the 1940s
since it is closely related to the well-known absolute stability problem [4], [19]. Cur-
rent approaches to stability analysis include (i) deriving sufficient but not necessary
and sufficient stability conditions, and (ii) deriving necessary and sufficient stability
conditions for the particular case of low-order systems. Popov’s criterion, the circle
criterion [19, Chapter 5], and the positive-real lemma [4, Chapter 2] can all be con-
sidered as examples of the first approach. Many other sufficient conditions exist in
the literature.2 Nevertheless, these conditions are sufficient but not necessary and
sufficient and are known to be rather conservative conditions.
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1An analysis of the computational complexity of some closely related problems can be found
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2See, for example, the recent survey paper by Liberzon and Morse [11].
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Far more general results were derived for the second approach, namely, the par-
ticular case of low-order linear switched systems. The basic idea is to single out the
“most unstable” solution x̃(t) of (1.1), that is, a solution with the following property:
If x̃(t) converges to the origin, then so do all the solutions of (1.1). Then, all that is
left to analyze is the stability of this single solution (see, e.g., [3]).

Pyatnitskiy and Rapoport [16] and Rapoport [17] were the first to formulate the
problem of finding the “most unstable” solution of (1.1) using a variational approach.
Applying the maximum principle, they developed a characterization of this solution
in terms of a two-point boundary value problem. Their characterization is not ex-
plicit but, nevertheless, using tools from convex analysis they proved the following
result. Let Γ be the collection of all the q-sets of linear functions {A1x, . . . , Aqx} for
which (1.1) is asymptotically stable, and denote the boundary3 of Γ by ∂Γ. Pyatnit-
skiy and Rapoport proved that if {A1x, . . . , Aqx} ∈ ∂Γ, then the “most unstable”
solution of (1.1) is a closed trajectory. Intuitively, this can be explained as fol-
lows. If {Ax, Bx} ∈ Γ, then, by the definition of Γ, x̃(t) converges to the origin;
if {Ax, Bx} /∈ (Γ ∪ Γ), then x̃(t) is unbounded. Between these two extremes, that is,
when {Ax, Bx} ∈ ∂Γ, x̃(t) is a closed solution. This leads to a necessary and suffi-
cient stability condition for second- and third-order switched linear systems [16], [17];
however, the condition is a nonlinear equation in several unknowns and, since solving
this equation turns out to be difficult, it cannot be used in practice.

Margaliot and Langholz [14] introduced the novel concept of generalized first
integrals and used it to provide a different characterization of the closed trajectory.
Unlike Pyatnitskiy and Rapoport, the characterization is constructive and leads, for
second-order switched linear systems, to an easily verifiable, necessary and sufficient
stability condition. Furthermore, their approach yields an explicit Lyapunov function
for switched linear systems.

In the general homogeneous case, the functions fi(·) are nonlinear functions, and
therefore the approaches used for switched linear systems cannot be applied. Filip-
pov [7] derived a necessary and sufficient stability condition for second-order switched
homogeneous systems. However, his proof uses a Lyapunov function that is not con-
structed explicitly.

In this paper we combine Filippov’s approach with the approach developed by
Margaliot and Langholz to provide a necessary and sufficient condition for asymptotic
stability of second-order switched homogeneous systems. We construct a suitable
explicit Lyapunov function and derive a condition that is easy to check in practice.

A closely related problem is the stabilization of several unstable systems using
switching. This problem has recently regained interest with the discovery that there
are systems that can be stabilized by hybrid controllers whereas they cannot be sta-
bilized by continuous state-feedback [18, Chapter 6]. To analyze the stability of (1.1),
we synthesize the “most unstable” solution x̃(t) by switching between several asymp-
totically stable systems. Designing a switching controller is equivalent to synthesizing
the “most stable” solution by switching between several unstable systems. These
problems are dual and, therefore, a solution of the first is also a solution of the sec-
ond. Consequently, we use our stability analysis to develop a novel procedure for
designing a stabilizing switching controller for second-order homogeneous systems.

The rest of this paper is organized as follows. Section 2 includes some notations
and assumptions. Section 3 develops the generalized first integral which will serve as
our main analysis tool. Section 4 analyzes the sets Γ and ∂Γ. Section 5 provides an

3The set Γ is open [17].
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explicit characterization of the “most destabilizing” switching-law. Section 6 presents
an easily verifiable, necessary and sufficient stability condition. Section 7 describes a
new algorithm for designing a switching controller. Section 8 summarizes.

2. Notations and assumptions. For β > 1, let

Pβ :=
{
f(·, ·) : f(cx1, cx2) = cβf(x1, x2) for all c, x1, x2

}
,

that is, the set of homogeneous functions of degree β. We denote by Eβ the set of
functions f : R2 → R

2 such that f(x1, x2) = (f1(x1, x2), f2(x1, x2))
T with f1, f2 ∈ Pβ .

Consider the system ẋ = f(x), where x = (x1, x2)
T and f ∈ Eβ . Transforming to

polar coordinates,

r(t) =
√

x2
1(t) + x2

2(t), θ(t) = arctan

(
x2(t)

x1(t)

)
,

we get

ṙ = rβR(θ), θ̇ = rβ−1A(θ),(2.1)

where R(θ) and A(θ) are homogeneous functions of degree β+1 in the variables cos(θ)
and sin(θ).

Following [9, Chapter III], we analyze the stability of (2.1) by considering two
cases. If A(·) has no zeros, then the origin is a focus and (2.1) yields r(θ) =

r0e
∫ θ
θ0

R(u)
A(u)du = r0p(θ; θ0)e

hθ, where p is periodic in θ with period 2π, and h :=
1
2π

∫ 2π

0
R(u)
A(u)du. Hence, r(t)→ 0 (r(t)→∞) if sgn(h) �= sgn(A) (sgn(h) = sgn(A)).

If A has zeros, say A(θ) = 0, then the line θ = θ is a solution of (2.1) (the origin
is a node) and along this line r(t)→ 0 (r(t)→∞) if R(θ) < 0 (R(θ) > 0).

Hence, if ESβ := {f ∈ Eβ : ẋ = f(x) is asymptotically stable}, then ESβ =
ESF

β ∪ ESN
β ,

4 where

ESF
β :=

{
f ∈ Eβ : A(θ) has no zeros and sgn(h) �= sgn(A)

}
,

ESN
β :=

{
f ∈ Eβ : R(θ) < 0 for all θ such that A(θ) = 0

}
.

Given f(x) ∈ Eβ , we denote its differential at x by

(Df)(x) :=

(
∂f1(x)
∂x1

∂f1(x)
∂x2

∂f2(x)
∂x1

∂f2(x)
∂x2

)
.

The differential’s norm is ||(Df)(x)|| := suph∈R2, ||h||=1 ||(Df)(x)h||, where || · || :
R

2 → R+ is some vector norm on R
2. The distance between two functions f ,g ∈ Eβ

is defined by [10]

d(f ,g) := sup
x : ||x||<1

(||f(x)− g(x)||+ ||(Df)(x)− (Dg)(x)||).(2.2)

Note that (Eβ , d(·, ·)) is a Banach space and that in the topology induced by d(·, ·)
the set ESβ is open.

4Here F stands for focus and N for node.
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For simplicity,5 we consider the differential inclusion (1.1) with q = 2:

ẋ(t) ∈ Ω(x(t)), Ω(x) := Co{f(x),g(x)}(2.3)

with f ,g ∈ ESβ .
Given an initial condition x0, a solution of (2.3) is an absolutely continuous

function x(t), with x(0) = x0, that satisfies (2.3) for almost all t. Clearly, there is
an infinite number of solutions for any initial condition. To differentiate the possible
solutions we use the concept of a switching-law.

Definition 2.1. A switching-law is a piecewise constant function η : [0,+∞)→
[0, 1]. We refer to the solution of ẋ = η(t)f(x) + (1 − η(t))g(x) as the solution
corresponding to the switching-law η.

The solution x(t) ≡ 0 is said to be uniformly6 locally asymptotically stable if
• given any ε > 0, there exists δ(ε) > 0 such that every solution of (2.3) with
||x(0)|| < δ(ε) satisfies ||x(t)|| < ε for all t ≥ 0,

• there exists c > 0 such that every solution of (2.3) satisfies limt→∞ x(t) = 0
if ||x(0)|| < c.

Since f and g are homogeneous, local asymptotic stability of (2.3) implies global
asymptotic stability. Hence, when the above conditions hold, the system is uniformly
globally asymptotically stable (UGAS).

Definition 2.2. A set P ⊂ R
2 is an invariant set of (2.3) if every solution x(t),

with x(0) ∈ P , satisfies x(t) ∈ P for all t ≥ 0.
Definition 2.3. We will say that Ω(x) = Co{f(x),g(x)} is singular if there

exists an invariant set that does not contain an open neighborhood of the origin.
We assume the following from here on.
Assumption 1. The set Ω(x) is not singular.
The role of Assumption 1 will become clear in the proof of Lemma 5.4 below.

Note that it is easy to check if the assumption holds by transforming the two systems
ẋ = f(x) and ẋ = g(x) to polar coordinates and examining the set of points where
θ̇ = 0 for each system. For example, if there exists a line l that is an invariant set
for both ẋ = f(x) and ẋ = g(x), then l is an invariant set of (2.3) and Assumption 1
does not hold.

To make the stability analysis nontrivial, we also assume the following.
Assumption 2. For any fixed η ∈ [0, 1], the origin is a globally asymptotically

stable equilibrium point of ẋ = ηf(x) + (1− η)g(x).

3. The generalized first integral. If the system

ẋ = f(x)(3.1)

is Hamiltonian [8], then it admits a classical first integral, that is, a function H(x)
which satisfies H(x(t)) ≡ H(x(0)) along the trajectories of (3.1). In this case, the
study of (3.1) is greatly simplified since its trajectories are nothing but the contours
H(x) = const. In particular, it turns out that the first integral provides a crucial
analysis tool for switched linear systems [14]. The purpose of this section is to extend
this idea to the case where f ∈ ESβ and, therefore, (3.1) is not Hamiltonian.

Let v := x2/x1; then

dv
dx2

dx1
− v

=
dx1

x1
.

5Our results can be easily generalized to the case q > 2.
6The term “uniform” is used here to describe uniformity with respect to switching signals.
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If f ∈ ESβ , then f1 and f2 are both homogeneous functions of degree β and, therefore,

the ratio f2(x1,x2)
f1(x1,x2)

is a function of v only, which we denote by α(v). Hence, along the

trajectories of (3.1), dv
α(v)−v =

dx1

x1
, that is, e

∫
dv

v−α(v) |x1| = const. Thus, we define the
generalized first integral of (3.1) by

H(x1, v) :=
(

x1eL(v)
)2k

,(3.2)

where L(v) :=
∫

dv
v−α(v) and k is a positive integer. Note that we can write H =

H(x1, x2) by substituting v = x2/x1. Note also that H(λx1, λx2) = λ2kH(x1, x2).
Let S be the collection of points where H(x1, x2) is not defined or not continuous;

then, by construction, H : R
2 \ S → R+ is piecewise constant along the trajectories

of (3.1). If S = ∅, thenH is a classical first integral of the system. In general, however,
S �= ∅. Nevertheless, this does not imply thatH cannot be used in the analysis of (3.1).
Consider, for example, the case where S is a line and a trajectory x(t) of (3.1) can
cross S but not stay on S. Then, H(x(t)) will remain constant except perhaps at
a crossing time where its value can “jump.”7 Thus, a trajectory of the system is
a concatenation of several contours of H. This motivates the term generalized first
integral.

To clarify the relationship between the trajectories of ẋ = f(x) and the contours
H(x) = const, we consider an example.

Example 1. Consider the system(
ẋ1

ẋ2

)
=

( −x3
2 − 2x3

1

x1x2
2

)
.(3.3)

Here (3.2) yields

H(x1, v) =

(
x1

v(2− v + v2)
1
8

(1 + v)
1
4

e
− 3

4
√

7
arctan((−1+2v)/

√
7 )

)2k

,

and using k = 2 and v = x2/x1 we get

H(x1, x2) =
x4

2

√
2x2

1 − x1x2 + x2
2

x1 + x2
e
− 3√

7
arctan(

2x2−x1√
7x1

)
.

In this case S = l1 ∪ l2, where l1 := {x : x1 + x2 = 0} and l2 := {x : x1 = 0}. It
is easy to verify that l1 is an invariant set of (3.3), that is, x(t) ∩ l1 = ∅ (except for
the trivial trajectory that starts and stays on l1). Furthermore, it is easy to see that
a trajectory of (3.3) cannot stay on the line l2.

Figure 1 shows the trajectory x(t) of (3.3) for x0 = (3, 1)T . Figure 2 displays
H(x(t)) as a function of time. It may be seen that H(x(t)) is a piecewise constant
function that attains two values. Note that the “jump” in H(x(t)) occurs when x1(t) =
0, that is, when x(t) ∈ S.

4. The boundary of stability. Let Γ be the set of all pairs (f ,g) for which
(2.3) is UGAS. In this section we study Γ and its boundary ∂Γ. Our first result,
whose proof is given in the appendix, is an inverse Lyapunov theorem.

Lemma 4.1. If (f ,g) ∈ Γ, then there exists a C1 positive-definite function V (x) :
R

2 → [0,+∞) such that for all x ∈ R
2 \ 0, ∇V (x)f(x) < 0 and ∇V (x)g(x) < 0.

Furthermore, V (x) is positively homogeneous of degree one.8

7That is, a time t0 such that x(t0) ∈ S.
8That is, V (cx) = cV (x) for all c > 0 and all x ∈ R

2.
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Fig. 1. The trajectory of (3.3) for x0 = (3, 1)T .
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Fig. 2. H(x(t)) as a function of time.

Lemma 4.2. Γ is an open cone.
Proof. Let (f ,g) ∈ Γ. Clearly, (cf , cg) ∈ Γ for all c > 0. Hence, Γ is a cone.
To prove that Γ is open, we use the common Lyapunov function V from Lemma

4.1. Denote γ := {x : V (x) = 1}, so γ is a closed curve encircling the origin. Hence,
there exists a < 0 such that for all x ∈ γ,

∇V (x)f(x) < a and ∇V (x)g(x) < a.(4.1)

If f̃ ∈ ESβ and g̃ ∈ ESβ are such that d(f̃ , f) < ε and d(g̃,g) < ε, with ε > 0

sufficiently small, then for all x ∈ γ, ∇V (x)f̃(x) < a/2 < 0 and ∇V (x)g̃(x) <
a/2 < 0. It follows from the homogeneity of V , f̃ , and g̃ that (f̃ , g̃) ∈ Γ.



SECOND-ORDER SWITCHED HOMOGENEOUS SYSTEMS 1615

5. The worst-case switching-law. In this section we provide two explicit char-
acterizations of the switching-law that yields the “most unstable” solution of (2.3).

Let Hf (x) (Hg(x)) be the generalized first integral of ẋ = f(x) (ẋ = g(x)).
Definition 5.1. Define the worst-case switching-law (WCSL) by

λ(x) :=

{
0 if ∇Hf (x)g(x) ≥ 0,
1 if ∇Hf (x)g(x) < 0.

(5.1)

We denote

h(x) := λ(x)f(x) + (1− λ(x))g(x)

so the solution corresponding to the WCSL satisfies ẋ = h(x). Note that the WCSL
is a state-dependent switching-law and that since λ(x) = 0 or λ(x) = 1, then h(x) =
g(x) or h(x) = f(x), respectively, that is, the vertices of Ω. Furthermore, it is easy
to see that h(x) is homogeneous of degree β.

Intuitively, the WCSL can be explained as follows. Consider a point x where
f(x) and g(x) are as shown in Figure 3. A solution of ẋ = f(x) follows the contour
Hf (x) = const, whereas a solution of ẋ = g(x) crosses this contour going further
away from the origin. In this case, ∇Hf (x)g(x) > 0, so the WCSL is λ(x) = 0, which
corresponds to setting ẋ = g(x). Thus, the WCSL “pushes” the trajectory away from
the origin as much as possible.

H f (x) = const

f(x)
g(x)

∇H f (x)

x1

x2

Fig. 3. Geometrical explanation of the WCSL when ∇Hf (x)g(x) > 0.

Note that the definition of WCSL using (5.1) is meaningful only for x ∈ R
2 \ S

since ∇Hf (x) is not defined for x ∈ S. However, extending the definition of WCSL
to any x ∈ R

2 is immediate since x ∈ S implies one of two cases. In the first case,
x ∈ l, where l is a line in R

2 which is an invariant set of ẋ = f(x), that is, f(x) = cx
(with c < 0 since f is asymptotically stable), so clearly the WCSL must use g. In the
second case, the trajectory of ẋ = f(x) crosses S so the value of the switching-law on
the single point x can be chosen arbitrarily.
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We expect the WCSL to remain unchanged if we swap the roles of f and g. Indeed,
this is guaranteed by the following lemma, whose proof is given in the appendix.

Lemma 5.2. For all x ∈ D := {x : fT (x)g(x) > 0}
sgn(∇Hf (x)g(x)) = −sgn(∇Hg(x)f(x)),(5.2)

where sgn(·) is the sign function.
We can now state the main result of this section.
Theorem 5.3. (f ,g) ∈ ∂Γ if and only if the solution corresponding to the WCSL

is closed.9

Proof. Denote the solution corresponding to the WCSL by x(t) and suppose
that x(t) is closed. Let γ be the closed curve {x(t) : t ∈ [0, T ]}, where T > 0 is the
smallest time such that x(T ) = x(0). Note that using the explicit construction of λ(x)
(see (5.1)) we can easily define γ explicitly as a concatenation of several contours of
Hf (x) and Hg(x). Note also that the switching between ẋ = f(x) and ẋ = g(x) takes
place at points x where ∇Hf (x)g(x) = 0 (see (5.1)), that is, when g(x) and f(x) are
collinear. Hence, the curve γ has no corners.

We define the function V (x) by V (0) = 0, and for all x �= 0
V (x) = k such that x ∈ kγ,(5.3)

that is, the contours of V are obtained by scaling γ (see [1]). The function V (x) is
positively homogeneous (that is, for any c ≥ 0, V (cx) = cV (x)), radially unbounded,
and differentiable on R

2 \ {0}.
Let p(x) = ||x||β−1x and denote f ε(x) := f(x)+εp(x) and gε(x) := g(x)+εp(x).

Note that both f ε(x) and gε(x) belong to Eβ . We use V (x) to analyze the stability
of the perturbed system ẋ ∈ Ωε(x) := Co{f ε(x),gε(x)}. Consider the derivative of V
along the trajectories of ẋ ∈ Ωε(x):

V̇ (x) = ∇V (x) (η(t)(f ε(x) + (1− η(t))gε(x))

= ε∇V (x)p(x) + η(t)∇V (x)f(x) + (1− η(t))∇V (x)g(x),

where η(t) ∈ [0, 1] for all t. If at some x, V (x) corresponds to a contourHf (x) = const,
then ∇V (x)f(x) = 0 and, by the definition of WCSL (see (5.1)), ∇V (x)g(x) ≤ 0 so
V̇ (x) ≤ ε∇V (x)p(x). Otherwise, V (x) corresponds to a contour Hg(x) = const, so
∇V (x)g(x) = 0, ∇V (x)f(x) ≤ 0, and again V̇ (x) ≤ ε∇V (x)p(x). Hence, for any
ε < 0 we have

V̇ (x) ≤ ε∇V (x)p(x) = ε||x||β−1∇V (x)x < 0;

since this holds for all x and all η(t) ∈ [0, 1], we get that for ε < 0, Ωε ∈ Γ.
On the other hand, for ε > 0 and η(t) = λ(x(t)) we have

V̇ (x) = ε∇V (x)p(x) = ε||x||β−1∇V (x)x > 0;

since this holds for all x, ẋ ∈ Ωε(x) admits an unbounded solution for ε > 0. The
derivations above hold for arbitrarily small ε and, therefore, Ω ∈ ∂Γ.

For the opposite direction, assume that (f ,g) ∈ ∂Γ, and let x(t) be the solu-
tion corresponding to the WCSL, that is, x(t) satisfies ẋ = h(x) := λ(x)f(x) +

9We omit specifying the initial condition because the fact that h(x) is homogeneous implies that,
if the solution starting at some x0 is closed, then all solutions are closed.



SECOND-ORDER SWITCHED HOMOGENEOUS SYSTEMS 1617

(1−λ(x))g(x). To prove that x(t) is a closed trajectory, we use the following lemma,
whose proof appears in the appendix.

Lemma 5.4. If (f ,g) ∈ ∂Γ, then the solution corresponding to the WCSL rotates
around the origin.

Thus, for a given x0 �= 0, there exists t1 > 0 such that x(t), with x(0) = x0,
satisfies x(t1) = cx0, and since h(x) is homogeneous, we get x(nt1) = cnx(0), n =
1, 2, 3, . . . . We consider two cases. If c > 1, then x(t) is unbounded, and using the
homogeneity of h(x) we conclude that 0 is a (spiral) source. It follows from the theory
of structural stability (see, e.g., [10]) that there exists an ε > 0 such that for all (f̃ , g̃)
with d(f̃ , f) < ε and d(g̃,g) < ε, the origin is a source of the perturbed dynamical
system ẋ = λ(x)f̃(x) + (1 − λ(x))g̃(x). This implies that (f ,g) /∈ ∂Γ, which is a
contradiction.

If c < 1, then x(t) converges to the origin and, by the construction of the WCSL,
so does any other solution, so (f ,g) ∈ Γ, which is again a contradiction. Hence, c = 1,
that is, x(t) is closed.

The characterization of the WCSL using the generalized first integrals leads to a
simple and constructive proof of Theorem 5.3. However, to actually check whether
the solution corresponding to the WCSL is closed, a characterization of the WCSL in
polar coordinates is more suitable.

Representing (2.3) in polar coordinates, we get(
ṙ

θ̇

)
∈
(

cos θ sin θ
− sin θ

r
cos θ
r

)
Co{f(r, θ),g(r, θ)}.(5.4)

If (f ,g) ∈ ∂Γ, then the WCSL yields a closed solution. By using the transforma-
tion r = r, θ = −θ (if necessary), we may always assume that this solution rotates
around the origin in a counterclockwise direction, that is, θ̇(r, θ) > 0 for all θ ∈ [0, 2π).
Note that this implies that if at some point x the trajectories of one of the systems
are in the clockwise direction, then the WCSL will use the second system. Hence,
determining the WCSL is nontrivial only at points where the trajectories of both
systems rotate in the same direction, and we assume from here on that both rotate
in a clockwise direction. (Note that this explains why in Lemma 5.2 it is enough to
consider x ∈ D.)

Let jη(r, θ) := ηf(r, θ) + (1− η)g(r, θ) and

F (r, θ) := {η ∈ [0, 1] : (−sin θ cos θ)jη(r, θ) > 0}(5.5)

so F is a parameterization of the set of directions in Ω for which θ̇ > 0.
For any (r, θ) we define the switching-law

ζ(r, θ) := argmax
η∈F

1

r

ṙ

θ̇
;

that is, ζ is the switching-law that selects, among all the directions which yield θ̇ > 0,
the direction that maximizes d ln r

dθ . Using (5.4), we get

ζ(r, θ) = argmax
η∈F

(cos θ sin θ)jη(r, θ)

(−sin θ cos θ)jη(r, θ)
.(5.6)

Let

m(r, θ) :=
(cos θ sin θ)jζ(r, θ)

(−sin θ cos θ)jζ(r, θ)
(5.7)
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so that along the trajectory corresponding to ζ, 1
r ṙ/θ̇ = m. Note that since f and g

are homogeneous, ζ = ζ(θ) and m = m(θ).

It is easy to verify that the function q(y) := ay+b(1−y)
cy+d(1−y) , y ∈ [0, 1] (where c and d

are such that the denominator is never zero), is monotonic and, therefore, ζ(r, θ)
in (5.6) is always 0 or 1 and m(r, θ) in (5.7) is always one of the two values,

m0(θ) :=
(cos θ sin θ)g(r, θ)

(−sin θ cos θ)g(r, θ)
, m1(θ) :=

(cos θ sin θ)f(r, θ)

(−sin θ cos θ)f(r, θ)
,

respectively.
The next lemma, whose proof is given in the appendix, shows that the switching-

law ζ is just the WCSL λ.
Lemma 5.5. The switching-law ζ yields a closed solution if and only if λ yields

a closed solution.
Let

I :=

∫ 2π

0

m(θ)dθ(5.8)

=

∫ 2π

0

d ln r

dθ
dθ

= ln(r(T ))− ln(r(0)),

where (r(t), θ(t)) is the solution corresponding to the switching-law ζ, and T is the
time needed to complete a rotation around the origin. This solution is closed if and
only if ln(r(T ))− ln(r(0)) = 0. Combining this with Lemma 5.5 and Theorem 5.3, we
immediately obtain the following.

Theorem 5.6. (f ,g) ∈ ∂Γ if and only if I = 0.
It is easy to calculate I numerically and, therefore, Theorem 5.6 provides us with

a simple recipe for determining whether (f ,g) ∈ ∂Γ. However, note that we assumed
throughout that the closed solution of the system rotates in a counterclockwise di-
rection. Thus, to use Theorem 5.6 correctly, I has to be computed twice: first for
the original system and then for the transformed system r′ = r, θ′ = −θ (denote
this value by I ′). (f ,g) ∈ ∂Γ if and only if max(I, I ′) = 0. In this way, we find
whether the system has a closed trajectory, rotating around the origin in a clockwise
or counterclockwise direction.

The following example demonstrates the use of Theorem 5.6.
Example 2 (detecting the boundary of stability). Consider the system

ẋ ∈ Ωk(x) := Co{f(x),gk(x)},(5.9)

where

f(x) =

( −x3
2 − 2x3

1

x1x2
2

)
, gk(x) =

(
(kx1 − x2)

3 − 2x3
1

x1(x2 − kx1)
2

)
.(5.10)

It is easy to verify that f ∈ ESN
3 , and since g0(x) = f(x), we have Ω0 ∈ Γ. The

problem is to determine the smallest k∗ > 0 such that (f(x),gk∗(x)) ∈ ∂Γ.
Transforming to polar coordinates we get

f(r, θ) = r3

( −sin3 θ − 2 cos3 θ
cos θ sin2 θ

)
, gk(r, θ) = r3

(
(k cos θ − sin θ)3 − 2 cos3 θ
cos θ(sin θ − k cos θ)2

)
,
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so

jη(r, θ) = r3η

( −sin3 θ − 2 cos3 θ
cos θ sin2 θ

)
+ r3(1− η)

(
(k cos θ − sin θ)3 − 2 cos3 θ
cos θ(sin θ − k cos θ)2

)

and

I =

∫ 2π

0

m(θ)dθ =

∫ 2π

0

max
η∈F (θ)

(cos θ sin θ)jη(r, θ)

(−sin θ cos θ)jη(r, θ)
dθ,(5.11)

where F (θ) includes 0 if (−sin θ cos θ)j0(r, θ) > 0 and 1 if (−sin θ cos θ)j1(r, θ) > 0.
Note that although jη is a function of both r and θ, the integrand in (5.11) is a function
of θ (and k) but not of r.

We calculated I(k) numerically for different values of k. The results are shown
in Figure 4. The value k∗ for which I(k∗) = 0 is

k∗ = 1.3439

(to four-digit accuracy), and it may be seen that for k < k∗ (k > k∗), I(k) < 0
(I(k) > 0). We repeated the computation for the transformed system r = r, θ = −θ
and found that there exists no closed solution rotating around the origin in a clockwise
direction. Hence, the system (5.9) and (5.10) is UGAS for all k ∈ [0, k∗) and unstable
for all k > k∗.

The WCSL (see (5.6)) for k = k∗ is

ζ(θ) =

{
0 if θ ∈ [0, 0.6256) ∪ [1.1811, 3.7672) ∪ [4.3227, 2π),
1 otherwise.

(5.12)

Figure 5 depicts the solution of the system given by (5.9) and (5.10) with k =
1.3439, WCSL (5.12), and x0 = (1, 0)

T . It may be seen that the solution is a closed
trajectory, as expected. Note that this trajectory is not convex, which implies that the
Lyapunov function used in the proof of Theorem 5.3 (see (5.3)) is not convex. This is
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Fig. 5. The solution of (5.9) and (5.10) for k = k∗ and the WCSL, with x0 = (1, 0)T .

a phenomenon that is unique to nonlinear systems. For switched linear systems the
closed trajectory is convex and, therefore, so is the Lyapunov function V that yields
a sufficient and necessary stability condition [14].

6. Stability analysis. In this section we transform the original problem of an-
alyzing the stability of (2.3) to one of detecting the boundary of stability ∂Γ. The
latter problem was solved in section 5.

Given Ω = Co{f ,g}, we define a new homogeneous function hk(x) with the
following properties: (1) h0(x) = f(x); (2) h1(x) = g(x); and (3) for all k1 < k2,
{hk(x) : 0 ≤ k ≤ k1} ⊂ {hk(x) : 0 ≤ k ≤ k2}. One possible example that satisfies the
above is

hk(x) := f(x) + k(g(x)− f(x)).
Consider the switched homogeneous system

ẋ(t) ∈ Ωk(x(t)), Ωk := Co{f(x),hk(x)}.(6.1)

The absolute stability problem is to find the smallest k∗ > 0, when it exists, such that
Ωk∗ ∈ ∂Γ. Noting that Ω0 = Co{f(x), f(x)} ∈ Γ, Ω1 = Co{f(x),g(x)} = Ω, and
Ωk1 ⊂ Ωk2 for all k1 < k2, we immediately obtain the following result.

Lemma 6.1. The system (2.3) is UGAS if and only if k∗ > 1.
Thus, we can always transform the problem of analyzing the stability of a switched

dynamical system into an absolute stability problem. We already know how to solve
the latter problem for second-order homogeneous systems. To illustrate this consider
the following example.

Example 3. Consider the system (2.3) with

f(x) =

( −x3
2 − 2x3

1

x1x2
2

)
, g(x) =

(
(x1 − x2)

3 − 2x3
1

x1(x2 − x1)
2

)
.(6.2)

It is easy to verify that f(x) and g(x) belong to ES3 and that both Assumptions 1
and 2 are satisfied.
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To analyze the stability of the system we use Lemma 6.1. Defining

hk(x) =

(
(kx1 − x2)

3 − 2x3
1

x1(x2 − kx1)
2

)
,(6.3)

we must find the smallest k∗ such that (f ,hk∗) ∈ ∂Γ. We already calculated k∗ in
Example 2 and found that k∗ = 1.3439 > 1. Hence, the system (2.3) with f and g
given in (6.2) is UGAS.

7. Designing a switching controller. In this section we employ our results to
derive an algorithm for designing a switching controller for stabilizing homogeneous
systems. To be concrete, we focus on linear systems rather than on the general
homogeneous case. Hence, consider the system

ẋ = Ax+Bu, u ∈ U := Co{K1x, K2x},(7.1)

where K1 and K2 are given matrices that represent constraints on the possible con-
trols.10 We would like to design a stabilizing state-feedback controller u(t) = u(x(t))
that satisfies the constraint u(t) ∈ U for all t.

We assume that for any fixed matrix K ∈ Co{K1, K2} the matrix A + BK is
strictly unstable and, therefore, a linear controller u = Kx will not stabilize the
system. However, it is still possible that a switching controller will stabilize the
system, and designing such a controller (if one exists) is the purpose of this section.

Roughly speaking, we are trying to find a switching-law that yields an asymp-
totically stable solution of ẋ ∈ Ω := Co{A + BK1, A + BK2}x, where each ma-
trix in Ω is strictly unstable. Using the transformation t = −t, we see that such
a solution exists if and only if this switching-law yields an unstable solution of
ẋ ∈ Ω− := Co{−(A+BK1),−(A+BK2)}x. Clearly, every matrix in Ω− is asymp-
totically stable. Hence, we obtain the main result of this section.

Theorem 7.1. Let λ = λ(x) be the WCSL for the system

ẋ ∈ Co{−(A+BK1),−(A+BK2)}
and let x̃ be the corresponding solution. There exists a switching controller that asymp-
totically stabilizes (7.1) if and only if x̃ is unbounded and, in this case, u(x) =
λ(x)K1x+ (1− λ(x))K2x is a stabilizing controller.

Note that Theorem 7.1 provides an algorithm for designing a stabilizing switch-
ing controller whenever such a controller exists. We already solved the problem of
analyzing x̃ for second-order systems.

Example 4 (designing a stabilizing switching controller). Consider the sys-
tem (7.1) with

A =

(
0 1
−2 1

)
, B =

(
0 0
−1 0

)
, K1 =

(
0 0
0 0

)
, K2 =

(
k 0
0 0

)
,(7.2)

where k > 0 is a constant. It is easy to verify that for any fixed K ∈ Co{K1, K2}, the
matrix A+BK is unstable and, therefore, no linear controller u = Kx can stabilize
the system. Therefore, we design a switching controller. By Theorem 7.1 we must
analyze the stability of the switched system (6.1) with

f(x) = −
(

0 1
−2 1

)
x, hk(x) = −

(
0 1

−(2 + k) 1

)
x.

10Determined, for example, by the physical limitations of the actuators.
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Transforming ẋ = f(x) to polar coordinates, we get

(
ṙ

θ̇

)
=

(
(cos θ − sin θ)r sin θ

(sin θ − 1
2 cos θ)2 + 7

4 cos
2 θ

)
,

whereas ẋ = hk(x) becomes(
ṙ

θ̇

)
=

(
((1 + k) cos θ − sin θ)r sin θ

(sin θ − 1
2 cos θ)2 + ( 74 + k) cos2 θ

)
.

Clearly, the solutions of both these systems always rotate in a counterclockwise di-
rection (θ̇ > 0 for all θ) and, therefore, for all θ, we have m(θ) = max(m0(θ), m1(θ)),
where

m0(θ) =
((1 + k) cos θ − sin θ) sin θ

(sin θ − 1
2 cos θ)2 + ( 74 + k) cos2 θ

, m1(θ) =
(cos θ − sin θ) sin θ

(sin θ − 1
2 cos θ)2 + 7

4 cos
2 θ

.

It is easily verified that m1(θ) ≤ m0(θ) if and only if tan θ ≥ 0. Hence, the WCSL is

ζ(θ) =

{
0 if tan θ ≥ 0,
1 otherwise

=

{
0 if θ ∈ [0, π/2) ∪ [π, 3π/2),
1 otherwise

and

I(k) =

∫ π/2

0

m0(θ)dθ +

∫ π

π/2

m1(θ)dθ +

∫ 3π/2

π

m0(θ)dθ +

∫ 2π

3π/2

m1(θ)dθ.

Computing numerically, we find that the value of k for which I = 0 is k∗ = 6.98513.
Hence, there exists a switching controller that asymptotically stabilizes (7.1) and (7.2)
if and only if k > 6.98513 and

u(x) =

{
K2x if arctan(x2/x1) ∈ [0, π/2) ∪ [π, 3π/2),
K1x otherwise

(7.3)

is a stabilizing controller.

Figure 6 depicts the trajectory of the closed-loop system given by (7.1) and (7.2)
with k = 10, the switching controller (7.3), and x0 = (1, 0)T . As we can see, the
system is indeed asymptotically stable.

8. Summary. We presented a new approach to stability analysis of second-order
switched homogeneous systems based on the idea of generalized first integrals. Our
approach leads to an explicit Lyapunov function that provides an easily verifiable,
necessary and sufficient stability condition.

Using our stability analysis, we designed a novel algorithm for constructing a
switching controller for stabilizing second-order homogeneous systems. The algorithm
determines whether the system can be stabilized using switching, and if the answer
is affirmative, outputs a suitable controller.

Interesting directions for further research include the complete characterization
of the boundary of stability ∂Γ and the study of higher-order switched homogeneous
systems.
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Fig. 6. Trajectory of the closed-loop system with the switching controller with x0 = (1, 0)T .

Appendix.

Proof of Lemma 4.1. The existence of a common Lyapunov function V ′(x) follows
from Theorem 3.1 in [13] (see also [12]). However, V ′ is not necessarily homogeneous.
Denote γ := {x : V ′(x) = 1} so γ is a closed curve encircling the origin. We define a
new function V (x) by V (0) = 0 and, for all x �= 0,

V (x) = k such that x ∈ kγ;

that is, the contours of V are obtained by scaling γ (see [1]). V (x) is differentiable
on R

2 \ {0}, positively homogeneous of order one, and radially unbounded.
For any x ∈ γ we have ∇V (x)f(x) = ∇V ′(x)f(x) < 0, and using the homogeneity

of V (x) and f(x) this holds for any x ∈ R
2 \ {0}. Similarly, ∇V (x)g(x) < 0 for all

x ∈ R
2 \ {0}.

Proof of Lemma 5.2. Let v(x) = f(x)
||f(x)|| and w(x) =

(∇Hf (x))T

||∇Hf (x)|| . These two

vectors form an orthonormal basis of R
2 and, therefore, g(x) = a1v(x) + a2w(x)

and (∇Hg(x))T = b1v(x) + b2w(x), where a1 = g
T (x)v(x), a2 = g

T (x)w(x), b1 =
∇Hg(x)v(x), and b2 = ∇Hg(x)w(x). Now ∇Hg(x)gx = 0 yields

a1b1 + a2b2 = 0.(8.1)

For any x ∈ D we have a1 > 0 and since ∇Hf (x) (∇Hg(x)) is orthogonal to f(x)
(g(x)), we also have b2 > 0. Substituting in (8.1) yields sgn(a2) = −sgn(b1), which
is just (5.2).

Proof of Lemma 5.4. The system ẋ = h(x) is homogeneous and we can repre-
sent it in polar coordinates as in (2.1). If A(θ) = 0 for some θ ∈ [0, 2π], then the
solution corresponding to the WCSL follows the line l := θ = θ. If R(θ) < 0, then
the solution follows the line l to the origin. However, by the definition of WCSL this
is possible only if both the solutions of ẋ = f(x) and ẋ = g(x) coincide with the
line l. Thus, the line l is an invariant set of the system which is a contradiction to
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Assumption 1. If R(θ) ≥ 0, then we get a contradiction of Assumption 2. Hence,
A(θ) �= 0 for all θ ∈ [0, 2π] and, therefore, there exists c > 0 such that A(θ) > c or
A(θ) < −c for all θ ∈ [0, 2π]. Thus, the solution rotates around the origin.

Proof of Lemma 5.5. Suppose that the WCSL yields a closed trajectory x̃(t) that
rotates around the origin in a counterclockwise direction (θ̇ > 0). Assume that at
some point x along this trajectory, λ(x) = 1, that is,

∇Hf (x)g(x) < 0.(8.2)

Note that by the definition of the generalized first integral, ∇Hf (x)f(x) = 0 for any
x ∈ R

2 \ S. This implies that ∇Hf (x) = k(f2(x),−f1(x)) for some k > 0, so (8.2)
yields

f2(x)g1(x)− f1(x)g2(x) < 0.(8.3)

Let r, θ be the polar coordinates of x. Since x̃(t) rotates around the origin in a
counterclockwise direction and satisfies ˙̃x = f(x̃) at x, we have (−sin θ cos θ)f(r, θ) >
0. If (−sin θ cos θ)g(r, θ) < 0, then 0 /∈ F (r, θ) and, therefore, ζ(θ) = 1. If, on the
other hand, (−sin θ cos θ)g(r, θ) > 0, then by the definition of ζ (see (5.6)), ζ(θ) = 1
if and only if

(cos θ sin θ)f(r, θ)

(−sin θ cos θ)f(r, θ)
>

(cos θ sin θ)g(r, θ)

(−sin θ cos θ)g(r, θ)
.(8.4)

Simplifying, we see that (8.4) is equivalent to f1(r, θ)g2(r, θ) − f2(r, θ)g1(r, θ) > 0,
which is just (8.3), hence, ζ(r, θ) = 1. Summarizing, we proved that λ(x) = 1 if and
only if ζ(θ) = 1.

Acknowledgments. We thank the anonymous reviewers for many helpful com-
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Boston, 1983, pp. 181–191.

[6] W. P. Dayawansa and C. F. Martin, A converse Lyapunov theorem for a class of dynamical
systems which undergo switching, IEEE Trans. Automat. Control, 44 (1999), pp. 751–760.

[7] A. F. Filippov, Stability conditions in homogeneous systems with arbitrary regime switching,
Automat. Remote Control, 41 (1980), pp. 1078–1085.

[8] H. Goldstein, Classical Mechanics, 2nd ed., Addison–Wesley, Reading, MA, 1980.
[9] W. Hahn, Stability of Motion, Springer–Verlag, New York, 1967.

[10] J. H. Hubbard and B. H. West, Differential Equations: A Dynamical Systems Approach.
Higher-Dimensional Systems, Springer–Verlag, New York, 1995.

[11] D. Liberzon and A. S. Morse, Basic problems in stability and design of switched systems,
IEEE Control Systems Magazine, 19 (1999), pp. 59–70.

[12] Y. Lin, E. D. Sontag, and Y. Wang, A smooth converse Lyapunov theorem for robust stability,
SIAM J. Control Optim., 34 (1996), pp. 124–160.



SECOND-ORDER SWITCHED HOMOGENEOUS SYSTEMS 1625

[13] J. L. Mancilla-Aguilar and R. A. Garcia, A converse Lyapunov theorem for nonlinear
switched systems, Systems Control Lett., 41 (2000), pp. 67–71.

[14] M. Margaliot and G. Langholz, Necessary and sufficient conditions for absolute stability:
The case of second-order systems, IEEE Trans. Circuits Systems I Fund. Theory Appl., to
appear.

[15] A. S. Morse, ed., Control Using Logic-Based Switching, Lecture Notes in Control and Inform.
Sci. 222, Springer–Verlag, London, 1997.

[16] E. S. Pyatnitskiy and L. B. Rapoport, Criteria of asymptotic stability of differential in-
clusions and periodic motions of time-varying nonlinear control systams, IEEE Trans.
Circuits Systems I Fund. Theory Appl., 43 (1996), pp. 219–229.

[17] L. B. Rapoport, Asymptotic stability and periodic motions of selector-linear differential inclu-
sions, in Robust Control via Variable Structure and Lyapunov Techniques, Lecture Notes
in Control and Inform. Sci. 217, F. Garofalo and L. Glielmo, eds., Springer–Verlag, London,
1996, pp. 269–285.

[18] A. J. van der Schaft and H. Schumacher, An Introduction to Hybrid Dynamical Systems,
Lecture Notes in Control and Inform. Sci. 251, Springer–Verlag, London, 2000.

[19] M. Vidyasagar, Nonlinear Systems Analysis, Prentice–Hall, Upper Saddle River, NJ, 1993.
[20] A. L. Zelentsovsky, Nonquadratic Lyapunov functions for robust stability analysis of linear

uncertain systems, IEEE Trans. Automat. Control, 39 (1994), pp. 135–138.



MINIMAX CONTROL OF DISCRETE-TIME STOCHASTIC
SYSTEMS∗
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Abstract. This paper gives a unified, self-contained presentation of minimax control problems
for discrete-time stochastic systems on Borel spaces, with possibly unbounded costs. The main
results include conditions for the existence of minimax strategies for finite-horizon problems and
infinite-horizon discounted and undiscounted (average) cost criteria. The results are specialized to
control systems with unknown disturbance distributions—also known as games against nature. Two
examples illustrate the theory, one of them on the mold level control problem, which is a key problem
in the steelmaking industry.
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1. Introduction. This paper has several aims. First, it is a survey of results
on minimax control problems for discrete-time, stochastic, Markov-like systems in
Borel spaces, with possibly unbounded costs. Second, for such systems, it presents
a unified, self-contained study that extends virtually all of the results known to date
on the minimax control theory, including finite- and infinite-horizon (discounted and
undiscounted) problems. It also includes stochastic control problems with unknown
disturbance distribution—also known as games against nature. And, third, we use
the developed theory to analyze a mold level control problem, which is a key problem
in the steelmaking industry, and which provided the initial motivation for this paper.

In contrast to the standard optimal control problem, in which there is a single
decision-maker, in a minimax control problem there are two decision-makers, namely,
the controller himself and an “opponent.” Thus, in the discrete-time stochastic case
that we are concerned with, the system’s state process {xt} typically evolves according
to a model of the form, say,

xt+1 = F (xt, at, bt, ξt), t = 0, 1, . . . ,(1.1)

where π = {at} and γ = {bt} are strategies for the controller and the opponent, and
{ξt} is a sequence of random disturbances. Then if K(x, π, γ) denotes the system’s
performance criterion for each initial state x0 = x, the controller’s problem is to find
a minimax strategy π∗, which means that π∗ guarantees the best performance in the
worst possible situation in the sense that it minimizes

K#(x, π) := sup
γ

K(x, π, γ) ∀x(1.2)

∗Received by the editors January 22, 2001; accepted for publication (in revised form) May 21,
2002; published electronically January 14, 2003.

http://www.siam.org/journals/sicon/41-5/38383.html
†Departamento de Sistemas, Universidad Autónoma Metropolitana–Azcapotzalco, Av. San Pablo
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over the set of all admissible strategies π. Hence π∗ is a “minimax” strategy because
it minimizes the maximum expected cost K#(x, ·), where the maximum is taken over
all possible strategies γ of the opponent. On the other hand, it follows from the above
description that a minimax control problem is a special class of a two-person zero-sum
stochastic game. In fact, defining this game’s upper value as usual, i.e.,

U(x) := inf
π

sup
γ

K(x, π, γ) = inf
π

K#(x, π),

we can see that a minimax strategy π∗ is precisely one that attains the upper value
because

K#(x, π∗) = inf
π

K#(x, π) = U(x) ∀x.(1.3)

A standard application of the minimax approach is to control systems that depend
on unknown parameters. In this case, the opponent is the “nature,” which somehow
chooses the unknown parameters at each time t. For example, instead of (1.1) consider
the usual, single-controller system

xt+1 = F (xt, at, ξt), t = 0, 1, . . . ,(1.4)

and suppose that the disturbances ξt are independent random variables with unknown
distributions. Then a nature’s strategy, say γ = {bt}, would choose a distribution bt
for ξt at each time t = 0, 1, . . . . Problems of this kind are naturally called games
against nature.

As far as we can tell, except for some results by Küenle [32, 33, 34] and Kurano
[35], there is no general theory for minimax control problems in Borel spaces. In
fact, all of the previous literature consists either of results specialized from the theory
of zero-sum games (which we can argue are not “true” minimax problems—see the
next-to-last paragraph in section 2.1 and Remark 2.2) or of minimax problems for
particular classes of controlled systems, for instance, queueing and inventory models;
see [1, 2, 6, 22, 24, 36] and their references.

Here we propose a general theory for minimax control problems based on the
weighted supremum norm approach, which can be traced back (at least) to Wessels
[64], and further developed by many authors for different classes of Markov games and
control processes, e.g., [2, 12, 13, 14, 17, 18, 19, 23, 25, 31, 32, 33, 34, 35, 42, 46, 48, 64].
This theory is presented in sections 2 to 5. After introducing the basic setup and
performance criteria in section 2, in section 3 we first state our main hypothesis
(Assumption 3.1), and then we present a full solution (Theorem 3.1) of the finite-
horizon, n-stage problem (n = 1, 2, . . . ). In section 4 we consider the infinite-horizon
α-discounted cost (α-DC), with a “discount factor” α in (0,1). Our main results
include the existence of minimax strategies and the approximation of the optimal
α-DC by finite-horizon costs (Theorem 4.2), as well as the convergence, in a suitable
sense (Definition 4.5), of finite-horizon minimax strategies to an infinite-horizon one
(Corollary 4.6). Similar results are presented in section 5 for the average cost (AC)
problem (Theorem 5.2 and Corollary 5.4).

In section 6 we turn our attention to the games against nature concerning a system
of the form (1.4) with unknown disturbance distribution. Here we give conditions that
ensure (most of) the requirements in Assumption 3.1, which in turn guarantees that
(most of) the results in sections 3 to 5 hold for the games against nature.

Finally, in section 7, we thoroughly analyze two examples, obtaining the corre-
sponding optimal cost functions and minimax strategies. The first one, Example 7.1,
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gives a solution to the mold level control problem, which essentially consists of con-
trolling a valve to regulate the mold level in a continuous casting machine. From
a mathematical viewpoint this problem looks deceptively simple, but it has many
critical implications for steelmaking [26, 47]. For instance, from an operational point
of view the mold level must be kept constant to avoid molten steel overflows, mold
emptying, or strand breakouts, which may cause significant economic losses [9, 28, 30].
From a metallurgical perspective, regulation of the mold is important to avoid slag
trapping and steel oxidizing. Moreover, from the quality viewpoint the mold level
must be kept constant to obtain a final product that is free of internal and surface
cracks [5]. The problem is greatly complicated by many uncertainties and unknown
parameters coming into play. For example, measuring the level of molten steel in
the mold is not an easy task because the environment is very harsh (over 1600 de-
grees Celsius), and the molten surface is covered with an insulating powder [62]. In
addition, the caster dynamic performance is affected by the material’s clogging and
unclogging in the valve’s nozzle [29, 54]. These complications, among others, natu-
rally induced us to pose the mold level control problem as a minimax problem. To our
surprise, the minimax strategy turned out to be an easy-to-compute myopic strategy.
For other approaches to the mold level control problem, see, for instance, [3, 9, 20, 27]
and their references. In the second example, Example 7.2, we study a general, scalar
LQ (linear systems, quadratic cost) minimax problem. Although the latter problem
is scalar (i.e., the state space is X = R), it clearly shows how one can deal with the
vector case.

Before getting into details, a word needs to be said concerning our approach vs.
other approaches in the related literature.

Existence and computation of values and minimax strategies. As hap-
pens with many mathematical problems, it is one thing to give conditions for a zero-
sum game to have a value and/or minimax or maximin strategies (see Remark 2.2
below), and another—sometimes quite different—story to give conditions for the ex-
istence and computation of the game’s value and optimal strategies. For instance,
Rieder’s [50] Example 4.1 shows a zero-sum game (with a Borel measurable payoff
function) for which the value function exists, but it is not universally measurable.
On the other hand, Küenle [31], Maitra and Sudderth [38], Nowak [43, 44], and
other authors give conditions for a zero-sum game to have an either upper or lower
semianalytic—hence universally measurable—value function, which is not necessarily
Borel measurable.

As a consequence, in all of these cases it is, of course, unclear that one can in
fact compute the value function. Similarly, in, for instance, the latter references one
can find conditions for the existence of ε-optimal (for each ε > 0) universally—or
even limit—measurable strategies; and, again, the question of how to compute these
strategies remains open.

Actually, the existence of the value function and minimax/maximin strategies has
been studied in an almost incredible generality. For instance, extending a result by
Martin [41] for games on finite sets, Maitra and Sudderth [40] recently proved that a
two-person, zero-sum stochastic game with arbitrary state and action spaces, a finitely
additive law of motion, and a bounded Borel measurable payoff has a value. Moreover,
the payoff function may depend on the whole history of the game (i.e., as in (2.4) with
n =∞), and so the main result in [40] is a vast improvement of Theorem 2.1 in [37]
on games with a so-called lim sup payoff, which includes, e.g., discounted and average
cost games (see (2.6) and (2.7) below). A countably additive (as opposed to finitely
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additive) version of lim sup games is provided by Maitra and Sudderth in [38]—see
also [39]—in which the state and action spaces are Borel spaces, with some additional
requirements of compactness and continuity. In the latter case, Maitra and Sudderth
give a transfinite algorithm for calculating the value; this algorithm, however, may
not “terminate” if the state space is not finite.

Another work of extreme generality is Rieder’s [51]. He considers zero- and
nonzero-sum, nonstationary stochastic games, with a non-Markov transition law and
utility functions that may depend on the whole story of the game. Under several
different sets of assumptions, for each stage of the nonstationary game he shows the
existence of values, the existence of optimal strategies, and the convergence of the
value iteration algorithm.

Our paper is at a more mundane level: we consider a standard, time-homogeneous
minimax control model with Borel state and action spaces (see (2.1)), and we are in-
terested in the existence of Borel measurable—as opposed to, say, semianalytic or
universally measurable—value functions and optimal strategies. This “loss” of gener-
ality, however, is compensated by the fact that our assumptions are reasonably mild
and not hard to verify, and, at the same time, they are sufficiently general to include
most of the minimax control problems that appear in applications; and above all,
they allow us to obtain computable results, at least in principle. Moreover, replacing
our Assumption 3.1 with the standard continuity/compactness conditions (see, e.g.,
[18, 25, 45, 46, 61]) the results in sections 3, 4, 5 can be extended in the obvious
manner to get both minimax and maximin strategies for zero-sum games.

2. Minimax control problems. In this section we introduce the basic compo-
nents of a minimax control problem, namely, the minimax control model, the sets of
admissible strategies, and the performance criteria. We will use the following nota-
tion.

Remark 2.1. If X is a Borel space (that is, a Borel subset of a complete and
separable metric space), its Borel σ-algebra is denoted by B(X). Let X and Y be
Borel spaces. Then a transition probability (or stochastic kernel) from Y to X is a
function ϕ(D | y) such that ϕ(· | y) is a probability measure on B(X) for each y ∈ Y ,
and ϕ(D | ·) is a measurable function on Y for each D ∈ B(X). If Y = X, then ϕ is
called a Markov transition probability.

2.1. The minimax control model. As we have already noted, a minimax
control problem is in fact a special class of a two-person zero-sum dynamic game.
Thus the corresponding minimax control model is (as in [32, 33, 34, 35]) of the form

MCM := (X,A,B,KA,K, Q, c),(2.1)

where X is the state space, A is the controller’s (player 1) action space, and B is the
opponent’s (player 2) action space. These spaces are all assumed to be Borel spaces.
In addition we have the following:

(a) KA ∈ B(X×A) is the constraint set for the controller. That is, for each state
x ∈ X, the x-section

A(x) := {a ∈ A | (x, a) ∈ KA}(2.2)

represents the set of admissible actions for the controller in the state x. We
assume that KA contains the graph of a measurable function from X to A.
(This will indeed be the case under Assumption 3.1 below.)
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(b) K ∈ B(X × A × B) is the constraint set for the opponent, so that for each
pair (x, a) in KA the (x, a)-section

B(x, a) := {b ∈ B | (x, a, b) ∈ K}(2.3)

is the set of admissible actions for the opponent when the state is x ∈ X
and the controller uses the action a ∈ A(x). We suppose that K contains
the graph of a measurable map from KA to B. (This, again, will be the case
under Assumption 3.1.)

(c) Q or, more explicitly, Q(D | x, a, b), denotes the transition law, a stochastic
kernel from K to X.

(d) c : K→ R stands for the cost-per-stage function.
The above minimax control model is also known as a Markov (or stochastic) game

with complete information [32, 33, 34]. If the opponent’s action set B(x, a) in (2.3)
does not depend on a ∈ A(x), we then obtain the usual zero-sum Markov game in
which the players choose their actions a ∈ A(x) and b ∈ B(x) independently.

The minimax control model represents a dynamic game that evolves in discrete
time (n = 0, 1, . . . ) as follows: if the state at time n is xn = x ∈ X, then the
controller chooses an action an = a in A(x), and the opponent chooses an action
bn = b in B(x, a). As a consequence of this, two things happen: (1) the controller
pays c(x, a, b) to the opponent, and (2) the system moves to a new state xn+1 ∈ X
with probability Q(· | x, a, b).
2.2. Strategies. Let H0 := X, H#

0 := KA, and for n ≥ 1 let Hn := K
n×X and

H# := K
n ×KA. Generic elements of Hn and H#

n are “histories” of the form

hn = (x0, a0, b0, . . . , xn−1, an−1, bn−1, xn) and h#
n = (hn, an),(2.4)

respectively.
A strategy for the controller is a sequence π = {πn} of stochastic kernels from Hn

to A that satisfy the constraint

πn(A(xn) | hn) = 1 ∀hn ∈ Hn and n = 0, 1, . . . .

We shall denote by Π the set of all the strategies (or control policies) for the controller.
A strategy for the opponent is a sequence γ = {γn} of stochastic kernels γn from

H#
n to B such that γn(B(xn, an) | h#

n ) = 1 for all h#
n ∈ H#

n and n = 0, 1, . . . . The
set of all these strategies is denoted by Γ.

Definition 2.1. FA denotes the set of all measurable functions f : X → A such
that f(x) is in A(x) for all x ∈ X, and FB stands for the set of measurable functions
g from X ×A to B such that g(x, a) is in B(x, a) for all (x, a) ∈ KA.

A strategy π = {πn} for the controller is said to be a Markov strategy if there is
a sequence of functions fn ∈ FA such that πn(· | hn) is concentrated at fn(xn) for
all n = 0, 1, . . . . In this case we shall identify πn with fn. Moreover, if π = {fn} is
a Markov strategy and fn = f0 for all n ≥ 0, then π is called a stationary strategy,
and we shall identify π with f0 ∈ FA. In other words, FA will be identified with the
family of stationary strategies for the controller.

The Markov and stationary strategies for the opponent are defined similarly,
replacing fn ∈ FA with gn ∈ FB .

Let (Ω,F) be the (canonical) measurable space consisting of the sample space
Ω := (X × A × B)∞ and its product σ-algebra F. Then, by a theorem of Ionescu-
Tulcea [4, 32] for each pair of strategies π ∈ Π and γ ∈ Γ, and each initial state x ∈ X,
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there is a probability measure P
π,γ
x and a stochastic process {(xt, at, bt), t = 0, 1, . . . }

defined on (Ω,F) in a canonical way, where xt, at, and bt represent the state and the
actions of the controller and the opponent, respectively, at each time t = 0, 1, . . . .
The expectation operator with respect to P

π,γ
x is denoted by E

π,γ
x .

2.3. Performance criteria. Let α be a given positive number. We shall con-
sider three performance criteria, each depending on the initial state x0 = x ∈ X, and
strategies π ∈ Π for the controller and γ ∈ Γ for the opponent.

• The finite-horizon n-stage cost (n = 1, 2, . . . ):

Vn,α(x, π, γ) := E
π,γ
x

[
n−1∑
t=0

αtc(xt, at, bt)

]
.(2.5)

For α = 1 we shall write Vn,1(x, π, γ) ≡ Jn(x, π, γ).
• The infinite-horizon α-discounted cost (α-DC) with 0 < α < 1:

Vα(x, π, γ) := E
π,γ
x

[ ∞∑
t=0

αtc(xt, at, bt)

]
.(2.6)

• The infinite-horizon expected average cost (AC):

J(x, π, γ) := lim sup
n→∞

1

n
Jn(x, π, γ).(2.7)

Definition 2.2. Let K(x, π, γ) be any of the cost functions in (2.5)–(2.7), and
let

K#(x, π) := sup
γ∈Γ

K(x, π, γ).(2.8)

A strategy π∗ ∈ Π (for the controller) is said to be a minimax strategy with respect to
the cost function K if π∗ minimizes K#(x, ·) over Π for all x ∈ X, that is,

K#(x, π∗) = inf
π∈Π

K#(x, π) = inf
π∈Π

sup
γ∈Γ

K(x, π, γ) ∀x ∈ X.(2.9)

Remark 2.2. In game-theoretic terminology the function on the right-hand side
of (2.9), i.e.,

U(x) := inf
π∈Π

sup
γ∈Γ

K(x, π, γ),(2.10)

is called the zero-sum game’s upper value (with respect to K). Thus a minimax
strategy is one that attains the game’s upper value. On the other hand, one could
consider the “dual,” maximin problem in which (2.8) is replaced with

K#(x, γ) := inf
π∈Π

K(x, π, γ).

Then the game’s lower value (with respect to K) is

L(x) := sup
γ∈Γ

K#(x, γ) = sup
γ∈Γ

inf
π∈Π

K(x, π, γ),

and γ∗ ∈ Γ is called a maximin strategy if

K#(x, γ∗) = L(x) ∀x ∈ X.(2.11)

In general L(·) ≤ U(·), and if the equality holds, then L(·) = U(·) is called the game’s
value function. If in addition π∗ and γ∗ satisfy (2.9) and (2.11), then the pair (π∗, γ∗)
is said to be a saddle point or a noncooperative equilibrium.
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3. Finite-horizon minimax problems. The following assumption is supposed
to hold throughout the remainder of the paper. Except for parts (f) and (g) in this
assumption, all of the conditions concern the usual continuity/compactness hypothe-
ses for Markov control processes and Markov games [1, 2, 10, 11, 12, 17, 18, 23, 31,
32, 33, 34, 35, 45, 46, 48, 51, 52, 55, 56, 61, 64].

Assumption 3.1. Let MCM be as in (2.1).
(a) c(x, a, b) is lower semicontinuous (l.s.c.) on K.
(b) There is a constant c̄ ≥ 0 and a measurable function w(·) ≥ 1 on X such that

|c(x, a, b)| ≤ c̄w(x) ∀(x, a, b) ∈ K.(3.1)

(c) The transition law Q is weakly continuous, that is, for each continuous
bounded function u : X → R, the function

û(x, a, b) :=

∫
X

u(y)Q(dy|x, a, b)(3.2)

is continuous on K.
(d) The function w(·) ≥ 1 in (b) as well as ŵ(x, a, b) :=

∫
w(y)Q(dy|x, a, b) are

continuous on X and K, respectively. (See Remark 3.1(a).)
(e) There is a constant β > 0 such that ŵ(x, a, b) ≤ βw(x) for all (x, a, b) in K.
(f) The set A(x) ⊂ A in (2.2) is compact for each x ∈ X, and in addition the

set-valued mapping x �→ A(x) is upper semicontinuous (u.s.c.), that is, if
xk → x and ak ∈ A(xk) is such that ak → a, then a is in A(x). (See Remark
3.1(c).)

(g) The set B(x, a) in (2.3) is σ-compact for each (x, a) ∈ KA, and, moreover,
the set-valued mapping (x, a) �→ B(x, a) is l.s.c., that is, if (xk, ak) ∈ KA

converges to (x, a) ∈ KA and b is in B(x, a), then there exists bk in B(xk, ak)
such that bk → b.

Before stating our optimality result for the finite-horizon criterion (2.5), we shall
make some comments on Assumption 3.1 and introduce some useful concepts.

Remark 3.1. (a) If the cost-per-stage c(x, a, b) is bounded below, then part
(d) in Assumption 3.1 is not required. (Indeed, if c(x, a, b) ≥ −k for all (x, a, b) in
K and some constant k, then ĉ(x, a, b) := c(x, a, b) + k is nonnegative, and so the
fact that Assumption 3.1(d) is not required follows from the proof of Lemma 3.2(b),
below. Observe that replacing c with ĉ in (2.5)–(2.7) does not essentially alter the
corresponding minimax control problem.) Furthermore, if c is bounded (above and
below), then the “weight” or “bounding” function w(·) can be taken as a constant, for
instance, w(·) ≡ 1, and so Assumption 3.1(e) can be omitted.

(b) Consider the dynamic model (1.1) and suppose that {ξt} is a sequence of
independently and identically distributed (i.i.d.) random variables in a Borel space S.
Let µ be the common probability distribution of the ξt. Then the function û in (3.2)
becomes

û(x, a, b) = E [u(xt+1) | (xt, at, bt) = (x, a, b)] =

∫
S

u[F (x, a, b, s)]µ(ds).(3.3)

Therefore, by the dominated convergence theorem, Assumption 3.1(c) holds if the mea-
surable function F : K× S → X is continuous in (x, a, b) ∈ K for each s ∈ S.

(c) A set-valued mapping is said to be continuous if it is l.s.c. and u.s.c. Thus
the semicontinuity requirements in Assumption 3.1(f) and (g) will be trivially verified
in many cases because the mappings x �→ A(x) and (x, a) �→ B(x, a) are continuous
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in most applications (see (7.6) and (7.18), for instance). In fact, it is not uncommon
to find situations in which they are constant—hence continuous—mappings, that is,
A(x) = A for all x ∈ X or B(x, a) = B for all (x, a) ∈ KA.

Let w(·) ≥ 1 be as in Assumption 3.1. We shall denote by Bw(X) the Banach
space of measurable functions u on X that have a finite w-norm, ‖u‖w < ∞, which
is defined as

‖u‖w := sup
x∈X

[|u(x)|/w(x)].(3.4)

For each u ∈ Bw(X), 0 ≤ α ≤ 1, and (x, a, b) ∈ K let

Hα(u;x, a, b) := c(x, a, b) + α

∫
X

u(y)Q(dy|x, a, b),(3.5)

H#
α (u;x, a) := sup

b∈B(x,a)

Hα(u;x, a, b),(3.6)

Tαu(x) := inf
a∈A(x)

H#
α (u;x, a).(3.7)

More explicitly, we can write (3.7) as

Tαu(x) = inf
a∈A(x)

sup
b∈B(x,a)

[
c(x, a, b) + α

∫
X

u(y)Q(dy|x, a, b)
]
.(3.8)

The operator Tα is usually referred to as the dynamic programming (DP) operator.
We shall denote by Blsc the family of l.s.c. functions in Bw(X).
Theorem 3.1. Fix α > 0, and define on X the functions

vn,α := Tαvn−1,α = Tn
α v0,α ∀n = 1, 2, . . . ,(3.9)

with v0,α(·) ≡ 0. Then for each n = 1, 2, . . . ,
(a) vn,α is in Blsc;
(b) there exists fn ∈ FA such that

vn,α(x) = H#
α (vn−1,α;x, fn(x)) ∀x ∈ X,

i.e.,

vn,α(x) = sup
b∈B(x,fn(x))

[
c(x, fn(x), b) + α

∫
X

vn−1,α(y)Q(dy|x, fn(x), b)
]
,(3.10)

and, moreover,

vn,α(x) = min
a∈A(x)

sup
b∈B(x,a)

[
c(x, a, b) + α

∫
X

vn−1,α(y)Q(dy|x, a, b)
]
;(3.11)

(c) vn,α is the optimal n-stage cost, that is, from (2.5) and (2.9),

vn,α(x) = inf
π∈Π

sup
γ∈Γ

Vn,α(x, π, γ) ∀x ∈ X;
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(d) the Markov policy πn := {fn, fn−1, . . . , f1} is a minimax strategy for the
n-stage problem; that is, by (c) and Definition 2.2,

vn,α(x) = sup
γ∈Γ

Vn,α(x, π
n, γ) ∀x ∈ X.

To prove Theorem 3.1 we shall state first some useful preliminary results. Observe
in particular that the following lemma gives the existence of minimax strategies for a
single-stage minimax problem with cost function v(x, a, b), say.

Lemma 3.2. Let v : K→ R be an l.s.c. function such that

|v(x, a, b)| ≤ v̄w(x) ∀(x, a, b) ∈ K(3.12)

for some constant v̄ ≥ 0. Let

v#(x, a) := sup
b∈B(x,a)

v(x, a, b) and v∗(x) := inf
a∈A(x)

v#(x, a).

Then
(a) v# is l.s.c. on KA and satisfies that

|v#(x, a)| ≤ v̄w(x) ∀(x, a) ∈ KA;(3.13)

(b) v∗ is in Blsc and there exists f ∈ FA such that

v∗(x) = min
a∈A(x)

v#(x, a) = v#(x, f(x)) ∀x ∈ X,(3.14)

that is, by definition of v#,

v∗(x) = sup
b∈B(x,f(x))

v(x, f(x), b) ∀x ∈ X.

Proof. (a) The inequality (3.13) obviously follows from (3.12). Now, to prove that
v# is l.s.c., let (xk, ak) ∈ KA be a sequence converging to (x, a) ∈ KA. Choose an
arbitrary b ∈ B(x, a). Then, by Assumption 3.1(g), there exists bk ∈ B(xk, ak) such
that bk → b. Therefore, as v#(xk, ak) ≥ v(xk, ak, bk) and v is l.s.c., we have

lim inf
k→∞

v#(xk, ak) ≥ v(x, a, b).

Thus, as b ∈ B(x, a) was arbitrary, we obtain lim inf v#(xk, ak) ≥ v#(x, a); that is,
v# is l.s.c.

(b) By (a) and the continuity of w(·) (Assumption 3.1(d)), the function v#(x, a)+
v̄w(x) is nonnegative and l.s.c. on KA. Combining this fact with Assumption 3.1(f),
a well-known result of Schäl [55] (reproduced in [16, Proposition D.5]) yields that the
function

inf
a∈A(x)

[v#(x, a) + v̄w(x)](3.15)

is l.s.c. and that there exists f ∈ FA that realizes the minimum in (3.15), i.e.,

min
a∈A(x)

[v#(x, a) + v̄w(x)] = v#(x, f(x)) + v̄w(x) ∀x ∈ X.

This gives (3.14). Finally, (3.13) gives that |v∗(·)| ≤ v̄w(·), and so we conclude that
v∗ is in Blsc.
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In part (b) of the following lemma we replace the function v in (3.12) with the
functionHα(u; ·) in (3.5), with u in Blsc. This yields in particular that the DP operator
Tα maps Blsc into itself.

Lemma 3.3. Let u be an arbitrary function in Blsc, and let û and Tαu be as in
(3.2) and (3.7), (3.8), respectively. Then

(a) û is l.s.c. on K, and, therefore,
(b) Hα(u;x, a, b) is l.s.c. on K, and

|Hα(u;x, a, b)| ≤ [c̄+ αβ‖u‖w]w(x) ∀(x, a, b) ∈ K;(3.16)

(c) Tαu is in Blsc, and, furthermore, there exists f ∈ FA such that, for all x ∈ X,

Tαu(x) = sup
b∈B(x,f(x))

[
c(x, f(x), b) + α

∫
X

u(y)Q(dy|x, f(x), b)
]
,(3.17)

and (3.8) holds with “min” in lieu of “inf,” i.e.,

Tαu(x) = min
a∈A(x)

sup
b∈B(x,f(x))

[
c(x, a, b) + α

∫
X

u(y)Q(dy|x, a, b)
]
.(3.18)

Proof. (a) Let u be in Blsc, and let us assume for a moment that u is nonnega-
tive. Then there exists a sequence {un} of continuous bounded functions such that
un ↑ u pointwise. Hence, as

∫
u(y)Q(dy|x, a, b) ≥ ∫ un(y)Q(dy|x, a, b) for all n, if

(xk, ak, bk)→ (x, a, b) we get from Assumption 3.1(c) that

lim inf
k→∞

∫
X

u(y)Q(dy|xk, ak, bk) ≥
∫
X

un(y)Q(dy|x, a, b) ∀n.

Thus, letting n → ∞ we conclude that û is l.s.c. on K, when u is nonnegative.
Consider now an arbitrary function u in Blsc. Then, by (3.4) and the continuity of
w(·), the function u(·) + ‖u‖ww(·) is l.s.c. and nonnegative. Therefore, by the result
in the nonnegative case and the continuity of ŵ (Assumption 3.1(d)), it follows that
û is l.s.c.

(b) By (a) and Assumption 3.1(a), the function Hα(u; ·) is l.s.c. on K. On the
other hand, from (3.4) and Assumption 3.1(e),∫

|u(y)|Q(dy|x, a, b) ≤ ‖u‖w
∫

w(y)Q(dy|x, a, b) ≤ ‖u‖wβw(x)(3.19)

for all (x, a, b) in K. From the latter inequality together with (3.1) and (3.5) we get
(3.16).

(c) This follows from (b) and Lemma 3.2(b) with v(·) = Hα(u; ·).
Using Lemma 3.3 we can now easily prove Theorem 3.1.
Proof of Theorem 3.1. Part (a) can be obtained by induction. As v0,α(·) ≡ 0,

(a) trivially holds for n = 0. Suppose now that vn−1,α is in Blsc for some n ≥ 1.
Then (3.9) and Lemma 3.3(c) yield that vn,α is in Blsc, and (a) follows. In turn, (a)
and Lemma 3.3(c) again yield (b). Finally, (c) and (d) follow from (b) and standard
dynamic programming arguments (see, for instance, Theorem 3.2.1 in [16]).

4. Infinite-horizon discount cost. In this section we consider the α-DC in
(2.6), with 0 < α < 1. The clue to our optimality result is provided by the following
fact due to Küenle [32, 33].
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Theorem 4.1. Suppose that there exists a measurable function v∗ : X → R and
a stationary policy f∗ ∈ FA such that, for all x ∈ X,

v∗(x) = sup
b∈B(x,f∗(x))

[
c(x, f∗(x), b) + α

∫
X

v∗(y)Q(dy|x, f∗(x), b)
]

(4.1)

and

lim
n→∞αn

E
π,γ
α [v∗(xn)] = 0 ∀π ∈ Π, γ ∈ Γ, x ∈ X.(4.2)

Then

v∗(x) = sup
γ∈Γ

Vα(x, f
∗, γ) ∀x ∈ X.(4.3)

If in addition v∗ satisfies that (with Tα as in (3.7), (3.8))

v∗ = Tαv
∗,(4.4)

then v∗ is the optimal α-DC function, and f∗ is an α-DC minimax strategy, that is,
(4.3) holds and also

v∗(x) = inf
π∈Π

sup
γ∈Γ

Vα(x, π, γ) ∀x ∈ X.(4.5)

To obtain (4.1), (4.2), and (4.4) it suffices to impose an additional condition on
Assumption 3.1. The precise result is as follows. (Recall that Blsc denotes the family
of l.s.c. functions in Bw(X).)

Theorem 4.2. Suppose that Assumption 3.1 holds but, in addition, the constant
β in part (e) satisfies that

1 ≤ β < 1/α.(4.6)

Then there exist a function v∗ : X → R and a stationary policy f∗ → FA such that
the following hold:

(a) v∗is the unique function in Blsc that satisfies (4.4). Moreover, it satisfies
(4.2), and

‖vn,α − v∗‖w ≤ c̄(αβ)n/(1− αβ) ∀n ≥ 0,(4.7)

with c̄ and vn,α as in (3.1) and (3.9), respectively, with v0,α ≡ 0.
(b) v∗ and f∗ satisfy (4.1).

Hence, v∗ and f∗ satisfy the conclusions of Theorem 4.1.
To prove Theorem 4.2 we will first state a few general results, some of which are

in fact well known, but we include them here for completeness and ease of reference.
After the proof of the theorem we state an interesting consequence (Corollary 4.6) of
(4.7).

Lemma 4.3. (a) If {vn} is a sequence in Blsc and ‖vn − v‖w → 0, then v is
in Blsc. Hence, (b) Blsc is a complete subset of Bw(X), that is, if {vn} ⊂ Blsc is a
Cauchy sequence in w-norm, then it converges in w-norm to some function in Blsc.

Proof. (a) The proof follows from the inequality v(·) ≥ −‖vn − v‖ww(·) + vn(·)
and the continuity of w (Assumption 3.1(d)). Part (b) follows from (a) and the fact
that Bw(X) is a Banach space.
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Lemma 4.4. Let B0 be a complete subset of Bw(X), and let T be a mapping from
B0 into itself. Suppose that (i) T is monotone (i.e., u ≤ u′ implies Tu ≤ Tu′), and
(ii) there is a constant 0 < τ < 1 such that

T (u+ rw) ≤ Tu+ τrw ∀u ∈ B0 and r ≥ 0.(4.8)

Then T is a contraction mapping with modulus τ , i.e.,

‖Tu− Tu′‖w ≤ τ‖u− u′‖w ∀u, u′ ∈ B0,(4.9)

and, therefore, there is a unique function u∗ in B0 that satisfies

(a) u∗ = Tu∗ and (b) ‖Tnu− u∗‖w ≤ τn‖u− u∗‖w ∀u ∈ B0, n ≥ 0.(4.10)

Further, if there is a constant k ≥ 0 such that

‖Tu‖w ≤ k + τ‖u‖w ∀u ∈ B0,(4.11)

then

‖u∗‖w ≤ k/(1− τ).(4.12)

Proof. By (3.4), for any two functions u and u′ in Bw(X) we have u ≤ u′ + ‖u−
u′‖ww. Hence, by (i) and (4.8) with r := ‖u− u′‖w, we obtain

Tu ≤ Tu′ + τ‖u− u′‖ww,

so that Tu − Tu′ ≤ τ‖u − u′‖ww. Similarly, Tu − Tu′ ≥ −τ‖u − u′‖ww, and (4.9)
follows. Finally, (4.10) follows from Banach’s fixed point theorem, whereas (4.12)
follows from (4.11) and (4.10)(a).

Lemma 4.4 is essentially the same as Proposition 7.2.9 in [17, p. 6], but the latter
is incorrectly stated (!): it requires r ∈ R, rather than r ≥ 0 as in (4.8).

Finally, before passing to the proof of Theorem 4.2 we should mention that (4.2)
holds for all u in Bw, π ∈ Π, γ ∈ Γ, and x ∈ X, i.e.,

lim
n→∞αn

E
π,γ
x [u(xn)] = 0.(4.13)

Indeed, using Assumption 3.1(e), a straightforward calculation gives

E
π,γ
x [w(xn+1)] ≤ βE

π,γ
x [w(xn)] ∀n = 0, 1, . . . ,

and so

E
π,γ
x [w(xn)] ≤ βnw(x).(4.14)

Hence, by (4.6),

lim
n→∞αn

E
π,γ
x [w(xn)] = 0.

This implies (4.13) because, by (3.4),

E
π,γ
x [u(xn)] ≤ ‖u‖wE

π,γ
x [w(xn)] ∀u ∈ Bw(X).(4.15)
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Proof of Theorem 4.2. (a) We shall first use Lemma 4.4 to show that Tα is a
contraction mapping on B0 := Blsc with modulus τ := αβ < 1, that is,

‖Tαu− Tαu
′‖w ≤ τ‖u− u′‖w ∀u, u′ ∈ Blsc.(4.16)

(Observe that Tα may not map all of Bw(X) into itself because for an arbitrary
function u in Bw(X), the function Tαu is not necessarily measurable.) Now, by
Lemma 4.3, Blsc is a complete subset of Bw(X), whereas by Lemma 3.3, Tα maps
Blsc into itself. On the other hand, it is evident that Tα is monotone. Thus, to obtain
(4.16) it suffices to verify that Tα satisfies (4.8). To do this, note that Assumption
3.1(e) yields

sup
b∈B(x,a)

∫
X

w(y)Q(dy|x, a, b) ≤ βw(x) ∀(x, a) ∈ KA.(4.17)

This inequality and (3.8) give (4.8) for T = Tα and τ := αβ, and so (4.16) follows.
Hence, there is a unique function v∗ in Blsc that satisfies (4.4), and, moreover (taking
u = v0,α in (4.10)(b)),

‖vn,α − v∗‖w ≤ τn‖v∗‖w ∀n ≥ 0, with τ = αβ.(4.18)

Finally, observe that (3.16) gives

‖Tαu‖w ≤ c̄+ τ‖u‖w ∀u ∈ Blsc,

which in turn, by (4.12), gives

‖v∗‖w ≤ c̄/(1− τ).(4.19)

From the latter inequality and (4.18) we obtain (4.7). Therefore, as v∗ satisfies (4.2)
(by (4.13)), the proof of part (a) is complete.

(b) The proof follows from (a) and Lemma 3.3(c).
It is worth noting that (4.7) yields the geometric convergence, in the w-norm, of

the so-called value iteration (or successive approximations) procedure Tn
α v0,α → v∗,

where v0,α(·) ≡ 0. Another noteworthy fact is Corollary 4.6 below, in which we use
the following concept.

Definition 4.5. A sequence of stationary strategies {fn} ⊂ FA is said to con-
verge in the sense of Schäl [55] if there exist f∗ ∈ FA such that f∗(x) ∈ A(x) is an
accumulation point of {fn(x)} ⊂ A(x) for each x ∈ X; that is, for each x ∈ X there
is a subsequence {ni(x)} of {n} such that

fni(x)(x)→ f∗(x) as i→∞.(4.20)

For example, under Assumption 3.1(f), any sequence in FA converges in the sense
of Schäl. This is a special case of a result in [55], reproduced in [16, Proposition D.7].
This result trivially holds, and in fact it takes a stronger form, if the state space X
is a countable set (with the discrete topology) and A(x) is compact for each x ∈ X.
Indeed, in the latter, countable case, a standard “diagonalization” argument shows
that for any sequence {fn} in FA there exists f∗ ∈ FA and a subsequence {ni} ⊂ {n}
independent of x ∈ X such that fni(x)→ f∗(x) for all x ∈ X.

Corollary 4.6. Suppose that the hypotheses of Theorem 4.2 are satisfied. For
each n = 1, 2, . . . , let fn ∈ FA be as in (3.10). Then
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(a) {fn} converges in the sense of Schäl to some f∗ ∈ FA, and
(b) f∗ is a minimax strategy for the infinite-horizon α-DC problem.
Proof. As mentioned in the previous paragraph, part (a) comes from [55]. To

prove (b), first observe that (4.14), (4.6), and (3.1) yield

|Vn,α(x, π, γ)| ≤ w(x)c̄

n−1∑
t=0

(αβ)t ≤ w(x)c̄/(1− τ), with τ := αβ,

for all n ≥ 1, π, γ, and x. Therefore the sequence {vn,α} of optimal n-stage costs is
bounded in the w-norm, i.e.,

‖vn,α‖w ≤ c̄/(1− τ) ∀n.(4.21)

Moreover, from (3.10),

vn,α(x) ≥ c(x, fn(x), b) + α

∫
X

vn−1,α(y)Q(dy|x, fn(x), b)(4.22)

for all b in B(x, fn(x)). Now choose an arbitrary x ∈ X, and let ni ≡ ni(x) be as in
(4.20), so that (x, fni(x)) → (x, f∗(x)). Next, choose an arbitrary b∗ in B(x, f∗(x)).
By Assumption 3.1(g), there exists bni

in B(x, fni
(x)) such that bni

→ b∗, and so
(x, fni(x), bni

) → (x, f∗(x), b∗). Finally, in (4.22) replace n, fn(x), and b with ni,
fni(x), and bni

, respectively, and let i → ∞. Then, by (4.7) and the extension of
Fatou’s lemma in [17, Lemma 8.3.7, p. 48] (which is applicable in the present case
because of (4.21)), we obtain

v∗(x) ≥ c(x, f∗(x), b∗) + α

∫
X

v∗(y)Q(dy|x, f∗(x), b∗).

Actually, as b∗ ∈ B(x, f∗(x)) was arbitrary,

v∗(x) ≥ sup
b∈B(x,f∗(x))

[
c(x, f∗(x), b) + α

∫
X

v∗(y)Q(dy|x, f∗(x), b)
]
.(4.23)

Therefore, as x was also arbitrary, (4.23) holds for all x ∈ X. On the other hand,
by the definition (3.8) of Tα, together with (4.4), the right-hand side of (4.23) is
minorized by Tαv

∗ = v∗, and so the equality (4.1) follows. Hence, by Theorem 4.2,
f∗ is a minimax strategy.

5. Infinite-horizon AC. For the AC criterion in (2.7), Küenle [32, 33] and
Kurano [35] give the following analogue of Theorem 4.1, in which T ≡ T1 is the DP
operator in (3.7), (3.8) when α = 1. (In fact, Küenle assumes that the function h∗

in Theorem 5.1 is bounded, but, as in [18], it is easy to verify that the boundedness
of h∗ can be replaced with (5.2). On the other hand, Kurano assumes that c(x, a, b)
is nonnegative and that B(x, a) ≡ B does not depend on (x, a). Combining their
techniques, we get Theorem 5.1.)

Theorem 5.1 (see [32, 33, 34, 35]). Suppose that there exists a constant ρ∗, a
measurable function h∗ on X, and a stationary strategy f∗ ∈ FA such that, for all
x ∈ X,

ρ∗ + h∗(x) = sup
b∈B(x,f∗(x))

[
c(x, f∗(x), b) +

∫
X

h∗(y)Q(dy|x, f∗(x), b)
]

(5.1)
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and

lim
n→∞

1

n
E
π,γ
x [h∗(xn)] = 0 ∀π ∈ Π, γ ∈ Γ.(5.2)

Then

ρ∗ = sup
γ∈Γ

J(x, f∗, γ) ∀x ∈ X.(5.3)

If in addition

ρ∗ + h∗(x) = Th∗(x) ∀x ∈ X,(5.4)

then ρ∗ is the optimal AC, and f∗ is a minimax strategy for the AC criterion, that
is, (5.3) holds and also

ρ∗ = inf
π∈Π

sup
γ∈Γ

J(x, π, γ) ∀x ∈ X.(5.5)

We will next give conditions for the existence of a “triplet” (ρ∗, h∗, f∗) that sat-
isfies (5.1), (5.2), and (5.4). We shall use the notation µ(v) :=

∫
v dµ whenever the

integral is well defined.
First of all, throughout this section we suppose that Assumption 3.1 holds except

for part (e). (Actually, (e) can be obtained from the following assumption taking
β := θ+ν(w)/ν(X) because δ(x, a, b) ≤ 1/ν(X). Assumption 5.1(c) also implies (4.6)
for suitable values of α; see Remark 8.3.5(a) in [17], for instance.) In addition we
suppose the following.

Assumption 5.1. There exists a measure ν on X, with ν∗ := ν(X) > 0, a non-
negative u.s.c. function δ on K, and a constant 0 < θ < 1 such that

(a) Q(D | x, a, b) ≥ δ(x, a, b) ν(D) for all (x, a, b) ∈ K and D ∈ B(X);
(b) ν(w) :=

∫
X
w(x)ν(dx) <∞;

(c)
∫
X
w(y)Q(dy | x, a, b) ≤ θw(x) + δ(x, a, b) ν(w) for all (x, a, b) ∈ K; and

(d)
∫
X
δ(x, f(x), g(x, f(x)))ν(dx) > 0 for each f ∈ FA and g ∈ FB .

See Remark 5.3 for comments on Assumption 5.1 and other similar hypotheses
used in the literature on stochastic games and Markov control problems under the
AC criterion.

Theorem 5.2. If Assumptions 3.1 and 5.1 hold, then there is a constant ρ∗, a
function h∗ in Blsc, and a stationary policy f∗ ∈ FA that satisfy (5.1), (5.2), and
(5.4). Hence the conclusions of Theorem 5.1 hold.

To prove Theorem 5.2 we shall first introduce some notation and a preliminary
result.

For any real-valued measurable function u on K and any two stationary policies
f ∈ FA and g ∈ FB we write

u(x, f, g) := u(x, f(x), g(x, f(x))) ∀x ∈ X.

In particular, c(x, f, g) := c(x, f(x), g(x, f(x))) and similarly for Q(· | x, f, g) and
δ(x, f, g). The following result can be proved as Vega-Amaya’s [61] Theorem 3.3 and
Lemma 4.3.

Lemma 5.3. Suppose that Assumption 5.1 holds. Then for each pair of stationary
strategies f ∈ FA and g ∈ FB we have the following:

(a) Q(· | x, f, g) is positive Harris recurrent—hence, in particular, Q(· | x, f, g)
admits a unique invariant probability measure (i.p.m.), say µf,g. Moreover,
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(b) µf,g(w) :=
∫
w dµf,g <∞, and

(c) the function δ(x, a, b) and the constant µf,g(δ) :=
∫
δ(x, f, g)µf,g(dx) satisfy

µf,g(δ) = lim
n→∞

1

n
Ef,g
x

[
n−1∑
t=0

δ(xt, f, g)

]
∀x ∈ X.

(d) If in addition (3.1) holds, then (by (b))

J(f, g) :=

∫
X

c(x, f, g)µf,g(dx) and ρ∗ := inf
f∈FA

sup
g∈FB

J(f, g)(5.6)

are both finite.
Observe that the constant J(f, g) in (5.6) coincides with the average cost (2.7) if

π = f and γ = g, i.e.,

J(x, f, g) = J(f, g) ∀x ∈ X.

On the other hand, integrating with respect to the i.p.m. µf,g both sides of the
inequality in Assumption 5.1(c), we obtain that

µf,g(δ) ≥ µf,g(w)(1− θ)/ν(w).

Hence, as w(·) ≥ 1, letting δ∗ := (1− θ)/ν(w) we get

µf,g(δ) ≥ δ∗ > 0 ∀f ∈ FA, g ∈ FB .(5.7)

Furthermore, if Q̂ denotes the substochastic kernel

Q̂(· | x, a, b) := Q(· | x, a, b)− δ(x, a, b)ν(·)(5.8)

(see Assumption 5.1(a)), then we may express the Assumption 5.1(c) as∫
X

w(y)Q̂(dy | x, a, b) ≤ θw(x) ∀(x, a, b) ∈ K.(5.9)

From these facts we may obtain the proof of Theorem 5.2 as follows.
Proof of Theorem 5.2. Let ρ∗ and Q̂ be as in (5.6) and (5.8), respectively, and for

each function u in Blsc and x ∈ X let

Mu(x) := inf
a∈A(x)

sup
b∈B(x,a)

[
c(x, a, b) +

∫
X

u(y)Q̂(dy | x, a, b)− ρ∗
]

(5.10)

or, more explicitly,

Mu(x) = inf
a∈A(x)

sup
b∈B(x,a)

[
c(x, a, b) +

∫
X

u(y)Q(dy | x, a, b)− δ(x, a, b)ν(u)− ρ∗
]
.

It is easily seen that M is a contraction mapping from Blsc into itself. Indeed, by
Assumption 5.1, the function δ is u.s.c., and so −δ is l.s.c. Thus, as in Lemma 3.3, it
follows that if u is in Blsc, then so is Mu. Moreover, it is obvious that M is monotone,
and, on the other hand, by (5.9),

M(u+ rw) ≤Mu+ θrw ∀u ∈ Blsc, r ≥ 0.
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Thus Lemma 4.4 yields that M is a contraction mapping on Blsc with modulus θ, and
it follows that M has a unique fixed point h∗ in Blsc, i.e., h

∗ = Mh∗, or, equivalently,

ρ∗ + h∗(x) = inf
a∈A(x)

sup
b∈B(x,a)

[
c(x, a, b) +

∫
X

h∗(y)Q(dy | x, a, b)− δ(x, a, b)ν(h∗)
]
.

(5.11)

We will next show that

ν(h∗) = 0(5.12)

so that (5.11) reduces to the AC “optimality equation” (5.4).
To this end, first note that as in Lemma 3.3(c) (or Lemma 3.2(b)) there exists a

stationary strategy f∗ in FA such that

(5.13) ρ∗ + h∗(x)

= sup
b∈B(x,f∗(x))

[
c(x, f∗(x), b) +

∫
X

h∗(y)Q(dy | x, f∗(x), b)− δ(x, f∗(x), b)ν(h∗)
]

for all x ∈ X. Therefore, for any strategy g ∈ FB we have

ρ∗ + h∗(x) ≥ c(x, f∗, g) +
∫
X

h∗(y)Q(dy | x, f∗, g)− δ(x, f∗, g)ν(h∗),

and integrating both sides of this inequality with respect to µf∗,g we get

ρ∗ ≥ J(f∗, g)− µf∗,g(δ)ν(h
∗) ∀g ∈ FB .

Now suppose that ν(h∗) < 0. Hence, by (5.7),

−µf∗,g(δ)ν(h
∗) > −δ∗ν(h∗) > 0,

and so

ρ∗ ≥ J(f∗, g)− δ∗ν(h∗) > J(f∗, g) ∀g ∈ FB .

This inequality contradicts the definition of ρ∗ in (5.6), according to which

ρ∗ ≤ sup
g∈FB

J(f, g) ∀f ∈ FA.

As a consequence, ν(h∗) cannot be negative; that is, necessarily ν(h∗) ≥ 0. Hence
suppose that ν(h∗) > 0, and let us go back to (5.11). By well-known measurable
selection theorems—see, e.g., Corollary 4.3 in [49]—for each ε > 0 there exists an
ε-maximizer gε ∈ FB of the right-hand side of (5.11), i.e.,

sup
b∈B(x,a)

[
c(x, a, b) +

∫
X

h∗(y)Q(dy | x, a, b)− δ(x, a, b)ν(h∗)
]

≤ c(x, a, gε(x, a)) +

∫
X

h∗(y)Q(dy | x, a, gε(x, a))− δ(x, a, gε(x, a))ν(h
∗) + ε

for all (x, a) ∈ KA. The latter inequality and (5.11) yield that for any stationary
strategy f ∈ FA and x ∈ X,

ρ∗ + h∗(x) ≤ c(x, f, gε) +

∫
X

h∗(y)Q(dy | x, f, gε)− δ(x, f, gε)ν(h
∗) + ε,
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and so integration with respect to the i.p.m. µf,gε gives

ρ∗ ≤ J(f, gε)− µf,gε(δ)ν(h
∗) + ε ∀f ∈ FA.

Hence, as we have assumed that ν(h∗) > 0, from (5.7) we get

ρ∗ ≤ inf
f∈FA

J(f, gε)− δ∗ν(h∗) + ε.

In particular, if we take 0 < ε < δ∗ν(h∗), there exists gε ∈ FB such that

ρ∗ < inf
f∈FA

J(f, gε),

which again contradicts the definition of ρ∗ in (5.6), because the latter gives us

ρ∗ ≥ inf
f∈FA

J(f, g) ∀g ∈ FB .

Thus, necessarily (5.12) holds, and so (5.11) and (5.13) yield (5.4) and (5.1), re-
spectively. Finally, using (4.15) and Assumption 5.1(c) a straightforward calculation
shows that (5.2) holds for any function in Bw(X). This completes the proof of Theo-
rem 5.2.

A special case. The contraction mapping in (5.10) gives the desired theoretical
results in Theorem 5.2, but for practical purposes it is not very useful because it is
defined in terms of ρ∗, which is precisely what we would like to compute! Hence, to
show a “computable” case, throughout the rest of this section we consider the special
case in which Assumption 5.1 holds with

δ(x, a, b) ≡ 1 ∀(x, a, b) ∈ K.(5.14)

Now let vn ≡ vn,1 be the optimal n-stage cost when α = 1 (see Theorem 3.1(c)),
with v0 ≡ 0. We denote by {un} the sequence in Blsc defined as u0 := v0, u1 := v1,
and for n ≥ 2

un := vn −mn, with mn :=

n−1∑
j=1

(1− ν∗)n−1−jν(vj),(5.15)

where ν∗ := ν(X). Furthermore, let

ρn := ν(un) = ν(vn)− ν∗mn ∀n ≥ 0.(5.16)

Observe that all of these quantities are indeed “computable.” Moreover, they yield a
solution h∗, ρ∗ of (5.4) as follows.

Corollary 5.4. Suppose that the hypotheses of Theorem 5.2 are satisfied, with
δ as in (5.14). Then there exist ρ∗ ∈ R, h∗ ∈ Blsc, and f∗ ∈ FA as in Theorem 5.2
and, in addition, for all n = 0, 1, . . . , we have

‖un − h∗‖w ≤ θnc̄/(1− θ),(5.17)

|ρn − ρ∗| ≤ θnν(w)c̄/(1− θ).(5.18)
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Proof. Instead of the mapping Mu in (5.10), consider

Nu(x) := inf
a∈A(x)

sup
b∈B(x,a)

[
c(x, a, b) +

∫
X

u(y)Q̂(dy | x, a, b)
]

(5.19)

for each u ∈ Blsc, with Q̂(· | x, a, b) := Q(· | x, a, b)− ν(·); see (5.8) and (5.14). Then,
arguing exactly as in the proof of Theorem 5.2, it follows that N is a contraction
mapping from Blsc into itself, with modulus θ. Therefore, there is a unique function
h∗ in Blsc such that h∗ = Nh∗; equivalently, letting ρ∗ := ν(h∗), the pair (h∗, ρ∗)
is the unique solution of (5.4). Hence, as the existence of f∗ ∈ FA satisfying (5.1)
follows from Theorem 5.2, to complete the proof it remains only to consider (5.17)
and (5.18).

To this end, let T := T1 be the DP operator in (3.8) when α = 1, and note that
(5.19) can be written as

Nu = Tu− ν(u).(5.20)

Now let u0 := 0, and for n ≥ 1 define un in Blsc as

un := Nun−1 = Nnu0,(5.21)

which, by (5.20), we can also write as un = Tun−1 − ν(un−1). Then, as (3.9) gives
(with α = 1) vn = Tvn−1 = Tnv0, a direct induction argument shows that the se-
quence in (5.21) is precisely the sequence {un} in (5.15). Consequently, the contraction
property of N and (4.10)(b) with u = u0 = 0 give

‖un − h∗‖w ≤ θn‖h∗‖w.

Thus to get (5.17) it suffices to show that ‖h∗‖w ≤ c̄/(1 − θ). To obtain the latter
inequality note that (3.1), (3.4), and (5.9) yield

‖Nu‖w ≤ c̄+ θ‖u‖w ∀u ∈ Blsc.(5.22)

This inequality and (4.11)–(4.12) give that ‖h∗‖w ≤ c̄/(1− θ), and so (5.17) follows.
Finally, since ρ∗ := ν(h∗), from (5.16) we obtain

|ρn − ρ∗| ≤
∫
|un − h∗|dν ≤ ‖un − h∗‖w

∫
wdν.

This inequality and (5.17) give (5.18) because ν(w) :=
∫
wdν.

Remark 5.1. We should mention that although the “contraction approach” is
quite standard, the convergence estimates in (5.17) and (5.18) are new, even for the
standard (or one-player) AC control problem. As in the α-DC case, obtaining h∗

and ρ∗ via un and ρn is also called the value iteration (or successive approximations)
procedure for the AC problem.

Of course, (5.17) and (5.18) yield for the AC problem an analogue of Corollary
4.6, as follows.

Corollary 5.5. Suppose that the hypotheses of Corollary 5.4 hold, and let
vn ≡ vn,1 and fn be as in (3.10) with α = 1, for each n = 1, 2, . . . , with v0 ≡ 0. Then

(a) {fn} converges in the sense of Schäl to some stationary strategy f∗ ∈ FA, and
(b) f∗ is a minimax strategy for the AC problem.
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Proof. Part (a) is obtained as in the paragraph after Definition 4.5. To prove (b)
note that (5.15) and (5.16) give

mn+1 −mn = ρn ∀n ≥ 2.

Using this equality and (5.15) we may express (3.10), when α = 1, as

ρn−1 + un(x) = sup
b∈B(x,fn(x))

[
c(x, fn(x), b) +

∫
X

un−1(y)Q(dy|x, fn(x), b)
]

(5.23)

for all x ∈ X and n ≥ 3. Finally, (5.22) and the first equality in (5.21) yield

‖un‖w ≤ c̄+ θ‖un−1‖w ∀n ≥ 1(5.24)

and, therefore,

‖un‖w ≤ c̄/(1− θ) ∀n ≥ 0;

that is, the sequence {un} is bounded in the w-norm (compare (5.24) with (4.21)).
Hence, as (5.23) yields

ρn−1 + un(x) ≥ c(x, fn(x), b) +

∫
X

un−1(y)Q(dy | x, fn(x), b) ∀b ∈ B(x, fn(x)),

using (5.17) and (5.18) the proof of (b) can now be completed “exactly” as the proof
of Corollary 4.6(b) (after (4.22)), with the obvious changes.

Remark 5.2. Concerning Assumption 5.1(a), with δ ≡ 1 as in (5.14), Kurano
[35] introduced an interesting approach that might be particularly useful if one does
not know in advance that the said assumption holds. The idea is to introduce, for each
0 < ε < 1, an auxiliary game model in which the transition law Q is replaced with

Qε(· | x, a, b) := (1− ε)Q(· | x, a, b) + εψ(·) [≥ εψ(·)]
for some suitable probability measure ψ on X. As Qε satisfies the Assumption 5.1(a)
and (5.14), one can solve (as in Corollary 5.4, say) the corresponding minimax control
problem, and, finally, one should verify that the original problem is indeed solved in
the limit as ε→ 0.

The following proposition gives a couple of restrictive but easy-to-verify conditions
that guarantee Assumption 5.1(a) with δ ≡ 1.

Proposition 5.6 (cf. Theorem 3.2 in [19]). Suppose that Q(· | x, a, b) has a
density q(x, a, b, ·) with respect to a σ-finite measure m on X, that is,

Q(D | x, a, b) =
∫
D

q(x, a, b, y)m(dy) ∀(x, a, b) ∈ K, D ∈ B(X).(5.25)

Then the following two conditions satisfy that (a) ⇒ (b) ⇒ Assumption 5.2(a) with
δ ≡ 1.

(a) There exists a number ε > 0 and a set D0 ∈ B(X) with m(D0) > 0 such that

q(x, a, b, y) ≥ ε ∀(x, a, b) ∈ K, y ∈ D0.(5.26)

(b) There exists a nonnegative measurable function q0 on X such that

q(x, a, b, y) ≥ q0(y) ∀(x, a, b) ∈ K, y ∈ X(5.27)
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and ∫
X

q0(y)m(dy) > 0.

Proof. (a) implies (b): If (a) holds, then q0(y) := εID0(y) satisfies (b), where ID
stands for the indicator function of a set D.

(b) implies Assumption 5.1(a) with δ ≡ 1: By (5.25) and (5.27), the measure
ν(D) :=

∫
D
q0(y)m(dy) satisfies the desired conclusion.

For examples satisfying (5.25)–(5.27), see [11, 17, 23, 35], for instance, or Exam-
ples 7.1 and 7.2 below.

Remark 5.3. Hypotheses similar to Assumption 5.1 have been used to study
several classes of AC Markov games and control processes—see, e.g., [1, 2, 14, 17, 18,
22, 23, 25, 31, 32, 33, 34, 35, 42, 46, 48, 56, 61]—but with some important differences.
For instance, in [18] the inequality

∫
δ(x, f, g)ν(dx) > 0 in Assumption 5.1(d) is

supposed to hold uniformly in f ∈ FA and g ∈ FB, but Vega-Amaya [61] noted that it
suffices to take the inequality in our present form, that is, for each pair of strategies
f ∈ FA, g ∈ FB. On the other hand, instead of our Assumptions 5.1(c) and (a),
Jaśkiewicz and Nowak [25] use conditions of the form∫

X

w(y)Q(dy | x, a, b) ≤ θw(x) + ηIC(x)(5.28)

for some fixed Borel subset C of X, and

Q(D | x, f, g) ≥ δνf,g(D) ∀D ⊂ C,D ∈ B(X),(5.29)

respectively, where νf,g is a probability measure on X concentrated on C, for each
f ∈ FA and g ∈ FB. In the latter case, when νf,g depends on the strategies f and
g, our fixed-point approach to prove Theorem 5.2 is not applicable. Another different
form of (5.28), (5.29) has been introduced in [31], allowing multichain Markov games.
This basically means that there is a measurable partition D0, . . . , Dm of X such that
for every pair of stationary strategies f ∈ FA and g ∈ FB the corresponding Markov
chain has the same set D0 of transient states and the same recurrent sets which consist
of several cyclic sets D1, . . . , Dm. A little more precisely, there is an integer k ≥ 1
and measures ν1, . . . , νm on X, with νi concentrated on Di (i = 1, . . . ,m) such that

Qk(· | x, f, g) ≥
m∑
i=1

IDi(x)νi(·)(5.30)

for each x ∈ X, f ∈ FA, and g ∈ FB, where ID denotes the indicator function of
the set D. When k = m = 1 and D1 = X, (5.30) reduces to Assumption 5.1(a)
with δ ≡ 1 as in (5.14); in other words, (5.30) is a generalization of our special case
(5.14). In general, however, since the right-hand side of (5.30) does not depend on
the players’ actions/strategies, the relation (if any) between (5.30) and either (5.29)
or our Assumption 5.1(a) is unclear. For other, detailed comments on Assumption
5.1, see [25] and [61].

Finally, we mention also that the special case (5.14) has been used by many
authors; see, e.g., [11, 15, 19, 32, 50, 52] and the references therein.

6. Systems with unknown disturbance distribution. In this section we
consider the control system

xt+1 = F (xt, at, ξt), t = 0, 1, . . . ,(6.1)
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in which the ξt are independent random variables with values in a Borel space S and
with unknown probability distributions. More precisely, the distributions may change
from period to period, but they are restricted to lie in a certain class B specified
below. The initial state x0 is supposed to be independent of the sequence {ξt}, and
F is a measurable function from X ×A× S to X.

Remark 6.1. Control problems in which the random variables are i.i.d. with a
common but unknown distribution µ are usually referred to as (nonparametric) adap-
tive control problems. They are so named because at each decision time t = 0, 1, . . . ,
the controller determines an estimate of the distribution of ξt, say ξ̂t, and then he/she
“adapts” his/her actions to the given estimate. But, of course, this approach requires

the disturbances to be “observable” because the estimate ξ̂t is typically computed us-
ing realizations ξ0, . . . , ξt [15, 21, 42]. This observability condition occurs in many
situations. For example, in control of inventories, queues, and water reservoirs, the
disturbances are, respectively, the product’s demand, the arrival process, and the wa-
ter inflow, which can be safely assumed to be observable. However, there are other
cases in which the disturbances are “really” random noises and it is impossible to
“observe” them. For example, in economics, finance, and control of populations (fish-
eries, epidemics, and so on) there are so many external factors influencing the sys-
tem’s dynamics that it is practically necessary to model the disturbances as a “real”
(unobservable) random noise. This is precisely the kind of situation that we have in
mind in this section: the controller’s opponent is the “nature” that at each period t
picks (from a given set) a distribution for ξt.

We shall denote by P(S) the family of probability measures on S, endowed with
the topology of weak convergence. Thus, a sequence {µn} in P(S) converges weakly
to µ if ∫

S

h dµn →
∫
S

h dµ ∀h ∈ Cb(S),(6.2)

where Cb(S) is the space of real-valued continuous bounded functions on S. As S is
a Borel space, so is P(S) (see [4]).

We shall consider the game model in (2.1) except that now we suppose the fol-
lowing:

(a) B is a Borel subset of P(S) such that B(x, a) = B for all (x, a) ∈ KA.
(b) The transition law Q(· | x, a, b) is the conditional distribution of xt+1 given

that (xt, at) = (x, a) ∈ KA and that ξt has distribution b ∈ P(S); hence, by
(6.1),

Q(D|x, a, b) =
∫
S

ID[F (x, a, s)]b(ds) ∀D ∈ B(X).(6.3)

(c) Similarly, for some given measurable function ĉ on KA × S,

c(x, a, b) =

∫
S

ĉ(x, a, s)b(ds).(6.4)

We shall refer to this model as a game against nature. In the remainder of
this section we give conditions under which the latter game satisfies some parts of
Assumptions 3.1 and 5.1. The simplest—actually, trivial—is the following.

Proposition 6.1. Assumption 3.1(b) holds for the game against nature if there
exists a constant c̄ ≥ 0 and a measurable function w(·) ≥ 1 on X such that

|ĉ(x, a, s)| ≤ c̄w(x) ∀(x, a, s) ∈ KA × S.(6.5)
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Proof. The proof is trivial.
To obtain other parts of Assumption 3.1 the game against nature requires more

structure, as in the following proposition.
Proposition 6.2. Assumption 3.1(c) holds for the transition law in (6.3) if
(a) X, A, and S are locally compact separable metric spaces, and KA is a closed

subset of X ×A; and
(b) F : KA × S → X is continuous.
Proof. First note that the integrand in (6.3) can be written as a Dirac measure

concentrated at F (x, a, s), i.e.,

ID[F (x, a, s)] = δF (x,a,s)(D).

Suppose now that (xn, an, bn)→ (x, a, b) in KA×B, and define the stochastic kernels

ϕn(D | s) := δF (xn,an,s)(D) and ϕ(D | s) := δF (x,a,s)(D).(6.6)

Then, in particular, we can write (6.3) as a so-called b-mixture of ϕ, that is,

Q(D | x, a, b) =
∫
S

ϕ(D | s)b(ds).

Therefore, as the hypothesis (a) ensures that KA × S → X is a locally compact and
separable metric space and, on the other hand, we are assuming that bn → b weakly,
the proposition will follow from Serfozo’s [57] Theorem 4.1 provided that

ϕn(· | sn)→ ϕ(· | s) weakly if sn → s.

The latter condition, however, is obvious because by (6.6) and the hypothesis (b) we
get ∫

X

u(y)ϕn(dy|sn) = u[F (xn, an, sn)]→ u[F (x, a, s)] =

∫
X

u(y)ϕ(dy|s)

for any continuous bounded function u on X.
To get conditions under which the cost function in (6.4) satisfies Assumption

3.1(a) we shall assume that ĉ is “separable” in (x, a) and s, that is,

ĉ(x, a, s) = c1(x, a) + c2(s) ∀(x, a, s) ∈ KA × S.(6.7)

In this case, (6.4) becomes

c(x, a, b) = c1(x, a) +

∫
S

c2(s)b(ds).(6.8)

It is well known that if bn → b weakly and h : S → R is l.s.c. and bounded below,
then

lim inf
n→∞

∫
S

hdbn ≥
∫
S

hdb.(6.9)

This fact yields the following.
Proposition 6.3. Assumption 3.1(a) holds for the function c in (6.8) if c1 is

l.s.c. on KA and c2 is l.s.c. and bounded below on S.
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Proposition 6.6, below, does not require c2 to be bounded below. To state this,
let us first recall the following concept.

Definition 6.4. Let {bn} be a sequence in P(S). A function u on S is said to
be {bn}-uniformly integrable if

lim
η→∞sup

n

∫
N(u,η)

|u(s)|bn(ds) = 0,(6.10)

where, for η > 0,

N(u, η) := {s ∈ S | |u(s)| ≥ η}.
For example, (6.10) holds if

sup
n

∫
S

|u(s)|1+εbn(ds) <∞(6.11)

for some ε > 0 because in this case∫
N(u,η)

|u(s)|bn(ds) ≤ (1/ηε)

∫
S

|u(s)|1+εbn(ds).

At any rate, the fact we are interested in is the following, whose proof can be found
in [57], for instance.

Lemma 6.5. Suppose that u : S → R is continuous and that it satisfies (6.10). If
in addition bn → b weakly, then

∫
u dbn → ∫

u db.
Replacing the function u in Lemma 6.5 with c2 we obtain the following.
Proposition 6.6. Assumption 3.1(a) holds for the function c in (6.8) if c1 is

l.s.c. on KA and, furthermore,
(a) c2 is continuous on S;
(b) if (xn, an) → (x, a) and bn is in B for all n, then c2 is {bn}-uniformly inte-

grable.
Example 6.1. Suppose that S = R and let c2(s) := s2. From (6.9) we obtain

that if bn → b weakly, then

lim inf
n→∞

∫
s2bn(ds) ≥

∫
s2b(ds).(6.12)

On the other hand, if, for instance,

sup
n

∫
|s|3bn(ds) <∞,(6.13)

and bn → b weakly, then instead of (6.12) we obtain the stronger result:

lim
n→∞

∫
s2bn(ds) =

∫
s2b(ds).(6.14)

This result comes from Lemma 6.5 and (6.11) with ε = 1. In other words, (6.14)
states that the mapping b �→ ∫

s2db is continuous, whereas (6.12) gives that it is l.s.c.
Finally, note that for “separable” functions as in (6.8) we have

inf
a∈A(x)

sup
b∈B

c(x, a, b) = inf
a∈A(x)

c1(x, a) + sup
b∈B

∫
c2(s)b(s).(6.15)
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7. Examples. We will now present two examples on the game against nature
introduced in section 6. In both examples, the state space X and the control set A
are Borel subsets of R. Moreover, to fix ideas we will choose a particular set B of
admissible noise distributions, but the reader should note that such a set B can be
replaced with any family of compactly supported distributions with zero mean, finite
second moment, and strictly positive densities (for instance, uniform distributions).
Further, the choice of zero-mean distributions is simply to facilitate calculations.

Throughout this section, the disturbance set S in (6.3), (6.4) is the compact
interval S := [−ŝ, ŝ] for some ŝ > 0, and the set B ⊂ P(S) of admissible disturbance
distributions is the family N(0, σ2;σ, σ̄) of truncated Gaussian distributions on S,
with zero mean and standard deviation σ in [σ, σ̄], where 0 < σ ≤ σ̄ < ∞. In other
words, a probability measure, denoted by bσ, in B is of the form bσ(ds) = gσ(s)ds,
where gσ is the density function given by

gσ(s) := k(σ)−1e−s2/2σ2

IS(s) ∀s ∈ R,(7.1)

with

k(σ) :=

∫ ŝ

−ŝ

e−s2/2σ2

ds.(7.2)

We shall denote by ξ(σ) a generic random variable with distribution bσ in B. It is
evident that the second moments

E[ξ(σ)2] =

∫ ŝ

−ŝ

s2gσ(s)ds for σ ∈ [σ, σ̄](7.3)

are continuous in σ and uniformly bounded above. On the other hand, as S = [−ŝ, ŝ]
is a compact set, so is P(S) and also B ⊂ P(S). Therefore, there exists ξ2

∗ > 0 such
that

max
σ≤σ≤σ̄

E[ξ(σ)2] = ξ2
∗ .(7.4)

Example 7.1. This example was motivated by the mold level control problem
briefly described in section 1. The underlying idea is that the state variable x stands
for the height of a certain object that we wish to keep as close as possible to a nominal
height x∗. Thus we consider the discrete-time model

xt+1 = xt + at + ξt for t = 0, 1, . . . ,(7.5)

with independent disturbances ξt ≡ ξ(σ) as in the previous paragraph, and state space
X := [x∗ − x, x∗ + x̄], where x and x̄ are given positive numbers. For each state x,
the control set is

A(x) := [x∗ − x, 0] if x ≥ x∗, and A(x) := [0, x∗ − x] if x ≤ x∗.(7.6)

The rationale is that if x ≥ x∗, then we choose a control action a ∈ A(x) to decrease
x down to a point x + a in [x∗, x], whereas if x ≤ x∗, then a ∈ A(x) increases x up
to a point x + a in [x, x∗]. Moreover, to ensure that xt is indeed in X for all t ≥ 0
whenever x0 is in X, we will assume that the disturbance set S = [−ŝ, ŝ] is such that

0 < ŝ ≤ min{x, x̄}.(7.7)
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On the other hand, observe that as the disturbances ξ(σ) have zero mean, (7.5) gives
that E(xt+1) = x + a if xt = x and at = a. Therefore it is natural to consider the
cost function

ĉ(x, a, s) := (x+ a− x∗)2 + s2,(7.8)

so that, by (7.3) and (6.8),

c(x, a, bσ) = (x+ a− x∗)2 + E[ξ(σ)2].(7.9)

We next verify that the corresponding minimax control problems satisfy Assumptions
3.1 and 5.1.

Verification of Assumption 3.1. Assumption 3.1(a) obviously follows from
Proposition 6.3. In fact, it also follows from Proposition 6.6 because c2(s) := s2 is
continuous on the compact set S. To verify Assumption 3.1(b) note that

−x ≤ x+ a− x∗ ≤ x̄ ∀x ∈ X, a ∈ A(x).(7.10)

This inequality and (7.4) yield that the nonnegative cost c in (7.9) is bounded above
by c̄ := max{x2, x̄2} + ξ2

∗ . This yields Assumption 3.1(b) and also (d) and (e) with
w(·) ≡ 1 and β = 1. Observe that β = 1 also satisfies (4.6). On the other hand,
Proposition 6.2 yields Assumption 3.1(c), and finally, parts (f) and (g) in Assumption
3.1 follow from the definitions of X, A(x) and B(x, a) ≡ B—see Remark 3.1(c).

Verification of Assumption 5.1. Recall that w(·) ≡ 1. We now wish to verify
Assumption 5.1 in the special case (5.14), that is, δ ≡ 1, assuming that x = x̄ =: x̂
and that, moreover, in lieu of (7.7) we have

ŝ < x̂ < 2ŝ.(7.11)

Now, using (7.5), (7.1), and (6.3), we get the transition law

Q(D | x, a, bσ) =
∫
S

ID(x+ a+ s)gσ(s)ds ∀D ∈ B(X).(7.12)

Hence, as S = [−ŝ, ŝ], using the change of variable y := x+ a+ s we can write Q as
in (5.25), i.e.,

Q(D | x, a, bσ) =
∫
D

q(x, a, bσ, y)dy,

where q is the transition density

q(x, a, bσ, y) := ID(x,a)(y)gσ(y − (x+ a)),(7.13)

with D(x, a) := [x+ a− ŝ, x+ a+ ŝ]. Furthermore, as

−ŝ ≤ y − (x+ a) ≤ ŝ ∀y ∈ D(x, a), x ∈ X, a ∈ A(x),(7.14)

D(x, a) contains the interval D1 := [x∗ − ŝ, x∗ − x̂ + ŝ] if x ≤ x∗, and the interval
D2 := [x∗ + x̂− ŝ, x∗ + ŝ] if x ≥ x∗. Hence

ID(x,a) ≥ ID1 + ID2 .
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On the other hand, by (7.1), there exists ε > 0 such that gσ(y− (x+ a)) ≥ εgσ(y) for
all x, a, y as in (7.14) and all σ in [σ, σ̄]. Therefore, the transition density in (7.13)
satisfies an inequality of the form (5.27) with

q0(y) := ε [ID1
(y) + ID2

(y)] gσ(y).

Consequently, by Proposition 5.6, we get Assumption 5.1(a) with δ(x, a, b) ≡ 1.
Summarizing, Assumptions 3.1 and 5.1 hold in the present example, and therefore

all of the optimality results in sections 3, 4, and 5 are satisfied. In fact, as we show
next, getting the optimal cost function turns out to be surprisingly simple because
there exists a myopic minimax strategy! (See Remark 7.1 below.)

Computation of the minimax strategy and the optimal costs. Let fn and
vn,α be as in (3.10) with v0,α ≡ 0. Then from (7.9), (7.4), and (6.15) we get that

f1(x) := x∗ − x, and v1,α(x) = ξ2
∗ ∀x ∈ X.(7.15)

Similarly, a straightforward induction argument using (3.11) yields that

fn(·) ≡ f1(·) and vn,α(·) ≡ ξ2
∗
n−1∑
j=0

αj ∀n ≥ 1, α ∈ (0, 1].(7.16)

It follows from Theorem 3.1 that the constant function vn,α is the optimal n-stage
cost and that the stationary strategy f1 is minimax for all n ≥ 1 and all α in (0,1].

In turn, from (7.16) and (4.7) it follows that the optimal α-DC is the constant
function v∗α(·) ≡ ξ2

∗/(1− α) for all 0 < α < 1, and so, by Theorem 4.2, f∗
α(·) ≡ f1(·)

is an α-DC minimax strategy for all 0 < α < 1.
Finally, from (5.15) and (5.17) we obtain that also the function h∗ in (5.4) is

constant, and so (5.4) reduces to ρ∗ = v1(·) ≡ ξ2
∗ . That is, the optimal AC is ρ∗ = ξ2

∗ ,
and f∗(·) ≡ f1(·) is a minimax strategy for the AC criterion.

Remark 7.1. A minimax strategy is said to be myopic if it can be obtained
by solving a static (i.e., a one-period) optimization problem. Myopic policies, if they
exist, are usually “problem-dependent”—for instance, in the α-DC case they depend on
α. Thus, it is truly surprising that the myopic strategy f1 in (7.15) is minimax for all
of the problems associated to (7.5), (7.6), (7.8), finite- or infinite-horizon, discounted
or average. It is worth noting, on the other hand, that myopic behavior has been
observed by many authors (see, e.g., [7, 8, 36, 53, 63]), but as far as we can tell, it has
been determined only for particular classes of problems, and a posteriori, that is, after
one has actually solved the problem, as in Example 7.1. An interesting open problem
would be to find a priori conditions—i.e., exclusively based on the problem data—for
the existence of myopic strategies. The existing results in that direction [58, 59, 60]
are not sufficiently general to include, for instance, the minimax model in Example
7.1.

On the other hand, one might be willing to conjecture that the myopic property
of f1 is due to the fact that the system in (7.5) is linear and that the cost (7.9) is
quadratic. These conditions, however, in general are not sufficient to have myopic
behavior: for instance, the following example shows another LQ (i.e., linear system,
quadratic cost) problem in which the minimax strategies are not myopic.

Example 7.2. Consider the linear system

xt+1 = k1xt + k2at + ξt(7.17)



MINIMAX CONTROL OF STOCHASTIC SYSTEMS 1653

with state space X := R, and disturbances ξt ≡ ξ(σ) ∈ B, as at the beginning of this
section. The coefficients k1 and k2 are given positive constants. For each state x, the
control set A(x) ⊂ A := R is the interval

A(x) := [−k1|x|/k2, k1|x|/k2].(7.18)

(Actually, in (7.18) we may take A(x) := [−g1(x), g2(x)], where g1 and g2 are non-
negative continuous functions such that gi(x) ≥ |k1x/k2| for all x ∈ X and i = 1, 2.
However, the choice in (7.18) greatly simplifies the calculations below.) To complete
the specification of the minimax model we introduce the cost-per-stage

ĉ(x, a, s) := c1x
2 + c2a

2 + s2 ∀(x, a) ∈ K, s ∈ S,

where c1 and c2 are positive constants. Thus, by (7.3) and (6.8),

c(x, a, bσ) = c1x
2 + c2a

2 + E[ξ(σ)2].(7.19)

The plan now is as in Example 7.1: first we will verify the Assumptions 3.1 and 5.1,
and then we will compute the optimal cost function and the minimax strategies for
each of the problems in sections 3, 4, 5.

Verification of Assumption 3.1. As in Example 7.1, part (a) in Assumption
3.1 follows from either Proposition 6.3 or Proposition 6.6. Now let ξ2

∗ be as in (7.4),
and define

w1 := c1 + c2(k1/k2)
2, w := max{1, ξ2

∗ , w1}

and, for some γ ≥ 2,

w(x) := weγ|x| ∀x ∈ X.(7.20)

Therefore, by (7.18) and (7.19),

0 ≤ c(x, a, bσ) ≤ w1x
2 + ξ2

∗ ≤ w(x),

and so Assumption 3.1(b) holds with c̄ := 1. Furthermore, Assumption 3.1(c) follows
from Proposition 6.2, whereas, as c(x, a, bσ) is nonnegative, Assumption 3.1(d) is not
required in the present case (see Remark 3.1(a)). On the other hand, parts (f) and (g)
are obvious (see Remark 3.1(c)), and so it only remains to verify Assumption 3.1(e),
which can be done as follows.

Lemma 7.1. Let w(x) be as in (7.20), and suppose that

0 < k1 < 1/2.(7.21)

Then Assumption 3.1(e) holds with β := eγŝ, i.e.,

ŵ(x, a, bσ) ≤ βw(x),(7.22)

where ŵ(x, a, bσ) :=
∫
w(y)Q(dy|x, a, bσ). If in addition γŝ < − log α, then we also

obtain (4.6), i.e., 1 ≤ β < 1/α.
Proof. By (7.18),

|k1x+ k2a| ≤ 2k1|x| ∀(x, a) ∈ KA.(7.23)
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On the other hand, by (7.20),

ŵ(x, a, bσ) = E[w(k1x+ k2a+ ξ0)]

≤ weγ|k1x+k2a|E(eγ|ξ0|)
≤ we2γk1|x|eγŝ [by (7.23)](7.24)

= w(x)e−γ|x|eγ|x|β [by (7.21) and (7.20)].

This gives (7.22). The last statement in the lemma is obvious.

Verification of Assumption 5.1. Let us replace (7.21) with the stronger con-
dition

0 < k1 < 1/6.(7.25)

Consider the intervals D0 := [−ŝ/2, ŝ/2], D1 := [−ŝ/4k1, ŝ/4k1], and let δ(x) be the
indicator function of D1. Observe that, by (7.23),

D2(x, a) ⊃ D0 if x ∈ D1,(7.26)

with D2(x, a) := [k1x + k2a − ŝ, k1x + k2a + ŝ]. Moreover, as in Example 7.1 (see
(7.12), (7.13)), one can see that the transition law Q for the system (7.17) has the
density

q(x, a, bσ, y) = ID2(x,a)(y)gσ(y − (k1x+ k2a)).

We can now verify Assumption 5.1 with

δ(x, a, bσ) ≡ δ(x) and ν(B) := ε ·m(B ∩D0),(7.27)

where m(dy) = dy denotes the Lebesgue measure on X, and ε > 0 is a lower bound
for gσ(·) on S. (Observe that a point y is in D2(x, a) if and only if y − (k1x+ k2a) is
in S = [−ŝ, ŝ].) Indeed, by (7.26), Assumption 5.1(a) follows because

Q(B|x, a, bσ) =
∫
B

ID2(x,a)(y)gσ(y − (k1x+ k2a))dy

≥ δ(x)

∫
B

ID0(y) · εdy
= δ(x)ν(B).

Further, parts (b) and (d) in Assumption 5.1 are obvious. To verify part (c) we shall
use the notation ŵ(x, a, bσ) in (7.22). Let us first consider the case δ(x) = 0, that is,
|x| > ŝ/4k1. Then as in (7.24) we obtain

ŵ(x, a, bσ) ≤ w(x)e−γ|x|(1−2k1)eγŝ

≤ w(x)e−γŝ(1−2k1)/4k1eγŝ

=: θw(x)

with θ := exp[−γŝ(1− 6k1)/4k1] < 1. A similar calculation gives us

ŵ(x, a, bσ) ≤ θw(x) + ν(w)

if δ(x) = 1, that is, |x| ≤ ŝ/4k1. This completes the verification of Assumption 5.1.
We next compute the optimal cost functions and the minimax strategies for the

system (7.17)–(7.19).
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Finite-horizon case. Let vn,α and fn be as (3.10), (3.11) for n ≥ 1, with
v0,α(·) ≡ 0.

Proposition 7.2. For all n = 1, 2, . . . and x ∈ X,

vn,α(x) = v1(n, α)x
2 + v2(n, α) and fn(x) = −f(n, α)x(7.28)

with coefficients given by v1(0, α) = v2(0, α) = 0, and for n ≥ 0,

f(n+ 1, α) := [c2 + αv1(n, α)k
2
2]

−1αv1(n, α)k1k2,(7.29)

v1(n+ 1, α) := c1 + c2f(n+ 1, α)2 + αv1(n, α)(k1 − k2f(n+ 1, α))2,(7.30)

v2(n+ 1, α) := (1 + αv1(n, α))ξ
2
∗ + αv2(n, α).(7.31)

As c2 > 0, (7.29) implies that |f(n, α)| ≤ k1/k2, and therefore fn(x) is indeed in the
interval A(x) (in (7.18)) for all x ∈ X and n ≥ 1.

Proof. For n = 1, from (3.11), (6.15), and (7.19) we get v1,α(x) = c1x
2 + ξ2

∗
and f1(x) = 0 for all x ∈ X, with ξ2

∗ as in (7.4). That is, (7.28)–(7.31) hold with
v1(1, α) = c1, v2(1, α) = ξ2

∗ , and f(1, α) = 0. Now, by induction, let us suppose that
(7.28) holds for some n ≥ 1. Thus, by (7.23),∫

X

vn,α(y)Q(dy|x, a, bσ) = v1(n, α)(k1x+ k2a)
2 + v1(n, α)E[ξ(σ)2] + v2(n, α),

and replacing this expression in (3.11) and using (6.15) we obtain

vn+1,α(x) = min
a∈A(x)

[c1x
2 + c2a

2 + αv1(n, α)(k1x+ k2a)
2] + ξ2

∗(1 + αv1(n, α)) + αv2(n, α).

Finally, a straightforward calculation gives

vn+1,α(x) = v1(n+ 1, α)x2 + v2(n+ 1, α) and fn+1(x) = −f(n+ 1, α)x

with coefficients as in (7.29)–(7.31).

The infinite-horizon α-discounted case (0 < α < 1). Let us suppose that
the number β in (7.25) satisfies (4.6). Then, by (7.28) and (4.7), we may “guess” that
there is a unique function

v∗(x) = v1(α)x
2 + v2(α) ∀x ∈ X(7.32)

in Blsc that satisfies (4.4), i.e., using (7.28) and (7.19),

v∗(x) = min
a

max
b

{
c1x

2 + c2a
2 + E[ξ(σ)2] + αv1(α)(k1x+ k2a)

2(7.33)

+ αv1(α)E[ξ(σ)2] + αv2(α)
}
.

Moreover, from (6.15), a direct calculation shows that the minimum in (7.33) is at-
tained when a = fα(x) is the minimax strategy given by

fα(x) = −f(α)x ∀x ∈ X,(7.34)

with coefficient (cf. (7.29))

f(α) := [c2 + αv1(α)k
2
2]

−1αv1(α)k1k2.(7.35)
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As c2 > 0, we have |f(α)| ≤ |k1/k2|, and so fα(x) is indeed in A(x) for all x ∈ X.
Substituting (7.34) and (7.4) in (7.33), and then comparing the result with (7.32),
we conclude that the coefficients v1(α) and v2(α) in (7.32) are given by the equations
(similar to (7.30), (7.31))

v1(α) = c1 + c2f(α)
2 + αv1(α)(k1 − k2f(α))

2,(7.36)

v2(α) = (1 + αv1(α))ξ
2
∗ + αv2(α).(7.37)

Observe that (7.37) can be solved for v2(α) in terms of v1(α), i.e.,

v2(α) = (1− α)−1(1 + αv1(α))ξ
2
∗ ,(7.38)

whereas inserting (7.35) in (7.36) we obtain a quadratic equation for v1(α):

αk2
2v1(α)

2 + (c2 − αc1k
2
2 − αc2k

2
1)v1(α)− c1c2 = 0.(7.39)

This equation has a unique positive solution, which is the value of the coefficient v1(α)
in (7.32), (7.35), and (7.38). In other words, the latter equations and (7.39) give an
explicit solution for the α-discounted minimax problem in terms of the coefficients in
(7.17) and (7.19).

The average cost (AC) case. We shall assume that (7.25) holds. To solve the
minimax problem in the AC case we shall proceed as in the discounted cost problem.
Namely, in light of (5.17) and (5.18), taking α = 1 in (7.28)–(7.31) we “guess” that
the solution ρ∗, h∗(x) of (5.4) consists of some constant ρ∗ and a quadratic function
h∗(x) = h∗x2 for some constant h∗. (Adding a constant to h∗(x) does not alter the
fact that h∗(x) is a solution to (5.4); hence we take such a constant to be zero.) Now,
substitution of

ρ∗ and h∗(x) = h∗x2(7.40)

in (5.4) yields, with the usual calculations,

ρ∗ + h∗x2 = min
a∈A(x)

[c1x
2 + c2a

2 + h∗(k1x+ k2a)
2] + (1 + h∗)ξ2

∗(7.41)

and that the minimum is realized when a = f∗(x) is the minimax strategy

f∗(x) = −f∗x, with f∗ := (c2 + h∗k2
2)

−1h∗k1k2.(7.42)

Substitution of (7.42) in (7.41) yields that

ρ∗ = (1 + h∗)ξ2
∗ ,(7.43)

h∗ = c1 + c2f
2
∗ + h∗(k1 − k2f∗)2.(7.44)

Moreover, substitution of (7.42) in (7.44) gives the following quadratic equation for
h∗:

k2
2h

2
∗ + (c2 − c1k

2
2 − c2k

2
1)h∗ − c1c2 = 0,(7.45)

and the unique positive solution of (7.45) is the coefficient h∗ in (7.40), (7.42), and
(7.43). Thus, the optimal cost and the minimax strategy for the AC problem are as
in (7.43) and (7.42), respectively.
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8. Concluding remarks. We have presented in this paper a unified, self-con-
tained study of minimax control problems for discrete-time stochastic systems in Borel
spaces, allowing unbounded cost functions. Our results can be extended to maximin
problems by modifying Assumption 3.1 in the obvious manner. Our study includes
finite- and infinite-horizon problems. In fact, Theorem 4.2 (on the α-discounted case)
and Corollary 5.4 (for AC problems) give precise estimates for the convergence of
finite-horizon optimal cost functions to their infinite-horizon counterparts. Moreover,
for the special case of stochastic systems with unknown disturbance distribution,
in which the minimax problem is a “game against nature,” we have presented (in
section 6) sufficient conditions for the assumptions that ensure our optimality results
in sections 3, 4, and 5. These sufficient conditions are used in section 7 to make a
detailed analysis of two particular minimax control problems (Examples 7.1 and 7.2).

Finally, in connection with Example 7.1 and Remark 7.1 we should mention once
again an important problem that remains open: determining conditions for the exis-
tence of myopic minimax strategies.
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[34] H.-U. Küenle, Stochastic games with complete information and average cost criteria, in Ad-

vances in Dynamic Games and Applications, J. A. Filar, V. Gaitsgory, and K. Mizukami,
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Abstract. In this paper we are concerned with the problem of robust dissipativity of linear
systems with parameters affected by box uncertainty; our major goal is to evaluate the largest
uncertainty level for which all perturbed instances share a common dissipativity certificate. While it
is NP-hard to compute this quantity exactly, we demonstrate that under favorable circumstances one
can build an O(1)-tight lower bound of this “intractable” quantity by solving an explicit semidefinite
program of the size polynomial in the size of the system. We consider a number of applications,
including the robust versions of the problems of extracting nearly optimal available storage, providing
nearly optimal required supply, Lyapunov stability analysis, and linear-quadratic control.
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1. Introduction and motivation. An important requirement of any modern
control system is its robustness. In many system theory and control applications,
the concept of robustness is related to the stability of the closed-loop system and its
performance measured with respect to a certain objective function.

In this paper, we focus on robustness with respect to unknown-but-bounded (and
possibly time-varying) perturbations of the entries in the matrix Σ =

[
A B
C D

]
of a

continuous-time linear dynamical system

ż = Az +Bu,
y = Cz +Du.

For the time being, we assume the simplest interval model of perturbations—every
entry Σij in Σ, independently of all other entries, can vary in the interval Σij±ρdΣij ,
where Σij are the nominal data, dΣij are given scale factors, and ρ is the uncertainty
level. The set of matrices just defined will be referred to as interval matrix and will
be denoted by Uρ.

The question we are addressing is as follows:
(?) What is the supremum ρ� of those uncertainty levels ρ under

which all perturbations of level ρ preserve a particular property of the
system, such as stability, passivity, contractiveness, etc.?

Typically, it is computationally intractable to give a precise answer to such a question.
For example, it is known to be NP-hard to check the stability of all instances of an
interval matrix Uρ [7]. In other words, we do not know how to check efficiently whether
every one of the Lyapunov linear matrix inequalities (LMIs)
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find X such that X � 0 and ATX +XA ≺ 01

corresponding to the instances A of an interval square matrix is solvable.
The situation does not improve at all when we pass from the question “whether all

instances of an interval matrix are stable” to the seemingly simpler question “whether
all instances of an interval matrix admit a common quadratic Lyapunov stability
certificate,” or, which is the same, whether the aforementioned LMIs have a common
solution. Although in the new form the question is to check the solvability of a finite
system of LMIs

X � 0, ATX +XA ≺ 0 ∀(A ∈ V),
where V is the (finite!) set of the extreme points of the original interval matrix, the
number of LMIs in this system blows up exponentially with the size of the matrix
(unless the number of uncertain entries in the matrix remains once and for ever fixed).
It turns out that in general it is already NP-hard to check whether a given candidate
solution X is feasible for the above system of LMIs.2

The difficulty arising when checking stability of (all instances of) an interval
matrix is typical for other problems of the aforementioned type: the property of
interest is equivalent to the solvability of certain LMI LΣ(X) � 0 with the data
coming from the matrix Σ of the system in question. When Σ is subject to interval
uncertainty, both of the following tasks become NP-hard:

(1.A) Checking whether every one of the LMIs

LΣ(X) � 0(1)

with Σ ∈ Uρ is solvable (i.e., to verify that the desired property is possessed by all
instances), and

(1.B) Checking whether the infinite system of LMIs

LΣ(X) � 0 ∀(Σ ∈ Uρ)
is solvable, i.e., whether all instances of our interval matrix share a common certificate
for the property of interest (which normally is a sufficient condition for the property
to be preserved also by dynamic perturbations).

Now, in light of the fact that it is NP-hard to answer questions (1.A), (1.B)
exactly, a natural course of action is to relax the questions in order to make them
tractable. We are not aware of any good relaxation of question (1.A). In contrast
to this, recent progress in what is called robust semidefinite programming [1, 5, 6]
(specifically, the matrix cube theorem [3]) leads to “tight” tractable relaxations of
question (1.B). It turns out that under favorable circumstances (which do take place
for a wide family of “properties of interest”) one can build efficiently a lower bound ρ̂
on the supremum ρ� of those uncertainty levels ρ for which the answer to the question
(1.B) is affirmative, and this lower bound is tight within an absolute constant factor
(the latter is in most of the cases π2 = 1.57 . . . ). The goal of this paper is to justify
the above claim.

1We write A � B (A � B) to express that A,B are symmetric matrices of the same size such
that A−B is positive semidefinite (respectively, positive definite).

2This “analysis” problem is not simpler than checking whether all instances of a given interval
symmetric matrix are positive semidefinite; it is shown in [7] that the latter problem is NP-hard
already in the case when all entries in the interval matrix, except for those from the first two rows
and columns, are fixed.
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A convenient general framework for our study is the dissipativity-based approach,
as developed in the seminal papers of Willems [9, 10]. The notion of dissipativity is
one of the most important concepts in systems and control theory, both from the
theoretical point of view as well as from the practical perspective. In many mechan-
ical and electrical engineering applications, dissipativity is related to the notion of
energy. Here, a dissipative system is characterized by the following property: at any
moment of time, the amount of energy which the system can supply to its environ-
ment cannot exceed the amount of energy that has been supplied to it. However, the
dissipativity-based framework is not restricted to the energy-related issues; it allows
us to investigate stability analysis and linear-quadratic control as well.

The rest of the paper is organized as follows. In section 2, we review basic notions
and results from dissipativity theory. In section 3, we present the box model of uncer-
tainty (which is slightly more general than the simple interval model) and pose and
motivate three basic dissipativity-related versions of question (1.B): finding a common
dissipativity certificate for all instances of a given uncertain system (a particular case
of this problem is the Lyapunov stability analysis under box uncertainty); extracting
available storage/providing required supply in the face of uncertainty (this covers, in
particular, the optimal linear-quadratic control of uncertain systems). In the central
section 4, we develop “tractable tight relaxations” of the problems posed in section
3. Finally, in section 5, we present several illustrating numerical examples.

On many occasions in this paper we use the term “efficient computability” of
various quantities. An appropriate definition of this notion does exist,3 but for our
purposes here it suffices to agree that all “LMI-representable” quantities—those which
can be represented as optimal values in semidefinite programs

min
x

{
cTx : A0 +

N∑
i=1

xiAi 	 0

}

or generalized eigenvalue problems

min
x,ω




ω :

A(x) ≡ A0 +
N∑
i=1

xiAi 	 0

B(x) ≡ B0 +
N∑
i=1

xiBi � ωA(x)

C(x) ≡ C0 +
N∑
i=1

xiCi 	 0




—are efficiently computable functions of the data c, {Ai ∈ Sn}Ni=0, respectively,
{Ai, Bi, Ci ∈ Sn}Ni=0; where S

n is the space of real symmetric n × n matrices. From
now on, missing blocks in block matrices are assumed to be zero.

2. Dissipative systems. In this section, we shall briefly review the dissipativity
theory for linear systems with quadratic storage and supply functions as developed in
[10]. The readers less familiar with the topic are referred to [8] for details.

Consider a continuous-time linear time-invariant dynamical system given by

ż(t) = Az(t) +Bu(t), z(0) = ζ,
y(t) = Cz(t) +Du(t),

(2)

3For a definition which fits best of all the contents of the paper, see [2, Chapter 5].
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where Σ ≡ [
A B
C D

] ∈ R(n+p)×(n+m) is the matrix of system coefficients, u(·) ∈ Rm is

the input (which henceforth is assumed to be locally square integrable), z(·) ∈ Rn is
the state, and y(·) ∈ Rp is the output. In what follows we refer to system (2) given
by a matrix Σ as “system Σ.”

Let us fix a quadratic supply function

S : Rp+m → R, S(y, u) =

[
y
u

]T [
Q L
LT R

] [
y
u

]
;(3)

here

P =

[
Q L
LT R

]

is a symmetric supply matrix (Q is p×p, R ism×m). Given a trajectory (z(·), y(·), u(·))
of (2) and two time instants t0 ≤ t1, we interpret the corresponding supply∫ t1

t0

S(y(t), u(t))dt

as the work carried on the system in the time interval [t0, t1] along the trajectory in
question, if the supply is nonnegative, and as minus the energy extracted from the
system, if the supply is negative.

Note that along a trajectory of (2) the supply can be expressed in terms of the
state and the input:

SΣ(z, u) ≡ S(Cz +Du, u)

=

[
z
u

]T [
CTQC CT (L+QD)

(L+QD)TC DTQD + LTD +DTL+R

]
︸ ︷︷ ︸

SΣ

[
z
u

]
.

(4)

Definition 2.1. System Σ is called dissipative with respect to supply S, if there
exists a nonnegative storage function V (z), V (0) = 0, such that

V (z(0)) +

∫ T

0

S(y(t), u(t))dt ≥ V (z(T ))(5)

for all T ≥ 0 and all trajectories (z(·), y(·), u(·)) of the system.
The standard interpretation of a storage function is that V (z) is the internal

energy stored by system in state z; with this interpretation, (5) means that the work
W on the system needed to move it from one state to another is at least the resulting
change ∆V in the internal energy stored by the system; the excess W − ∆V ≥ 0 is
thought of to be dissipated by the system.

The summary of facts on dissipativity we need in what follows is as follows.
Assume that system Σ is controllable, and let S be a quadratic supply:

D.1. (Σ,S) is dissipative if and only if (Σ,S) admits a quadratic storage function
V (z) = zTZz, where Z ∈ Sn+ (from now on, Sn+ is the cone of positive
semidefinite matrices from Sn).

D.2. A quadratic function V (z) = zTZz is a storage function for (Σ,S) if and only
if Z ∈ Sn+ and

S(y(t), u(t))− d

dt
(zT (t)Zz(t)) ≥ 0
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for all trajectories (z(·), y(·), u(·)), or, which is the same, if and only if Z ∈ Sn

solves the system of matrix inequalities (MIs)

Z 	 0,(6a)

DΣ[Z] ≡ SΣ −
[

ATZ + ZA ZB
BTZ

]
	 0(6b)

(for notation, see (4)). Note that MI (6b) expresses a very transparent re-
quirement that

SΣ(z(t), u(t)) ≥ d

dt
(zT (t)Zz(t))(7)

for all t and all trajectories (z(t), y(t), u(t)) of Σ. In what follows, we call the
solutions of (6) the dissipativity certificates for (Σ,S).

D.3. If (Σ,S) is dissipative, then we have the following:
(a) among the associated storage functions there exist the (pointwise) min-

imal one,

Vav(z) = sup
(z(·),y(·),u(·))

{
−
∫ t1

0

S(y(t), u(t))dt :
(z(·), y(·), u(·)) is a trajectory,
z(0) = z

}

(“available storage”), and the (pointwise) maximal one,

Vreq(z) = inf
(z(·),y(·),u(·))

{∫ t1

0

S(y(t), u(t))dt :
(z(·), y(·), u(·)) is a trajectory,
z(0) = 0, z(t1) = z

}

(“required supply”). Every storage function V (·) for (Σ,S) satisfies the
relations Vav(z) ≤ V (z) ≤ Vreq(z) for all z, and every convex combina-
tion of Vav(·) and Vreq(·) is a storage function for (Σ,S).

(b) Both the available storage and the required supply are quadratic func-
tions of the state:

Vav(z) = zTZavz,
Vreq(z) = zTZreqz,

where the positive semidefinite matrices Zav, Zreq are, respectively, the
	-minimal and the 	-maximal solutions of (6). The set of solutions to
(6) is exactly the “matrix interval” {Z : Zav � Z � Zreq}.

D.4. Assume that (Σ,S) is dissipative and that the matrix DTQD+LTD+DTL+
R is positive definite. Then the state feedback

u = Favz, Fav = −(DTQD+ LTD+DTL+R)−1(BTZav − (L+QD)TC)

stabilizes the system (i.e., the real parts of all eigenvalues of the matrix A+
BFav of the closed-loop system are negative), and with this feedback, the
energy extracted from the system, the initial state of the system being ζ ∈ R

n,
is exactly the available storage Vav(ζ):

−
∫ ∞

0

S(y(t), u(t))dt = ζTZavζ,
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where (y(t), u(t)) are given by

ż(t) = Az(t) +Bu(t), z(0) = ζ,
u(t) = Favz(t),
y(t) = Cz(t) +Du(t).

Similarly, the state feedback

u = Freqz, Freq = −(DTQD+LTD+DTL+R)−1(BTZreq−(L+QD)TC)

stabilizes the “backward time” system (i.e., the real parts of all eigenvalues
of the matrix −(A + BFreq) of the closed-loop system with backward time
are negative), and with this feedback the supply required to move the system
from the origin to a state ζ is exactly the required supply Vreq(ζ):∫ ∞

0

S(y(t), u(t))dt = ζTZreqζ,

where (y(t), u(t)) are given by

ż(t) = −[Az(t) +Bu(t)], z(0) = ζ,
u(t) = Freqz(t),
y(t) = Cz(t) +Du(t).

Let us list several important examples of supply functions.
Example 1 (positive-real systems). Here m = p, and the supply matrix is

P = [ I
I

], i.e.,

S(y, u) = 2yTu.

Assuming that A is stable and (A,B,C) is minimal, the pair (Σ,S) is dissipative if

and only if (2) is passive, i.e.,
∫ T
0

yT (t)v(t)dt ≥ 0 for all T ≥ 0 and all trajectories
(z(t), y(t), v(t)) with z(0) = 0. Under the same assumptions on A,B,C, the frequency
domain characterization of passivity is that the transfer function

H(s) = C(sI −A)−1B +D

of the system is such that

�(s) ≥ 0 ⇒ H(s) +H∗(s) 	 0,

where H∗(s) is the Hermitian conjugate of H(s) and �(s) is the real part of s ∈ C.
Example 2 (nonexpansive systems [4]). Here the supply matrix is P = [Ip

Im
]

(Ik is the k × k unit matrix), i.e.,

S(y, u) = uTu− yT y.

Assuming again that A is stable and (A,B,C) is minimal, dissipativity of (Σ,S) is
equivalent to the fact that

∫ T

0

yT (t)y(t)dt ≤
∫ T

0

uT (t)u(t)dt
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for all T ≥ 0 and trajectories (z(t), y(t), u(t)) of (2) with z(0) = 0. Under the same
assumption on A,B,C, the frequency domain characterization of nonexpansivity is
that the transfer function H(s) of the system is such that

�(s) ≥ 0 ⇒ H∗(s)H(s) � I.

Example 3 (linear-quadratic control [4]). Here the supply matrix P is positive
semidefinite. Assuming that (A,B) is controllable, the pair (Σ,S) is always dissipa-
tive, with the available storage Vav(z) ≡ 0. The required supply Vreq(z) is the optimal

value in the problem of optimal control where the goal is to minimize
∫ T
0

S(y(t), u(t))dt
when moving the system from the origin at time 0 to the state z at time T (to be cho-
sen).

3. Dissipativity under uncertainty. Now assume that the linear dynamic
system in question is uncertain, so that all we know about the matrix Σ is that Σ
belongs to a given uncertainty set Uρ in the space of (n+ p)× (m+ p) real matrices.
In this paper we focus on the case of box uncertainty:

Uρ =
{
Σ = Σ+

L∑
�=1

u�dΣ� : −ρ ≤ u� ≤ ρ, " = 1, . . . , L

}
,(8)

where
• Σ = [A B

C D
] is the nominal system;

• dΣ� = [dA	 dB	
dC	 dD	

], " = 1, . . . , L, are basic perturbation matrices;
• ρ > 0 is the uncertainty level.

In what follows, we refer to matrices Σ ∈ Uρ as to instances of the uncertain system
associated with the uncertainty set Uρ.

Let us fix a quadratic supply function (3); in what follows, when speaking about
the dissipativity of a certain system, we mean the dissipativity with respect to this
supply function. We assume from now on that the nominal pair (A,B) is controllable,
and the nominal system Σ is dissipative, with the minimal and maximal dissipativity
certificates Zav, Zreq, respectively.

We intend to focus on three dissipativity-related problems for uncertain systems,
specifically, the following problems:

1. Common dissipativity certificate. Find a common dissipativity certificate for
all instances of the uncertain system.

2. Extracting available storage. Given ε ∈ (0, 1), find a feedback which stabilizes
all instances of the uncertain system and allows us to extract from the initial
state ζ of any instance energy at least (1− ε)ζTZavζ.

3. Providing required supply. Given δ > 0, find a feedback which stabilizes
in backward time all instances of the uncertain system and allows to move
every instance from the origin to a given state ζ with total supply at most
(1 + δ)ζTZreqζ.

Our next goal is to motivate and to model the outlined problems.

3.1. Common dissipativity certificate. The problem of finding a common
dissipativity certificate for all instances of an uncertain system is as follows.

Problem 1. Given a supply S, a convex set I in the cone Sn+, and the data
specifying Uρ, find the supremum of those ρ ≥ 0 for which all instances from Uρ admit
a common dissipativity certificate in I, or, which is the same in view of D.2, find the
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supremum of those ρ ≥ 0 for which the system of constraints

Z ∈ I,(9a)

DΣ[Z] ≡
[

CTQC −ATZ − ZA CT (L+QD)− ZB
(L+QD)TC −BTZ DTQD + LTD +DTL+R

]
	 0(9b)

∀Σ =

[
A B
C D

]
∈ Uρ

(see (6)) in matrix variable Z is solvable.
The motivation behind Problem 1 is quite transparent: there are cases when the

dissipativity is a highly desirable property, and in these cases it is worthy of knowing
what are the largest perturbations which for sure preserve this property. With this
motivation, however, it remains unclear why we should be interested in a common
dissipativity certificate for all Σ ∈ Uρ rather than to ask what is the largest ρ for
which every instance from Uρ admits a dissipativity certificate (perhaps depending on
the instance). The motivation behind seeking a common dissipativity certificate comes
from the fact that such a certificate ensures dissipativity of the uncertain time-varying
system

ż(t) = A(t)z(t) +B(t)u(t),
y(t) = C(t)z(t) +D(t)u(t),

(10)

where the dependence of Σ(t) ≡ [A(t) B(t)
C(t) D(t)

] on t is not known in advance; all we

know is that Σ(t) is a measurable function of t taking values in Uρ. The precise
meaning of the claim “existence of a common dissipativity certificate for all instances
Σ ∈ Uρ implies dissipativity of the uncertain time-varying system (10)” is given by
the following simple statement.

Proposition 3.1. Let Z be a common dissipativity certificate for all instances
Σ ∈ Uρ, i.e., let Z 	 0 satisfy (9b). Then for every T ≥ 0 and every trajectory
(z(t), y(t), u(t)) of the time-varying system (10) with Σ(t) ∈ Uρ for all t, one has

zT (0)Zz(0) +

∫ T

0

S(y(t), u(t))dt ≥ zT (T )Zz(T ).(11)

Proof. It is immediately seen that (9b) implies that

S(y(t), u(t)) ≥ d

dt
(zT (t)Zz(t))

for all t. Integrating this inequality, we arrive at (11).
Example 4 (Lyapunov stability analysis under box uncertainty). Assume that

we have designed a controller for a linear dynamical system, and let

ż = Az

be the description of the closed-loop system (so that some components of z represent
states of the plant, while the remaining components of z represent states of the con-
troller). After the design is completed, a natural question is how the performance of
the system can be affected by perturbations in A (i.e., in the parameters of the plant
and of the controller). Assuming a box model of perturbations

A ∈ Vρ =
{
A = A+

L∑
�=1

u�dA� : −ρ ≤ u� ≤ ρ, " = 1, . . . , L

}
,
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an important component of the above question is, What is the supremum ρ� of those
uncertainty levels ρ for which all instances A ∈ Vρ remain stable, moreover, such that

zT (t)Zz(t) ≤ β exp{−αt}zT (0)Zz(0) ∀t ≥ 0(12)

for all trajectories z(·) of all perturbed instances? Here Z � 0, β > 1, and α > 0
are given in advance. A well-known sufficient condition for (12) is the existence of
an appropriate quadratic Lyapunov stability certificate, namely, a matrix Z satisfying
the relations

β−1Z � Z � Z,(13a)

ATZ + ZA � −αZ ∀A ∈ Vρ.(13b)

Indeed, if Z satisfies (13) and z(t) is a trajectory of the time-varying system

ż(t) = A(t)z(t) (A(t) ∈ Vρ ∀t),

then

d
dt (z

T (t)Zz(t)) = zT (t)[AT (t)Z + ZA(t)]z(t)
≤ −αzT (t)Zz(t) (cf. (13b))
≤ −αzT (t)Zz(t) (cf. (13a));

hence

zT (t)Zz(t) ≤ exp{−αt}zT (0)Zz(0)
≤ exp{−αt}zT (0)Zz(0) (cf. (13a))

and therefore

zT (t)Zz(t) ≤ βzT (t)Zz(t) (cf. (13a))
≤ β exp{−αt}zT (0)Zz(0).

On the other hand, it is immediately seen that relations (13) say exactly that Z is a
common dissipativity certificate, belonging to the matrix interval I = {Z : β−1Z � Z
� Z} for all instances Σ ∈ Uρ of the system

ż = Az + 0n×1 · u,
y = z + 0n×1 · u(14)

when the supply matrix is specified as

P =

[ −αZ
I

]
;(15)

here Uρ is the box uncertainty given by

dΣ� =

[
dA� 0n×1

0n×n 0n×1

]
, " = 1, . . . , L.

We see that Problem 1 can be used to find the largest uncertainty level ρ for which the
validity of (13) can be guaranteed by a quadratic Lyapunov stability certificate.
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3.2. Extracting available storage. Assume that we are interested in retriev-
ing the energy stored in the initial state ζ. If there were no perturbations, the maximal
amount of energy we could retrieve would be the nominal available storage ζTZavζ,
and the corresponding control could be chosen in the state feedback form (see D.4).
With perturbations, we hardly could guarantee the same amount of retrieved energy;
however, it is reasonable to look for a state feedback which stabilizes all instances of
the uncertain system in question and allows us to retrieve, whatever is an instance
and an initial state ζ, at least a given fraction (1 − ε)ζTZavζ of the nominal avail-
able storage. To model this target mathematically, we start with the following simple
observation.

Proposition 3.2. Assume that 0 ≺ Zav, and let ε ∈ [0, 1), ρ ≥ 0 be given.
Assume that matrices G,H ∈ Sn+ and a state feedback u = Fz are such that

1.

[
CTQC CT (L+QD)

(L+QD)TC DTQD + LTD +DTL+R

]
−
[

ATG+GA GB
BTG

]
	 0

∀
[

A B
C D

]
∈ Uρ,

(16)

i.e., G is a common dissipativity certificate for all instances of Uρ;
2.

[
I FT

] [ CTQC CT (L+QD)
(L+QD)TC DTQD + LTD +DTL+R

] [
I
F

]
≺ [

(A+BF )TH +H(A+BF )
]

∀
[

A B
C D

]
∈ Uρ;

(17)

3.

(1− ε)Zav � H ≺ G.(18)

Then all instances of the uncertain time-varying closed-loop system

ż(t) = A(t)z(t) +B(t)u(t),
y(t) = C(t)z(t) +D(t)u(t),
u(t) = Fz(t),

[
A(t) B(t)
C(t) D(t)

]
∈ Uρ ∀t(19)

share a common quadratic Lyapunov function zT (G−H)z. Moreover, for every initial
state ζ = z(0) of (19), one has

−
∫ ∞

0

S(y(t), u(t))dt ≥ ζTHζ ≥ (1− ε)ζTZavζ,(20)

i.e., the state feedback F allows us to extract at least (1−ε) times the nominal available
storage ζTZavζ.

Proof. Consider a time-invariant instance Σ =
[
A B
C D

]
of (19), and let (z(t), y(t),

u(t)) be a trajectory of this instance. By (16), the quadratic function V (z) = zTGz
is a storage function for (Σ,S); hence for every t0 ≤ t1

zT (t0)Gz(t0) +

∫ t1

t0

S(y(t), u(t))dt ≥ zT (t1)Gz(t1).(21)

On the other hand, (17) implies that
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S(y(t), u(t)) ≤ d

dt

(
zT (t)Hz(t)

)− θzT (t)z(t)

for certain θ > 0; hence∫ t1

t0

S(y(t), u(t))dt ≤ [
zT (t1)

THz(t1)− zT (t0)
THz(t0)

]− θ

∫ t1

t0

zT (t)z(t)dt.

Substituting this inequality into (21), we see that for every trajectory of every time-
invariant instance of (19) and every pair t0 ≤ t1 of time instants one has

zT (t0)[G−H]z(t0)− θ

∫ t1

t0

zT (t)z(t)dt ≥ zT (t1)[G−H]z(t1);

hence d
dt (z

T (t)[G−H]z(t)) ≤ −θzT (t)z(t) for all t ≥ 0 and all trajectories, so that

(A+BF )T [G−H] + [G−H](A+BF ) � −θI.

Since this relation is valid for all Σ ∈ Uρ, and since G − H � 0 by (18), G − H is
indeed a quadratic Lyapunov stability certificate for (19).

Now consider a trajectory (z(t), y(t), u(t)) of (19). Same as above, we have

S(y(t), u(t)) ≤ d

dt

(
zT (t)Hz(t)

)
.

Integrating both sides of this inequality from 0 to ∞ and taking into account that
(z(t), y(t), u(t)) converges exponentially fast to 0 as t → ∞ (we have seen that (19)
admits quadratic Lyapunov stability certificate!), we get∫ ∞

0

S(y(t), u(t))dt ≤ −zT (0)Hz(0),

as required in the first inequality in (20); the second inequality in (20) is readily given
by (18).

In view of Proposition 3.2, we could pose the problem of extracting available
storage as the problem of finding the supremum of those uncertainty levels ρ for
which the semi-infinite system of MIs (16), (17), (18) in matrix variables G,H,F is
solvable. This problem, however, is too difficult; it is completely unclear how to check
efficiently the solvability of this nonlinear in F,H MI even in the nominal case ρ = 0.
This is why we are forced to simplify our task by assuming that either F or H are
given in advance. With this simplification, we arrive at the following pair of problems.

Problem 2A. Given a supply S, a feedback matrix F , parameter ε ∈ (0, 1), and
the data specifying Uρ, find the supremum of those ρ ≥ 0 for which the system of MIs
(16)–(18) in matrix variables G,H is solvable.

With F specified as the ideal nominal feedback Fav, see D.4, Problem 2A becomes
a quite natural question of finding the largest uncertainty level for which we can certify
the fact that whatever is an initial state ζ of an instance of the uncertain system, the
nominal feedback allows us to extract at least the fraction (1−ε) of the corresponding
nominal available storage ζTZavζ.

Problem 2B. Given a supply S, parameter ε ∈ (0, 1), an n× n positive definite
matrix H 	 (1− ε)Zav, and the data specifying Uρ, find the supremum of those ρ ≥ 0
for which the system of MIs (16), (18) in matrix variables G and F is solvable.

A simple choice for the matrix H in Problem 2B is the solution of Problem 2A.
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3.3. Providing required supply. The motivation behind this problem is com-
pletely similar to the one for the extracting storage problem; the only difference is
that now we want to drive the system from the origin to a given state ζ and we are
interested in achieving this target with the total supply not exceeding (1 + δ) times
the nominal required supply ζTZreqζ. We have the following analogy of Proposition
3.2.

Proposition 3.3. Assume that 0 ≺ Zreq, and let δ ∈ [0, 1), ρ ≥ 0 be given.
Assume that matrices G,H ∈ Sn+ and a state feedback u = Fz are such that the
conditions (16), (17) and the condition

G ≺ H � (1 + δ)Zreq(22)

are satisfied.
Then all instances of the uncertain time-varying closed-loop system

ż(t) = −[A(t)z(t) +B(t)u(t)],
y(t) = C(t)z(t) +D(t)u(t),
u(t) = Fz(t),

[
A(t) B(t)
C(t) D(t)

]
∈ Uρ ∀t(23)

(which is the backward time version of system (19)) share a common quadratic Lya-
punov function zT [H − G]z. Moreover, for every initial state ζ = z(0) of (23), one
has ∫ ∞

0

S(y(t), u(t))dt ≤ (1 + δ)ζTZreqζ,(24)

i.e., the state feedback F allows us to move system (19) from the origin to a given
state ζ with total supply at most (1 + δ) times the nominal required supply ζTZreqζ.

The proof is similar to the one of Proposition 3.2.
In view of Proposition 3.3, a natural way to model the providing required supply

problem would be to look for the largest ρ for which the semi-infinite system (16),
(17), (22) in matrix variables F,G,H is solvable; however, “tractability reasons”
similar to those in section 3.2 force us to simplify the setting and restrict ourselves to
the following pair of problems.

Problem 3A. Given a supply S, a feedback matrix F , parameter δ > 0, and the
data specifying Uρ, find the supremum of those ρ ≥ 0 for which the system of MIs
(16), (17), (22) in matrix variables G,H is solvable.

Problem 3B. Given a supply S, parameter δ > 0, an n × n positive definite
matrix H � (1+δ)Zreq, and the data specifying Uρ, find the supremum of those ρ ≥ 0
for which the system of MIs (16), (17) in matrix variables G, 0 � G ≺ H, and F is
solvable.

In contrast to the situation of section 3.2, now there exists a particular “tractable
case” where one can treat in the system of interest (which is now the system (16), (17),
(22)) both F and H as design variables; this is the case of positive semidefinite supply
matrix [ Q L

LT R
] (as it happens in linear-quadratic control).4 In this case it makes sense

to specify the common dissipativity certificate G of the perturbed instances as the
zero matrix; this choice ensures the validity of (16) and is “ideal” from the viewpoint
of the constraint (22). Setting G = 0 and treating F , H as the design variables in the

4Note that this case makes no sense in the extracting storage problem, since there it would imply
that “there is nothing to extract” – Zav = 0
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system (16), (17), (22), we arrive at the following version of the problem of providing
required supply.

Problem 3C. Given a supply S such that the supply matrix P is positive semidef-
inite, parameter δ > 0, and the data specifying Uρ, find the supremum of those ρ ≥ 0
for which the system comprised of semi-infinite MI (17) and the LMI

0 ≺ H � (1 + δ)Zreq(25)

in matrix variables F,H is solvable.

4. Processing the problems. Every one of Problems 1, 2A, 2B, 3A, 3B, and
3C asks for finding the largest ρ such that a given system of MIs (depending on
ρ as on a parameter) is solvable. The systems in question are semi-infinite—they
involve infinitely many MIs with the data running through the uncertainty sets. It
is well known that semi-infinite systems of MIs are, in general, NP-hard; it is easy
to show that in general this is the case with the specific semi-infinite systems arising
in Problems 1, 2A, 2B, 3A, 3B, and 3C. What we intend to do is to replace these
NP-hard systems with their computationally tractable conservative approximations,
the latter notion being defined as follows.

Definition 4.1. Let S be a system of constraints on a design vector x. We
say that a system A of constraints on x and a vector of additional variables y is a
conservative approximation of S if the x-component of every feasible solution (x, y)
of the approximating system A is a feasible solution of the original system S.

Our plan for processing Problems 1, 2A, 2B, 3A, 3B, and 3C is as follows: we
start with reviewing the basic results we intend to use when building computationally
tractable approximations of the problems and then apply these results to the problems
of interest.

4.1. The matrix cube theorem. Consider an uncertain LMI with affine box
uncertainty

A0(x) +

L∑
�=1

u�A�(x) 	 0 ∀(u : ‖u‖∞ ≤ ρ),(26)

where
• x ∈ Rd is the vector of decision variables;
• A�(x), " = 0, 1, . . . , L, are symmetric m×m matrices affinely depending on

x;
• u1, . . . , uL are perturbations, and ρ ≥ 0 is the uncertainty level.

It is known that in general, it is NP-hard to solve (26) or even to check whether
a given candidate solution x is feasible. However, (26) admits a computationally
tractable conservative approximation which is a system of LMIs in original variables
x and additional symmetric matrix variables X1, . . . , XL. Let us write X 	 ±Y
as a shortcut for the system of two matrix inequalities X 	 Y , X 	 −Y . The
aforementioned conservative approximation of (26) is as follows:

X� 	 ±A�(x), " = 1, . . . , L;(27a)

ρ
L∑
�=1

X� � A0(x).(27b)
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The fact that (27) is indeed a conservative approximation of (26) is evident: if x can
be extended by appropriately chosen X1, . . . , XL to a feasible solution of (27), then
from (27a) it follows that u�A�(x) 	 −ρX� for all u� such that |u�| ≤ ρ; hence

A0(x) +

L∑
�=1

u�A�(x) 	 A0(x)− ρ

L∑
�=1

X� ∀(u : ‖u‖∞ ≤ ρ);

the right-hand side matrix in the latter relation is 	 0 by (27b), so that x indeed
satisfies (26).

It turns out that the “level of conservativeness” of the approximation (27) is not
too big, provided that the matrices A1(x), . . . ,AL(x) are of small ranks.

Proposition 4.1 (matrix cube theorem [3]). Let µ = maxxmax�≥1 Rank(A�(x)).
(Note " ≥ 1 in the max!). Then the relation between the feasible sets of (26) and (27)
is as follows:

1. If x can be extended to a feasible solution of (27), then x is feasible for (26).
2. If x cannot be extended to a feasible solution of (27), then x is infeasible for

(26) with ρ replaced by ϑ(µ)ρ, where ϑ(·) is certain universal function such
that ϑ(µ) ≤ π

√
µ

2 for all µ and

ϑ(1) = 1, ϑ(2) =
π

2
= 1.57 . . . , ϑ(3) = 1.73 . . . , ϑ(4) = 2.

In particular, for every set X ⊂ Rd one has

1 ≤ sup{ρ : (26) has a solution in X}
sup{ρ : (27) has a solution in X} ≤ ϑ(µ)

provided that the numerator in the fraction is positive.
Remark 1. Sometimes we shall be interested in a sufficient condition for the strict

version

A0(x) +

L∑
�=1

u�A�(x) � 0 ∀(u : ‖u‖∞ ≤ ρ)

of the semi-infinite LMI (26). Such a sufficient condition can be obtained from (27)
by replacing the nonstrict LMI (27b) with its strict version. For the resulting pair of
conditions, a statement completely similar to the matrix cube theorem takes place.

4.2. Approximating Problem 1. Let

Q = Q+ −Q−

be the representation of Q as a difference of two positive semidefinite symmetric
matrices with orthogonal image spaces, and let

S+ = Q
1/2
+ , S− = Q

1/2
− .

From now on, we assume that the set I in Problem 1 is LMI-representable, i.e., it can
be specified by LMI {Z : Z[Z] 	 0}, where Z[·] is an affine function taking values
in the space of symmetric matrices. With this assumption, Problem 1 becomes the
problem of finding the supremum ρ�1 of those ρ > 0 for which the system of LMIs

Z[Z] 	 0,(28a) [ −ATZ − ZA CTL− ZB
LTC −BTZ LTD +DTL+R

]
+

[
CT

DT

]
Q
[

C D
] 	 0(28b)

∀(A,B,C,D) ∈ Uρ



ROBUST DISSIPATIVITY OF INTERVAL UNCERTAIN LINEAR SYSTEMS 1675

in symmetric matrix variable Z has a solution. This system can be equivalently
rewritten as

Z[Z] 	 0,(29a)


δCTQC+CTQδC +CTQC
−ATZ − ZA

δCTQD+CTQδD +CTQD
+CTL− ZB

DTQδC + δDTQC+DTQC
+LTC −BTZ

δDTQD+DTQδD +DTQD
+LTD +DTL+R




−
[

δCTS−
δDTS−

] [
S−δC S−δD

]
+

[
δCT

δDT

]
Q+

[
δC δD

] 	 0(29b)

∀
[

A = A+ δA B = B+ δB
C = C+ δC D = D+ δD

]
∈ Uρ.

Since Q+ 	 0, the last term in the left-hand side of (29b) is positive semidefinite.
Eliminating this term, we pass from (29) to a conservative approximation of this
system. By the Schur complement lemma,5 this approximation is equivalent to the
system of LMIs

Z[Z] � 0,(30a)




δCTQC + CTQδC + CTQC
−ATZ − ZA

δCTQD + CTQδD + CTQD
+CTL− ZB

δCTS−

DTQδC + δDTQC + DTQC
+LTC −BTZ

δDTQD + DTQδD
+DTQD

+LTD + DTL + R

δDTS−

S−δC S−δD Ip



� 0

(30b)

∀
[

A = A + δA B = B + δB
C = C + δC D = D + δD

]
∈ Uρ.

Taking into account (8), we see that the latter semi-infinite system of LMIs is in the
form of (26), and we can use the construction from section 4.1 to build a computa-
tionally tractable conservative approximation of this system (and thus of (28)). The
approximation is the following system of LMIs in matrix variables Z, {X�}:

Z[Z] � 0,

X� � ±

A	[Z]︷ ︸︸ ︷


dCT
� QC + CTQdC�

−dAT
� Z − ZdA�

dCT
� [L + QD]

+CTQdD� − ZdB�
dCT

� S−

[L + QD]T dC�

+dDT
� QC − dBT

� Z
dDT

� [L + QD]
+[L + QD]T dD�

dDT
� S−

S−dC� S−dD� 0pp


, � = 1, . . ., L,

ρ
L∑

�=1

X� �




CTQC − ATZ − ZA CT [L + QD] − ZB

[L + QD]TC − BTZ
LTD + DTL
+DTQD + R

Ip


 .

(31)

5The Schur complement lemma (see, e.g., [2, Chapter 4]) states that a symmetric block matrix[
P L

LT Q

]
with Q � 0 is positive definite (positive semidefinite) if and only if the matrix P −LQ−1LT

is positive definite (positive semidefinite).
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Note that the supremum ρ̂1 of those ρ ≥ 0 for which system (31) is solvable is efficiently
computable—it is the optimal value in the problem

max
ρ,{X	},Z

{ρ : (ρ, {X�}, Z) solves (31)} .

The latter is a generalized eigenvalue problem, so that its optimal value is efficiently
computable. We intend to use the efficiently computable quantity ρ̂ as a bound for the
“quantity of interest” ρ�1. The properties of this bound are described in the following
statement.

Proposition 4.2. (i) System (31) is a conservative approximation of (28), so
that the Z-component of a feasible solution to (31) is a feasible solution of (28). In
particular, ρ̂1 is a lower bound for ρ�1.

(ii) If either
(a) Q � 0 (i.e., Q+ = 0) (as it is the case, e.g., in Examples 1, 2, 4)

or
(b) D and C are certain (i.e., dC� = 0, dD� = 0 for all "),

then

1 ≤ ρ�1
ρ̂1

≤ ϑ(µ)(32)

provided that ρ�1 > 0. Here ϑ(µ) is the function from Proposition 4.1 and

µ = max
�=1,... ,L

max
Z

Rank(A�[Z]);

see (31).
Proof. The validity of the first claim is readily given by the origin of (31). To

justify the second claim, note that in the case of Q � 0, same as in the case when
C, D are certain, system (30) is solvable if and only if (28) is solvable, so that ρ�1 is
the supremum of those ρ ≥ 0 for which (30) is solvable; with this observation, (32) is
readily given by Proposition 4.1.

Unfortunately, we cannot bound from above fraction (32) in the case of uncertain
C,D and Q+  = 0, since here the derivation of the approximating system includes a
step (passing from (28) to (30)) with an unknown “level of conservativeness.”

4.3. Approximating Problems 2A and 3A. It suffices to process Problem
2A, since Problem 3A can be treated in a completely similar fashion. The semi-infinite
LMI (16), similar to the semi-infinite LMI (28), admits the conservative approximation
(cf. (30))




δCTQC+CTQδC +CTQC
−ATG−GA

δCTQD+CTQδD +CTQD
+CTL−GB

δCTS−

DTQδC + δDTQC+DTQC
+LTC −BTG

δDTQD+DTQδD
+DTQD

+LTD +DTL+R
δDTS−

S−δC S−δD Ip




� 0

∀
[
A = A+ δA B = B+ δB
C = C+ δC D = D+ δD

]
∈ Uρ,

(33)
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which is equivalent to (16) in the case of Q+ = 0, as well as in the case of certain
C,D. The semi-infinite LMI (17) can be rewritten as

[
I FT

]



CTQC
+δCTQC+CTQδC

CT (L+QD) + δCT (L+QD)

(L+QD)TC+ (L+QD)T δC
δDT (L+QD) + (L+QD)T δD
+DTQD+DTL+ LTD+R



[
I
F

]

+ (δC + δDF )TS2
+(δC + δDF )

− (δC + δDF )TS2−(δC + δDF ) ≺ [
(A+BF )TH +H(A+BF )

]
∀
[
A = A+ δA B = B+ δB
C = C+ δC D = D+ δD

]
∈ Uρ.

(34)

The third term in the left-hand side of this MI is negative semidefinite; eliminating
this term, we get a conservative approximation of (34), and this approximation, by
the Schur complement lemma, is equivalent to the following semi-infinite LMI, where
we set

F =


 In

F
Ip


 :

FT




ATH +HA− CTQC
−δCTQC − CTQδC

HB − CT (L+QD)
−δCT (L+QD)

δCTS+

BTH − (L+QD)TC
−(L+QD)T δC

−δDT (L+QD)− (L+QD)T δD
−DTL+ LTD − DTQD −R

δDTS+

S+δC S+δD Ip


F � 0

∀
[
A = A+ δA B = B+ δB
C = C+ δC D = D+ δD

]
∈ Uρ

(35)

in matrix variable H. Thus, the system of semi-infinite LMIs (33), (35) in matrix
variables G,H is a conservative approximation of (16), (17); in the cases when Q = 0
and/or C,D are certain, the former system in fact is equivalent to the latter one. The
semi-infinite system (33), (35) is in the form of (26). Applying the construction from
section 4.1, we end up with computationally tractable conservative approximation of
the system (16), (17), (18). The approximation is the following system of LMIs in
matrix variables G,H, {X�, Y�}:

X� � ±

B	[G]︷ ︸︸ ︷


dCT
� QC + CTQdC�

−dAT
� G−GdA�

dCT
� (L + QD)

+CTQdD� −GdB�
dCT

� S−

(L + QD)T dC�

+dDT
� QC − dBT

� G
dDT

� (L + QD)
+(L + QD)T dD�

dDT
� S−

S−dC� S−dD�


, � = 1, . . . , L,

(36a)

ρ

L∑
�=1

X� �

 CTQC − ATG−GA CT (L + QD) −GB

(L + QD)TC − BTG DTQD + LTD + DTL + R

Ip


 ,

(36b)
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Y� � ±

C	[H]︷ ︸︸ ︷
FT




dAT
� H + HdA�

−dCT
� QC − CTQdC�

HdB�

−dCT
� (L + QD) − CTQdD�

dCT
� S+

dBT
� H

−(L + QD)T dC� − dDT
� QC

−dDT
� (L + QD)

−(L + QD)T dD�
dDT

� S+

S+dC� S+dD�


F ,

(36c)

ρ

L∑
�=1

Y� ≺ FT


 ATH + HA − CTQC HB − CT (L + QD)

BTH − (L + QD)TC −DTQD − LTD − DTL−R

Ip


F ,

(36d)

(1 − ε)Zav � H ≺ G.
(36e)

The supremum ρ̂2A of those ρ ≥ 0 for which system (36) is solvable is efficiently
computable, and this efficiently computable quantity can be used as a bound for the
optimal value ρ�2A in Problem 2A. The properties of this bound are described in the
following.

Proposition 4.3. (i) System (36) is a conservative approximation of (16), (17),
(18) so that the G,H-components of a feasible solution to (36) are a feasible solution
of (16), (17), (18). In particular, ρ̂2A is a lower bound for ρ�2A.

(ii) If either
(a) Q = 0 (i.e., Q+ = Q− = 0),

or
(b) D and C are certain (i.e., dC� = 0, dD� = 0 for all "),

then

1 ≤ ρ�2A
ρ̂2A

≤ ϑ(µ)(37)

provided that ρ�2A > 0. Here ϑ(µ) is the function from Proposition 4.1 and

µ = max

[
max
�≥1,G

Rank(B�[G]), max
�≥1,H

Rank(C�[H])

]
;

see (36).
Tractable conservative approximation of Problem 3A looks exactly as (36), up to

the constraint (36e), which should be replaced with the constraint

0 � G ≺ H � (1 + δ)Zreq.

The properties of this approximation are completely similar to those established in
Proposition 4.3.

4.4. Approximating Problems 2B and 3B. Our current goal is to build a
tractable conservative approximation of the semi-infinite system of MIs associated
with Problems 2B and 3B. Both problems have the same structure, so that it suffices
to consider the system associated with Problem 2B, i.e., the system (16), (17), (22)
in variables G,F (H now is fixed). We have already built a tractable conservative
approximation of the semi-infinite MI (16); it is given by system of LMIs (36a), (36b)
in matrix variables G, {X�}. Let us focus on the semi-infinite MI (17) in variable F .
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We can rewrite this inequality equivalently as

(S+δC + S+δDF )T (S+δC + S+δDF )− (S−δC + S−δDF )T (S−δC + S−δDF )

+
[
I FT

]



δCTQC+CTQδC
+CTQC

CT (L+QD) + δCT (L+QD)
+CTQδD

(L+QD)TC+ (L+QD)T δC
+δDTQC

DTQD+ LTD+DTL+R
δDTQD+DTQδD
+LT δD + δDTL



[
I
F

]

≺ (
[A+BF ]TH +H[A+BF ]

)
∀
[
A = A+ δA B = B+ δB
C = C+ δC D = D+ δD

]
∈ Uρ.

(38)

The second term in the left-hand side of the latter MI always is negative semidefinite;
eliminating this term, we come to a conservative approximation of (38) as follows:

(S+δC + S+δDF )T (S+δC + S+δDF )

+
[
I FT

]




J00[Σ]︷ ︸︸ ︷
δCTQC+CTQδC

+CTQC

J01[Σ]︷ ︸︸ ︷
CT (L+QD) + δCT (L+QD)

+CTQδD

(L+QD)TC+ (L+QD)T δC
+δDTQC︸ ︷︷ ︸

J10[Σ]

DTQD+ LTD+DTL+R
+δDTQD+DTQδD
+LT δD + δDTL︸ ︷︷ ︸

J11[Σ]




[
I
F

]

≺ (
[A+BF ]TH +H[A+BF ]

)
∀Σ ≡

[
A = A+ δA B = B+ δB
C = C+ δC D = D+ δD

]
∈ Uρ.

(39)

Note that the matrices Jij [Σ] are affine in Σ.
Observe that (39) is exactly the semi-infinite MI

[A+BF ]TH +H[A+BF ]− J00[Σ]− FTJ10[Σ]− J01[Σ]F

−(S+δC + S+δDF )T (S+δC + S+δDF )− FTJ11[Σ]F � 0

∀Σ ≡
[

A = A+ δA B = B+ δB
C = C+ δC D = D+ δD

]
∈ Uρ.

(40)

Now assume that J11[Σ] � 0. Note that this assumption is quite natural—the matrix
J11[Σ] should be positive semidefinite already to make feasible (16) with ρ = 0. Let

K = J−1
11 [Σ], δJ11[δΣ] = J11[Σ + δΣ]− J11[Σ].

We claim that the following relations hold true:

K−KδJ11[δΣ]K � 0 ∀Σ ≡ Σ+ δΣ ∈ Uρ(41a)

$

J11[Σ] � 0 ∀Σ ∈ Uρ(41b)

⇓
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[K−KδJ11[δΣ]K]−1 	 [J11[Σ]]
−1 � 0 ∀Σ ≡ Σ+ δΣ ∈ Uρ.(41c)

Indeed, the equivalence between (41a) and (41b) follows from the identity

K−KδJ11[δΣ]K = KJ11[Σ− δΣ]K

(which is readily given by the definition of K), combined with the fact that Uρ is
symmetric with respect to Σ. To see that (41b) implies (41c), observe, first, that

X � ±Y ⇒ [X−1 −X−1Y X−1]−1 	 X + Y � 0.(42)

Indeed, assuming X � ±Y and setting Z = X−1/2Y X−1/2 (so that I � ±Z), we
have

(X + Y )−1 − [X−1 −X−1Y X−1] = [X1/2(I + Z)X1/2]−1 −X−1/2[I − Z]X−1/2

= X−1/2[(I + Z)−1 − (I − Z)]X−1/2

= X−1/2Z(I + Z)−1ZX−1/2 	 0,

hence (X+Y )−1 	 [X−1−X−1Y X−1] and thus [X−1−X−1Y X−1]−1 	 X+Y � 0,
as required in (42). Now let δΣ be such that Σ + δΣ ∈ Uρ. Since Uρ is symmetric
with respect to Σ, we have Σ − δΣ ∈ Uρ as well. In the case of (41b) it follows that
J11[Σ± δΣ] � 0 or, which is the same, J11[Σ] � ±δJ11[δΣ]. Applying (42), we arrive
at (41c).

By (41), in the case of (41a) the semi-infinite MI

[A+BF ]TH +H[A+BF ]− J00[Σ]− FTJ10[Σ]− J01[Σ]F

− (S+δC + S+δDF )T (S+δC + S+δDF )− FT [K−KδJ11[δΣ]K]−1F � 0

∀Σ ≡ Σ+ δΣ ≡
[

A = A+ δA B = B+ δB
C = C+ δC D = D+ δD

]
∈ Uρ

is a conservative approximation of (40), which in turn is a conservative approximation
of (17). Applying the Schur complement lemma, the resulting semi-infinite MI can
be rewritten as




[A + BF ]TH + H[A + BF ]
−J00[Σ] − FTJ10[Σ] − J01[Σ]F

(S+δC + S+δDF )T FT

(S+δC + S+δDF ) I

F K − KδJ11[δΣ]K


 � 0

∀Σ ≡ Σ + δΣ ≡
[

A = A + δA B = B + δB
C = C + δC D = D + δD

]
∈ Uρ.

(43)

Note that the validity of this semi-infinite LMI automatically implies (41a). Further,
the matrix in the left-hand side of the resulting semi-infinite LMI is affine in Σ, so that
we can apply the scheme from section 4.1 to build a computationally tractable con-
servative approximation of this semi-infinite LMI. The approximation is the following
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system of LMIs in matrix variables F, {Y�}:

Y	 � ±

D	[F ]︷ ︸︸ ︷


[dA	 + dB	F ]TH +H[dA	 + dB	F ]

−dCT
	 QC − CTQdC	

−
{
dCT

	 [L+QD] + CTQdD	

}
F

−FT
{
dCT

	 [L+QD] + CTQdD	

}T

dCT
	 S+

+FT dDT
	 S+

S+dC	

+S+dD	F

−KdDT
	 [L+QD]K

−K[L+QD]T dD	K



,

� = 1, . . . , L,

ρ
L∑

	=1

Y	 ≺




[A + BF ]TH +H[A + BF ] − CTQC

−FT [L+QD]TC − CT [L+QD]F
FT

I
F K


 .

(44)

We arrive at the following result.
Proposition 4.4. Assume that the matrix

K−1 ≡ DTQD+ LTD+DTL+R(45)

is positive definite. Then
(i) The system of LMIs (36a), (36b), (44) and the LMI

H ≺ G(46)

in matrix variables G,F, {X�, Y�} is a conservative approximation of the system (16),
(17), (18) associated with Problem 2B. In particular, the efficiently computable supre-
mum ρ̂ of those ρ ≥ 0 for which the approximating system is solvable is a lower bound
on the optimal value ρ�2B of Problem 2B.

(ii) If either
(a) C,D are certain (i.e., dC� = 0, dD� = 0 for all ")

or
(b) Q = 0 and D is certain,

then

1 ≤ ρ�2B
ρ̂

≤ ϑ(µ),(47)

provided that ρ�2B > 0. Here ϑ(µ) is the function from Proposition 4.1 and

µ = max

[
max
�≥1,G

Rank(B�[G]), max
�≥1,F

Rank(D�[F ])

]
;

see (36a), (44) for the definitions of B�[G] and D�[F ].
Tractable conservative approximation of Problem 3B looks exactly like the one

for Problem 2B, with the only difference that the LMI (46) should now be replaced
with the LMIs

0 � G ≺ H.

The properties of this approximation are completely similar to those established in
Proposition 4.4.
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4.5. Approximating Problem 3C. Now consider Problem 3C. The system
of MIs to be approximated is now comprised of the semi-infinite MI (17) in matrix
variables F,H and the LMI 0 ≺ H � (1 + δ)Zreq. The system in question can be
rewritten equivalently as

[
I FT

] [ CT

DT I

] [
Q L
LT R

] [
C D

I

] [
I
F

]
≺ [

(A+BF )TH +H(A+BF )
]

∀
[
A B
C D

]
∈ Uρ,

0 ≺ H 
 (1 + δ)Zreq .

(48)

We can assume that Zreq � 0—otherwise the system clearly is unsolvable. Let us
use the standard change of variables (H,F ) '→ (U = H−1, V = FH−1). Multiplying
both sides of (48) from the right and from the left by H−1, we rewrite (48) in the new
variables as

[
U V T

] [ CT

DT I

] [
Q L
LT R

]
︸ ︷︷ ︸

P

[
C D

I

] [
U
V

]
≺ [

AU + UAT +BV + V TBT
]

∀
[
A B
C D

]
∈ Uρ,

U � (1 + δ)−1Z−1
req .

(49)

Setting M ≡
[
Myy Myu

MT
yu Muu

]
= P1/2 (recall that we are in the case of P 	 0) and

applying the Schur complement lemma, we can rewrite the latter system equivalently
as




AU + UAT

+BV + V TBT
UCTMyy

+V T [MyyD +Myu]
T

UCTMyu

+V T [MT
yuD +Muu]

T

MyyCU
+[MyyD +Myu]V

Ip

MT
yuCU

+[MT
yuD +Muu]V

Im



	 0

∀
[

A B
C D

]
∈ Uρ,

U 	 (1 + δ)−1Z−1
req.

(50)

System (50) is in the form of (26); applying the construction from section 4.1, we end
up with a tractable conservative approximation of (49), which is the following system
of LMIs in matrix variables U, V, {X�}:

U � (1 + δ)−1Z−1
req ,

X� � ±




dA�U + UdAT
�

+dB�V + V T dBT
�

UdCT
� Myy

+V T dDT
� Myy

UdCT
� Myu

+V T dDT
� Myu

MyydC�U
+MyydD�V

0p×p

MT
yudC�U

+MT
yudD�V

0m×m




︸ ︷︷ ︸
E	[U,V ]

, � = 1, . . . , L,

(51)
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ρ
L∑

�=1
X� 





AU + UAT

+BV + V TBT
UCTMyy

+V T [MyyD+Myu]T
UCTMyu

+V T [MT
yuD+Muu]T

MyyCU
+[MyyD+Myu]V

Ip

MT
yuCU

+[MT
yuD+Muu]V

Im



.

We arrive at the following.

Proposition 4.5. Assume that the supply matrix P =
[

Q L

LT R

]
is positive

semidefinite and that Zreq � 0. Then the system of LMIs (51) in matrix variables
U, V, {X�} is a conservative approximation of the system associated with Problem 3C.
In particular, the efficiently computable supremum ρ̂ of those ρ ≥ 0 for which the ap-
proximating system is solvable is a lower bound on the optimal value ρ�3C of Problem
3C. For this lower bound, one has

1 ≤ ρ�3C
ρ̂

≤ ϑ(µ),(52)

provided that ρ�3C > 0. Here ϑ(µ) is the function from Proposition 4.1 and

µ = max
�≥1,U,V

Rank(E�[U, V ]);

see (51).

4.6. Simplifying approximating systems. A severe practical disadvantage of
the tractable approximations of Problems 1, 2A, 2B, 3A, 3B, and 3C we have built is
that the sizes of these approximations, although polynomial in the sizes m,n, p, L of
the underlying dynamical system and uncertainty set, are quite large. For example,
approximation (31) has a single (m+n+ p)× (m+n+ p) symmetric matrix variable
X� and two (m + n + p) × (m + n + p) LMIs per every basic perturbation in the
data, so that the design dimension of the approximation is of order of L(m+n+ p)2,
a quantity which typically is prohibitively large for practical computations. We are
about to demonstrate that under favorable circumstances the sizes of the approxi-
mating systems can be reduced dramatically. For the sake of simplicity, we restrict
our considerations to the case of the approximation (31) associated with Problem 1;
the approximations associated with other problems can be processed in a completely
similar fashion.

System (31) is of the generic form

P(x) 	 0,(53a)

U� 	 ±Q�(x), " = 1, . . . ,M,(53b)

V� 	 ±R�, " = 1, . . . , N,(53c)

ρ

[∑
�

U� +
∑
�

V�

]
� S(x),(53d)

where
• x is the collection of the original design variables (for (31), x = Z);
• U�, V� are additional K × K matrix variables (for (31), K = m + n + p,

M +N = L, the U -variables are those of X� for which A�[Z] indeed depends
on Z, while the V -variables correspond to those of X� for A�[Z] in fact does
not depend on Z);
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• P(x), Q�(x), S(x) are affine functions of x taking values in the spaces of
symmetric matrices of appropriate sizes, and R� are given K ×K symmetric
matrices.

Note that in the situations we are interested in, the ranks of the matrices Q�(x), R�
are small, provided that the ranks of basic perturbation matrices dA�, dB�, dC�, dD�
are small (as indeed is the case in applications). The undesirable large sizes of the
approximating system (53) come exactly from the necessity to introduce large-size
“matrix bounds” U�, V� on the small rank matrices Q�(x), R�.

Note that in our applications all we are interested in are the x-components of
the feasible solutions of (53). Thus, for our purposes (53) can be replaced with any
x-equivalent system of LMIs—a system of LMIs L(x, y) 	 0 in the original variables
x and additional variables y such that the set of x-components of feasible solutions to
the latter system is exactly the same as the set of x-components of feasible solutions of
(53). What we intend to do is to demonstrate that under favorable circumstances we
can build a system of LMIs which is x-equivalent to (53), while being “much smaller”
than the latter system. The key to our construction is given by the following two
observations.

Lemma 4.6 (see [3, Lemma 3.1 and Proposition 2.1]). (i) Let a, b be two nonzero
vectors. A symmetric matrix X satisfies the relation

X 	 ±[abT + baT ]

if and only if there exists positive λ such that

X 	 λaaT +
1

λ
bbT .

(ii) Let A be a n × n symmetric matrix of rank k > 0, so that A = PT ÂP for

appropriately chosen k × k matrix Â and k × n matrix P of rank k. A symmetric
matrix X satisfies the relation

X 	 ±A

if and only if there exists k × k symmetric matrix X̂ such that

X 	 PT X̂P,

X̂ 	 ±Â.
(54)

Now assume that the matrices Q�(x) are of the from
Q�(x) = a�b

T
� (x) + b�(x)a

T
� ,(55)

where a�  = 0, b�(x)  ≡ 0 are, respectively, a vector and an affine vector-valued function
of x. Let also

R� = PT� R̂�P� : R̂� = R̂T� ∈ Sk	 , k� = Rank(R�) > 0.

Applying Lemma 4.6, we see that (53) is x-equivalent to the following system of

constraints in the original variables x and the additional variables λ� ≥ 0, V̂� ∈ Sk	 :

P(x) 	 0,

V̂� 	 ±R̂�, " = 1, . . . , N,

ρ

[∑
�

[
λ�a�a

T
� + 1

λ	
b�(x)b

T
� (x)

]
+
∑
�

PT� V̂�P�

]
� S(x)
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(where 1
0bb

T is 0 for b = 0 and is undefined for b  = 0). The resulting system, via the
Schur complement lemma, is x-equivalent to the system of LMIs

P(x) 	 0,(56a) 


X −
M∑
�=1

λ�a�a
T
� b1(x) b2(x) . . . bM (x)

bT1 (x) λ1

bT2 (x) λ2

...
. . .

bTM (x) λM



	 0,(56b)

V̂� 	 ±R̂�, " = 1, . . . , N,(56c)

ρ

[
X +

∑
�

PT� V̂�P�

]
� S(x)(56d)

in the original variables x and additional scalar variables {λ�}M�=1 and matrix variables

X, {V̂�}N�=1.
System (56) is x-equivalent to our original system (53) and is usually much better

suited for numerical processing than the original system. Indeed, as compared to (53),
in (56) there are

• a single K ×K matrix variable X and M scalar variables {λ�}M�=1 instead of
M K ×K matrix variables U�;

• k�× k� matrix variables V̂� instead of K ×K matrix variables V�, and k�× k�
LMIs (56c) instead of K × K LMIs (53c) (recall that k� are assumed to be
small as compared to K);

• a single LMI (56b) instead of M LMIs (53b). Although the size of LMI (56b)
is larger than those of LMIs (53b), the LMI is of very simple arrow structure
and is extremely sparse.

It remains to understand what should be required from the uncertainty set Uρ
in order to ensure that the approximations associated with Problems 1, 2A, 2B, 3A,
3B, and 3C possess property (55) and thus admit the outlined simplification. The
corresponding requirements are as follows:

A. In the case of Problems 1, 2A, 3A, it suffices to assume the following:
A.1. The parts [A,B] and [C,D] of the matrix Σ =

[
A B
C D

]
are perturbed

independently (i.e., for every " exactly one of the matrices [dA�, dB�],
[dC�, dD�] is nonzero).

A.2. The basic perturbations of the part [A,B] of Σ are of ranks ≤ 1.
Note that under these assumptions the quantity µ in Propositions 4.2, 4.3
and the above quantities k� satisfy the relation

k� ≤ µ ≤ 2max

[
1,max

�
(Rank(dC�) + Rank(dD�))

]
.

B. In the case of Problems 2B, 3B, it suffices to assume the following.
B.1. The parts A, B, C, D of Σ are perturbed independently (i.e., for every

" exactly one of the matrices dA�, dB�, dC�, dD� is nonzero).
B.2. The basic perturbations of the parts A, B, C, D of Σ are of ranks ≤ 1

and
i. either Q = 0
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Fig. 1. “Bridge.”

ii. or D is certain.
Note that under these assumptions the quantity µ in Proposition 4.4 and the
above quantities k� satisfy the relation

k� ≤ µ ≤ 2.

C. In the case of Problem 3C, it suffices to assume that
C.1. the basic perturbations dΣ� are of ranks ≤ 1.
Note that under these assumptions the quantity µ in Proposition 4.5 equals
2.

Note that the sets A.1–A.2, B.1–B.2, C.1 of the assumptions are satisfied in the
simplest case of the interval uncertainty—every entry in Σ, independently of other
entries, runs through a given interval. In this case, k� ≤ µ = 2, and the corresponding
“tightness bound” ϑ(µ) (see (32), (37), (47), (52)) becomes π2 .

5. Illustrating examples. Here we present three simple illustrations of the
proposed approach. The first two of them correspond to the positive-real case, while
the third has to do with the linear-quadratic case.

5.1. Positive-real case. Consider the simple RC circuit (“bridge”) presented in
Figure 1. The input is the outer voltage applied between the node A and the ground,
the output is the current through the circuit. The state variables are the potentials
at the nodes 1, 2, 3 (normalized by the condition that the potential of the ground is
identically zero). Applying the Kirchoff laws, the description of the system becomes

ż(t) = Ac,rz(t) +Bc,ru(t),
y(t) = Crz(t) +Dru(t),

(57)

where we have the following:
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• c ∈ R10 is the vector of capacitances of the capacitors in the 10 arcs of the
circuit (9 “visible arcs” and the external arc from node 2 via point A to the
ground; for arc i with no capacitor, ci = 0).

• r ∈ R10 is the vector of conductances of the resistors in the 10 arcs of the
circuit (for arc i with no resistor, ri = 0).

• the matrix Σ =
[

A B
C D

]
is given by

Σ = Σc,r ≡
[ −[PTDiag{c}P ]−1[PTDiag{r}P ] [PTDiag{c}P ]−1[PTDiag{r}J ],

−[PTDiag{r}J ], JTDiag{r}J,
]
,

where Diag{p} denotes the diagonal matrix with diagonal entries given by
vector p and
– P is the incidence matrix. The rows of P are indexed by the 10 arcs in

the circuit, the columns are indexed by the 3 nonground nodes 1, 2, 3
and the element Pij is equal to +1, −1 or 0 depending on whether node
# j starts arc # i, ends this arc, or is not incident to the arc. For our
circuit, P is as follows (R stands for arcs with resistors, C for arcs with
capacitors):

Arcs Nodes
Origin Destination Type 1 2 3

1 2 R 1 −1 0
1 2 C 1 −1 0
2 3 R 0 1 −1
2 3 C 0 1 −1
3 4 R 0 0 1
3 4 C 0 0 1
4 1 R −1 0 0
4 1 C −1 0 0
1 3 C 1 0 −1
2 → A → 4 R 0 1 0

– J = (0, . . . , 0, 1)T ∈ R10 “points” to the external arc (which in our
enumeration is the last of the 10 arcs of the circuit).

We treat as the uncertain parameters the capacitances of the capacitors and the
conductances of the resistors (except for the “outer” resistor in the external arc; it
represents the inner resistance of the outer supply and is assumed to be certain) and
assume that every one of these parameters can vary, independently of others, by at
most ρ times the nominal value of the parameter, where ρ is the uncertainty level in
question. The nominal values of the data are given in Table 1. Here is the nominal
instance (entries are rounded to 4 digits after the dot):

Σ =




−0.5005 −50.0000 −0.4995 50.0000
0.1000 −101.1000 0.0000 100.0000

−0.4995 −50.0000 −0.5005 50.0000
0 −100.0000 0 100.0000


 .

The elements of the matrix Σc,r are nonlinear functions of the “physical data” c, r, so
that an interval uncertainty in the latter data is not equivalent to a box uncertainty
in Σc,r. We neglect this phenomenon by linearizing Σr,c at the nominal data, thus
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Table 1
Nominal values for the bridge circuit.

Element Nominal value Element Nominal value

R12 1.2 C12 1.0
R23 1.0 C23 1.0
R34 1.0 C34 1.0
R41 1.0 C41 1.0
R2A 100 C13 1000

arriving at a box uncertainty set with L = 9 basic perturbation matrices, according
to the number of uncertain capacitances and conductances in the circuit. Note that
for our particular circuit, the resulting uncertainty affects only the [A,B]-part of Σ,
and the basic perturbation matrices [dA�, dB�] are of rank 1.

Recall that the supply in the SISO positive-real case is 2yu, i.e.,

P =

[
Q = 0 L = 1
LT = 1 R = 0

]
;

for our RC circuit, the supply is nothing but (twice) the electrical power pumped into
the circuit by the external voltage.

We have carried out two experiments with the outlined system: the first deals
with extracting the energy stored in the circuit, and the second with moving the
circuit from the zero initial state to a given state.

Extracting available energy. The question we are addressing is to find the
largest level ρ�av of uncertainty for which the “performance” Θ of the “ideal extracting
feedback” Fav (see D.4) corresponding to the nominal instance is at least 1− ε, i.e.,
this feedback still allows, for every perturbed instance and every initial state ζ of the
circuit, to extract at least (1 − ε)-part of the nominal available storage ζTZavζ. In
our experiment, we set ε = 0.1. Solving the conservative approximation

max
ρ,G,H,{X	,Y	}

{ρ : (ρ,G,H, {X�, Y�}) satisfies (36)}

of the associated Problem 2A, we end up with a lower bound

ρ̂ = 1.1e−3

on ρ�av; in other words, we can be sure that with 0.11% perturbations of the uncertain
capacitances and conductances, the nominal feedback Fav still allows us to extract at
least 90% of the nominal available storage, whatever is the initial state of the circuit.
A natural question arises, How conservative is our bound? Recall that there are two
reasons for it to be conservative:

• First, the bound comes from solving a conservative approximation of Problem
2A rather than from solving the problem itself; according to Proposition 4.3,
the true optimal value in the problem is at most π

2 times larger than the
bound (recall that we are in the situation of Q = 0 and µ = 2).

• Second, and worse, even the true optimal value in Problem 2A is a lower
bound on ρ�av, since the problem comes from the sufficient condition, stated
by Proposition 3.2, for “good” performance of the nominal feedback Fav
under data perturbations. Note that we have no idea how conservative this
sufficient condition is.
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Table 2
Performance of the nominal feedback Fav versus uncertainty level.

ρ 1.2ρ̂ = 1.3e−3 2.2ρ̂ = 2.3e−3 3ρ̂ = 3.2e−3
Θ 0.893 0.805 0.736
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Fig. 2. Sample plots of Eav(t)

zT (0)Zavz(0)
.

In spite of these pessimistic considerations, the experiment shows that our bound is
pretty tight. Looking through all 2L = 512 “extreme” perturbations of the data,
and playing with the initial state of the circuit, we found out that the worst-case
(with respect to relative perturbations of the uncertain entries in c, r of level ρ and
initial states) performance Θ of the ideal nominal feedback is at most as given in
Table 2. In particular, we see that with the level of perturbations 1.2ρ̂, the worst-case
performance of the ideal nominal feedback is less than 0.9 (≡ 1− ε) times the nominal
available storage. It follows that ρ�av ≤ 1.2ρ̂, i.e., our bound ρ̂ is within 20% margin
of the quantity of interest.

Figure 2 represents three sample plots of the extracted energy Eav(t) as a function
of time for the feedback Fav.
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Table 3
Price of the nominal feedback Freq versus uncertainty level.

ρ 1.2ρ̂ = 5.5e−4 2.2ρ̂ = 1.0e−3 3ρ̂ = 1.4e−3
Γ 1.056 1.105 1.148

Moving the circuit to a given state. Now let us try to find the largest
uncertainty level ρ�req for which the “price” Γ of the “ideal driving feedback” Freq
(see D.4) corresponding to the nominal instance is at most 1 + δ, i.e., this feedback
still allows, for every perturbed instance and every target state ζ of the circuit, to
move the circuit from the zero initial state to the state ζ while pumping into the circuit
at most (1+δ) times the nominal required energy ζTZreqζ. In our experiment, we set
δ = 0.1. Solving the conservative approximation of the associated Problem 3A (see
the end of section 4.3), we end up with a lower bound

ρ̂ = 4.6e−4
on ρ�req; thus, we can be sure that with 0.046% perturbations of the uncertain ca-
pacitances and conductances, the ideal nominal feedback Freq still allows us to move
the circuit from the zero state to (any) target one while pumping into the circuit at
most 110% of the nominal required energy. It turns out that our bound is perhaps
not as tight as in the previous case, but still is good enough. Indeed, looking at
the data in Table 3, which represent lower bounds on the price of the ideal nominal
driving feedback Freq under different levels of perturbations, we see that with the
perturbations of the level 2.2ρ̂ the price of moving the circuit to certain target state
ζ by the feedback Freq can be larger than 1.1 (≡ 1 + δ) times the nominal required
energy ζTZreqζ; hence ρ�req ≤ 2.2ρ̂. Note that, in the case in question, the conser-
vative approximation of Problem 3A contributes to the ratio ρ�req/ρ̂ ≈ 2.2 a factor
≤ π

2 = 1.57; the remaining factor in the ratio (which is at least 2.2/1.57 ≈ 1.4) comes
from the conservativeness of the sufficient condition expressed in Proposition 3.3 and
underlying Problem 3A.

Figure 3 presents three sample plots of the pumped energy Ereq(t) as a function
of time for the feedback Freq.

5.2. Linear-quadratic case. Consider the mechanical system shown on Figure
4; it consists of 5 material points in a two-dimensional plane linked to each other by
elastic springs as shown on the figure; the points can slide without friction along the
respective axes 01, . . . , 05. The nominal data for the system are given in Table 4. The
system is controlled by two external forces acting at the masses 1 and 5. The first 5
components of the state vector are the shifts xi of the points from their equilibrium
positions along the lines of motion, and the next 5 components are the linear velocities
ẋi of the points; these velocities are the outputs of the system. With respect to these
states, the dynamical system in question is

d
dt

[
x
ẋ

]
=

[
I5

−M−1E

] [
x
ẋ

]
+Bu,

y = ẋ,

(58)

where M is the diagonal matrix with the masses m(i) of the points as the diagonal
entries, E is the stiffness matrix readily given by the rigidities of the springs and
the equilibria positions of the points, and B is the 10 × 2 matrix with two nonzero



ROBUST DISSIPATIVITY OF INTERVAL UNCERTAIN LINEAR SYSTEMS 1691

0 0.5 1 1.5 2 2.5 3
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ρ = 0
Γ = 1

ρ = ρ̂ = 4.6e−4
Γ = 1.046

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ρ = 2.2ρ̂ = 1.0e−3
Γ = 1.105

Fig. 3. Sample plots of
Ereq(t)

zT (0)Zreqz(0)
.

entries B5,1 = m−1(1) and B10,2 = m−1(5). Here is the nominal instance (entries are
rounded to 4 digits after the dot):

Σ =




1
1

1
1

1
−2.5647 −1.0797 −1.0890 1.9637
−0.6038 −0.8206 −0.4766

−0.6009 −1.5044 −0.4808
−0.4300 −1.1142 −0.5131

−0.6190 −0.4626 −0.8352 1.1161
1

1
1

1
1




.

We are interested to bring the system from the equilibrium to a given state while



1692 F. D. BARB, A. BEN-TAL, AND A. NEMIROVSKI

1

1

2

3

4

5

Fig. 4. 5 masses linked by elastic springs

Table 4
The nominal data.

Point Mass
Distance to the origin

at equilibrium
Spring Rigidity

1 0.5093 0.8034 1 - 2 1.461
2 0.9107 0.7430 2 - 3 1.369
3 0.7224 0.9456 3 - 4 1.088
4 0.8077 0.8810 4 - 5 1.203
5 0.8960 0.7282 5 - 1 1.468

minimizing the cost functional

∫ ∞

0

[
5∑
i=1

(ẋi)
2(t) +

2∑
i=1

u2
i (t)

]
dt,

which is equivalent to the providing required supply problem with the supply matrix

P =

[
Q = I5 L = 05×2

LT = 02×5 R = I2

]
.

In our experiment, we treat as uncertain parameters the masses of the points and
the rigidities of the springs and assume that every one of these parameters can vary,
independently of others, by at most ρ times the nominal value of the parameter. Note
that the perturbations affect only the [A,B]-part of the matrix Σ of the system and
that the dependence of Σ on the masses and rigidities is nonlinear (although both
M and E in (58) are affine in the parameters). As in the previous example, we
neglect this phenomenon by linearizing Σ at the nominal data, and end up with a box
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uncertainty set with L = 10 basic perturbation matrices, according to the number of
uncertain parameters; all these perturbation matrices turn out to be of rank 1. The
outlined model underlies two numerical experiments we are about to report.

Designing robust feedback with “nearly optimal” performance. For the
nominal system, there exists the ideal state feedback u = Fz which moves the sys-
tem from the equilibrium to (any) given initial state ζ at the minimum possible cost
ζTZreqζ. What we are interested in now is to find the largest uncertainty level for
which there still exists an instance-independent state feedback with a given perfor-
mance index 1+δ; the latter means that the feedback allows to move every instance of
the perturbed system from the equilibrium to (any) given state ζ at the cost at most
(1+δ) times the “ideal nominal cost” ζTZreqζ. In our experiment, we set δ = 0.1 and
get the desired feedback by solving the conservative approximation (50) of Problem
3C associated with the outlined model. As a result, we get

(a) state feedback with the matrix

F =
[−0.0396 0.0220 −0.3685 −0.8069 −0.4099 0.0152 −0.3694 0.0647 −0.0498 1.3167
−0.3993 −0.6453 −0.4886 −0.2269 −0.0322 1.1859 −0.5896 −0.2165 −0.3263 0.0268

]
,

which is slightly different from the ideal nominal feedback

F =
[−0.0281 0.0289 −0.4196 −0.8948 −0.4551 0.0063 −0.3897 0.0628 −0.0558 1.3826
−0.4467 −0.7133 −0.5466 −0.2423 −0.0311 1.2269 −0.6375 −0.2570 −0.3520 0.0111

]
,

and
(b) the “safe” uncertainty level ρ̂ = 0.0048, which is a lower bound on the optimal

value ρ�3C in Problem 3C.
What we know about F and ρ̂ from their origin is the following:

• The performance index of the state feedback u = Fz is no worse than 1 + δ,
provided that the level of perturbations does not exceed 0.48% (which is our
ρ̂). Note that this statement remains true even for dynamical perturbations.

• The true optimal value ρ�3C in Problem 3C is at most π2 times larger than ρ̂
(see Proposition 4.5; note that our basic perturbation matrices are of rank 1,
so that the quantity µ in (52) equals 2 by item C of Section 4.6).

What we are interested in now is how conservative are our results, specifically, what
is the actual value of the ratio ρ�3C/ρ̂. An even more important question is as follows.
The optimal value ρ�3C of Problem 3C is itself no more than a lower bound on the
supremum ρ� of those perturbation levels for which there still exists a state feedback
with performance index 1 + δ = 1.1 (since what underlies Problem 3C is no more
than a sufficient condition for good performance under uncertainty). How large is the
ratio ρ�/ρ̂, or, in other words, how far is the robustness of our feedback F from the
“ideal” robustness compatible with the prescribed performance index 1.1? It turns
out that the answers to these questions are quite assuring. Indeed, looking at a large
enough number of randomly perturbed instances with different perturbation levels
and computing the required supply for these instances, one can find out that already
at the perturbation level 1.2ρ̂ = 0.0058 there exist perturbed instances Σ and target
states ζ such that Σ cannot be moved from the equilibrium to the state ζ at the cost
≤ 1.1ζTZreqζ. It follows that

ρ�3C ≤ ρ� < 1.2ρ̂,

which is much better than we could expect.
Lyapunov stability analysis. Here we use the data yielded by the previous

experiment for illustrating another application of the proposed approach, namely,
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estimating the level of perturbations which keep the closed-loop system stable. This
problem was the subject of Example 4 in section 3.1, where it was shown that the
problem can be posed as the one of finding the supremum of those uncertainty levels for
which all perturbed instances of the system share a common dissipativity certificate.
As our sample closed-loop system, we used the outlined mechanical system equipped
with the state feedback F found in the previous experiment. Our uncertainty model
for the matrix

Â = A+BF

of the closed-loop system is as follows: we use the aforementioned “physical” model of
perturbations in [A,B] and assume, in addition, that the entries in F also are subject
to perturbations. Since we have no physical model of the controller, we assume that
the entries Fij in F can vary, independently of each other (and independently of
the perturbations in [A,B]), in the intervals [F c

ij − ρ|F c
ij |, F c

ij + ρ|F c
ij |], where ρ is

the uncertainty level, and F c
ij are the “nominal” values as computed in the previous

experiment.
As in the previous cases, we linearized the dependence of Â on the perturbations,

thus arriving at a box model of perturbations in the matrix of the closed-loop sys-
tem. Then we solved the conservative approximation (31) of Problem 1 associated
with system (14) and the supply matrix (15). Since we were interested solely in the
stability of the closed-loop system under perturbations and did not care of any kind
of performance, we looked for the common dissipativity certificate Z in a pretty wide
“matrix interval” I = {Z : 10−7Z � Z � Z}, which in the situation of Example
4 basically means that we do not impose restrictions on Z except for being positive
definite.

The results of our experiment are as follows. The solution of (31) yields a level
of perturbations ρ̂ = 0.041 and a positive definite matrix Z, which is a common Lya-
punov stability certificate for all perturbed instances of the matrix Â of the closed-
loop system when the level of perturbations is ρ̂. Thus, we can be sure that the
closed-loop system remains stable whatever are 4.1% perturbations of the physical
parameters of our mechanical system and 4.1% perturbations of the coefficient in the
feedback matrix, even when these perturbations are dynamical. A natural question
is, How conservative is this conclusion? Note that, a priori, there is no reason to be
too optimistic in this respect, since the existence of a common Lyapunov stability
certificate, as a sufficient condition for stability, may be quite conservative already by
itself, and we are dealing with conservative approximation of this condition. However,
the experiment demonstrates that we are lucky: simulating about 1,000 random per-
turbations of the closed-loop system at different uncertainty levels, it turns out that
at the uncertainty level 1.6ρ̂ = 0.065 there already exist perturbations which make
the closed-loop system unstable. Thus, the closed-loop system definitely survives
perturbations not exceeding 4.1% and can be crushed by 6.5% perturbations.

6. Conclusions. We have developed techniques for specifying the magnitudes
of dynamic perturbations in the parameters of a linear system which preserve a de-
sired property of the system (such as positive-realness, nonexpansiveness, etc.). The
standard sufficient condition for this is the solvability of an associated infinite system
S of linear matrix inequalities. The latter condition, however, is usually NP-hard to
verify, so that one is forced to look for efficiently verifiable sufficient conditions for S
to be solvable. We propose such a condition and demonstrate that in many cases it
is provably tight, within an absolute constant factor, π2 in most cases (for details, see
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Propositions 4.2, 4.3, 4.4, 4.5). This “guaranteed tightness” is a specific (and, to the
best of our knowledge, unique) feature of the paper.

Recently, it turned out that the matrix cube theorem, which underlies all our
developments, can be extended to the complex case and even with a model of uncer-
tainty richer than the interval one. These extensions could then imply corresponding
extensions of the results we have presented here.
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dK = −[A∗K +KA+Q− LD(N +D∗KD)−1D∗L] dt+ Ldw,
K(T ) = M,

under the condition d = 1, and (for the singular case){
dK = −[A∗K +KA+ C∗KC +Q+ C∗L+ LC

−(KB + C∗KD + LD)(D∗KD)−1(KB + C∗KD + LD)∗] dt+ Ldw,
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F , of the natural filtration {Fwt , 0 ≤ t ≤ T} generated by w. Denote by {Gt, 0 ≤
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are {Ft, , 0 ≤ t ≤ T}-progressively measurable bounded matrix-valued processes,
defined on Ω × [0, T ], of dimensions n × n, n × m, n × n, and n × m, respectively,
with i = 1, . . . , d. Also assume that M is an FT -measurable nonnegative bounded
n × n random matrix, and Q and N are {Ft, 0 ≤ t ≤ T}-progressively measurable,
bounded, nonnegative, and uniformly positive n × n and m × m matrix processes,
respectively.

Consider the following backward stochastic Riccati differential equation (BSRDE
for short):

(1)


dK = −
[
A∗K +KA+

d∑
i=1

C∗
iKCi +Q+

d∑
i=1

(C∗
i Li + LiCi)

−
(
KB +

d∑
i=1

C∗
iKDi +

d∑
i=1

LiDi

)(
N +

d∑
i=1

D∗
iKDi

)−1

×
(
KB +

d∑
i=1

C∗
iKDi +

d∑
i=1

LiDi

)∗]
dt+

d∑
i=1

Li dwi, 0 ≤ t < T,
K(T ) = M.

It will be called the BSRDE (A,B;Ci, Di, i = 1, . . . , d;Q,N,M) in the following for
convenience of indicating the concerned coefficients. When the coefficientsA,B,Ci, Di,
Q,N , andM are all deterministic, then L1 = · · · = Ld = 0 and BSRDE (1) is reduced
to the following nonlinear matrix ordinary differential equation:



dK = −
[
A∗K +KA+

d∑
i=1

C∗
iKCi +Q−

(
KB +

d∑
i=1

C∗
iKDi

)

×
(
N +

d∑
i=1

D∗
iKDi

)−1(
KB +

d∑
i=1

C∗
iKDi

)∗ dt,
0 ≤ t < T,

K(T ) = M,

(2)

which was solved by Wonham [31] by applying Bellman’s principle of quasi lineariza-
tion and a monotone convergence approach. Bismut [2, 3] initially studied the case
of random coefficients, but he could solve only some special simple cases. He always
assumed that the randomness of the coefficients comes only from a smaller filtration
{Gt}, which leads to L1 = · · · = Ld0 = 0. He further assumed in his paper [2] that

Cd0+1 = · · · = Cd = 0, Dd0+1 = · · · = Dd = 0,(3)

under which BSRDE (1) becomes the following one:

(4)


dK = −
[
A∗K +KA+

d0∑
i=1

C∗
iKCi +Q

−
(
KB +

d0∑
i=1

C∗
iKDi

)(
N +

d0∑
i=1

D∗
iKDi

)−1(
KB +

d0∑
i=1

C∗
iKDi

)∗ dt
+

d∑
i=d0+1

Li dwi, 0 ≤ t < T,

K(T ) = M,
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and the generator does not involve L at all. In his work [3] he assumed that

Dd0+1 = · · · = Dd = 0,(5)

under which BSRDE (1) becomes the following one:

(6)


dK = −
[
A∗K +KA+

d∑
i=1

C∗
iKCi +Q+

d∑
i=d0+1

(C∗
i Li + LiCi)

−
(
KB +

d0∑
i=1

C∗
iKDi

)(
N +

d0∑
i=1

D∗
iKDi

)−1(
KB +

d0∑
i=1

C∗
iKDi

)∗ dt
+

d∑
i=d0+1

Li dwi, 0 ≤ t < T,

K(T ) = M,

and the generator depends on the second unknown variable (Ld0+1, . . . , Ld)
∗ only in a

linear way. His method consists of constructing an appropriate contraction mapping.
Later, Peng [20] gave a nice treatment on the proof of existence and uniqueness
for BSRDE (6) by using Bellman’s principle of quasi linearization and a method
of monotone convergence—a generalization of Wonham’s approach to the random
situation.

As early as 1978, Bismut [3] commented on page 220, “Nous ne pourrons pas
démontrer l’existence de solution pour l’équation (2.49) dans le cas général.” In
English, it reads, “We could not prove the existence of solution for equation (2.49)
for the general case.” On page 238, he further pointed out that the essential difficulty
for solution of the general BSRDE (2.49) lies in the fact that the integrand of the
martingale term appears in the generator in a quadratic way. Note that Bismut [3]
referred to the more general case: the concerned system is allowed to have jumps and
the associated BSRDE is driven by a Martingale with possible jumps. BSRDE (1)
is only a particular case of BSRDE (2.49) in [3]. However, BSRDE (1) possesses the
difficult nature described by Bismut [3].

Two decades later in 1998, Peng [21] included the existence and uniqueness ques-
tion for BSRDE (1) in his list of open problems on backward stochastic differential
equations (BSDEs for short), which will be called the Bismut–Peng problem here-
after to be distinguished from Bismut’s original problem (the latter is more general).
Subsequently, there appear related discussions concerning the problem, for which the
reader is referred to Chen, Li, and Zhou [4] and Chen and Yong [5].

Recently, the authors [14] solved the one-dimensional case of the Bismut–Peng
problem with an approximation approach.

In this paper, we are concerned with the multidimensional case. We prove the
global existence and uniqueness result for BSRDE (1) for the following class of mul-
tidimensional case:

d = 1, B = C = 0.

That is, we solve the following BSRDE:


dK = − [A∗K +KA+Q− LD(N +D∗KD)−1D∗L] dt+ Ldw,
0 ≤ t < T,

K(T ) = M.
(7)
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This BSRDE is special but typical, for the generator contains a quadratic term of L.
This result is stated as Theorem 2.3.

Consider then the case where the control weight matrix N reduces to zero.
Kohlmann and Zhou [16] discussed such a case under the following three assump-
tions: (a) all the coefficients involved are deterministic; (b) C1 = · · · = Cd = 0, D1 =
· · · = Dd = Im×m, and M = I; (c) A + A∗ ≥ BB∗. Their arguments are based on
applying a result of Chen, Li, and Zhou [4]. The authors [13] considered a general
framework along those of an analogue of Bismut [3] and Peng [20], which has the fol-
lowing features: (a) the coefficients A,B,C,D,N,Q,M are allowed to be random, but
are only {Gt, 0 ≤ t ≤ T}-progressively measurable processes or GT -measurable ran-
dom variable; (b) the assumptions in [16] are dispensed with or generalized; (c) the
condition (5) is assumed to be satisfied. In [13], we generalized Bismut’s previous
result on existence and uniqueness of a solution of BSRDE (6) to the singular case
under the following additional two assumptions:

M ≥ εIn×n,
d∑
i=1

D∗
iDi(t) ≥ εIm×m for some deterministic constant ε > 0.(8)

Later, the authors [14] proved the existence and uniqueness result for the one-dimen-
sional singular case N = 0 under the assumption (8), but for a more general frame-
work: the coefficients A,B,C,D,N,Q,M are allowed to be {Ft, 0 ≤ t ≤ T}-pro-
gressively measurable processes or an FT -measurable random variable, and all the
coefficients Di, i = 1, . . . , d, may be nonzero matrices.

In this paper we also obtain the global existence and uniqueness for the following
multidimensional singular case:

d = 1, m = n, N = 0, D∗D ≥ εIm×m,
M ≥ εIn×n for some deterministic constant ε > 0.

That is, we solve the following BSRDE:

(9)


dK = − [A∗K +KA+ C∗KC +Q+ C∗L+ LC
− (KB + C∗KD + LD)(D∗KD)−1(KB + C∗KD + LD)∗] dt+ Ldw,

0 ≤ t < T,
K(T ) = M.

This result is stated as Theorem 2.2.
BSRDE (1) arises from the solution of the optimal control problem

inf
u∈L2

F (0,T ;Rm)
J(u; 0, x),(10)

where, for t ∈ [0, T ] and x ∈ Rn,

J(u; t, x)(11)

:= EFt

[∫ T

t

[〈Nu, u〉+ 〈QXt,x;u, Xt,x;u〉] ds+ 〈MXt,x;u(T ), Xt,x;u(T )〉
]

and Xt,x;u(·) solves the following stochastic differential equation:

dX = (AX +Bu) ds+

d∑
i=1

(CiX +Diu) dwi, t ≤ s ≤ T,
X(t) = x.

(12)
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The following heuristic connection is well known: if BSRDE (1) has a solution (K,L),
the solution for the above linear quadratic optimal control problem (LQ problem for
short) has the following closed form (also called the feedback form):

u(t) = −
(
N +

d∑
i=1

D∗
iKDi

)−1 [
B∗K +

d∑
i=1

D∗
iKCi +

d∑
i=1

D∗
i Li

]
X(t),(13)

and the associated value function V has the following quadratic form:

V (t, x) := essinf
u∈L2

F (t,T ;Rm)
J(u; t, x) = 〈K(t)x, x〉, 0 ≤ t ≤ T, x ∈ Rn.(14)

In this way, on the one hand, solution of the above LQ problem is reduced to solving
BSRDE (1). On the other hand, formula (14) actually provides a representation—of
Feynman–Kac type—for the solution of BSRDE (1). The reader will see that this
kind of representation plays an important role in the proofs given here for Theorems
2.1, 2.2, and 2.3.

The arguments given in this paper are completely new. They result from two
observations. The first one is that in the following simple case,

A = B = C = 0, d = 1,m = n,
D is nonsingular, and D and N are constant matrices,

(15)

the difficult quadratic term of L can be removed by doing some simple algebraic
transformation, and the resulting BSRDE is globally solvable in view of the result
of Bismut [3] and Peng [20]. As a consequence, the above simple case is globally
solved. However, this case is too restricted. Then comes the second observation: by
using some other tricks and by applying Theorem 2.1, some more general cases can
be solved. Specifically, the following restrictions,

A = 0, m = n, and D is nonsingular,(16)

are all removed, and the restrictive condition that

D and N are constant matrices(17)

is improved. For the singular case, we have only the two restrictions d = 1 and n = m
remaining. Theorem 2.1 provides a way to obtain the solvability of more general
BSRDEs from that of simple ones. We hope that the Bismut–Peng problem will be
completely solved in the near future by using the above-mentioned methodology.

It is worth noting that backward stochastic differential equations were originally
formulated in a linear form by Bismut [1] and then well studied in a Lipschitz nonlinear
form by Pardoux and Peng [19].

It might be helpful to the reader to give the following remarks.
Yong and Zhou [32] give a good account of the stochastic LQ theory for the case

of deterministic coefficients, with emphasis on the indefinite feature of the quadratic
cost functional. Several recent papers are also devoted to the stochastic LQ problem,
among which we cite Chen and Zhou [8] and Chen and Yong [5, 6, 7] for the reader’s
convenience. The papers [8, 6, 7] are mainly devoted to the study of the associated
BSRDEs (or simply of the deterministic Riccati differential equations). Their exis-
tence and uniqueness results on BSRDEs could not cover ours. All of their global
existence and uniqueness results are concerned with the case of deterministic coeffi-
cients, which exclude the quadratic growth in L of BSRDE—the main interesting and
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difficult feature of this paper. The local existence and uniqueness results in [6] require
either the condition D1 = D2 = · · · = Dd ≡ 0—which also excludes the quadratic
growth in L of BSRDE—or an additional regularity of the coefficients (that is, the
conditions on the Malliavin derivatives of the coefficients), which is unnecessary in
this paper even for the global existence and uniqueness assertions. Moreover, our
approach is different from theirs.

The results of this paper were briefly reviewed in [15], which was presented at the
Workshop on Mathematical Finance, held in Konstanz, Germany, on October 5–7,
2000.

When this second version was prepared in January and February, 2002, one year
had passed since the submission of the original manuscript, and the Bismut–Peng
problem has been closed in [28] by the second author by developing a different ap-
proach. A presentation more general than [28], incorporating the singular case, is
available in Tang [29], which was reported at the International Conference on Math-
ematical Finance, held on May 10–13, 2001, at Fudan University, Shanghai, China.
However, a complete solution of the Bismut–Peng problem in the spirit of either this
paper or the authors’ previous paper [14] is still interesting.

The rest of the paper is organized as follows. Section 2 contains a list of notation,
two preliminary propositions, and the statement of the main results, which consist
of Theorems 2.1–2.3. The proofs of these three theorems are given in sections 3–5,
respectively. Finally, in section 6, application of Theorems 2.2 and 2.3 is given to the
regular and singular stochastic LQ problems, both with and without constraint.

2. Preliminaries and the main results. Throughout this paper, we make the
following assumptions. Let d and d0 be two nonnegative integers with d0 ≤ d. Let
(Ω,F , P, {Ft, 0 ≤ t ≤ T}) be a fixed complete probability space on which is defined
a standard d-dimensional Ft-adapted Brownian motion w(t) ≡ (w1(t), . . . , wd(t))

∗.
Assume that {Ft, 0 ≤ t ≤ T} is the completion, by the totality N of all null sets of
F , of the natural filtration {Fwt , 0 ≤ t ≤ T} generated by w. Denote by {Gt, 0 ≤
t ≤ T} the P -augmented natural filtration generated by the (d − d0)-dimensional
Brownian motion (wd0+1, . . . , wd). Assume that all the coefficients A,B,Ci, and Di
are {Ft, , 0 ≤ t ≤ T}-progressively measurable bounded matrix-valued processes,
defined on Ω× [0, T ], of dimensions n×n, n×m, n×n, and n×m, respectively, with
i = 1, . . . , d. Also assume that M is an FT -measurable nonnegative bounded n × n
random matrix, and Q and N are {Ft, 0 ≤ t ≤ T}-progressively measurable, bounded,
and nonnegative matrix processes of dimensions n× n and m×m, respectively.

Notation. Throughout this paper, the following additional notation will be used:
M∗: the transpose of any vector or matrix M ;

|M |: equals
√∑

ijm
2
ij for any vector or matrix M = (mij);

〈M1,M2〉: the inner product of the two vectors M1 and M2;
Rn: the n-dimensional Euclidean space;
R+: the set of all nonnegative real numbers;
Sn: the Euclidean space of all n× n symmetric matrices;
Sn+: the set of all n× n nonnegative definite matrices;
C([0, T ];H): the Banach space of H-valued continuous functions on [0, T ],

endowed with the maximum norm for a given Hilbert space H;
L2
F (0, T ;H): the Banach space of H-valued {Ft, 0 ≤ t ≤ T}-adapted square

-integrable stochastic processes f on [0, T ], endowed with

the norm (E
∫ T
0
|f(t)|2 dt)1/2 for a given Euclidean space H;
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L∞
F (0, T ;H): the Banach space of H-valued, {Ft, 0 ≤ t ≤ T}-adapted,

essentially bounded stochastic processes f on [0, T ], endowed
with the norm ess supt,ω |f(t)| for a given Euclidean space H;

L2(Ω,F , P ;H): the Banach space of H-valued norm-square-integrable random
variables on the probability space (Ω,F , P ) for a given
Banach space H;

and L∞(Ω,F , P ;C([0, T ];Sn)) is the Banach space of C([0, T ];Sn)-valued, essentially
maximum-norm-bounded random variables f on the probability space (Ω,F , P ), en-
dowed with the norm ess supω∈Ω max0≤t≤T |f(t, ω)|. The definitions of L∞

F (0, T ;Sn+)
and L∞(Ω,F , P ;C([0, T ];Sn+)) are obvious.

Proposition 2.1. Assume that the coefficients A,B,Ci, and Di are {Gt, 0 ≤ t ≤
T}-progressively measurable bounded matrix-valued processes, defined on Ω × [0, T ],
of dimensions n × n, n ×m, n × n, n ×m, respectively, with i = 1, . . . , d. Assume
that M is a GT -measurable, nonnegative, and bounded n×n random matrix. Assume
that Q and N are Gt-progressively measurable, bounded, nonnegative and uniformly
positive, n × n and m ×m matrix processes, respectively. Then, BSRDE (6) has a
unique {Gt, 0 ≤ t ≤ T}-adapted global solution (K,L) with

K ∈ L∞
G (0, T ;Sn+) ∩ L∞(Ω,GT , P ;C([0, T ];Sn+)), L ∈ L2

G(0, T ;Sn).

Proposition 2.1 and its proof can be found in Bismut [3] and Peng [20].
For t ∈ [0, T ] and x ∈ Rn, the following stochastic differential equation,


dX = (AX +Bu) ds+

d∑
i=1

(CiX +Diu) dwi, t ≤ s ≤ T,
X(t) = x

(18)

has a unique solution (see Gal’chuk [10]) denoted by Xt,x;u(·). Define

(19)

J(u; t, x) := EFt

[∫ T

t

[〈Nu, u〉+ 〈QXt,x;u, Xt,x;u〉] ds+ 〈MXt,x;u(T ), Xt,x;u(T )〉
]
.

Consider the optimal control problem

inf
u∈L2

F (0,T ;Rm)
J(u; 0, x).(20)

Proposition 2.2. Let (K,L) be an {Ft, 0 ≤ t ≤ T}-adapted solution of BSRDE
(1) with

K ∈ L∞
F (0, T ;Sn+) ∩ L∞(Ω,FT , P ;C([0, T ];Sn+)), L ∈ L2

F (0, T ;Sn),

and N(t)+
∑d
i=1D

∗
iKDi(t) being uniformly positive. Then, the value function V (t, x)

defined by

V (t, x) := essinf
u∈L2

F (t,T ;Rm)
J(u; t, x) ∀(t, x) ∈ [0, T ]×Rn

has the following quadratic form:

V (t, x) = 〈K(t)x, x〉.
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The detailed proof can be found in [13].
The main results of this paper consist of the following three theorems.
Theorem 2.1. We make the following six assumptions:
(i) For all γ ≥ 0, the coefficients Aγ , Bγ , Cγi , D

γ
i , Q

γ , and Nγ are {Ft, 0 ≤ t ≤ T}-
progressively measurable matrix-valued processes, defined on Ω× [0, T ], of dimensions
n× n, n×m, n× n, n×m, n× n, and m×m, respectively.

(ii) Mγ is an FT -measurable and nonnegative n× n random matrix.
(iii) Qγ is a.s. a.e. nonnegative.
(iv) There are two deterministic positive constants ε1 and ε2, which are indepen-

dent of the parameter γ, such that

|Aγ(t)|, |Bγ(t)|, |Cγi (t)|, |Dγi (t)|, |Qγ(t)|, |Nγ(t)|, |Mγ | ≤ ε1
and

Nγ ≥ ε2Im×m.

(v) As γ → 0, Aγ(t), Bγ(t), Cγi (t), Dγi (t), Qγ(t), and Nγ(t) converge uniformly
in (t, ω) to A0(t), B0(t), C0

i (t), D0
i (t), Q

0(t), and N0(t), respectively. Moreover, Mγ

converges uniformly in ω to M0 as γ → 0.
(vi) For all γ > 0 the BSRDE (Aγ , Bγ ;Cγi , D

γ
i , i = 1, . . . , d;Qγ , Nγ ,Mγ) has a

unique {Ft, 0 ≤ t ≤ T}-adapted global solution (Kγ , Lγ) with

Kγ ∈ L∞
F (0, T ;Sn+) ∩ L∞(Ω,FT , P ;C([0, T ];Sn+)), Lγ ∈ L2

F (0, T ;Sn).

Then, there is a pair of processes (K,L) with

K ∈ L∞
F (0, T ;Sn+) ∩ L∞(Ω,FT , P ;C([0, T ];Sn+)), L ∈ (L2

F (0, T ;Sn))d,

such that

lim
γ→0

Kγ = K strongly in L∞
F (0, T ;Sn+) ∩ L∞(Ω,FT , P ;C([0, T ];Sn+)),

lim
γ→0

Lγ = L strongly in (L2
F (0, T ;Sn))d.

(21)

Moreover, (K,L) is a unique {Ft, 0 ≤ t ≤ T}-adapted global solution of the BSRDE
(A0, B0, C0, D0, Q0, N0,M0).

If the above assumption of uniform convergence of (Aγ , Cγ , Qγ ,Mγ) is replaced
with the following one:

lim
γ→0

esssup
ω∈Ω

∫ T

0

(|Aγ −A0|+ |Cγ − C0|2 + |Qγ −Q0|) ds+ |Mγ −M0| → 0,(22)

then the above assertions still hold.
Remark 2.1. When the assumption of uniform positivity on the control weight

matrix N is relaxed to nonnegativity, Theorem 2.1 still holds with the additional
assumption that there is a deterministic positive constant ε3, being independent of γ,
such that

d∑
i=1

(Dγi )∗Dγi ≥ ε3Im×m, Mγ ≥ ε3In×n ∀γ > 0.
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Theorem 2.2 (the singular case). Assume that N ≡ 0, d = 1, n = m, and
Q(t) ≥ 0. Also assume that there is a deterministic positive constant ε3 such that

M ≥ ε3In×n(23)

and

D∗D ≥ ε3Im×m.(24)

Then, BSRDE (9) has a unique {Ft, 0 ≤ t ≤ T}-adapted global solution (K,L) with

K ∈ L∞
F (0, T ;Sn+) ∩ L∞(Ω,FT , P ;C([0, T ];Sn+)), L ∈ L2

F (0, T ;Sn),

and K(t, ω) being uniformly positive with respect to (t, ω).
Theorem 2.3 (the regular case). Assume that d = 1, M ≥ 0, Q(t) ≥ 0, and

N(t) ≥ ε3Im×m for some positive constant ε3. Further assume that B = C = 0, and
D and N satisfy the following:

lim
h→0+

esssup
ω∈Ω

max
t1,t2∈[0,T ]; |t1−t2|≤h

|D(t1)−D(t2)| = 0,

lim
h→0+

esssup
ω∈Ω

max
t1,t2∈[0,T ]; |t1−t2|≤h

|N(t1)−N(t2)| = 0.
(25)

Then, BSRDE (7) has a unique {Ft, 0 ≤ t ≤ T}-adapted global solution (K,L) with

K ∈ L∞
F (0, T ;Sn+) ∩ L∞(Ω,FT , P ;C([0, T ];Sn+)), L ∈ L2

F (0, T ;Sn).

The proofs of the above three theorems are given in sections 3, 4, and 5, respec-
tively.

3. The proof of Theorem 2.1. For all (t,K,L) ∈ [0, T ]× Sn+ × (Sn)d, write

F γ(t,K,L) := − [KBγ(t) +

d∑
i=1

Cγi (t)∗KDγi (t) +

d∑
i=1

LiD
γ
i (t)]

× [Nγ(t) +

d∑
i=1

Dγi (t)∗KDγi (t)]−1

×
[
KBγ(t) +

d∑
i=1

Cγi (t)∗KDγi (t) +

d∑
i=1

LiD
γ
i (t)

]∗
.

(26)

The generator of the BSRDE (Aγ , Bγ ;Cγi , D
γ
i , i = 1, . . . , d;Qγ , Nγ ,Mγ) is

Gγ(t,K,L) := (Aγ)∗K +KAγ +

d∑
i=1

(Cγi )∗KCγi +Qγ

+

d∑
i=1

((Cγi )∗Li + LiC
γ
i ) + F γ(t,K,L).

(27)

We have the following a priori estimates.
Lemma 3.1. Let the set of coefficients (Aγ , Bγ ;Cγi , D

γ
i , i = 1, . . . , d;Qγ , Nγ ,Mγ)

satisfy the assumptions made in Theorem 2.1. Let (Kγ , Lγ) be a global {Ft, 0 ≤ t ≤
T}-adapted solution to the BSRDE (Aγ , Bγ ;Cγi , D

γ
i , i = 1, . . . , d;Qγ , Nγ ,Mγ) with

Kγ ∈ L∞
F (0, T ;Sn+) ∩ L∞(Ω,FT , P ;C([0, T ];Sn+)) and Lγ ∈ (L2

F (0, T ;Sn))d.
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Then, there is a deterministic positive constant ε0, which is independent of γ, such
that for all γ > 0, the following estimates hold:

0 ≤ Kγ(t) ≤ ε0In×n, EFt

(∫ T

t

|Lγ |2 ds
)p
≤ ε0 ∀p ≥ 1.(28)

Proof of Lemma 3.1. Note that (Kγ , Lγ) satisfies the BSRDE:

(29)


dKγ = −
[
(Aγ)∗Kγ +KγAγ +

d∑
i=1

(Cγi )∗KγCγi +Qγ +

d∑
i=1

((Cγi )∗Lγi + Lγi C
γ
i )

+ F γ(t,Kγ , Lγ)

]
dt+

d∑
i=1

Lγi dwi, 0 ≤ t < T,
Kγ(T ) = Mγ .

Using Itô’s formula, we get

(30) 


d|Kγ |2 = −
[
4 tr

[
(Kγ)2Aγ

]
+

d∑
i=1

2 tr [Kγ(Cγi )∗KγCγi ] + 2 tr (KγQγ)

+

d∑
i=1

4 tr (KγLγi C
γ
i ) + 2 tr [KγF γ(t,Kγ , Lγ)]− |Lγ |2

]
dt

+

d∑
i=1

2 tr (KγLγi ) dwi, 0 ≤ t < T,
|Kγ |2(T ) = |Mγ |2.

We observe that since

F γ(t,Kγ , Lγ) ≤ 0, Kγ ≥ 0,

we have

2 tr [KγF γ(t,Kγ , Lγ)] = 2 tr
[
(Kγ)

1
2 F γ(t,Kγ , Lγ) (Kγ)

1
2

]
≤ 0.(31)

Hence,

|Kγ |2(t) +

∫ T

t

|Lγ |2 ds ≤ |Mγ |2 +

∫ T

t

[
4 tr

[
(Kγ)2Aγ

]
+

d∑
i=1

2 tr [Kγ(Cγi )∗KγCγi ]

+ 2 tr (KγQγ) +

d∑
i=1

4 tr (KγLγi C
γ
i )

]
ds

−
∫ T

t

d∑
i=1

2 tr (KγLγi ) dwi, 0 ≤ t < T.

(32)

Using the elementary inequality

2ab ≤ a2 + b2
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and taking the expectation on both sides with respect to Fr for r ≥ t, we obtain that

(33)

EFr |Kγ |2(t) +
1

2
EFr

∫ T

t

|Lγ |2 ds ≤ ε4 + ε4

∫ T

t

EFr |Kγ |2(s) ds, 0 ≤ r ≤ t < T.

Using Gronwall’s inequality, we derive from the last inequality the first one of the
estimates (28). In return, we derive from the second last inequality that

∫ T

t

|Lγ |2 ds ≤ ε5 + ε5

∫ T

0

|Lγ | ds−
∫ T

t

d∑
i=1

2 tr (KγLγi ) dwi.(34)

Therefore,

EFt

(∫ T

t

|Lγ |2 ds
)p

≤ 3p

[
εp5 + εp5E

Ft

(∫ T

t

|Lγ | ds
)p

+ EFt

∣∣∣∣
∫ T

t

d∑
i=1

2tr(KγLγi ) dwi

∣∣∣∣
p
]
.

(35)

We have from the Burkhölder–Davis–Gundy inequality the following:

EFt

∣∣∣∣
∫ T

t

d∑
i=1

2 tr (KγLγI ) dwi

∣∣∣∣
p

≤ 2pEFt

∣∣∣∣
∫ T

t

|Kγ |2|Lγ |2 ds
∣∣∣∣
p/2

,

while from the Cauchy–Schwarz inequality, we have

EFt

(∫ T

t

|Lγ | ds
)p
≤ T p/2EFt

(∫ T

t

|Lγ |2 ds
)p/2

.

Finally, we get

EFt

(∫ T

t

|Lγ |2 ds
)p
≤ 3pεp5 + [3pT p/2εp5 + 6pnp/2εp0]EFt

(∫ T

t

|Lγ |2 ds
)p/2

,(36)

which implies the last estimate of the lemma.
Now, consider the optimal control problem,

Problem Pγ : inf
u∈L2

F (0,T ;Rm)
Jγ(u; 0, x),(37)

where for t ∈ [0, T ] and x ∈ Rn,

(38)

Jγ(u; t, x) := EFt

{∫ T

t

[〈Nγu, u〉+ 〈QγXt,x;u
γ , Xt,x;u

γ 〉] ds+ 〈MγXt,x;u
γ (T ), Xt,x;u

γ (T )〉
}

and Xt,x;u
γ (·) solves the following stochastic differential equation:

dX = (AγX +Bγu) ds+

d∑
i=1

(Cγi X +Dγi u) dwi, t ≤ s ≤ T,
X(t) = x.

(39)
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The associated value function V γ is defined as

V γ(t, x) := essinf
u∈L2

F (t,T ;Rm)
Jγ(u; t, x), (t, x) ∈ [0, T ]×Rn.(40)

Then, from Proposition 2.2, we have

〈Kγ(t)x, x〉 = V γ(t, x) ∀(t, x) ∈ [0, T ]×Rn.
From Lemma 3.1, we deduce

V γ(t, x) ≤ ε0|x|2 ∀(t, x) ∈ [0, T ]×Rn.
So, the optimal control ûγ for problem Pγ satisfies

ε2E
Ft

∫ T

t

|ûγ |2 ds = EFt

∫ T

t

〈Nγ ûγ , ûγ〉 ds ≤ ε0|x|2.

Set

U xad(t, T ) :=

{
u ∈ L2

F (t, T ;Rm) : ε2E
Ft

∫ T

t

|u|2 ds ≤ ε0|x|2
}

∀x ∈ Rn.(41)

Then, we have

V γ(t, x) := essinf
u∈U x

ad
(t,T )

Jγ(u; t, x).(42)

Define

Kγτ := Kγ −Kτ , Lγτi := Lγi − Lτi , Xt,x;u
γτ := Xt,x;u

γ −Xt,x;u
τ ,

Aγτ := Aγ −Aτ , Bγτ := Bγ −Bτ , Cγτi := Cγi − Cτi ,
Dγτ := Dγ −Dτ , Qγτ := Qγ −Qτ , Nγτ := Nγ −Nτ ,
Mγτ := Mγ −Mτ .

(43)

Lemma 3.2. Let the assumptions of Theorem 2.1 be satisfied. Then, there are
three deterministic positive constants ε6, ε7, and ε8, which are independent of the
parameters γ and τ , such that the following three estimates hold:

(i) For each (t, x) ∈ [0, T ]×Rn, a.s.

EFt max
t≤s≤T

|Xt,x;u
γ (s)|2 ≤ ε6|x|2 + ε6E

Ft

∫ T

t

|u(s)|2 ds.(44)

(ii) For each (t, x) ∈ [0, T ]×Rn, a.s.

EFt max
t≤s≤T

|Xt,x;u
γτ (s)|2 ≤ ε7EFt

∫ T

t

(|Aγτ |+ |Cγτ |2)|Xt,x;u
γ (s)|2 ds

+ ε7E
Ft

∫ T

t

(|Bγτ |+ |Dγτ |2)|u(s)|2 ds.
(45)

(iii) For each (t, x) ∈ [0, T ]×Rn, a.s.
|Jγ(u; t, x)− Jτ (u; t, x)|

≤ ε8EFt [|Mγτ ||Xt,x;u
γ (T )|2 + |Xt,x;u

γτ (T )|(|Xt,x;u
γ (T )|+ |Xt,x;u

τ (T )|)]
+ ε8E

Ft

∫ T

t

|Xt,x;u
γτ (s)|[|Xt,x;u

γ (s)|+ |Xt,x;u
τ (s)|] ds

+ ε8E
Ft

∫ T

t

|Qγτ ||Xt,x;u
γ (s)|2 ds+ ε8E

Ft

∫ T

t

|Nγτ ||u(s)|2 ds.

(46)
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Proof of Lemma 3.2. Note that Xt,x;u
γτ satisfies the following stochastic differential

equation:



dXγτ = (AτXγτ +AγτXγ +Bγτu) ds+

d∑
i=1

(Cτi Xγτ + Cγτi Xγ +Dγτi u) dwi,

Xγτ (t) = 0.

So, in view of the assumptions of Theorem 2.1, the first two estimates are actually a
consequence of the continuous dependence upon the parameters of the solution of a
stochastic differential equation, and the proof is standard. The last estimate results
from an immediate application of the mean-value formula for a differential function.

Lemma 3.3. Let the assumptions of Theorem 2.1 be satisfied. Then, we have the
following three inequalities:

(i) For each (t, x) ∈ [0, T ]×Rn, for all u ∈ U xad(t, T ),

EFt max
t≤s≤T

|Xt,x;u
γ (s)|2 ≤ ε6(1 + ε−1

2 ε0)|x|2.(47)

(ii) For each (t, x) ∈ [0, T ]×Rn, for all u ∈ U xad(t, T ),

EFt max
t≤s≤T

|Xt,x;u
γτ (s)|2 ≤ ε7ε6(1 + ε−1

2 ε0)|x|2 esssup
ω

∫ T

0

(|Aγτ |+ |Cγτ |2) ds

+ ε7ε
−1
2 ε0|x|2 esssup

s,ω
[|Bγτ (s)|+ |Dγτ (s)|2].

(48)

(iii) For each (t, x) ∈ [0, T ]×Rn, for all u ∈ U xad(t, T ),

|Jγ(u; t, x)− Jτ (u; t, x)|
≤ ε8 esssup

ω
|Mγτ | EFt |Xt,x;u

γ (T )|2

+ ε8
[
EFt |Xt,x;u

γτ (T )|2]1/2 [EFt(2|Xt,x;u
γ (T )|2 + 2|Xt,x;u

τ (T )|2)
]1/2

+ ε8T

[
EFt sup

t≤s≤T
|Xt,x;u

γτ (s)|2
]1/2 [

EFt sup
t≤s≤T

[2|Xt,x;u
γ (s)|2 + 2|Xt,x;u

τ (s)|2]

]1/2

+ ε8 esssup
ω

∫ T

0

|Qγτ | ds EFt sup
t≤s≤T

|Xt,x;u
γ (s)|2 + ε8ε

−1
2 ε0|x|2 esssup

s,ω
|Nγτ (s)|.

(49)

Proof of Lemma 3.3. Since u ∈ U xad(t, T ), we have

EFt

∫ T

t

|u|2 ds ≤ ε−1
2 ε0|x|2.(50)

Putting (50) into the first estimate of Lemma 3.2, we get the first inequality of
Lemma 3.3. Putting (50) and the first inequality of Lemma 3.3 into the second
estimate of Lemma 3.2, we get the second one. The last one is derived from (50) and
applying the Cauchy–Schwarz inequality in the third estimate of Lemma 3.2.
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Now we are in a position to prove Theorem 2.1.
Combining the first and the last inequalities of Lemma 3.3, we conclude that for

each (t, x) ∈ [0, T ]×Rn, for all u ∈ U xad(t, T ),

|Jγ(u; t, x)− Jτ (u; t, x)|
≤ ε8ε6(1 + ε−1

2 ε0)|x|2 esssup
ω
|Mγτ |

+ 2|x|ε8(T + 1)

√
ε6(1 + ε−1

2 ε0)

[
EFt sup

t≤s≤T
|Xt,x;u

γτ (s)|2
]1/2

+ ε8ε6(1 + ε−1
2 ε0)|x|2 esssup

ω

∫ T

0

|Qγτ | ds+ ε8ε
−1
2 ε0|x|2 esssup

s,ω
|Nγτ (s)|.

(51)

Noting the second inequality of Lemma 3.3, we have

|Jγ(u; t, x)− Jτ (u; t, x)|
≤ ε8ε6(1 + ε−1

2 ε0)|x|2 esssup
ω
|Mγτ |+ 2|x|ε8(T + 1)

√
ε6(1 + ε−1

2 ε0)

×
[
ε7ε6(1 + ε−1

2 ε0)|x|2 esssup
ω

∫ T

0

(|Aγτ |+ |Cγτ |2) ds

+ ε7ε
−1
2 ε0|x|2 esssup

s,ω
[|Bγτ (s)|+ |Dγτ (s)|2]

]1/2

+ ε8ε6(1 + ε−1
2 ε0)|x|2 esssup

ω

∫ T

0

|Qγτ | ds+ ε8ε
−1
2 ε0|x|2 esssup

s,ω
|Nγτ (s)|

(52)

for each (t, x) ∈ [0, T ]×Rn, for all u ∈ U xad(t, T ). Therefore, we have

|V γ(t, x)− V τ (t, x)|
≤ ε8ε6(1 + ε−1

2 ε0)|x|2 esssup
ω
|Mγτ |+ 2|x|ε8(T + 1)

√
ε6(1 + ε−1

2 ε0)

×
[
ε7ε6(1 + ε−1

2 ε0)|x|2 esssup
ω

∫ T

0

(|Aγτ |+ |Cγτ |2) ds

+ ε7ε
−1
2 ε0|x|2 esssup

s,ω
[|Bγτ (s)|+ |Dγτ (s)|2]

]1/2

+ ε8ε6(1 + ε−1
2 ε0)|x|2 esssup

ω

∫ T

0

|Qγτ | ds+ ε8ε
−1
2 ε0|x|2 esssup

s,ω
|Nγτ (s)|

(53)

for each (t, x) ∈ [0, T ]×Rn.
In view of the assumptions of Theorem 2.1, (53) implies that for each (t, x) ∈

[0, T ] × Rn, V γ(t, x) converges to V 0(t, x) as γ → 0. Moreover, this convergence is
uniform in (t, ω). Hence, Kγ converges to some K0 in the set

L∞
F (0, T ;Sn+) ∩ L∞(Ω,FT , P ;C([0, T ];Sn+)).

In the following, we show the strong convergence of Lγ . Note that (Kγτ , Lγτ )
satisfies the BSDE


dKγτ (t) = − [Gγ(t,Kγ , Lγ)−Gτ (t,Kτ , Lτ )] dt+

d∑
i=1

Lγτi dwi,

Kγτ (T ) = Mγτ .

(54)
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Using Itô’s formula, we have

E|Kγτ (t)|2 + E

∫ T

t

|Lγτ (s)|2 ds

= E|Mγτ |2 + E

∫ T

t

tr {Kγτ [Gγ(s,Kγ , Lγ)−Gτ (t,Kτ , Lτ )]} ds.
(55)

Since

|Gγ(s,Kγ , Lγ)−Gτ (t,Kτ , Lτ )| ≤ ε(1 + |Lγ |2 + |Lτ |2)(56)

for some deterministic constant ε, which is independent of γ and τ , we have

E

∫ T

t

|Lγτ (s)|2 ds ≤ E|Mγτ |2 + ε esssup
s,ω

|Kγτ (s)|E
∫ T

t

(1 + |Lγ |2 + |Lτ |2) ds.(57)

From the second a priori estimate of Lemma 3.1, we conclude that Lγ converges to
some L0 strongly in L2

F (0, T ;Sn). By passing to the limit in the BSRDE (Aγ , Bγ ;Cγi ,
Dγi , i = 1, . . . , d;Qγ , Nγ ,Mγ), we show that (K0, L0) is an {Ft, 0 ≤ t ≤ T}-adapted
global solution of the BSRDE (A0, B0;C0

i , D
0
i , i = 1, . . . , d;Q0, N0,M0).

4. The proof of Theorem 2.2. This section gives the proof of Theorem 2.2.
The main idea is to do the matrix inverse transformation

K̃ := K−1,(58)

which turns out to satisfy a Riccati equation whose generator depends on the mar-
tingale term only in a linear way.

First, note that D has an inverse. We can rewrite the BSRDE (9) as




dK = −[−Ã∗K −KÃ+Q−KB̃K−1B̃∗K − LK−1L

+ KB̃K−1L+ LK−1B̃∗K] dt+ Ldw,
K(T ) = M,

(59)

where

Ã := −A+BD−1C, B̃ := −BD−1.

We have the following rules for the first-order and the second-order differentials
of the inverse of a positive matrix as a matrix-valued function defined on the set of
all n× n positive matrices:

d
(
K−1

)
= −K−1(dK)K−1,

d2
(
K−1

)
= d

(
d
(
K−1

))
= −d (K−1(dK)K−1

)
= −d(K−1)(dK)K−1 −K−1(dK)d(K−1)

= 2K−1(dK)K−1(dK)K−1.

(60)

Here, d(K−1) is defined as the matrix whose (i, j)-component is the first-order dif-
ferential of the (i, j)-component of K−1, and d2(K−1) is defined as the matrix whose
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(i, j)-component is the second-order differential of the (i, j)-component of K−1. Using

Itô’s formula, we can write the equation for the inverse K̃ of K:{
dK̃ = −[K̃Ã∗ + ÃK̃ − K̃QK̃ + B̃K̃B̃∗ + B̃L̃+ L̃B̃∗] dt+ L̃ dw,

K̃(T ) = M−1,
(61)

where

L̃ := −K−1LK−1.

In what follows, we shall show how to construct an {Ft, 0 ≤ t ≤ T}-adapted global so-

lution for BSRDE (9), starting from the preceding BSRDE (Ã,Q1/2; B̃, 0; 0, Im×m,M−1),
that is, BSRDE (61).

From Proposition 2.1, the above BSRDE (Ã,Q1/2; B̃, 0; 0, Im×m,M−1) has a

unique {Ft, 0 ≤ t ≤ T}-adapted global solution (K̃, L̃) with

K̃ ∈ L∞
F (0, T ;Sn+) ∩ L∞(Ω,FT , P ;C([0, T ];Sn+)) and L̃ ∈ L2

F (0, T ;Sn).

Proposition 2.1 does not assert that K̃ is uniformly positive. However, from the fact
that K̃(T ) = M−1 ≥ ε−1

1 In×n, we derive that K̃ is uniformly positive. Define

K := K̃−1 and L := −K̃−1L̃K̃−1.(62)

Then,

K ∈ L∞
F (0, T ;Sn+) ∩ L∞(Ω,FT , P ;C([0, T ];Sn+)) and L ∈ L2

F (0, T ;Sn).(63)

Moreover, K(t) is uniformly positive in (t, ω).
Again using Itô’s formula, in view of BSRDE (61), we show that (K,L) is a global

{Ft, 0 ≤ t ≤ T}-adapted solution of BSRDE (9).

The uniqueness is derived from Proposition 2.2. In fact, assume that (K̂, L̂) is
another global {Ft, 0 ≤ t ≤ T}-adapted solution of BSRDE (9) with

K̂ ∈ L∞
F (0, T ;Sn+) ∩ L∞(Ω,FT , P ;C([0, T ];Sn+)) and L̂ ∈ L2

F (0, T ;Sn).(64)

Then, from Proposition 2.2, we see that

〈K(t)x, x〉 = V (t, x) = 〈K̂(t)x, x〉, a.s., ∀(t, x) ∈ [0, T ]×Rn.
Therefore we have K(t) = K̂(t) almost surely for all t ∈ [0, T ]. Set

δK := K − K̂, δLi := Li − L̂i, δG := G(t,K,L)−G(t, K̂, L̂).

On the one hand, we have δK = 0. On the other hand, the pair (δK, δL) satisfies the
following BSDE:


dδK(t) = −δGdt+

d∑
i=1

δLi(t) dwi(t), 0 ≤ t < T,
δK(T ) = 0.

(65)

Using Itô’s formula, we have

(66)

E

∫ T

t

|δL(s)|2 ds ≤ E|δK(T )|2 + ε esssup
s,ω

|δK(s)|E
∫ T

t

(1 + |L|2 + |L̂|2) ds = 0.

Here, ε is a positive constant. Hence, δL = L− L̂ = 0.
The proof is complete.
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5. The proof of Theorem 2.3. For the regular case, the situation is a little
complex: we easily see that the above matrix inverse transformation on the first
unknown matrix variable cannot eliminate the quadratic term of the second unknown
variable. However, we can still solve some classes of BSRDEs through doing other
appropriate matrix transformations.

Proposition 5.1. Assume that Q ≥ A∗(D−1)∗ND−1 + (D−1)∗ND−1A, m =
n, and D and N are nonsingular constant matrices. Then, Theorem 2.3 holds.

Proof of Proposition 5.1. Write

N̂ := (D−1)∗ND−1.(67)

Then BSRDE (7) is equivalent to the BSRDE (A, 0; 0, In×n;Q, N̂,M), i.e.,


dK = −[A∗K +KA+Q− L(N̂ +K)−1L] dt+ Ldw,
0 ≤ t < T,

K(T ) = M.

(68)

Define

Q̂ := Q−A∗N̂ − N̂A, M̂ := N̂ +M.(69)

It is easy to see that Q̂ is nonnegative and M̂ is uniformly positive.
We also see that if (K,L) is a global {Ft, 0 ≤ t ≤ T}-adapted solution of the

BSRDE (A, 0; 0, In×n;Q, N̂,M) such that

K ∈ L∞
F (0, T ;Sn+) ∩ L∞(Ω,FT , P ;C([0, T ];Sn+)) and L ∈ L2

F (0, T ;Sn),(70)

then the pair (K̂, L̂), defined by K̂ := N̂ +K and L̂ := L, is a global {Ft, 0 ≤ t ≤ T}-
adapted solution of the BSRDE (A, 0; 0, In×n; Q̂, 0, M̂), i.e.,{

dK̂ = −[A∗K̂ + K̂A+ Q̂− L̂K̂−1L̂] dt+ L̂ dw, 0 ≤ t < T,
K̂(T ) = M̂.

(71)

Moreover, K̂ ∈ L∞
F (0, T ;Sn+) ∩ L∞(Ω,FT , P ;C([0, T ];Sn+)), L̂ ∈ L2

F (0, T ;Sn), and K̂
is uniformly positive.

Inversely, if (K̂, L̂) is a global {Ft, 0 ≤ t ≤ T}-adapted solution of BSRDE (71)

such that K̂ ∈ L∞
F (0, T ;Sn+) ∩ L∞(Ω,FT , P ;C([0, T ];Sn+)), L̂ ∈ L2

F (0, T ;Sn), and K̂

is uniformly positive, then the pair (K,L), defined by K := K̂ − N̂ and L := L̂,

is a global {Ft, 0 ≤ t ≤ T}-adapted solution of the BSRDE (A, 0; 0, In×n;Q, N̂,M),
satisfying the following:

K ∈ L∞
F (0, T ;Sn) ∩ L∞(Ω,FT , P ;C([0, T ];Sn)) and L ∈ L2

F (0, T ;Sn).(72)

At the moment, it is not clear that K is nonnegative. However, it is clear that N̂ +K
is uniformly positive. Making use of the nonnegativity of Q, M , and N̂ , we can
deduce that K is nonnegative. In fact, according to our previous paper [13], since

(K̂, L̂) is a global {Ft, 0 ≤ t ≤ T}-adapted solution of BSRDE (71) such that K̂ ∈
L∞
F (0, T ;Sn+) ∩ L∞(Ω,FT , P ;C([0, T ];Sn+)), L̂ ∈ L2

F (0, T ;Sn), and K̂ is uniformly
positive, the following closed system (it is a homogeneous matrix-valued stochastic
differential equation with possibly unbounded coefficients!),


dU(s) = A(s)U(s) ds− [K̂(s)]−1L̂(s)U(s) dw(s), s ∈ (t, T ]

= A(s)U(s) ds− [N̂(s) +K(s)]−1L(s)U(s) dw(s), s ∈ (t, T ],
U(t) = In×n,

(73)
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has a solution {U(s, t), t ≤ s ≤ T} for each t ∈ [0, T ], satisfying the following:

E max
t≤s≤T

|U(s, t)|2 <∞, E

∫ T

t

|L(s)U(s, t)|2 ds <∞.(74)

Therefore, we can use Itô’s formula to derive from BSRDE (68) the representation

(75)

K(t) = U(t, t)∗K(t)U(t, t) = EFt

{
U(T, t)∗MU(T, t)

+

∫ T

t

U(s, t)∗[Q+ L(s)(N̂ +K)−1N̂(N̂ +K)−1L(s)]U(s, t) ds

}
∀ t ∈ [0, T ].

This formula implies that K(t) is nonnegative for each t ∈ [0, T ].
While from Theorem 2.2, we see that BSRDE (71) has a unique global {Ft, 0 ≤ t ≤

T}-adapted solution (K̂, L̂) such that K̂ ∈ L∞
F (0, T ;Sn+)∩L∞(Ω,FT , P ;C([0, T ];Sn+)),

L̂ ∈ L2
F (0, T ;Sn), and K̂ is uniformly positive. Therefore (K̂ − N̂ , L̂) is a global

{Ft, 0 ≤ t ≤ T}-adapted solution of BSRDE (7), satisfying the following:

(76)

K̂ − N̂ ∈ L∞
F (0, T ;Sn+) ∩ L∞(Ω,FT , P ;C([0, T ];Sn+)) and L̂ ∈ L2

F (0, T ;Sn).

The proof is then complete.
Proposition 5.2. Assume that A = 0 and D and N are constant matrices.

Then, Theorem 2.3 holds.
Proof of Proposition 5.2. First assume m = n. Consider the following approxi-

mating BSRDEs:{
dK = −[Q− LDγ(N +D∗

γKDγ)−1D∗
γL] dt+ Ldw,

K(T ) = M,
(77)

where

Dγ := D + γIm×m, γ > 0.

As γ is sufficiently small, Dγ is nonsingular. From Proposition 5.1, we see that
BSRDE (77) has a unique global {Ft, 0 ≤ t ≤ T}-adapted solution (Kγ , Lγ) for
sufficiently small γ > 0, such that

Kγ ∈ L∞
F (0, T ;Sn+) ∩ L∞(Ω,FT , P ;C([0, T ];Sn+)) and Lγ ∈ L2

F (0, T ;Sn).(78)

From Theorem 2.1, we see that as γ tends to zero, Kγ uniformly converges to some
K ∈ L∞

F (0, T ;Sn+) ∩ L∞(Ω,FT , P ;C([0, T ];Sn+)) and Lγ strongly converges to some
L ∈ L2

F (0, T ;Sn), and that (K,L) is an {Ft, 0 ≤ t ≤ T}-adapted solution of the
BSRDE (7) with A = 0.

Consider the case n > m. Then consider the n × n matrices D̃, whose first
m columns are D and whose last (n −m) columns are zero column vectors, and Ñ ,
which is defined as

Ñ :=

(
R 0
0 I

)
.
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BSRDE (7) with A = 0 is rewritten as{
dK = −[Q− LD̃(Ñ + D̃∗KD̃)−1D̃∗L] dt+ Ldw,

K(T ) = M.

From the preceding result, we obtain the desired existence result.
Consider the case n < m. Then, there is an m ×m orthogonal transformation

matrix T such that

D = [D̂, 0]T, D̂ ∈ Rn×n and is nonsingular.

Write

Ñ := (T−1)∗NT−1 :=

(
N̂11 N̂12

N̂∗
12 N̂22

)
> 0.

Then, N̂11 > 0. BSRDE (7), when A = 0, is rewritten as{
dK = −[Q− LD̂(Ñ11 + D̂∗KD̂)−1D̂∗L] dt+ Ldw,

K(T ) = M.

From the preceding result, we obtain the desired existence result.
Proposition 5.3. Assume that A = 0 and D and N are piecewisely constant

{Ft, 0 ≤ t ≤ T}-adapted bounded matrix processes. Then, Theorem 2.3 holds.
Proof of Proposition 5.3. SinceD andN are piecewisely constant {Ft, 0 ≤ t ≤ T}-

adapted bounded matrix processes, there is a finite partition,

0 =: t0 < t1 < · · · < tJ := T,

such that on each interval [ti, ti+1] ⊂ [0, T ], D and N are constant Fti-measurable
bounded random matrices. From Proposition 5.2, the BSRDE


dK = −[Q− LD(N +D∗KD)−1D∗L] dt+ Ldw,

tJ−1 ≤ t < T,
K(T ) = M

(79)

has a unique {Ft, tJ−1 ≤ t ≤ T}-adapted solution (KJ , LJ) with

KJ ∈ L∞
F (tJ−1, T ;Sn+) ∩ L∞(Ω,FT , P ;C([tJ−1, T ];Sn+)), LJ ∈ L2

F (tJ−1, T ;Sn).

Assume that for some i = 2, . . . , J , the BSRDE


dK = −[Q− LD(N +D∗KD)−1D∗L] dt+ Ldw,
ti−1 ≤ t < ti,

K(ti) = Ki+1(ti)
(80)

has a unique {Ft, ti−1 ≤ t ≤ ti}-adapted solution (Ki, Li) with

Ki ∈ L∞
F (ti−1, ti;Sn+) ∩ L∞(Ω,Fti , P ;C([ti−1, ti];Sn+)), Li ∈ L2

F (ti−1, ti;Sn).

Note that when i = J , we use the convention KJ+1(tJ) := M . Then, we conclude
from Proposition 5.2 that the BSRDE


dK = −[Q− LD(N +D∗KD)−1D∗L] dt+ Ldw,

ti−2 ≤ t < ti−1,
K(ti−1) = Ki(ti−1)

(81)
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has a unique {Ft, ti−2 ≤ t ≤ ti−1}-adapted solution (Ki−1, Li−1) with

Ki−1 ∈ L∞
F (ti−2, ti−1;Sn+) ∩ L∞(Ω,Fti−1

, P ;C([ti−2, ti−1];Sn+)),

Li−1 ∈ L2
F (ti−2, ti−1;Sn).

In this backward inductive way, we may define J pairs of processes {(Ki, Li)}Ji=1.
Define on the whole time interval [0, T ] the pair of {Ft, 0 ≤ t ≤ T}-adapted processes
(K,L) as follows:

K(t) :=
J∑
i=1

Ki(t)χ[ti−1,ti)(t), L(t) :=

J∑
i=1

Li(t)χ[ti−1,ti)(t).

We see that (K,L) solves BSRDE (7). We then obtain the desired existence result.
Proposition 5.4. Assume that A = 0. Then, Theorem 2.3 holds.
Proof of Proposition 5.4. For an arbitrary positive integer k, consider the 2k-

partition of the time interval. Define

Dk(t) = D

(
i− 1

2k
T

)
∀t ∈

[
i− 1

2k
T,
i

2k
T

)
, i = 1, 2, . . . , 2k,

and

Nk(t) = N

(
i− 1

2k
T

)
∀t ∈

[
i− 1

2k
T,
i

2k
T

)
, i = 1, 2, . . . , 2k.

For each k, Dk and Nk are piecewisely constant, {Ft, 0 ≤ t ≤ T}-adapted, bounded
matrix processes. Further, in view of (25), Dk(t) and Nk(t) converge respectively to
D and N , uniformly in (t, ω). That is, we have

lim
k→∞

esssup
ω∈Ω

max
t∈[0,T ]

|Dk(t)−D(t)| = 0, lim
k→∞

esssup
ω∈Ω

max
t∈[0,T ]

|Nk(t)−N(t)| = 0.

From Proposition 5.3, we see that the BSRDE (0, 0, 0, Dk;Q,Nk;M) has a global
{Ft, 0 ≤ t ≤ T}-adapted solution (Kk, Lk), and then from Theorem 2.1, we see that
Theorem 2.3 holds.

Proof of Theorem 2.3. The case A = 0 is solved by Proposition 5.4. For the case
A �= 0, consider the following transformation:

K̃ := Φ∗KΦ, L̃ := Φ∗LΦ,

where Φ is the solution of the differential matrix equation

dΦ

dt
(t) = A(t)Φ(t), t ∈ (0, T ],

Φ(0) = In×n.

Using Itô’s formula, we get the BSDE for (K̃, L̃):{
dK̃(t) = −[Q̃− L̃D̃(N + D̃∗K̃D̃)−1D̃L̃] dt+ L̃ dw(t), t ∈ (0, T ],

K̃(T ) = M̃,

where Q̃ := Φ∗QΦ, M̃ := Φ(T )∗MΦ(T ), D̃ := Φ−1D. Note that the trajectories of D̃
are still uniformly continuous like D. From Proposition 5.4, we see that the BSRDE
(0, 0, 0, D̃; Q̃,N, M̃) has a global adapted solution (K̃, L̃), and thus the pair

((Φ∗)−1K̃Φ−1, (Φ∗)−1L̃Φ−1)

solves the original BSRDE (A, 0, 0, D;Q,N,M).
The uniqueness can be proved in the same way as in the proof of Theorem 2.2.
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6. Application to stochastic LQ problems.

6.1. The unconstrained stochastic LQ problem. Assume that

ξ ∈ L2(Ω,FT , P ;Rn), q, f, gi ∈ L2
F (0, T ;Rn).(82)

Consider the following optimal control problem (denoted by P0):

min
u∈L2

F (0,T ;Rm)
J(u; 0, x),(83)

with

J(u; t, x) = EFt〈M(Xt,x;u(T )− ξ), Xt,x;u(T )− ξ〉
+ EFt

∫ T

t

[〈Q(Xt,x;u − q), Xt,x;u − q〉+ 〈Nu, u〉] ds(84)

and Xt,x;u being the solution of the stochastic differential equation



dX = (AX +Bu+ f) ds+

d∑
i=1

(CiX +Diu+ gi) dwi, t < s ≤ T,
X(t) = x, u ∈ L2

F (t, T ;Rm).

(85)

The value function V is defined as

V (t, x) := essinf
u∈L2

F (t,T ;Rm)
J(u; t, x), (t, x) ∈ [0, T ]×Rn.(86)

Define Γ : [0, T ]× Sn+ ×Rn×d → Rm×n by

Γ(·, S, L) = −
(
N +

d∑
i=1

D∗
i SDi

)−1(
B∗S +

d∑
i=1

D∗
i SCi +

d∑
i=1

D∗
i Li

)
(87)

and

Â := A+BΓ(·,K, L), Ĉi := Ci +DiΓ(·,K, L), i = 1, . . . , d.(88)

We have the following theorem.
Theorem 6.1. Suppose that the assumptions of Theorem 2.2 or Theorem 2.3 are

satisfied. Let (K,L) be the unique {Ft, 0 ≤ t ≤ T}-adapted solution of BSRDE (1)
such that K ∈ L∞

F (0, T ;Sn+) ∩ L∞(Ω,FT , P ;C([0, T ];Sn+)) and L ∈ L2
F (0, T ;Sn). Let

(ψ, φ) be the {Ft, 0 ≤ t ≤ T}-adapted solution of the BSDE

(89)

dψ(t) = −

[
Â∗ψ +

d∑
i=1

Ĉ∗
i (φi −Kgi)−Kf −

d∑
i=1

Ligi +Qq

]
dt+

d∑
i=1

φi dwi,

ψ(T ) = Mξ, φ := (φ1, . . . , φd)

such that (ψ, φ) ∈ (L2
F (0, T ;Rn))(n+1).
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Then, the optimal control û for the nonhomogeneous stochastic LQ problem P0

exists uniquely and has the following feedback law:

û = −
(
N +

d∑
i=1

D∗
iKDi

)−1 [(
B∗K +

d∑
i=1

D∗
iKCi +

d∑
i=1

D∗
i Li

)
X̂

− B∗ψ +

d∑
i=1

D∗
i (Kgi − φi)

]
.

(90)

The value function V (t, x), (t, x) ∈ [0, T ]×Rn, has the following explicit formula:

V (t, x) = 〈K(t)x, x〉 − 2〈ψ(t), x〉+ V 0(t), (t, x) ∈ [0, T ]×Rn,(91)

with

V 0(t) := EFt〈Mξ, ξ〉+ EFt

∫ T

t

〈Qq, q〉 ds− 2EFt

∫ T

t

〈ψ, f〉 ds

+ EFt

∫ T

t

d∑
i=1

[〈Kgi, gi〉 − 2〈φi, gi〉] ds

− EFt

∫ T

t

〈(
N +

d∑
i=1

D∗
iKDi

)
u0, u0

〉
ds

(92)

and

u0 :=

(
N +

d∑
i=1

D∗
iKDi

)−1 [
B∗ψ +

d∑
i=1

D∗
i (φi −Kgi)

]
, t ≤ s ≤ T.(93)

The reader is referred to our previous paper [13] for a detailed proof.

6.2. The constrained stochastic LQ problem. Fix xT ∈ Rn. Define

Uad(t, x) := {u ∈ L2
F (t, T ;Rm) : EXt,x;u(T ) = xT } ∀(t, x) ∈ [0, T ]×Rn,(94)

where Xt,x;u is the solution of stochastic differential equation (85). Then, consider
the following constrained LQ problem (denoted by Pt,xc ):

inf
u∈Uad(0,x)

J(u; 0, x),(95)

where the cost functional J(u; t, x) is defined by (84). Note that the set of admissible
controls Uad(t, x) contains the terminal expected constraint.

Let Ψ(·, t) be the unique solution of the stochastic differential equation:

dYs = A(s)Ys ds+

d∑
i=1

Ci(s)Ys dwi(s), t ≤ s ≤ T,
Yt = In×n.

(96)

To guarantee that Uad(t, x) is not empty, assume that the matrix

∆(t) := E

∫ T

t

EFsΨ(T, s)B(s)B∗(s)EFsΨ∗(T, s) ds(97)
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is nonsingular. Then, for all x ∈ Rn, the following control,

u(s) := B∗(s)EFsΨ∗(T, s)∆(t)−1

[
xT − E

∫ T

t

Ψ(T, s)f(s) ds

]
, s ∈ (t, T ],(98)

belongs to Uad(t, x).
We have the following existence result.
Theorem 6.2. Let the assumptions of Theorem 2.2 or Theorem 2.3 be satisfied.

Assume that Uad(0, x) is not empty. Then, the problem P0,x
c has a unique optimal

control.
Proof of Theorem 6.2. The main idea is to choose a sequence {uk; k = 1, 2, . . .}

such that

uk ∈ Uad(0, x), lim
k→∞

J(uk; 0, x) = inf
u∈Uad(0,x)

J(u; 0, x).

Define Xk := x0,x;uk

. Note that Uad(0, x) is close and convex. Therefore, 1
2 (uk+ul) ∈

Uad(0, x). The LQ structure implies the following equality:

2E

〈
M

(
Xk(T )−X l(T )

2

)
,
Xk(T )−X l(T )

2

〉

+ 2E

∫ T

0

[〈
Q

(
Xk −X l

2

)
,
Xk −X l

2

〉
+

〈
N

(
uk − ul

2

)
,
uk − ul

2

〉]
ds

= J(uk; 0, x) + J(ul; 0, x)− 2J

(
uk + ul

2
; 0, x

)
.

(99)

Then, we have for a positive constant ε,

E

∫ T

0

|uk − ul|2 ds ≤ ε
[
J(uk; 0, x) + J(ul; 0, x)− 2J

(
uk + ul

2
; 0, x

)]
,(100)

which implies that E
∫ T
0
|uk−ul|2 ds→ 0 as k, l→∞. (100) is obvious for the regular

case. For the singular case, we deduce it using the estimate

E

∫ T

0

|uk − ul|2 ds ≤ εE|Xk(T )−X l(T )|2 for a positive constant ε,

which is derived from [13, Lemma 2.2].
Hence the sequence {uk, k = 1, 2, . . .} is a Cauchy sequence, and it has a limit

u ∈ Uad(0, x). Then u is an optimal control.
It remains to show the uniqueness. Let u1 and u2 be both optimal. Then similar

to that above, we have

E

∫ T

0

|u1 − u2|2 ds ≤ ε
[
J(u1; 0, x) + J(u2; 0, x)− 2J

(
u1 + u2

2
; 0, x

)]
≤ 0.(101)

So, u1 = u2. The proof is complete.
Due to the limitation of space, we will, in what follows, just sketch how to solve

the unique optimal control of Theorem 6.2 in terms of the solution of the associated
BSRDE.
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Using the stochastic maximum principle (see Peng [22], and Tang and Li [30],

for example), we have the following. Let ũ be the optimal control, and X̃ := X0,x;ũ.
Then, there is some λ ∈ Rn, and a pair of processes (p̃, q̃), such that

(102)


dp̃ = −
[
A∗p̃+Q(X̃ − q) +

d∑
i=1

C∗
i q̃i

]
ds+

∑d
i=1 q̃i dwi, 0 < s ≤ T,

p̃(T ) = M(X̃(T )− ξ)− λ
and

B∗p̃+

d∑
i=1

D∗
i q̃i +Nũ = 0.(103)

Using Itô’s formula and equality (103), we get the equation for ψ̃ := KX̃ − p̃:
(104)

dψ̃(t) = −

[
Â∗ψ̃ +

d∑
i=1

Ĉ∗
i (φ̃i −Kgi)−Kf −

d∑
i=1

Ligi +Qq

]
dt+

d∑
i=1

φ̃i dwi,

ψ̃(T ) = Mξ + λ

where (K,L) is the unique {Ft, 0 ≤ t ≤ T}-adapted solution of BSRDE (1), and the
explicit formula of the optimal control,

ũ = −
(
N +

d∑
i=1

D∗
iKDi

)−1 [(
B∗K +

d∑
i=1

D∗
iKCi +

d∑
i=1

D∗
i Li

)
X̂

−B∗ψ̃ +

d∑
i=1

D∗
i (Kgi − φ̃i)

]
,

(105)

where the Lagrange multiple λ is determined such that the terminal constraintEX̃(T ) =
xT is satisfied.

6.3. A comment on application of the LQ theory in mathematical
finance. One-dimensional singular LQ problems arise from mathematical finance.
The mean-variance hedging problem and the dynamic version of Markowitz’s mean-
variance portfolio selection problem are one-dimensional singular LQ problems.

The mean-variance hedging problem was extensively studied, among others, by
Duffie and Richardson [9], Schweizer [25, 26, 27], Hipp [12], Monat and Stricker [18],
Pham, Rheinländer, and Schweizer [23], Gourieroux, Laurent, and Pham [11], and
Laurent and Pham [17]. Most of these works use a projection argument. Recently,
Kohlmann and Zhou [16] used a natural LQ theory approach to solve the case of
deterministic market conditions. Kohlmann and Tang [13, 14] used a natural LQ
theory approach to solve the case of stochastic market conditions, and the optimal
hedging portfolio and the variance-optimal martingale measure are characterized in
terms of the solution of the associated BSRDE.

The study on continuous time mean-variance portfolio selection problem is dated
back to Richardson [24]. The reader is referred to Zhou and Li [33] for recent devel-
opments on this problem.
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Abstract. The principle of low-gain integral control for finite-dimensional systems is well known.
More recently, low-gain integral control results have been obtained for classes of infinite-dimensional
systems. In this paper we show that integral control with a simple and natural adaptation of
the integrator gain achieves tracking of constant reference signals for every exponentially stable,
multivariable, well-posed, infinite-dimensional, linear system whose steady-state gain matrix has
its spectrum in the open right-half plane. Our results considerably extend, improve, and simplify
previous work by the authors [SIAM J. Control Optim. 35 (1997), pp. 78–116].
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nal systems
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1. Introduction. There has been much interest over the last twenty-five years in
low-gain integral control. Indeed, the following principle has become well established
(see Davison [2], Lunze [7], and Morari [10]): closing the loop around an asymptoti-
cally stable, finite-dimensional, continuous-time plant, with transfer-function matrix
G(s), compensated by an integrator (k/s)I (see Figure 1), will result in an asymp-
totically stable closed-loop system which achieves asymptotic tracking of arbitrary
constant reference signals, provided that the gain parameter k > 0 is sufficiently
small and the eigenvalues of the steady-state gain matrix G(0) have positive real
parts, i.e.,

spectrum(G(0)) ⊂ {s ∈ C | Re s > 0} .(1.1)

This principle has been extended to various classes of infinite-dimensional systems; see
Logemann and Townley [6] and the references therein. The generalization in [6] applies
to so-called regular well-posed systems. We remark that the class of well-posed linear
systems is the largest class of infinite-dimensional systems for which a well-developed
state-space and frequency-domain theory exists; see Curtain and Weiss [3], Salamon
[15], Staffans and Weiss [19], and Weiss [20], to mention just a few references. Well-
posed systems are rather general in the sense that they capture most distributed
parameter systems and all time-delay systems (retarded and neutral) which are of
interest in applications. A well-posed system is called regular if the average of its
step-response over [0, t] converges as t→ 0 (equivalently, if its transfer functions G(s)
converges as s → ∞ on the positive real axis). Whilst the authors believe that any
physically motivated well-posed linear system is regular, for a given well-posed system,
regularity can be difficult to check.
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Fig. 1. Low-gain control system.

One of the main issues in the design of low-gain integral controllers is the tuning of
the integrator gain k. There have been two basic approaches to the tuning problem—
either steady-state data from the plant is used off-line to determine suitable ranges
for the gain k (see, for example, [2], Logemann, Ryan, and Townley [5], or [7]) or else
simple on-line adaptive tuning of k is used (see, for example, Miller and Davison [8, 9]
in the finite-dimensional case and [6] in the infinite-dimensional case). Of particular
relevance here is a result in [6] which shows that the adaptive integral controller

u̇(t) = γ−p(t)(r − y(t)) , γ̇(t) = ‖r − y(t)‖2(1.2)

achieves asymptotic tracking of arbitrary constant reference signals r, provided that
the following three assumptions are satisfied:

(i) the plant is an exponentially stable, regular, well-posed, infinite-dimensional
system;

(ii) the steady-state gain matrix G(0) is symmetric and positive definite;
(iii) the parameter p in (1.2) satisfies p ∈ (0, 1/2).

We note that earlier work by Cook [1] shows that in the finite-dimensional single-
input single-output case, assumption (iii) can be relaxed to p ∈ (0, 1]. Of course, the
symmetry assumption in (ii) is restrictive and highly nonrobust, essentially limiting
the applications of the above result to single-input single-output systems. The main
result of this note (Theorem 3.1) shows that assumption (ii) can be replaced by the
considerably weaker assumption (1.1), that the regularity assumption in (i) can be
dropped, and that (iii) can replaced by p ∈ (0, 1]. Furthermore, in comparing the
results we present here to those in [6], the proofs are dramatically simplified and
more importantly give a clearer insight into the structure of the resulting closed-loop
system. We emphasize that our main result is new even in the finite-dimensional case.

Notation. R+ := [0,∞); for α ∈ R, set Cα := {s ∈ C | Re s > α}; let Z be a real
or complex Banach space; for α ∈ R, we define the exponentially weighted Lp-space
Lpα(R+, Z) := {f ∈ Lploc(R+, Z) | f(·) exp(−α ·) ∈ Lp(R+, Z)} and endow it with the
norm ‖f‖p,α := ‖e−α ·f(·)‖Lp ; let H2(Cα, Z) denote the Hardy–Lebesgue space of
square-integrable holomorphic functions defined on Cα with values in Z; H∞(Cα, Z)
denotes the space of bounded holomorphic functions defined on Cα with values in
Z; B(Z1, Z2) denotes the space of bounded linear operators from a Banach space Z1

to a Banach space Z2; we write B(Z) for B(Z,Z); let A : dom(A) ⊂ Z → Z be a
linear operator, where dom(A) denotes the domain of A; the resolvent set of A and
the spectrum of A is denoted by �(A)and σ(A), respectively; the Laplace transform
is denoted by L.

2. Preliminaries on well-posed sytems. There are a number of equivalent
definitions of well-posed systems; see [3, 14, 15, 16, 17, 18, 19, 20, 21]. We will be
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brief in the following and refer the reader to the above references for more details.
Throughout this section, we shall be considering a well-posed system Σ with state-
space X, input space R

m, and output space R
m, generating operators (A,B,C), input-

output operator G, and transfer function G. Here X is a real Hilbert space with norm
denoted by ‖ · ‖, A is the generator of a strongly continuous semigroup T = (Tt)t≥0

on X, B ∈ B(Rm, X−1), and C ∈ B(X1,R
m), where X1 denotes the space dom(A)

endowed with the norm ‖x‖1 := ‖x‖ + ‖Ax‖ (the graph norm of A), whilst X−1

denotes the completion of X with respect to the norm ‖x‖−1 = ‖(λI−A)−1x‖, where
λ ∈ �(A) (different choices of λ lead to equivalent norms). Clearly, X1 ⊂ X ⊂ X−1

and the canonical injections are bounded and dense. The semigroup T restricts to a
strongly continuous semigroup on X1 and extends to a strongly continuous semigroup
on X−1 with the exponential growth constant being the same on all three spaces;
the generator of the restriction (extension) of T is a restriction (extension) of A; we
shall use the same symbol T (respectively, A) for the original semigroup (respectively,
generator) and the associated restrictions and extensions: with this convention, we
may write A ∈ B(X,X−1) (considered as a generator on X−1, the domain of A is X).
Moreover, the operator B is an admissible control operator for T, i.e., for each t ∈ R+

there exists αt ≥ 0 such that∥∥∥∥
∫ t

0

Tt−τBu(τ)dτ

∥∥∥∥ ≤ αt‖u‖L2([0,t],Rm) ∀u ∈ L2([0, t],Rm) .

The operator C is an admissible observation operator for T, i.e., for each t ∈ R+ there
exists βt ≥ 0 such that

(∫ t

0

‖CTτx‖2dτ
)1/2

≤ βt‖x‖ ∀x ∈ X1 .

The control operator B is said to be bounded if it is so as a map from the input
space R

m to the state-space X; otherwise, it is said to be unbounded; the observation
operator C is said to be bounded if it can be extended continuously to X; otherwise,
C is said to be unbounded.

The so-called Λ-extension CΛ of C is defined by

CΛx = lim
s→∞, s∈R

Cs(sI −A)−1x ,

with dom(CΛ) consisting of all x ∈ X for which the above limit exists. For every
x ∈ X, Ttx ∈ dom(CΛ) for a.a. t ∈ R+, and, if ω > ω(T), then CΛTx ∈ L2

ω(R+,R
m),

where

ω(T) := lim
t→∞

1

t
ln ‖Tt‖

denotes the exponential growth constant of T. The transfer function G satisfies

1

s− λ (G(s)−G(λ)) = −C(sI −A)−1(λI −A)−1B ∀ s, λ ∈ Cω(T), s �= λ ,(2.1)

and G ∈ H∞(Cω,R
m×m) for every ω > ω(T). Moreover, the input-output operator

G : L2
loc(R+,R

m) → L2
loc(R+,R

m) is continuous and shift-invariant; for every ω >
ω(T), G ∈ B(L2

ω(R+,R
m)) and

(L(Gu))(s) = G(s)(L(u))(s) ∀ s ∈ Cω, ∀u ∈ L2
ω(R+,R

m) .
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In the following, let λ ∈ Cω(T) be fixed but arbitrary. For x0 ∈ X and u ∈
L2

loc(R+,R
m), let x and y denote the state and output functions of Σ, respectively,

corresponding to the initial condition x(0) = x0 ∈ X and the input function u. Then

x(t) = Ttx
0 +
∫ t
0
Tt−τBu(τ)dτ for all t ∈ R+, x(t)− (λI −A)−1Bu(t) ∈ dom(CΛ) for

a.a. t ∈ R+,1 and

ẋ(t) = Ax(t) +Bu(t) , x(0) = x0 , for a.a. t ∈ R+ ,(2.2a)

y(t) = CΛ

(
x(t)− (λI −A)−1Bu(t)

)
+ G(λ)u(t) , for a.a. t ≥ 0 .(2.2b)

Of course, the differential equation (2.2a) has to be interpreted in X−1. Note that the
output equation (2.2b) yields the following formula for the input-output operator G:

(Gu)(t) = CΛ

[∫ t

0

Tt−τBu(τ)dτ − (λI −A)−1Bu(t)

]
+ G(λ)u(t)

∀u ∈ L2
loc(R+,R

m), for a.a. t ∈ R+.

(2.3)

In the following, we identify Σ and (2.2) and refer to (2.2) as a well-posed system.
We say that the well-posed system (2.2) is exponentially stable if ω(T) < 0. If the
well-posed system (2.2) is regular, i.e., the following limit

lim
s→∞, s∈R

G(s) = D

exists, then x(t) ∈ dom(CΛ) for a.a. t ∈ R+, the output equation (2.2b) simplifies to

y(t) = CΛx(t) +Du(t) , for a.a. t ≥ 0,

and

(Gu)(t) = CΛ

∫ t

0

Tt−τBu(τ)dτ +Du(t) ∀u ∈ L2
loc(R+,R

m) , for a.a. t ∈ R+ .

Moreover, in the regular case, we have that (sI − A)−1BR
m ⊂ dom(CΛ) for all

s ∈ �(A) and

G(s) = CΛ(sI −A)−1B +D ∀ s ∈ Cω(T) .

The matrix D ∈ R
m×m is called the feedthrough matrix of (2.2). We mention that if

the control operator B or the observation operator C is bounded, then (2.2) is regular.

3. Main result. We consider adaptive low-gain integral control of an exponen-
tially stable well-posed system of the form (2.2). By exponential stability, we may
assume w.l.o.g. that λ = 0 in (2.2b), and hence the plant equations are given by

ẋ = Ax+Bu , x(0) = x0 ∈ X ,(3.1a)

y = CΛ(x+A−1Bu) + G(0)u .(3.1b)

Let r ∈ R
m be a given reference vector and consider the following simple adaptive

low-gain integral controller:

u̇ = γ−p(r − y) , u(0) = u0 ∈ R
m ,(3.2a)

γ̇ = ‖r − y‖2 , γ(0) = γ0 > 0 ,(3.2b)

1 It was stated in [21] (without proof) that, for arbitrary u ∈ L2
loc(R+,Rm), x(t) − (λI −

A)−1Bu(t) ∈ dom(CΛ) for a.a. t ∈ R+ and the output formula (2.2b) holds. The proof can be
found in [19].
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where 0 < p ≤ 1. The closed-loop system is then given by

ẋ = Ax+Bu , x(0) = x0 ∈ X ,(3.3a)

u̇ = γ−p
(
r − CΛ(x+A−1Bu)−G(0)u

)
, u(0) = u0 ∈ R

m ,(3.3b)

γ̇ = ‖r − CΛ(x+A−1Bu)−G(0)u‖2 , γ(0) = γ0 > 0 .(3.3c)

Let T > 0. A continuous function (x, u, γ) : [0, T )→ X ×R
m ×R is called a solution

of (3.3) if (x(0), u(0), γ(0)) = (x0, u0, γ0), (x, u, γ) is absolutely continuous on [0, t] as
a (X−1 × R

m × R)-valued function for every t ∈ (0, T ) and the differential equations
in (3.3) are satisfied almost everywhere on [0, T ).

Our main result, Theorem 3.1, shows that the controller (3.2) achieves tracking of
constant reference signals for all exponentially stable well-posed systems (3.1) whose
steady-state gain matrix G(0) satisfies σ(G(0)) ⊂ C0.

Theorem 3.1. Assume that the well-posed system (3.1) is exponentially stable
with σ(G(0)) ⊂ C0 and that 0 < p ≤ 1 in (3.2). Let r ∈ R

m be given and define
ur := [G(0)]−1r. Then, for all (x0, u0, γ0) ∈ X × R

m × (0,∞), there exists a unique
solution (x, u, γ) : R+ → X × R

m × (0,∞) of the closed-loop system (3.3) and the
following statements hold:

(1) limt→∞ γ(t) = γ∞ <∞ ;
(2) u− ur ∈ L2(R+,R

m) and limt→∞ u(t) = ur ;
(3) x+A−1Bur ∈ L2(R+, X) and limt→∞ ‖x(t) +A−1Bur‖ = 0 ;
(4) e := r − y ∈ L2(R+,R

m) and e admits a decomposition of the form e =
e1 + e2, where e1 ∈ C(R+,R

m), e2 ∈ L2
ω(R+,R

m) for every ω > ω(T), and
limt→∞ e1(t) = 0 ; moreover, if there exists t0 ≥ 0 such that Tt0(Ax0+Bu0) ∈
X, then e ∈ C([t0,∞),Rm) and limt→∞ e(t) = 0.

Proof. As in [6] it can be proved that there exists a unique maximally defined
solution (x, u, γ) : [0, T ) → X × R

m × (0,∞) to the closed-loop system (3.3), where
T = ∞ if γ is bounded on [0, T ). To analyze the stability of the closed-loop system
(3.3), we use a change of coordinates. Define

z(t) := x(t) +A−1Bu(t) , v(t) := u(t)− ur ;(3.4)

it follows from (3.1) and (3.2) that

ż(t) = Az(t) + γ−p(t)A−1Be(t) , for a.a. t ∈ [0, T ) ,(3.5a)

v̇(t) = γ−p(t)e(t) , for a.a. t ∈ [0, T ) ,(3.5b)

where

e(t) := r − y(t) = − (CΛz(t) + G(0)v(t)) , for a.a. t ∈ [0, T ) .(3.6)

Of course, the derivative on the left-hand side of (3.5a) has to be interpreted in X−1.
There are two advantages to viewing the closed-loop system in the coordinates (3.4):
the unbounded B in (3.1a) is replaced by a bounded A−1B and it turns out that
the stability of −G(0) is easier to exploit in the (z, v)-coordinates than in the (x, u)-
coordinates.

To proceed, we use the stability of −G(0) to obtain the existence of Q = QT ∈
R
m×m with Q > 0 such that

QG(0) + G(0)TQ = I.(3.7)
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Furthermore, using the exponential stability of T and the admissibility of C, a stan-
dard argument (see the appendix) shows that there exists P = P ∗ ∈ B(X) with P ≥ 0
and such that

〈Ax1, Px2〉+ 〈Px1, Ax2〉 = −〈x1, x2〉 − 〈Cx1, Cx2〉 ∀x1, x2 ∈ X1 .(3.8)

Our aim is to show that γ is bounded on [0, T ), from which we will deduce that T =∞
and that statements (1)–(4) hold. To this end, define a function V : [0, T )→ R+ by

V (t) = 〈z(t), P z(t)〉+ 〈v(t), Qv(t)〉 ∀ t ∈ [0, T ) ,

where the first inner product is taken in X and the second inner product is the
standard inner product in R

m. Since, due to lack of regularity of z as a X-valued
function, V is in general not differentiable, we adopt an approximation argument.
Define

zn(t) := Ttz
0
n +A−1

∫ t

0

Tt−τBγ−p(τ)e(τ)dτ ∀ t ∈ [0, T ) ,

where z0
n ∈ X1 is such that z0

n → z(0) = x0 +A−1Bu0 as n→∞. Clearly, zn(t) ∈ X1

for all t ∈ [0, T ). It follows from the admissibility of B and well-known results on
abstract Cauchy problems (see [11, p. 109]) that zn is absolutely continuous as a
X-valued function and

żn(t) = Azn(t) + γ−p(t)A−1Be(t) , for a.a. t ∈ [0, T ) .

Therefore, the function

Vn : [0, T )→ R+ , t �→ 〈zn(t), P zn(t)〉+ 〈v(t), Qv(t)〉

is absolutely continuous. Invoking (3.5)–(3.8), we compute the derivative of Vn to be

V̇n = −‖zn‖2 − ‖Czn‖2 + 2γ−p〈zn, PA−1Be〉 − γ−p‖v‖2 − 2γ−p〈v,QCΛz〉.(3.9)

Integrating (3.9) from s to t, where 0 ≤ s ≤ t < T , we obtain

Vn(t)− Vn(s) = −
∫ t

s

(‖zn(τ)‖2 + ‖Czn(τ)‖2 + γ−p‖v(τ)‖2

− 2γ−p(τ)〈zn(τ), PA−1Be(τ)〉+ 2γ−p(τ)〈v(τ), QCΛz(τ)〉) dτ.(3.10)

It follows from (3.5a) that z(t) := Ttz(0)+A−1
∫ t
0
Tt−τBγ−p(τ)e(τ)dτ , showing that

z(t)− zn(t) = Tt(z(0)− z0
n) for all t ∈ [0, T ) and hence for all t ∈ [0, T )

lim
n→∞ ‖z(t)− zn(t)‖ = 0, lim

n→∞ ‖z − zn‖L2(0,t) = 0, lim
n→∞ ‖CΛz − CΛzn‖L2(0,t) = 0,

where the last limit follows from the admissibility of C. Consequently, letting n→∞
in (3.10), we may conclude that

V (t)− V (s) = −
∫ t

s

(‖z(τ)‖2 + ‖CΛz(τ)‖2 + γ−p‖v(τ)‖2

− 2γ−p(τ)〈z(τ), PA−1Be(τ)〉+ 2γ−p(τ)〈v(τ), QCΛz(τ)〉) dτ.(3.11)
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Denoting the integrand on the right-hand side of (3.11) by f(τ) and using (3.6),
routine estimates give

f ≥ ‖z‖2 + ‖CΛz‖2 + c1γ
−p‖G(0)v‖2

− c2γ
−p (‖z‖‖CΛz‖+ ‖z‖‖G(0)v‖+ ‖CΛz‖‖G(0)v‖)

≥ ‖z‖2 + ‖CΛz‖2 + c1γ
−p‖G(0)v‖2 − c2γ−p

(‖z‖2 + ‖CΛz‖2
)

− c2γ
−p (λ‖z‖2 + ‖G(0)v‖2/λ)− c2γ−p (λ‖CΛz‖2 + ‖G(0)v‖2/λ) ,(3.12)

where c1, c2 > 0 are suitable constants and λ > 0 is arbitrary. In the following we
choose

λ = 4c2/c1 .(3.13)

We show that γ is bounded on [0, T ). If

γ−p(τ) > 1/[2c2(1 + λ)] ∀ t ∈ [0, T ) ,(3.14)

then there is nothing to prove. So assume that (3.14) does not hold. Then, by
monotonicity of γ, there exists t0 ∈ [0, T ) such that

γ−p(τ) ≤ 1/[2c2(1 + λ)] ∀ t ∈ [t0, T ) .

Combining this with (3.12) and (3.13) yields

f(τ) ≥ (‖z(τ)‖2 + ‖CΛz(τ)‖2 + c1γ
−p(τ)‖G(0)v(τ)‖2) /2

≥ c3γ
−p(τ)

(‖CΛz(τ)‖2 + ‖G(0)v(τ)‖2) ∀ t ∈ [t0, T ) ,

where c3 > 0 is a suitable constant. Noting that

‖r − y‖2 = ‖e‖2 = ‖CΛz + G(0)v‖2 ≤ 2
(‖CΛz‖2 + ‖G(0)v‖2) ,

we see that there exists a constant c4 > 0 such that

f(τ) ≥ c4γ
−p(τ)‖r − y(τ)‖2 ∀ τ ∈ [t0, T ) .

Therefore, by (3.11),

V (t)− V (t0) = −
∫ t

t0

f(τ)dτ ≤ −c4
∫ t

t0

γ−p(τ)‖r − y(τ)‖2dτ ∀ t ∈ [t0, T ) .(3.15)

But γ̇ = ‖r − y‖2, and hence, by (3.15),

∫ γ(t)

γ(t0)

w−pdw =

∫ t

t0

γ−p(τ)γ̇(τ)dτ ≤ V (t0)/c4 ∀ t ∈ [t0, T ) .

Since 0 < p ≤ 1, this inequality implies that γ is bounded on [0, T ), showing that
T =∞ and also establishing statement (1).

To prove statements (2) and (3) note that

e ∈ L2(R+,R
m) ,(3.16)
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which follows immediately from the boundedness of γ and the fact that γ̇ = ‖e‖2.
Since (A,A−1B,C) are the generators of an exponentially stable regular system (with
zero feedthrough), it follows from (3.5a) and (3.16) that

lim
t→∞ ‖z(t)‖ = 0 , z ∈ L2(R+, X) , CΛz ∈ L2(R+,R

m).(3.17)

Using that CΛz ∈ L2(R+,R
m), it follows from (3.6), (3.16), and the invertibility

of G(0) that v ∈ L2(R+,R
m). But by (3.5b) and (3.16) we also have that v̇ ∈

L2(R+,R
m), showing that limt→∞ v(t) = 0 and completing the proof of statement

(2). Since x + A−1Bur = z + A−1B(ur − u), statement (3) follows from statement
(2) and (3.17).

To prove statement (4), we first note that we have already shown that e ∈
L2(R+,R

m), and so

u̇ ∈ L2(R+,R
m) .(3.18)

We recall that G denotes the input-output operator of (3.1). Define a shift-invariant
operator H : L2

loc(R+,R
m)→ L2

loc(R+,R
m) by setting

(Hw)(t) :=

∫ t

0

((Gw)(τ)−G(0)w(τ)) dτ ∀w ∈ L2
loc(R+,R

m) ∀ t ∈ R+ .

The transfer function H of H is given by H(s) = (G(s)−G(0))/s. Clearly, for every
ω > ω(T)

H ∈ H2(Cω,C
m×m) ∩H∞(Cω,C

m×m) ,

showing in particular that H is bounded, i.e., H ∈ B(L2(R+,R
m)). Using that G

commutes with the integration operator (by shift-invariance), a routine calculation
gives

Gu = Hu̇+ G(0)u+G(u0θ)−G(0)u0 ,

where θ denotes the unit-step function. Invoking the output formula y = CΛTx
0+Gu,

we may write e = r − y = e1 + e2, where

e1 := G(0)(ur − u)−Hu̇ , e2 := G(0)u0 −G(u0θ)− CΛTx
0 .

Clearly, e1 is continuous. Using (3.18) and the boundedness of H and G, it follows that
Hu̇ and (d/dt)(Hu̇) are in L2(R+,R

m) and hence limt→∞(Hu̇)(t) = 0. Combining
this with statement (2) shows that limt→∞ e1(t) = 0. Let ω > ω(T). To prove that
e2 ∈ L2

ω(R+,R
m), it is sufficient to show that g := G(0)u0 − G(u0θ) ∈ L2

ω(R+,R
m).

But (Lg)(s) = −H(s)u0, and so Lg ∈ H2(Cω,C
m), which in turn implies (by a well-

known result of Paley and Wiener, see [12, p. 405]) that g ∈ L2
ω(R+,R

m). Finally,
assume that there exists t0 ≥ 0 such that Tt0(Ax0 + Bu0) ∈ X. Taking the Laplace
transform of e2 gives

(Le2)(s) = (G(0)−G(s))u0/s− C(sI −A)−1x0 ∀ s ∈ Cω .

Invoking (2.1) leads to

(Le2)(s) = −C(sI −A)−1A−1Bu0 − C(sI −A)−1x0

= −C(sI −A)−1A−1(Ax0 +Bu0) ∀ s ∈ Cω,
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implying that e2(t) = −CΛTtA
−1(Ax0+Bu0) for a.a. t ∈ R+. Hence, since Tt0(Ax0+

Bu0) ∈ X,

e2(t) = −CTt−t0A−1Tt0(Ax0 +Bu0) , for a.a. t ≥ t0 ,

showing that e2, and hence e, is continuous on [t0,∞) and limt→∞ e2(t) = 0 =
limt→∞ e(t).

Remark 3.2. (1) Statement (4) in Theorem 3.1 shows that the tracking error e
becomes small in the sense that e = e1 + e2, where e1(t) converges to 0 as t → ∞,
e1 ∈ L2(R+,R

m), and e2 ∈ L2
ω(R+,R

m) for ω > ω(T). This implies, in particular,
“tracking in measure,” i.e., for all ε > 0 we have that

lim
τ→∞µL ({t ≥ τ | ‖e(t)‖ ≥ ε}) = 0 ,

where µL denotes the Lebesgue measure on R+. The last part of statement (4)
shows that “asymptotic tracking” (i.e., limt→∞ e(t) = 0) is guaranteed, provided
that Tt0(Ax0 + Bu0) ∈ X for some t0 ≥ 0 (which, for example, is the case if T is
holomorphic).

(2) Under the conditions of Theorem 3.1, it is easy to see that if Tt0x
0 ∈ X1 for

some t0 ≥ 0 and the convolution kernel of G is a finite (matrix-valued) Borel measure,
then limt→∞ e(t) = 0.

(3) Combining the above change of coordinates technique with the approach in [4],
it can be shown that the adaptation law (3.2b) can be generalized to γ̇(t) = ‖r−y(t)‖q
for arbitrary q ≥ 1.

(4) Theorem 3.1 remains true if we replace the finite-dimensional input space R
m

by an arbitrary real Hilbert space; the proof carries over word for word to this more
general situation.

(5) Suppose that the parameter p in (3.2a) satisfies p ∈ (0, 1]. Then, by Theorem
3.1, for the adaptive low-gain integral controller (3.2) to achieve its objective, it is
sufficient that the following two assumptions are satisfied:

(i) the semigroup generated by A is exponentially stable;
(ii) σ(G(0)) ⊂ C0.

It can be shown that if the well-posed system (2.2) is low-gain integral stabilizable,
i.e., there exists k∗ ∈ (0,∞] such that (2.2) is exponentially stabilized by the integrator
u̇ = −ky for all k ∈ (0, k∗), then σ(A) ∩ C0 = ∅ and σ(G(0)) ⊂ C0. Note that these
necessary conditions for low-gain integral stabilizability are only “slightly weaker”
than the sufficient conditions (i) and (ii) for adaptive low-gain integral control. Simple
counterexamples (see the appendix) show that low-gain integral stabilizability does
not imply either of the above conditions (i) or (ii).

(6) If, in (3.2a), p > 1, then in general the adaptive controller fails, that is, the
conclusions of Theorem 3.1 are not valid. To see this, consider the case of an expo-
nentially stable regular single-input single-output system with C = 0 and feedthrough
D = 1. Then G(s) ≡ G(0) = D = 1. Suppose that r = 0, so that y(t) = u(t). Let
p = 1 + ε, where ε > 0. Then (3.2) becomes

u̇ = −γ−(1+ε)u , u(0) ∈ R ,
γ̇ = u2 , γ(0) > 0 ,

from which it follows that uu̇ = −γ−(1+ε)γ̇. Integration from 0 to t yields

u2(t) = u2(0) +
2

ε

(
γ−ε(t)− γ−ε(0)

)
.
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If u(0) >
√

2γ−ε(0)/ε, then limt→∞ u(t) > 0, and so the tracking of r = 0 is not
achieved.

4. Appendix.

Existence of a self-adjoint positive semidefinite solution to the Lya-
punov equation (3.8). It follows from the exponential stability of T and the ad-
missibility of C that the bilinear form F : X ×X → R defined by

F (x1, x2) :=

∫ ∞

0

〈Ttx1,Ttx2〉dt+

∫ ∞

0

〈CΛTtx1, CΛTtx2〉dt

is bounded. Consequently, there exists P ∈ B(X) such that F (x1, x2) = 〈x1, Px2〉 for
all x1, x2 ∈ X (see [13, Theorem 12.8, p. 296]). It is clear that P = P ∗ ≥ 0. Moreover,

〈Ax1, Px2〉+ 〈Ax2, Px1〉 =

∫ ∞

0

d

dt
〈Ttx1,Ttx2〉+

∫ ∞

0

d

dt
〈CTtx1, CTtx2〉

= −〈x1, x2〉 − 〈Cx1, Cx2〉 ∀x1, x2 ∈ dom(A2) .

Since dom(A2) is dense in X1, A ∈ B(X1, X), and C ∈ B(X1,R
m) the above identity

extends to all of X1, showing that (3.8) holds.

Counterexamples showing that low-gain integral stabilizability does not
imply conditions (i) or (ii) in part (5) of Remark 3.2. Consider the finite-
dimensional system (with zero feedthrough) given by

A =

(
0 1
0 −1

)
, B =

(
0
1

)
, C = (1/2, 1).

This system is integral stabilizable (with k∗ = ∞), but 0 ∈ σ(A), showing that
condition (i) in part (5) of Remark 3.2 does not hold.

The finite-dimensional system given by

A =

( −2 0
0 −2

)
, B =

(
0 −1
−1 0

)
, C =

(
1 0
0 1

)
, D =

(
0 −1
1 0

)

is integral stabilizable (with k∗ =∞). However, the transfer function is given by

G(s) = C(sI −A)−1B +D =


 0 −s+ 1

s+ 2
s+ 1

s+ 2
0


 ,

and thus σ(G(0)) = {± i/2}, showing that condition (ii) in part (5) of Remark 3.2
does not hold.
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Abstract. Optimal control techniques are used to find approximate solutions of an inverse
problem for a plane nonstationary flow. The shape of the region, the inflow, and the outflow are
determined from partial measurements of the flow in a fixed subdomain.

Key words. shape control, optimal design, open loop, multicontrols, inverse problem, Navier–
Stokes
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1. Introduction. In this paper, we shall apply optimal control techniques to
find an approximate solution to an inverse problem for nonstationary plane Navier–
Stokes equations. One wishes to determine the optimal shape and the boundary
velocity controls from partial measurements of the velocity in a subregion, with the
flow having a minimum drag.

Pioneering work on optimal shape designs for the Navier–Stokes equations was
done by Pironneau [13], where a minimum drag profile submerged in a homogeneous,
steady, viscous fluid was obtained using optimal control techniques. In [4], Gunzburger
and Kim studied a two-dimensional channel flow of an incompressible, stationary, vis-
cous flow to determine the shape of a bump on a part of the boundary that minimizes
the viscous drag. Optimal shape control problems associated with the Navier–Stokes
equations may have wide applications to aerodynamic and hydrodynamic problems.
An application of optimal shape theory in fluid mechanics to the design of riblets as
a drag reduction device can be found in Armugan and Pironneau [1].

Optimal control techniques have been used to approximate solutions of inverse
problems. The approach has been developed by Chavent [3], James and Sepulveda
[6], Lenhart, Protopopescu, and Yong [8], [9], [10].

In all the cited works, a single control problem was considered as a single cost
function was involved, even in the case of several controls. It is known that for
multicontrols problems, open and closed loops are two different notions. In [15],
we have established the existence of an open loop for a general class of evolution
inclusions.

In this paper, we shall apply the multicontrol open loop technique to find an ap-
proximate solution to an inverse problem for a nonstationary two-dimensional channel
flow of an incompressible, viscous fluid. One wants to find the shape of a bump on
a part of the boundary, the inflow and the outflow velocity, from partial measure-
ments of the velocity in a fixed subdomain. The work of Gunzburger and Kim [4]
on the optimal shape for the stationary Navier–Stokes equations is extended to the
time-dependent case.

∗Received by the editors June 22, 2001; accepted for publication (in revised form) July 22, 2002;
published electronically February 4, 2003.

http://www.siam.org/journals/sicon/41-6/39128.html
†Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada

(bui@math.ubc.ca).

1733



1734 BUI AN TON

2. Setting of the problem. We consider the two-dimensional incompressible
flow of a viscous fluid passing through a channel having a finite depth. Let v2,v3

be the velocities at the inflow Γ1 and at the outflow Γ2 of the channel, respectively,
with

Γ1 = {(ψ, η) : ψ = −2; η ∈ [−2, 0]}, Γ2 = {(ψ, η) : ψ = 2, η ∈ [−2, 0]},
Γ = Γ1 ∪ Γ2.

Along the top and the bottom sides Γ3, Γ(u1) of the channel, the velocity vanishes
with

Γ3 = {(ψ, η) : | ψ |≤ 2, η = 0},
and

Γ(u1) = {(ψ, η) : η = u1(ψ), | ψ |≤ 2, η ∈ [−2,−1], u1 ∈ U1}
represents the bump, which is to be determined.

The domain bounded by the curves Γ,Γ(u1) is Q(u1).
We denote by U1 the following compact subset of L2(I):

U1 = {u1 : ‖u1‖H2(I) ≤ C, −2 ≤ u1(ψ) ≤ −1, ∀ψ ∈ I
I = [−2, 2], u1(±1) = −2, u1

ψ(±1) = 0, u1 = −2(2.1)

for 1 ≤| ψ |≤ 2}.
Thus, u1 is in C1(I) and there is no excessive oscillation on the bump Γ(u1).
For the inflow and outflow v2,v3 , we shall assume that vj belongs to the set Uj

with

Uj =
{
uj : uj = (uj1, u

j
2), ‖uj‖H2(Γj−1) ≤ C,∫

Γj

uj .ndσ = 0, support uj ⊂ Γj

}
.(2.2)

Let H(Q(u1)) be the L2(Q(u1)) -closure of the set

{y : y = (y1, y2), y ∈ C∞
0 (Q(u1)), div(y) = 0 in Q(u1)},

and Hk(Q(u1)) is the space

{y : y ∈ Hk(Q(u1)), div(y) = 0 in Q(u1), y = 0 on Γ3 ∪ Γ(u1)}.
Set

Hk0(Q(u1)) = {y : y ∈ Hk
0 (Q(u1)) ∩H(Q(u1))}.

We shall write v for (v2, v3).We consider, for each {u1, v} ∈ U, the nonstationary
Navier–Stokes equations:

y′ − ν∆y + (y.∇)y +∇p = f in Q(u1)× (0, T ),

∇.y = 0 in Q(u1)× (0, T ),(2.3)

y( ., 0) = y0 in Q(u1),

y = vj on Γj−1 × (0, T ), y = 0 on Γ(u1) ∪ Γ3, j = 2, 3.

Definition 2.1. The vector function y is said to be a weak solution of (2.3) with
controls {u1, v} if
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• {y, y′} ∈ L2(0, T ;H1(Q(u1)) ∩ L∞(0, T ;H(Q(u1)))× L2(0, T ;H(Q(u1))∗),
• y satisfies (2.3).

Let

Ω ⊂ Q(u1) ∀u1 ∈ U1; h,k ∈ L2(0, T ;L2(Ω))× L2(0, T ;L2(ω)).

The vector functions h,k represent the experimental measurements of the velocity
of the fluid in the subregion Ω and the measurement of the flow at

ω = {(ψ, η) : ψ = 3/2, η ∈ [−1, 0]}.
We shall associate with (2.3) the cost functionals

J1(y;u
1; v) =

∫ T

0

∫
Ω

| y( , t)− h( ., t) |2 dψdηdt(2.4)

and

J2(y; u
1; v) =

∫ T

0

∫
ω

| y( ., t)− k( ., t) |2 dηdt.(2.5)

Let D(y) be the deformation tensor of the flow y; it represents the rate of energy
dissipation due to the deformation and is given by

D(y) =
1

2
(∇y + (∇y)t).

We shall associate with (2.3) the cost functional

J(y;u1 ;v) =

∫ T

0

∫
Q(u1)

(D(y))2dψdηdt+ J1(y; u
1; v) + J2(y; u

1; v).(2.6)

The aim of this paper is to show the existence of an open loop of (2.3)–(2.5)
and to establish the existence of an optimal control of (2.3)–(2.6), thereby extending
Gunzburger and Kim’s result.

Definition 2.2. A control �u∗ = (u1
∗, u∗) is said to be an open loop control of

(2.3)–(2.5) if
• there exists ỹ, weak solution of (2.3) in Q(u1

∗) with inflow u2
∗ and outflow

u3
∗, and

•
J1(ỹ; u

1
∗; u∗) ≤ J1(y;u

1
∗; v) ∀v ∈ U2 × U3,

J2(ỹ; u
1
∗; u∗) ≤ J2(x; u

1; u∗) ∀u1 ∈ U1.(2.7)

y is the solution of (2.3) with controls {u1
∗, v}. Similarly for x .

We denote by Q̃ the rectangle with vertices at (−2, 2), (−2, 0), (2, 0), (2,−2).
We shall now state the main result of the paper.

Theorem 2.1. Let {f , y0,h,k} be in

L2(0, T ;L2(Q̃))× (Q̃)× L2(0, T ;L2(Ω))× L2(0, T ;L2(ω))

and let J1, J2 be as in (2.4)–(2.5). Then there exists an open loop control {ũ1, ũ} ∈ U
of (2.3)–(2.5).

For the optimal control problem (2.3), (2.6) we have the following.
Theorem 2.2. Suppose all the hypotheses of Theorem 2.1 are satisfied. Then

there exists
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• a control {û1, û} ∈ U ,
• a weak solution ŷ of (2.3), in the sense of Definition 2.1, with controls
{û1, û} such that

J(ŷ; û1; û) ≤ J(x; v1; v) ∀{v1, v)} ∈ U .
Consider the initial boundary-value problem for the Stokes equations:

w′ − ν∆w +∇p = 0 in Q(u1)× (0, T ),

w = vj onΓj−1, w = 0 on ∂Q(u1)/Γj , j = 2, 3,(2.8)

∇.w = 0, w( ., 0) = 0 in Q(u1).

We have the following result.
Lemma 2.1. Let v = (v2,v3) be in U2 × U3; then there exists a unique solution

w of (2.8) with

{w,w′} ∈ L2(0, T ; 4(Q(u1)))× L2(0, T ;L2(Q(u1))).

Moreover,

‖w‖2L2(0,T ;4(Q(u1))) + ‖w′‖2L2(0,T ;L2(Q(u1))) ≤ C{1 + ‖v‖2H2(Γ)}.
The lemma is an immediate result of the theory of Stokes equations; cf. [14].
Set ŷ = y −w; then (2.3) becomes

ŷ′ − ν∆ŷ + (ŷ.∇)ŷ + L(ŷ;u1; v) +∇p = f in Q(u1)× (0, T ),

∇.ŷ = 0; ŷ = 0 on ∂Q(u1)× (0, T ),(2.9)

ŷ( ., 0) = y0 in Q(u1)

with

L(ŷ;v; u1) = (ŷ.∇)w + (w.∇)ŷ + (w.∇)w.(2.10)

The extension method, used in [4] and in many optimal design stationary prob-
lems, gives rise to difficulties when applied to time-dependent problems. In the case
of the Navier–Stokes equations, one needs an estimate on the time derivative of the
solution in a control-free space. We shall follow Lenhart, Protopopescu, and Yong [8]
and transform (2.9) into a problem in a fixed domain by making a change of variable.

Let

ζ = 2η/u1(ψ), ψ ∈ I.(2.11)

Set

y(ψ, ζ, t) = Y(ψ, η, t) = Y(ψ, ζu1/2; t) ∀(t, ψ, ζ) ∈ [0, T ]×Q,(2.12)

where Q is the rectangle with vertices at (−2, 0), (−2, 2), (2, 0), (2, 2). A calculation
as in [8, p. 946] gives

∇ψ,ηY(ψ, η, t) = U(ψ, ζ;u1)∇ψ,ζy(ψ, ζ; t)
with

U(ψ, ζ;u1) =

(
I −ζu1

ψ/u
1

0 2/u1

)
.
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Throughout the paper, we shall write U for U(ψ, ζ;u1). Furthermore

∇ψ,η.Y = ∇ψ,ζ .(U ty) + (U ty.∇ψ,ζu1)/u1(2.13)

and, as computed in [8, p. 946],

div(Y) = (U∇).y = ∇.U ty + (U ty.∇u1)/u1.(2.14)

U t denotes the transpose of U.
In order to operate in a control-free space, we shall consider an approximate

system of Cauchy–Kowaleska type, introduced by Lions [11, pp. 466–469]. Consider
the system

ŷ′
ε − ν∇(F (u1)∇ŷε) + (ŷε.U∇)ŷε + L̂(ŷε;u

1,v) +
1

2
{(∇.U)ŷε}ŷε

+ (∇U)pε = f in Q× (0, T ),(2.15)

ŷε = 0 on ∂Q × (0, T ), ŷε( .0) = y0 in Q,

and

εp′ε + (U∇).ŷε = 0 in Q× (0, T ); pε( ., 0) = 0,(2.16)

with

L̂(ŷ; w;u1) = (w.u∇)w + (y.U∇)w + (w.U∇)w − (F (u1)∇ŷ.∇u1)/u1.(2.17)

We denote by F (u1) the matrix(
1 −ζu1

ψ/u
1

0 ζ2 | ∇u1 |2 /(u1)2 + 4/(u1)2

)
.

Definition 2.3. Let {f , y0,v
j , u1} be as in Theorem 2.1. Then {yε, pε} is said

to be a weak solution of (2.15)–(2.16) if
• {yε, pε } ∈ L2(0, T ;H1

0 (Q)) ∩ L∞(0, T ;L2(Q))× L∞(0, T ;L2(Q)),
• {Dγ

t yε, D
γ
t pε} ∈ L2(0, T ;L2(Q))× L2(0, T ;L2(Q)), 0 < γ < 1/4, with

•

−
∫ T

0

(yε, φ
′)dt + ν

∫ T

0

(F (u1)∇yε, φ)dt+
∫ T

0

((yε.U∇)yε, φ)dt

+

∫ T

0

(L̂(yε;u
1;w), φ)dt+

1

2

∫ T

0

(yε(U∇.yε), φ)dt

−
∫ T

0

(pε, U∇.yε)dt

= (y0, φ(0)) +

∫ T

0

(f , φ)dt

and

−ε
∫ T

0

(pε, q
′)dt+

∫ T

0

(u∇.ε, q)dt = 0

for all

{φ, q} ∈ L2(0, T ;H1
0 (Q))× L2(0, T ;L2(Q)), {φ′, q′} ∈ (L2(0, T ;L2(Q)))2,

and φ( ., T ) = 0 = q( ., T ).
We shall show the existence of an open loop for the approximating system (2.15)–

(2.16) and Theorem 2.1 is obtained by letting ε→ 0.
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3. The approximating system. The main result of the section is the following
theorem.

Theorem 3.1. Suppose all the hypotheses of Theorem 2.1 are satisfied. Then for
each ε, there exists a weak solution

{yε, pε} ∈ L2(0, T ;H1
0 (Q)) ∩ L∞(0, T ;L2(Q))× L∞(0, T ;L2(Q))

of (2.15)–(2.16) in the sense of Definition 2.3. Moreover,

‖yε‖2L2(0,T ;H1
0 (Q)) + ‖yε‖2L∞(0,T ;L2(Q)) + ε‖pε‖2L∞(0,T ;L2(Q))

≤ C{1 + ‖f‖2L2(0,T ;L2(Q)) + ‖y0‖2L2(Q)exp(‖v‖2H2(Γ) + ‖u1‖2H2(I))}.

The constant C is independent of ε,v, u1. Furthermore

‖Dγ
t yε‖2L2(0,T ;L2(Q)) + ‖ε‖Dγ

t pε‖2L2(0,T ;L2(Q)) ≤ C, 0 < γ <
1

4
.

We shall follow Lions’s proof [11, pp. 466–469] and make the necessary modifica-
tions using Lenhart, Protopopescu, and Yong’s [8] estimates.

Lemma 3.1. Suppose all the hypotheses of Theorem 3.1 are satisfied. Then there
exists a positive constant c , independent of u1, v such that

(F (u1)∇y, ∇y) =
∫
Q

F (u1) | ∇y |2 dψdζ ≥ c‖y‖2H1
0 (Q) ∀y ∈ H1

0 (Q).

Proof. In [8, p. 952], it was shown that

(F (u1)∇y,∇y) ≥ c

∫
Q

| U∇y |2 dψdζ

≥
∫
Q

{| yψ − ζyζu
1
ψ/u

1 |2 + | yζ |2}dψdζ

≥
∫
Q

| yζ |2 dψdζ ∀y ∈ H1
0 (Q).

On the other hand,

‖yψ‖L2(Q) ≤ ‖yψ − ζyζu
1
ψ/u

1‖L2(Q) + ‖ζu1
ψyζ/u

1‖L2(Q)

≤ C{1 + ‖u1‖H1,∞(I)‖U∇y‖L2(Q)}
≤ C{1 + ‖u1‖H2(I)‖U∇y‖L2(Q)}.

The lemma is proved.
Lemma 3.2. Suppose all the hypotheses of Theorem 3.1 are satisfied. Let

L̂(y, u1,w) be as in (2.17). Then

‖L̂(y;u1; w)‖L2(Q) ≤ C{1 + ‖u1‖H2(I) + ‖vj‖H2(Γ)}2(1 + ‖y‖H1(Q)) ∀y ∈ H1
0 (Q).

The constant C is independent of u1, v.
Proof. The proof is trivial and we shall not reproduce it.
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Lemma 3.3. Let U,y be as in Theorem 3.1; then

((y.U∇)y,y) = −1

2
(y, y(U∇.y)).(3.1)

The inner product in L2(Q) is denoted by ( ., .).
Proof. A simple but lengthy calculation using (2.14) gives the stated result.
To prove Theorem 3.1, we shall use the Faedo–Galerkin method and establish the

existence of {yε, pε} , a weak solution of (2.15)–(2.16) in the sense of Definition 2.3.
Lemma 3.4. Let {ynε , pnε } be the approximate solution of (2.15)–(2.16) obtained

from the Galerkin method. Then

‖ynε ‖2L2(0,T ;H1
0 (Q)) + ‖ynε ‖2L∞(0,T ;L2(Q)) + ε‖pnε ‖2L∞(0,T ;L2(Q))

≤ C{1 + ‖f‖2L2(0,T ;L2(Q))}+ ‖y0‖2L2(Q)exp(1 + ‖u1‖H2(I) + ‖v‖2H2(Γ)).

The constant C is independent of ε, n, u1, vj .
Proof. With (2.14) and with Lemmas 3.1 and 3.2, the proof is almost the same

as the one given in [11, pp. 466–469]. We shall not reproduce it.
Lemma 3.5. Let {ynε , pnε } be as in Lemma 3.4. Then

‖Dγ
t y

n
ε ‖L2(0,T ;L2(Q)) + ‖Dγ

t p
n
ε ‖L2(0,T ;L2(Q)) ≤ C.

The constant C is independent of n, ε, u1, v and γ is any number in (0, 1/4).
Proof. The proof is as that done in [11, pp. 466–469]. The changes are minor.
Proof of Theorem 3.1. Let {yn, pn} be as in Lemmas 3.4 and 3.5. From the

estimates of the lemmas, we obtain, by taking subsequences if necessary,

{yn, Dγ
t y

n, pn, Dγ
t p
n} → {y, Dγy, y,Dγ

t p}

in

(L2(0, T ;H1
0 (Q)))weak ∩ (L∞(0, T ;L2(Q)))weak∗ × (L2(0, T : L2(Q)))weak

× (L∞(0, T ;L2(Q)))weak∗ × (L2(0, T ;L2(Q)))weak.

Since the injection mapping of H1(Q) onto L4(Q) is compact, it follows from the
above estimates and from [11, p. 61, Theorem 5.2] that

yn → y in L2(0, T ;L4(Q)) and a.e.

Now a standard proof (e.g., [11, pp. 78–79]) shows that {y, p} is a solution
of (2.14)–(2.15). The estimates of the theorem are direct consequences of those of
Lemmas 3.4 and 3.5. The theorem is proved.

4. The equation (2.3) in a fixed domain. In this section, we shall study the
problem (2.3) in the fixed domain Q × (0, T ) . Consider the initial boundary-value
problem

y′ − ν∇.(F (u1)∇y) + (y.U∇)y + U∇p + L̂(y;u1;w) = y in Q× (0, T ),

U∇.y = 0 in Q× (0, T ), y = 0 on ∂Q× (0, T ),(4.1)

y( ., 0) = y0 in Q.
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Definition 4.1. The vector function y ∈ L2(0, T ;H1
0 (Q)) ∩ L∞(0, T ;L2(Q))

with Dγ
t y ∈ L2(0, T ;L2(Q)) is said to be a weak solution of (4.1) if

−
∫ T

0

(y, φ′)dt+ ν

∫ T

0

(F (u1)∇y,∇φ)dt+
∫ T

0

((y.U∇)y, φ)dt

+

∫ T

0

(L̂(y;u1;w), φ)dt = (y0, φ( ., 0)) +

∫ T

0

(f , φ)dt

for all

φ ∈ L2(0, T ;H1
0 (Q) ∩H2(Q)), φ′ ∈ L2(0, T ;L2(Q)), φ( ., T ) = 0, U∇.φ = 0.

The main result of the section is the following theorem.
Theorem 4.1. Suppose all the hypotheses of Theorem 2.1 are satisfied. Then

there exists a weak solution of (4.1) in the sense of Definition 4.1. Moreover,

‖y‖2L2(0,T ;H1
0 (Q)) + ‖y‖2L∞(0,T ;L2(Q)) + ‖Dγ

t y‖2L2(0,T ;L2(Q))

≤ C{1 + ‖f‖2L2(0,T ;L2(Q))}+ C‖y0‖2L2(Q)exp(‖u1‖2H2(I) + ‖vj‖2H2(Γ))

with 0 < γ < 1/4 . The constant C is independent of u1,v.
Proof. (1) Let {yε, pε} be as in Theorem 3.1. From the estimates of the theorem,

we obtain, by taking subsequences,

{yε, Dγ
t yε, εpε} → {y, Dγ

t y, 0}
in

(L2(0, T ;H1
0 (Q)))weak ∩ (L∞(0, T ;L2(Q)))weak∗ × (L2(0, T ;L2(Q)))weak

× L2(0, T ;L2(Q)).

With our estimate on the fractional time derivative of yε, it follows from the
Sobolev imbedding theorem and from [11, p. 61, Theorem 5.2] that

yε → y in L2(0, T ;L4(Q)) and a.e.

The estimates of the theorem are direct consequences of those of Theorem 3.1.
(2) Since

√
εpε → 0 in (L∞(0, T ;L2(Q)))weak∗ ,

we have εp′ε → 0 in the distribution sense in Q× (0, T ). Hence

U∇.yε → U.∇y in (L2(0, T ;L2(Q)))weak.

Thus, U∇.y = 0 in Q× (0, T ).
(3) Since Q is a bounded subset of the plane, an application of the Sobolev

imbedding theorem yields

‖yεU∇.yε‖H−1(Q) ≤ C‖yε‖
1
2

L2(0,T ;L2(Q))‖yε‖
3
2

H1
0 (Q)

.

Hence

‖yεU∇.yε‖
L

4
3 (0,T ;H−1(Q))

≤ C{1 + ‖yε‖2L∞(0,T ;L2(Q))}‖yε‖2L 4
3 (0,T ;H1

0 (Q))

≤ C.
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There exists a subsequence such that

yε(U∇.yε)→ Ψ in (L
4
3 (0, T ;H−1(Q)))weak,

and from part 2, we deduce that Ψ = 0.

(4) A similar argument shows that

(yε.U∇)yε → (y.U∇)y in (L
4
3 (0, T ;H−1(Q)))weak.

It is now trivial to check that y is a solution of (4.1) in the sense of Definition
4.1.

Lemma 4.1. The weak solution y of (4.1), given by Theorem 4.1, is unique.

Proof. (1) we have, by a simple calculation,

((y.U∇), φ) =
2∑

j,k=1

(yj(U∇)jyk, φk)

= −
2∑
k=1

(yk, φk{∇.U ty + (U ty.∇u1)/u1})− ((y.U∇)φ,y)

= −(yU∇.y, φ)− ((y.U∇)φ,y) = −((y.U∇)φ, y).

Thus it follows from the Sobolev imbedding theorem that

| ((y.U∇)y, φ) | ≤ C‖y‖2L4(Q)‖φ‖H1
0 (Q)

≤ C‖y‖L2(Q)‖y‖H1
0 (Q)‖φ‖H1

0 (Q).

(2) Let (u1) be the completion of the set

{φ : φ ∈ C∞
0 (Q), U∇.φ = 0}

in the H1(Q)-norm. Then we deduce from the above that

‖(y.U∇)y‖L2(0,T ;(V(u1))∗) ≤ C‖y‖L∞(0,T ;L2(Q))‖y‖L2(0,T ;H1
0 (Q)).

It follows from (4.1) that y′ exists and is in L2(0, T ; ((u1))∗).
(3) Suppose that x,y are two solutions of (4.1), given by Theorem 4.1; then

(y′ − x′,y − x) + ν(F (u1)∇(y − x), ∇(y − x)) + ((y − x).U∇y,y − x)

+ (x.U∇(y − x),y − x) + (y − x.U∇w,y − x)

+ (w.U∇(y − x),y − x) = 0.

We deduce that

d

dt
‖y − x‖2L2(Q) ≤ C‖y − x‖2L2(Q).

Hence y − x = 0. The lemma is proved.
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5. Optimal control. The main results of the paper, which are Theorem 2.1
and Theorem 2.2, will be proved in this section. Let y be the solution of (4.1) with
controls {u1,v } and let

J1(y;u
1; v) =

∫ T

0

∫
Ω

| Y(ψ, 2η/u1; t)− h(ψ, η; t) |2 dψdηdt,(5.1)

J2(y;u
1;v) =

∫ T

0

∫
ω

| Y(3/2; 2η/u1(3/2); t)− k(η, t) |2 dηdt

with

Y(ψ, η; t) = y(ψ, ζ; t) +w.(5.2)

Set

Ψ(�u,�v) = J1(;u; v
1) + J2(x;u

1;v),

where �u = (u1, u), �v = (v1,v) are in U and x is the unique solution of (4.1) with
controls {v1,u}.

Lemma 5.1. Suppose all the hypotheses of Theorem 4.1 are satisfied. Then for
each given �u = {u1, u} in U , there exists �v∗ ∈ U such that

Ψ(�u;�v∗) = d(u) = inf{Ψ(�u,�v) : �v ∈ U}.(5.3)

Proof. First we note that the infimum exists. Let {�vn} be a minimizing sequence
of the optimization problem (5.3) with

d(�u) ≤ Ψ(�u; �vn) ≤ d(�u) +
1

n
.

Since {�vn} is in U and U is a compact subset of H1(I) × H1(Γ) , we get, by
taking subsequences,

�vn → �v∗ inH1(I) ∩ (H2(I))weak ×H1(Γ) ∩ (H2(Γ))weak

with �v∗ ∈ . Let {yn, xn} be the solutions of (4.1) with controls {u1,vn}, {v1
n,u},

respectively. It follows from Theorem 4.1 that

‖{yn,xn}‖L2(0,T ;H1
0 (Q)) + ‖{yn,xn}‖L∞(0,T ;L2(Q)) + ‖{Dγ

t yn, D
γ
t xn}‖L2(0,T ;L2(Q)) ≤ C,

where C is independent of n.
Since the injection mapping of H1

0 (Q) into L4(Q) is compact, it follows from the
above estimates and from [11, p. 62, Theorem 5.2] that

{yn,xn} → {y∗,x∗}
in (L2(0, T ;H1

0 (Q)))weak ∩ L2(0, T ;L2(Q)) ∩ (L∞(0, T ;L2(Q)))weak∗

and a.e. with

{yn, xn} |ψ=3/2→ { y∗,x∗} |ψ=3/2 in L2(0, T ;L2(0, 2)).

Now we consider a typical term of (4.1). We have

‖xn.U(v1
n)xn‖L 4

3 (0,T ;H−1(Q))

≤ C‖U(v1
n)‖L∞(Q)(1 + ‖xn‖2L∞(0,T ;L2(Q))‖xn‖2L 4

3 (0,T ;H1
0 (Q))

)

≤ C.
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Since

xn.U(v1
n)∇xn → x∗.U(v1

∗)∇x∗ a.e. in Q× (0, T ),

it follows from the above estimate that

xn.U(v1
n)∇xn → x∗.U(v1

∗)∇x∗ in (L
4
3 (0, T ;H−1(Q)))weak.

It is now easy to check that {y∗, x∗} is the unique solution of (4.1) with the
corresponding controls. Moreover,

J1(y∗;u; v1
∗) + J2(x;v∗; u1) ≤ lim inf Ψ(�u; �vn) ≤ d(�u).

It follows from the definition of d(�u) that

d(�u) = Ψ(�u; �v∗).

The lemma is proved.
Let

S = {�v∗ : �v∗ as in (5.3)}.

Lemma 5.2. Suppose all the hypotheses of Theorem 4.1 are satisfied. Let g1, g
k
j

be weakly continuous functions from U1,
k
j ; j = 2, 3, k = 1, 2 into R+, and suppose

that g1, g
k
j are one-to-one. Then there exists a unique �v ∈ S such that

g1(ṽ
1) = α1 = inf{g1(v1) : ∀�v ∈ S},

gkj (ṽ
j
k) = αkj = inf{gkj (vjk) : ∀�v ∈ S}, j = 2, 3, k = 1, 2.(5.4)

Proof. (1) First we note that there exists functions g1, g
k
j satisfying the hypothe-

ses of the lemma. If S is a finite set, then it is trivial to show the stated results. Let
{�vn} be a minimizing sequence of the optimization problem (5.4) with

α1 ≤ g1(v
1
n) ≤ α1 +

1

n
.

Since �vn are in U , and since by hypothesis U is a compact subset of H2(I) ×
H2(Γ) , there exists a subsequence such that

�vn → �̂v in H1(I)× {H1 ∩ (H2(I))weak} × (H2(I))weak.

It is clear that

g1(v
1
n)→ g1(v̂

1) = α1.

We now show that �̂v ∈ S, i.e., is such that

Ψ(�u; �̂v) ≤ Ψ(�u; �v) ∀�v ∈ U .
From the definition of �vn , we get

Ψ(�u; �vn) = J1(yn; v
1
n; u) + J2(xn; u

1; vn)

≤ Ψ(�u; �v) ∀�v ∈ U ,
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where {yn, xn } are the solutions of (4.1) with the controls {u1, vn}, {v1
n, u}, re-

spectively. An argument like that of Lemma 5.1 gives

{yn, xn} → {y∗, x∗} in L2(0, T ;L2(Q)) ∩ (L2(0, T ;H1
0 (Q)))weak

and

{yn,xn} |ψ=3/2→ {y∗, x∗} |ψ=3/2 in L2(0, T ;L2(0, 2)).

Moreover, {y∗,x∗ } are the solutions of (4.1) with the corresponding controls.
From the definition of J1, J2 and from the above, we deduce that

Ψ(�u; �̂v) ≤ lim inf Ψ(�u; �̂vn) ≤ Ψ(�u; �v) ∀�v ∈ U .

Since g1 is one-to-one, v̂1 is unique.
(2) Now let

α1
2 = inf{g1

2(v
2
1) : ∀�̂v ∈ S with �̂v = (v̂1, . , .)}.

Repeating the same argument as above, we have �v∗ ∈ S such that

α1
2 = g1

2(v
∗,2
1 ) = inf{g1

2(v
2
1) : ∀�̂v ∈ S, �̂v = (v̂1, ., .)}.

Then

g1
2(v

∗,2
1 ) = α1

2, g1(v
1
∗) = α1.

Repeating the process three more times, we get the stated result.
Let A be the nonlinear mapping of U , considered as a compact convex subset of

L2(I)× L2(Γ) into U , given by

A(�u) = �̃v,(5.5)

where �̃v is the unique element of U given by Lemma 5.2.
Lemma 5.3. Let A be as in (5.5); then A has a fixed point �u∗ ∈ U .
Proof. The nonlinear operator A, given by (5.5), maps a compact convex set

U into itself. To show that A has a fixed point, we shall apply Schauder’s theorem.
Since U is compact, it suffices to show that it is continuous.

Let

�v∗n = A(�un), �un ∈ U .

Since both �un, �v
∗
n are in U , we obtain, by taking subsequences,

{�un, �v∗n} → {�u∗, �v∗} in H1(I)× {H1(Γ) ∩ (H2(I))weak} × (H2(I))weak.

By definition, we have

Ψ(�un; �v
∗
n) ≤ Ψ(�un; �v) ∀�v ∈ U .

Thus, as in the proof of Lemma 5.1, we get

Ψ(�u : �v∗) ≤ lim inf Ψ(�un; �v
∗
n).(5.6)
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It follows from the definition of �v∗n and from (5.6) that

Ψ(�u; �v∗) ≤ lim inf Ψ(�un; �v) ∀�v ∈ U .(5.7)

On the other hand,

Ψ(�un; �v) = J1(yn; n; v
1) + J2(xn; u

1
n; v),

where {yn, xn} are the solutions of (4.1) with controls {u1
n, v}, {v1, un}, respec-

tively. A proof like that of Lemma 5.1 yields

Ψ(�u; �v) = limΨ(�un; �v) ∀�v ∈ U .(5.8)

It follows from (5.7)–(5.8) that

Ψ(�u; �v∗) ≤ Ψ(�u; �v) ∀�v ∈ U .
The nonlinear mapping A satisfies all the hypotheses of the Schauder fixed point

theorem. There exists �u∗ = {u1
∗, u∗} ∈ U such that A(�u∗) = �u∗.

Set �v = (u1, u∗) in the formula and we obtain

Ψ(�u∗; �u∗) ≤ Ψ(�u∗; �v),
J1(y; u

1
∗; u∗) ≤ J1(x; u

1; u∗) ∀u1 ∈ U1.

With �v = (u1
∗, v), we have

J2(y; u
1
∗; u∗) ≤ J2(x; u

1
∗; v) ∀v ∈ U2 × U3.

The lemma is proved.
Proof of Theorem 2.1. From Theorem 4.1 and from Lemma 5.3, we deduce that

there exists y and �u∗ = (u1
∗, u∗) ∈ U with y being the unique solution of (4.1) with

control �u∗. Moreover,

J1(ỹ; u
1
∗; u∗) ≤ J1(x; u

1; u∗) ∀u1 ∈ U1,

J2(ỹ; u
1
∗; u∗) ≤ J2(z; u

1
∗; v) ∀v ∈ U2 × U3;

x, z are the unique solutions of (4.1) with the indicated controls.
Set

Y(ψ; η; t) = ỹ(ψ, ζ, t) +w

= ỹ(ψ; 2η/u1
∗(ψ); t) +w,

where w is the solution of the Stokes equations, given by Lemma 2.1, with boundary
controls v = u∗ . Then Y is the solution of (2.3) and {u1

∗, u∗} is the open loop of
the problem.

The theorem is proved.
We now turn to the case when the deformation vector function is involved in the

cost functional. The open loop problem is open in that case as we have only weak
convergence of the first order derivatives of the approximating sequences. Let

J̃(y; u1; v) =

∫ T

0

∫
Q

{U∇y + (U∇y)t}22u1dψdζdt+ J1(y; u
1; v) + J2(y; u

1; v)
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and consider the problem

α = inf{J̃(y; u1; u) : �u ∈ },(5.9)

where y is the unique solution of (4.1) with controls �u = (u1, u), given by Theorem
4.1 and by Lemma 4.1.

Lemma 5.4. Suppose all the hypotheses of Theorem 4.1 are satisfied. Then there
exists {ŷ, û1, û} such that

J̃(ŷ; û1; û) = α = inf{J̃(y; u1; u) : ∀�u ∈ U}.

Proof. It is clear that α is finite. Let {�un} be a minimizing sequence of the
optimization problem (5.8) with

α ≤ J̃(yn; u
1
n; un) ≤ α+

1

n
.

Since �un ∈ U , with our hypotheses on U , we obtain, by taking subsequences if
necessary,

�un → �u∗ in H1(I)×H1(Γ).

From Theorem 4.1, we have the estimate

‖yn‖L2(0,T ;H1(Q)) + ‖yn‖L∞(0,T ;L2(Q)) + ‖Dγ
t yn‖L2(0,T ;L2(Q)) ≤ C.

Again by taking subsequences, we get

yn → ŷ in L2(0, T ;L2(Q)) ∩ (L2(0, T ;H1(Q)))weak ∩ (L∞(0, T ;L2(Q)))weak∗

with

yn → ŷ a.e., yn |ψ=1.5→ ŷ |ψ=1.5 in L2(0, T ;L2(0, 2)).

It is not difficult to check that ŷ is the solution of (4.1) with control �u∗ . We
now have

α = lim J̃(yn; u
1
n; un) = J̃(ŷ; u1

∗; u∗).

Thus, by definition

J̃(ŷ; u1
∗; u∗) ≤ J̃(x; v1; v) ∀�v ∈ U ,

where x is the solution of (4.1) with control �v.

Proof of Theorem 2.2. Let ŷ, u∗ be as in Lemma 5.4 and set

Ŷ(ψ; η, t) = ŷ(ψ; ζ, t) +w

= ŷ(ψ; 2η/u1
∗(ψ); t) +w,

where w is the solution of the Stokes equations of Lemma 2.1 with v = u∗. Then
{Ŷ, u∗} is the sought solution of the theorem.
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Abstract. Using a result on the existence and uniqueness of the semiglobal C1 solution to
the mixed initial-boundary value problem for first order quasi-linear hyperbolic systems with gen-
eral nonlinear boundary conditions, we establish the exact boundary controllability for quasi-linear
hyperbolic systems if the C1 norm of initial and final states is small enough.
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1. Introduction and main result. Consider the first order quasi-linear hyper-
bolic system

∂u

∂t
+A(u)

∂u

∂x
= F (u),(1.1)

where u = (u1, . . . , un)
T is a vector valued function of (t, x), A(u) = (aij(u)) is an

n× n matrix with suitably smooth elements aij(u)(i, j = 1, . . . , n), F : R
n → R

n is a
vector valued function with suitably smooth components fi(u)(i = 1, . . . , n), and

F (0) = 0.(1.2)

By the definition of hyperbolicity, on the domain under consideration, the matrix
A(u) has n real eigenvalues λi(u) (i = 1, . . . , n) and a complete set of left eigenvectors
li(u) = (li1(u), . . . , lin(u)) (i = 1, . . . , n):

li(u)A(u) = λi(u)li(u),(1.3)

and a complete set of right eigenvectors ri(u) = (ri1(u), . . . rin(u))
T (i = 1, . . . , n):

A(u)ri(u) = λi(u)ri(u).(1.4)

We have

det |lij(u)| �= 0 (resp., det |rij(u)| �= 0).(1.5)

Without loss of generality, we may assume that

li(u)rj(u) ≡ δij (i, j = 1, . . . n),(1.6)
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rTi (u)ri(u) ≡ 1 (i = 1, . . . , n),(1.7)

where δij stands for the Kronecker symbol. Moreover, we assume that, on the domain
under consideration, the eigenvalues satisfy the following conditions:

λr(u) < 0 < λs(u) (r = 1, . . . ,m; s = m+ 1, . . . , n).(1.8)

Let

vi = li(u)u (i = 1, . . . , n).(1.9)

We consider the mixed initial-boundary value problem for the quasi-linear hyperbolic
system (1.1) with the initial condition

t = 0 : u = φ(x), 0 ≤ x ≤ 1,(1.10)

and the boundary conditions

x = 0 : vs = Gs(t, v1, . . . , vm) +Hs(t) (s = m+ 1, . . . , n),(1.11)

x = 1 : vr = Gr(t, vm+1, . . . , vn) +Hr(t) (r = 1, . . . ,m).(1.12)

Without loss of generality, we assume that

Gi(t, 0, . . . , 0) ≡ 0 (i = 1, . . . , n).(1.13)

Let us recall the following result of Li–Jin [9] on the semiglobal C1 solution, which
will be used as the main tool in what follows.

Lemma 1.1. Assume that lij(u), λi(u), fi(u), Gi(t, ·), Hi(t) (i, j = 1, . . . , n), and
φ(x) are all C1 functions with respect to their arguments. Assume, furthermore,
that (1.2), (1.5), (1.8), and (1.13) hold. Assume finally that the conditions of C1

compatibility are satisfied at the points (0, 0) and (0, 1), respectively. Then, for a
given T0 > 0, the mixed initial-boundary value problem (1.1) and (1.10)–(1.12) admits
a unique C1 solution u = u(t, x) (called the semiglobal C1 solution) with sufficiently
small C1 norm on the domain

R(T0) = {(t, x)| 0 ≤ t ≤ T0, 0 ≤ x ≤ 1},(1.14)

provided that the C1 norms ‖φ‖C1[0,1] and ‖H‖C1[0,T0] are small enough (depending
on T0). In particular, for any given ε0 > 0, we have

|u(t, x)| ≤ ε0(1.15)

on the domain R(T0) if ‖φ‖C1[0,1] and ‖H‖C1[0,T0] are small enough (depending on T0

and ε0).
Based on this result, we can consider the following problem of local exact bound-

ary controllability.
For any given initial data φ ∈ C1[0, 1] and final data ψ ∈ C1[0, 1] with small C1

norm, can we find a time T0 > 0 and boundary input controls Hi ∈ C1[0, T0] (i =
1, . . . , n) with small C1 norm, such that the mixed initial-boundary value problem (1.1)
and (1.10)–(1.12) admits a unique C1 solution u = u(t, x) on the domain R(T0), which
verifies the final condition

u(T0, x) = ψ(x), 0 ≤ x ≤ 1?(1.16)
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Notice that, because of the finiteness of the speed of wave propagation, the exact
boundary controllability of a hyperbolic system requires that the controllability time
T0 must be greater than a given constant. Let

T0 > max
i=1,...,n

1

|λi(0)| .(1.17)

In this paper, we will give an affirmative answer to the above problem of exact bound-
ary controllability. The main result is the following theorem.

Theorem 1.2. Assume that lij(u), λi(u), fi(u), Gi(t, ·), and Hi(t) (i, j = 1, . . . , n)
are all C1 functions with respect to their arguments. Assume, furthermore, that (1.2),
(1.5), (1.8), and (1.13) hold. Let T0 be defined by (1.17). Then, for any given initial
data φ ∈ C1[0, 1] and final data ψ ∈ C1[0, 1] with small C1 norm, there exist bound-
ary controls Hi(t) ∈ C1[0, T0] (i = 1, . . . , n) with small C1 norm, such that the mixed
initial-boundary value problem (1.1) and (1.10)–(1.12) admits a unique C1 solution
u = u(t, x) on the domain R(T0), which verifies the final condition (1.16).

Remark 1.1. The exact controllability time T0 given in this theorem is optimal.
Remark 1.2. The results given in [7], [8] can be regarded as a direct consequence

of this theorem.
Remark 1.3. In some special cases, it is possible to use only boundary controls

Hs(t) (s = m + 1, . . . , n) on x = 0 or Hr(t) (r = 1, . . . ,m) on x = 1 to realize the
exact boundary controllability, but the controllability time T0 must be doubled (see
[10]).

There are a number of publications concerning the exact controllability and the
uniform stabilization for linear hyperbolic systems (see [11], [12], and the references
therein). Furthermore, using the Hilbert uniqueness method (HUM) suggested by J.-
L. Lions [11] and Schauder’s fixed point theorem, Zuazua [13] proved the global (resp.,
local) exact boundary controllability for semilinear wave equations in the asymptoti-
cally linear case (resp., the superlinear case with suitable growth conditions). Later,
using a global inversion theorem, Lasiecka–Triggiani [4] established an abstract result
on the exact controllability for semilinear equations. As an application, they gave
the global exact boundary controllability for the wave and plate equations in the
asymptotically linear case. However, only a few results are known for quasi-linear
hyperbolic systems. In the case in which n = 2, the exact boundary controllability for
reducible quasi-linear hyperbolic systems was proved in Li–Zhang [6] and Li–Rao–Jin
[7], [8] by a constructive method which does not work in the general case of quasi-
linear hyperbolic systems that we consider in this paper. A similar consideration can
be found in Fursikov–Imanuvilov [3] for a class of one-dimensional semilinear wave
equations. In earlier work, M-Cirinà [1], [2] considered the zero exact controllability
for quasi-linear hyperbolic systems with linear boundary controls; however, his results
are essentially valid only for the system of diagonal form. Moreover, if one applies
the result of [1] twice for getting the general controllability, then the corresponding
controllability time must be doubled. In this work, based on the existence result [9]
for the semiglobal C1 solution to the mixed initial-boundary value problem of quasi-
linear hyperbolic systems, we establish the local exact boundary controllability for
general quasi-linear hyperbolic systems with general nonlinear boundary controls.

2. Reduction of the problem. In order to prove the main theorem, it suffices
to establish the following proposition.

Proposition 2.1. Let T0 be defined by (1.17), and let ε0 > 0 be a given small
number. For any given initial data φ ∈ C1[0, 1] and final data ψ ∈ C1[0, 1] with small
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C1 norm, the quasi-linear hyperbolic system (1.1) admits a C1 solution u = u(t, x) on
the domain R(T0) such that

u(0, x) = φ(x), 0 ≤ x ≤ 1,(2.1)

u(T0, x) = ψ(x), 0 ≤ x ≤ 1,(2.2)

the C1 norm of u = u(t, x) is suitably small, and u = u(t, x) satisfies (1.15) on the
domain R(T0).

In fact, let u = u(t, x) be a C1 solution of (1.1) on the domain R(T0), given by
Proposition 2.1. Set

Hr(t) =
(
vr −Gr(t, vm+1, . . . , vn)

)|x=1 (r = 1, . . . ,m),(2.3)

Hs(t) =
(
vs −Gs(t, v1, . . . , vm)

)|x=0 (s = m+ 1, . . . , n),(2.4)

where vi (i = 1, . . . , n) are defined by (1.9). Noting (1.13), the C1 norm of Hi (i =
1, . . . , n) is small. Then, by Lemma 1.1, u = u(t, x) is the semiglobal C1 solution to
the corresponding mixed initial-boundary value problem (1.1) and (1.10)–(1.12) on the
domain R(T0), which also satisfies the final condition (2.2). Therefore, we obtain the
desired exact boundary controllability, and the boundary controls Hi (i = 1, . . . , n)
are given by (2.3)–(2.4).

3. Exact boundary controllability. In this section, we will prove Proposition
2.1.

First, noting (1.17), there exists an ε0 > 0 so small that

T0 > max
|u|≤ε0, i=1,...,n

1

|λi(u)| .(3.1)

Let

T1 = max
|u|≤ε0, i=1,...,n

1

2|λi(u)| .(3.2)

We divide the proof into several steps.
(i) We first consider the forward auxiliary mixed initial-boundary value problem

of (1.1) with the initial condition

t = 0 : u = φ(x), 0 ≤ x ≤ 1,(3.3)

and the boundary conditions

x = 0 : vs = fs(t) (s = m+ 1, . . . , n),(3.4)

x = 1 : vr = fr(t) (r = 1, . . . ,m),(3.5)

where vi (i = 1, . . . , n) are defined by (1.9) and fs, fr (r = 1, . . . ,m; s = m+1, . . . , n)
are any given functions of t with small C1[0, T1] norm. We assume that the conditions
of C1 compatibility are satisfied at the points (0, 0) and (0, 1), respectively. By Lemma
1.1, there exists a unique semiglobal C1 solution u = u(1)(t, x) with small C1 norm
on the domain

{(t, x)| 0 ≤ t ≤ T1, 0 ≤ x ≤ 1}.(3.6)
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In particular, the solution u = u(1)(t, x) satisfies (1.15) on the domain (3.6). Thus we
can uniquely determine the corresponding value of u on x = 1

2 as

x =
1

2
: u = a(t), 0 ≤ t ≤ T1,(3.7)

and the C1[0, T1] norm of a(t) is suitably small.
(ii) Similarly, we consider the backward auxiliary initial-boundary value problem

of (1.1) with the initial condition

t = T0 : u = ψ(x), 0 ≤ x ≤ 1,(3.8)

and the boundary conditions

x = 0 : vr = gr(t) (r = 1, . . . ,m),(3.9)

x = 1 : vs = gs(t) (s = m+ 1, . . . , n),(3.10)

where vi (i = 1, . . . , n) are defined by (1.9) and gr, gs (r = 1, . . . ,m; s = m+1, . . . , n)
are any given functions of t with small C1[T0−T1, T0] norm. We assume that the con-
ditions of C1 compatibility are satisfied at the points (T0, 0) and (T0, 1), respectively.
Once again, by Lemma 1.1, there exists a unique semiglobal C1 solution u = u(2)(t, x)
with small C1 norm on the domain

{(t, x)| T0 − T1 ≤ t ≤ T0, 0 ≤ x ≤ 1}.(3.11)

In particular, the solution u = u(2)(t, x) satisfies (1.15) on the domain (3.11). Thus
we can uniquely determine the corresponding value of u on x = 1

2 as

x =
1

2
: u = b(t), T0 − T1 ≤ t ≤ T0,(3.12)

and the C1[T0 − T1, T0] norm of b(t) is suitably small.
(iii) Now we change the order of variables t and x, and then the system (1.1) is

rewritten in the following form:

∂u

∂x
+A−1(u)

∂u

∂t
= F̃ (u) := A−1(u)F (u).(3.13)

We notice that

F̃ (0) = 0.(3.14)

Noting (1.8), the eigenvalues of the inverse matrix A−1(u) satisfy

1

λr(u)
< 0 <

1

λs(u)
(r = 1, . . . ,m; s = m+ 1, . . . , n).(3.15)

Moreover, since the matrices A(u) and A−1(u) have the same left eigenvectors, we
can still define the variables vi (i = 1, . . . , n) by the same formula (1.9).

Now we consider the mixed initial-boundary value problem for system (3.13) with
the initial condition

x =
1

2
: u = c(t), 0 ≤ t ≤ T0,(3.16)
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and the boundary conditions

t = 0 : vr = Φr(x) (r = 1, . . . ,m), 0 ≤ x ≤ 1

2
,(3.17)

t = T0 : vs = Ψs(x) (s = m+ 1, . . . , n), 0 ≤ x ≤ 1

2
,(3.18)

where c(t) is a C1[0, T0] function with small C1 norm such that (noting (1.17))

c(t) =

{
a(t), 0 ≤ t ≤ T1,
b(t), T0 − T1 ≤ t ≤ T0;

(3.19)

moreover,

Φi(x) = li(φ(x))φ(x) (i = 1, . . . , n),(3.20)

Ψi(x) = li(ψ(x))ψ(x) (i = 1, . . . , n),(3.21)

the C1[0, 1] norm of which is also small. Noting (3.19)–(3.21), we easily check that the
mixed initial-boundary value problem (3.13) and (3.16)–(3.18) satisfies the conditions
of C1 compatibility at the points (0, 1

2 ) and (T0,
1
2 ), respectively. Therefore, by Lemma

1.1, there exists a unique semiglobal C1 solution u = ul(t, x) with small C1 norm on
the domain

Rl(T0) =

{
(t, x)| 0 ≤ t ≤ T0, 0 ≤ x ≤ 1

2

}
.(3.22)

Moreover, u = ul(t, x) can be asked to satisfy (1.15) on the domain (3.22) if the C1

norm of φ, ψ, f̄r, fs, gr, and ḡs(r = 1, . . . ,m; s = m+ 1, . . . , n) is small enough.
(iv) Similarly, the mixed initial-boundary value problem (3.13) with the initial

condition (3.16) and the boundary conditions

t = 0 : vs = Φs(x) (s = m+ 1, . . . , n),
1

2
≤ x ≤ 1,(3.23)

t = T0 : vr = Ψr(x) (r = 1, . . . ,m),
1

2
≤ x ≤ 1,(3.24)

admits a unique semiglobal C1 solution u = ur(t, x) with small C1 norm on the
domain

Rr(T0) =

{
(t, x)| 0 ≤ t ≤ T0,

1

2
≤ x ≤ 1

}
,(3.25)

and u = ur(t, x) can also be asked to satisfy (1.15) on the domain (3.25).
(v) Let

u(t, x) =

{
ul(t, x), (t, x) ∈ Rl(T0),
ur(t, x), (t, x) ∈ Rr(T0).

(3.26)

To complete the proof of Proposition 2.1, it is only necessary to check that

t = 0 : u = φ(x), 0 ≤ x ≤ 1,(3.27)

t = T0 : u = ψ(x), 0 ≤ x ≤ 1.(3.28)
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In fact, the C1 solutions u = ul(t, x) (resp., u = ur(t, x)) and u = u(1)(t, x) satisfy
the system (3.13) (and thus (1.1)), the initial condition

x =
1

2
: u = a(t), 0 ≤ t ≤ T1,(3.29)

and the boundary conditions

t = 0 : vr = Φr(x) (r = 1, . . .m),
1

2
≤ x ≤ 1(

resp., t = 0 : vs = Φs(x) (s = m+ 1, . . . n),
1

2
≤ x ≤ 1

)
.

(3.30)

Because of the finiteness of the speed of wave propagation and the choice of T1 given
by (3.1), the mixed initial-boundary value problem (3.13) and (3.29)–(3.30) has a
unique C1 solution on the domain{

(t, x)| 0 ≤ t ≤ 2T1x, 0 ≤ x ≤ 1

2

}
(
resp.,

{
(t, x)| 0 ≤ t ≤ 2T1(1− x),

1

2
≤ x ≤ 1

})(3.31)

(see Li–Yu [5]). Then

u(t, x) ≡ u(1)(t, x)(3.32)

on these domains, and, in particular, we obtain (3.27).
On the other hand, the C1 solutions u = ul(t, x) (resp., u = ur(t, x)) and u =

u(2)(t, x) satisfy the system (3.13) (and thus (1.1)), the initial condition

x =
1

2
: u = b(t), T0 − T1 ≤ t ≤ T0,(3.33)

and the boundary conditions

t = T0 : vs = Ψs(x) (s = m+ 1, . . . , n), 0 ≤ x ≤ 1

2(
resp., t = T0 : vr = Ψr(x) (r = 1, . . . ,m),

1

2
≤ x ≤ 1

)
.

(3.34)

Similarly, the mixed initial-boundary value problem (3.13) and (3.33)–(3.34) has a
unique C1 solution on the domain{

(t, x)| T0 − 2T1x ≤ t ≤ T0, 0 ≤ x ≤ 1

2

}
(
resp., T0 + 2T1(x− 1) ≤ t ≤ T0,

1

2
≤ x ≤ 1

)
.

(3.35)

Then it follows that

u(t, x) ≡ u(2)(t, x)(3.36)

on these domains, and, in particular, we obtain (3.28).
Thus we have finished the proof of Proposition 2.1, and then we get the local exact

boundary controllability. In view of the proof, we see that the boundary controls are
certainly not unique.
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4. Remarks. We can consider the mixed initial-boundary value problem for the
quasi-linear hyperbolic system (1.1) with the initial condition (1.10) and the following
boundary conditions:

x = 0 : ṽs = g̃s(t, ṽ1, . . . , ṽm) + h̃s(t) (s = m+ 1, . . . , n),(4.1)

x = 1 : ṽr = g̃r(t, ṽm+1, . . . , ṽn) + h̃r(t) (s = 1, . . . ,m),(4.2)

where

ṽi = li(φ(x))u (i = 1, . . . , n),(4.3)

and, without loss of generality, we assume that

g̃i(t, 0, . . . , 0) ≡ 0 (i = 1, . . . , n).(4.4)

Following [9], for the C1 solution u = u(t, x) satisfying (1.15) with suitably small ε0 >
0, the mixed initial-boundary value problem (1.1), (1.10), and (4.1)–(4.2) is equivalent
to the mixed initial-boundary value problem (1.1) and (1.10)–(1.12). Then we can
also establish the exact boundary controllability for this problem. More precisely, T0

being given by (1.17), for any given initial data φ and final data ψ with small C1[0, 1]

norm, there exist boundary controls h̃i (i = 1, . . . , n) with suitably small C1[0, T0]
norm such that the mixed initial-boundary value problem (1.1), (1.10), and (4.1)–
(4.2) admits a unique C1 solution u = u(t, x) on the domain R(T0), which verifies the
final condition (1.16).

Acknowledgments. The authors would like to thank the referees for their kind
and valuable suggestions.
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[2] M. Cirinà, Nonlinear hyperbolic problems with solutions on preassigned sets, Michigan Math.
J., 17 (1970), pp. 193–209.

[3] A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture
Notes Ser. 34, Seoul National University, Seoul, 1996.

[4] I. Lasiecka and R. Triggiani, Exact controllability of semilinear abstract systems with ap-
plications to waves and plates boundary control problems, Appl. Math. Optim., 23 (1991),
pp. 109–154.

[5] T.-T. Li and W.-C. Yu, Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke
University Math. Ser. V, Durham, NC, 1985.

[6] T.-T. Li and B.-Y. Zhang, Global exact boundary controllability of a class of quasilinear
hyperbolic systems, J. Math. Anal. Appl., 225 (1998), pp. 289–311.

[7] T.-T. Li, B.-P. Rao, and Y. Jin, Solution C1 semi-global et contrôlabilité exacte frontière de
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1. Introduction. It has been well known for a long time that a controlled and
observed system in R

n whose nonlinear part depends only upon the output admits
Luenberger-like observers. More specifically, let us consider{

ż = Az + ϕ(u,Cz),
ξ = Cz,

(1.1)

where z ∈ R
n, ξ ∈ R, u ∈ R

p, A ∈ M(n, R), and C ∈ M(1 × n, R). Such a system
will be referred to as a linear up to an output injection system. If the pair (C,A) is
observable, we can choose a vector-column K such that the eigenvalues of A − KC
have arbitrary prescribed values. If their real parts are negative, then the system

˙̂z = Aẑ + ϕ(u, ξ)−K(Cẑ − ξ)(1.2)

is an observer for (1.1): denoting the error by e = ẑ − z, it is straightforward that

ė = (A−KC)e.

Thus the error dynamics is linear and the error converges exponentially to zero.
Up to now, mainly the possibility to transform a given system into the form (1.1)

by diffeomorphism was studied. In the paper [KI83], Krener and Isidori gave necessary
and sufficient conditions to transform an uncontrolled, single-output system into (1.1).
Then Krener and Respondek extended the results to MIMO systems (see [KR85]). In
these two papers the transformations under consideration are (local) diffeomorphisms
in the state space, together with a diffeomorphism in the output space in the second
one (see also [BZ83], [XG89], [Phe91], [GMP96], [HG88], [HP99]).

Some generalizations of the output injection method have been recently proposed
in order to enlarge the class of systems for which one can design an observer with
linear error dynamics. Among them let us quote the output-dependent time-scale
transformation [Gua01], the generalized output injection (after transformation the
nonlinear term depends upon the output, the input, and some of its derivatives)
[Kel87], and the completely generalized output injection [LPG99] (the nonlinear term
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depends, moreover, upon the derivatives of the output). In these papers, as well as
in the previous ones, the state space is transformed by (local) diffeomorphism.

In the present paper we deal with the problem of the immersion of a given system
into a linear up to an output injection one whose state space dimension may be greater,
or lower, than the dimension of the initial state space. The precise definition of an
immersion will be stated later (see Definition 2.2), but roughly speaking, a system Σ
can be immersed into a system S if the input-output mapping of Σ, possibly followed
by a diffeomorphism ψ of R, is a restriction of the input-output mapping of S. The
interest is twofold: on the one hand the class of systems into consideration is much
wider; on the other hand it is well known that a generic uncontrolled system can be
globally put in observable form by embedding but generically not by diffeomorphism.
Therefore the transformation of systems by diffeomorphism will always keep a local
character.

Among the literature let us mention [FK83], where the problem of the immersion
into a bilinear system is studied, and [BRG89], where the immersion of a control-affine
system into a linear up to an output injection one is studied under the very strong
hypothesis that the drift system is linearizable.

We consider herein a smooth system defined on a manifold X,

Σ =

{
ẋ = f(x, u),
y = h(x),

where u ∈ R and y ∈ R. (The paper mainly deals with control-affine systems; however,
we start with general ones because the first reduction, stated in Theorem 2.3, is true
in the general case.) This system will be said to be LIS (for the French linéarisable
par injection de sortie) if it can be immersed into a linear up to an output injection
one.

For instance, the reader can check that the uncontrolled system defined in R
2 by




ẋ1 = x2 exp(−x1),
ẋ2 =

1
2x

2
2 exp(−x1) + x2 exp(x1) + 1,

y = h(x1, x2) = exp(x1)

is LIS because it can be immersed into the system defined in R
3 by




ż1 = z2 +
5
6y

2,
ż2 = z3 + ln y − 2

9y
3,

ż3 = − 2
3y,

y = z1,

the immersion being




z1 = exp(x1),
z2 = x2 − 5

6 exp(2x1),
z3 =

1
2x

2
2 exp(−x1)− 2

3x2 exp(x1) +
2
9 exp(3x1)− x1 + 1.

We want to thank the anonymous reviewer who gave us this example, in a somewhat
different form.

First at all we state in Theorem 2.3 that whenever this system is LIS, it can be
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immersed into a system “in canonical form,” that is, in the form




ż1 = z2 + ϕ1(u, z1),
ż2 = z3 + ϕ2(u, z1),
...

...
żn−1 = zn + ϕn−1(u, z1),
żn = +ϕn(u, z1),
ξ = z1.

This result leads in the uncontrolled case to Theorem 2.6: An uncontrolled system is
LIS if and only if there exist a smooth function ψ and n smooth functions ϕ1, ϕ2, . . .,
ϕn such that

(F ) Lnf h̃ = Ln−1
f (ϕ1 ◦ h̃) + Ln−2

f (ϕ2 ◦ h̃) + · · ·+ Lf (ϕn−1 ◦ h̃) + ϕn ◦ h̃,

where h̃ = ψ ◦ h.

Although this characterization involves unknown functions ϕi and ψ, it is fun-
damental for several reasons. In the first place it is very general because it is just
as well global than local and because no assumption of observability is needed; then
formula (F) will be systematically used to implement the computations; finally it is
the starting point of the control-affine case. This last is studied in section 2.4, where
Theorem 2.7 is stated: A control-affine system whose dynamics is ẋ = f(x) + ug(x)
is LIS if and only if the following hold:

1. The uncontrolled part of the system is LIS.
2. If we denote by τ = (τ1, . . ., τn) the immersion of the uncontrolled part into a

canonical system in R
n, then for i = 1, . . ., n Lgτi is a smooth function of h.

Moreover, at points x such that dh(x) �= 0, condition 2 is equivalent to

dLgτi ∧ dh = 0.

After these theoretical results the second part of the paper is devoted to compu-
tational ones. The actual computation of the functions ϕi involved in formula (F),
necessary to decide whether a given system can be immersed into a linear up to an
output injection one, is not easy and we start with systems whose drift part is in
observable form:

Σ =




ẋ1 = x2 + ug1(x),
ẋ2 = x3 + ug2(x),
· · · · · ·
ẋd = Φ(x1, x2, . . ., xd) + ugd(x),
y = h(x) = x1,

where d = dim(X), this last condition ensuring the uniqueness of Φ(x1, x2, . . ., xd).
We also assume that no diffeomorphism in the output space is necessary (ψ = IdR). It
turns out that the control-affine case is easier to deal with than the uncontrolled one
because there are additional conditions that avoid to solve (untractable) differential
equations. Thus the computation process is complete in the SISO control-affine case
(with the slight restriction g1 �= 0).
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2. Theoretical results.

2.1. Definitions and notations. Let X be a C∞, connected manifold. We
consider on X the system

Σ =

{
ẋ = f(x, u),
y = h(x),

(2.1)

where x ∈ X, u ∈ R, and y ∈ R. The parametrized vector field f and the output
function h are assumed to be C∞. We define the open interval Io =]a, b[, where
a, b ∈ R, w.r.t. the range h(X) of h in the following way: if the lower bound α of
h(X) is finite and h(X) is closed at α, then a = −∞, otherwise a = α; if the upper
bound β of h(X) is finite and h(X) is closed at β, then b = +∞, otherwise b = β.

In view of Definition 2.1 we denote by Ac the (n-dimensional) antishift matrix,
that is, the n× n matrix

Ac =




0 1 0 · · · 0
0 0 1 · · · 0
...
...

. . .
...

. . . 1
0 0 0




,

and by Cc the 1× n matrix Cc = (1, 0, . . . , 0).
Definition 2.1. Let E be a finite-dimensional vector space; let A ∈ L(E) be an

endomorphism of E and C ∈ L(E, R) be a linear form. Let I be an open interval and
ϕ ∈ C∞(I × R;E). The system ΣL,

ΣL =

{
ż = Az + ϕ(Cz, u),
ξ = Cz,

(2.2)

defined on the pullback L of I by C is said to be linear up to an output injection.
When E = R

n, the linear mappings A and C are identified with their matrices in
the canonical basis, and ΣL is said to be in canonical form if A = Ac and C = Cc.

Remarks.
1. When a linear up to an output injection system ΣLc is in canonical form, the
output function is z �−→ z1 and the state space is L = I × R

n−1.
2. We will say that ΣL is observable if so is the pair (C,A). It is easy to check
that as well as in the linear case, whenever ΣL is observable, it is observable
for every input in the sense that for a L∞ input being given, any two different
states are distinguished by the output on any nontrivial time interval. Notice
that, in particular, ΣLc is observable.

Let u ∈ L∞([0, Tu[) be an input and let x ∈ X (resp., z ∈ E). We denote by x(t)
(resp., z(t)) the solution of (2.1) (resp., (2.2)) for this input that verifies the initial
condition x(0) = x (resp., z(0) = z). These solutions are, respectively, defined on
[0, Tx[ and [0, Tz[.

Definition 2.2. An immersion of the system Σ into the system ΣL is a couple
(τ, ψ), where τ is a C∞ mapping from X into E and ψ is a C∞ diffeomorphism from
Io onto ψ(Io) ⊂ I, that verifies the following property.

For every input u ∈ L∞([0, Tu[) and for every initial condition x ∈ X, if z = τ(x),
then Tx ≤ Tz and

ψ ◦ h[x(t)] = Cz(t) ∀t ∈ [0, Tx[.



1760 PHILIPPE JOUAN

This definition is rather weak because only the input-output mappings are in-
volved; for a stronger one we could require that the trajectories of Σ are applied on
those of ΣL. But it is a general fact that these two requirements are equivalent when-
ever ΣL is observable for every input and the forthcoming reduction will show that
ΣL can always be so chosen.

In what follows, a system that can be immersed into a linear up to an output
injection one will be called LIS. A linear up to an output injection system in canonical
form will be called a LIS system in canonical form.

2.2. First reduction.
Theorem 2.3. If the system Σ is LIS, then it can be immersed into a linear up

to an output injection system in canonical form (hence observable). Moreover, the
mapping τ applies in that case the trajectories of (2.1) onto the trajectories of (2.2),
i.e., for every input u ∈ L∞([0, Tu[) and for every initial condition x ∈ X the image
τ [x(t)] of x(t) by τ is a trajectory of (2.2).

In order to prove this theorem we state two very simple lemmas.
Lemma 2.4. If the system Σ can be immersed into a linear up to an output

injection system, then it can be immersed into an observable one.
Proof of Lemma 2.4. Let us assume that (τ, ψ) is an immersion of Σ into ΣL and

let

V =

+∞⋂
i=0

kerCAi

be the unobservable subspace of (C,A). If ΣL is not observable, then V �= {0}, but
we can define an observable, linear up to an output injection system on the quotient
space E/V in the same way as in the linear case. Let p be the projection of E onto
E/V and consider

Ã ∈ L(E/V ) defined by Ã(pz) = p(Az);

C̃ ∈ L(E/V ;R) defined by C̃(pz) = Cz;
ϕ̃ ∈ C∞(I × R;E/V ) defined by ϕ̃ = p ◦ ϕ;
τ̃ ∈ C∞(X;E/V ) defined by τ̃ = p ◦ τ.

We have to show that the couple (τ̃ , ψ) is an immersion of Σ into the system

Σ̃L =

{
˙̃z = Ãz̃ + ϕ̃(C̃z̃, u),

ξ = C̃z̃
(2.3)

in the sense of Definition 2.2.
Let u ∈ L∞([0, Tu[), x ∈ X, and z = τ(x). The solution of (2.3) issued from p(z)

is p[z(t)]; therefore

∀t ∈ [0, Tx[ C̃p[z(t)] = Cz(t) = ψ ◦ h[x(t)]

and Lemma 2.4 is proved.
Lemma 2.5. We keep the conditions and notations of Lemma 2.4. Then for every

u ∈ L∞([0, Tu[) and x ∈ X

τ̃ [x(t)] = p[z(t)].
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Proof of Lemma 2.5. Let u ∈ L∞([0, Tu[) and x ∈ X. We want to show that

∀t ∈ [0, Tx[ τ̃ [x(t)] = p[z(t)].

Let t0 ∈ [0, Tx[, let z̃0 = τ̃(x(t0)), and let t �−→ z̃(t) be the trajectory of (2.3)
issued from z̃0 for the input v defined on [0, Tu − t0[ by v(t) = u(t0 + t). We have

∀t ∈ [0, Tx − t0[ C̃z̃(t) = ψ ◦ h[x(t0 + t)]

= Cz(t0 + t)

= C̃p[z(t0 + t)].

But the system Σ̃L is observable and this equality implies

z̃(0) = p[z(t0)].

Therefore

τ̃(x(t0)) = p[z(t0)].

Proof of Theorem 2.3. The system Σ̃L being observable, so is the pair (C,A). We
know by the linear theory that we can choose a basis in E/V in which

Ã ≡




∗ 1 0 · · · 0
∗ 0 1 · · · 0
...
...

. . .
...

. . . 1
∗ 0 0




and C̃ ≡ (1, 0, . . . , 0).

The first column of Ã is a linear function of the output and can be added to ϕ̃ in
order to obtain in R

dimE/V a system in canonical form. This choice of coordinates
induces an isomorphism between E/V and R

dimE/V ; τ̃ followed by this isomorphism,
together with ψ, is clearly a suitable immersion.

Observability. This first reduction has some immediate consequences on the
observability of LIS systems. Let us recall that an input is universal if it distinguishes
between any two states that can be distinguished by at least one input (see [Sus79]).
As a first result of Theorem 2.3 we can see at once that every input is universal for a
LIS system. In particular, an observable and LIS system is observable for every input
in the sense defined in the above remarks.

However, the universality of all inputs is not a characterization of LIS systems.
Pick any uncontrolled system in observable form: it can be the drift part of a uniformly
observable control affine system (see [GHO92]) without being LIS.

Despite this fact, no assumption of observability will be needed in the forthcoming
results.

2.3. The uncontrolled case.

2.3.1. Main result. In this section we deal with uncontrolled systems:

Σu =

{
ẋ = f(x),
y = h(x).

(2.4)
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Theorem 2.6. The uncontrolled system Σu is LIS if and only if there exist
a function ψ belonging to C∞(Io, R), an integer n, and n functions ϕ1, ϕ2, . . ., ϕn
belonging to C∞(ψ(Io), R) such that

(F ) Lnf h̃ = Ln−1
f (ϕ1 ◦ h̃) + Ln−2

f (ϕ2 ◦ h̃) + · · ·+ Lf (ϕn−1 ◦ h̃) + ϕn ◦ h̃,

where h̃ = ψ ◦ h.
Proof of Theorem 2.6. Let us assume that Σu is LIS. Then, by Theorem 2.3, it

can be immersed into a canonical system:

Σuc =

{
ż = Acz + ϕ(Ccz),
ξ = Ccz

=




ż1 = z2 + ϕ1(z1),
ż2 = z3 + ϕ2(z1),

...
żn−1 = zn + ϕn−1(z1),
żn = ϕn(z1),
ξ = z1.

(2.5)

Let (τ, ψ), with τ = (τ1, . . . , τn), be the immersion of Σu into Σuc. We have ψ ◦ h =
Cc ◦ τ = τ1.

Let us assume that for an index k, 1 ≤ k < n, the following equality holds:

τk = Lk−1
f h̃− Lk−2

f (ϕ1 ◦ h̃)− · · · − Lf (ϕk−2 ◦ h̃)− ϕk−1 ◦ h̃.(2.6)

Let x ∈ X and let us denote by x(t) the solution of ẋ = f(x) that verifies x(0) = x.
Then

τk+1(x) =
d

dt
τk(x(t))|t=0 − ϕk(ψ ◦ h(x))

= Lkf h̃(x)− Lk−1
f (ϕ1 ◦ h̃)(x)− · · · − Lf (ϕk−1 ◦ h̃)(x)− (ϕk ◦ h̃)(x).

Moreover,

ϕn(h̃(x)) =
d

dt
τn(x(t))|t=0

= Lnf h̃(x)− Ln−1
f (ϕ1 ◦ h̃)(x)− · · · − Lf (ϕn−1 ◦ h̃)(x)

and formula (F) holds.
Conversely, if formula (F) holds, let{

τ1 = ψ ◦ h,
τk+1 = Lfτk − ϕk ◦ ψ ◦ h for 1 ≤ k < n.

Let τ = (τ1, . . . , τn) and h̃ = ψ ◦ h.
For k = 1, . . . , n− 1 we have by induction

d

dt
τk(x(t)) = Lfτk(x(t)) = τk+1(x(t)) + ϕk(h̃(x(t)));

hence

τk+1 = Lkf h̃− Lk−1
f (ϕ1 ◦ h̃)− · · · − Lf (ϕk−1 ◦ h̃)− ϕk ◦ h̃.
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In the end

d

dt
τn(x(t)) = Lfτn(x(t))

=
(
Lnf h̃− Ln−1

f (ϕ1 ◦ h̃)− Ln−2
f (ϕ2 ◦ h̃)− · · · − Lf (ϕn−1 ◦ h̃)

)
(x(t))

= ϕn(h̃(x(t)))

and (τ, ψ) is an immersion of Σu into

Σuc =

{
ż = Acz + ϕ(Ccz),
ξ = z1,

where ϕ = T(ϕ1, . . . , ϕn).

Remarks.

1. Clearly the functions ϕ1, . . . , ϕn−1 are defined up to a constant. But they
need not be unique, even up to a constant, as the forthcoming Example 1 will
show.

2. Formula (2.6), which gives τk as a function of the ϕi’s, will be useful later to
do the effective computations.

2.3.2. Existence of LIS systems. At a point x0 where f(x0) �= 0 we can
choose coordinates (x1, . . . , xd) such that f ≡ ∂

∂x1
in a neighborhood of x0. In these

coordinates, and in the case where ψ = Id, formula (F) becomes

(F ′)
∂n

∂xn1
h =

∂n−1

∂xn−1
1

(ϕ1 ◦ h) + · · ·+ ∂

∂x1
(ϕn−1 ◦ h) + ϕn ◦ h.

Now we can consider ϕ1, . . ., ϕn (defined on an interval I) as data and (F
′) as a

differential equation whose unknown is h. Setting x̂ = (x2, . . . , xd), we can choose
initial conditions x0

1 and yk(x̂), for k = 0, . . . , n − 1, defined in an open subset U of
Id−1 and smoothly depending on x̂. Then there exists a smooth function h defined
in a neighborhood of {x0

1} × U that is solution of (F ′) and verifies

∂kh

∂xk1
(x0

1, x̂) = yk(x̂) for k = 0, . . . , n− 1.

Thus for any choice of the integer n and of the functions ϕi, there exist functions
h that verify equation (F ′). All these solutions of (F ′), possibly composed with
diffeomorphisms ψ, form the class of the universal solutions of the LIS problem at a
regular point of the vector field. Notice that we can, moreover, choose the yk(x̂)’s in
such a way that the system is observable (if n ≥ d), at least in a neighborhood of
{x0

1} × U .

2.4. The control-affine case. In this section we consider systems whose vector
field is affine w.r.t. the control. The general setting of these systems is

Σ =

{
ẋ = f(x) + ug(x),
y = h(x),

(2.7)

where f and g belong to V ∞(X), the set of C∞-vector fields on X.
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Let us assume that Σ is LIS and can be immersed into the system in canonical
form:

S =

{
ż = Acz + ϕ(Ccz) + uγ(Ccz),
ξ = Ccz,

(2.8)

where z ∈ R
n.

Clearly the uncontrolled system

ΣU =

{
ẋ = f(x),
y = h(x)

(2.9)

is also LIS and can be immersed into

SU =

{
ż = Acz + ϕ(Ccz),
ξ = Ccz.

(2.10)

This remark leads to the following statement.
Theorem 2.7. The control-affine system Σ is LIS if and only if the following

hold:
1. The drift system ΣU is LIS.
2. If we denote by (τ, ψ), with τ = (τ1, . . . , τn), the immersion of ΣU into a

LIS system in canonical form in R
n, then there exist smooth functions γi,

i = 1, . . . , n, such that

Lgτi = γi ◦ (ψ ◦ h).

Moreover, at points x such that dh(x) �= 0, condition 2 is locally equivalent to

dLgτi ∧ dh = 0.

Proof of Theorem 2.7.
(i) Proof of the necessity part. As we have just remarked, if (τ, ψ) is an immersion

of Σ into S, then it is also an immersion of ΣU into SU and condition 1 holds. Let
us show that condition 2 holds as well.

Let u be a constant control and x ∈ X. Let x(t) be the solution of Σ for the
constant input u and for the initial condition x(0) = x. By Theorem 2.3 the solution
of S for the input u and the initial condition z(0) = τ(x) is z(t) = τ [x(t)].

Differentiating τi[x(t)] = zi(t) at t = 0, we get for all x, u, and i

Lfτi(x) + uLgτi(x) = LF zi(τ(x)) + uLγzi(τ(x)),

where F (resp., γ) stands for the vector field z �−→ Acz+ϕ(Ccz) (resp., z �−→ γ(Ccz))
in R

n.
Therefore

∀x ∈ X Lgτi(x) = Lγzi(τ(x))

= γi(Ccτ(x))

= γi(ψ ◦ h)(x),

where γi denotes the ith component of γ.
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(ii) Sufficiency. We assume now that conditions 1 and 2 hold. By condition 1,
and because SU is observable, we know by Theorem 2.3 that the trajectories of the
uncontrolled system ΣU are applied by τ on those of SU . Therefore we have

∀x ∈ X Lfτi(x) = LF zi(τ(x)),

where again F stands for the vector field z �−→ Acz + ϕ(Ccz).
We also know that Cc◦τ = ψ◦h and, in order to prove that (τ, ψ) is an immersion

of Σ into S, it is enough to show that for any input the mapping τ applies the
trajectories of Σ onto those of S, where the vector field γ is defined by

γ(z) = (γ1(Ccz), γ2(Ccz), . . ., γn(Ccz)) .

Let u ∈ L∞[0, Tu[ be an input and t �→ x(t) a trajectory of Σ for this input.
We have almost everywhere

d

dt
τi[x(t)] = Lfτi[x(t)] + u(t)Lgτi[x(t)]

= LF zi[τ(x(t))] + u(t)(γi ◦ (ψ ◦ h))[x(t)]

= LF zi[τ(x(t))] + u(t)γi(Ccτ)[x(t)].

This computation proves that τ [x(t)] is a solution of S and ends the proof.
(iii) Regular points. The condition

Lgτi = γi ◦ (ψ ◦ h)

always implies

dLgτi ∧ dh = d(γi ◦ (ψ ◦ h)) ∧ dh = 0.

Conversely let us assume that locally dh(x) �= 0 and
dLgτi ∧ dh = 0.

Let us choose local coordinates x1, x2, . . . , xd such that h(x) = x1. In these
coordinates, Lgτi is a function of x1, hence, a function γi of ψ ◦ h = ψ(x1).

Remarks.
1. The conditions stated in Theorem 2.7 are very strong. Let us, for instance,
assume that τ is an embedding from X into R

n; τ(X) is then a submanifold
of R

n. The value of τ∗g at a point z ∈ τ(X) depends only on the value z1

of the first coordinate of z. Thus all the subspaces of R
n tangent to τ(X) at

points z such that z1 = z0
1 contain τ∗g(z0) and, if we assume τ∗g(z0) �= 0,

their intersection must be different from {0}.
These conditions, somewhat hidden, are used further to compute the immer-
sion τ in the control-affine case.

2. In the paper [BRG89] the immersion of a control-affine system into a linear
up to an output injection one is studied in the case where the drift system is
linearizable. The necessary and sufficient conditions stated in that paper seem
to be more intrinsic than those of Theorem 2.7 because they do not involve
the immersion τ of the drift system. More specifically, the drift system is
assumed to be linearizable, and the conditions stated in [BRG89] turn out to
be

d
(
LgL

k
fh
) ∧ dh = 0 ∀k.
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But these conditions are no longer true in the more general case dealt with
herein.
Example.

Σ =




ż1 = z2 + z2
1 + uz1,

ż2 = z3 + z2
1 + uz1,

.

.
żn−1 = zn + z2

1 + uz1,
żn = z2

1 + uz1,
y = h(z) = z1.

(2.11)

The system is LIS. However,

Lfh(z) = z2 + z2
1 ,

L2
fh(z) = z3 + z2

1 + 2z1(z2 + z2
1)

= z3 + z2
1 + 2z

3
1 + 2z1z2,

LgL
2
fh(z) = (1 + 2z1 + 6z

2
1 + 2z1 + 2z2)z1

= z1 + 4z
2
1 + 6z

3
1 + 2z1z2.

Hence

dLgL
2
fh ∧ dh = −2z1dz1 ∧ dz2 �= 0.

3. Computational results. The purpose of this section is to actually check if a
given system is LIS and to compute the functions ϕk or, equivalently, the coordinate
functions τk of the immersion in an LIS system in canonical form.

We shall always start with a system whose drift part is in observable form, that
is, a system in the form

Σ =




ẋ1 = x2 + ug1(x),
ẋ2 = x3 + ug2(x),
· · · · · ·
· · · · · ·
ẋd = Φ(x) + ugd(x),
y = h(x) = x1,

(3.1)

where x = (x1, . . . , xd) and where d is the dimension of the state space X. This
is of course a restriction because generically there exist points of the state space
where the observable form can be obtained only in dimension strictly greater than
the dimension of the state space, but at the present time we do not know how to do
the computations at these points. Moreover, we shall always assume the function ψ
that appears in Definition 2.2 to be equal to the identity of R.

The computations are easier in the controlled case, but they make use of a general
form of certain extensions of the drift system, and in the first place we are going to
study uncontrolled systems.
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3.1. The uncontrolled case. As we have just said, we assume that the system
Σ is in observable form:

Σ =




ẋ1 = x2,
ẋ2 = x3,
· · ·
ẋd = Φ(x1, x2, . . . , xd),
y = h(x) = x1.

(3.2)

The requirement d = dimX, i.e., the requirement that the observable form is obtained
by diffeomorphism, is very important because in that case the function Φ is unique.
If Σ can be embedded in the system

Σn =




ẋ1 = x2,
ẋ2 = x3,
· · ·
ẋn = θ(x1, x2, . . . , xn),
y = h(x) = x1,

(3.3)

we will say that Σn is an extension at the order n of Σ. If Σn is, moreover, LIS by
diffeomorphism, we will say that Σn is a LIS extension at the order n of Σ. We can
use existing algorithms to check whether Σn is LIS by diffeomorphism or not (see, for
instance, [KI83], [Phe91], [GMP96]). But of course such an extension at order n is
not unique as soon as n > d and the problem is to choose the function θ in order to
get an LIS one if it exists.

Let us denote by

f =

d−1∑
i=1

xi+1
∂

∂xi
+Φ(x1, x2, . . ., xd)

∂

∂xd

the vector field of (3.2) and by

F =

n−1∑
i=1

xi+1
∂

∂xi
+ θ(x1, x2, . . ., xn)

∂

∂xn

the one of (3.3).
The first thing to notice is that (3.3) is an extension at the order n of (3.2) if and

only if

θ(x, Ldfh(x), L
d+1
f h(x), . . . , Ln−1

f h(x)) = Lnfh(x),(3.4)

where x = (x1, x2, . . ., xd).
If, moreover, (3.3) is LIS by a change of variables, we can find functions ϕi,

i = 1, . . . , n, such that

θ(x1, . . ., xn) = Ln−1
F [ϕ1(x1)] + · · ·+ LF [ϕn−1(x1)] + ϕn(x1).(3.5)

In this formula, we can compute the terms where xd+1, . . ., xn appear, and then,
combining this with formula (3.4), we can obtain the general form of θ in the case
where (3.3) is an LIS extension of (3.2).

Let us first consider the case n = d+ 1.



1768 PHILIPPE JOUAN

3.1.1. Extension at order d + 1.
Proposition 3.1. If (3.2) admits an LIS extension (3.3) at order d+1, then the

mapping θ that appears in (3.3) has the following form:

θ = Ld+1
f h(x) + ϕ′

1(x1)
(
xd+1 − Ldfh(x)

)
,

where x = (x1, x2, . . . , xd). Moreover, ϕ′
1 is equal to

ϕ′
1 =

∂2Ld+1
f h

∂x2
d

(
∂2Ldfh

∂x2
d

)−1

if ∂2

∂x2
d
Ldfh(x) �= 0 and d > 2. Otherwise ϕ′

1 is solution of the first order linear

differential equation

ϕ′′
1 + ϕ′

1

∂2

∂x2∂xd
Ldfh =

∂2

∂x2∂xd
Ld+1
f h

if d > 2, and

2ϕ′′
1 + ϕ′

1

∂2

∂x2
2

Ldfh =
∂2

∂x2
2

Ld+1
f h

if d = 2.
Proof of Proposition 3.1.
1. Let us prove the first assertion: the only term of formula (3.5) in which xd+1

appears is LdF [ϕ1(x1)] (see the appendix):

LdF [ϕ1(x1)] = xd+1ϕ
′
1(x1) + terms in x1, . . ., xd.

Therefore we have

θ(x, xd+1) = xd+1ϕ
′
1(x1) + Λ(x),

where Λ does not depend on xd+1, and

Ld+1
f h(x) = θ(x, Ldfh(x)) = Ldfh(x)ϕ

′
1(x1) + Λ(x).

Consequently

Λ(x) = Ld+1
f h(x)− Ldfh(x)ϕ

′
1(x1)

and

θ(x, xd+1) = Ld+1
f h(x) + ϕ′

1(x1)
(
xd+1 − Ldfh(x)

)
.

2. Let us now compute ϕ′
1. In formula (3.5) xd appears only in the terms

LdF [ϕ1(x1)] = xd+1ϕ
′
1(x1) + x2xdϕ

′′
1(x1) + terms in x1, . . ., xd−1

and

Ld−1
F [ϕ2(x1)] = xdϕ

′
2(x1) + terms in x1, . . ., xd−1.
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Replacing xd+1 by Ldfh(x) we get

Ld+1
f h(x) = Ldfh(x)ϕ

′
1(x1) + x2xdϕ

′′
1(x1) + xdϕ

′
2(x1) + terms in x1, . . ., xd−1

and then, differentiating w.r.t. xd,

∂Ld+1
f h

∂xd
=

∂Ldfh

∂xd
ϕ′

1(x1) + x2ϕ
′′
1(x1) + ϕ′

2(x1)

if d > 2, and

∂L3
fh

∂x2
=

∂L2
fh

∂x2
ϕ′

1(x1) + 2x2ϕ
′′
1(x1) + ϕ′

2(x1)

if d = 2.
If d > 2 let us differentiate one more time w.r.t xd. We get

∂2Ld+1
f h

∂x2
d

=
∂2Ldfh

∂x2
d

ϕ′
1

and, if ∂2

∂x2
d
Ldfh(x) �= 0, this equality gives the result.

Otherwise, differentiating w.r.t x2 we get

ϕ′′
1 + ϕ′

1

∂2

∂x2∂xd
Ldfh =

∂2

∂x2∂xd
Ld+1
f h

if d > 2, and

2ϕ′′
1 + ϕ′

1

∂2

∂x2
2

L2
fh =

∂2

∂x2
2

L3
fh

if d = 2.
Example 1. Let us consider the system defined in ]− 1,+∞[×R by


ẋ1 = x2,

ẋ2 =
x2
2

2x1+2 + x1x2 + x2 + 1,

y = h(x1, x2) = x1.

(3.6)

Thus we have

L2
fh(x) =

x2
2

2x1 + 2
+ x1x2 + x2 + 1

and we can first remark that the system (2.11) is not LIS by diffeomorphism; hence
in dimension 2, in any open subset of ] − 1,+∞[×R, because we would have in that
case

Φ(x1, x2) = L2
fh(x) = Lf [ϕ1(h(x))] + ϕ2(h(x))

= ϕ′
1(x1)x2 + ϕ2(x1),

one has

L3
fh(x) =

5

2
x2

2 +
x2

x1 + 1
+ x2

1x2 + 2x1x2 + x1 + x2 + 1,

∂L3
fh

∂x2
(x) = 5x2 +

1

x1 + 1
+ x2

1 + 2x1 + 1,

∂2L3
fh

∂x2
2
(x) = 5.
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If the system is LIS at order 3, then ϕ1 must verify

ϕ′′
1 +

1

2

∂2L2
fh

∂x2
2

ϕ′
1 =

1

2

∂2L3
fh

∂x2
2

,

that is,

ϕ′′
1 +

1

2(x1 + 1)
ϕ′

1 =
5

2
.

The general solution of this equation is

ϕ′
1 =

C√
x1 + 1

+
5

3
(x1 + 1),

where C ∈ R, and we set

θ(x1, x2, x3) = L3
fh+ ϕ′

1(x3 − Φ).
In order to check whether the system is LIS at order 3 and to compute ϕ2 and

ϕ3, we have to compute θ − L2
F (ϕ1(x)), where F is the vector field of the system


ẋ1 = x2,
ẋ2 = x3,
ẋ3 = θ(x1, x2, x3),
y = x1.

We get

θ − L2
F (ϕ1(x1)) = x2

(
1

x1+1 + x2
1 + 2x1 + 1− 5

3 (x1 + 1)
2
)

+ x1 + 1− 5
3 (x1 + 1)

− C√
x1+1

(x1x2 + x2 + 1).

Let us take C = 0, hence ϕ′
1 =

5
3 (x1 + 1), and

θ − L2
F (ϕ1(x1)) = x2

(
1

x1 + 1
− 2
3
x2

1 −
4

3
x1 − 2

3

)
− 2
3
(x1 + 1).

We obtain

ϕ2 = ln(x1 + 1)− 2
9x

3
1 − 2

3x
2
1 − 2

3x1,
ϕ3 = − 2

3 (x1 + 1).

At the end the system can be immersed into


ż1 = z2 +
5z21
6 + 5z1

3 ,
ż2 = z3 + ln(z1 + 1)− 2

9z
3
1 − 2

3z
2
1 − 2

3z1,
ż3 = − 2

3 (z1 + 1),

the immersion being given by

τ1 = x1,

τ2 = x2 − 5x
2
1

6
− 5x1

3
,

τ3 =
x2

2

2x1 + 2
− 2
3
x1x2 − 2

3
x2 − ln(x1 + 1) +

2

9
x3

1 +
2

3
x2

1 +
2

3
x1 + 1.
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In order to verify the result, one can differentiate τ1, τ2, and τ3. As expected we
obtain 


τ̇1 = τ2 +

5y2

6 + 5y
3 ,

τ̇2 = τ3 + ln(y + 1)− 2
9y

3 − 2
3y

2 − 2
3y,

τ̇3 = − 2
3 (y + 1).

Remark on the nonuniqueness. In fact it is possible to give any value to the
integration constant C of the differential equation. Let us set

ϕ′ =
C√

x1 + 1
.

This function ϕ′ verifies the homogeneous equation

ϕ′′ +
1

2(x1 + 1)
ϕ′ = 0;

hence the degree of

L2
fϕ = (x1x2 + x2 + 1)ϕ

′

w.r.t. x2 is one. Therefore we can add ϕ′ to ϕ′
1 if we modify ϕ2 and ϕ3. This is due

to the fact that the degree of Φ w.r.t. x2 is 2: if ϕ
′ is a solution of the homogeneous

equation

ϕ′′ +
1

2

∂Φ

∂x2
2

ϕ′ = 0,

then L2
fϕ verifies

L2
fϕ =

(
−x2

2

2

∂Φ

∂x2
2

+Φ

)
ϕ′,

where the second degree term w.r.t. x2 clearly vanishes.

3.1.2. Extension at order n ≥ d + 2. We can compute the general form of
the function θ of an LIS extension in the same manner as in the case of the extension
at order d+ 1. Each term of the formula

θ(x1, . . . , xn) = Ln−1
F [ϕ1(x1)] + · · ·+ LF [ϕn−1(x1)] + ϕn(x1)

is a polynomial in xd+1, . . . , xn with coefficients in C∞(R)[x2, . . . , xd]. Therefore θ
can be written

θ(x, xd+1, . . . , xn) = Pn,d(xd+1, . . . , xn) + Λ(x),

where Pn,d is a polynomial in the variables xd+1, . . . , xn without constant term. These
polynomials are universal and their computation is postponed to the appendix. Now
we have also

θ(x, Ldfh(x), L
d+1
f h(x), . . . , Ln−1

f h(x)) = Lnfh(x);

hence

Lnfh(x) = Pn,d(L
d
fh(x), L

d+1
f h(x), . . . , Ln−1

f h(x)) + Λ(x)
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and

Λ(x) = Lnfh(x)− Pn,d(L
d
fh(x), L

d+1
f h(x), . . . , Ln−1

f h(x)).

In the end we get

θ(x, xd+1, . . . , xn) = Lnfh(x) + Pn,d(xd+1, . . . , xn)

− Pn,d(L
d
fh(x), L

d+1
f h(x), . . . , Ln−1

f h(x)).(3.7)

In particular, if n < 2d, the degree of the polynomial Pn,d w.r.t. each of the variables
xd+1, . . . , xn is one (see the appendix):

Pn,d = xd+1Q
d+1
n,d (x) + · · ·+ xnQ

n
n,d(x),

where Qk
n,d ∈ C∞(R)[x2, . . . , xd], k = d+ 1, . . . , n, and θ becomes

θ(x, xd+1, . . . , xn) = Lnfh(x) +

n∑
k=d+1

(xk − Lk−1
f h(x))Qk

n,d(x).

At this point we would like to get some equation allowing us to compute at least
ϕ1 or one of its derivatives. But whenever n > d + 1, it turns out that the above
formulas lead to partial differential equations, involving not only at least ϕ1 and ϕ2,
but also the equivalent of the function θ in an intermediate extension, and we do not
know how to solve these equations in the uncontrolled case.

Fortunately there are additional conditions in the controlled one and these can
be used to compute the functions ϕi in most cases.

3.2. The controlled case. We consider controlled systems in observable form,

Σ =




ẋ1 = x2 + ug1(x),
ẋ2 = x3 + ug2(x),
· · · · · ·
· · · · · ·
ẋd = Φ(x1, x2, . . . , xd) + ugd(x),
y = h(x) = x1,

(3.8)

where d is again equal to the dimension of the state space X.
Following the results of section 2.4, if there exists an embedding τ = (τ1, . . . , τn)

into an n-dimensional system in LIS canonical form, then this mapping must verify

dLgτi ∧ dx1 = 0 for i = 1, . . . , n.

But, by section 2.3, we also know that

τk = Lk−1
f h− Lk−2

f (ϕ1 ◦ h)− · · · − Lf (ϕk−2 ◦ h)− ϕk−1 ◦ h

for k = 1, . . . , n.
Let us first notice the following proposition.
Proposition 3.2. If Σ is LIS, then
(i) g1 and g2 are functions of x1 only;
(ii) for k = 3, . . . , d, gk depends on x1, . . . , xk−1 only; more specifically gk is a

polynomial in the variables x2, . . . , xk−1 and its degree is one w.r.t. xk−1.
In particular, g does not depend on xd.
Proof of Proposition 3.2. The proof merely uses the fact that Lgτk is a function

of x1 only.
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• τ1 = x1; hence Lgτ1 = g1 and g1 is a function of x1 only.
• τ2 = Lfh − ϕ1(x1) = x2 − ϕ1(x1); hence Lgτ2 = g2 − ϕ′

1(x1)g1(x1) and
g2 = Lgτ2 + ϕ′

1(x1)g1(x1) is a function of x1 only.
• Let 3 ≤ k ≤ d and let us assume the property true for g1, . . . , gk−1. We have

τk = xk − Lk−2
f (ϕ1(x1))− · · · − Lf (ϕk−2(x1))− ϕk−1(x1)

= xk − xk−1ϕ
′
1(x1) + terms without xk, xk−1.

Therefore

Lgτk = gk − xk−1ϕ
′′
1(x1)g1(x1)− ϕ′

1(x1)gk−1(x1, . . . , xk−2)

+ terms in x1, . . . , xk−2 and g1, . . . , gk−2.

The fact that gk is a polynomial in the variables x2, . . . , xk−1 comes from the
similar property for the functions Lpf (ϕi(x1)).

Remarks.
1. The independence of g on xd is crucial in the forthcoming computations.
2. The necessary conditions of Proposition 3.2 are stronger than the criterion of
uniform observability stated in [GHO92]: a control affine SISO system whose
drift part is in observable form is uniformly observable if and only if gk is a
function of x1, . . . , xk only for k = 1, . . . , d.

Now the same kind of computations of the τk’s for k ≥ d+ 1 will give conditions
on the ϕi’s. For instance,

τd+1 = Ldfh− Ld−1
f (ϕ1(x1))− · · · − ϕd(x1)

= Ldfh− xdϕ
′
1(x1) + terms without xd.

Therefore

Lgτd+1 = LgL
d
fh− xdϕ

′′
1(x1)g1(x1) + terms without xd.

Since Lgτd+1 has to be a function of x1 only, we have

∂

∂xd
LgL

d
fh = ϕ′′

1(x1)g1(x1).(3.9)

If the system is LIS, the left-hand side of (3.9) does depend only upon x1, and, if
g1(x1) �= 0, this provides ϕ′′

1(x1), hence ϕ′
1(x1) up to a constant.

We can check if the drift system is LIS at order d+1 for a value of this constant.
If not, we do the same with τd+2:

τd+2 = Ld+1
f h− Ldf (ϕ1(x1))− Ld−1

f (ϕ2(x1))− · · · − ϕd+1(x1)

= Ld+1
f h− Ldf (ϕ1(x1))− xdϕ

′
2(x1) + terms without xd

and

Lgτd+1 = Lg

(
Ld+1
f h− Ldf (ϕ1(x1))

)
− xdϕ

′′
2(x1)g1(x1) + terms without xd.

As Lgτd+2 has to be a function of x1 only, we have

ϕ′′
2(x1)g1(x1) =

∂

∂xd

(
Lg

(
Ld+1
f h− Ldf (ϕ1(x1))

))
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and, again, ϕ′
2(x1) is known up to a constant if g1(x1) �= 0 and if the right-hand side

depends only on x1 for a value of the constant of ϕ
′
1.

We know ϕ′
1(x1) and ϕ′

2(x1) up to constants, and we can check if the drift system
is LIS at order d+ 2 for some values of these constants.

By induction we will have

τk+1 = Lkfh− Lk−1
f (ϕ1(x1))− · · · − Ld−1

f (ϕk−d+1(x1))− · · · − ϕk ◦ h

= ζ(x)− xdϕ
′
k−d+1(x1) + terms without xd,

where ζ = Lkfh−Lk−1
f (ϕ1(x1))−· · ·−Ldf (ϕk−d+2(x1)) is known up to some constants.

If the system is LIS we must have

ϕ′′
k−d+1(x1)g1(x1) =

∂

∂xd
ζ.

If it is not possible to choose the constants in such a way that ∂
∂xd

ζ is a function of x1

only, then the system is not LIS. If this function depends on x1 only, one has to check
whether the system is LIS at order k + 1. If the answer is negative, the computation
continues at order k + 2.

Thus the computation of the functions ϕi is quite easy whenever the first com-
ponent g1 of the vector field g vanishes on no nontrivial interval.

Example 2. Let us consider the system defined by


ẋ1 = x2 + uγ(x1),

ẋ2 =
√
1− (x1 + x2 − δ(x1))2 + (δ

′(x1)− 1)x2

+ u(δ′(x1)− 1)γ(x1),
y = h(x1, x2) = x1,

(3.10)

where γ and δ are smooth functions from R into R. The system is defined for

−1 < x1 + x2 − δ(x1) < 1

and we assume that γ vanishes on no nontrivial interval.
If an immersion τ = (τ1, τ2, τ3, . . . ) into an LIS canonical system exists, then Lgτ3

is a function of x1 only. Hence we compute

τ3 = L2
fh− Lf (ϕ1 ◦ h)− ϕ2 ◦ h

=
√
1− (x1 + x2 − δ(x1))2 + (δ

′(x1)− 1)x2 − x2ϕ
′
1(x1)− ϕ2(x1)

and

Lgτ3 = x2δ
′′(x1)γ(x1) + (δ

′(x1)− 1)2γ(x1)− x2ϕ
′′
1(x1)γ(x1)

− ϕ′
1(x1)γ(x1)(δ

′(x1)− 1)− ϕ′
2(x1)γ(x1).

As Lgτ3 does not depend on x2 we get δ′′(x1)− ϕ′′
1(x1) = 0; hence

ϕ1(x1) = δ(x1) + Cx1,

where C is a constant to be determined.
If the drift part of the system is LIS at order 3, the extension will be


ẋ1 = x2,
ẋ2 = x3,

ẋ3 = L3
fh+ ϕ′

1

(
x3 − L2

fh
)

.
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An easy computation gives

L3
fh+ ϕ′

1

(
x3 − L2

fh
)
= −x1 − x2 + δ(x1) + δ′′(x1)x

2
2 + (δ

′(x1)− 1)2x2

− (C + 1)
√
1− (x1 + x2 − δ(x1))2

+ (δ′(x1) + C)((x3 − δ′(x1)x2 + x2).

As this expression must be polynomial w.r.t. x2, we take C = −1, we get

L3
fh+ ϕ′

1

(
x3 − L2

fh
)
= −x1 − x2 + δ(x1) + δ′′(x1)x

2
2 + (δ

′(x1)− 1)x3,

and, as ϕ1(x1) = δ(x1)− x1,

L3
fh+ ϕ′

1

(
x3 − L2

fh
)− L2

F (ϕ1(x1)) = −x1 − x2 + δ(x1).

Consequently

ϕ2(x1) = −x1,

ϕ3(x1) = δ(x1)− x1

and the drift system can be immersed into


ż1 = z2 + δ(z1)− z1,
ż2 = z3 − z1,
ż3 = δ(z1)− z1.

The immersion is given by

τ1 = x1,
τ2 = Lfh− ϕ1(x1),

= x1 + x2 − δ(x1),
τ3 = L2

fh− Lf (ϕ1(x1))− ϕ2(x1),

= x1 +
√
1− (x1 + x2 − δ(x1))2;

hence

Lgτ1 = γ(x1),
Lgτ2 = 0,
Lgτ3 = γ(x1)

and the system can be immersed into


ż1 = z2 + δ(z1)− z1 + uγ(x1),
ż2 = z3 − z1,
ż3 = δ(z1)− z1 + uγ(x1).

Appendix. In what follows F stands for the vector field

F =

n−1∑
i=1

xi+1
∂

∂xi
,

the possible last term θ(x1, x2, . . ., xn)
∂
∂xn

being of no importance.
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In order to compute the universal polynomials Pn,d of section 3.1.2, the sim-
plest way is to compute LkFϕn−k for k = d, . . . , n − 1 and to sum the terms where
xd+1, . . . , xn appear on k = d, . . . , n− 1. For example, let us compute P4,2:

L2
Fϕ2 = LF (x2ϕ

′
2)

= x3ϕ
′
2 + x2

2ϕ
′′
2 ,

L3
Fϕ1 = LF (x3ϕ

′
1 + x2

2ϕ
′′
1)

= x4ϕ
′
1 + 3x2x3ϕ

′′
1 + x3

2ϕ
(3)
1 ;

hence

P4,2 = x4ϕ
′
1 + x3(3x2ϕ

′′
1 + ϕ′

2).

Of course this computation can be rather long, and, if d is great but n is not
too much greater than d, it is more interesting to obtain Pn,d without completely
computing the LkFϕn−k’s.

First of all we have the following lemma.
Lemma A.1. Let I be an open interval and ϕ ∈ C∞(I;R). Then, for 1 ≤ k ≤

n− 1,

LkF (ϕ ◦ h) =

k∑
p=1

Qk
pϕ

(p)(x1),

where Qk
p is a polynomial in the variables x2, . . . , xn, the monomials of which are

ζk,p,rx
r2
2 xr33 . . . x

rk+1

k+1 ,

where

r2 + r3 + · · ·+ rk+1 = p,

r2 + 2r3 + · · ·+ krk+1 = k,

r = (r2, r3, . . . , rk+1), and ζk,p,r is an integer. We set r = ej if rj = 1 and ri = 0 for
i �= j, and we have the following:

• If p = 1, then

ζk,1,ek+1
= 1

and ζk,1,r vanishes for r �= ek+1.
• If p > 1, then ζk,p,r can be defined by induction:

ζk,p,(r2,...,rk+1) = ν2ζk−1,p−1,(r2−1,...,rk+1)

+
∑k+1
j=3 νj(rj−1 + 1)ζk−1,p,(...,rj−1+1,rj−1,... ),

where νj = 1 if rj > 0; νj = 0 otherwise.
Proof of Lemma A.1. As LF (ϕ ◦ h) = x2ϕ

′(x1), the lemma is clearly true for
k = 1.

Let ζxr22 xr33 . . . x
rk+1

k+1 ϕ(p) be a monomial of LkF (ϕ ◦ h). The differentiation of

this monomial along the vector field F gives monomials where x
rj
j x

rj+1

j+1 (with rj >

0) is replaced by x
rj−1
j x

rj+1+1
j+1 and a monomial where xr22 ϕ(p)(x1) is replaced by



LINEARIZATION BY OUTPUT INJECTION 1777

xr2+1
2 ϕ(p+1)(x1) . This gives by induction the result about the rj ’s and it remains to
evaluate the ζk,p,r’s.

If p = 1, the only nonzero monomial is ζxk+1ϕ
′(x1) and it is obtained by differ-

entiating k − 1 times x2ϕ
′(x1), so ζk,1,ek+1

= 1 and ζk,1,r = 0 if r �= ek+1.

If p > 1, the result is obtained by considering the monomials of Lk−1
F (ϕ◦h) whose

differentiation along F gives the desired monomial.
As a first consequence of Lemma A.1, Pn,d is of the first degree w.r.t. xd+1, . . . , xn

if n ≤ 2d− 1 because rj ≥ 2 with j ≥ d+ 1 implies

n ≥ k ≥ (j − 1)rj ≥ 2d.
We can then compute Pn,d for n = d+ 1, d+ 2, d+ 3, . . . .
1. n = d+1. The computation of Pd+1,d involves only Ldfϕ1 and the only term of
this last quantity where xd+1 appears is xd+1ϕ

′
1. So we obtain the previously

used formula:

Pd+1,d = xd+1ϕ
′
1.

2. n = d+ 2.

Ld+1
F ϕ1 = xd+2ϕ

′
1 + αxd+1x2ϕ

′′
1 + . . . ,

LdFϕ2 = xd+1ϕ
′
2 + . . . ,

where α = ζd+1,2,(1,0,..,rd+1=1,0). But

ζd+1,2,(1,0,..,rd+1=1,0) = ζd,1,(0,0,..,rd+1=1,0) + ζd,2,(1,0,..,rd=1,0,0)

= 1 + ζd,2,(1,0,..,rd=1,0,0)

and by induction

ζd+1,2,(1,0,..,rd+1=1,0) = d+ 1.

Hence

Pd+2,d = xd+2ϕ
′
1 + xd+1 ((d+ 1)x2ϕ

′′
1 + ϕ′

2) .

3. In the same manner, the reader can check that for n = d+ 3 (with d ≥ 3),
Pd+3,d = xd+3ϕ

′
1 + xd+2 ((d+ 2)x2ϕ

′′
1 + ϕ′

2)

+ xd+1

(
(d+1)(d+2)

2 x3ϕ
′′
1 +

(d+1)(d+2)
2 x2

2ϕ
(3)
1 + (d+ 1)x2ϕ

′′
2 + ϕ′

3

)
.
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OPTIMAL STRATEGIES FOR RISK-SENSITIVE PORTFOLIO
OPTIMIZATION PROBLEMS FOR GENERAL FACTOR MODELS∗
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Abstract. We consider constructing optimal strategies for risk-sensitive portfolio optimization
problems on an infinite time horizon for general factor models, where the mean returns and the
volatilities of individual securities or asset categories are explicitly affected by economic factors.
The factors are assumed to be general diffusion processes. In studying the ergodic type Bellman
equations of the risk-sensitive portfolio optimization problems, we introduce some auxiliary classical
stochastic control problems with the same Bellman equations as the original ones. We show that
the optimal diffusion processes of the problem are ergodic and that under some condition related to
integrability by the invariant measures of the diffusion processes we can construct optimal strategies
for the original problems by using the solution of the Bellman equations.

Key words. portfolio optimization, risk-sensitive control, infinite time horizon, Bellman equa-
tions, factor models

AMS subject classifications. 91B28, 93E20, 49L20, 35J60, 35K55, 60H30

PII. S0363012901399337

1. Introduction. Risk-sensitive portfolio optimization problems for factor mod-
els have been studied by several authors, e.g., [4], [5], [7], [8], [9], [11], [12], [14], [15],
etc., as the study of infinite time horizon versions of Merton terminal wealth prob-
lems for incomplete market models. In those works the problems have been mostly
formulated for such models that the mean returns of the individual securities depend
linearly on underlying economic factors formulated as the solutions of linear stochastic
differential equations, except [15], which treats the case of discrete time and nonlinear
factors. For these models they considered the problem maximizing the risk-sensitized
expected growth rate per unit time:

J∞(v, x;h) = lim inf
T→∞

(
− 2

θT

)
logE

[
e−( 2

θ ) log VT (h)
]
,(1.1)

where VT (h) denotes the capital at time T a investor possesses by selecting a portfolio
proportion h. To discuss such portfolio optimization problems, employing the idea of
Bellman’s dynamic programming principle, they have constructed optimal strategies
by using the solutions of relevant ergodic type Bellman equations, or more directly the
ones of Riccati equations which express the solutions of the Bellman equations in the
case of linear Gaussian factor models. However, it is to be noted that the solutions
don’t always straightforwardly construct the optimal strategies for the problems. In
the case of linear Gaussian factor models, in [5], [9] they actually constructed nearly
optimal strategies or optimal ones for small θ, while in [12], [14] the construction was
done for general θ > 0 under some condition related to integrability of the criterion
function.
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In the present paper we formulate a general factor model where the mean returns
as well as the volatilities of security prices depend nonlinearly on the economic fac-
tors which are formulated as the solutions of general stochastic differential equations.
For such a general model we consider the above-mentioned risk-sensitized portfolio
optimization problem on infinite time horizon without strategy constraints. We shall
study the ergodic type Bellman equation of the risk-sensitive control problem relevant
to the portfolio optimization through asymptotic analysis of the solution of the Bell-
man equation corresponding to the portfolio optimization on a finite time horizon.
Then, by using the solution of the ergodic type equation, we construct the optimal
strategy for the problem on infinite time horizon under a similar condition to what
was assumed in [12], [14]. We here notice that the condition suggests an integrabil-
ity by the invariant measure of an underlying ergodic diffusion process. The ergodic
diffusion process is the optimal one of the other classical ergodic control problem
with the same Bellman equation of ergodic type as the original one. Furthermore,
the integrability condition is checked precisely in the case of linear Gaussian models
in section 5. We remark that such a situation occurs in discussing other stochastic
control problems with an exponential type criterion as well (cf. [11]).

2. Finite time horizon case. We consider a market with m+ 1 ≥ 2 securities
and n ≥ 1 factors. We assume that the set of securities includes one bond, whose
price is defined by ordinary differential equation:

dS0(t) = r(Xt)S
0(t)dt, S0(0) = s0,(2.1)

where r(x) is a nonnegative bounded function. The other security prices Sit , i =
1, 2, . . . ,m, and factors Xt are assumed to satisfy the following stochastic differential
equations:

dSi(t) = Si(t){gi(Xt)dt+
∑n+m

k=1 σik(Xt)dW
k
t },

Si(0) = si, i = 1, . . . ,m,
(2.2)

and

dXt = b(Xt)dt+ λ(Xt)dWt,

X0 = x ∈ Rn,
(2.3)

where Wt = (W k
t )k=1,...,(n+m) is an m + n dimensional standard Brownian motion

process defined on a filtered probability space (Ω,F , P,Ft). Here σ and λ are, respec-
tively, m× (m+ n), n× (m+ n) matrix valued functions. We assume that

g, σ, b, λ are locally Lipschitz,

c1|ξ|2 ≤ ξ∗σσ∗(x)ξ ≤ c2|ξ|2, c1, c2 > 0,

x∗b(x) + 1
2 ‖ λλ∗(x) ‖≤ K(1 + |x|2),

(2.4)

where σ∗ stands for the transposed matrix of σ.
Let us denote by hi(t) a portion of the capital invested to the ith security Si(t),

i = 0, 1, . . . ,m and set

S(t) = (S1(t), S2(t), . . . , Sm(t))∗,
h(t) = (h1(t), h2(t), . . . , hm(t))∗
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and

Gt = σ(S(u), X(u);u ≤ t).

Here S∗ stands for transposed matrix of S.
Definition 2.1. (h0(t), h(t)∗)0≤t≤T is called an investment strategy if the fol-

lowing conditions are satisfied:
(i) h(t) is a Rm valued Gt progressively measurable stochastic process such that

m∑
i=1

hi(t) + h0(t) = 1;(2.5)

(ii)

P

(∫ T

0

|h(s)|2ds <∞
)

= 1.

The set of all investment strategies will be denoted byH(T ). When (h0(t), h(t)∗)0≤t≤T
∈ H(T ), we will often write h ∈ H(T ) for simplicity since h0 is determined by (2.5).

For given h ∈ H(T ) the process Vt = Vt(h) representing the investor’s capital at
time t is determined by the stochastic differential equation:

dVt
Vt

=
∑m

i=0 h
i(t)

dSi(t)

Si(t)

= h0(t)r(Xt)dt+
∑m

i=1 h
i(t){gi(Xt)dt+

∑m+n
k=1 σik(Xt)dW

k
t },

V0 = v.

Then, taking (2.5) into account, we find that it turns out to be a solution of

dVt
Vt

= r(Xt)dt+ h(t)∗(g(Xt)− r(Xt)1)dt+ h(t)∗σ(Xt)dWt,

V0 = v,

(2.6)

where 1 = (1, 1, . . . , 1)∗.
We first consider the following problem. For a given constant θ > −2, θ �= 0

maximize the following risk-sensitized expected growth rate up to time horizon T :

J(v, x;h;T ) = −2

θ
logE[e−

θ
2 log VT (h)],(2.7)

where h ranges over the set A(T ) of all admissible strategies defined later. Then we
consider the problem of maximizing the risk-sensitized expected growth rate per unit
time,

J(v, x;h) = lim inf
T→∞

(−2
θT

)
logE[e−

θ
2 log VT (h)],(2.8)

where h ranges over the set of all investment strategies such that h ∈ A(T ) for each T .
Since Vt satisfies (2.6) we have

V
− θ

2
t = v−

θ
2 exp{ θ2

∫ t
0
η(Xs, hs)ds

− θ
2

∫ t
0
h∗sσ(Xs)dWs − θ2

8

∫ t
0
h∗sσσ

∗(Xs)hsds},
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where

η(x, h) =

(
θ + 2

4

)
h∗σσ∗(x)h− r(x)− h∗(g(x)− r(x)1).

If a given investment strategy h satisfies

E[e−
θ
2

∫ T
0
h(s)∗σ∗(Xs)dWs− θ2

8

∫ T
0
h(s)∗σσ∗(Xs)h(s)ds] = 1,(2.9)

then we can introduce a probability measure Ph given by

Ph(A) = E[e−
θ
2

∫ T
0
h∗(s)σ(Xs)dWs− θ2

8

∫ T
0
h∗(s)σσ∗(Xs)h(s)ds;A]

for A ∈ FT , T > 0. By the probability measure Ph our criterion J(v, x;h;T ) and
J(v, x;h) can be written as follows:

(2.7)′ J(v, x;h, T ) = log v − 2

θ
logEh[e

θ
2

∫ T
0
η(Xs,h(s))ds]

and

(2.8)′ J(v, x;h) = lim inf
T→∞

− 2

θT
logEh[e

θ
2

∫ T
0
η(Xs,h(s))ds].

On the other hand, under the probability measure,

Wh
t = Wt − 〈W.,− θ

2

∫ .
0
h∗(s)σ(Xs)dWs〉t

= Wt +
θ
2

∫ t
0
σ∗(Xs)h(s)ds

is a standard Brownian motion process, and therefore the factor process Xt satisfies
the following stochastic differential equation:

dXs =

(
b(Xs)− θ

2
λσ∗(Xs)h(s)

)
ds+ λ(Xs)dW

h
s .(2.10)

We regard (2.10) as a stochastic differential equation controlled by h and the criterion
function is written by Ph as follows:

J(v, x;h;T − t) = log v − 2

θ
logEh[e

θ
2

∫ T−t
0

η(Xs,h(s))ds](2.11)

and the value function

u(t, x) = sup
h∈H(T−t)

J(v, x;h;T − t), 0 ≤ t ≤ T.(2.12)

Then, according to Bellman’s dynamic programming principle, it should satisfy the
following Bellman equation:

∂u

∂t
+ sup

h∈Rm

Lhu = 0,

u(T, x) = log v,

(2.13)

where Lh is defined by

Lhu(t, x) =
1

2
tr(λλ∗(x)D2u)+

(
b(x)− θ

2
λσ∗(x)h

)∗
Du− θ

4
(Du)∗λλ∗(x)Du−η(x, h).



RISK-SENSITIVE PORTFOLIO OPTIMIZATION 1783

Note that suph∈Rm Lhu can be written as

sup
h∈Rm

Lhu(t, x) = 1
2 tr(λλ

∗(x)D2u) + (b− θ
θ+2λσ

∗(σσ∗)−1(g − r1))∗Du

− θ
4 (Du)

∗λ(I − θ
θ+2σ

∗(σσ∗)−1σ)λ∗Du+ 1
θ+2 (g − r1)∗(σσ∗)−1(g − r1).

Therefore our Bellman equation (2.13) is written as follows:

∂u
∂t +

1
2 tr(λλ

∗D2u) +B(x)∗Du− (Du)∗λN−1λ∗Du+ U(x) = 0,

u(T, x) = log v,
(2.14)

where

B(x) = b(x)− θ
θ+2λσ

∗(σσ∗)−1(g(x)− r(x)1),

N−1(x) = θ
4 (I − θ

θ+2σ
∗(σσ∗)−1σ(x)),

U(x) = 1
θ+2 (g − r1)∗(σσ∗)−1(g − r1) + r(x).

(2.15)

As for (2.14), we note that if θ > 0, then

θ

2(θ + 2)
I ≤ N−1 ≤ θ

4
I

and therefore we have

−θ
4
λλ∗ ≤ −λN−1λ∗ ≤ − θ

2(θ + 2)
λλ∗.

Such kinds of equations have been studied in Nagai [13], or Bensoussan, Frehse, and
Nagai [3]. Here we can obtain the following result along the line of [3, Theorem 5.1]
with refinement on estimate (2.17).

Theorem 2.1. (i) If, in addition to (2.4), θ > 0 and

νr|ξ|2 ≤ ξ∗λλ∗(x)ξ ≤ µr|ξ|2, r = |x|, νr, µr > 0,(2.16)

then we have a solution of (2.14) such that

u, ∂u
∂t , Dku, Dkju ∈ Lp(0, T ;Lploc(Rn)), 1 < ∀p <∞,

∂2u
∂t2 ,

∂Dku
∂t ,

∂Dkju
∂t , Dkjlu ∈ Lp(0, T ;Lploc(Rn)), 1 < ∀p <∞,

u ≥ log v, ∂u
∂t ≤ 0.

Furthermore, we have the estimate

|∇u|2(t, x)− c0
νr

∂u

∂t
(t, x) ≤ cr(|∇Q|22r + |Q|22r + |∇(λλ∗)|22r

+ |∇B|2r + |B|22r + |U |2r + |∇U |22r + 1), x ∈ Br, t ∈ [0, T ),

(2.17)

where

Q = λN−1λ∗, c0 = 4(1+c)(θ+2)
θ , c > 0,

| · |2r =‖ · ‖L∞(B2r),

and cr is a positive constant depending on n, r, νr, µr, and c.
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(ii) If, in addition to the above conditions,

inf
|x|≥r

U(x),
r2

µr
inf

|x|≥r
U(x), r inf

|x|≥r
U(x)

|B(x)| → ∞, as r →∞,

then the above solution u satisfies

inf
|x|≥r,t∈(0,T )

u(x, t)→∞ as r →∞.

Moreover, there exists at most one such solution in L∞(0, T ;W 1,∞
loc (Rn)).

Proof. We need only prove (2.17). Let us set

F (t, x) = t

(
|∇u|2 − γ

∂u

∂t

)
, γ > 0,

and

Γ(F ) =
1

2
(λλ∗)ijDijF +BiDiF −QijDjuDiF +

∂F

∂s
− F

s
,

where Λ = λλ∗. Then, in a similar way to [3], [13] we have

Γ(F ) ≥ 2s
nµr

(∂u∂s +BiDiu− 1
2 (Du)

∗QDu+ U)2

− sn|∇λλ∗|2
2νr

|∇u|2 − 2s|∇B||∇u|2 − 2s|∇Q||∇u|3 − 2s|∇u||∇U |.

Note that

θνr
2(θ + 2)

|∇u|2 ≤ 1

2
(Du)∗QDu ≤ θµr

2
|∇u|2

and that

− 1

2δ
|B|2 − δ

2
|∇u|2 ≤ B∗Du ≤ 1

2δ
|B|2 + δ

2
|∇u|2.

By taking δ such that

δ <
θνr

2(θ + 2)
,

we have

− 3θµr
4(θ + 2)

|∇u|2 − 1

δ
|B|2 ≤ B∗Du− 1

2
(Du)∗QDu− 1

2δ
|B|2 ≤ − θνr

4(θ + 2)
|∇u|2.

Set

|∇u|2 = βF

and take γ such that

γ =
4(1 + c)(θ + 2)

θνr
, c > 0;
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then

1

γ
<

θνr
4(θ + 2)

and we have

∂u

∂s
+B∗Du− 1

2
(Du)∗QDu− 1

2δ
|B|2 ≤ −

[(
θνr

4(θ + 2)
− 1

γ

)
β +

1

sγ

]
F

and

−
[(

3θµr
4(θ + 2)

− 1

γ

)
β +

1

sγ

]
F − 1

δ
|B|2 ≤ ∂u

∂s
+B∗Du− 1

2
(Du)∗QDu− 1

2δ
|B|2.

Thus we obtain

Γ(F ) ≥ 2s
nµr

(∂u∂s +B∗Du− 1
2 (Du)

∗QDu− 1
2δ |B|2)2

− 4s
nµr

(U + 1
2δ |B|2)|∂u∂s +B∗Du− 1

2 (Du)
∗QDu− 1

2δ |B|2|2

− sn|∇λλ∗|2
2νr

|∇u|2 − 2s|∇B||∇u|2 − 2s|∇Q||∇u|3 − 2s|∇u||∇U |
≥ 2s

nµr
[(kr − 1

γ )β + 1
sγ ]

2F 2 − 4s
nµr

(U + 1
2δ |B|2)[(k′r − 1

γ )β + 1
sγ ]F

− 4s
nµrδ
|B|2(U + 1

2δ |B|2)− s(n|∇λλ
∗|2

2νr
+ 2|∇B|)βF

− 2s|∇Q|β 3
2F

3
2 − 2s|∇U |β 1

2F
1
2 ,

(2.18)

where

kr =
θνr

4(θ + 2)
, k′r =

3θνr
4(θ + 2)

.

Let α ∈ Br and define the function

τ =

{
( |x−α|

2

r2 − 1)2, |x− α| ≤ r,
0, |x− α| > r.

Then we have

tr(λλ∗D2τ) ≥ −4n

r2
µr,

(Dτ)∗λλ∗Dτ ≤ 16µr
r2

τ,

|Dτ |2 ≤ 16µr
νrr2

τ.

Now let (s, x) be a maximum point of τF in [0, t) × Br(α); then it suffices to prove
that

τF (s, x) ≤ scr(|∇Q|2 + |Q|2 + |∇λλ∗|2 + |∇B|+ |B|2 + |U |+ |∇U |2 + 1)(x)(2.19)

because

F (t, α) = (τF )(t, α) ≤ (τF )(s, x), s ≤ t, x ∈ B2r.
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Note that

D(τF )(s, x) = 0,
∂F

∂s
(s, x) ≤ 0, tr(λλ∗D2(τF ))(s, x) ≤ 0.

Therefore

− τF
s ≥ 1

2 (λλ
∗)ijDij(τF ) +BiDi(τF )−QijDjuDi(τF ) + τ ∂F∂s − τF

s

= τΓ(F ) + (1
2 (λλ

∗)ijDijτ)F − (λλ∗)ij DiτDjτ
τ F + (BiDiτ −QijDjuDiτ)F.

Thus we obtain

−τF
s
≥ τΓ(F )− c1µr

r2
F − (|B|+ |Q|β 1

2F
1
2 )
c2
√
µr

r
√
νr

√
τF,

where c1 and c2 are global constants. Therefore

− τF
s ≥ 2s

nµr
[(kr − 1

γ )β + 1
sγ ]

2τF 2 − 4s
nµr

(U + 1
2δ |B|2)[(k′r − 1

γ )β + 1
sγ ]τF

− (2s|∇Q|β 3
2 τ + |Q|β 1

2
c2

√
µr

r
√
νr

√
τ)F

3
2

−{s(n|∇λλ∗|2
2νr

+ 2|∇B|)βτ + c1µr

r2 + |B| c2
√
µr

r
√
νr

√
τ}F

− 2s|∇U |β 1
2 τF

1
2 − 4s

nµrδ
|B|2(U + 1

2δ |B|2)τ.

We can asssume that

F ≥ s|B|2, F
1
2 ≥ s

1
2 |∇U |.(2.20)

Indeed, otherwise (2.19) is already proved. Then

−τ ≥ 2
nµr

[(kr − 1
γ )βs+

1
γ ]

2τF − 4s
nµr

(U + 1
2δ |B|2)[(k′r − 1

γ )βs+
1
γ ]

− (2s2|∇Q|β 3
2 + s|Q|β 1

2
c2

√
µr

r
√
νr

)(τF )
1
2

−{s2(n|∇λλ∗|2
2νr

+ 2|∇B|)β + s c1µr

r2 + s|B| c2
√
µr

r
√
νr
}

− 2s
3
2β

1
2 − 4s

nµrδ
(U + 1

2δ |B|2).

Setting X = (τF )
1
2 , we have

0 ≥ 2
nµr

[(kr − 1
γ )βs+

1
γ ]

2X2 − s
1
2 (2|∇Q|(βs) 3

2 + |Q|(βs) 1
2
c2

√
µr

r
√
νr

)X

− 4s
nµr

(U + 1
2δ |B|2)[(k′r − 1

γ )βs+
1
γ ]

− s{(n|∇λλ∗|2
2νr

+ 2|∇B|)βs+ c1µr

r2 + |B| c2
√
µr

r
√
νr
}

− 2s((βs)
1
2 + 2

nµrδ
(U + 1

2δ |B|2)).

Since

2
nµr

[(kr − 1
γ )βs+

1
γ ]

2X2 − s
1
2 (2|∇Q|(βs) 3

2 + |Q|(βs) 1
2
c2

√
µr

r
√
νr

)X

≥ 2
nµrγ2 { 1

2 (krγ − 1)βs+ 1}{(krγ − 1)βs+ 1}X2 − sγ2(2βs|∇Q|+ c2
√

µr
r
√

νr
|Q|)2

4(krγ−1){(krγ−1)βs+1}
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and krγ − 1 = c > 0, k′rγ − 1 = 2 + 3c, we obtain

X2 ≤ nµrγ
2s

(cβs+2)(cβs+1)

[
(U + 1

2δ |B|2) (2+3c)βs+1
γ

+ {(n|∇λλ∗|2
2νr

+ 2|∇B|)βs+ c1µr

r2 + |B| c2
√
µr

r
√
νr
}

+2{(βs) 1
2 + 2

nµrδ
(U + 1

2δ |B|2)}+
γ2(2βs|∇Q|+ c2

√
µr

r
√

νr
|Q|)2

4c(cβs+1)

]
.

Taking into account that

βs

cβs+ 1
,

(βs)
1
2

cβs+ 1
,

1

cβs+ 1

are bounded, we see that

X2 ≤ scr(U + |B|2 + |∇B|+ |∇λλ∗|2 + |∇Q|2 + |Q|2 + 1)(x),

where cr is a constant depending on n, r, c, νr, and µr. Including the other cases
where (2.20) does not hold, we conclude (2.19).

Remark. (i) If

1

νr
, µr ≤M(1 + rm), ∃m ≥ 0,(2.21)

then we have

cr ≤M ′(1 + rm
′
), ∃m′

in estimate (2.17). In particular, if m = 0, namely νr and µr are constants, then cr
can be taken independent of r.

(ii) In [13], [3] we have gotten a similar estimate to (2.17), where the dependence
on the coefficients of the equation was not clear. However, to check the condition (2.22)
in the following proposition, we need a precise estimate such as (2.17), which makes
clear the dependence on the coefficients of (2.14). It is a key estimate to prove that
the strategy defined by the solution of (2.14) forms the optimal one as we shall see
in the following proposition. It is also the case in the proof of Theorem 4.1 since the
estimate holds for the solution w of the limit equation (2.29) of (2.14).

Let us define a class of admissible investment strategy AT as the set of investment
strategies satisfying (2.9). Then, thanks to the above Theorem 2.1 and the above
remark we have the following proposition.

Proposition 2.1. (i) We assume the assumptions in the above theorem and let
u be a solution of (2.14). Define

ĥt = ĥ(t,Xt),

ĥ(t, x) = 2
θ+2 (σσ

∗)−1(g − r1− θ
2σλ

∗Du)(t, x),

where Xt is the solution of (2.3); then, under the assumption that

E[e−
∫ T
0

(2N−1λ∗Du+θK)∗(xs)dWs− 1
2

∫ T
0

(2N−1λ∗Du+θK)∗(2N−1λ∗Du+θK)(xs)ds] = 1,

(2.22)
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where

K =
1

θ + 2
σ∗(σσ∗)−1(g − r1),

ĥt ∈ AT is an optimal strategy for the portfolio optimization problem of maximizing
the criterion (2.7).

(ii) If

νr and µr in (2.16) are constants and

g, b, λ, σ are globally Lipschitz,
(2.23)

then (2.22) is valid.
Proof. (i) Set

ZT (ĥ) =
θ

2

∫ T

0

η(Xs, ĥs)ds− θ

2

∫ T

0

ĥ∗sσ(Xs)dWs − θ2

8

∫ T

0

ĥ∗sσσ
∗(Xs)ĥsds.

Since ĥ(t, x) attains the supremum in (2.13) we have

eZT (ĥ) = e
θ
2 {log v−u(0,x)−∫ T

0
[(Du)∗λ+ĥ∗

sσ]dWs− θ
4

∫ T
0

[(Du)∗λ+ĥ∗
sσ][(Du)∗λ+ĥ∗

sσ]∗ds}.

Note that

2N−1λ∗Du+ θK =
θ

2
λ∗Du+

θ

θ + 2
(σσ∗)−1

(
g − r1− θ

2
σλ∗Du

)
;

then, under assumption (2.22), we obtain

−2

θ
logEx[e

ZT (ĥ)] = u(0, x)− log v,

namely,

2

θ
logEx[e

− θ
2Vt(ĥ)] = −2

θ
logEx[v

− θ
2 eZT (ĥ)] = u(0, x).

On the other hand, for each hs satisfying (2.9), we have

−2

θ
logEx[e

ZT (h)] ≤ u(0, x)− log v

in a similar way to the above because

∂u

∂t
+ Lhu ≤ 0

for each h ∈ Rm. Thus, we see that ĥt is optimal.
(ii) Thanks to (2.17) and the above remark we see that |Du| has at most linear

growth under assumption (2.23) and so does ĥ(t, x)∗σ(x). Moreover, b(x) is globally
Lipschitz and we can see that (2.22) holds under these conditions in a similar way to
Lemma 4.1.1 in [2].

To discuss the problem on infinite time horizon we introduce another stochastic
control problem on a finite time horizon with the same Bellman equation as (2.14)
and then consider its ergodic counterpart. For that let us set

G = b− λσ∗(σσ∗)−1(g − r1)
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and rewrite (2.14) as

∂u

∂t
+

1

2
tr(λλ∗(x)D2u) +G(x)∗Du

− (−λ∗Du+NK)∗N−1(−λ∗Du+NK)(x) +
θ + 2

2
K∗NK(x) + r(x) = 0,

u(T, x) = log v.

(2.24)

Since

−(−λ∗Du+NK)∗N−1(−λ∗Du+NK) = inf
z∈Rn+m

{z∗Nz + 2z∗NK − 2(λz)∗Du},

we can regard (2.24) as the Bellman equation of the following stochastic control prob-
lem. Set

(2.25)

u(t, x)

= inf
Z.

Ex

[∫ T−t

0

{
Z∗
sN(Ys)Zs + 2Z∗

sNK(Ys) +
θ + 2

2
K∗NK(Ys) + r(Ys)

}
ds+ log v

]
,

where Yt is a controlled process governed by the stochastic differential equation

dYt = λ(Yt)dWt + (G(Yt)− 2λ(Yt)Zt)dt, Y0 = x,(2.26)

and Zt is a control taking its value on Rn+m. We define the set of admissible controls
Zt as all progressively measurable processes satisfying

Ex

[∫ T

0

|Zs|2qds
]
<∞ ∀q ≥ 1.

An ergodic counterpart of the above problem is formulated as follows. Consider the
problem

χ = inf
Z.

lim inf
T→∞

1

T
Ex

[∫ T

0

{
Z∗
sN(Ys)Zs + 2Z∗

sNK(Ys) +
θ

2
K∗NK(Ys) + r(Ys)

}
ds

](2.27)

with controlled process Yt governed by (2.26). Then, the corresponding Bellman
equation is written as

χ =
1

2
tr(λλ∗(x)D2w) +G(x)∗Dw

− (−λ∗Dw +NK)∗N−1(−λ∗Dw +NK)(x) +
θ + 2

2
K∗NK(x) + r(x),

(2.28)

whose original one is

χ =
1

2
tr(λλ∗(x)D2w) +B(x)∗Dw − (Dw)∗λN−1λ∗(x)Dw + U(x) = 0,(2.29)
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namely,

χ =
1

2
tr(λλ∗(x)D2w) + (b− θ

θ+2λσ
∗(σσ∗)−1(g − r1))∗Dw

− θ
4 (Dw)

∗λ(I − θ
θ+2σ

∗(σσ∗)−1σ)λ∗Dw + 1
θ+2 (g − r1)∗(σσ∗)−1(g − r1) + r(x).

In the following section we shall analyze the Bellman equation of ergodic type (2.28).
Indeed, we shall deduce (2.28), accordingly (2.29), as the limit of parabolic type
equation (2.24) as T →∞ under suitable conditions.

Remark. To regard our Bellman equation as (2.24) has a meaning from a fi-
nancial point of view. Indeed, under the minimal martingale measure P̃ (cf. [6,
Proposition 1.8.2] as for minimal martingale measures), which is defined by

dP̃

dP

∣∣∣∣∣
FT

= e−
∫ T
0
ζ(Xs)

∗dWs− 1
2

∫ T
0

|ζ(Xs)|2ds,

ζ(x) = σ∗(σσ∗)−1(x)(g(x)− r(x)1) factor process Xt is the diffusion process with the
generator

L =
1

2
tr(λλ∗(x)D2) +G(x)∗D,

namely, it is governed by the stochastic differential equation

dXt = λ(Xt)dW̃t +G(Xt)dt.

Here W̃t = Wt +
∫ t
0
ζ(Xs)ds and it is a Brownian motion under the probability

measure P̃ .

3. Ergodic type Bellman equation. In what follows we assume that

1

2
tr(λλ∗(x)) + x∗G(x) +

κ

2

x∗λλ∗(x)x√
1 + |x|2 ≤ 0, |x| ≥ ∃r0 > 0, κ > 0,(3.1)

and set

L =
1

2
tr(λλ∗(x)D2) +G∗(x)D.

Proposition 3.1. We assume (2.4), (3.1), and (2.16) with

νr ≥ e−
κ−c
8 r, c > 0, r ≥ ∃r1 > 0;(3.2)

then L diffusion process (P̃x, Xt) is ergodic, namely, recurrent and admits a finite
invariant measure (unique up to a constant multiple). Furthermore, it satisfies

Ẽx[e
κ
√

1+|Xt|2 ] ≤ eκ
√

1+|x|2 .(3.3)

Proof. Let us set

α(r) = inf
|x|=r

x∗λλ∗(x)x
|x|2 ,



RISK-SENSITIVE PORTFOLIO OPTIMIZATION 1791

and

I(u) =

∫ ∞

r0

β(u)

u
du,

where

β(r) = sup
|x|=r

tr(λλ∗(x))− x∗λλ∗(x)x
|x|2 + 2x∗G(x)

x∗λλ∗(x)x
|x|2

.

According to [1], it is known that, if∫ ∞

r0

e−I(u)du =∞(3.4)

and ∫ ∞

r0

1

α(u)
eI(u)du <∞,(3.5)

then the diffusion process with the generator

L =
1

2
tr(λλ∗(x)D2) +G∗(x)D

is ergodic. From (3.1) it follows that

tr(λλ∗(x))− x∗λλ∗(x)x
|x|2 + 2x∗G(x) ≤ −κ

4

x∗λλ∗(x)x√
1 + |x|2 , |x| > r0.

Namely, we have

tr(λλ∗(x))− x∗λλ∗(x)x
|x|2 + 2x∗G(x)

x∗λλ∗(x)x
|x|2

≤ − κ|x|2
4
√
1 + |x|2

and so β(r) ≤ − κr2

4
√

1+r2
, r ≥ r0. Then

I(r) ≤ −
∫ r

r0

κu

4
√
1 + u2

du ≤ −κ
8
(r − r0), r > r0 > 0,

which implies that ∫ ∞

r0

e−I(r)dr =∞.

On the other hand, because of (2.16), we have α(r) ≥ νr and obtain∫∞
r1

1
α(r)e

I(u)du ≤ ∫∞
r1

1
νr
e−

κ
8 (r−r1)dr

=
∫∞
r1

e− log νr−κ
8 (r−r1)dr <∞

by using (3.2). Hence we see that the diffusion process (P̃x, Xt) with the generator L
is ergodic.
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To see (3.3), let us set

ϕ(x) = eκ(1+|x|2) 1
2 ;

then by Itô’s formula we have

ϕ(Xt)− ϕ(X0)

= κϕ(Xt)√
1+|Xt|2

{ 1
2 tr(λλ

∗(Xt)) +X∗
tG(Xt)− X∗

t λλ
∗(Xt)Xt

2(1+|Xt|2) + κXtλλ
∗(Xt)Xt

2
√

1+|Xt|2
}dt

+ κϕ(Xt)√
1+|Xt|2

Xtλ(Xt)dW̃t.

Thus, we obtain

Ẽx[ϕ(Xt∧τR)] ≤ ϕ(x), τR = inf{t; |Xt| ≥ R},
and so

Ẽx[ϕ(Xt)] ≤ ϕ(x).

Theorem 3.1. Assume the assumptions of Theorem 2.1, (3.1) and that

1

νr
, µr ≤ K(1 + rm),

|Q|, |∇Q|, |B|, |∇B|, U, |∇U |, |∇(λλ∗)| ≤ K(1 + |x|m);

then, as T →∞,
u(0, x;T )− u(0, 0;T )→ w(x),
1
T u(0, x;T )→ χ,

uniformly on each compact set, where (w,χ) is the solution of (2.28) such that w ∈
C2(Rn).

Proof. In a similar way to Lemma 3.1 in [13], we can see that there exists a
subsequence {Ti} ⊂ R+ such that u(0, x;Ti) − u(0, 0;Ti) converges to a function
w(x) ∈ C2(Rn) uniformly on each compact set and strongly in W 1

2,loc and
∂u
∂t (0, x;Ti)

to χ(x) ∈ C(Rn) uniformly on each compact set by using estimate (2.17). We shall
see that χ(x) = χ, a constant, in what follows.

We need the following lemma.
Lemma 3.1. Let m̃ be an invariant measure of L diffusion process (P̃x, Xt); then

we have the following estimate:

m̃(|x| ≥ R) ≤ eκ−κ
√

1+R2
.(3.6)

Proof. Because of (3.3) we have

E0[e
κ
√

1+|Xt|2 ; |Xt| ≥ R] ≤ eκ.

Then we obtain

P̃0(|Xt| ≥ R) ≤ eκ−κ
√

1+R2
.

Since the left-hand side converges to m̃(|x| ≥ R) as t → ∞, we conclude our present
lemma.
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Corollary 3.1. If |q(x)| ≤ c(1 + |x|l) for ∃l > 0, then
∫
q(x)m̃(dx) <∞.

Now we shall complete the proof of Theorem 3.1. Let us introduce a function γ,
which is a solution of the following linear partial differential equation:

∂γ
∂t +

1
2 tr(λλ

∗(x)D2γ) +G(x)∗Dγ + θ+2
2 K∗NK(x) = 0,

u(T, x) = log v.

Then we have

∂(γ−u)
∂t + 1

2 tr(λλ
∗(x)D2(γ − u))

+G(x)∗D(γ − u) + (−λ∗Du+NK)∗N−1(−λ∗Du+NK) = 0,

(γ − u)(T, x) = 0

and so we see that

γ(t, x) ≥ u(t, x) ≥ log v.(3.7)

On the other hand, γ has an expression by L diffusion process (P̃x, Xt) such as

γ(t, x) = Ẽx

[∫ T−t

0

θ + 2

2
K∗NK(Xs)ds

]
+ log v.

Therefore, by ergodic theorem

limT→∞
γ(0,x;T )

T = limT→∞ 1
T Ẽx[

∫ T
0

θ+2
2 K∗NK(Xs)ds]

=
∫

θ+2
2 K∗NK(x)m̃(dx).

(3.8)

Note that [10, IV, Theorem 5.1], and therefore its Corollary 1, extend to the present
case (cf. also Proof of Theorem 3.5 in [1]) by using the above Corollary 3.1. Set

ū(T ) =
1

|B1|
∫
B1

u(0, y;T )dy.

Since

|u(0, x;T )− u(0, y;T )| ≤ KR, x, y ∈ BR,

because of (2.17), we have

|u(0, x;T )− ū(T )| ≤ KR, x, y ∈ BR,(3.9)

for R > 1. Noting that { ū(T )
T }T is bounded due to (3.7) and (3.8), take a subsequence

Ti ⊂ R+ such that

lim
Ti→∞

ū(Ti)

Ti
= χ.

Then (3.9) implies that

lim
Ti→∞

sup
x∈BR

∣∣∣∣u(0, x;Ti)Ti
− χ

∣∣∣∣ = 0 ∀R.
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Hence

χ(x) = lim
Ti

∂u

∂t
(0, x, Ti) = lim

Ti→∞
u(0, x;Ti)

Ti
= χ

uniformly on each compact set. On the other hand, in a similar way to Lemma 3.3
in [13], we can see that w(x) is bounded below and so w(x) → ∞ as |x| → ∞
(cf. Remark 3.2 in [13]). Furthermore, such a solution (w,χ) is unique up to additive
constant with respect to a function w (cf. Lemma 3.2 in [13]) and we conclude our
present theorem.

Our Bellman equation of ergodic type (2.28) is rewritten as

χ = 1
2 tr(λλ

∗(x)D2w) +G(x)∗Dw

+ infz∈Rn+m{z∗Nz + 2z∗NK − 2(λz)∗Dw}+ θ+2
2 K∗NK(x),

(3.10)

and the infimum is attained by

ẑ(x) = N−1λ∗(x)Dw(x)−K(x),

which define the following elliptic operator considered as the generator of the optimal
diffusion for (2.27):

L̂ =
1

2
tr(λλ∗(x)D2) +G∗(x)D − 2(λN−1λ∗(x)Dw(x)− λK(x))∗D.

Then we have the following proposition.
Proposition 3.2. Under the assumptions of Theorem 3.1, L̂ diffusion process

is ergodic.
Proof. Thanks to Theorem 3.1 and our assumptions, the coefficients of L̂ are

locally Lipschitz and λλ∗ is uniformly positive definite on each compact set. Then,
we can check Has’minskii’s conditions [10] for ergodicity as follows (cf. [10, III The-
orem 7.1], its Corollary 1 and Theorem 4.1). Since w(x) → ∞ as |x| → ∞, it is
bounded below. Moreover, by calculation we see that

L̂w = −{(Dw)∗λN−1λ∗Dw + θ
2K

∗NK}+ χ

= − θ
4 (Dw)

∗λ(I − θ
θ+2σ

∗(σσ∗)−1σ)λ∗Dw − 1
θ+2 (g − r1)∗(σσ∗)−1(g − r1) + χ.

Since

1

θ + 2
(g − r1)∗(σσ∗)−1(g − r1)→∞, |x| → ∞,

we see that

L̂w ≤ −C, |x| >> 1, C > 0.

Thus we conclude our present proposition.

4. Optimal strategy for portfolio optimization on infinite time horizon.
Define the set of admissible strategies A by

A = {h : h ∈ A(T ) ∀T}
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and set

Ĥt = Ĥ(Xt),

Ĥ(x) = 2
θ+2 (σσ

∗)−1(g − r1− θ
2σλ

∗Dw)(x),

where Xt is the solution of stochastic differential equation (2.3); then we have the
following theorem.

Theorem 4.1. In addition to the assumptions of Theorem 3.1, we assume (2.23)
and that

4

θ2
(g − r1)∗(σσ)−1(g − r1)− (Dw)∗λσ∗(σσ∗)−1σλ∗Dw →∞, |x| → ∞;(4.1)

then Ĥt is an optimal strategy for portfolio optimization maximizing long run crite-
rion (2.8):

J(v, x; Ĥ) = sup
h∈A

J(v, x;h).

Proof. The Bellman equation (2.28) has the original form

χ =
1

2
tr(λλ∗(x)D2w) +B(x)∗Dw − θ

4
(Dw)∗λλ∗(x)Dw

+ sup
h∈Rm

{
−θ
2
(λσ∗h)∗Dw − η(x, h)

}

and the supremum in this equation is attained by

Ĥ(x) =
2

θ + 2
(σσ∗)−1

(
g − r1− θ

2
σλ∗Dw

)
(x).

We consider the stochastic differential equation

dXt =

(
b(Xt)− θ

2
λσ∗Ĥ(Xt)

)
dt+ λ(Xt)dW

Ĥ
t ,

where

W Ĥ
t = Wt +

θ

2

∫ t

0

σ∗(Xs)Ĥ(Xs)ds.

Then

w(Xt)− w(X0) =
∫ t
0
{ 1

2 tr(λλ
∗D2w)(Xs) + (b∗ − θ

2Ĥ
∗σλ∗)Dw(Xs)}ds

+
∫ t
0
(Dw)∗λ(Xs)dW

Ĥ
s

=
∫ t
0
{χ+ θ

4 (Dw)
∗λλ∗Dw(Xs) + η(Xs, Ĥs)}ds+

∫ t
0
(Dw)∗λ(Xs)dW

Ĥ
s .

(4.2)

Therefore, we have

EĤ
x [e

θ
2

∫ T
0
η(Xs,Ĥs)ds]

= EĤ
x [e−

θ
2 {χT+

∫ T
0

(Dw)∗λ(Xs)dW
Ĥ
s + θ

4

∫ T
0

(Dw)∗λλ∗Dw(Xs)ds−w(XT )+w(x)}].
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We define new probability measure P̂ by

dP̂

dP Ĥ

∣∣∣∣∣
Ft

= e−
θ
2

∫ T
0

(Dw)∗λ(Xs)dW
Ĥ
s − θ2

8

∫ T
0

(Dw)∗λλ∗Dw(Xs)ds;(4.3)

then Ŵt defined by

Ŵt = W Ĥ
s +

θ

2

∫ t

0

λ∗Dw(Xs)ds

is a Brownian motion under the probability measure P̂ and the above stochastic
differential equation is described, by using Ŵt, as

dXt =

(
b(Xt)− θ

2
λσ∗Ĥ(Xt)− θ

2
λλ∗Dw(Xt)

)
dt+ λ(Xt)dŴt.

Note that we can see that |∇w| is at most linear growth because of the estimate (2.17)
under the assumption (2.23) and the right-hand side of (4.3) is a martingale in a similar
way to the proof of Proposition 2.1 (ii) (cf. the remark after Theorem 2.1). Thus,

EĤ
x [e

θ
2

∫ T
0
η(Xs,Ĥs)ds] = e−

θ
2χT− θ

2w(x)Ê[e
θ
2w(XT )].

Then

e
θ
2w(XT ) − e

θ
2w(X0) = θ

2

∫ T
0
e

θ
2w(Xs)(Dw)∗λ(Xs)dŴs

+
∫ T
0
e

θ
2w(Xs){ θ4 tr(λλ∗D2w) + θ2

8 (Dw)∗λλ∗Dw

+ θ
2 (B − θ

2λσ
∗Ĥ − θ

2λλ
∗Dw)∗Dw}(Xs)ds.

Note that

θ

4
tr(λλ∗D2w)− θ2

8
(Dw)∗λλ∗Dw +

θ

2

(
B − θ

2
λσ∗Ĥ

)∗
Dw =

θ

2
(η(x, Ĥ(x)) + χ)

and

η(x, Ĥ(x)) = θ+2
4 Ĥ∗σσ∗Ĥ(x)− Ĥ∗(g − r1)(x)− r(x)

= − 1
θ+2 (g − r1)∗(σσ∗)−1(g − r1)(x)

+ θ2

4(θ+2) (Dw)
∗λσ∗(σσ∗)−1σλ∗Dw(x)− r(x).

Then, under assumption (4.1), we see that

η(x, Ĥ(x)) + χ ≤ 0, x ∈ Bc
R, ∃R > 0,

which implies, by the arguments using a stopping time,

Ê[e
θ
2w(XT )] ≤ e

θ
2w(x) +MT, ∃M > 0.

Hence we conclude that

lim
T→∞

− 2

θT
logEĤ

x [e
θ
2

∫ T
0
η(Xs,Ĥs)ds] = lim

T→∞
− 2

θT
log{e− θ

2χT− θ
2w(x)Ê[e

θ
2w(XT )]} = χ.
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For h ∈ A, inequality ≤ holds in (4.2) and we can see that

J(v, x;h) ≤ χ

in a similar way to the above since w is bounded below.
Remark. Under the probability measure P̂x, the factor process is an ergodic

diffusion process with the generator L̂. In fact, by calculation, we can see that

1
2 tr(λλ

∗D2) + (b− θ
2λσ

∗Ĥ − θ
2λλ

∗Dw)∗D

= 1
2 tr(λλ

∗(x)D2) +G∗(x)D − 2(λN−1λ∗(x)Dw(x)− λK(x))∗D.

Then, under assumption (4.1), L̂ diffusion process (P̂x, Xt) satisfies

Êx[e
θ
2w(XT )]→

∫
e

θ
2w(x)µ(dx) <∞ as T →∞,

where µ is the invariant measure of (Px, Xt).

5. Example.
Example (linear Gaussian case). Let us consider the case where

g(x) = a+Ax, σ(x) = Σ,

b(x) = b+Bx, λ(x) = Λ,

r(x) = r,

where A, B, Σ, Λ are all constant matrices and a and b are constant vectors. Such
a case has been considered by Bielecki and Pliska [4], [5], Fleming and Sheu [8], [9],
and Kuroda and Nagai [12].

In this case the solution u(t, x) of (2.14) has the following explicit form:

u(t, x) =
1

2
x∗P (t)x+ q(t)∗x+ k(t),

where P (t) is a solution of the Riccati differential equation

Ṗ (t)− P (t)K0P (t) +K∗
1P (t) + P (t)K1 +

2
θ+2A

∗(ΣΣ∗)−1A = 0,

P (T ) = 0,
(5.1)

and

K0 = θ
2Λ(I − θ

θ+2Σ
∗(ΣΣ∗)−1Σ)Λ∗,

K1 = B − θ
θ+2ΛΣ

∗(ΣΣ∗)−1A.

The term q(t) is a solution of linear differential equation

q̇(t) + (K∗
1 − P (t)K0)q(t) + P (t)b+ ( 2

θ+2A
∗ − θ

θ+2P (t)ΛΣ∗)(ΣΣ∗)−1(a− r1) = 0,

q(T ) = 0

and k(t) a solution of

k̇(t) +
1

2
tr(ΛΛ∗P (t))− θ

4
q(t)∗ΛΛ∗q(t) + b∗q(t) + r +

1

θ + 2
(a− r1)∗(ΣΣ∗)−1(a− r1)

+
θ2

4(θ + 2)
q(t)∗ΛΣ∗(ΣΣ∗)−1ΣΛ∗q(t)− θ

θ + 2
(a− r1)∗(ΣΣ∗)−1ΣΛ∗q(t) = 0,

k(T ) = log v.
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If

G ≡ B − ΛΣ∗(ΣΣ∗)−1A is stable,

then
(i) P (0) = P (0;T ) converges, as T → ∞, to a nonnegative definite matrix P̃ ,

which is a solution of algebraic Riccati equation

K∗
1 P̃ + P̃K1 − P̃K0P̃ +

2

θ + 2
A∗(ΣΣ∗)−1A = 0.

Moreover, P̃ satisfies the estimate

0 ≤ P̃ ≤ 2

θ

∫ ∞

0

esG
∗
A∗(ΣΣ∗)−1AesGds.(5.2)

(ii) q(0) = q(0;T ) converges, as T →∞, to a constant vector q̃, which satisfies

(K∗
1 − P̃K0)q̃ + P̃ b+

(
2

θ + 2
A∗ − θ

θ + 2
P̃ΛΣ∗

)
(ΣΣ∗)−1(a− r1) = 0.

(iii) k(0;T )
T converges to a constant ρ(θ) defined by

ρ(θ) =
1

2
tr(P̃ΛΛ∗)− θ

4
q̃∗ΛΛ∗q̃ + b∗q̃ + r +

1

θ + 2
(a− r1)∗(ΣΣ∗)−1(a− r1)

+ θ2

4θ+8 q̃
∗ΛΣ∗(ΣΣ∗)−1ΣΛ∗q̃ − θ

θ+2 (a− r1)∗(ΣΣ∗)−1ΣΛ∗q̃.

If, moreover,

(B∗, A∗(ΣΣ∗)−1Σ) is controllable,(5.3)

then
(iv) the solution P̃ of the above algebraic Riccati equation is strictly positive

definite.
Finally, if, in addition to the above conditions,

(B,Λ) is controllable,(5.4)

then
(v) the investment strategy h̃t defined by

h̃t =
2

θ + 2
(ΣΣ∗)−1

[
a− r1− θ

2
ΣΛ∗q̃ +

(
A− θ

2
ΣΛ∗P̃

)
Xt

]

is optimal for the portfolio optimization on infinite time horizon maximizing the cri-
terion (2.8)

sup
h∈A

J(v, x;h) = J(v, x; h̃.) = ρ(θ)

if and only if

P̂ΛΣ∗(ΣΣ∗)−1ΣΛ∗P̂ < A∗(ΣΣ∗)−1A,(5.5)

where P̂ = θ
2 P̃ (cf. [12]).
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Set

w(x) =
1

2
x∗P̃ x+ q̃∗x;

then w(x) satisfies (2.28) and (5.5) is equivalent to∫
e

θ
2w(x)µ(dx) <∞

under the assumptions (5.3) and (5.4), where µ(dx) is the invariant measure of L̂
diffusion process. We consider the case where n = m = 1. Then ΣΣ∗, ΛΣ∗, A, B
are all scalars and (5.5) is written as

(5.5′)
θ2

4
P̃ 2(ΛΣ∗)2 < A2.

We can find sufficient condition for (5.5′) by using estimate (5.2). Indeed, If

A2(ΛΣ∗)2(ΣΣ∗)−2

(∫ ∞

0

e2sGds

)2

< 1,(5.6)

then (5.5′) holds. (5.6) is equivalent to

(2B(ΣΣ∗)− 3(ΛΣ∗)A)(2B(ΣΣ∗)− (ΛΣ∗)A) > 0,

which indicates that

B <
1

2
ΛΣ∗(ΣΣ∗)−1A if ΛΣ∗A > 0,(5.7)

B <
3

2
ΛΣ∗(ΣΣ∗)−1A if ΛΣ∗A < 0(5.8)

since G = B − ΛΣ∗(ΣΣ∗)−1A < 0 by the stability assumption.
We illustrate an example where (5.5′) is violated as follows. Set θ = 4 and

B = 2
3ΛΣ

∗(ΣΣ∗)−1A; then we have

P̃ 2(6ΛΛ∗ΣΣ∗ − 4(ΛΣ∗)2) = A2

and therefore (5.5′) is violated if and only if

6ΛΛ∗ΣΣ∗ − 4(ΛΣ∗)2 ≤ 4(ΛΣ∗)2,

namely,

4(ΛΣ∗)2 ≥ 3ΛΛΣΣ∗.(5.9)

Set Λ = (1, λ), Σ = (1, σ); then (5.9) is equivalent to

{λσ + 1 +
√
3(λ− σ)}{λσ + 1−

√
3(λ− σ)} ≥ 0.
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Abstract. The asymptotic behavior of a nonlinear continuous time filtering problem is studied
when the variance of the observation noise tends to 0. We suppose that the signal is a two-dimensional
process from which only one of the components is noisy and that a one-dimensional function of this
signal, depending only on the unnoisy component, is observed in a low noise channel. An approximate
filter is considered in order to solve this problem. Under some detectability assumptions, we prove
that the filtering error converges to 0, and an upper bound for the convergence rate is given. The
efficiency of the approximate filter is compared with the efficiency of the optimal filter, and the order
of magnitude of the error between the two filters, as the observation noise vanishes, is obtained.

Key words. stochastic differential models, nonlinear filtering, approximate filters

AMS subject classifications. 93E11, 60G35, 60F99

PII. S0363012902363920

1. Introduction. Due to its vast application in engineering, the problem of fil-
tering a random signal Xt from noisy observations of a function h(Xt) of this signal
has been considered by several authors. In particular, the case of small observation
noise has been widely studied, and several articles are devoted to the research of
approximate filters which are asymptotically efficient when the observation noise van-
ishes. Among them, one notices a first group in which a one-dimensional system is
observed through an injective observation function h (see [4, 5, 7, 1]); in this case,
the filtering error is small when the observation noise is small, and one can find effi-
cient suboptimal finite-dimensional filters. The multidimensional case appears later
with [8, 9], but an assumption of injectivity of h is again required; in particular, the
extended Kalman filter is studied in [9]. See also previous work by Krener [6] for
systems with linear observations. When h is not injective, the process {Xt} cannot
always be restored from the observation of {h(Xt)}, so the filtering error is not always
small; such a case is studied in [3]. However, there are some classes of problems in
which {Xt} can be restored from {h(Xt)}; in these cases, the filtering error is small,
and one again looks for efficient suboptimal filters. For instance, {Xt} is sometimes
obtained from {h(Xt)} and its quadratic variation; see [2, 10, 11, 13]. Here, we are
interested in another case in which h(Xt) is differentiable with respect to the time t,
and {Xt} is obtained from {h(Xt)} and its derivative. As opposed to [9], the exis-
tence of a Lipschitz inverse of h is not assumed in this paper, as the dimension of the
measurements that we consider is lower than that of the state. More precisely, we
consider the framework of [12], which we now describe.

We consider the two-dimensional process Xt = (x
(1)
t , x

(2)
t ) given by the Itô equa-
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tion 


dx
(1)
t = f1(x

(1)
t , x

(2)
t ) dt,

dx
(2)
t = f2(x

(1)
t , x

(2)
t ) dt+ σ(x

(1)
t , x

(2)
t ) dwt,

(1.1)

with initial condition X0 = (x
(1)
0 , x

(2)
0 ), and we are concerned by the problem of

estimating the signal Xt when the observation process is modelled by the equation

dyt = h(x
(1)
t ) dt+ ε dw̄t,(1.2)

where {wt} and {w̄t} are standard independent real-valued Wiener processes and
ε is a small nonnegative parameter. In particular, if f1(x1, x2) = x2, then x

(1)
t is

the position of some moving body on R, x
(2)
t is its speed, the body is submitted to

a dynamical force described by f2 and to a random force described by σ, and one
has a noisy observation of the position. This class of problems arises in practice in
tracking RADAR applications, for instance, as well as in control and communications
engineering. The use of the method of proof introduced in [7] and later extended to
[9] in the class of systems (1.1)–(1.2) is not covered by previous work.

If ε = 0 and if the functions h and x2 �→ f1(x1, x2) are injective, then the signal
Xt can (at least theoretically) be exactly restored from the observation; we are here
interested by the asymptotic case ε → 0, and we look for a good approximation of
the optimal filter

X̂t = (x̂
(1)
t , x̂

(2)
t ) = E

[
Xt

∣∣ ys, 0 ≤ s ≤ t
]
.

This approximation should be finite-dimensional (a solution of a finite-dimensional
equation driven by yt).

The same problem has been dealt with in [12] (with σ constant) by means of a
formal asymptotic expansion of the optimal filter in a stationary situation. Our aim
is to work out a rigorous mathematical study of the filter proposed by [12], namely

the solution Mt = (m
(1)
t ,m

(2)
t ) of

dMt = f(Mt)dt+Rt[dyt − h(m
(1)
t )dt],(1.3)

Rt
def
=



√
2σ(Mt)F12(Mt)

h′(m(1)
t ) ε

σ(Mt)

ε


 ,(1.4)

with F12 = ∂f1/∂x2 and with initial condition M0 = E[X0]. This filter does in fact
correspond to the extended Kalman filter with stationary gain if one neglects the
contribution of the derivatives of f other than ∂f1/∂x2. The stability of this filter is
not evident and requires some assumptions. When it is stable, we prove in this work
that

x
(1)
t −m

(1)
t = O(ε3/4) , x

(2)
t −m

(2)
t = O(ε1/4) ,(1.5)

and

x̂
(1)
t −m

(1)
t = O(ε) , x̂

(2)
t −m

(2)
t = O(√ε) .(1.6)
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We also verify that (1.6) can be improved when σ is constant, h is linear, and f1 is
linear with respect to x2. (This case will be referred to as the almost linear case.)
The proofs follow the method of [9].

The contents are organized as follows. In section 2, we introduce the assumptions
which will be needed in what follows, and we study the filtering error as ε converges
to zero; more precisely, we obtain the rate (1.5). In section 3, the error between the
approximate filter and the optimal filter is studied, and we prove (1.6). Section 4 is
devoted to the almost linear case. Results of numerical simulations that illustrate the
performance of this approach are included in section 5.

Notation. The following notation is used:

f =

[
f1

f2

]
, Σ =

[
0
σ

]
, H =

[
h′ 0

]
;

F =
ˇ
F11 F12

F21 F22

˘

and Σ′ =
ˇ

0 0
Σ′

21 Σ′
22

˘

are the Jacobian matrices of f and Σ; ∇0Φ =
∂Φ
∂X0

is either a 2 × 2 matrix (if Φ is R2-valued) or a line-vector (if Φ is real-valued); see
section 3. The symbol ∗ is used for the transposition of matrices.

When describing the behavior of approximate filters, we will write asymptotic
expressions with the meaning given by the following definition.

Definition 1.1. Consider a real- or vector-valued stochastic process {ξt}. If β
is real and p ≥ 1, we will write that

ξt = O(εβ) in Lp

when, for some q ≥ 0, α > 0, and some positive constants C1, C2, c3,

E
[‖ξt‖p]1/p ≤ C1

εq
e−c3t/ε

α

+ C2ε
β

for t ≥ 0 and ε small. In this situation, the process {ξt} is usually said to converge
to zero with rate of order εβ, in a time scale of order εα.

2. Estimation of Xt−Mt. The following assumptions will be used throughout
this article. The last one depends on a parameter δ ≥ 1.
(H1) X0 is a random variable, the moments of which are finite.
(H2) {wt} and {w̄t} are standard independent Wiener processes independent of

X0.
(H3) The function h is C3 with bounded derivatives, and h′ is positive.
(H4) The function f is C3 with bounded partial derivatives, and F12 = ∂f1/∂x2 is

positive.
(H5) The function σ is C2 with bounded partial derivatives.

(H6.δ) One has

1

δ
≤ σ(x) ≤ δ,

1

δ
≤ h′(x1) ≤ δ,

1

δ
≤ F12(x) ≤ δ

for any x = (x1, x2).
Remark 2.1. In order to reduce the notation in (H6.δ), system (1.1)–(1.2) has

been rescaled. Indeed, if we assume instead that one has

1

δ
≤ σ(x)

σ̄
≤ δ,

1

δ
≤ h′(x1)

H̄
≤ δ,

1

δ
≤ F12(x)

F̄
≤ δ
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for any x = (x1, x2) and for some positive σ̄, H̄, and F̄ and if we replace the processes

x
(1)
t , x

(2)
t , and yt by x

(1)
t /(σ̄F̄ ), x

(2)
t /σ̄, and yt/(σ̄F̄ H̄), then the functions f1, f2, σ,

and h are replaced, respectively, by

f1(σ̄F̄ x1, σ̄x2)
/
(σ̄F̄ ), f2(σ̄F̄ x1, σ̄x2)

/
σ̄,

σ(σ̄F̄ x1, σ̄x2)
/
σ̄, h(σ̄F̄ x)

/
(σ̄F̄ H̄),

and ε is replaced by ε/(σ̄F̄ H̄). We can apply the filter (1.3) to this new system, and

we obtain m
(1)
t /(σ̄F̄ ) and m

(2)
t /σ̄. This shows that the problem can be reduced to

the case σ̄ = F̄ = H̄ = 1.
Assumption (H6.δ) says that the system does not contain too much nonlinearity;

when it is not satisfied, there may be a small positive probability for the filter to lose
the signal (see [10] for a similar problem). This is a rather restrictive condition, so
we discuss at the end of the section the general case in which it does not hold.

We consider the system (1.1)–(1.2) and the filter (1.3). We let Ft be the filtration
generated by (X0, wt, w̄t) and Yt the filtration generated by (yt).

Theorem 2.1. Assume (H1)–(H5). For 1 < δ < 21/5, if (H6.δ) holds, then one
has

x
(1)
t −m

(1)
t = O(ε3/4), x

(2)
t −m

(2)
t = O(ε1/4)

in Lp for any p ≥ 1.
Consider a change of basis defined by a matrix T and its inverse T−1, where

T
def
=



√
2/ε −1

0 1


 , T−1 =



√

ε/2
√

ε/2

0 1


 .

Then consider the process

Zt
def
= T (Xt −Mt).(2.1)

We are going to check that Zt is the solution of a linear stochastic differential equation;
the study of the exponential stability of this equation will enable the estimation of
both components of Zt, and the theorem will immediately follow.

An equation for Zt. From (1.1)–(1.3), we have

d(Xt −Mt) =
(
f(Xt)− f(Mt)

)
dt−Rt

(
h(x

(1)
t )− h(m

(1)
t )
)
dt

+




0 −
√
2ε σ(Mt)F12(Mt)

h′(m(1)
t )

σ(Xt) −σ(Mt)



[

dwt
dw̄t

]
.

In this equation, we introduce the Taylor expansions for the functions f and h,

f(Xt)− f(Mt) = F (ξt, µt)(Xt −Mt)

and

h(x
(1)
t )− h(m

(1)
t ) = h′(ηt)(x

(1)
t −m

(1)
t ) ,
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where {ξt}, {µt}, and {ηt} are R2- and R-valued processes depending on {Xt} and
{Mt}, and

F (ξt, µt)
def
=


 F11(ξt) F12(ξt)

F21(µt) F22(µt)


 .

We obtain a linear equation for Xt −Mt. By applying the transformation (2.1), we
deduce for Zt an equation of the type

dZt = At Zt dt+ Ut

[
dwt
dw̄t

]
.(2.2)

The precise computation shows that

At = T
(
F (ξt, µt)−RtH(ηt)

)
T−1 =

Āt√
2ε
+ Ãt ,

with

Ā
(11)
t = −2h′(ηt)

√
F12(Mt)σ(Mt)

h′(m(1)
t )

+ h′(ηt)σ(Mt), Ā
(12)
t = Ā

(11)
t + 2F12(ξt),

Ā
(21)
t = Ā

(22)
t = −h′(ηt)σ(Mt),

and where Ãt is a 2 × 2 matrix-valued process which is uniformly bounded as ε
converges to 0; similarly, the matrix-valued process Ut is also uniformly bounded.

Stability of At. If δ = 1, then h′ = F12 = σ = 1, so Āt is the constant matrix

Āt =

[ −1 1
−1 −1

]
,

and

Āt + Ā∗
t = −2 I.

In the general case δ > 1, the coefficients of Āt + Ā∗
t can be controlled so that this

matrix is uniformly close to −2I if δ is close to 1; in particular, for 1 < δ < 21/5,
there exists 0 < α < α′ <

√
2 such that

Āt + Ā∗
t ≤ −α′√2 I

and, therefore,

At +A∗
t ≤ −

α√
ε
I(2.3)

if ε is small.
End of the proof of Theorem 2.1. Our goal is now to deduce an estimate of Zt in

L2p for the p integer. From Itô’s formula and (2.2), the process ‖Zt‖2 = Z∗
t Zt is the

solution of

d‖Zt‖2 = Z∗
t (At +A∗

t )Zt dt+ trace(U
∗
t Ut) dt+ 2Z

∗
t Ut

[
dwt
dw̄t

]
.
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We deduce that the moment of order p of ‖Zt‖2 is finite and that
d

dt
E[‖Zt‖2p] = pE[‖Zt‖2p−2Z∗

t (At +A∗
t )Zt] + pE[‖Zt‖2p−2trace(U∗

t Ut)]

+2 p (p− 1)E[‖Zt‖2p−4 ‖U∗
t Zt‖2] .

From (2.3), one has

Z∗
t (At +A∗

t )Zt ≤ −
α√
ε
‖Zt‖2.

As a consequence of the Cauchy–Schwarz inequality, one has

‖U∗
t Zt‖2 ≤ trace(U∗

t Ut) ‖Zt‖2 .
Thus we obtain the inequality

d

dt
E[‖Zt‖2p] ≤ −p α√

ε
E[‖Zt‖2p] + p (2p− 1)E[‖Zt‖2p−2trace(U∗

t Ut)]

≤ −p α√
ε
E[‖Zt‖2p] + CpE[‖Zt‖2p−2] .

Moreover, there exists C ′
p such that

Cp‖Zt‖2p−2 ≤ p
α

2
√
ε
‖Zt‖2p + C ′

pε
(p−1)/2,

and so

d

dt
E[‖Zt‖2p] ≤ − α

2
√
ε
pE[‖Zt‖2p] + C ′

pε
(p−1)/2 .

By solving this differential inequality, one obtains that, for some C ′′
p > 0,

E[‖Zt‖2p] ≤ C ′′
p ε
p/2 + C ′′

p E[‖Z0‖2p] e−αp t/(2
√
ε) .(2.4)

Thus Zt is O(ε1/4), and the order of magnitude of the components of Xt−Mt follows
from (2.1) and the form of T−1.

We remark in (2.4) that the time scale of the estimation is of order
√
ε; one can

compare it with the time scale ε obtained when the observation function is injective
(see, for instance, [7]). This means that here it takes more time to estimate the
signal, and this is not surprising since the second component of the signal is not well
observed. There are also other systems where the time scale is not the same for the
different components of the signal (see [10]).

In Theorem 2.1, we need the assumption (H6.δ), which is a restriction to the
nonlinearity of the system; otherwise, it is difficult to ensure that the filter does not
lose the signal. (This problem also occurs in [10].) Actually, we have chosen the filter
(1.3) because it gives a good approximation of X̂t (see the next section), but it is not

the most stable one. If in (1.4) we replace the processes σ(Mt), F12(Mt), and h′(m(1)
t )

by constant numbers σ̄, F̄ , and H̄, then we obtain a filter with constant gain; we can
again work out the previous estimations and prove that the result of Theorem 2.1
holds for this filter without (H6.δ) as soon as

maxF12

F̄
< 2

minh′

H̄
.

Thus we have two filters—a filter which is stable and tracks the signal under rather
weak assumptions and the filter (1.3) which seems more fragile but gives (under good
stability assumptions) a better approximation of the optimal filter.
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3. Estimation of X̂t −Mt. The main result contained in this section is The-
orem 3.1, which states the rate of convergence of the approximate filter considered
in this paper toward the optimal filter. In order to give a proof of this theorem, a
sequence of steps is needed: a change of probability measure, the differentiation with
respect to the initial condition, and an integration by parts formula. A similar method
of proof is adopted in [9]. As in Theorem 2.1, we may have a problem of stability in
the general nonlinear case.

Theorem 3.1. Consider a finite time interval [0, τ ]. Assume (H1)–(H6.δ) and
the following:

(H7) The law of X0 has a C1 positive density p0 with respect to the
Lebesgue measure and ∇p0(X0)/p0(X0) is in L2.

If δ in (H6.δ) is close enough to 1, in the sense that 1 < δ < 22/9, then the filter Mt

given by (1.3) satisfies

x̂
(1)
t −m

(1)
t = O(ε), x̂

(2)
t −m

(2)
t = O(√ε)

in L2.
The rest of this section is devoted to the proof of this theorem.
Consider the matrix

Pt
def
=




1

h′(m(1)
t )

√
2σ(Mt)F12(Mt)

h′(m(1)
t )

ε3/2 σ(Mt)

h′(m(1)
t )

ε

σ(Mt)

h′(m(1)
t )

ε σ(Mt)

√
2σ(Mt)

h′(m(1)
t )F12(Mt)

ε1/2



,

which depends only on Mt. Notice that Pt is the solution of the stationary Riccati
equation

− 1
ε2

PtH
∗(Mt)H(Mt)Pt + F̃ (Mt)Pt + PtF̃

∗(Mt) + Σ(Mt)Σ
∗(Mt) = 0(3.1)

with

F̃ (Mt) =

[
0 F12(Mt)
0 0

]

and that the process Rt of (1.4) is

Rt =
Pt
ε2

H∗(Mt).(3.2)

We will also need the inverse of Pt, namely,

P−1
t =




h′(m(1)
t )

√
2h′(m(1)

t )

σ(Mt)F12(Mt)
ε−3/2 −h′(m(1)

t )

σ(Mt)
ε−1

−h′(m(1)
t )

σ(Mt)
ε−1 1

σ(Mt)

√
2h′(m(1)

t )F12(Mt)

σ(Mt)
ε−1/2



.

Change of probability measure. Our random variables can be viewed as functions
of the initial condition X0 and of the Wiener processes w and w̄. We are going to
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make a change of variables; in view of the Girsanov theorem, this can be viewed as
a change of probability measure; however, all the estimations will be made under the
original probability P . Thus consider the new probability measure which is given on
Ft by

dṖ

dP

∣∣∣∣∣
Ft

= L−1
t ,

where

L−1
t = exp

{
−1

ε

∫ t

0

h(x(1)
s ) dw̄s − 1

2ε2

∫ t

0

h2(x(1)
s ) ds

}
.

The probability Ṗ is the so-called reference probability, and one checks easily from
the Girsanov theorem that yt/ε and wt are standard independent Wiener processes

under Ṗ . Let us define now the probability measure P̃ on Ft by

dP̃

dṖ

∣∣∣∣∣
Ft

= Λ−1
t ,

where

Λ−1
t = exp

{∫ t

0

Σ∗(Ms)P
−1
s (Xs −Ms) dws − 1

2

∫ t

0

(Σ∗(Ms)P
−1
s (Xs −Ms))

2 ds

}
.

Then the processes

w̃t = wt −
∫ t

0

Σ∗(Ms)P
−1
s (Xs −Ms) ds

and yt/ε are standard independent Wiener processes under P̃ . On the other hand,
one has

dXt = f(Xt) dt+Σ(Xt)Σ
∗(Mt)P

−1
t (Xt −Mt) dt+Σ(Xt) dw̃t(3.3)

and

log(LtΛt) =
1

ε2

∫ t

0

h(x(1)
s ) dys − 1

2ε2

∫ t

0

h2(x(1)
s ) ds−

∫ t

0

Σ∗(Ms)P
−1
s (Xs −Ms) dw̃s

(3.4)

−1
2

∫ t

0

(Σ∗(Ms)P
−1
s (Xs −Ms))

2 ds .

Differentiation with respect to the initial condition and an estimation. The ran-
dom variables involved in our computation can now be viewed as functions of X0,
{w̃t}, and {yt}; let us denote by ∇0 the differentiation with respect to the initial
condition X0 (computed in Lp). In particular, we can see on (3.3) and (3.4) that the
processesXt and log(LtΛt) are differentiable, and we obtain matrix- and vector-valued
processes, respectively. Our aim is to estimate the process

Vt
def
= (∇0 log(LtΛt) (∇0Xt)

−1 + (Xt −Mt)
∗P−1

t )U(3.5)
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with

U
def
=

[
1 1

0
√
2/ε

]
, U−1 =

[
1 −√ε/2

0
√

ε/2

]
.

Then an integration by parts will enable us to conclude.
By applying the operator ∇0 to (3.4), one gets

∇0 log(LtΛt) =
1

ε2

∫ t

0

h′(x(1)
s )∇0x

(1)
s (dys − h(x(1)

s )ds)

−
∫ t

0

Σ∗(Ms)P
−1
s ∇0Xs (dw̃s +Σ

∗(Ms)P
−1
s (Xs −Ms)ds)(3.6)

=
1

ε

∫ t

0

h′(x(1)
s )∇0x

(1)
s dw̄s −

∫ t

0

Σ∗(Ms)P
−1
s ∇0Xs dws .

We can also differentiate (3.3), and, if Σ′ is the Jacobian matrix of Σ, we obtain

d(∇0Xt) = [F (Xt) + Σ(Xt)Σ
∗(Mt)P

−1
t ]∇0Xt dt+Σ

′(Xt)∇0Xt dwt.

The matrix ∇0Xt is invertible, and Itô’s calculus shows that

d(∇0Xt)
−1 = −(∇0Xt)

−1[F (Xt) + Σ(Xt)Σ
∗(Mt)P

−1
t − Σ′2(Xt)] dt

(3.7) −(∇0Xt)
−1Σ′(Xt)dwt .

From this equation and (3.6), one can write that

d
(∇0 log(LtΛt)(∇0Xt)

−1
)
=
1

ε
H(Xt) dw̄t − Σ∗(Mt)P

−1
t dwt

−∇0 log(LtΛt)(∇0Xt)
−1Σ′(Xt) dwt

−∇0 log(LtΛt)(∇0Xt)
−1(3.8)

. [F (Xt) + Σ(Xt)Σ
∗(Mt)P

−1
t − Σ′2(Xt)]dt

+Σ∗(Mt)P
−1
t Σ′(Xt)dt

since one has h′(x(1)
t )∇0x

(1)
t (∇0Xt)

−1 = H(Xt).
On the other hand, from the equations of Xt and Mt ((1.1) and (1.3), respec-

tively), one has

d(Xt −Mt) = [f(Xt)− f(Mt)] dt−Rt[h(x
(1)
t )− h(m

(1)
t )] dt−Rtε dw̄t +Σ(Xt) dwt .

By writing the differential of P−1
t in the form

dP−1
t = J

(1)
t dt+ J

(2)
t dw̄t,

we obtain

d
(
(Xt −Mt)

∗P−1
t

)
= [f∗(Xt)− f∗(Mt)−R∗

t (h(x
(1)
t )− h(m

(1)
t ))]P−1

t dt

+Σ∗(Xt)P
−1
t dwt − εR∗

tP
−1
t dw̄t(3.9)

+(Xt −Mt)
∗[J (1)

t dt+ J
(2)
t dw̄t]− εR∗

tJ
(2)
t dt .
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One can write the Taylor expansions for f and h,

f(Xt)− f(Mt) = F (Mt)(Xt −Mt) + φt ,

h(x
(1)
t )− h(m

(1)
t ) = H(Mt)(Xt −Mt) + γt,

with

‖φt‖ ≤ C‖Xt −Mt‖2, |γt| ≤ C|x(1)
t −m

(1)
t |2.

By using these expansions together with the consequence of (3.2),

H∗(Mt)R
∗
tP

−1
t =

1

ε2
H∗(Mt)H(Mt),

in (3.9), we obtain

d((Xt −Mt)
∗P−1

t ) = (Xt −Mt)
∗
(
F ∗(Mt)P

−1
t − 1

ε2
H∗(Mt)H(Mt)

)
dt

+Σ∗(Xt)P
−1
t dwt − εR∗

tP
−1
t dw̄t

+(Xt −Mt)
∗[J (1)

t dt+ J
(2)
t dw̄t]− εR∗

tJ
(2)
t dt

+(φ∗
t − γtR

∗
t )P

−1
t dt .

By adding this equation to (3.8), we obtain that the process Vt of (3.5) satisfies

d
(
VtU

−1
)
= −VtU−1[F (Xt) + Σ(Xt)Σ

∗(Mt)P
−1
t − Σ′2(Xt)]dt− VtU

−1 Σ′(Xt) dwt

+
1

ε
H(Xt)dw̄t − Σ∗(Mt)P

−1
t dwt +Σ

∗(Mt)P
−1
t Σ′(Xt)dt

+(Xt −Mt)
∗Stdt+ (Xt −Mt)

∗P−1
t Σ′(Xt)dwt +Σ

∗(Xt)P
−1
t dwt(3.10)

−εR∗
tP

−1
t dw̄t + (Xt −Mt)

∗[J (1)
t dt+ J

(2)
t dw̄t]− εR∗

tJ
(2)
t dt

+(φ∗
t − γtR

∗
t )P

−1
t dt,

where St is the matrix given by

St
def
= − 1

ε2
H∗(Mt)H(Mt) + F ∗(Mt)P

−1
t + P−1

t F (Xt)
(3.11)

+P−1
t Σ(Xt)Σ

∗(Mt)P
−1
t − P−1

t Σ′2(Xt) .

Consider also the matrix-valued process

At
def
= −U−1[F (Xt) + Σ(Xt)Σ

∗(Mt)P
−1
t − Σ′2(Xt)]U .(3.12)

Then (3.10) can be written in the form

dVt = VtAtdt− VtU
−1Σ′(Xt)Udwt + J

(3)
t dt+ J

(4)
t dwt + J

(5)
t dw̄t,

(3.13)
V0 = (X0 −M0)

∗P−1
0 U,

where

J
(3)
t = Σ∗(Mt)P

−1
t Σ′(Xt)U + (Xt −Mt)

∗StU + (Xt −Mt)
∗J (1)
t U

−εR∗
tJ

(2)
t U + (φ∗

t − γtR
∗
t )P

−1
t U,

J
(4)
t = (Σ∗(Xt)− Σ∗(Mt))P

−1
t U + (Xt −Mt)

∗P−1
t Σ′(Xt)U,

J
(5)
t =

1

ε
H(Xt)U − εR∗

tP
−1
t U + (Xt −Mt)

∗J (2)
t U

=
1

ε
(H(Xt)−H(Mt))U + (Xt −Mt)

∗J (2)
t U
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(apply (3.2) for the last line). We deduce that E[‖V0‖2] is of order ε−3 and that

d

dt
E[‖Vt‖2] = E[Vt(At +A∗

t )V
∗
t ] + 2E[J

(3)
t V ∗

t ]
(3.14)

+E[‖VtU−1Σ′(Xt)U + J
(4)
t ‖2] + E[‖J (5)

t ‖2] .
We have to estimate the terms of the right-hand side.

By computing the matrix At, we obtain that

At =
Āt√
2ε
+ Ãt

with

Ā
(11)
t = −Ā(21)

t = −h′(m(1)
t )σ(Xt) ,

Ā
(12)
t = −2F12(Xt)− h′(m(1)

t )σ(Xt) + 2σ(Xt)

√
h′(m(1)

t )F12(Mt)

σ(Mt)
,

Ā
(22)
t = h′(m(1)

t )σ(Xt)− 2σ(Xt)

√
h′(m(1)

t )F12(Mt)

σ(Mt)
,

and Ãt is uniformly bounded. As in the proof of Theorem 2.1, we see that, if δ = 1,
then the matrix Āt is simply

Āt =

[ −1 −1
1 −1

]
,

which satisfies

Āt + Ā∗
t = −2 I .

Thus, for 0 < α <
√
2, when δ is close enough to 1, that is, 1 < δ < 22/9, and when ε

is small enough, we have

At +A∗
t ≤ −

α√
ε
I .(3.15)

We also notice that

2J
(3)
t V ∗

t ≤
α

3
√
ε
‖Vt‖2 + C

√
ε‖J (3)

t ‖2

and that

‖VtU−1Σ′(Xt)U + J
(4)
t ‖2 ≤ C‖Vt‖2 + 2‖J (4)

t ‖2

because U−1Σ′(Xt)U is bounded. Thus (3.14) implies that, for small ε,

d

dt
E[‖Vt‖2] ≤ − α

3
√
ε
E[‖Vt‖2] + C

√
εE[‖J (3)

t ‖2]
(3.16)

+2E[‖J (4)
t ‖2] + E[‖J (5)

t ‖2] .
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Let us first estimate J
(3)
t . We deduce from the Riccati equation (3.1) satisfied by

Pt that the process St defined in (3.11) satisfies

St =
(
F ∗(Mt)− F̃ ∗(Mt)

)
P−1
t + P−1

t

(
F (Xt)− F̃ (Mt)

)
+P−1

t

(
Σ(Xt)− Σ(Mt)

)
Σ∗(Mt)P

−1
t − P−1

t Σ′2(Xt).

By computing this matrix and applying Theorem 2.1, we check that

St =

[ O(ε−7/4) O(ε−5/4)
O(ε−5/4) O(ε−3/4)

]

in the spaces Lp. Thus

(Xt −Mt)
∗StU = O(ε−1).

The term Σ∗(Mt)P
−1
t Σ′(Xt)U is easily shown to have the same order of magnitude.

On the other hand, by looking at the equation of Mt and by applying Itô’s formula,
we can prove that, for any C2 function ρ with bounded derivatives, one has

dρ(Mt) = O(ε−1/4)dt+O(1)dw̄t.

By applying this result to the functions involved in P−1
t , it appears that

J
(1)
t =

[ O(ε−7/4) O(ε−5/4)
O(ε−5/4) O(ε−3/4)

]
, J

(2)
t =

[ O(ε−3/2) O(ε−1)
O(ε−1) O(ε−1/2)

]
.

We deduce that the terms of J
(3)
t involving J

(1)
t and J

(2)
t are also of order ε−1. Finally,

φt and γt are, respectively, of order ε
1/2 and ε3/2, and so the last term is of order ε−1,

and we deduce that

J
(3)
t = O(ε−1).

We can also estimate J
(4)
t and J

(5)
t and check that they are of order ε−3/4. Thus

(3.16) enables us to conclude that

Vt = O(1/
√
ε)

in L2. We can take the conditional expectation with respect to Yt in this estimation
because the conditional expectation is a contraction in L2; thus E[Vt|Yt] is O(1/

√
ε)

in L2, and, therefore, we obtain from the definition (3.5) that

(X̂t −Mt)
∗P−1

t U = −E[∇0 log(LtΛt)(∇0Xt)
−1U |Yt] +O(1/

√
ε).(3.17)

Application of an integration by parts formula. The estimation of the right-hand
side of (3.17) can be completed by means of an integration by parts formula. It is
proved in Lemma 3.4.2 of [9] that, if G = G(X0, w̃, y) is a functional defined on the
probability space which is differentiable with respect to the initial condition (in the
spaces Lp) and if ∇i0 is the differentiation with respect to the ith component of X0,
then

E[G∇i0 log(LtΛt) +G(p−1
0 ∂p0/∂xi)(X0) +∇i0G|Yt] = 0.(3.18)
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We can write (3.7) in the form

d(∇0Xt)
−1 = −(∇0Xt)

−1(F (Xt) + Σ(Xt)Σ
∗(Mt)P

−1
t − Σ′2(Xt)

+Σ′(Xt)(Σ
∗(Mt)P

−1
t (Xt −Mt)))dt(3.19)

−(∇0Xt)
−1Σ′(Xt)dw̃t

with (∇0X0)
−1 = I. This equation can be differentiated with respect to X0, and so

we can apply the integration by parts formula (3.18) to the coefficients of the matrix
(∇0Xt)

−1. Denote by (∇0Xt)
−1
i its ith line. Then

E[(∇0Xt)
−1
i ∇i0 log(LtΛt) + (∇0Xt)

−1
i (p−1

0 ∂p0/∂xi)(X0) +∇i0(∇0Xt)
−1
i |Yt] = 0.

By summing on i and multiplying by U, we have

E

[
∇0 log(LtΛt)(∇0Xt)

−1U + (p−1
0 p′0)(X0)(∇0Xt)

−1U

(3.20)

+
∑
i

∇i0(∇0Xt)
−1
i U

∣∣∣ Yt
]
= 0.

The first term of (3.20) is exactly the term that we want to estimate in (3.17).
For the second term of (3.20), if

Ψt
def
= (p−1

0 p′0)(X0) (∇0Xt)
−1U,

we have from (3.7) and (3.12) that

Ψ0 = (p
−1
0 p′0)(X0)U, dΨt = ΨtAt dt−ΨtU−1Σ′(Xt)U dwt.

We proceed as in the study of (3.13). The stability of the matrix At, which has
been obtained in (3.15), and the boundedness of U−1Σ′(Xt)U imply that (∇0Xt)

−1

is exponentially small in L2, and so the second term is negligible.
Let us study the third term of (3.20). If

Φit = ∇i0(∇0Xt)
−1
i U,

then by differentiating (3.19) and transforming w̃ back into w, we get

dΦit = Φ
i
tAtdt− Φit U−1Σ′(Xt)U dwt − (∇0Xt)

−1
i ∇i0ρ(Xt,Mt)U dt

−Σ∗(Mt)P
−1
t ∇i0Xt(∇0Xt)

−1
i Σ′(Xt)U dt− (∇0Xt)

−1
i ∇i0

(
Σ′(Xt)

)
U dwt

with

ρ(Xt,Mt)
def
= F (Xt) + Σ(Xt)Σ

∗(Mt)P
−1
t − Σ′2(Xt).

By summing on i and using

∑
i

(∇0Xt)
−1
i ∇i0ρ(Xt,Mt) =

∑
i,j

∇i0Xj
t (∇0Xt)

−1
i

∂ρ

∂xj
(Xt,Mt) =

∑
j

∂ρj
∂xj

(Xt,Mt),
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where ρj is the jth line of ρ, we obtain that Φt =
∑
Φit is the solution of

Φ0 = 0, dΦt = ΦtAt dt− ΦtU−1Σ′(Xt)U dwt −
∑
j

∂ρj
∂xj

(Xt,Mt)U dt

(3.21)

−Σ∗(Mt)P
−1
t Σ′(Xt)U dt− ∂σ′

∂x2
(Xt)U dwt,

where σ′ is the Jacobian of σ. A computation shows that

∂ρj
∂xj

(Xt,Mt) =

[ O(1) O(1)
O(ε−1) O(ε−1/2)

]
.

The multiplication on the right by U yields a process of order ε−1; the term Σ∗(Mt)
.P−1
t Σ′(Xt)U is also O(ε−1), and the term involving the second derivative of σ is
O(ε−1/2). By proceeding again as in the study of (3.13), we deduce that Φt is of
order ε−1/2.

Thus (3.17), (3.20), and the estimation of Ψt and Φt yield

(X̂t −Mt)
∗P−1

t U = O(1/√ε).

We multiply on the right by the matrix U−1Pt, the coefficients of which are of order
ε3/2 for the first column and ε for the second column, and we deduce the order of
X̂t −Mt which was claimed in the theorem.

4. An almost linear case. It is interesting to consider a particular case in
which σ, h′, and F12 are constant so that the system (1.1)–(1.2) is



dx
(1)
t =

(
f0
1 (x

(1)
t ) + F12x

(2)
t

)
dt,

dx
(2)
t = f2(x

(1)
t , x

(2)
t ) dt+ σ dwt,

dyt = h′x(1)
t dt+ ε dw̄t.

(4.1)

In particular, (H6.δ) holds with δ = 1. Then it is possible to improve the upper
bounds given in Theorem 3.1. The time interval that we consider may be infinite.
The result is stated in the following proposition.

Proposition 4.1. Assuming that (H1)–(H7) hold for (4.1), the filter Mt given
by (1.3) verifies

x̂
(1)
t −m

(1)
t = O(ε5/4), x̂

(2)
t −m

(2)
t = O(ε3/4)

in L2.
Proof. The proof closely follows the sequence of steps adopted in Theorem 3.1.

The matrices Pt = P and Rt = R are now constant; the processes J
(1)
t , J

(2)
t , J

(4)
t ,

and J
(5)
t are zero. The order of St is improved into

St =

[ O(ε−3/2) O(ε−1)
O(ε−1) O(ε−1/2)

]
,

and

|φ(1)
t | ≤ C|x(1)

t −m
(1)
t |2 = O(ε3/2), |φ(2)

t | ≤ C‖Xt −Mt‖2 = O(ε1/2)
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so that

J
(3)
t = (Xt −Mt)

∗StU + φ∗
tP

−1U

is of order ε−3/4. Thus Vt is O(ε−1/4), and we obtain O(ε−1/4) in (3.17).
For the end of the proof, we see that

ρ(Xt,Mt) = F (Xt) + ΣΣ
∗P−1,

and so

∂ρj
∂xj

(Xt,Mt) =
∂Fj
∂xj

(Xt)

is bounded. Multiplication by U yields a process of order ε−1/2, and so the process
Φt of (3.21) is bounded for small ε. We can conclude that

(X̂t −Mt)
∗P−1

t U = O(ε−1/4)

and deduce the proposition.
With more computational effort, it is possible to extend these results to the case

in which the component x(1) is driven by low noise:


dx
(1)
t =

(
f0
1 (x

(1)
t ) + F12x

(2)
t

)
dt+ εγ dw

(1)
t ,

dx
(2)
t = f2(x

(1)
t , x

(2)
t ) dt+ σ dw

(2)
t ,

dyt = h′x(1)
t dt+ ε dw̄t

(4.2)

with Mt given by (1.5) and with the gain Rt given by (1.4), as before, if γ > 1/2, and
with Rt given by

Rt
def
=



√
2σF12

h′ + 1
1√
ε

σ

ε




if γ = 1/2.
Clearly, Theorem 2.1 extends to system (4.2) as soon as γ ≥ 1/2. This results

from the fact that, in the SDE of Zt, the matrices involved in the martingale terms
are still uniformly bounded as ε converges to 0, and the matrix At of (2.2) has the
same stability property as before.

Regarding the extension of Proposition 4.1 to system (4.2), one can see that,
assuming γ ≥ 3/4, the estimation in Proposition 4.1 still holds. This happens because
the matrix Āt in the decomposition of At remains the same. More effort is needed if
one considers the cases 1/2 < γ < 3/4 and γ = 1/2.

Another class of almost linear filtering problems when some of the observations
and driving noises are small is considered by Krener [6]. Krener studied the multi-
dimensional case, where nonlinearities depend only on state variables which can be
estimated quickly and accurately; that is, the only nonlinearity allowed in (4.2) is that

of the function f2 with respect to x
(1)
t . Observations with at least two components,

instead of one, are also assumed.
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Fig. 5.1. Estimation errors for the (a) first and (b) second components of X computed on a
single trajectory.

5. Numerical simulation results. Let us consider the following example il-
lustrating the case of free fall of a body through the atmosphere:{

dx
(1)
t = x

(2)
t dt,

dx
(2)
t = (ρ0e

−x(1)
t /k(x

(2)
t )2/(2β)− g) dt+ σdwt

and

dyt =

√
(x

(1)
t )2 + a2 dt+ ε dw̄t,

where x
(1)
t is the position of the moving body and x

(2)
t is its speed, ρ0 being the

reference air density, k the atmosphere thickness, β the ballistic coefficient of the body,
g the acceleration due to gravity, and a the horizontal distance between the body and
the measuring device (ρ0 = 3.4×10−3 lb s2/ft4, k = 22×103 ft, β = 1.6×103 lb2/ft4,
g = 32.2 ft/s2, σ = 5 ft/s, and a = 104 ft). Figure 5.1 shows the estimation errors
obtained from applying the two approximate filters (filter (1.5), noted Mt, and the
constant gain filter mentioned at the end of section 2 with H̄ = 0.02, noted M̄t) to a
single trajectory of the state with measurements taken each 0.001 s. The parameter
ε is equal to 1 and

X0 ∼ N
([

3× 105
−103

]
,

[
900 0
0 2× 104

])
.

It illustrates the fact that the errors get small very quickly, and one notices that the
constant gain filter needs more time than filter (1.5) to attain small errors in the
second component.
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Fig. 5.2. Estimation errors for the (a) first and (b) second components of X.
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Fig. 5.3. Estimation errors for the (a) first and (b) second components of X (G = 0.5).

Figure 5.2 illustrates the asymptotic behavior of the estimation errors when
system (1.1)–(1.2) with f(x1, x2) = [x2 − 1.5× 10−3x2

1]
∗
, σ = 2, and h(x1) =√

x2
1 + 10

8 is considered. Although f and h′ fail to verify assumption (H3) and, in
fact, inf h′ = 0, we will assume that the state remains in a bounded domain with high
probability, thus assuming that inf h′ > 1/

√
120. The root mean square error between

the two approximate filters (with H̄ = 0.18) was computed for ε = 1, 10−1, . . . , 10−4

over 200 simulations for both components in the time interval [0, 5]. The solid lines
exhibit approximate slopes of −0.76 (first component) and −0.28 (second component)
which agree with the results in section 2. The error associated with the constant gain
filter and that associated to filter (1.5) are very similar.

Figures 5.3–5.5 illustrate the van der Pol oscillator example presented in [12,
section 6]: f(x1, x2) = [x2 − x1 − x2]

∗
, σ = 1, and h(x1) = 0.606(1 − G)x1 +
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Fig. 5.4. Estimation errors for the (a) first and (b) second components of X (G = 0.8).
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Fig. 5.5. Estimation errors for the (a) first and (b) second components of X (G = 0.9).

Gx3
1 with G = 0.5, 0.8, 0.9, respectively. The time interval [0, 100] was considered.

One can observe the increasing benefit of using filter (1.5) as the nonlinearity in the
observations gets stronger. The results obtained by using the extended Kalman filter
(EKF) are also shown in [12] for comparison.
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WEAK CONVERGENCE OF HYBRID FILTERING PROBLEMS
INVOLVING NEARLY COMPLETELY DECOMPOSABLE HIDDEN
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Abstract. Concentrating on a class of hybrid discrete-time filtering problems that are modulated
by a Markov chain, this work aims to reduce the complexity of the underlying problems. Since the
Markov chain has a large state space, the solution of the problem relies on solving a large number of
filtering equations. Exploiting the hierarchical structure of the system, it is noted that the transition
probability matrix of the Markov chain can be viewed as a nearly decomposable one. It is shown that
a reduced system of filtering equations can be obtained by aggregating the states of each recurrent
class into one state. Extensions to inclusion of transient states and nonstationary cases are also
treated.

Key words. Markov chain, filtering, near complete decomposability, weak convergence
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1. Introduction. In this work, we concern ourselves with hybrid filtering prob-
lems in discrete time. Since a wide variety of problems arising in target tracking,
speech recognition, telecommunication, and manufacturing requires solutions of fil-
tering problems involving a hidden Markov chain, in addition to the usual random
system disturbances and observation noise, we assume that the system under consid-
eration is influenced by a hidden Markov chain with finite state space. Due to the
rapid advances in science and technology, various systems tend to be rather complex
and large-scale in nature. As a result, although the state space of the Markov chain is
finite, it inevitably contains a large number of states. Our main effort is devoted to re-
ducing the complexity of such filtering problems involving large-scale hidden Markov
chains.

In a recent paper, linear systems with coefficients driven by a hidden Markov
chain were considered [21]. Discrete-time systems were studied in [1, 6, 12, 28] among
others. In [33], Zhang studied hybrid filters in continuous time and treated problems
involving non-Gaussian noise. Our study is motivated by these recent developments
and stems from the needs in many applications mentioned above.

In the seminal paper [26], Simon and Ando pointed out that various large-scale
systems have hierarchical structures. Some of the states vary rapidly, and others
change slowly. In addition, these states are also naturally decomposable into different
layers or a hierarchy. Such a hierarchy allows one to take advantage and to organize
and reorganize the systems accordingly. Based on such ideas, Courtois dealt with
the so-called nearly completely decomposable Markov chain models [7]. Recently, Dey
derived reduced-complexity filtering results for hidden Markov models, in which the
underlying Markov chains are nearly completely decomposable [9]. Such hierarchical
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Markov chains have numerous applications in queueing and computer systems [7],
multiple time-scale heterogeneous traffic modelling (e.g., variable bit rate video traffic
[27]), manufacturing systems, operations research, and many other biological and
physical systems in which a multiple time-scale or hierarchical behavior is involved;
see also related work in [3, 5, 14, 18, 22, 23, 25] and the references therein. Taking
the approaches of [7] and [9] as our point of departure, to reduce the complexity of
the underlying problem, we introduce a small parameter ε > 0 into the system. Note
that the small parameter is used to reflect the high contrast of the transition rates
of the Markov chain. For the subsequent asymptotic analysis, to obtain the desired
results, it is necessary to send ε → 0, which can serve as a guideline for various
applications and for approximation and heuristics. In real applications, however, ε
might be a fixed constant, and only the relative order of magnitude of this parameter
matters. In our setup, we also consider a nearly completely decomposable Markovian
model, in which the hidden Markov chain has a large state space. The transition
probability matrix is a sum of a completely decomposable transition matrix and a
generator of a continuous-time Markov chain. Following our systematic studies on
singularly perturbed Markov chains in both continuous time and discrete time [16,
29, 30, 31, 34], we investigate the asymptotic properties of the filtering problem by
means of weak convergence methods. We show that a limit filtering problem can be
derived in which the underlying Markov chain is replaced by an averaged chain and
the system coefficients are averaged out with respect to the stationary measures of
each ergodic class. The reduction of complexity is particularly pronounced when the
transition matrix of the Markov chain consists of only one ergodic class. In this case,
the limit filtering problem becomes a standard Kalman filter free of Markovian jump
processes.

The rest of the paper is arranged as follows. Section 2 presents the precise for-
mulation of the problem and a number of preliminary results that are to be used in
our study. Section 3 is concerned with weak convergence analysis and the derivation
of limit filtering problems or reduced systems. In order not to disrupt the flow of
presentation, all proofs are placed in an appendix. Section 4 proceeds with numerical
experiments and simulation studies that demonstrate the relationship between the
original system and that of a reduced system. Section 5 gives remarks and a few
extensions.

Throughout the paper, we use K to denote a generic positive constant, whose
values may be different for different usage. For any z ∈ R

�1×�2 with some positive
integers �1 and �2, z

′ denotes its transpose. For a suitable function f , fx and fxx
denote its first-order and second-order partial derivatives with respect to x.

2. Formulation and preliminaries. This section gives the precise formulation
of the problem to be studied. It also presents some preliminary results needed in the
analysis to follow.

2.1. Hybrid filtering problem. Let ε > 0 be a small parameter, and let {αεn}
be a (time) homogeneous singularly perturbed Markov chain in discrete time with a
finite state spaceM having m elements and a transition matrix

P ε = P̃ + εQ,(2.1)

where P̃ is an m×m transition matrix and Q = (qι�) is a generator of a continuous-
time homogeneous Markov chain, i.e., qι� ≥ 0 for ι �= � and

∑
� qι� = 0 for each

ι.
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Suppose that, for some T > 0 and 0 ≤ n ≤ 
T/ε� (where 
z� denotes the largest
integer part of z), xεn ∈ R

r is the state to be estimated, yεn is the corresponding
observation, and A(ι), C(ι), σw(ι), and σv(ι) are well defined for each ι ∈ M (i.e.,
they are finite for each ι ∈ M). With initial data x0 and y0, the hybrid filtering
problem is concerned with the linear system of equations

xεn+1 = xεn + εA(αεn)x
ε
n +
√
εσw(α

ε
n)wn,(2.2)

yεn+1 = yεn + εC(αεn)x
ε
n +
√
εσv(α

ε
n)vn,

where {wn} and {vn} are the system disturbance and the observation noise, respec-
tively. For ease of presentation, in what follows, we will suppress the floor-function
notation 
·� and write it as 0 ≤ n ≤ T/ε throughout. The use of the

√
ε in the

noise terms stems from the central limit scaling. Precise conditions on the noises will
be provided later. In what follows, we will show that, as ε → 0, the above filtering
problem has a limit. The limit filtering problem is still modulated by a Markov chain.
However, the total number of states of the limit Markov chain is equal to the number
of recurrent groups or clusters l. As mentioned before, typically l� m, and by consid-
ering this limit filtering problem, substantial computational savings can be obtained.
Although (2.2) is a discrete-time filtering problem, the limit under appropriate scaling
is a continuous-time hybrid filtering problem. In the rest of the paper, our main effort
is devoted to deriving the limit filtering problem. For solutions of continuous-time
hybrid filtering problems involving jump Markov processes, see [4, 8, 11, 12, 21]; see
also [2, 10] and the references therein for discrete-time results.

2.2. Nearly completely decomposable Markov chain αε
n. In view of (2.1),

the transition probabilities of αεn are dominated by P̃ . The structure of P̃ is thus
important. Since αεn is a finite-state Markov chain, the Markov chain corresponding

to the transition matrix P̃ either consists of all recurrent states or includes transient
states in addition to recurrent states (see [15]). We first consider the case of inclusion
of recurrent states only. Later we will discuss a generalization to the case in which
transient states are also included. Suppose that the matrix P̃ is given by

P̃ = diag(P̃ 1, . . . , P̃ l) =



P̃ 1

. . .

P̃ l


 ,(2.3)

where each P̃ i ∈ R
mi×mi is itself a transition matrix and

∑l
i=1 mi = m. Here and

henceforth, by diag(Z1, . . . , Zl), we mean a diagonal block matrix with matrix entries
Z1 through Zl of appropriate dimensions. It is clear that, for sufficiently small ε > 0,
P ε is close to P̃ , and so P ε is a nearly completely decomposable transition matrix
(see [7]). Note that, typically for large scale Markovian systems, l � m, and therein
lies the motivation for reducing computational complexity. Concerning the Markov
chain, we assume the following condition.
(A1) The transition probability matrix of the Markov chain αεn is given by (2.1)

with P̃ specified in (2.3), and the state space of the Markov chain is

M =M1 ∪M2 ∩ · · · ∪Ml(2.4)

= {s11, . . . , s1m1} ∪ · · · ∪ {sl1, . . . , slml
}.
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For each i = 1, . . . , l,Mi = {si1, . . . , simi
} is the state space corresponding

to the transition matrix P̃ i, and P̃ i is irreducible and aperiodic.
Note that the probability vector

pεn = (P (α
ε
n = s11), . . . , P (α

ε
n = s1m1), . . . , P (α

ε
n = sl1), . . . , P (α

ε
n = slml

)) ∈ R
1×m

satisfies

pεn+1 = pεnP
ε, pε0 = p0,(2.5)

such that p0 is the initial probability distribution. By (A1), the result in [30] yields
the following lemma.

Lemma 2.1. Assume condition (A1). Then the following assertions hold:
(1) Denote by νi the stationary distribution corresponding to the transition matrix

P̃i for each i = 1, . . . , l. Then, for some 0 < λ < 1,

pεn = θ(t) diag(ν1, . . . , νl) +O(ε+ λn),(2.6)

where θ(t) = (θ1(t), . . . , θl(t)) ∈ R
1×l (with t = εn) satisfies

dθ(t)

dt
= θ(t)Q, θi(0) = xi01mi

,

with

Q = diag(ν1, . . . , νl)Q1̃,(2.7)

1̃ = diag(1m1 , . . . ,1ml
),

where 1� denotes an �-dimensional column vector with all entries being 1.
(2) For n ≤ T/ε, the n-step transition probability matrix (P ε)n satisfies

(P ε)n = Φ(t) +O (ε+ λn) ,(2.8)

where

P 0Φ(t) = 1̃Θ(t) diag(ν1, . . . , νl),(2.9)

dΘ(t)

dt
= Θ(t)Q, Θ(0) = I.

Remark 2.2. Since we are primarily concerned with the form of the limit distri-
bution, only the leading terms are presented in the lemma, although a full asymptotic
expansion can be obtained. See [30] for more details.

Starting from the Markov chain αεn, define an aggregated process α
ε
n by setting

αεn = i if αεn ∈ Mi. Define piecewise constant interpolated processes α
ε(·) and αε(·)

by

αε(t) = αn, α
ε(t) = αεn, t ∈ [nε, nε+ ε).

Lemma 2.1 is mainly deterministic, whereas the following lemma is a weak convergence
result on the aggregated process. Its proof is provided in [32]; a continuous-time
counterpart can be found in [29, pp. 170–171].
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Lemma 2.3. Under (A1), as ε → 0, αε(·) converges weakly to α(·), which is a
continuous-time Markov chain with state spaceM = {1, . . . , l} and generator Q given
by (2.7). Moreover, for the occupation measures defined by

oεn,ij = ε

n∑
k=0

[I{αε
k
=sij} − νijI{αε

k
∈Mi}] for each i = 1, . . . , l, j = 1, . . . ,mi,

the following mean square estimates hold:

sup
0≤n≤T/ε

E|oεn,ij |2 = O(ε).(2.10)

To proceed, we give additional conditions needed for the filtering problem.

(A2) E|x0|2 < ∞ and E|y0|2 < ∞. For each ι ∈ M, A(ι), C(ι), σw(ι), and σv(ι)
are finite; σw(ι)σ

′
w(ι) and σv(ι)σ

′
v(ι) are positive definite matrices.

(A3) The sequences {wn} and {vn} are independent of {αεn} and independent of
each other. The {wn} and {vn} are stationary martingale difference sequences
(with zero mean) such that

Ewnw
′
n = I, Evnv

′
n = I,

E|wn|2+∆ <∞, and E|vn|2+∆ <∞ for some ∆ > 0.

Remark 2.4. For simplicity and ease of presentation, we assume that the noises
are stationary martingale difference sequences and that the covariance of wn and vn
is the identity matrix. Even though no Gaussian assumption is used, as a result of the
scaling, these noise processes will be asymptotically normal thanks to the functional
central limit theorem.

In what follows, we use the weak convergence method to establish the desired
results. Further details on the weak convergence method, which is an extension of
convergence in distribution, can be found in, for example, [13, Chapter 3] or [19,
Chapters 7 and 8].

3. Limit filtering problem. This section is devoted to the derivation of the
limit filtering problem. In lieu of treating the discrete-time iterates, our analysis
focuses on suitable continuous-time interpolations of piecewise constant processes.

For 0 ≤ n ≤ T/ε, define the interpolations xε(·) and yε(·) as

xε(t) = xεn, yε(t) = yεn, t ∈ [nε, nε+ ε),(3.1)

where xεn and yεn are given in (2.2). Then xε(·) and yε(·) ∈ Dr[0, T ], which is the
space of R

r-valued functions that are right continuous and have left limits, endowed
with the Skorohod topology [13, p. 122]. Using weak convergence methods, we will
show that the interpolated processes converge weakly to x(·) and y(·), which satisfy
continuous-time hybrid Kalman filtering equations. Following the approach of weak
convergence methods [13, 17], we first show that the sequences of interests are tight,
and then we characterize the limit processes by using martingale averaging techniques.

Owing to the assumption on the system and observation noise and
√
ε scaling,

the following lemma, known as the functional central limit theorem or Donsker’s
invariance theorem, holds. Its proof is standard; see, for example, [13, Theorem 3.1,
p. 351].
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Lemma 3.1. Define

wε(t) =
√
ε

t/ε−1∑
j=0

wj and vε(t) =
√
ε

t/ε−1∑
j=0

vj .(3.2)

Under (A3), wε(·) and vε(·) converge weakly to standard r-dimensional Brownian
motions w(·) and v(·), respectively.

In fact, correlated ϕ-mixing noises may be dealt with, and the corresponding
central limit result can be obtained, but the notation will be much more complex
for the subsequent averaging. Thus we decide to work with the martingale difference
sequences {wn} and {vn}. In the analysis to follow, we need the a priori bounds on
{xεn} and {yεn}, which are presented in the form of the following lemma. The proof is
provided in the appendix.

Lemma 3.2. Assume (A1)–(A3). For {xεn} and {yεn} defined in (2.2), the follow-
ing bounds hold:

sup
0≤n≤T/ε

E|xεn|2 <∞ and sup
0≤n≤T/ε

E|yεn|2 <∞.(3.3)

3.1. Tightness and weak convergence. To proceed, let Fn be the σ-algebra
generated by {αεj , wj , vj : j ≤ n}, and let En be the conditional expectation with
respect to Fn; let Fεt be the σ-algebra generated by {αε(s), wε(s), vε(s) : s ≤ t},
and let Eεt be the conditional expectation with respect to Fεt . We are to derive the
tightness of {xε(·)} and {yε(·)}. This is a compactness result, which is established by
verifying a tightness criterion; the proof is in the appendix.

Theorem 3.3. Assume (A1)–(A3). Then {xε(·)} is tight in Dr[0, T ], and so is
{yε(·)}, where Dr[0, T ] is the space of R

r-valued functions that are right continuous
and have left limits, endowed with the Skorohod topology.

We are now in a position to obtain the weak convergence of the sequences {xε(·)}
and {yε(·)}. To prove the assertion, we use a martingale problem formulation. Thus
our task becomes to figure out the limit by characterizing the operator of the limit
martingale problem. The technique used is essentially an averaging approach. Differ-
ent from the diffusion approximation in wideband noise systems [17], the limit αε(·)
also contributes to the limit process and adds further complication. The result is
recorded in the following theorem, whose proof is in the appendix as well.

Theorem 3.4. Suppose the conditions of Theorem 3.3 hold. Then xε(·) and yε(·)
converge weakly to x(·) and y(·), respectively, such that x(·) and y(·) are solutions of
the filtering equations

dx = A(α(t))xdt+ σw(α(t))dw,(3.4)

dy = C(α(t))xdt+ σv(α(t))dv,

where w(·) and v(·) are the independent r-dimensional standard Brownian motions
given by Lemma 3.1,

A(i) =

mi∑
j=1

νijA(sij), B(i) =

mi∑
j=1

νijB(sij) for each i ∈M,(3.5)
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and, for each i ∈M, σw(i) and σv(i) satisfy

σw(i)σ
′
w(i) =

mi∑
j=1

νijσw(sij)σ
′
w(sij),(3.6)

σv(i)σ
′
v(i) =

mi∑
j=1

νijσv(sij)σ
′
v(sij).

3.2. Markov chains with one ergodic class. The reduction of complexity
is particularly pronounced if the transition matrix (2.3) consists of only one ergodic
class (i.e., P in (2.3) consists of only one block). That is, P ε = P + εQ such that
P is irreducible and aperiodic. It is easily seen that, for sufficiently small ε > 0, P ε

is also irreducible. Consider the filtering problem (2.2). Similarly to the previous
case, define xε(·) and yε(·) as the piecewise constant interpolations of xεk and yεk,
respectively. Replace A(·) and σw(·) by

A
0
=

m∑
j=1

A(j)νj and σw
0(σw

0)′ =
m∑
j=1

νjσw(j)σ
′
w(j),(3.7)

with ν = (ν1, . . . , νm) denoting the stationary distribution of P . Similarly replace

C(·) and σv(·) by C0
and σ0

v, respectively. The weak convergence of (x
ε(·), yε(·)) will

still be obtained. The proofs are similar to the previous case. In fact, it is readily
seen that Lemma 3.2 and Theorem 3.3 continue to hold. Lemma 2.1 still holds with
obvious modifications, and (2.10) (in Lemma 2.3) is changed to

sup
0≤n≤T/ε

E

[
ε

n∑
k=0

[I{αε
k
=j} − νj ]

]2

= O(ε).

Using this mean square estimate and similar arguments as before, we can show that
Theorem 3.4 continues to hold. It is interesting to note that the limit filtering prob-
lem becomes a standard Kalman filter, in which the jump process effect has been
completely averaged out. We state this as the following result.

Corollary 3.5. Consider the filtering problem (2.2) such that P is irreducible
and aperiodic. Then (xε(·), yε(·)) converges weakly to (x(·), y(·)), that is, the solution
of the filtering problem

dx(t) = A
0
x(t)dt+ σw

0dw(t),(3.8)

dy(t) = C
0
x(t)dt+ σv

0dv(t).

4. Simulation studies. In this section, we demonstrate the relationship be-
tween the full-order discrete-time system (2.2) and the reduced-order limit filtering
equations (3.4) through simulation examples. All results are averaged over 50 trials.

For (2.2), we simulate a discrete-time Markov chain with four states (with two
blocks, m1 = m2 = 2) for which the transition probability matrices are

P̃ 1 =


0.9 0.1

0.2 0.8


 , P̃ 2 =


0.25 0.75

0.68 0.32
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Fig. 4.1. Absolute error between the piecewise constant interpolated full-order system and the
reduced-order limit filtered system, ε = 0.05.
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Fig. 4.2. Absolute error between the piecewise constant interpolated full-order system and the
reduced-order limit filtered system, ε = 0.005.
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and the generator is

Q =




−0.6 0.4 0.1 0.1

0.05 −0.4 0.05 0.3

0.1 0.2 −0.7 0.4

0.15 0.05 0.1 −0.3



.

We take (A(1) A(2) A(3) A(4)) = (−4.0 −1.0 −2.0 −3.0), (C(1) C(2) C(3) C(4)) =
(0.2 0.5 0.1 1.0). Also, (σw(1) σw(2) σw(3) σw(4)) = (0.2 0.5 0.1 1.0), σv(i) = σw(i),
for i = 1, 2, 3, 4. The noise sequences {wn} and {vn} are simulated as Gaussian ran-
dom variables with zero mean and unity variance. The piecewise constant interpolated
processes xε(t) and yε(t) are constructed from (3.1). The time horizon is taken to be
T = 10. To simulate (3.4), a continuous-time Markov chain is used with a generator
Q. This is then discretized with a discretization interval h = 0.001. Figures 4.1 and
4.2 show the difference |xε(·) − x(·)| and |yε(·) − y(·)| for ε = 0.05 and ε = 0.005,
respectively.

5. Remarks and extensions. This section is devoted to several remarks re-
garding the approximation issue. They include reduction of complexity as well as
ramifications of the results we have obtained thus far.

Reduction of complexity. One of the main motivations of the current study is
the effort of reduction of complexity. Regarding (2.2), note that the time horizon we
are working with is 0 ≤ n ≤ 
T/ε�. As pointed out in [24], if we treat the discrete-
time case directly, it can be reduced to an m�T/ε�-dimensional recursive system of
equations, where m is the total number of states of the Markov chain. For us, m is
a fairly large number. As a result, the amount of computation becomes practically
untrackable. One cannot complete the computation in polynomial time. By weak
convergence methods, we have obtained a reduced or limit system of filtering equa-
tions. This limit system of equations allows us to find nearly optimal filtering, and
the limit system has reduced complexity. In particular, if the transition matrix P
given in (2.1) is irreducible, the limit becomes a Kalman filter (see Proposition 3.5).

For continuous-time Kalman filter problems with Markovian switching, it has been
recognized (see [4, 11, 21]) that, in general, the problem is an infinite-dimensional one
just as in the nonlinear filter case [20]. Nevertheless, Björk [4] proved that a finite-
dimensional filter exists for a linear hybrid system if and only if the observation is
independent of the state variable. For the filtering problem considered in this paper,
this requires the observation process in the limit problem being independent of state.
Corresponding to such a requirement, we can consider

xεn+1 = xεn + εA(αεn)x
ε
n +
√
εσw(α

ε
n)wn,(5.1)

yεn+1 = yεn + εC(αεn) +
√
εσvvn.

Similar to the derivation of Theorem 3.4, we obtain the limit filtering equations

dx = A(α(t))xdt+ σw(α(t))dw,(5.2)

dy = C(α(t))dt+ σvdv.

Note that the calculation of (5.1) leads to recursive filters of dimension m�T/ε�,
whereas (5.2) yields a finite-dimensional filtering problem.
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Inclusion of transient states. In the previous sections, the main ingredient
is the aggregation of states in each recurrent classes. The results obtained can be
extended to the case in which the Markov chain has finite state space with inclusion
of transient states. To be more specific, Let the transition probability be of the form
(2.1). However, in lieu of (2.3), suppose the transition matrix P̃ in (2.1) is given by

P̃ =




P̃ 1

. . .

P̃ l

P̃ 1
∗ · · · P̃ l∗ P̃∗



.(5.3)

In lieu of (A1), assume (A1’).
(A1’) αεn is a Markov chain with a transition probability matrix given by (2.1) and

(5.3), and with state space

M =M1 ∪M2 ∩ · · · ∪Ml ∪M∗(5.4)

= {s11, . . . , s1m1
} ∪ · · · ∪ {sl1, . . . , slml

} ∪ {s∗1, . . . , s∗m∗},
where, for each i = 1, . . . , l, Mi = {si1, . . . , simi} is the state space corre-
sponding to the transition matrix P̃ i and where the subspaceM∗ = {s∗1, . . . ,
s∗m∗} collects the transient states. Moreover, P̃ i is irreducible for each

i = 1, . . . , l, and all eigenvalues of P̃∗ are inside the unit disk.
To obtain the desired asymptotics, we still use aggregations. However, we aggre-

gate only the states in each recurrent class. Partition the matrix Q as

Q =


Q11 Q12

Q21 Q22


 ,(5.5)

where

Q11 ∈ R
(m−m∗)×(m−m∗), Q12 ∈ R

(m−m∗)×m∗ ,

Q21 ∈ R
m∗×(m−m∗), and Q22 ∈ R

m∗×m∗ .

Set

Q∗ = diag(ν
1, . . . , νl)(Q111̃+Q12A∗),(5.6)

with

A∗ = (a1, . . . , al) ∈ R
m∗×l and(5.7)

ai = −(P̃∗ − I)−1P̃ i∗1mi for i = 1, . . . , l.

Let U be a random variable uniformly distributed over [0, 1]. For each j = 1, . . . ,m∗,
define an integer-valued random variable ξj by

ξj = I{0≤U≤am1,j} + 2I{a1,j<U≤a1,j+a2,j} + · · ·+ lI{a1,j+···+al−1,j<U≤1}.

Define the aggregated process and its interpolation by

αεn =

{
i if αn ∈Mi,

Uj if αεn = s∗j ,
(5.8)

αε(t) = αεn for t ∈ [nε, nε+ ε).
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Then we can show that αε(·) converges weakly to α(·) and that the limit is still a
Markov chain with state space M. Furthermore, we can obtain similar limit results
for the filtering problems. The notation is more involved, but the main idea and
the averaging techniques are as in the previous case. Loosely, the transient states
are asymptoticly negligible. In the limit (reduced) system, only the states in the
recurrent states are important. The limit is still an average with respect to the
stationary measures of each recurrent class.

Theorem 5.1. Assume (A1’), (A2), and (A3). Then the conclusions of Theorems
3.3 and 3.4 continue to hold with Q replaced by Q∗ defined in (5.6).

Nonstationary Markov chains. Generally, nonstationary or time-inhomoge-
neous cases are much more difficult to deal with. However, for a class of problems, it
can be worked out. The main setup is similar to that of [30]. In lieu of (2.1), assume
that the transition probability matrix is nonstationary and given by

P ε(εn) = P̃ (εn) + εQ(εn),

where P̃ (εn) is the dominating part of the transition matrix. In this case, we can
carry out the analysis as in the previous case, although the details and notation are
more involved.

Continuous-time problems. So far, we have considered discrete-time filtering
problems exclusively. There is also a continuous-time analogue of the hybrid filtering
problems. In place of (2.2), for t ∈ [0, T ], consider

dxε(t) = A(αε(t))xε(t)dt+ σw(α
ε(t))dw,(5.9)

dyε(t) = C(αε(t))xε(t)dt+ σv(α
ε(t))dv,

where w(·) and v(·) are independent standard Brownian motions, and where αε(·) is
a continuous-time singularly perturbed Markov chain with finite state spaceM and
with generator

Qε(t) =
Q̃(t)

ε
+ Q̂(t),(5.10)

where both Q̃(t) and Q̂(t) are generators. The state space M can be of the form
of either (2.4) (with recurrent states only) or (5.4) (inclusion of transient states).
We can follow our approach of averaging and aggregation to reduce the complexity
of the underlying system and obtain a limit system with much reduced state space.
Various results on the asymptotic properties of αε(·) can be found in [29, 31] among
others. The proof of the following result is similar to the discrete-time case; we omit
the details. Note that, since the problem is in continuous time, no interpolations are
needed, however. For definiteness, we state the result for decomposition of the form
(5.4). The matrix Q̃(t) has the form

Q̃(t) =




Q̃1(t)

. . .

Q̃l(t)

Q̃1
∗(t) · · · Q̃l∗(t) Q̃∗(t)



.(5.11)

For each i ∈ {1, . . . , l}, let Q̃i∗(t) = B(t)Q̃i∗,c, Q̃∗(t) = B(t)Q̃∗,c, where B(t) is

an R
m∗×m∗ matrix-valued function, and Q̃i∗,c ∈ R

m∗×mi and Q̃∗,c ∈ R
m∗×m∗ are
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constant matrices. It is readily seen that B(t) is invertible for each t ∈ [0, T ], and, for
each i,

ai(t)
def
= −Q̃−1

∗ (t)Q̃i∗(t)1mi = −Q̃−1
∗,cQ̃

i
∗,c1mi = ai(5.12)

is a time-independent vector. Define Q∗(t) and αε(t) as in (5.6) and (5.8) with Qι�

(the partition of Q) replaced by Q̂ι�(t) (the partition of Q̂(t)) and with ai in (5.7)
replaced by (5.12). Then we have the following theorem and its corollary.

Theorem 5.2. Suppose that, for each i ∈ {1, . . . , l}, Q̃i(t) is weakly irreducible
(see [29, pp. 21–22] for a definition of weak irreducibility and quasi-stationary distri-

bution), that Q̃∗(t) has all of its eigenvalues on the left half of the complex plan, that
Q̃(·) and Q̂(·) are bounded and Borel measurable, and that Q̃(·) is Lipschitz continuous
on [0, T ]. Then (xε(·), yε(·)) converges weakly to (x(·), y(·)) such that (x(·), y(·)) is a
solution of the averaged filtering equations (3.4), where A(·), σw(·), C(·), and σv(·)
are defined as before with time-dependent quasi-stationary distributions νi(t) used.

Corollary 5.3. Suppose that Qε(t) is given by (5.10) such that Q̃(t) is weakly
irreducible. Suppose that all other conditions in Theorem 5.2 are satisfied. Then
(xε(·), yε(·)) converges weakly to (x(·), y(·)), satisfying

dx(t) = A
0
(t)x(t)dt+ σw

0(t)dw(t),(5.13)

dy(t) = C
0
(t)x(t)dt+ σv

0(t)dv(t),

where A
0
, C

0
, σw

0, and σv
0 are defined as in (3.7) with the time-dependent quasi-

stationary distribution ν(t) = (ν1(t), . . . , νm(t)) used.

Appendix. Proofs of results.

Proof of Lemma 3.2. We first work with xεn. Iterating on the first equation in
(2.2), for 0 ≤ n ≤ T/ε,

xεn+1 = xε0 + ε

n∑
j=0

A(αεj)x
ε
j +
√
ε

n∑
j=0

σw(α
ε
j)wj .

Note that, for any z ∈ R
r, |z|2 = tr(zz′), where tr(zz′) denotes the trace of zz′.

Consequently (recall that K is a generic positive constant),

E|xεn+1|2 ≤ K


E|xε0|2 + ε2E

∣∣∣∣∣∣
n∑
j=0

A(αεj)x
ε
j

∣∣∣∣∣∣
2

+ εE

∣∣∣∣∣∣
n∑
j=0

σw(α
ε
j)wj

∣∣∣∣∣∣
2

(A.1)

≤ KE|xε0|2 +Kε

n∑
j=0

E|xεj |2 + εK

n∑
j=0

n∑
k=0

Etr
(
σw(α

ε
j)wjw

′
kσ

′
w(α

ε
k)
)
.

Using the independence of {αεn} and {wn} and the boundedness of σw(ι) for each
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ι ∈M and noting that Ewjw
′
k = 0 if j �= k,

ε
n∑
j=0

n∑
k=0

tr
(
Eσw(α

ε
j)wjw

′
kσ

′
w(α

ε
k)
)

(A.2)

≤ εK

∣∣∣∣∣∣
n∑
j=0

n∑
k=0

E{σw(αεj)[Ewjw′
k]σ

′
w(α

ε
k)}

∣∣∣∣∣∣
≤ εK

n∑
k=0

|Ewkw′
k|

≤ εK
T

ε
≤ K <∞.

Combining this with (A.1), an application of Gronwall’s inequality yields

E|xεn+1|2 ≤ K +Kε

n∑
j=0

E|xεj |2 ≤ K exp(Kεn) ≤ K <∞.

Moreover, the bound holds uniformly in n for 0 ≤ n ≤ T/ε.
As for yεn, using the bound of sup0≤n≤T/εE|xεn|2, we have

E|yεn+1|2 ≤ K


E|yε0|2 + ε2E

∣∣∣∣∣∣
n∑
j=0

C(αεj)x
ε
j

∣∣∣∣∣∣
2

+ εE

∣∣∣∣∣∣
n∑
j=0

σv(α
ε
j)vj

∣∣∣∣∣∣
2



≤ KE|yε0|2 +Kε

n∑
j=0

E|xεj |2 + εK

n∑
j=0

n∑
k=0

Etr
(
σv(α

ε
j)vjv

′
kσ

′
v(α

ε
k)
)

(A.3)

≤ K <∞.

Moreover, the bound holds uniformly in 0 ≤ n ≤ T/ε.
Proof of Theorem 3.3. Let us first deal with the sequence {xε(·)}. For any δ > 0,

t > 0, and s > 0 with s ≤ δ, consider

Eεt |xε(t+ s)− xε(t)|2 = Eεt

∣∣∣∣∣∣ε
(t+s)/ε−1∑
j=t/ε

A(αεj)x
ε
j +
√
ε

(t+s)/ε−1∑
j=t/ε

σw(α
ε
j)wj

∣∣∣∣∣∣
2

= ε2
(t+s)/ε−1∑
j=t/ε

(t+s)/ε−1∑
k=t/ε

Eεt tr[A(α
ε
j)x

ε
jx
ε
k
′A′(αεk)]

+ 2
√
ε3

(t+s)/ε−1∑
j=t/ε

(t+s)/ε−1∑
k=t/ε

Eεt tr[A(α
ε
j)x

ε
jw

′
kσ

′
w(α

ε
k)](A.4)

+ ε

(t+s)/ε−1∑
j=t/ε

(t+s)/ε−1∑
k=t/ε

Eεt tr[σw(α
ε
j)wjw

′
kσ

′
w(α

ε
k)]

def
= Iε1(t, s) + Iε2(t, s) + Iε3(t, s),(A.5)

where Iε� (t, s) for � = 1, 2, 3 are defined in an obvious manner.
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Consider each of the terms on the right-hand side of (A.4) separately as follows.
First, by the finiteness of A(ι) for each ι ∈M,

Iε1(t, s) = ε2
(t+s)/ε−1∑
j=t/ε

(t+s)/ε−1∑
k=t/ε

tr
(
Eεt [A(α

ε
j)x

ε
jx
ε,′
k A′(αεk)]

)

≤ Kε2
(t+s)/ε−1∑
j=t/ε

(t+s)/ε−1∑
k=t/ε

Eεt |xεj ||xεk|.

By virtue of Lemma 3.2, an application of the Cauchy–Schwarz inequality then yields

EIε1(t, s) ≤ Kε2
(t+s)/ε−1∑
j=t/ε

(t+s)/ε−1∑
k=t/ε

E1/2|xεj |2E1/2|xεk|2

≤ Kε2
(
t+ s

ε
− t

ε

)2

≤ Ks2 = O(δ2).

Thus

lim
δ→0

lim sup
ε→0

EIε1(t, s) = lim
δ→0

O(δ2) = 0.(A.6)

As for the second term on the right-hand side of (A.4), note that xεj and A(αεj)
are Fj-measurable. Since, for j < k, Ejwk = 0, the independence of {αεn} and {wn}
in (A3) and the finiteness of A(ι) and σw(ι) for each ι ∈M lead to

Iε2(t, s) = 2
√
ε3

(t+s)/ε−1∑
j=t/ε

(t+s)/ε−1∑
k=t/ε

trEεt [A(α
ε
j)x

ε
jw

′
kσ

′
w(α

ε
k)]

≤ K
√
ε3

(t+s)/ε−1∑
j=t/ε

∑
k≥j

∣∣tr [EεtA(αεj)xεj(Ejw′
k)(Ejσ

′
w(α

ε
k))
]∣∣

≤ K
√
ε3

(t+s)/ε−1∑
k=t/ε

√
Eεt |xεk|2

√
Eεt |wk|2.

Therefore, an application of the Cauchy–Schwarz inequality yields

lim
δ→0

lim sup
ε→0

EIε2(t, s) = lim
δ→0

lim sup
ε→0

O(
√
ε) = 0.(A.7)

Next, we consider the last term of (A.4). Using the martingale difference property,
the independence of {αεn} and {wn}, and Ejwk = 0 for j < k and Ekwj = 0 for k < j,
we obtain

Iε3(t, s) = ε

(t+s)/ε−1∑
j=t/ε

(t+s)/ε−1∑
k=t/ε

tr
(
Eεt σw(α

ε
j)wjw

′
kσ

′
w(α

ε
k)}

)

= ε

(t+s)/ε−1∑
k=t/ε

|tr[Eεt σw(αεk)wkw′
kσ

′
w(α

ε
k)]| ,
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and so

EIε3(t, s) ≤ Kε

(
t+ s

ε
− t

ε

)
= O(δ).

As a result,

lim
δ→0

lim sup
ε→0

EIε3(t, s) = lim
δ→0

O(δ) = 0.(A.8)

Combining (A.6), (A.7), and (A.8), we obtain

lim
δ→0

lim sup
ε→0

E|xε(t+ s)− xε(t)|2 = 0.

The criteria due to Kurtz [17, p. 47] then yields that {xε(·)} is tight in Dr[0, T ].
As far as the estimates of yε(·) are concerned, we merely note that

Eεt |yε(t+ s)− yε(t)|2

= Eεt

∣∣∣∣∣∣ε
(t+s)/ε−1∑
k=t/ε

C(αεk)x
ε
k +
√
ε

(t+s)/ε−1∑
k=t/ε

σv(α
ε
k)vk

∣∣∣∣∣∣
2

≤ KEεt

∣∣∣∣∣∣ε
(t+s)/ε−1∑
k=t/ε

C(αεk)x
ε
k

∣∣∣∣∣∣
2

+KEεt

∣∣∣∣∣∣
√
ε

(t+s)/ε−1∑
k=t/ε

σv(α
ε
k)vk

∣∣∣∣∣∣
2

.

The rest of the estimates are all similar to the previous case. Thus we also have that
{yε(·)} is tight in Dr[0, T ].

Proof of Theorem 3.4. Consider {xε(·)} first. In fact, we work with the pair
(xε(·), αε(·)). Owing to the tightness of {xε(·)} and the weak convergence of {αε(·)},
{(xε(·), αε(·))} is tight. By virtue of the Prohorov theorem [13, p. 104], we can extract
a weakly convergent subsequence. Select such a subsequence, and still denote it by
{(xε(·), αε(·))} for simplicity. Denote the limit of the sequence by (x(·), α(·)). By
the Skorohod representation [13, p. 102], we may assume without loss of generality
that (xε(·), αε(·)) converges to (x(·), α(·)) with probability one (w.p.1). Moreover, the
convergence is uniform on each bounded time interval. We proceed to use martingale
averaging techniques to figure out the limit.

To obtain the desired limit, it suffices to show that the limit (x(·), α(·)) is the
solution of a martingale problem with operator L given by

Lf(x, i) = f ′
x(x, i)A(i)x+

1

2
tr[fxx(x, i)σw(i)σw

′(i)] +Qf(x, ·)(i), i ∈M,(A.9)

where

Qf(x, ·)(i) =
∑
j∈M

qijf(x, j) =
∑

j∈M, j �=i
qij(f(x, j)− f(x, i))

for each i ∈ M, and f(·, i) ∈ C2
0 (twice continuously differentiable function with

compact support). Since the filtering equation is linear in the state variable, by using
a similar argument to that in [29, Lemma 7.18], the corresponding martingale problem
with operator L given in (A.9) has a unique solution.
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To obtain the desired results, it suffices to show (see [19, Chapters 7 and 8]), for
any positive integer k0, any bounded and continuous function hκ(·) with κ ≤ k0, any
t, s > 0, and tκ ≤ t ≤ t+ s, that the following equation holds:

E

k0∏
κ=1

hκ(x(tκ), α(tκ))

(
f(x(t+ s), α(t+ s))− f(x(t), α(t))

−
∫ t+s

t

Lf(x(u), α(u))du
)
= 0.(A.10)

To obtain (A.10), we begin with the pair (xε(·), αε(·)). For each x, define f̌ by

f̌(x, α) =
l∑
i=1

f(x, i)I{α∈Mi} for each α ∈M.(A.11)

Note that, for each α = sij ∈ Mi, f̌(x, α) takes a constant value f(x, i). Note also
that, at any time instant t, αε(t) = αεt/ε takes on one of the m possible values from
M.

Note that f̌(xεk, α
ε
k) = f(xεk, α

ε
k) for each k. Choose a sequence of positive integers

{nε} such that nε → ∞ but δε = εnε → 0 as ε → 0. The piecewise constant
interpolation implies that

f̌(xε(t+ s), αε(t+ s))− f̌(xε(t), αε(t))

=
∑

l:t≤lδε≤(t+s)−ε
[f̌(xεlnε+nε

, αεlnε+nε
)− f̌(xεlnε+nε

, αεlnε
)](A.12)

+
∑

l:t≤lδε≤(t+s)−ε
[f̌(xεlnε+nε

, αεlnε
)− f̌(xεlnε

, αεlnε
)],

and hence

lim
ε→0

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))[f̌(x
ε(t+ s), αε(t+ s))− f̌(xε(t), αε(t))]

= lim
ε→0

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))
∑

l:t≤lδε≤(t+s)−ε
[f̌(xεlnε+nε

, αεlnε+nε
)− f̌(xεlnε+nε

, αεlnε
)]

+ lim
ε→0

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))
∑

l:t≤lδε≤(t+s)−ε
[f̌(xεlnε+nε

, αεlnε
)− f̌(xεlnε

, αεlnε
)]

def
= lim

ε→0
E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))[g
ε
1 + gε2].

(A.13)

In the above,
∑
l:t≤lδε≤(t+s)−ε can also be written as

∑((t+s)/ε)−1
lnε=t/ε

. We proceed to

obtain the desired limit by examining gεi (i = 1, 2) in (A.13).
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By virtue of a Taylor expansion, rewrite gε2 as

gε2 =
∑

l:t≤lδε≤(t+s)−ε
f̌ ′
x(xlnε

, αεlnε
)[xεlnε+nε

− xεlnε
]

+
1

2

∑
l:t≤lδε≤(t+s)−ε

[xεlnε+nε
− xεlnε

]′f̌xx(x+
lnε

, αεlnε
)[xεlnε+nε

− xεlnε
]

=
∑

l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

f̌ ′
x(x

ε
lnε

, αεlnε
)[εA(αεk)x

ε
k +
√
εσw(α

ε
k)wk]

+
1

2

∑
l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

[εA(αεk)x
ε
k +
√
εσw(α

ε
k)wk]

′f̌xx(x+
lnε

, αεlnε
)(A.14)

×
lnε+nε−1∑
k1=lnε

[εA(αεk1)x
ε
k1 +

√
εσw(α

ε
k1)wk1 ]

def
=

[
gε2,1 +

1

2
gε2,2

]
,(A.15)

where x+
lnε
is on the line segment joining xεlnε

and xεlnε+nε
.

Then we have

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))

[
√
ε

∑
l:t≤lδε≤(t+s)−ε

f̌ ′
x(x

ε
lnε

, αεlnε
)

lnε+nε−1∑
k=lnε

σw(α
ε
k)wk

]

= E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))

[
√
ε

∑
l:t≤lδε≤(t+s)−ε

f̌ ′
x(xlnε , α

ε
lnε
)

×
lnε+nε−1∑
k=lnε

Elnε
σw(α

ε
k)Elnε

wk

]
.

In the above, the second line is a consequence of the independence of {αεn} and
{wn} and the measurability of xεlnε

and αεlnε
with respect to Flnε . In view of the

boundedness of hκ(·) and f̌x(·) and the finiteness of σw(αεk), we obtain

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))


√ε ∑

l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

f̌ ′
x(xlnε , α

ε
lnε
)Elnεσw(α

ε
k)Elnεwk




→ 0 as ε→ 0.

(A.16)

Next, let us treat the term on the second line of (A.14). First note that

E

∣∣∣∣∣∣ε
l∑
i=1

mi∑
j=1

lnε+nε−1∑
k=lnε

A(sij)x
ε
k[I{αε

k
=sij} − νijI{αε

k
∈Mi}]

∣∣∣∣∣∣
≤ K

l∑
i=1

mi∑
j=1

E

∣∣∣∣∣ε
lnε+nε−1∑
k=lnε

A(sij)x
ε
k[I{αε

k
=sij} − νijI{αε

k
∈Mi}]

∣∣∣∣∣ .
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Thus we need only examine the terms with fixed indices i and j. By a partial sum-
mation,

E

∣∣∣∣∣ε
lnε+nε−1∑
k=lnε

A(sij)x
ε
k[I{αε

k
=sij} − νijI{αε

k
∈Mi}]

∣∣∣∣∣
≤ KE

∣∣∣∣∣εA(sij)xεlnε+nε−1

lnε+nε−1∑
k=0

[I{αε
k
=sij} − νijI{αε

k
∈Mi}]

∣∣∣∣∣
+ KE

∣∣∣∣∣εA(sij)xεlnε−1

lnε−1∑
k=0

[I{αε
k
=sij} − νijI{αε

k
∈Mi}]

∣∣∣∣∣
+ KE

∣∣∣∣∣ε
lnε+nε−2∑
k=lnε

(xεk − xεk+1)

k∑
k0=0

[I{αε
k0

=sij} − νijI{αε
k0

∈Mi}]

∣∣∣∣∣ .

Using the mean square estimates on the occupation measures (2.10) and Lemma 3.2,

E

∣∣∣∣∣εA(sij)xεlnε+nε−1

lnε+nε−1∑
k=0

[I{αε
k
=sij} − νijI{αε

k
∈Mi}]

∣∣∣∣∣
≤ KE1/2

∣∣xεlnε+nε−1

∣∣2 E1/2

∣∣∣∣∣ε
lnε+nε−1∑

k=0

[I{αε
k
=sij} − νijI{αε

k
∈Mi}]

∣∣∣∣∣
2

= O(
√
ε)→ 0 as ε→ 0.

Similarly,

E

∣∣∣∣∣εA(sij)xεlnε−1

lnε−1∑
k=0

[I{αε
k
=sij} − νijI{αε

k
∈Mi}]

∣∣∣∣∣→ 0 as ε→ 0.

Using (2.2), the Cauchy–Schwarz inequality, and the mean square estimates (2.10),

E

∣∣∣∣∣ε
lnε+nε−2∑
k=lnε

(xεk − xεk+1)

k∑
k0=0

[I{αε
k0

=sij} − νijI{αε
k0

∈Mi}]

∣∣∣∣∣
≤
lnε+nε−2∑
k=lnε

E1/2|xεk − xεk+1|2E1/2

∣∣∣∣∣ε
k∑

k0=0

[I{αε
k0

=sij} − νijI{αε
k0

∈Mi}]

∣∣∣∣∣
2

≤
lnε+nε−2∑
k=lnε

E1/2|εA(αεk)xεk +
√
εσw(α

ε
k)wk|2

× E1/2

∣∣∣∣∣ε
k∑

k0=0

[I{αε
k0

=sij} − νijI{αε
k0

∈Mi}]

∣∣∣∣∣
2

→ 0 as ε→ 0.
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Using the above estimates and the continuity of f̌x(·, α) for each α ∈M,

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))


ε ∑

l:t≤lδε≤(t+s)−ε
f̌ ′
x(x

ε
lnε

, αεlnε
)

lnε+nε−1∑
k=lnε

A(αεk)x
ε
k




= E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))


 ∑
l:t≤lδε≤(t+s)−ε

l∑
i=1

mi∑
j=1

f̌ ′
x(xlnε , α

ε
lnε
)

× δε
nε

lnε+nε−1∑
k=lnε

A(sij)x
ε
lnε

νijI{αε
k
∈Mi}

]
+ o(1),(A.17)

where o(1)→ 0 as ε→ 0. Then, as ε→ 0, letting εlnε → u, and using the techniques
of [19, Chapter 8], (A.17) together with (A.16) leads to

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))g
ε
2,1

→ E

k0∏
κ=1

hκ(x(tκ), α(tκ))

(∫ t+s

t

f ′
x(x(u), α(u))A(α(u))x(u)du

)
as ε→ 0.(A.18)

As for gε2,2, we have, by the continuity of fxx(·, α) for each α ∈M, x+
lnε
−xεlnε

→ 0
in probability as ε→ 0. Consequently,

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))g
ε
2,2

def
= g̃ε2,2 + o(1),

where o(1)→ 0 as ε→ 0 uniformly in t, and

g̃ε2,2 = E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))

×

 ∑
l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

[εA(αεk)x
ε
k +
√
εσw(α

ε
k)wk]

′f̌xx(xεlnε
, αεlnε

)

×
lnε+nε−1∑
k1=lnε

[εA(αεk1)x
ε
k1 +

√
εσw(α

ε
k1)wk1 ]

]
.
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It then follows that

g̃ε2,2 = E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))

×

ε2 ∑

l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

(A(αεk)x
ε
k)

′f̌xx(xεlnε
, αεlnε

)

lnε+nε−1∑
k1=lnε

A(αεk1)x
ε
k1

+
√
ε3

∑
l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

(A(αεk)x
ε
k)

′f̌xx(xεlnε
, αεlnε

)

lnε+nε−1∑
k1=lnε

σw(α
ε
k1)wk1

+
√
ε3

∑
l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

(σw(α
ε
k)wk)

′f̌xx(xεlnε
, αεlnε

)

lnε+nε−1∑
k1=lnε

A(αεk1)x
ε
k1

+ ε
∑

l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

(σw(α
ε
k)wk)

′f̌xx(xεlnε
, αεlnε

)

lnε+nε−1∑
k1=lnε

σw(α
ε
k1)wk1




= E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))

×

ε ∑

l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

(σw(α
ε
k)wk)

′f̌xx(xεlnε
, αεlnε

)σw(α
ε
k)wk


+ o(1),

where o(1) → 0 as ε → 0. Furthermore, using the idea of the estimates leading to
(A.17) and the mean square estimates (2.10), it can be shown that

ε
∑

l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

(σw(α
ε
k)wk)

′f̌xx(xεlnε
, αεlnε

)σw(α
ε
k)wk

=
∑

l:t≤lδε≤(t+s)−ε

l∑
i=1

mi∑
j=1

δε
nε

lnε+nε−1∑
k=lnε

tr[f̌xx(x
ε
lnε

, sij)σw(sij)wkw
′
kσ

′
w(sij)]I{αε

k
=sij}

=
∑

l:t≤lδε≤(t+s)−ε

l∑
i=1

mi∑
j=1

δε
nε

lnε+nε−1∑
k=lnε

tr[f̌xx(x
ε
lnε

, αεlnε
)σw(sij)wkw

′
kσ

′
w(sij)]

×νijI{αε
k
∈Mi} + o(1),

where o(1)→ 0 in probability as ε→ 0 uniformly in t. It then follows that

lim
ε→0

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))(A.19)

×

ε ∑

l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

(σw(α
ε
k)wk)

′f̌xx(xεlnε
, αεlnε

)σw(α
ε
k)wk




= E

k0∏
κ=1

hκ(x(tκ), α(tκ))

[∫ t+s

t

tr[fxx(x(u), α(u))σw(α(u))σ
′
w(α(u))]du

]
.

Next, we consider the term gε1. Using the continuity of f̌(·, α) for each α ∈M, the
Markov property of αεn, the mean square estimate (2.10) of the occupation measures,
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(2.1), and Lemma 2.1, we have

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))g
ε
1(A.20)

= E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))


 ∑
l:t≤lδε≤(t+s)−ε

(f̌(xεlnε
, αεlnε+nε

)− f̌(xεlnε
, αεlnε

))




= E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))


 ∑
l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

l∑
i1=1

mi1∑
j1=1


 l∑
i=1

mi∑
j=1

f̌(xεlnε
, sij)

× P (αεk+1 = sij |αεk = si1j1)− f̌(xεlnε
, si1j1)


 I{αε

k
=si1j1}




= E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))


ε ∑

l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

(P − I + εQ)f̌(xεlnε
, ·)(αεk)




= E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))


ε ∑

l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

Qf̌(xεlnε
, ·)(αεk)




→
∫ t+s

t

Qf(x(u), α(u))du as ε→ 0.

Combining (A.18), (A.19), and (A.20),

lim
ε→0

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))
[
f̌(xε(t+ s), αε(t+ s))− f̌(xε(t), αε(t))

]
(A.21)

= E

k0∏
κ=1

hκ(x(tκ), α(tκ))

[∫ t+s

t

Lf(x(u), α(u))du
]
.

On the other hand, by the weak convergence of (xε(·), αε(·)) to (x(·), α(·)), the Sko-
rohod representation, and the definition of f̌(·), we have

lim
ε→0

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))[f̌(x
ε(t+ s), αε(t+ s))− f̌(xε(t), αε(t))](A.22)

= E

k0∏
κ=1

hκ(x(tκ), α(tκ))[f(x(t+ s), α(t+ s))− f(x(t), α(t))].

By (A.21) and (A.22), (A.10) holds. Using the same techniques, detailed estimates
yield the second equation in (3.4). Thus the desired results follow.
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Abstract. From the theory of nonlinear optimal control problems it is known that the solution
stability w.r.t. data perturbations and conditions for strict local optimality are closely related facts.
For important classes of control problems, sufficient optimality conditions can be formulated as a
combination of the independence of active constraints’ gradients and certain coercivity criteria. In
the case of discontinuous controls, however, common pointwise coercivity approaches may fail.

In the paper, we consider sufficient optimality conditions for strong local minimizers which make
use of an integrated Hamilton–Jacobi inequality. In the case of linear system dynamics, we show that
the solution stability (including the switching points localization) is ensured under relatively mild
regularity assumptions on the switching function zeros. For the objective functional, local quadratic
growth estimates in L1 sense are provided. An example illustrates stability as well as instability
effects in case the regularity condition is violated.

Key words. optimal control, optimality conditions, strong local minimality, control stability,
solution structure stability
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1. Introduction. The paper is devoted to optimality conditions and the solution
stability for certain linear, linear-quadratic, or linear time-optimal control problems
with typically discontinuous optimal control functions. At the present time, optimal
controls with bang-bang structure are intensively studied, which is reflected in the
growing number of publications on the topic. Second-order sufficient conditions are
derived, e.g., by Noble and Schaettler [28], Schättler [36], or Ledzewicz and Schaettler
[15], by using the method of characteristics in adapted form for analyzing the flow
of extremals. In his paper [35], Sarychev introduced special first- and second-order
variations including measure type additives at the switching points in order to handle
control discontinuities. Very recently, Agrachev, Stefani, and Zezza [3] proposed an
approach treating the switching times as the main unknown. In their work, ideas of
the so-called symplectic geometry going back to [1] (also [2]) are basically involved.
A comprehensive theory of second-order conditions in optimal control is given by
Milyutin and Osmolovskii in [27] and Osmolovskii [29]. The central feature in their
book is the analysis of Pontryagin minima. The criteria derived are of high generality
and strong in their closeness to necessary optimality conditions but partly difficult
to check in applications. It was shown, e.g., in [30], [31] how they can be applied to
bang-bang control regimes.

Our paper starts from weak duality relations going back to the work of Klötzler
and his group ([13], [32], and [14], e.g.). It has been modified and extensively used in
the recent past for deriving weak local optimality conditions, cf. [34], [26], [33]. The
criteria obtained are often given in terms of the independence of the gradients of the
active constraints w.r.t. the control, together with certain coercivity properties of the
Hamilton function. For the class of problems considered in sections 3–5, however, in
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particular the classical Legendre–Clebsch condition ([4], e.g.) is not fulfilled, so that
the optimality test requires alternative estimation techniques.

In [11], [12] we have shown that the optimality criteria in their integrated version
from [8] are, in principle, applicable to problems with discontinuous optimal control
regimes. In section 2 this approach is shortly described, and the basic Hamilton–
Jacobi inequality in integrated form is given (Theorem 2.2). Subsequently, local
quadratic growth estimates for the objective functionals are obtained in the bang-bang
case for soft termination control problems with linear systems dynamics (section 3),
and also for a related time-optimal problem (section 5).

The investigation is restricted to nonsingular extremals having only finitely many
switching points (Assumption 1) with regular zeros of the switching function compo-
nents (Assumption 2). Under these conditions, the solution is proved to be a strict
strong local minimizer such that the objective functional satisfies a local quadratic
growth estimation in L2×L1 sense (Theorem 3.4). The proof uses a direct estimation
technique for admissible variations without involving approximation cones. Although
the obtained characterization of the optimum could be strengthened by means of the
theory developed in [27] and [29] (see also section 7), the method presented here is
of interest as a self-contained and easy to prove alternative way of analyzing strong
local minimizers.

In section 4 it is proved that, under the given assumptions, the switching structure
of the optimal control behaves stably w.r.t. small data perturbations (Theorem 4.1).
The result is independent of the previous section. As a supplement, in section 5 the
time-optimal problem is analyzed. Introducing an additional state variable for the
free final time, one can find an extended dual formulation and derive appropriate
optimality conditions. Although the estimates obtained (see Lemma 5.3) are slightly
weaker than the requirements in Theorem 2.2, a local quadratic growth estimation
results whenever (x, T ) is close to the reference state and end-time solution (cf. Theo-
rem 5.4). In addition, a sensitivity result for the optimal time (Lemma 5.5) is derived.

Finally, section 6 is devoted to the example of a two-dimensional chain problem
with fixed end-time T . If T is smaller than the optimal termination time, the solution
is locally strict and stable. When the optimal end-time T ∗ is reached, the solution
becomes singular and instable: for T > T ∗, the solution is no longer unique, and the
switching structure shows serious bifurcations.

2. Local optimality criteria in integrated form. In this section, it will be
shortly explained how sufficient optimality criteria and related growth estimates can
be obtained from an abstract dualization for optimal control problems. The approach
goes back to Klötzler [13], and it has been repeatedly used and described in detail,
e.g., in [14], [32], [34], or [26]. In [8] or [11], variants of the basically parametric criteria
have been considered in integrated form.

First, let be given a general nonlinear constrained optimal control problem (primal
problem formulation):

min J(x, u) = k(x(0), x(T )) +

∫ T
0

r(t, x(t), u(t)) dt(P)

subject to (s.t.) ẋ = f(t, x(t), u(t)) a.e. in [0, T ],(2.1)

β(x(0), x(T )) = 0,(2.2)

g(t, x(t), u(t)) ≤ 0 a.e. in [0, T ] ,(2.3)

where T > 0 is given.
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The pair (x, u) ∈W 1
∞(0, T ;Rn)× L∞(0, T ;Rk) is called admissible for (P) if the

state equation (2.1) together with the boundary condition (2.2) and the inequality
constraints (2.3) (where g : [0, T ]×Rn×Rk → Rm, β : Rn×Rn → Rs) is fulfilled.
All data functions are assumed to be sufficiently smooth. An admissible pair (x0, u0)
is called a (global) minimizer for (P) if J(x0, u0) ≤ J(x, u) for all admissible (x, u). For
characterizing local minimizers, the following definitions are used (see, e.g., [27], [31]).

Definition 2.1. The pair (x0, u0) is called a weak local minimizer of (P) if
it is admissible and if a constant ε > 0 exists such that J(x0, u0) ≤ J(x, u) for any
admissible pair (x, u) with ‖x− x0‖∞ + ‖u− u0‖∞ < ε.

An admissible pair (x0, u0) is called a strong local minimizer if J(x0, u0) ≤ J(x, u)
for any admissible (x, u) with ‖x − x0‖∞ < ε. If, for each positive M , an ε > 0
exists such that J(x0, u0) ≤ J(x, u) is satisfied for any admissible pair (x, u) with
‖x− x0‖∞ < ε and ‖u‖∞ ≤M , then (x0, u0) is a bounded-strong minimizer.

If, in addition, for (x, u) �= (x0, u0) (resp., x �= x0) the inequality J(x0, u0) <
J(x, u) holds true, (x0, u0) is a strict weak (resp., strict strong or strict bounded-
strong) local minimizer.

Denote by H the Hamiltonian and by Ĥ the augmented Hamiltonian related to
(P):

H(t, x, u, p) = r(t, x, u) + pT f(t, x, u) ,

Ĥ(t, x, u, p, µ) = H(t, x, u, p) + µT g(t, x, u) , µ ≥ 0.

Further, let W stand for the set

W (t) = { (x, u) : g(t, x, u) ≤ 0 }.

Second, let us consider a dual variable S given as a function S : [0, T ]×Rn → R
and the auxiliary functional θ (for ξ1,2 ∈ Rn, resp.):

θ(ξ1, ξ2; S) = k(ξ1, ξ2) + S(0, ξ1)− S(T, ξ2).

We assume that S is continuously differentiable w.r.t. x and at least piecewise con-
tinuously differentiable w.r.t. t. Define

T (S) = inf
(ξ1,ξ2)

{θ(ξ1, ξ2; S) : β(ξ1, ξ2) = 0 }.

Then the following problem is a dual to the original control problem (P):

max T (S)(D)

s.t. H(t, x, u, Sx(t, x)) + St(t, x) ≥ 0 ∀ (x, u) ∈W (t) a.e. on [0, T ] .

In the case of control problems without inequality constraints, the dual function S
satisfies the Hamilton–Jacobi equation and can be interpreted as a verification func-
tion (see [5], e.g.). The dual problem formulation by Klötzler [13], or Pickenhain [32],
thus allows for generalizing this variational approach to constrained control problems.
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It is easy to see that J(x, u) ≥ T (S) whenever (x, u) is admissible for problem (P)
and S is feasible for (D): denoting x(0) = x1, x(T ) = x2 for admissible (x, u), we have

J(x, u) − T (S) =

∫ T
0

r(t, x(t), u(t)) dt + k(x1, x2) − T (S)

=

∫ T
0

[H(t, x(t), u(t), Sx(t, x(t))) + St(t, x(t))] dt

−
∫ T

0

[
Sx(t, x(t))T ẋ(t) + St(t, x(t))

]
dt + k(x1, x2)− T (S)(2.4)

=

∫ T
0

[H(t, x(t), u(t), Sx(t, x(t))) + St(t, x(t))] dt

+ θ(x1, x2; S) − inf
(ξ1,ξ2)

θ(ξ1, ξ2; S) ≥ 0 .

Thus, a weak duality relation holds for the problem pair (P), (D) (see [13], also
[32], [8]). Let us introduce

Ψ(x, u; S) =

∫ T
0

[H(t, x(t), u(t), Sx(t, x(t))) + St(t, x(t)) ] dt ,

ψ(ξ1, ξ2; S) = θ(ξ1, ξ2; S) − T (S) .

(2.5)

Then, the duality gap (J(x, u)− T (S)) equals zero if and only if for some admissible
(x0, u0) and feasible dual S, Ψ(x0, u0; S) = 0 and ψ(x0(0), x0(T ); S) = 0. In this
case, the pair (x0, u0) is a solution of (P).

The analysis of the behavior of Ψ and ψ can be used to verify local minimality of
a solution including estimates for local growth terms if available (cf., e.g., [12]). It can
be applied to weak as well as to strong local optima in dependence of the reference
sets choice. For example, consider the sets

Wε(t) = W (t) ∩ Bε(x0(t), u0(t)) , Ŵε(t) = W (t) ∩ (Bε(x0(t))×Rk ) ,
W̃ε,M (t) = W (t) ∩ (Bε(x0(t))×BM (0) ) ,

where Br(z) denotes closed balls of radius r in the related Euclidean spaces.
The following result then characterizes general strict local optima.
Theorem 2.2 (see [26], [12]). Let (x0, u0) be admissible for (P). Suppose that

a function S : [0, T ] × Rn → R exists which is Lipschitz continuous w.r.t. x and
piecewise continuously differentiable w.r.t. t such that for suitably chosen positive
constants c and ε the following relations hold with 1 ≤ p <∞, γ = 1, D(t) = Wε(t),
and Dπ = Bε(x0(0), x0(T )) ∩ {ξ = (ξ1, ξ2) : β(ξ) = 0}:

Ψ(x, u;S) ≥ c ( ‖x− x0‖22 + γ ‖u− u0‖2p
)

(R1)

∀ admissible (x, u) with (x(t), u(t)) ∈ D(t) a.e. in [0, T ];

Ψ(x0, u0;S) = 0 , ψ(x0(0), x0(T ); S) = 0;(R2)

ψ(ξ1, ξ2; S) ≥ 0 ∀ ξ ∈ Dπ .(R3)

Then (x0, u0) is a strict weak local minimizer of (P).
If (R1)–(R3) hold true for a certain constant ε > 0 with γ = 0, D(t) = Ŵε(t),

and Dπ given above, then (x0, u0) is a (strict) strong local minimizer.
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If, for arbitrary M > 0, a positive ε exists such that (R1)–(R3) are satisfied with
D(t) = W̃ε,M (t), the point (x0, u0) is a (strict) bounded-strong local optimum.

Furthermore,

J(x, u)− J(x0, u0) ≥ c′
( ‖x− x0‖22 + γ ‖u− u0‖2p

)
.(2.6)

holds true for all admissible (x, u) on the related reference set, i.e., with (x(t), u(t)) ∈
D(t) a.e. on [0, T ], and (x(0), x(T )) ∈ Dπ, respectively.

The proof of the theorem follows from (2.4) together with the description of the
functionals in (2.5). Under condition (R2), in particular, J(x0, u0) = T (S) holds true.
The above theorem differs from formulations given in [32], [26], e.g., mainly by the
consequent usage of the Hamilton–Jacobi inequality (cf. (D)) in its integrated instead
of its parametric form. This relaxation was already used in [8] for analyzing Ritz type
discretization methods in optimal control.

Let us mention the fact that the local growth estimate for J is formulated in
terms of L2 (resp., Lp) topology whereas the reference sets are L∞-neighborhoods
w.r.t. x in particular. This effect is well known as part of the two-norm discrepancy
in optimal control problems (see, e.g., [16]).

Starting from abstract results like Theorem 2.2, one can establish sufficient opti-
mality conditions for general control problems in a form which in principle is suitable
for numerical tests (see [26], [20], also [18] and [21]). The known criteria include in-
dependence of the (nearly) active constraints as well as certain coercivity conditions.

The independence conditions are usually given in terms of the invertibility w.r.t.
control for the (nearly) active inner constraints and a certain controllability assump-
tion. Using Pontryagin’s maximum principle, the following system of first-order nec-
essary optimality conditions is obtained for a weak local minimizer:

Canonical system (complementarity formulation):

ẋ = Ĥp = f , β(x(0), x(T )) = 0 ;

ṗ = − Ĥx;
p(0) = −∇1k − ∇1β · ρ, p(T ) = ∇2k + ∇2β · ρ , ρ ∈ Rs;(2.7)

Ĥu = 0 ;

µT g = 0 , µ ≥ 0 , g ≤ 0.

Sufficient conditions are usually given as second-order criteria including, first,
the so-called Legendre–Clebsch condition, and, second, the solvability of a certain
Riccati matrix differential (in)equality on a parameter function Q. As a rule, these
characterizations are strongly local w.r.t. (x, u) and thus are mainly related to weak
local optima (cf. [26], also [22] and [23].

The matrix function Q and the terms in (2.7) are connected with the optimal S
as follows (see [8]):

Ṡ(t, x0) = −r0[t] , Sx(t, x0) = p0(t) , Sxx(t, x0) = Q(t).

(Here r0 stands for r evaluated along (x0(t), u0(t)), and p0 is the related costate
trajectory.)

It has been shown that the independence and the coercivity conditions are not
only sufficient for the solution optimality: they are also sufficient for the stability of
the solutions in L∞ sense under reasonable small data perturbations [17], [19], [21].
The conditions are further proved to be also necessary for Lipschitz stability of solu-
tions over a certain class of perturbations [7]. In the case of continuous controls, local
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convergence of Euler’s and related discretization methods [20], [8], [6] can be guar-
anteed. Furthermore, estimates of the form (2.6) are of practical interest, e.g., for
analyzing the convergence of minimizing sequences [9], [11].

Consider the auxiliary functional Ψ from (2.5) with its integrand

R[t] = (H(t, x, u, Sx) + St ) [t] .(2.8)

As has been shown in [12] using Ψ(x0, u0; S) = 0 together with the ansatz

S(t, x) = S0(t) + p0(t)T (x− x0(t)) + 0.5 (x− x0(t))TQ(t) (x− x0(t))

and Sx = p0 + Q(x− x0), the function R can be expressed by

R[t] = Ĥ(x, u, p0, µ0)− Ĥ(x0, u0, p0, µ0)− Ĥx(x0, u0, p0, µ0)T (x− x0)

+ 0.5 (x− x0)T Q̇(x− x0) + (x− x0)TQ ( f(x, u)− f(x0, u0) )(2.9)

− µT0 ( g(x, u)− g(x0, u0)) .

For z = (x, u) near z0 = (x0, u0), the Taylor expansion yields R = R(2)+o(|z − z0|2),

R(2)[t] = 0.5

(
x− x0

u− u0

)T (
Ĥxx +Qfx + fTx Q+ Q̇ Ĥxu +Qfu

Ĥux + fTu Q Ĥuu

) (
x− x0

u− u0

)
.

If the Hessian herein is positive definite, an estimate of type (R1) holds true with
p = 2, γ = 1. In particular, the Legendre–Clebsch condition Ĥuu � 0 together with
a Riccati equation for Q resulting from a Schur complement approach are sufficient
[32], [26] for weak local optimality then.

If we allow for more general variations in u under the restriction x ≈ x0, then the
following decomposition is useful: R[t] = R1[t] + R2[t], where

R1[t] = Ĥ(x, u0, p0, µ0)− Ĥ(x0, u0, p0, µ0)− Ĥx(x0, u0, p0, µ0)T (x− x0)

+ 0.5 (x− x0)T Q̇(x− x0) + (x− x0)TQ (f(x, u0)− f(x0, u0))

− µT0 (g(x, u0)− g(x0, u0)) ;(2.10)

R2[t] = Ĥ(x, u, p0, µ0)− Ĥ(x, u0, p0, µ0) + (x− x0)TQ(f(x, u)− f(x, u0))

− µT0 ( g(x, u)− g(x, u0) ) .

The term R1 is the variation in R w.r.t. x, and for x sufficiently close to x0 we have

R1[t] = 0.5 (x− x0)T
(
Q̇ + Qfx + fTx Q + Ĥxx

)
(x− x0) + o(|x− x0|2).(2.11)

Thus, R1 is positive in the case that Q satisfies a certain reduced Riccati differential
inequality. The analysis of R2, however, essentially depends of the kind of minimum
achieved in Ĥ at u = u0(t). In [12] and [11], typical cases with inner and boundary
optima (related to the actual control set) are discussed in detail.

The problem class and examples considered in [12] and partly in [10] in general
satisfy weak local optimality criteria including the Legendre–Clebsch condition. In-
stead, the problems considered in the present paper are linear in the control with a
zero Hessian Ĥuu so that pointwise coercivity conditions necessarily fail. In the next
section we will show how to overcome this difficulty.
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3. Soft termination control problem. Bang-bang type controls are typical
optimal regimes in problems, where the system dynamics are linear in control, and the
control set is a box or polyhedron in Rk. Our aim is to consider problems with linear,
in both state and control, state equation and given initial position. We will ask for
a control which in a prescribed time gains the system as close as possible to a given
final state (mostly zero). The control function herein is subject to componentwise
upper and lower bounds, which for simplicity are given in normalized form.

Not always, the terminal state can be reached, for a given end-time. Since some
deviation from the desired final position is allowed, this problem class is also called
soft termination control. The model problem can be written in the form

min J(x, u) = 0.5 ‖x(T )− b ‖2(PS)

s.t. ẋ(t) = A(t)x(t) + B(t)u(t) a.e. in [0, T ];(3.1)

x(0) = a ;(3.2)

|ui(t) | ≤ 1, i = 1, . . . , k, a.e. in [0, T ] .(3.3)

It will be assumed that a �= b and that the matrix functions A and B are continuously
differentiable on [0, T ].

The Hamilton function related to (PS) is given by

H(t, x, u, p) = pTA(t)x + pTB(t)u ,

whereas the augmented Hamiltonian for µ1,2 ≥ 0 and e = (1, 1, . . . , 1)T reads as

Ĥ(t, x, u, p, µ) = H + µT1 (u− e) − µT2 (u+ e) .

Notice that for the above problem the so-called independence condition for (nearly)
active constraints always holds true. Thus, from Pontryagin’s maximum principle we
obtain the switching function

σ(t) = B(t)T p(t) ,(3.4)

where the costate p satisfies the adjoint equation

ṗ(t) = −A(t)T p(t), p(T ) = x(T )− b,
and the optimal control is given by

u0,i(t) ∈
{ {−sign σi(t) } if σi(t) �= 0,

[−1,+1] if σi(t) = 0,
i = 1, . . . , k .(3.5)

Further, the multiplier functions µj suffice the relations

µ1(t) =
(
B(t)T p(t)

)
− , µ2(t) =

(
B(t)T p(t)

)
+

with right-hand sides denoting componentwise positive, respectively, negative, parts.
The Hesse matrix of Ĥ w.r.t. u is zero everywhere on [0, T ] so that the classical

Legendre–Clebsch condition is not fulfilled (and this is true even when we consider its
stable subspace formulation, e.g., [20], [8], or [7]). Thus, in general the usual stable
weak optimality criteria are not fulfilled—a property corresponding to the obvious fact
that, as a rule, the optimal controls are unstable in L∞ under shifts of the switching
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points caused by data perturbations. However, under rather mild conditions on the
solution structure, quadratic estimates of type (2.6) can be proved, e.g., in L2 × L1-
norm. To this aim suppose the following.

Assumption 1. The optimal control has no singular arcs. The set of switching
points Σ = { t ∈ [0, T ] : ∃ i ∈ {1, . . . ,m} with σi(t) = 0 } is finite, and 0, T do not
belong to Σ. In particular, Σ = { ts : 1 ≤ s ≤ l } for some l ∈ N .

Second, a restriction on the switching functions zeros is required.
Assumption 2. On [0, T ], the functions σi, i = 1, . . . , k, are continuously differ-

entiable. For I(s) = {i : σi(ts) = 0 }, the term min1≤s≤l mini∈I(s) | σ̇i(ts) | = m0 is
positive.

A first direct conclusion from Assumption 2 consists of the following invertibility
result for σ.

Lemma 3.1. Let σ(t) = B(t)T p(t) satisfy Assumptions 1 and 2. If ts ∈ Σ is a
point such that σi(ts) = 0, then for arbitrary continuously differentiable B̂, p̂ close
to B and p in C0 sense, in every sufficiently small neighborhood of ts the function
σ̂i(t) = (B̂(t)T p̂(t))i has a unique zero t̂s. Further, with the supremum norm ‖ · ‖∞
on C0, we have ∣∣ t̂s − ts∣∣ = O( ‖B̂ −B‖∞ + ‖p̂− p‖∞) .

Proof. Consider the mapping Fi : C1(0, T ;Rn×k) × C1(0, T ;Rn) × [0, T ] →
R defined by Fi(M,η, t) = (M(t)T η(t))i. This mapping is differentiable w.r.t. all
components in (M,η, t) = (B, p, ts), and the derivative (∂/∂t)Fi is continuous near
this point. Further, (∂Fi/∂t)(B, p, ts) : R → R is surjective due to Assumption 2.
By the implicit function theorem in Banach spaces, the equation Fi = 0 near (B, p, ts)
is invertible w.r.t. t, and we end up with a first-order approximation for t̂s:

t̂s − ts .= − (σ̇i(ts))
−1
(

(∂Fi/∂B) (B̂ −B) + (∂Fi/∂p) (p̂− p)
)
.(3.6)

Thus, the assertion of the lemma holds true.
The above lemma will be used in the next section for further investigation of the

switching structure stability.
Now, let us reconsider the auxiliary functional Ψ from (2.5) and the related inte-

grand R[t] in (2.8). We refer to the representation of R in the form of a sum R1 + R2

given in the previous section. The approximation (2.11) for R1 motivates considera-
tion of the reduced Riccati equation for Q = Sxx together with appropriate boundary
restrictions (cf. [26]), which in case of problem (PS) take the form

Q̇ + ATQ + QA � γ I a.e.,

I − Q(T ) � 0 .
(3.7)

Lemma 3.2. For arbitrary γ ∈ (0, 0.5), the system (3.7) has a bounded on [0, T ]
solution Q satisfying ‖Q‖∞ =O(γ).

Proof. Consider the equality case in (3.7) with γ = 0.5 and Q(T ) = 0.5 I. Since
the differential equation in this special case is linear w.r.t. Q, a solution Q = Q1 ∈
C1(0, T ;Rn×n) exists. Now, setting Q = Qγ = 2 γ Q1, it is easy to see that Qγ solves
the inequalities (3.7) for arbitrary γ ∈ (0, 0.5).
In addition, ‖Qγ‖∞ = 2 γ‖Q1‖∞ =O(γ).

Our main result in preparing a local quadratic growth estimation in the spirit of
Theorem 2.2 consists of the following statement.
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Lemma 3.3. Let Assumptions 1 and 2 hold true. Then a matrix function Q and
positive constants ε, c exist such that for all admisssible (x, u) satisfying (x(t), u(t)) ∈
W̃ε,1(t) a.e. on [0, T ],

∫ T
0

R[t] dt ≥ c ( ‖x− x0‖22 + ‖u− u0‖21
)
.(3.8)

Proof. Starting with R[t] = R1[t] + R2[t] from (2.10) and the abbreviations
y = x− x0, v = u− u0, for (PS) we have

R1 = 0.5 yT (Q̇+ATQ+QA) y , R2 = (p0 + Qy)TBv.

Remember that (
BT p0

)
i
> 0 ⇒ (u0)i = −1 ⇒ vi ≥ 0,(

BT p0
)
i
< 0 ⇒ (u0)i = +1 ⇒ vi ≤ 0.

Choose Q ≡ 0 first. Then,

∫ T
0

R[t] dt =

∫ T
0

pT0 Bv dt =

∫ T
0

(
n∑
i=1

|σi| · | vi|
)
dt ≥ 0 .

Under Assumption 1, it follows in particular that

∫ T
0

R[t] dt = Ψ(x, u;S) > 0 ∀ (x, u) such that u �= u0 .(3.9)

Although this relation is weaker than (R1), together with appropriate boundary in-
equalities it already allows us to deduce strict optimality of (x0, u0). In order to
obtain the estimate (3.8) of type (R1), let us take Q = Qγ from Lemma 3.2. Then
we get

∫ T
0

R1[t] dt ≥ γ

2
‖x− x0‖22 .(3.10)

Further, the part R2 can be expressed by

R2[t] =
(
BT p0

)T
v + yTQB v ≥

m∑
i=1

∣∣BT p0∣∣i · | vi| − ∣∣ yTQB v ∣∣ ,(3.11)

so that for the integral over R2 we obtain
∫ T
0
R2[t] dt ≥ J2 − J1 with

J1 =

∫ T
0

| yTQB v | dt, J2 =

∫ T
0

m∑
i=1

|BT p0|i| vi| dt.(3.12)

From the state equation for admissible x and x0 we know that ẏ − Ay = B v and
y(0) = 0. If Φ(t) denotes the fundamental solution for this linear system, then

y(t) = Φ(t)

∫ t
0

Φ−1(s)B(s)v(s) ds.
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Consequently, y can be estimated by

‖y‖∞ ≤ ‖Φ ‖∞
∫ T

0

‖Φ−1 ‖∞ ‖B ‖∞| v | dt = c(A,B) ‖v‖1.(3.13)

Thus, the integral J1 from (3.12) satisfies the inequality

J1 ≤ c(A,B) ‖Q‖∞‖B‖∞ ‖v‖21 ≤ γ c1‖v‖21.(3.14)

For the second part J2, from Assumption 2 the following property of BT p0 = σ
follows: For given δ > 0 denote ωδ =

⋃
1≤s≤l(ts − δ, ts + δ). Then a constant δ̄ exists

such that for all δ ∈ (0, δ̄),

min
i

∣∣ (BT p(t) )
i

∣∣ ≥ 0.5m0δ ∀ t ∈ [0, T ]\ωδ.

Inserting this estimate into the formula (3.12) for J2, we arrive at

J2 ≥ 0.5m0δ

∫
[0,T ]\ωδ

| v(t) | dt .(3.15)

But the variation terms v are bounded in L∞-norm by 2M = 2, so that

‖v‖1 =

∫ T
0

|v(t)| dt =

∫
[0,T ]\ωδ

|v(t)| dt +

∫
ωδ

|v(t)| dt

≤
∫

[0,T ]\ωδ

|v(t)| dt + 4l δ

follows from Assumption 1. Using this relation together with (3.15), we obtain

J2 ≥ 0.5m0δ ( ‖v‖1 − 4lδ ) .(3.16)

Combining now the inequalities (3.14), (3.16) for J1 and J2, the following estimate
for
∫
R2 dt results:

∫ T
0

R2[t] dt ≥ 0.5m0δ ( ‖v‖1 − c2δ ) − c1γ ‖v‖21(3.17)

with c2 = 4l and c1 from (3.14). We will choose δ such that

δ = min

{
1

2 c2
,
δ̄

2T

}
‖v‖1 = : c3‖v‖1,

and γ < c̄ = (m0c3)/(8c2). Then, from (3.10) and (3.17) we get

∫ T
0

R[t] dt ≥ c̄ ‖v‖21 .

Taking into account (3.13), the desired estimate (3.8) follows immediately, e.g., with
c = 0.5c̄ min{1, c(A,B)−2}.

Finally, as a direct consequence of Theorem 2.2, Lemma 3.3, and (3.9), we obtain
the following.
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Theorem 3.4. Let (x0, u0) be an extremal point of (PS) with the related adjoint
function p, and σ = BT p. Suppose Assumption 1 holds true. Then (x0, u0) is a strict
strong local minimizer.

If, in addition, Assumption 2 is fulfilled for the switching function, then for each
M > 0, positive constants ε and c′ exist such that

J(x, u)− J(x0, u0) ≥ c′
( ‖x− x0‖22 + ‖u− u0‖21

)
for all admissible (x, u) satisfying (x(t), u(t)) ∈ W̃ε,M a.e. on [0, T ].

Remark. Since the control set in the problem under consideration is compact, the
definitions of strong and of bounded-strong local optimality coincide. For the above
result, however, the boundedness of u is essential.

4. Structural stability of the control. In this section, under which conditions
the structure of the optimal control function is stable w.r.t. perturbations in the
problem data will be analyzed. Notice that the growth condition of Theorem 3.4 can
be read as a first stability result, which in particular yields the local convergence of
minimizing sequences (cf. [11], [10]) for (PS) when the approximations are taken from
sufficiently small neighborhoods of the solution in L∞ × L1, e.g. In particular, such
variations may differ in the switching points and thus violate closeness conditions
w.r.t. the L∞ topology in the control component.

Denote the reference data for (PS) by (ā, b̄, Ā, B̄), and consider problems with
the same type of linear dynamics but for (a, b, A,B) ≈ (ā, b̄, Ā, B̄) in the sense of
Rn×Rn×C0(0, T ;Rn×n)×C1(0, T ;Rn×k). For the perturbation analysis, the classical
implicit function theorem will be used.

Let us start with the canonical system related to (PS), i.e.,

ẋ(t) = A(t)x(t) + B(t)u(t) , x(0) = a ,
ṗ(t) = −A(t)T p(t) , p(T ) = x(T )− b ,
σ(t) = B(t)T p(t) , ui(t) = −sign (σi(t)) for t /∈ Σ.

(4.1)

Assume for the moment that besides x(0) = a the initial condition for p is known,
e.g., p(0) = z ∈ Rn. Then the above system can be interpreted as follows: The data
set (z, a,A,B) defines p = p(·; z, a,A,B) from the adjoint equation and, subsequently,
u via the switching condition. Thus, the function x = x(·; z, a,A,B) is uniquely
determined from the state equation provided the control does not include singular
arcs. The system (4.1) is solved if and only if

F (z, a, b, A,B) = x(T ; z, a,A,B) − p(T ; z, a,A,B) − b = 0 .(4.2)

If we can show that small changes in (a, b, A,B) cause only small perturbations in the
solution z of (4.2) and the resulting switching functions, then the set Σ of the points
of control discontinuity, in accordance to Lemma 3.1, will be stable w.r.t. (a, b, A,B).
Let us start with defining fundamental solutions for the canonical equations by

Φ̇ + ATΦ = 0 , Φ(0) = I ,

Ψ̇ − AΨ = 0 , Ψ(0) = I .
(4.3)

Formally, these matrix functions can be given as Φ(t) = exp{− ∫ t
0
AT (s) ds}, Ψ(t) =

exp{∫ t
0
A(s) ds}, and in particular we have Ψ(t)TΦ(t) ≡ I (I—the unit matrix). Then
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we can express p = p(·; z, a,A,B) and x = x(·; z, a,A,B) as

p(t) = Φ(t) z ,

x(t) = Ψ(t) a + Ψ(t)

∫ t
0

Ψ−1(s)B(s)u(s) ds(4.4)

= Ψ(t) a − Ψ(t)

∫ t
0

ΦT (s)B(s) sign
(
B(s)TΦ(s) z

)
ds .

Consequently, with the abbreviation B(t)TΦ(t) = Γ(t),

F (z, a, b, A,B) = Ψ(T ) a − Φ(T ) z − b − Ψ(T )

∫ T
0

ΓT (t) sign ( Γ(t) z ) dt .(4.5)

Notice that the dependency of F on (A,B) herein is “hidden” in the construction of
the fundamental solution functions Φ, Ψ and the term Γ = BTΦ, which all smoothly
depend on the input data. The same holds true for F then.

The smoothness of F as a function of z is less obvious. Starting from (4.2), let
us rewrite F as F1 + F2, where

F1(z, a, b, A) = Ψ(T ) a − Φ(T ) z − b(4.6)

is continuously differentiable in all variables. The second part F2 =F −F1 is given by

F2(z,A,B) = −Ψ(T )

∫ T
0

ΓT (t) sign ( Γ(t) z ) dt .

In order to analyze the differentiability of F w.r.t. z, consider ∆F2 = F2(z, Ā, B̄) −
F2(z̄, Ā, B̄):

∆F2 = − Ψ̄(T )

∫ T
0

Γ̄T (t)
[
sign

(
Γ̄(t) z

)− sign ( Γ̄(t) z̄
) ]
dt,(4.7)

where Ψ̄ and Γ̄ = B̄T Φ̄ are constructed in accordance to (4.3) with A = Ā and B = B̄.
The difference ∆F2 is essentially determined by the change of the switching func-

tion σ = BT p = Γ z for different z. Under Assumptions 1 and 2, it follows from
Lemma 3.1 that for z near z̄ the signs of σi(t) =

(
Γ̄(t) z

)
i

and σ̄i(t) =
(

Γ̄(t) z̄
)
i

differ
each from the other only near ts and for i ∈ I(s). In detail, if, e.g., t′i is a zero of σi
close to ts and such that t′i < ts, then for ˙̄σi(ts) > 0 the difference of signs is equal to
2 on (t′i, ts) and −2 in the case ˙̄σi < 0. In general,

sign (σi(s)) − sign (σ̄i(s)) = 2 sign ( ˙̄σi(ts)) · sign(ts − t′i)
for all s between ts and t′i. Outside this interval, σi and σ̄i are of the same sign. With
this information, from (4.7) we obtain

∆F2 = −Ψ̄(T )

∫ T
0

n∑
i=1

Γ̄Ti (τ) [ sign (σi(τ) ) − sign ( σ̄i(τ) ) ] dτ

= −2 Ψ̄(T )

l∑
s=1

∑
i∈I(s)

sign( ˙̄σi(ts))

∫ ts
t′
i

Γ̄Ti (τ) dτ

= 2 Ψ̄(T )

l∑
s=1

∑
i∈I(s)

sign( ˙̄σi(ts)) Γ̄Ti (ts) ( t′i − ts) + o( |t′i − ts| )

(where Γ̄i denotes the ith row of Γ̄ = B̄T Φ̄, and thus σ̄i(t) is equal to Γ̄i(t)z.)
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From Lemma 3.1 it follows that the difference (t′i − ts) can be approximated by

t′i − ts = −( ˙̄σi(ts))
−1B̄i(ts)

T (p(ts)− p̄(ts))
(B̄i—the ith column of B̄, or equal to ∂ Fi/ ∂ p). Using p = Φ̄ z, we see that

∆F2 = −2 Ψ̄(T )

l∑
s=1

∑
i∈I(s)

| ˙̄σi(ts)|−1Γ̄i(ts)
T B̄i(ts)

T (p(ts)− p̄(ts)) + o( ‖p− p̄‖∞) ,

= −2 Ψ̄(T )

l∑
s=1

∑
i∈I(s)

| ˙̄σi(ts)|−1Γ̄i(ts)
T Γ̄i(ts)(z − z̄) + o( |z − z̄| ) .

Finally, with F = F1 + F2, from (4.6) and the last expression we obtain

∂F

∂z
= −Φ̄(T )− 2 Ψ̄(T )

l∑
s=1

∑
i∈I(s)

( | ˙̄σi(ts) | )−1
Γ̄i(ts)

T Γ̄i(ts) .(4.8)

Therefore, the mapping F is differentiable in all variables at (z̄, ā, b̄, Ā, B̄), and the
derivative ∂F/∂z is continuous near the given point.

After these preliminaries, we are able to formulate a structural stability result for
bang-bang type optimal controls in (PS).

Theorem 4.1. Let (x0, u0) be a solution of (PS) without singular arcs and the
related set of switching points given by Σ = {ts : 1 ≤ s ≤ l}. Suppose that A, B
are continuously differentiable in t and let Assumptions 1 and 2 of section 3 hold
true. Then the switching structure of u0 is stable in the following sense: For arbitrary
positive ε, one can find a constant δ > 0 such that for all (Â, B̂, â, b̂) with

‖ Â−A ‖0 + ‖ B̂ −B ‖C1 + |â− a| + |b̂− b| ≤ δ,
the problem has a unique solution (x̂, û) in a certain L∞×L1-neighborhood of (x0, u0)
with û having the same number of switching points as u0, and dist{Σ̂, Σ} < ε.

Remark. The norms figuring in the theorem and the proof below are the maximal
over [0, T ] matrix norm ‖ · ‖0 in C0, and for Rn the Euclidean norm | · |.

Proof. Consider (4.2) as an equation for z depending on the parameters a, b ∈
Rn, A ∈ C0(0, T ;Rn×n), and B ∈ C1(0, T ;Rn×k). The mapping F is continuously
differentiable w.r.t. all variables. Moreover, by the construction of Φ and Ψ from (4.3)
and from (4.8) one can see that

∂F

∂z
= −2 Φ−T (T )M,

where

M = 1/2 Φ(T )TΦ(T ) +

l∑
s=1

∑
i∈I(s)

( | σ̇i(ts) | )−1
Γi(ts)

TΓi(ts)

is positive definite. Thus, it represents a surjective map from Rn to Rn. From the
implicit function theorem it can be deduced, first, that the equation F (z, â, b̂, Â, B̂) =

0 for arbitrary (â, b̂, Â, B̂) near (a, b, A,B) has a solution ẑ ∈ Rn, which is unique in
a certain neighborhood of z ( = p(0) ). Second, a constant cF > 0 exists such that

| ẑ − z | ≤ cF
(
‖ Â−A ‖0 + ‖ B̂ −B ‖0 + |â− a| + |b̂− b|

)
.
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Further, by p(t) = Φ(t) z, σ(t) = B(t)T p(t) = Γ(t) z we obtain the C1 error estimate

| p̂− p ‖C1 + ‖ σ̂ − σ ‖C1 ≤ csw
(
‖ Â−A ‖0+ ‖ B̂ −B ‖C1 + |â− a| + |b̂− b|

)
.(4.9)

Using Lemma 3.1 we may deduce that for every switching point ts of u0 there exists
a locally unique switching point t̂s of the perturbed solution û with

| t̂s − ts| ≤ ct
(
‖ Â−A ‖0 + ‖ B̂ −B ‖C1 + |â− a| + |b̂− b|

)
,(4.10)

so that for sufficiently small δ the conclusion of the theorem follows.

5. Linear time-optimal termination problem. Let us reconsider the steer-
ing problem from section 3 but now with the requirement to finish the process at
x = b in minimal time T :

min T(PT )

s.t. ẋ(t) = A(t)x(t) + B(t)u(t) a.e. in [0, T ];(5.1)

x(0) = a , x(T ) = b , T > 0;(5.2)

|ui(t) | ≤ 1, i = 1, . . . , k, a.e. in [0, T ] .(5.3)

Consider the case that a �= b, and A, B are continuously differentiable for t ≥ 0.
Further, we will always assume existence of admissible state-control pairs (i.e., the
controllability of the system).

If b = 0, (PT ) is also called hard termination control problem.

By setting T =
∫ T
0
dt, the objective functional can be rewritten in Lagrange form.

The Hamilton function then turns into

H(t, x, u, p) = 1 + pTA(t)x + pTB(t)u.(5.4)

Consequently, the adjoint equation and transversality conditions are

ṗ(t) = −A(t)T p(t), H[T ] = 0,

whereas p(0), p(T ), and the final time T are free. The switching function for u is
given as before by (3.4), i.e.,

σ(t) = B(t)T p(t), u(t) = −sign (σ(t) ) .

There are several ways to reduce (PT ) to a problem on a fixed time interval. Following
Hestenes in [24] and [25], a new time variable was introduced by

t = T τ , 0 ≤ τ ≤ 1,

together with the extended state vector

y(τ) = (y′(τ), yn+1) := (x(Tτ), T )

and the transformed control v with v(τ) := u(Tτ), respectively. The state equation
after this transformation turns into

ẏ =
dy

dτ
= f̃(τ, y, v) =

(
T f(Tτ, x, u)

0

)
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with f(t, x, u) = A(t)x+B(t)u, whereas the objective functional is rewritten as

J̃(y, v) =

∫ 1

0

T dτ.

If we consider the related Hamiltonian functions, for p̃ = (p , pn+1) we get

H+(τ, y, v, p̃) = T H(Tτ, x, u, p),

Ĥ+(τ, y, v, p̃, µ̃) = T Ĥ(Tτ, x, u, p, µ) , µ = µ̃/T .
(5.5)

From these relations one can easily reformulate the optimality conditions for a prob-
lem with free final time now (cf. [24], e.g.). In the maximum principle (PMP), the
additional transversality condition w.r.t. to the free final time is usually given by
Ĥ[T ] = 0. Equivalently, with the above state transformation we obtain a boundary
value problem for the additional adjoint component, i.e.,

ṗn+1 = −Ĥ − Tτ Ĥt , pn+1(0) = pn+1(1) = 0 .

The (first-order) independence conditions for the transformed problem are equiva-
lent to the formulations related to (PS). For the example problem (PT ), under As-
sumption 1 they are automatically fulfilled. Second-order coercivity type conditions,
however, have to be suitably modified.

Notice that in the case of linear systems dynamics as in (PT ), the Hessian w.r.t. u
of Ĥ is not positive definite. In order to derive optimality conditions and obtain
second-order local growth estimates for J̃ = T , we will use again the duality approach
explained in section 1 but with an appropriate extended dual formulation now.

Let (x0, u0, T ) be an extremal of (PT ) for which Assumptions 1 and 2 are fulfilled,
and denote by p the corresponding adjoint function. We will assume that (x, u, T ′)
is admissible for (PT ), and that at least (x, T ′) are close to (x0, T ), e.g., in C0 × R
sense. Let us introduce the dual variable in the form

S̃ = S̃(τ, y) = S̃0(τ) + p̃T0 (y − y0) + 0.5(y − y0)T Q̃(y − y0),

where p̃0 = p̃0(τ) = (pT (Tτ), λ(τ))T , y0 = y0(τ) = (xT0 (Tτ), T )T , and

Q̃ = Q̃(τ) =

(
Q(Tτ) η(τ)
ηT (τ) q(τ)

)
.(5.6)

These expressions are related to the original data as follows:

S̃(τ, y) = S0(Tτ) + p(Tτ)T (x− x0) + λ(τ)(T ′ − T ) + (x− x0)T η(τ)(T ′ − T )

+ 0.5(x− x0)TQ(Tτ)(x− x0) + 0.5(T ′ − T )2q(τ),

S̃y = p̃0 + Q̃(y − y0) =

(
p+Q(x− x0) + (T ′ − T )η
λ+ (x− x0)T η + (T ′ − T ) q

)
,

S̃τ = ˙̃S0 + ˙̃p
T

0 (y − y0) + 0.5(y − y0)T ˙̃Q(y − y0)

− ( p̃0 + Q̃(y − y0) )T (dy0/dτ) .

(Here and in the following the symbol “dot” ( ˙ ) is used for derivatives w.r.t. τ = t/T .)
In analogy to section 2, next consider the auxiliary functional Ψ̃ from the duality gap,

Ψ̃(y, v; S̃) =

∫ 1

0

[
H+(τ, y, v, S̃y) + S̃τ (τ, y)

]
dτ =:

∫ 1

0

R̃[τ ] dτ ,(5.7)
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and the boundary term related to (R3), i.e., ψ̃(ξ̃1, ξ̃2; S̃) = S̃(0, ξ̃1)− S̃(1, ξ̃2)−T with

ψ̃(y(0), y(1); S̃) = S̃(0; a, T ′)− S̃(1; b, T ′)− T
= 0.5 ( q(0)− q(1) ) (T ′ − T )2,

(5.8)

due to Ṡ0 = −r0 = −1. For z̃ = (x, u, T ′) near z̃0 = (x0, u0, T ), the Taylor formula
for the integrand in (5.7) says that R̃ = R̃(2)+o(|z̃ − z̃0|2), (cf. (2.9)), where

R̃(2)[t] = 0.5

(
y − y0
v − v0

)T (
Ĥ+
yy + Q̃f̃y + f̃Ty Q̃+ ˙̃Q Ĥ+

yv + Q̃f̃v

Ĥ+
vy + f̃Tv Q̃ Ĥ+

vv

) (
y − y0
v − v0

)
.

If the Hessian herein is positive definite for a certain matrix function Q̃ (satisfying
q(0) − q(1) > 0 in addition), then the triple (x0, u0, T ) in accordance to (5.7), (5.8),
and Theorem 2.2 is a weak local minimizer to (PT ). Sufficient conditions of coercivity
type using an extended Riccati differential system have been derived and discussed
for the general (i.e., possibly nonlinear) case in [25]. They include, in particular, the
assumption Ĥ+

vv = TĤuu � 0, which is violated in the linear case. Therefore, we will
return to the integrand R̃ in (5.7) and analyze it for (PT ) in its extended form.

For simplicity, the following considerations are restricted to the autonomous case,
i.e., to problems with constant matrices A ∈ Rn×n and B ∈ Rn×m.

Consider the decomposition R̃[t] = R̃1[t] + R̃2[t] induced by (2.10). In the linear
autonomous case with free final time we have

R̃2[τ ] = Ĥ+(τ, y, v, p̃0, µ̃0)− Ĥ+(τ, y, v0, p̃0, µ̃0)− µ̃T0 (g(y, v)− g(y, v0))

+ (y − y0)T Q̃(f̃(y, v)− f̃(y, v0))(5.9)

= T ′ pTB(u− u0) + T ′ (Q(x− x0) + (T ′ − T )η )
T
B(u− u0),

and, for (x, T ′) sufficiently close to the reference data (x0, T ),

R̃1[τ ] = 0.5 (y − y0)T
(
Ĥ+
yy + Q̃ f̃y + f̃Ty Q̃ + ˙̃Q

)
(y − y0) + o(|y − y0|2)(5.10)

with

f̃y′ =

(
T fx

0

)
= T

(
A
0

)
, f̃yn+1 =

(
f
0

)
=

(
Ax+Bu

0

)

and

Ĥ+
y′y′ = T Ĥxx = 0 , Ĥ+

y′yn+1
= Ĥx = AT p ,

Ĥ+
yn+1yn+1

= 0 .

Inserting these expressions together with (5.6) into (5.10), we obtain

R̃1 = 0.5 (y − y0)T M (y − y0) + o(|y − y0|2)

= 0.5

(
x− x0

T ′ − T
)T (

M1 M2

MT
2 M3

)(
x− x0

T ′ − T
)

(5.11)

+ o(|x− x0|2 + |T ′ − T |2),
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where the matrix blocs Mi of the Hessian M are given by

M1 = Q̇ + T
(
QA + ATQ

)
,

M2 = η̇ + T AT η + AT p + Q(Ax0 +Bu0) ,

M3 = q̇ + 2 ηT (Ax0 +Bu0) .

In order to ensure the positive definiteness of M it will be sufficient to solve appro-
priate linear differential equations for the components of Q̃, so that the only crucial
point would be the boundary restriction on q (cf. (5.8)). However, as will be shown
in the following, for the time-optimal termination problem (PT ) a relaxation becomes
possible which can be trivially fulfilled for linear state equations.

Lemma 5.1. For every γ ∈ (0, 1), the matrix differential equation M = γI, i.e.,

Q̇ + T
(
QA + ATQ

)
= γ I ,(5.12)

η̇ + T AT η = −AT p − Q(Ax0 +Bu0) ,(5.13)

q̇ = γ − 2 ηT (Ax0 +Bu0) ,(5.14)

has a bounded on [0, T ] solution Q̃ =
(

Q η

ηT q

)
. In particular, the solution can be

chosen such that for γ → 0 the components η and q are uniformly bounded, and Q
satisfies ‖Q‖∞ =O(γ).

Proof. Denote by Q1 the solution of the initial value problem for the linear equa-
tion (5.12) with γ = 1 and Q(0) = I. Setting next Q = γ Q1, we can solve the (linear)
equations for η and q, e.g., with η(0) = 0 and q(0) = 0 then. The solutions satisfy

‖Q‖∞ = γ ‖Q1‖∞ = O(γ) ,

‖η‖∞ ≤ c1‖p‖1 + O(γ) ≤ Mη ,
‖q‖∞ ≤ c2‖η‖1 + γ ≤ Mq

for positive constants c1,2 and Mη, Mq not depending of γ for γ ∈ [0, 1]. Thus, the
conclusion follows.

Lemma 5.2. Let the solution (x0, u0, T ) of (PT ) satisfy Assumption 1. Then,
for every γ ∈ (0, 1), positive constants ε, c̃1 exist such that

R̃1[τ ] ≥ 0.25 γ
(
|x(T ′τ)− x0(T τ) |2 + |T ′ − T |2

)
(5.15)

holds together with |ψ| ≤ c̃1|T ′ − T |2 for arbitrary admissible (x, u, T ′) satisfying
‖x′− x0‖∞+ |T ′−T | < ε (where x′ stands for the transformed state x′(t) = x(T ′t/T )
on [0, T ]).

Proof. Let the matrix parameter S̃yy = Q̃ in (5.6) be chosen in accordance to
Lemma 5.1. Then the proof of the first part of this lemma follows immediately from
(5.11) and Lemma 5.1. The second part is a direct consequence of relation (5.8) and
the estimate for q from the above lemma.

Lemma 5.3. Suppose that (x0, u0, T ) suffices the Assumptions 1 and 2 of sec-
tion 3. Further, let Q̃ be determined from Lemma 5.1, where γ is chosen sufficiently
small. Then there exist positive constants ε′, c̃2, and c̃3 such that

∫ 1

0

R̃2[τ ] dτ ≥ c̃2‖u′ − u0‖21 − c̃3|T ′ − T |2(5.16)
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for arbitrary admissible (x, u, T ′) with ‖x′ − x0‖∞ + |T ′ − T | < ε′ (where x′(t) =
x(T ′t/T ) and u′(t) = u(T ′t/T ) are the transformed state and control, resp.).

Proof. The proof follows the line from Lemma 3.3 but uses the extended dual
formulation with S̃, respectively, Q̃.

Under Assumption 2, from the expression (5.9) for R̃2[t] in analogy to (3.17) we
obtain the following estimate for sufficiently small δ > 0:

(T ′)−1

∫ 1

0

R̃2[τ ] dτ ≥ 0.5m0 δ ( ‖v − v0‖1 − c1 δ )

− c2‖Q‖∞‖B‖ · ‖v − v0‖21 − ‖ηTB‖∞‖v − v0‖1 |T ′ − T | .
Since B = const and ‖η‖∞ ≤ Mη for arbitrary γ ∈ (0, 1) (cf. Lemma 5.1), the last
term can be estimated by

‖ηTB‖∞‖v − v0‖1 |T ′ − T | ≤ c3
(
ρ ‖v − v0‖21 + (4ρ)−1|T ′ − T |2 )

with a certain constant c3 and arbitrary positive ρ. Moreover,

‖Q‖∞‖B‖ · ‖v − v0‖21 ≤ c4γ‖v − v0‖21
for small positive γ. Thus one can choose, first, δ = c′‖v−v0‖1 with sufficiently small
c′, and subsequently γ and ρ small enough so that the estimate (5.16) follows.

Our final result is given by the next theorem.
Theorem 5.4. Let (x0, u0, T ) be an extremal point of (PT ) with constant A and

B, and assume Assumptions 1 and 2 hold true. Then the triple (x0, u0, T ) is a strict
local minimizer, and for some positive constants c̃ and ε̃ the estimate

T ′ − T = J(x, u)− J(x0, u0) ≥ c̃
( ‖x′ − x0‖22 + ‖u′ − u0‖21

)
is valid for all admissible (x, u, T ′) with ‖x′− x0‖∞+ |T ′−T | < ε̃ (with the notations
x′(t) = x(T ′t/T ) and u′(t) = u(T ′t/T ) on [0, T ], resp.).

Proof. Let (x, u) be an arbitrary admissible state-control pair corresponding to
the final time T ′ > 0, and denote the related extended state and control functions by

y, respectively, v. First, consider the functional J̃(y, v) =
∫ 1

0
T ′dτ reformulated in

terms of S̃ and H+ from (5.5) (see also (2.4)):

J̃(y, v) =

∫ 1

0

H+(τ, y, v, S̃y(τ, y)) dτ −
∫ 1

0

S̃y(τ, y)
T f̃(τ, y, v) dτ

=

∫ 1

0

(
H+(τ, y, v, S̃y) + S̃τ

)
dτ + S̃(0, y(0))− S̃(1, y(1)).

Denoting by (y0, v0) the extended trajectories related to (x0, u0, T ), from (5.7), (5.8)
we deduce

T ′ − T = J̃(y, v) − J̃(y0, v0) = Ψ̃(y, v; S̃) + ψ̃(y(0), y(1); S̃) .

Using Lemma 5.2 and 5.3, for sufficiently small γ > 0 we obtain the estimate

T ′ − T ≥
∫ 1

0

R̃[τ ] dτ + ψ̃(y(0), y(1), S̃)

≥ γ

4
‖x′ − x0‖22 + c̃2‖u′ − u0‖21 − (c̃1 + c̃3) |T ′ − T |2

(5.17)

(with the notations x′, u′ used in the statement of the theorem).
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Assume for the moment that T ′ < T : From (5.17) it follows that

(T ′ − T ) ( 1 + (c̃1 + c̃3)(T ′ − T ) ) ≥ 0 .

In the case that |T ′ − T | < ε̃ ≤ 0.5(c̃1 + c̃3)−1, this leads to a contradiction. Con-
sequently, Assumptions 1 and 2 are sufficient for the local optimality of (x0, u0) and
the related final time T .

With T ′ ≥ T , from |T ′ − T | < ε̃ chosen above we now arrive at

(T ′ − T ) + (c̃1 + c̃3)(T ′ − T )2 ≤ (3/2) (T ′ − T ) ,

so that finally for some positive c̃ we end up with

T ′ − T ≥ γ

6
‖x′ − x0‖22 + (2c̃2/3) ‖u′ − u0‖21 ≥ c̃

( ‖x′ − x0‖22 + ‖u′ − u0‖21
)
,

i.e., the desired result.
We will accomplish Theorem 5.4 by a sensitivity result concerning the optimal

time.
Lemma 5.5. Let (x0, u0;T ) be a solution of (PT ) satisfying Assumptions 1

and 2. Further, let (x, u) be an admissible pair corresponding to the final time T ′

(with x(T ′) = b in particular). Then positive constants ρ and c exist such that

|T ′ − T | ≤ c ‖u− u0‖1 ∀T ′ with |T ′ − T | < ρ .
Remark. The L1-norm on the right-hand side is related to the interval [0, T ′],

where for T ′ > T the function u0 is continued to [T, T ′] as a constant. The function
x0 then denotes the corresponding solution of the state equation on the larger interval
[0, T ′].

Proof. Notice first that from the transversality condition H[T ] = 1 + pT ẋ0 = 0 it
follows that ẋ0(T ) �= 0.

Let i be an index with |ẋ0,i(T )| = maxj{|ẋ0,j(T )|} = m > 0. Then, in a
sufficiently small neighborhood (T − ρ, T + ρ) of T , ẋ0,i does not change its sign, and
the estimate |ẋ0,i(t)| ≥ m/2 holds true. Consequently, for 0 < |t− T | < ρ,

|x0,i(t) − x0,i(T )| ≥ (m/2) |t− T | .
Taking in particular t = T ′, with x0,i(T ) = xi(T

′) = bi and cm = 2/m we get

|T ′ − T | ≤ cm |x0,i(T
′)− x0,i(T ) | = cm |x0,i(T

′)− xi(T ′) | .
Since the state equation is linear, we arrive at the assertion

|T ′ − T | ≤ cm ‖x− x0 ‖∞ ≤ c(A,B,m)‖u− u0 ‖1 .
6. Test example. This section is devoted to the stability analysis of hard and

of soft termination control problems for a simple two-dimensional chain (cf. [30]). It
will be shown that failures in the stability assumptions may cause serious instabilities
of the solution structure even in elementary model cases.

Consider a particular problem of type (P),

min 0.5 ‖x(T )− b‖2 s.t. ẋ1(t) = x2(t) , ẋ2(t) = u(t) a.e. in [0, T ],(P0)

x(0) = a ; |u(t) | ≤ 1 a.e. in [0, T ].
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(This problem is also known as the rocket car problem, where x1 stands for the
position, x2 for the velocity, and u for the acceleration of the vehicle.) We will
restrict ourselves to the case that a2, b2 are positive, and b1 > a1. According to the
results of section 4, the adjoint equation together with the transversality condition
take the form

ṗ1 ≡ 0 , ṗ2 = −p1, p(T ) = x(T )− b,

so that with p1(0) = z1, p2(0) = z2 the switching function reads as

σ(t) = p2(t) = −z1t + z2 .

Therefore we have ts = z2/z1 whenever z1 �= 0, i.e., the extremal trajectories cannot
have more than one switching point on [0, T ].

Consider the solution representation (4.4) from section 4: The fundamental solu-
tions to the equations (4.3) are given by

Ψ(t) =

(
1 t
0 1

)
, Φ(t) =

(
1 0
−t 1

)

so that Γ(t) = (−t 1 ). Consequently,

p1(t) = z1 , p2(t) = z2 − z1t ,

x1(t) = a1 + a2t −
∫ t

0

sign ( z2 − z1s ) · (t− s) ds ,

x2(t) = a2 −
∫ t

0

sign ( z2 − z1s ) ds .

Thus, any discontinuous nonsingular extremal belongs to one of the following types:

Type 1: z1 < 0 , z2 < 0 or u0 =

{
+1 for 0 ≤ t < ts,
−1 for ts ≤ t ≤ T.

In the first part, the object moves with maximal acceleration, and the trajectory is part
of a parabola P1 : x1 = 0.5x2

2+α in the phase plane, whereas x ∈ P2 : x1 = −0.5x2
2+β

(with appropriately chosen α, β) in the second (retardation) part. Denoting the
switching point by xS , the arcs may be written as

P1 : x1(t) = xS1 − xS2 (ts − t) + 0.5(t− ts)2,
x2(t) = xS2 − (ts − t), 0 ≤ t ≤ ts ;

P2 : x1(t) = xS1 + xS2 (t− ts)− 0.5(t− ts)2,
x2(t) = xS2 − (t− ts), ts ≤ t ≤ T .

(6.1)

Notice that z1 ≡ p1(t) with p1(T ) = x1(T )− b1 so that x1(T ) < b1 for this situation.

Type 2: z1 > 0 , z2 > 0 or u0 =

{ −1 for 0 ≤ t < ts,
+1 for ts ≤ t ≤ T.

The switching structure says that, in the phase plane, the points move with retardation
along x1 = −0.5x2

2 + β′ in the first part and accelerating along x1 = +0.5x2
2 + α′ in

the second part. The condition 0 < z1 ≡ p1(t) says that x1(T ) > b1 holds true for the
second type.



ON STABILITY OF BANG-BANG TYPE CONTROLS 1863

In both cases, one can find explicit formulas for p, x, and the function F in (4.5).
Indeed, for type 2, e.g., we have for t > ts = z2/z1 that

x1(t) = a1 + a2t+
t2

2
− 2tz2
z1

+

(
z2
z1

)2

, p1(t) = z1,

x2(t) = a2 + t− 2z2
z1
, p2(t) = z2 − tz1 .

(6.2)

From the first equation taken at t = T we see that ts = z2/z1 satisfies

T (a2 − ts) = x1(T )− a1 − t
2
s

2
− (T − ts)2

2
≤ 0

due to |u| ≤ 1, so that ts ≥ a2 follows. Taking into account (6.2), we see that
x2(ts) ≤ 0. Notice that thus the type 2 trajectories switch to the second parabola
not in the first point of intersection (which is in the upper half plane) but only when
these curves intersect in the lower part of the phase plane. This effect had been earlier
discussed for the time-optimal case; cf., e.g., [30].

Using (6.2), the Jacobian of F = x(T )− p(T )− b now can be expressed as

∂F

∂z
= −

(
1 0

−T 1

)
− 2

z31

(
z22 − Tz1z2 Tz21 − z1z2
−z1z2 z21

)

(and the same result may be obtained from (4.8) with |σ̇(ts)| = | z1| = −z1 and
ts= z2/z1).

It follows from the proof of Theorem 4.1 that ∂F/∂z is a regular matrix. In the
example case, it is easy to confirm this fact by calculating the determinant:∣∣∣∣ ∂F∂z

∣∣∣∣ = 1 +
2

|z1|
(

1 + (T − z2/z1)2
)
> 0 .

Therefore, any solution of the structural type 2 is a stable solution in the sense of
section 4. Moreover, Assumptions 1 and 2 hold true for such trajectories so that
Theorem 3.4 can be applied to show the strong local optimality.

Analogous arguments show the stability of extremal trajectories of type 1.
In order to find locally optimal solutions of (P0), let us first consider the related

time-optimal problem

min T s.t. ẋ1(t) = x2(t) , ẋ2(t) = u(t) a.e. in [0, T ];(P0
T )

x(0) = a , x(T ) = b, |u(t) | ≤ 1 a.e. in [0, T ] .

As before, we will consider extremals without singular arcs, i.e., trajectories which
are synthesized from parabolas of the type P1 or P2, respectively. Depending on the
end points localization we have the following.

If b1 − a1 > l = 0.5 | a22 − b22|, then the point b is attainable with trajectories
of the structural type 1. If, in addition, b1 − a1 < L = 0.5 ( a22 + b22), then the
target can be reached by type 2 curves too, so that two extremals exist. We denote
the corresponding time values by T ∗ and T+. The type 1 extremal with the higher
velocity components x2(t) is the global minimizer of (P0

T ). (For a detailed analysis
see [30].) Due to xs1 ∈ (a1, b1), xs2 ≥ max{a2, b2} > 0 we have p1 ≡ z1 = −1/x2(t∗s) < 0
and σ̇(t∗s) = z1 < 0, so that this solution satisfies all assumptions of Theorems 5.4
and 4.1 and the minimum is locally strong and stable.
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For the second extremal, where, in the phase plane, the points move under retar-
dation in the first part and with acceleration in the second part, we have p1 ≡ z1 =
−1/x2(t+s ) > 0, i.e., σ̇(t+s ) = z1 > 0 in particular. Therefore, again we can apply the
theory of section 5, respectively, 4 to see that this suboptimal extremal also gives a
strict locally strong minimizer with stable switching structure.

Let us return now to problem (P0) with given end-time T . We will mainly consider
T near the local optimizers T ∗ or T+ and, without loss of generality, assume that
T > | b2 − a2|.

If the time parameter T is smaller than T ∗, the target point b cannot be reached.
The solution can be constructed as a trajectory of type 1 by finding the switching
time ts. Using for the trajectories analogous formulas as in (6.2), and abbreviating
r = T − ts, we get

J(x, u) =
1

2
‖x(T )− b ‖2 =

1

2

(
(c1 − r2)2 + (c2 − 2r)2

)
=: 2φ(r),

with c1 = T 2/2 + a2T + a1 − b1, c2 = T + a2 − b2 > 0. Since limr→∞ φ(r) = +∞ and
φ′(0) = −c2 < 0, a positive minimum point rs exists. From φ′(rs) = 0 the represen-
tation rs = −(c2 − 2rs)/(c1 − r2s) follows. Using that (c1 − r2s) = x1(T )− b1 = z1 < 0
holds true for type 1 solutions, we get

rs < 0.5c2 = 0.5(T + (b2 − a2)) < T .

Furthermore, the relation ts > 0.5 (T + (b2 − a2)) is characteristic for the solution
trajectory in case T < T ∗.

Consider next the situation T ∗ << T < T+: naturally, we will ask for a solution
of type 2 now. The approach used above leads to the auxiliary problem of minimizing
φ(r) from

J(x, u) =
1

2

(
(ĉ1 + r2)2 + (2r − ĉ2)2

)
=: 2φ̂(r)

with the notations ĉ1 = −0.5T 2 + a2T + a1 − b1, ĉ2 = T − a2 + b2, and r = T − ts.
For a minimizer ts from (0, T ) in analogy to case 1 it can be proved that

ts > 0.5 (T − (b2 − a2)).

In both cases discussed so far, due to T < T̄ ∈ {T ∗, T+}, the condition σ̇(ts) =
z1 �= 0 is fulfilled so that the solutions are stable in their structure in the sense of
Theorem 4.1. Moreover, they are strict strong local minimizers of (P0) satisfying the
local quadratic growth estimate from Theorem 3.4. The situation changes when we
consider T = T ∗ or T = T+: In this case, the solution of (P0) terminates in b, and
we have z1 = p1 ≡ p1(T̄ ) = x1(T̄ ) − b1 = 0 so that in fact we have to do with a
(completely) singular optimal control solution: σ(t) ≡ 0. Due to the coincidence with
the time-optimal case, however, the solution is uniquely determined and represents
the limit of solutions for T ↑ T̄ .

The singularity mentioned for (P0) with T = T̄ causes instabilities in the behavior
of the solutions when the problem data are changed. To see this, consider, e.g., T =
T ∗ + δ with small positive δ: obviously, the optimal value of the objective function
in the soft termination problem is zero (which means that the final state position
x(T ) = b is attainable). One way for constructing optimal trajectories in the case
T = T ∗ + δ consists of the following approach.

Consider, first, the time-optimal path along the parabolas P1 on [0, ts] and along
P2 for (ts, T

∗]; cf. (6.1). On P1, let a point xH = x(tH) be chosen such that vH =
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xH2 > max{a2, b2}, and tH < ts. The point with the same x2-component on P2 denote
by xR. With d = ts − tH = xS2 − xH2 , its distance to xH can be calculated from (6.1)
as

L = xR1 − xH1 = 2xS2 d − d2 .
Assume that the point moves for 0 ≤ t ≤ tH with maximal acceleration along P1, but
then with constant velocity vH over a distance l ∈ (0, L). When the motion is then
continued with u = 1, the point follows a parabola P ′

1 determined by

x1 = 0.5 (x2)2 + xS1 − 0.5 (xS2 )2 + l,(6.3)

which meets P2 at a point xB with xH2 < x
B
2 = vB < x

S
2 . From this point on we set

u = −1 and, following the parabola P2, achieve b.
The time delay caused by breaking the acceleration and holding the velocity vH

on a certain interval of length l is given by

∆H(l) = l/vH − 2 (xS2 − xB2 ).

Denoting dB = xS2 − xB2 (= tB − ts from the time-optimal trajectory), we see from
(6.1) and (6.3) that

xB1 − xS1 = 0.5 l = xS2 dB − 0.5 d2B ,

consequently,

∆H(l) ≥ l/vB − 2 dB =
l − 2xS2 dB + 2d2B

xS2 − dB
=
d2B
vB

> 0.

On the other hand, for d = xS2 − xH2 it follows analogously that

∆H(l) ≤ L

vH
− 2 d =

d2

vH
=: DH .

Summing up, we see that in dependence of the choice of xH and the length l of the
singular arc with u ≡ 0, a small but arbitrary time delay ∆H(l) ∈ (0, DH) can be
realized. Moreover, this technique can be repeatedly applied for finitely or even count-
ably many points on the remaining acceleration parabolas of type P1, respectively, P ′

1,
before their switching point to the parabola P2 is reached. We have only to make sure
that the sum of the individual time delays equals δ = T − T ∗.

The arguments show that near the time parameter T = T ∗, where the stability
condition contained in Assumption 2 fails, for T ∗ < T << T+ one can observe bi-
furcations of the optimal solution including essential changes in the structure of the
optimal control behavior. The same qualitative result can be obtained (by a slightly
modified construction) for T near the second local optimizer T+ satisfying T > T+.

7. Conclusion. The stability analysis of bang-bang control regimes is of prac-
tical as well as of theoretical interest. A thorough comparison of the different ap-
proaches appearing in the literature could lead to better insights and should be a field
for further investigations. The benefit for constructing robust and efficient numerical
algorithms is another, widely open question.

In addition to the remarks in the introduction, some comments have to be added
concerning the local growth results in Theorem 3.4 and Theorem 5.4: as it was pointed
out by one of the referees, the estimate in Theorem 3.4 is a consequence of Theo-
rem 5.2, [27]. Further, the statement of Theorem 5.4 could be also obtained from
Theorem 13.1, [27], and the results on linear time-optimal problems from [29].
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Abstract. We consider a proper lower semicontinuous function f on a Banach space X with
λ = inf{f(x) : x ∈ X} > −∞. Let α ≥ λ and Sα = {x ∈ X : f(x) ≤ α}. We define the lower
derivative of f at the set Sα by

D(f, Sα) = lim inf
x→Sα

f(x) − α

dist(x, Sα)
,

where x→ Sα can be interpreted in various ways. We show that, when f is convex and α = λ, it is
equal to the largest weak sharp minima constant. In terms of these derivatives and subdifferentials,
we present several characterizations for convex f to have global weak sharp minima. Some of these
results are also shown to be valid for nonconvex f . As applications, we give error bound results for
abstract linear inequality systems.

Key words. weak sharp minima, error bound, Banach spaces, Asplund space
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1. Introduction. Throughout this paper, let X be a Banach space and f :
X → R

⋃{+∞} a proper lower semicontinuous function; we always assume that f is
bounded below and denote by λ the infimum of f on X. For each α ∈ R, let

Sα := {x ∈ X : f(x) ≤ α};

in particular,

Sλ = {x ∈ X : f(x) ≤ λ} = {x ∈ X : f(x) = λ}.

We say that f has global weak sharp minima if Sλ �= ∅ and there exists τ > 0 such
that

τdist(x, Sλ) ≤ f(x)− λ ∀x ∈ X.(1.1)

In this case, τ is called a weak sharp minima constant; and τf := sup{τ : τ satisfies
(1.1)} is called the largest weak sharp minima constant of f .

Weak sharp minima occur in many optimization problems; in particular, they
are related to the convergence analysis of iterative procedures. Several authors [1,
2, 4, 6, 13, 18, 19, 20] studied such minima (but only local ones). Among these,
[1, 2, 6, 13, 18] considered the unique minimizer solution set case. Burke and Ferris
[4] extended it to the nonunique minimizer solution set case; Studniarski and Ward [19]
and Ward [20] studied local weak sharp minima with a nonunique minimizer solution
set. Most previous works add assumptions on the minimizer solution set Sλ and
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require the space X to be finite dimensional. In this paper, we consider global weak
sharp minima on a Banach space and add no assumptions on Sλ. In section 2, we first
prove a characterization for a proper lower semicontinuous function on a Banach space
to have global weak sharp minima. Using this characterization and a recent significant
result (local Lipschitz fuzzy sum rule of Fréchet subdifferential) on Asplund spaces,
we give a sufficient condition in terms of Fréchet subdifferential for a proper lower
semicontinuous function on an Asplund space to have global weak sharp minima.
Moreover, we consider weak sharp minima with constraint for a locally Lipschitz
function. In section 3, we discuss weak sharp minima of a lower semicontinuous
convex function and give several equivalent conditions for such a function to have
weak sharp minima. In section 4, as applications of results in sections 2 and 3, we
establish some error bound results for abstract linear inequality systems, which are
more general than previous linear inequality systems considered by other authors.

We conclude this section with a compilation of some notations which will be used
throughout the paper. For x ∈ dom(f) := {x ∈ X : f(x) < +∞} and ε ≥ 0, let
∂̃εf(x) denote the set{

x∗ ∈ X∗ : lim inf
y→x

f(y)− f(x)− 〈x∗, y − x〉
‖y − x‖ ≥ −ε

}
.

∂̃f(x) stands for ∂̃0f(x) and is called the Fréchet subdifferential of f at x. Let

∂f(x) := lim sup

y
f→x

∂̃f(y)

:= {x∗ ∈ X∗ : x∗
n

w∗
→ x∗ with x∗

n ∈ ∂̃f(xn), xn → x and f(xn)→ f(x)}.
∂f(x) is called the limiting Fréchet subdifferential of f at x. If X is an Asplund space,
∂f(x) = lim sup

y
f→x,ε↓0 ∂̃εf(y) (see [14, Theorem 2.9]). Clearly, ∂̃f(x) ⊂ ∂f(x). It is

known that if f is convex, then

∂̃f(x) = ∂f(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ f(y)− f(x) ∀y ∈ X}.
For more discussions on generalized differentials, see [5] and [12]. For a closed subset
K of X and x ∈ K, define N(K,x) := ∂δK(x), where δK is the indicator function
of K. It is known [14] that N(K,x) =

⋃
λ>0 λ∂dist(x,K). Recall that X is called

an Asplund space if every continuous convex function on an open convex subset D
of X is Fréchet differentiable on a dense Gδ subset of D. It is well known [17] that
each Banach space with an equivalent Fréchet smooth norm, each Banach space with
separable dual, and each reflexive Banach space are examples of Asplund spaces.

2. Weak sharp minima for lower semicontinuous functions. We first
present a general characterization for f to have global weak sharp minima, which
is also a tool to prove other results in this section.

Theorem 2.1. f has global weak sharp minima with a constant τ > 0 if and
only if there exists a sequence {λn} in R such that λn → λ+ and for each x ∈ X with
f(x) > λ,

τ lim inf
n→∞ dist(x, Sλn) ≤ f(x)− λ.(2.1)

Proof . It is clear that (2.1) holds if f has global weak sharp minima with a
constant τ > 0. Conversely, suppose that (2.1) holds. We need only show that Sλ �= ∅
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and that for each γ ∈ (0, τ) and each x ∈ X \ Sλ,

γdist(x, Sλ) ≤ f(x)− λ.

Fixing γ ∈ (0, τ), for each y ∈ dom(f), let

F (y) = {y′ ∈ X : γ‖y − y′‖ ≤ f(y)− f(y′)}.
Then F (y) is a nonempty closed subset of X for each y ∈ dom(f). Since λ = inf{f(z) :
z ∈ X} > −∞, one can inductively construct a sequence {xn} such that

(i) x0 = x,
(ii) xn ∈ F (xn−1),
(iii) f(xn) ≤ inf{f(y) : y ∈ F (xn−1)}+ 1

n .
By (ii) and the definition of F , it is easy to verify that F (xn) ⊂ F (xn−1). This and
(iii) imply that F (xn) ⊂ B(xn,

1
γn ), where B(xn,

1
γn ) denotes the ball with center xn

and radius 1
γn . It follows from the completeness of X that there exists z ∈ X such

that {z} =
⋂∞

n=0 F (xn) ⊂ F (x). Thus F (z) = {z} and γ‖x − z‖ ≤ f(x) − f(z).
It remains to show that f(z) = λ. If this is not the case, then f(z) > λ. By (2.1)
and passing to a subsequence if necessary, we can assume that the lower limit on the
left-hand side of (2.1) is the full limit. By lower semicontinuity of f and λn → λ+,
one has limn→∞ dist(z, Sλn

) > 0. Since γ ∈ (0, τ), it follows that

γdist(z, Sλn) < f(z)− λ ∀ large enough n.

Therefore, for each large enough n there exists zn ∈ Sλn \ {z} such that

γ‖z − zn‖ < f(z)− λn ≤ f(z)− f(zn),

and so zn ∈ F (z) = {z}; thus zn = z, contradicting our choice of zn.
Theorem 2.2. Let X be an Asplund space and τ > 0 be such that

inf{‖x∗‖ : x∗ ∈ ∂̃f(x), x ∈ X and f(x) > λ} ≥ τ.(2.2)

Then f has global weak sharp minima with a constant τ .
Proof . Suppose not; then by Theorem 2.1 there exist x0 ∈ X and λ0 > λ such

that

τdist(x0, Sλ0) > f(x0)− λ,

that is,

f(x0) < inf{f(x) : x ∈ X}+ τdist(x0, Sλ0).

Pick α > 0 such that

f(x0) < inf{f(x) : x ∈ X}+ (τ − α)(dist(x0, Sλ0)− α).

By the Ekeland variational principle (cf. [5, Theorem 7.5.1]), there exists v ∈ X such
that
(i) ‖v − x0‖ < dist(x0, Sλ0)− α,
(ii) f(v) < f(x) + (τ − α)‖x− v‖ for each x ∈ X \ {v}.
Since X is an Asplund space, it follows from (ii) and Theorem 2.12 in [22] that there
exist ui ∈ X and x∗

i ∈ X∗ (i = 1, 2) such that

‖ui − v‖ < α (i = 1, 2),(2.3)
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x∗
1 ∈ ∂̃f(u1), x∗

2 ∈ (τ − α)∂(‖ · −v‖)(u2), and ‖x∗
1 + x∗

2‖ < α.

It follows from the fact that ∂(‖ · −v‖)(u2) ⊂ {x∗ ∈ X∗ : ‖x∗‖ ≤ 1} that

‖x∗
1‖ < ‖x∗

2‖+ α ≤ τ.

Therefore,

inf{‖x∗‖ : x∗ ∈ ∂̃f(u1)} < τ.(2.4)

On the other hand, by (2.3) and (i), one has that u1 /∈ Sλ0
, and so f(u1) > λ0 > λ.

Thus (2.4) contradicts the given assumption (2.2).
The following result concerns the constrained case.
Theorem 2.3. Let X be an Asplund space, K a closed nonempty subset of X,

and f a locally Lipschitz function on X. Let λK := inf{f(x) : x ∈ K} be finite.
Assume that there exists τ > 0 such that for each x ∈ K with f(x) > λK ,

inf{‖x∗ + y∗‖ : x∗ ∈ ∂f(x) and y∗ ∈ N(K,x)} ≥ τ.(2.5)

Then S(λK) := {x ∈ K : f(x) = λK} �= ∅ and

τdist(x, S(λK)) ≤ f(x)− λK ∀x ∈ K.

Proof . Let φ = f + δK . Then φ is a proper lower semicontinuous function on X,
inf{φ(x) : x ∈ X} = λK , and S(λK) = {x ∈ X : φ(x) = λK}. It suffices to show
that φ has global weak sharp minima with constant τ . By Theorem 4.1 in [14], for
each x ∈ K

∂φ(x) = ∂(f + δK)(x) ⊂ ∂f(x) + ∂δK(x) = ∂f(x) +N(K,x).

Thus (2.5) reads inf{‖z∗‖ : z∗ ∈ ∂φ(x)} ≥ τ for each x ∈ K with f(x) > λK . Since
∂̃φ(x) = ∅ for each x /∈ K and since ∂̃φ(x) ⊂ ∂φ(x) for each x ∈ K with φ(x) > λK ,
it follows that

inf{‖z∗‖ : z∗ ∈ ∂̃φ(x), x ∈ X and φ(x) > λK} ≥ τ.

Thus Theorem 2.2 imples that φ has global weak sharp minima with the constant τ .
Remark . From the proofs of Theorems 2.2 and 2.3, it is clear that we can gen-

eralize these two theorems to any triple (X,F , ∂a), where X is a Banach space, F a
function space on X, and ∂a is an abstract subdifferential operator with appropriate
properties. For example, we can take F to be the set of all proper lower semicon-
tinuous functions from X to R ∪ {∞} and ∂a : F × X → 2X

∗
with the following

properties:
(i) For each equivalent norm ‖ · ‖e of X and each x ∈ X,

∂a‖ · ‖e(x) = {x∗ : 〈x∗, h〉 ≤ ‖x+ h‖e − ‖x‖e, h ∈ X}.

(ii) For any g ∈ F and any equivalent norm ‖ · ‖e of X, if v ∈ X is a minimum
point of g + ‖ · ‖e on X, then for any ε > 0 there exist v1, v2 ∈ X and
x∗

1, x
∗
2 ∈ X∗ such that

‖vi − v‖ < ε (i = 1, 2), x∗
1 ∈ ∂ag(v1), x∗

2 ∈ ∂a‖ · ‖e(v2), and ‖x∗
1 + x∗

2‖ < ε.
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In this setup, following the proof of Theorem 2.2 one can obtain the following result:
f ∈ F has weak sharp minimum with a constant τ > 0 if

inf{‖x∗‖ : x∗ ∈ ∂af(x), x ∈ X with f(x) > λ} ≥ τ.

After the completion of our first draft, we learnt that Wu and Ye [21] have obtained
an error bound result similar to Theorem 2.2 in terms of the abstract subdifferential.
Jourani [11] also proved an error bound result similar to Theorem 2.2, but some
stronger assumptions are added on the abstract subdifferential. In the approach of
both [21] and [11], the solution set S is required to be nonempty as an assumption (the
proof of [11] requires this assumption though it is not explicitly mentioned). Theorem
2.2 allows us to show that this assumption is automatically satisfied.

The following two propositions tell us that the scenario of weak sharp minima only
happens for nonsmooth functions when either f is convex or X is finite dimensional.

Proposition 2.4. Let X be a finite dimensional space. Suppose that f is a
differentiable function on X and that f(·) is not constant on X. Then f has no weak
sharp minina.

Proof . Suppose to the contrary that f has global weak sharp minima with con-
stant τ > 0. Then

τdist(x, Sλ) ≤ f(x)− λ ∀x ∈ X.(2.6)

Since f is not constant, one can pick z /∈ Sλ. Since Sλ is a nonempty closed subset of
the finite dimensional space X, there exists x0 ∈ Sλ such that ‖z− x0‖ = dist(z, Sλ).
It follows that for each t ∈ (0, 1],

τt‖z−x0‖ = τdist(x0+t(z−x0), Sλ) ≤ f(x0+t(z−x0))−λ = f(x0+t(z−x0))−f(x0).

Thus 0 < τ‖z − x0‖ ≤ df(x0)(z − x0) = �f(x0)(z − x0), and so �f(x0) �= 0,
contradicting the fact that x0 is a minimizer of f .

Proposition 2.5. Let f be a differentiable convex function on a Banach space
X. Suppose that f(·) is not constant on X. Then f has no weak sharp minima.

Proof . Suppose to the contrary that (2.6) holds. By the convexity and continuity
of f , Sλ is a closed convex subset of X. Noting that ∂Sλ is nonempty, it follows from
the Bishop–Phelps theorem that Sλ has support points, that is, there exist x0 ∈ Sλ

and x∗ ∈ X∗ with ‖x∗‖ = 1 such that

〈x∗, x0〉 = sup{〈x∗, x〉 : x ∈ Sλ}.(2.7)

Pick h ∈ X such that ‖h‖ = 1 and 〈x∗, h〉 > 1
2 . This implies that dist(th, ker(x∗)) >

1
2 t for each t ∈ (0, 1], where ker(x∗) = {x ∈ X : 〈x∗, x〉 = 0}. It is easy to verify
from (2.7) that for each t ∈ (0, 1],

1

2
t ≤ dist(th, ker(x∗)) = dist(x0 + th, x0 + ker(x∗)) ≤ dist(x0 + th, Sλ).

This and (2.6) imply that for each t ∈ (0, 1),

1

2
tτ ≤ f(x0 + th)− λ = f(x0 + th)− f(x0).

It follows that 1
2τ ≤ df(x0)(h) = �f(x0)(h), and so �f(x0) �= 0. This contradicts

the fact that x0 is a minimizer of f .
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3. Characterizations of weak sharp minima for convex functions. Through-
out this section, we assume that X is a Banach space, f : X → R ∪ {∞} is a proper
lower semicontinuous convex function and that λ = inf{f(x) : x ∈ X} > −∞.
Let dom(f) := {x ∈ X : f(x) < ∞}. Thus f is continuous on each line seg-
ment contained in dom(f). For x1, x2 ∈ X, (x1, x2] denotes the line segment
{tx1 + (1 − t)x2 : 0 < t ≤ 1}. Similar notations (x1, x2) and [x1, x2] are self-
explanatory. For any α ≥ λ, let Sα := {x ∈ X : f(x) ≤ α}. We write

x→ Sα if x /∈ Sα and dist(x, Sα)→ 0,

xf → Sα if x /∈ Sα and f(x)→ α,

and x
f→ Sα if x→ Sα and xf → Sα.

For an extended real-valued function φ on X, δ > 0 and α ≥ λ, let

φ(1)
α (δ) := inf{φ(x) : x ∈ X with 0 < dist(x, Sα) < δ},

φ(2)
α (δ) := inf{φ(x) : x ∈ X with 0 < f(x)− α < δ},

and φ(1,2)
α (δ) := inf{φ(x) : x ∈ X with 0 < max{dist(x, Sα), f(x)− α} < δ}.

Thus, one has that

lim inf
x→Sα

φ(x) = lim
δ→0+

φ(1)
α (δ),

lim inf
x f→Sα

φ(x) = lim
δ→0+

φ(2)
α (δ),

and lim inf
x

f→Sα

φ(x) = lim
δ→0+

φ(1,2)
α (δ).

Below we introduce various kinds of “lower derivatives” of f at the set Sα (rather
than the usual ones at a point) with α ≥ λ. These derivatives are defined by

D1(f, Sα) := lim inf
x→Sα

f(x)− α

dist(x, Sα)
,

D2(f, Sα) := lim inf
x f→Sα

f(x)− α

dist(x, Sα)
,

and D1,2(f, Sα) := lim inf
x

f→Sα

f(x)− α

dist(x, Sα)
.

If α ∈ (λ, ∞), then Sα �= ∅ and so D1(f, Sα), D2(f, Sα), and D1,2(f, Sα) are well
defined. If α = λ, it is possible that Sα = ∅; in this case, we define dist(x, Sα) = ∞
and these lower derivatives are to be understood as 0. Note also that

D1,2(f, Sα) ≥ max{D1(f, Sα), D2(f, Sα)}.

Remark . By definition, D1,2(f, Sα) > 0 means Sα �= ∅ and that there exist δ > 0
and τ > 0 such that

τdist(x, Sα) ≤ f(x)− α for any x ∈ X with max{dist(x, Sα), f(x)− α} < δ.

Similar observations can be made for the case when D1(f, Sα) > 0 or D2(f, Sα) > 0.
The following lemma will be a useful tool for us.
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Lemma 3.1. Let α ≥ λ, Sα �= ∅, and x ∈ dom(f) \ Sα. Let ε > 0 and δ > 0 be
such that

δ < max{dist(x, Sα), f(x)− α}.(3.1)

Then there exist s ∈ Sα with f(s) = α, and y ∈ (s, x) such that
(a) δ = max{dist(y, Sα), f(y)− α},
(b) (s, x] ∩ Sα = ∅,
(c) ‖y − s‖ < (1 + ε)dist(y, Sα),
(d) ‖x− s‖ < (1 + ε)dist(x, Sα),
(e)

f(y)− α

dist(y, Sα)
≤ (1 + ε)

f(x)− α

dist(x, Sα)
.

Proof . Take a sequence {sn} in Sα such that

‖x− sn‖ → dist(x, Sα).(3.2)

For each n, we may assume without loss of generality that (sn, x] ∩ Sα = ∅ and
f(sn) = α. It follows from (3.1) and the intermediate value theorem that there exists
yn ∈ (sn, x) such that

δ = max{dist(yn, Sα), f(yn)− α}.(3.3)

Write yn = sn + tn(x − sn) for some tn ∈ (0, 1); it follows from the convexity of f
that

f(yn) ≤ (1− tn)f(sn) + tnf(x) = α + tn(f(x)− α).(3.4)

We claim that

tn‖x− sn‖
dist(yn, Sα)

→ 1.(3.5)

Indeed, if this is not the case, then, by dist(yn, Sα) ≤ ‖yn − sn‖ = tn‖x − sn‖, one
can assume that

tn‖x− sn‖
dist(yn, Sα)

→ β > 1(3.6)

(passing to a subsequence if necessary). Since ‖sn−x‖ → dist(x, Sα), one can assume
without loss of generality that for each n

tn >
dist(yn, Sα)

dist(x, Sα)
.(3.7)

By (3.4), one also has that tn ≥ f(yn)−α
f(x)−α for each n. Setting r = min{ 1

dist(x,Sα) , 1
f(x)−α},

it follows from (3.7) and (3.3) that for each n,

tn ≥ rmax{dist(yn, Sα), f(yn)− α} = rδ.

Since tn ∈ (0, 1), one can assume without loss of generality that tn → t for some t.
Then t ≥ rδ > 0. Since

dist(x, Sα) ≤ ‖x− yn‖+ dist(yn, Sα) = (1− tn)‖x− sn‖+ dist(yn, Sα),
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dist(x, Sα)

‖x− sn‖ ≤ 1− tn +
dist(yn, Sα)

‖x− sn‖ .

Letting n→∞, it follows from (3.2) and (3.6) that 1 ≤ 1− t+ t
β . This is not possible

as β > 1 and t > 0. Therefore (3.5) is true and so

‖yn − sn‖
dist(yn, Sα)

→ 1.(3.8)

Moreover, rewrite (3.4) in the form

f(yn)− α

dist(yn, Sα)
≤ tn(f(x)− α)

dist(yn, Sα)

‖x− sn‖
‖x− sn‖

and note that the right-hand side converges to f(x)−α
dist(x,Sα) by (3.5) and (3.2). It follows

from (3.8) and (3.2) that if we take y = yn for large enough n, then (e), (d), and (c)
are satisfied.

Proposition 3.2. D1(f, Sα), D2(f, Sα), and D1,2(f, Sα) are increasing on the
interval [λ, ∞) with respect to α.

Proof . We need only show the conclusion to hold for D1 as proofs are similar for
D2 and D1,2. Let α1 > α2 ≥ λ. By way of contradiction we suppose that

D1(f, Sα1) < r < D1(f, Sα2)(3.9)

for some r ∈ R. Then there exists z ∈ dom(f) \ Sα1 such that

f(z)− α1

dist(z, Sα1)
< r.(3.10)

By Lemma 3.1, for every natural number n there exist xn ∈ Sα2
with

f(xn) = α2 and (xn, z] ∩ Sα2 = ∅

and yn ∈ (xn, z] such that

‖yn − xn‖ <
(
1 +

1

n

)
dist(yn, Sα2)(3.11)

and

max{dist(yn, Sα2), f(yn)− α2} =
α1 − α2

2n
.(3.12)

In particular, dist(yn, Sα2)→ 0 and by definition,

D1(f, Sα2) ≤ lim inf
n→∞

f(yn)− α2

dist(yn, Sα2)
.

By (3.12), one has that f(yn) < α1 < f(z). Take wn in the open segment (yn, z)
such that f(wn) = α1. Since f is convex and since wn ∈ (yn, z] ⊂ (xn, z], one has

f(z)− f(wn)

‖z − wn‖ ≥ f(yn)− f(xn)

‖yn − xn‖ ,
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that is,

f(z)− α1

‖z − wn‖ ≥
f(yn)− α2

‖yn − xn‖ .

Thus,

f(z)− α1

dist(z, Sα1
)
≥ f(yn)− α2

‖yn − xn‖ .

It follows from (3.10) and (3.11) that(
1 +

1

n

)
r ≥ f(yn)− α2

dist(yn, Sα2)
for each n

and so

r ≥ lim inf
n→∞

f(yn)− α2

dist(yn, Sα2)
≥ D1(f, Sα2),

contradicting (3.9).
Theorem 3.3. Let τ > 0 be a constant. The following statements are equivalent.
(i) inf{‖x∗‖ : x∗ ∈ ∂f(X \ Sλ)} ≥ τ .
(ii) lim infx f→Sλ

inf{‖x∗‖ : x∗ ∈ ∂f(x)} ≥ τ .
(iii) Sλ �= ∅ and lim infx→Sλ

inf{‖x∗‖ : x∗ ∈ ∂f(x)} ≥ τ .
(iv) Sλ �= ∅ and lim inf

x
f→Sλ

inf{‖x∗‖ : x∗ ∈ ∂f(x)} ≥ τ .

(v) Sλ �= ∅ and D1(f, Sλ) ≥ τ .
(vi) Sλ �= ∅ and D2(f, Sλ) ≥ τ .
(vii) Sλ �= ∅ and D1,2(f, Sλ) ≥ τ .
(viii) f has global weak sharp minima with constant τ .

Consequently D1(f, Sλ), D2(f, Sλ), and D1,2(f, Sλ) coincide: all equal zero if f does
not have global weak sharp minima, and otherwise all equal the largest weak sharp
minimum constant of f .

Proof . We need only prove the equivalence of (i)–(viii). It is clear that (i)⇒(ii)
(and hence (i)⇒(iii) by virtue of the implication (ii)⇒(iv) to be proved below),
(iii)⇒(iv), (v)⇒(vii), (vi)⇒(vii), (viii)⇒(v), and (viii)⇒(vi).

(ii)⇒(iv). Suppose that (ii) holds. We need only show that Sλ �= ∅. Let r ∈ (0, τ);
then by (ii) there exists δ > 0 such that for each x ∈ X \ Sλ with f(x) < λ + δ

inf{‖x∗‖ : x∗ ∈ ∂f(x)} > r.(3.13)

Pick x1 ∈ X such that f(x1) < λ + min{δ, r}. By the Ekeland variational principle
there exists y1 ∈ X such that

(a) f(y1) ≤ f(x1),
(b) f(y1) < f(x) + min{δ, r}‖x− y1‖ for any x �= y1.

By (a), f(y1) < λ + δ; by (b), one has that

inf{‖x∗‖ : x∗ ∈ ∂f(y1)} ≤ r.

It follows from (3.13) that y1 ∈ Sλ, and so Sλ �= ∅.
(iv)⇒(vii). Suppose that (iv) holds. Let r ∈ (0, τ). Then there exists δ > 0 such

that for any x ∈ X \ Sλ with max{dist(x, Sλ), f(x)− λ} < δ,

inf{‖x∗‖ : x∗ ∈ ∂f(x)} > r.(3.14)
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We claim that D1,2(f, Sλ) ≥ r. To see this, suppose to the contrary that there exists
x1 ∈ X \ Sλ with

max{dist(x1, Sλ), f(x1)− λ} < δ

2

such that f(x1)−λ
dist(x1,Sλ) < r, that is,

f(x1) < λ + rdist(x1, Sλ).

Using the Ekeland variational principle, there exists y1 ∈ X such that
(c) f(y1) ≤ f(x1),
(d) ‖y1 − x1‖ < dist(x1, Sλ) <

δ
2 ,

(e) f(y1) < f(x) + r‖x− y1‖ for all x �= y1.
Note that (d) and (c) imply that y1 ∈ X \ Sλ and that max{dist(y1, Sλ), f(y1)−

λ} < δ; (e) entails that

inf{‖y∗‖ : y∗ ∈ ∂f(y1)} ≤ r.

This contradicts (3.14). Therefore D1,2(f, Sλ) ≥ r whenever r ∈ (0, τ), and (vii) is
seen to hold.

(vii)⇒(viii). Suppose that (vii) holds. Let r ∈ (0, τ). Then there exists δ > 0
such that for each x ∈ X \ Sλ with max{dist(x, Sλ), f(x)− λ} ≤ δ,

f(x)− λ

dist(x, Sλ)
> r.(3.15)

On the other hand, let z ∈ X with max{dist(z, Sλ), f(z) − λ} > δ. Let ε > 0. By
Lemma 3.1 there exists y ∈ X such that

max{dist(y, Sλ), f(y)− λ} = δ and
f(y)− λ

dist(y, Sλ)
≤ (1 + ε)

f(z)− λ

dist(z, Sλ)
.

It follows from (3.15) that rdist(z, Sλ) ≤ (1+ε)(f(z)−λ). Letting ε→ 0, rdist(z, Sλ) ≤
f(z) − λ. This and (3.15) imply that rdist(·, Sλ) ≤ f(·) − λ on X. Letting r → τ ,
(viii) is seen to hold.

(viii)⇒(i). Suppose that (viii) holds: for any x ∈ X \ Sλ

τdist(x, Sλ) ≤ f(x)− λ.

Let r ∈ (0, τ). Then there exists xλ ∈ Sλ such that

r‖x− xλ‖ < τdist(x, Sλ) ≤ f(x)− λ = f(x)− f(xλ).

It follows that for any x∗ ∈ ∂f(x),

〈x∗, xλ − x〉 ≤ f(xλ)− f(x) ≤ −r‖x− xλ‖,

and so ‖x∗‖ ≥ r. This shows that

inf{‖x∗‖ : x∗ ∈ ∂f(x)} ≥ r.

Letting r → τ , (i) is seen to hold. This completes the proof.
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Remarks. (i) Let µ := sup{f(x) : x ∈ dom(f)}, and for each α ∈ [λ, µ), let
fα(x) = max{f(x), α} (x ∈ X). Then fα is a proper lower semicontinuous convex
function, inf{fα(x) : x ∈ X} = α. By definition,

D1(f, Sα) = D1(fα, Sα), D2(f, Sα) = D2(fα, Sα), and D1,2(f, Sα) = D1,2(fα, Sα)

for any α ∈ [λ, µ). By Theorem 3.3, these lower derivatives coincide: all equal zero if
fα does not have weak sharp minima, and otherwise all equal the largest weak sharp
minima constant of fα.

(ii) If µ �=∞, then, for any α ∈ [µ, ∞), Sα = Sµ = dom(f) �= ∅ and f(x)−α =∞
for any x /∈ Sα. Thus, by definition, for any α ∈ [µ, ∞),

D1(f, Sα) = D2(f, Sα) = D1,2(f, Sα) =∞.(3.16)

(iii) By virtue of the preceding remarks (i) and (ii), we shall write D in place of
D1, D2, and D1,2.

The first assertion of following corollary is a consequence of remarks (i) and (ii),
while the second assertion is that of Proposition 3.2.

Corollary 3.4. For any α ∈ [λ, ∞), let

Γα := {γ ≥ 0 : γdist(x, Sα) ≤ [f(x)− α]+ for any x ∈ X}

and τα = sup{γ : γ ∈ Γα}. Then

D(f, Sα) = τα.

Consequently, τα ≤ τβ whenever β ≥ α ≥ λ.
Corollary 3.5. Let λ ≤ β <∞. Then limα→β+ D(f, Sα) = D(f, Sβ).
Proof . In view of (3.16), we need only consider the case when β ∈ [λ, µ). Then

by Proposition 3.2,

lim
α→β+

D(f, Sα) ≥ D(f, Sβ).(3.17)

If inequality in (3.17) is strict, then there exists τ ∈ R such that

lim
α→β+

D(f, , Sα) > τ > D(f, Sβ) (≥ 0).(3.18)

Take a sequence {αn} in (β, µ) with αn → β+. Then D(f, Sαn) > τ . By Corollary
3.4, this implies that τ ∈ Γαn and hence

τdist(x, Sαn) ≤ [f(x)− αn]+ ≤ [f(x)− β]+ ∀x ∈ X.

It follows that

τ lim inf
n→∞ dist(x, Sαn

) ≤ [f(x)− β]+ ∀x ∈ X.

By Theorem 2.1 (applying to [f(x)− β]+), one can show easily that

τdist(x, Sβ) ≤ [f(x)− β]+ ∀x ∈ X.

Therefore, τ ∈ Γβ and hence D(f, Sβ) ≥ τ , contradicting (3.18).
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Corollary 3.5 and Theorem 3.3 imply that f has weak sharp minimum if and only
if limα→λ+ D(f, Sα) > 0.

If X is assumed to be reflexive, one has the following characterization.
Theorem 3.6. Let X be a reflexive Banach space and Sλ �= ∅. Then f has global

weak sharp minima with constant τ > 0 if and only if for each x ∈ Sλ there exists
δx > 0 such that

inf{‖x∗‖ : x∗ ∈ ∂f(B(x, δx) \ Sλ)} ≥ τ.(3.19)

Proof . The necessity is a consequence of Theorem 3.3.
For any x ∈ dom(f)\Sλ, there exists x0 ∈ Sλ such that f(x0) = λ, (x0, x]∩Sλ =

∅, and ‖x−x0‖ = dist(x, Sλ) (because of the lower semicontinuity and convexity of f
and the reflexivity of X). It is clear that ‖y − x0‖ = dist(y, Sλ) for each y ∈ (x0, x].
We assert that

τdist(y, Sλ) ≤ f(y)− λ for each y ∈ (x0, x] ∩B

(
x0,

δx0

2

)
.(3.20)

Granting this, one sees that the convexity of f implies that for each y ∈ (x0, x] ∩
B(x0,

δx0

2 )

τ ≤ f(y)− λ

dist(y, Sλ)
=

f(y)− f(x0)

‖y − x0‖ ≤ f(x)− f(x0)

‖x− x0‖ =
f(x)− λ

dist(x, Sλ)

and so τdist(x, Sλ) ≤ f(x)− λ. Thus it remains to show that (3.20) holds. Suppose

to the contrary that there exists y0 ∈ (x0, x] ∩ B(x0,
δx0

2 ) and 0 < γ < τ such that
f(y0) < λ + γ‖y0 − x0‖. By the Ekeland variational principle, there exists v ∈ X
such that

(a) ‖v − y0‖ < ‖y0 − x0‖,
(b) f(v) < f(z) + γ‖z − v‖ for all z �= v.

Since dist(y0, Sλ) = ‖y0 − x0‖ < δx0

2 ,
(a) implies that v ∈ B(x0, δx0) \ Sλ. On the other hand,
(b) implies that inf{‖v∗‖ : v∗ ∈ ∂f(v)} ≤ γ < τ .

This contradicts (3.19).
If f is further assumed to be continuous, one can obtain another characterization.

For any α > λ, let Lα := {x ∈ X : f(x) = α}.
Theorem 3.7. Let X be a reflexive Banach space and f a continuous convex

function on X, and let τ > 0 be a constant. Then f has weak sharp minimum with
the constant τ if and only if there exists a sequence {λn} with λn → λ+ such that

lim sup
n→∞

inf{‖x∗‖ : x∗ ∈ ∂f(Lλn)} ≥ τ.(3.21)

Proof . Suppose that (3.21) holds for some sequence {λn} with λn → λ+. Then

τ lim inf
n→∞ dist(x, Sλn) ≤ f(x)− λ.(3.22)

Indeed, if this is not the case, then there exist τ0 ∈ (0, τ) and x0 ∈ X with f(x0) > λ
such that

τ0 lim inf
n→∞ dist(x0, Sλn) > f(x0)− λ.
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Since λn → λ+, we can assume without loss of generality that for all n, f(x0) > λn and

τ0dist(x0, Sλn
) > f(x0)− λn.(3.23)

By the convexity of f and the reflexivity of X, there exists xn ∈ X with f(xn) = λn

such that ‖x0 − xn‖ = dist(x0, Sλn); thus

int(B(x0, ‖x0 − xn‖))
⋂

Sλn = ∅.
By the separation theorem there exists z∗ ∈ X∗ with ‖z∗‖ = 1 such that

〈z∗, x0〉 − ‖x0 − xn‖ = 〈z∗, xn〉 = sup{〈z∗, x〉 : x ∈ Sλn
}.

Thus z∗ ∈ N(Sλn
, xn). Since f is continuous and λn > λ, N(Sλn

, xn) = cone(∂f(xn)).
Hence there exist r > 0 and y∗ ∈ ∂f(xn) such that y∗ = rz∗. Therefore,

‖y∗‖dist(x0, Sλn
) = ‖y∗‖‖x0 − xn‖ = 〈y∗, x0 − xn〉 ≤ f(x0)− f(xn) = f(x0)− λn.

This and (3.23) imply that ‖y∗‖ ≤ τ0, and so

inf{‖x∗‖ : x∗ ∈ ∂f(x) and x ∈ X with f(x) = λn} ≤ τ0,

contradicting (3.21). Therefore (3.22) holds, and it follows from Theorem 2.1 that f
has global weak sharp minima with the constant τ . The sufficiency part is proved.
The necessity part follows easily from Theorem 3.3.

From Theorem 3.3 and Theorem 3.7, one has the following result.
Corollary 3.8. Let X be a reflexive Banach space and f a continuous convex

function. Then limβ→α+ inf{‖x∗‖ : x∗ ∈ ∂f(Lβ)} exists for each α ∈ [λ, ∞).
Proof . Let τα be as in Corollary 3.4. Applying Theorem 3.7 to fα, one can easily

check that

lim sup
β→α+

inf{‖x∗‖ : x∗ ∈ ∂f(Lβ)} = τα.(3.24)

On the other hand, by Theorem 3.3 (also applied to fα), one has that τα ≤ inf{‖x∗‖ :
x∗ ∈ ∂f(X \ Sα)}. Hence

lim inf
β→α+

inf{‖x∗‖ : x∗ ∈ ∂f(Lβ)} ≥ τα.

It follows from (3.24) that

lim
β→α+

inf{‖x∗‖ : x∗ ∈ ∂f(Lβ)} = τα.

This completes the proof.
Remark . Adopting the approach of Theorem 3.1 in [15], one sees that some other

characterizations for f to have weak sharp minima can be given in terms of either
local versions or the directional derivatives.

Let x∗
i ∈ X∗ and ci ∈ R for i = 1, . . . , n. Define φ(x) = max{〈x∗

i , x〉 + ci : i =
1, . . . , n} for each x ∈ X. Then, φ is convex but is in general not Fréchet differentiable
on X. Moreover, φ has global weak sharp minima if (and only if) φ is bounded below.
Indeed, let I(x) = {i ∈ I : 〈x∗

i , x〉+ ci = φ(x)} for each x ∈ X, where I = {1, . . . , n}.
Note that 0 /∈ ∂φ(x) = co{x∗

i : i ∈ I(x)} for each x ∈ X with φ(x) > λ. It follows
from the fact that {I(x) : x ∈ X with φ(x) > λ} is a finite set that

inf{‖x∗‖ : x∗ ∈ ∂φ(x) and x ∈ X with φ(x) > λ} > 0.

This and Theorem 3.6 imply that φ has global weak sharp minima.
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4. Application to an abstract Hoffman error bound. In 1952, Hoffman
[8] established an error bound for a finite system of linear inequalities. Since then,
his pioneering work has been generalized in numerous ways. For details, readers may
see Pang’s survey paper [16]. Recently, Hu and Wang [10], Goberna, Lopez, and
Todorov [7], and Hu [9] considered an error bound for the following infinite system
of linear inequalities. Let U be an index set; B(U,Rn) denotes the set of bounded
functions a : U → Rn, that is, a(U) := {a(u) : u ∈ U} is bounded. For a ∈ B(U,Rn)
and b ∈ B(U,R1), define a system of linear inequalities by

a(u)Tx ≤ b(u) ∀u ∈ U,(4.1)

where x ∈ Rn and a(u)T denotes the transpose of a(u).
In this section, applying results in section 3, we will establish error bounds for

a more general class of linear inequality systems. Let X and Y be Banach spaces.
Let C ⊂ Y be a closed convex cone, which specifies a preorder “≤C” as follows: for
y1, y2 ∈ Y , y1 ≤C y2 if and only if y2 − y1 ∈ C. Let A : X → Y be a bounded linear
operator and b ∈ Y . Define an abstract linear inequality system (A,C, b) by

A(x) ≤C b,(4.2)

where x ∈ X. Let SC := {x ∈ X : A(x) ≤C b} be the solution set of the system. The
system (A,C, b) is said to have an error bound if there exists τ > 0 such that

dist(x, SC) ≤ τdist(Ax− b,−C) ∀x ∈ X.

In general such a constant τ does not necessarily exist even if X,Y are finite dimen-
sional. In the following we present two sufficient conditions to ensure that (A,C, b)
has an error bound.

If X = Rn, Y is the space B(U,R) of all bounded functions on the index set U
equipped with the supremum norm, and the cone CU := {y ∈ B(U,R) : y(u) ≥ 0
for all u ∈ U}, and if AU : Rn → B(U,R) is such that AU (x)(u) = a(u)Tx for each
x ∈ X, then it is easily seen that the system (AU , CU , b) defined by (4.2) is exactly
the system (4.1). Thus (4.2) may be viewed as a generalization of (4.1).

Let C+ denote the dual cone of C, that is,

C+ := {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 all x ∈ C}.

Definition 4.1. The system (A,C, b) is said to have property (P) if there exist
finitely many closed convex cones C1, . . . , Cm in Y satisfying the following conditions:

(i) C ⊂ Ci and intCi �= ∅ for each i ∈ I := {1, . . . ,m}.
(ii) 0 /∈ A∗(C+

i \ {0}) for each i ∈ I.
(iii) There exists α > 0 such that dist(x, SC) ≤ αmax{dist(x, SCi

) : i ∈ I} for
all x ∈ X, where SCi = {x ∈ X : A(x) ≤Ci b}.

Proposition 4.2. Let A : X → Rm be a bounded linear operator and b =
(r1, . . . , rm) ∈ Rm. Then (A,Rm

+ , b) has property (P).
Proof . Pick a∗1, . . . , a

∗
m ∈ X∗ such that A(x) = (〈a∗1, x〉, . . . , 〈a∗m, x〉) for each x ∈

X. Write SRm
+

for the set {x ∈ X : Ax ≤C b} with C = Rm
+ . Let J = {D ⊂ I : {a∗i :

i ∈ D} is linearly independent and 〈a∗i , x〉 = ri for some x ∈ SRm
+

and each i ∈ D}.
For each D ∈ J , let CD = {y ∈ Rm : the ith component of y is nonnegative for each
i ∈ D}; then Rm

+ ⊂ CD, int(CD) �= ∅, and C+
D = {y ∈ Rm

+ : the ith component of y is
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zero for each i ∈ I \D}. Therefore, for each D ∈ J ,

A∗(C+
D \ {0}) =

{∑
i∈D

tia
∗
i : ti ≥ 0 and

∑
i∈D

ti �= 0

}
.

Since {a∗i : i ∈ D} is linearly independent, it follows that 0 /∈ A∗(C+
D \ {0}). Let

X0 = {x ∈ X : 〈a∗i , x〉 = 0 for each i ∈ I}. Then X/X0 is finite dimensional.
For each x ∈ X, let [x] denote the equivalence class containing x in X/X0, that is,
[x] = x + X0. Define â∗i ∈ (X/X0)

∗ such that 〈âi∗, [x]〉 = 〈a∗i , x〉 for each x ∈ X
and i ∈ I. Then, for any D ⊂ I, {â∗i : i ∈ D} is linearly independent if and only if

{a∗i : i ∈ D} is linearly independent. Let ŜRm
+

= {[x] : 〈â∗i , [x]〉 ≤ ri for each i ∈ I}
and ŜCD

= {[x] : 〈â∗i , [x]〉 ≤ ri for each i ∈ D} for each D ∈ J . It is easy to verify

that ŜRm
+

= {[x] : x ∈ SRm
+
} and ŜCD

= {[x] : x ∈ SCD
} for each D ∈ J . Equip

X/X0 with the norm ‖| · ‖|: ‖|[x]‖| = inf{‖z‖ : z ∈ [x] = x + X0} for each x ∈ X.
Then for each x ∈ X and D ∈ J ,

dist([x], ŜRm
+
) = dist(x, SRm

+
) and dist([x], ŜCD

) = dist(x, SCD
).

Since X/X0 is finite dimensional, and by [3, Corollary 1.1], one has that for each x ∈ X
there exists D ∈ J such that dist([x], ŜRm

+
) = dist([x], ŜCD

), that is, dist(x, SRm
+
) =

dist(x, SCD
). It follows that dist(x, SRm

+
) ≤ max{dist(x, SCD

) : D ∈ J } for each

x ∈ X. This shows that (A,Rm
+ , b) has property (P).

Lemma 4.3. Let Y be a Banach space, C ⊂ Y a closed convex cone, and
B(C+) := {y∗ ∈ C+ : ‖y∗‖ = 1}. Let g(y) = dist(y,−C) for each y ∈ Y . Then the
following assertions hold.

(a) ∂g(y) ⊂ B(C+) for each y ∈ Y with g(y) > 0.
(b) g(y) = limk→∞〈y∗, y − hk〉 for each y∗ ∈ ∂g(y) and each sequence {hk} in
−C with g(y) = limk→∞ ‖y − hk‖.

Proof . Let y ∈ Y and y∗ ∈ ∂g(y). It is easy to verify that ‖y∗‖ ≤ 1. Let {hk} be
a sequence in −C with ‖y − hk‖ → dist(y,−C) = g(y). Then g(hk) = 0 and

〈y∗, hk − y〉 ≤ g(hk)− g(y) = −dist(y,−C).

Passing to the limits in

g(y) = dist(y,−C) ≤ 〈y∗, y − hk〉 ≤ ‖y − hk‖,
it follows that

g(y) = lim
k→∞

〈y∗, y − hk〉 = lim
k→∞

‖y − hk‖,(4.3)

proving (b). Moreover, if g(y) > 0, then (4.3) also entails that ‖y∗‖ ≥ 1 and so
‖y∗‖ = 1. It remains to show that y∗ ∈ C+. To do this, let h ∈ C and t > 0. Then

g(−th) = 0 and 〈y∗,−th− y〉 ≤ −g(y). Letting t→ +∞ in 〈y∗, h〉 ≥ g(y)−〈y∗,y〉
t , one

has that 〈y∗, h〉 ≥ 0 and so y∗ ∈ C+.
Theorem 4.4. Let A : X → Y be a bounded linear operator, C ⊂ Y a closed

convex cone, and b ∈ Y . Assume that the system (A,C, b) has property (P) and
SC = {x ∈ X : A(x) ≤C b} �= ∅. Then there exists τ ∈ (0, +∞) such that for each
x ∈ X,

dist(x, SC) ≤ τdist(A(x)− b,−C).
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Proof . Let C1, . . . , Cm be closed convex cones in Y which satisfy (i)–(iii) of
Definition 4.1. For each i ∈ I = {1, . . . ,m}, pick a ci ∈ int(Ci) and let Θi := {y∗ ∈
C+
i : 〈y∗, ci〉 = 1}; it is easy to verify that Θi is a bounded weak∗-closed (so weak∗-

compact) subset of Y ∗ and C+
i = {ty∗ : t ≥ 0 and y∗ ∈ Θi}. For each i ∈ I, let

Bi = {y∗ ∈ C+
i : ‖y∗‖ = 1}; then there exist 0 < αi < βi < +∞ such that

Bi ⊂ [αi, βi]Θi.(4.4)

To see (4.4) we use U to denote the unit ball of Y and take r > 0 such that ci+rU ⊂ Ci.
Then, for each y∗ ∈ Bi, one has that 〈y∗, ci − ru〉 ≥ 0 for each u ∈ U . It follows

from ‖y∗‖ = 1 that ‖ci‖ ≥ 〈y∗, ci〉 ≥ r. Since y∗

〈y∗,ci〉 ∈ Θi, (4.4) is seen to hold

with [αi, βi] = [r, ‖ci‖]. Since the conjugate operator A∗ is weak∗-weak∗ continuous,
A∗(Θi) is a weak∗-compact (hence norm-closed). By (ii) of Definition 4.1, one has
that 0 /∈ A∗(Θi). Therefore,

inf{‖x∗‖ : x∗ ∈ A∗(Θi)} > 0.

This and (4.4) imply that

τi := inf{‖x∗‖ : x∗ ∈ A∗(Bi)} > 0,(4.5)

valid for each i ∈ I. For each i ∈ I, define fi(x) := dist(Ax − b,−Ci) and gi(y) :=
dist(y,−Ci) for each x ∈ X and y ∈ Y . Note that fi and gi are continuous convex
functions, fi(x) = gi(Ax−b), SCi = {x ∈ X : fi(x) ≤ 0}, and 0 = inf{fi(x) : x ∈ X}.
Since ∂fi(x) = A∗(∂gi(Ax− b)), it follows from Lemma 4.3 that ∂fi(x) ⊂ A∗(Bi) for
each x ∈ X with fi(x) > 0. This and (4.5) imply that inf{‖x∗‖ : x∗ ∈ ∂fi(x)} ≥ τi
for each x ∈ X with fi(x) > 0. It follows from Theorem 3.3 that

dist(x, SCi) ≤
1

τi
fi(x) ∀x ∈ X.

By (iii) of Definition 4.1, one has that for each x ∈ X,

dist(x, SC) ≤ τ max{fi(x) : i ∈ I},

where τ = max{ α
τi

: i ∈ I}. Since C ⊂ Ci,

fi(x) = dist(Ax− b,−Ci) ≤ dist(Ax− b,−C).

Hence,

dist(x, SC) ≤ τdist(Ax− b,−C) ∀x ∈ X.

This completes the proof.
If X, Y , A, and cone C are, respectively, taken as Rn, B(U,R), AU , and CU in

the beginning of this section, then dist(AUx − b,−CU ) = ‖(AUx − b)+‖∞. In view
of this and Proposition 4.2, we see that Theorem 4.4 is a generalization of Hoffman’s
error bound result.

Theorem 4.5. Let Im(A) := {Ax : x ∈ X} be closed and suppose that C + b ⊂
Im(A). Then there exists τ ∈ [0, +∞) such that for each x ∈ X,

dist(x, SC) ≤ τdist(Ax− b,−C).



1884 KUNG FU NG AND XI YIN ZHENG

Proof . Let f(x) = dist(Ax− b,−C) and g(x) = dist(y,−C) for each x ∈ X and
y ∈ Y . Then ∂f(x) = A∗(∂g(Ax− b)) for each x ∈ X. Let

τ := sup{dist(0, A−1(y)) : y ∈ Im(A) and ‖y‖ = 1}.
It follows from the closedness of Im(A) and the open mapping theorem that τ < +∞.
For each x ∈ X with f(x) > 0 and x∗ ∈ ∂f(x) there exists y∗ ∈ ∂g(Ax− b) such that
x∗ = A∗(y∗). Pick a sequence {hk} in −C such that

‖Ax− b− hk‖ → dist(Ax− b,−C) = f(x).(4.6)

Since C + b ⊂ Im(A), Ax− b−hk ∈ Im(A) for each k. By the definition of τ , for each
k there exists xk ∈ X such that Axk = Ax−b−hk and ‖xk‖ ≤ (1+ 1

k )τ‖Ax−b−hk‖.
It follows from y∗ ∈ ∂g(Ax− b) that

f(x) = g(Ax− b) ≤ 〈y∗, Ax− b− hk〉 = 〈y∗, Axk〉 = 〈A∗(y∗), xk〉 = 〈x∗, xk〉
≤ ‖x∗‖‖xk‖ ≤ ‖x∗‖

(
1 +

1

k

)
τ‖Ax− b− hk‖.

This and (4.6) imply that ‖x∗‖ ≥ 1
τ . This shows that inf{‖x∗‖ : x∗ ∈ ∂f(x)} ≥ 1

τ for
each x ∈ X with f(x) > 0. Since 0 = inf{f(x) : x ∈ X} and SC = {x ∈ X : f(x) ≤
0}, it follows from Theorem 3.3 that for each x ∈ X,

dist(x, SC) ≤ τf(x) = τdist(Ax− b,−C).
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CONTROLLABILITY OF THE SEMILINEAR PARABOLIC
EQUATION GOVERNED BY A MULTIPLICATIVE CONTROL
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A. Y. KHAPALOV†

SIAM J. CONTROL OPTIM. c© 2003 Society for Industrial and Applied Mathematics
Vol. 41, No. 6, pp. 1886–1900

Abstract. In this paper we are concerned with the global “nonnegative” approximate control-
lability property of a rather general semilinear heat equation with superlinear term, governed in a
bounded domain Ω ⊂ Rn by a multiplicative (bilinear) control in the reaction term like vu(x, t),
where v is the control. We show that any nonnegative target state in L2(Ω) can approximately be
reached from any nonnegative, nonzero initial state by applying at most three static bilinear L∞(Ω)-
controls subsequently in time. This result is further applied to discuss the controllability properties
of the nonhomogeneous version of this problem with bilinear term like v(u(x, t) − θ(x)), where θ
is given. Our approach is based on an asymptotic technique allowing us to distinguish and make
use of the pure diffusion and/or pure reaction parts of the dynamics of the system at hand, while
suppressing the effect of a (general) nonlinear term.

Key words. semilinear parabolic equation, approximate controllability, bilinear control
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1. Introduction. We consider the following Dirichlet boundary problem, gov-
erned in a bounded domain Ω ⊂ Rn by a multiplicative (bilinear) control v ∈ L∞(QT )
in the reaction term:

(S)
∂u

∂t
= ∆u + vu − f(x, t, u,∇u) in QT = Ω× (0, T ),

u = 0 in ΣT = ∂Ω× (0, T ), u |t=0 = u0 ∈ L2(Ω),

assuming that f is the given function satisfying the following conditions:
• f(x, t, q, p) is Lebesgue’s measurable in x, t, q, p, is continuous in q, p for almost
all (x, t) ∈ QT ;
• there exists a nonnegative function ψ in L1+n/(n+4)(Ω), β > 0, and

r1 ∈
[
0, 1 +

4

n

)
, r2 ∈

[
0, 1 +

2

n+ 2

)
(1.1a)

such that

|f(x, t, q, p)| ≤ ψ(x, t)+β|q|r1+β‖p‖r2Rn a.e. in QT for q ∈ R, p ∈ Rn;
(1.1b)
• there exist ρ > 0 and ν > 0 such that∫

Ω

f(x, t, φ,∇φ)φdx ≥ (ν−1)
∫

Ω

‖∇φ‖2Rndx−ρ

∫
Ω

(1+φ2)dx ∀φ ∈ H1
0 (Ω).

(1.1c)

∗Received by the editors August 31, 2001; accepted for publication (in revised form) September
23, 2002; published electronically February 27, 2003. This work was supported in part by NSF grant
DMS-0204037.

http://www.siam.org/journals/sicon/41-6/39460.html
†Department of Pure and Applied Mathematics, Washington State University, Pullman, WA

99164-3113 (khapala@wsu.edu).

1886



BILINEAR CONTROLLABILITY FOR PARABOLIC EQUATION 1887

For n = 1 a simple example of a function f satisfying conditions (1.1a)–(1.1c) is
f(u) = u3.

Here and below we use the standard notations for Sobolev spaces such asH1,0
0 (QT )

= {φ|φ, φxi ∈ L2(QT ), i = 1, . . . , n, φ|ΣT
= 0} and H1

0 (Ω) = {φ|φ, φxi ∈ L2(Ω),
i = 1, . . . , n, φ|∂Ω = 0}.

We refer, e.g., to [19, p. 466], where it was shown that system (S), (1.1a)–(1.1c)
admits at least one generalized solution in C([0, T ]; L2(Ω))

⋂
H1,0

0 (QT )
⋂

L2+4/n(QT ),
while its uniqueness is not guaranteed.

The multiplicative (bilinear) controls are essential in modeling reaction-diffusion-
convection processes controlled by means of so-called catalysts that can accelerate or
decelerate the reaction at hand, e.g., various chemical or biological chain reactions. In
the context of heat-transfer, v is proportional to the heat-transfer coefficient, which
depends on the substance at hand, its surface area, and the environment. If the heat-
transfer (or mass-transfer in the case of the diffusion process) involves fluids (air), v
also depends on the speed of the fluid. Alternatively, the surface area can be changed
when the substance at hand is a polymer (e.g., a planar array of gel fibers can be
controlled to maximize the surface area exposed to the surrounding fluid). We also
refer to the so-called extended surface applications (fins, pins, studs, etc.) allowing
one to increase or decrease the heat-exchange with an ambient fluid.

In this paper we intend to analyze the global controllability properties of the
homogeneous bilinear system (S) and its nonhomogeneous version (NHS), given in
the next section.

2. Main results. Let us remind the reader that it is said that the system at
hand is globally approximately controllable in the given (linear phase) space H at
time T > 0 if, by selecting a suitable available control, it can be steered in H from
any given initial state into any desirable neighborhood of any desirable target state
at time T .

It is immediate that, in general, system (S) is not approximately controllable in
any (reasonable) linear space. This can be illustrated by a quick analysis of the linear
truncated version of (S) with f = 0 (as in (3.2) below). Indeed, in this case the zero-
state is the fixed point of the solution mapping, regardless of the choice of control v.
In other words, the truncated linear version of (S) cannot be steered anywhere from
the zero-state by applying any bilinear control. Furthermore, due to the maximum
principle, if, e.g., the initial state u0(x) is nonnegative, then the maximum principle
implies that the corresponding solution u(x, t) to the truncated linear version of (S)
must remain nonnegative for all t > 0, regardless of the choice of v. Hence, one is
unable to reach any of the “negative” target states from a nonnegative initial state.

However, we showed in [15] that in the linear case, i.e., with f = 0, the one-
dimensional (1-D) version of (S) can be steered in L2(0, 1) from any nonzero, non-
negative initial state u0 into any desirable neighborhood of any nonnegative target
state ud at a time T > 0, which depends on the choice of (u0, ud) and the desirable
precision of steering, by means of static controls v = v(x), v ∈ L∞(0, 1) only. By
making use of at most three static bilinear controls, applied subsequently in time,
this “nonnegative controllability” result was further extended in [15] to prove the
nonnegative controllability of the 1-D semilinear parabolic equation like (S), (1.1a)–
(1.1c), admitting multiple solutions, in the case when n = 1, ψ = 0, ν = 1, and ρ = 0
in the sense of the following definition.

Definition 2.1 (see [15]). We will say that system (S), (1.1a)–(1.1c), generally
admitting multiple solutions, is nonnegatively globally approximately controllable in
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L2(Ω) if for every ε > 0 and nonnegative u0, ud ∈ L2(Ω), u0 �= 0 there exist a T =
T (ε, u0, ud) and a bilinear control v ∈ L∞(QT ) such that for all (i.e., possibly multiple)
solutions of (S), (1.1a)–(1.1c), corresponding to the latter,

‖u(·, T )− ud‖L2(Ω) ≤ ε.

The central idea of the method in [15] is to select the bilinear control v = v(x) in
such a way that the target state (or its “close” approximation) becomes colinear to the
first (nonnegative) eigenfunction for the truncated linear version of (S), which is then
approached by the system at hand as t increases. Thus, on the one hand, this method
allows one to deal with “practical” relatively small and simple static controls, but, on
the other hand, the control time can be relatively large. Moreover, such an approach
requires the first eigenvalues to be always simple—hence one needs to assume that
n = 1.

In the semilinear case another principal limitation of the method of [15] is the
assumption that the nonlinear term must be superlinear near the origin as well (i.e.,
in particular, it must vanish at the origin, which is an equilibrium in this case). In
this way it can be assured that the system at hand behaves “almost” like a linear one
near the origin, which enabled us to make use of the bilinear controllability properties
of the latter. However, this limitation did not allow us to extend the methods of [15]
to a nonhomogeneous bilinear system like

(NHS)
∂z

∂t
= ∆z + v(z − θ(x))− f(x, t, z,∇z) in QT ,

z = 0 in ΣT , z |t=0 = z0 ∈ L2(Ω),

where f does not necessarily vanish at the origin and θ �= 0 is given.
In the context of heat-transfer the term v(x, t)(z(x, t)−θ(x)) in (NHS) can model

the heat-exchange at point x at time t of the given substance with the surrounding
medium of temperature θ(x) according to Newton’s law (the classical examples here
are the heat equations for a rod or a plate [23]).

In this paper we intend to prove the same, as in [15], nonnegative controllability
result, but now (a) in any space dimension and (b) within an arbitrarily small time-
interval (0, T ) given in advance. We employ a different qualitative approach which
allows us to eliminate the assumptions of [15] on the one dimensionality of the system
at hand and (c) to get rid of the superlinearity assumption on the nonlinear term
near the origin. Our central idea below is to view the evolution of system (S) as an
interaction of the following three dynamics associated with the three terms in the
right-hand side of (S):

• Pure diffusion dynamics—when v = 0 and f = 0;
• Pure reaction dynamics—caused by the reaction term only, namely, we fur-
ther associate it with the system

∂y

∂t
= vy in QT ,(2.1)

y |t=0 = y0.

• Nonlinear “disturbance”—the dynamics caused by the nonlinear term of class
(1.1a)–(1.1c).
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Accordingly, our strategy to achieve the desirable controllability result will be to
try to select the bilinear control in such a way that the corresponding trajectories of
(S) can be approximated by those associated with the pure diffusion and/or the pure
reaction like in (2.1), while the effect of nonlinearity is to be suppressed. The latter
appears to be unavoidable when dealing with a general class of highly nonlinear terms
like in (1.1a)–(1.1c).

Our main results are as follows.
Theorem 2.1. Let T > 0 be given and the pair of the initial and target states

u0 ∈ H1
0 (Ω) and ud ∈ L2(Ω) be such that

ud
u0
∈ H2(Ω), ∇

(
ud
u0

)
∈ [L∞(Ω)]n, ∆

(
ud
u0

)
∈ L∞(Ω),(2.2a)

and

0 < c1 ≤ ud(x)

u0(x)
≤ c2 < 1 a.e. in Ω,(2.2b)

where c1 and c2 are some positive constants. Then for every ε > 0 there is a T∗ ∈
(0, T ) such that for all, i.e., possibly multiple, solutions to (S), (1.1a)–(1.1c) generated
by control

v(x) =
1

T∗
ln

(
ud(x)

u0(x)

)
,(2.3)

we have the same uniform estimate

‖u(·, T∗)− ud‖L2(Ω) ≤ ε.(2.4)

Theorem 2.1 can be reformulated as follows.
Theorem 2.2. Given T > 0, let v∗(x) be any function such that

v∗ ∈ L∞(Ω)
⋂

H2(Ω), ∇v∗ ∈ [L∞(Ω)]n, ∆v∗ ∈ L∞(Ω), v∗(x) ≤ L < 0 a.e. in Ω,

where L is some negative constant. Then for any u0 ∈ H1
0 (Ω) and every ε > 0 there

is a T∗ ∈ (0, T ) such that for all, i.e., possibly multiple, solutions to (S), (1.1a)–(1.1c)
with control

v(x) =
1

T∗
v∗(x),

we have the same estimate

‖u(·, T∗)− ev∗(·)u0‖L2(Ω) ≤ ε.

Theorems 2.1 and 2.2 provide the basis for the following nonnegative controlla-
bility result within any time-interval (0, T ) given in advance.

Theorem 2.3 (nonnegative controllability of (S)). Given T > 0, assume that
the boundary ∂Ω of domain Ω is of class C3+[n/2] (where [n/2] denotes the largest
nonnegative integer which does not exceed n/2). Then for every ε > 0 and nonnegative
u0, ud ∈ L2(Ω), u0 �= 0, there exists a T∗ = T∗(ε, u0, ud) ∈ (0, T ) and a bilinear control
v ∈ L∞(QT∗) such that for all (i.e., possibly multiple) solutions of (S), (1.1a)–(1.1c),
corresponding to the latter, (2.4) holds. Suitable v can be selected as a combination of
at most three static controls applied subsequently in time.
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An immediate consequence of Theorem 2.3 for the nonhomogeneous system (NHS)
is as follows.

Theorem 2.4 (nonhomogeneous case (NHS)). Given T > 0, let θ ∈ H2(Ω)⋂
H1

0 (Ω) and the boundary ∂Ω of domain Ω be of class C3+[n/2]. For every ε > 0
and z0, zd ∈ L2(Ω), z0 �= θ, z0(x) ≥ θ(x), zd(x) ≥ θ(x), a.e. in Ω, there exist a
T∗ = T∗(ε, z0, zd) ∈ (0, T ) and a bilinear control v ∈ L∞(QT∗) such that for all (i.e.,
possibly multiple) solutions of (NHS), (1.1a)–(1.1c), corresponding to the latter, (2.4)
holds with z0, zd in place of u0, ud. Again, suitable v can be selected as a combination
of at most three static controls applied subsequently in time.

Indeed, to prove Theorem 2.4 it is sufficient to notice that the substitution w =
z − θ transforms (NHS) into

∂w

∂t
= ∆w + vw − f∗(x, t, w,∇w) in QT ,(2.5)

w = 0 in ΣT , w |t=0 = z0 − θ ∈ L2(Ω),

where f∗(x, t, w,∇w) = −∆θ+f(x, t, w+θ,∇w+θ). Making use of Young’s inequality
and the inequality (a + b)γ ≤ C(aγ + bγ) (a, b, γ ≥ 0, C = C(γ) > 0), one can check
that conditions (1.1a)–(1.1c) hold for this function as well (in general, with a different
set of parameters β, ν, ρ). Then Theorem 2.4 follows immediately from Theorem 2.3
applied to (2.5).

Remark 2.1 (some references on bilinear controllability).
• In the pioneering work [4] by Ball, Mardsen, and Slemrod the global approxi-
mate controllability of the rod equation utt+uxxxx+k(t)uxx = 0 with hinged
ends and of the wave equation utt − uxx + k(t)u = 0 with Dirichlet bound-
ary conditions, where k is control (the axial load), was shown by making use
of the nonharmonic Fourier series approach under the additional (nontradi-
tional) assumption that all the modes in the initial data are active. We also
refer to [18] exploring the ideas of [4] in the context of simultaneous control
of the rod equation and Schrödinger equation.

• In [14] the global approximate controllability of a semilinear heat equation
like (S), (1.1a)–(1.1c) was established at any positive time T > 0 (fixed in
advance) in the case when a pair of controls govern the system at hand: (a)
the traditional internal either locally distributed or lumped control and (b) a
piecewise constant bilinear control v. (Recall along these lines that without
the latter one does not have the global approximate controllability for this
class of PDEs [6], [12], [8].) In one space dimension the method of [14] was
further extended in [15] to the case dealing with bilinear controls only, as we
discussed in detail in the beginning of this section.
• The works [9] and [16] deal with a different approach to the bilinear controlla-
bility, which is as follows. It is known that a rather general class of semilinear
parabolic equations with globally Lipschitz terms is approximately control-
lable by the traditional additive locally distributive controls (see, e.g., [6], [12],
[10], [7], [8] and the references therein), while a system like (S), (1.1a)–(1.1c)
is globally approximately controllable by the additive static controls with sup-
port everywhere in Ω [13]. Denote, e.g., in the latter case, the additive static
control by α(x). Then a suitable bilinear control for (S) can be sought as some
“well-posed modification” of the expression v(x, t) = α(x)/u(x, t) in the ho-
mogeneous case and of the expression v(x, t) = α(x)/(z(x, t) − θ(x)) in the
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nonhomogeneous case (NHS). In this way the “original” additive static con-
trol α(x) is “transformed,” respectively, into the homogeneous bilinear term
v(x, t)u(x, t) or into its nonhomogeneous version v(x, t)(z(x, t) − θ). Note,
however, that this approach deals with essentially more “complex” controls
(e.g., in terms of numerical implementation), namely, as functions of both
x and t. In the paper [9] it was applied in the context of the nonnegative
approximate controllability and in [16] it was used to investigate the exact
null-controllability of a nonhomogeneous bilinear problem.
• Aside from bilinear controllability, a very close issue is stabilization by means
of bilinear controls. We can point out only a very limited number of publica-
tions in this area in terms of PDEs; see [2], [3], [22]. Regarding the issues of
optimal control for bilinear systems, we refer to [20], [5], and the references
therein.
• An extensive and thorough bibliography on controllability on bilinearODEs is
available; see, e.g., the survey in [1]. On the issue of the qualitative approach
in the context of controllability for bilinear ODEs, we refer to [17].

The remainder of this paper is organized as follows. In section 3 we introduce
several auxiliary technical estimates, proven in Appendices A and B. In section 4 we
prove Theorems 2.1 and 2.2, while Theorem 2.3 is proven in section 5.

3. Auxiliary estimates. In this section we formulate three lemmas containing
several estimates, which are heavily used in the proofs of our main results.

Denote B(0, T ) = C([0, T ]; L2(Ω))
⋂

H1,0
0 (QT ) and

‖φ‖B(0,T ) =

(
max
t∈[0,T ]

‖φ(·, t)‖2L2(Ω) + 2ν

∫ T

0

∫
Ω

‖∇φ‖2Rndxds

)1/2

,

where ν > 0 is from (1.1c).
Lemma 3.1. Given T > 0 and v ∈ L∞(Ω), any solution to system (S), (1.1a)–

(1.1c) (if there are multiple solutions), satisfies the following two estimates:

‖u‖B(0,T ), ‖u‖L2+4/n(QT ) ≤ Ce(α+ρ)T
(
‖u0‖2L2(Ω) + 2ρT

)1/2

,(3.1)

where α = ‖v‖L∞(Ω) and C is a generic positive constant (it does not depend on v).

Consider now the truncated version of system (S) as follows:

ht = ∆h+ vh in QT ,(3.2)

h = 0 in ΣT , h |t=0 = h0 ∈ L2(Ω).

Lemma 3.2. Given T > 0, v ∈ L∞(Ω), δ ∈ (0, 1/4), we have the following two
estimates for the difference ξ = u − h between any corresponding solution u to (S),
(1.1a)–(1.1c) (if there are multiple ones), and the unique corresponding solution to
(3.2):

‖ξ‖B(0,T ), ‖ξ‖L2+4/n(QT ) ≤ Ce2
√

2αT

{
‖u0 − h0‖2L2(Ω)

+
1√
δ
T

n+4
2(n+2)

(1− r1n

n+4 )‖u‖r1L2+4/n(QT )

+ T
n+4

2(n+2)
(1− (n+2)r2

(n+4)
)‖∇u‖r2[L2(QT )]n + ‖ψ‖L1+n/(n+4)(QT )

}
,

(3.3)
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where the (generic) constant C does not depend on α = ‖v‖L∞(Ω).
Lemmas 3.1 and 3.2 are proven in Appendix A.
Next we have the following result, proven in Appendix B, based on Lemma 3.1.
Lemma 3.3. Given T > 0, the following estimate holds for solutions to (3.2) with

h0 ∈ H1
0 (Ω), v ∈ L∞(Ω)

⋂
H2(Ω), ∇v ∈ [L∞(Ω)]n, ∆v ∈ L∞(Ω), v(x) ≤ 0:∫ ∫

QT

(∆h)2dxdt +
1

2

∫
Ω

‖∇h(x, T )‖2Rndx

≤ 1
2

∫
Ω

‖∇h0‖2Rndx+
1

2
‖∆v‖L∞(Ω)TC2e2αT ‖h0‖2L2(Ω),

(3.4)

where C is from Lemma 3.1 and α = ‖v‖L∞(Ω).

4. Proofs of Theorems 2.1 and 2.2.

4.1. Proof of Theorem 2.1: The case f = 0. In this subsection we consider
the truncated version (3.2) of system (S).

Step 1. Consider h0 and hd satisfying the assumptions of Theorem 2.1 in place of
u0 and ud.

Denote

v∗(x) = ln
(
hd(x)

h0(x)

)
.(4.1)

Then

hd(x) = ev∗(x)h0(x).(4.2)

Remark 4.1. Note that, since (2.1) is, in fact, a linear ODE in L2(Ω), in view of
(4.1) and (4.2), its solution y satisfies the following property:

y(x, 1/s) = hd(x) when y0 = h0, v(x) = sv∗(x)(4.3)

for any number s > 0.
Step 2. To prove Theorem 2.1, we need to show that hd can be approximated by

a suitable solution to (3.2). To this end we intend to study the difference between the
solutions to (3.2) and to (2.1) on (0, T ).

Consider any v ∈ L∞(Ω) and denote g = h− y. Then, assuming that y0 = h0 in
(2.1) and (3.2), we obtain

gt = vg +∆h in QT ,

g|t=0 = 0.

Thus

g(x, t) =

∫ t

0

ev(x)(t−τ)∆h(x, τ)dτ, t ∈ [0, T ].(4.4)

Let now v be of the form as in (4.3), namely,

v(x) = sv∗(x),
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where we now treat the positive number s as a parameter (its value will be selected
later in Step 4).

Then, since (see (2.2b))

ln c1 ≤ v∗ ≤ ln c2 < 0,

formula (4.4) yields

‖g(·, t)‖2L2(Ω) ≤
(
e2st ln c2 − 1

s ln c2

)
‖∆h‖2L2(Qt)

, Qt = Ω× (0, t), t ∈ [0, T ].(4.5)

Step 3. Making use of the estimate (3.4) from Lemma 3.3 applied with v = sv∗,
we derive from (4.5) that

‖g(·, t)‖2L2(Ω) ≤
(
e2st ln c2 − 1

s ln c2

)

×
(
1

2

∫
Ω

‖∇h0‖2Rndx +
1

2
s‖∆v∗‖L∞(Ω)tC

2e2αst‖h0‖2L2(Ω)

)
,

(4.6)

where α = ‖v∗‖L∞(Ω).

Step 4. Select now s > 0 and T∗ ∈ (0, T ) such that

T∗ =
1

s
or T∗s = 1.(4.7)

Then we obtain from (4.6), (4.7), and the property (4.3) that

‖g(·, T∗)‖L2(Ω) = ‖h(·, T∗)− y(·, T∗)‖L2(Ω) = ‖h(·, T∗)− hd‖L2(Ω) → 0(4.8)

as s→∞ (or T∗ → 0+), which ensures (2.4) for any given in advance ε for some pair
(s, T∗) as in (4.7). This ends the proof of Theorem 2.1 when f = 0.

4.2. Proof of Theorem 2.1: The general case. It follows from the above
argument by making use of Lemma 3.2, in which we evaluated the difference between
the (possible multiple) solutions u to (S) and h to (3.2) in a uniform way as given in
(3.3). It follows from (3.3) that under condition (4.7) and with h0 = u0,

‖u(·, T∗)− h(·, T∗)‖L2(Ω) → 0

as s = 1/T∗ →∞, which ensures (2.4) whenever it holds for h as in (4.8). This ends
the proof of Theorem 2.1 in the general case.

4.3. Proof of Theorem 2.2. It is immediate from the proof of Theorem 2.1,
since the assumptions on h0 and hd in the latter are used specifically to ensure the
properties of v∗ required in Theorem 2.2.

5. Proof of Theorem 2.3.

5.1. Proof of Theorem 2.3: The case f = 0. Again we study first the
truncated problem (3.2).

Consider any pair of initial and target states h0, hd ∈ L2(Ω), which are nonneg-
ative (almost everywhere) in Ω and h0 �= 0. Since we study the issue of approximate
controllability and because the set of infinitely differentiable functions with compact
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support (denoted by C∞
0 (Ω)) is dense in L2(Ω), without loss of generality we can

further assume that

hd ∈ C∞
0 (Ω), hd �= 0, hd(x) ≥ 0 ∀x ∈ Ω.(5.1)

We plan to approximate hd by using three static bilinear controls, applied subse-
quently in time:

(a) First, we will use v = 0 on some time-interval (0, t1) to steer our system to a
state h(·, t1), which is strictly positive in the interior of Ω.

(b) Second, we will use a relatively “large” positive constant control v on some
time-interval (t1, t2) to steer our system to a state which is “larger” than the given
hd in (5.1).

(c) Finally, we will use a static control as described in Theorem 2.1 on some
time-interval (t2, t3) to steer our system further to a desirable neighborhood of hd.

Step 1. Pick any t1 > 0 and apply in (3.2) the zero bilinear control v = 0 on
(0, t1). Then, at time t1 system (3.2) reaches the state

h(·, t1) ∈ H1
0 (Ω)

⋂
H3+[n/2](Ω) ⊂ C2(Ω̄).(5.2)

(We refer, e.g., to [21] for the corresponding regularity and embedding results.)
Note also that, due to the smoothing effect, the solution h to (3.2) is classical in

Ω̄× [β, t1], for any β ∈ (0, t1] [21]. Furthermore, due to the strong maximum principle
(see, e.g., [11]),

h(x, t1) > 0 in the interior of Ω, h(x, t1)|∂Ω = 0.(5.3)

Step 2. Consider any t2 > t1. On the interval (t1, t2) we apply a positive constant
control v(x) = v (its value will be chosen later). Then for the corresponding solution
h to (3.2) on (t1, t2) we have

h(x, t2) = ev(t2−t1)
∞∑
k=1

eλk(t2−t1)
(∫

Ω

h(r, t1)ωk(r)dr

)
ωk(x),(5.4)

where λk (λk → −∞ as k → ∞) and ωk(x) (‖ωk‖L2(Ω) = 1), k = 1, . . . , are, re-
spectively, the eigenvalues and eigenfunctions associated with the spectral problem
∆ω = λω, ω|∂Ω = 0 in H1

0 (Ω).
Consider any number γ > 1 (its value will be chosen more precisely a little bit

later) and select a constant (in t and x) control v > 0 such that

ev(t2−t1) = γ, namely, v =
ln γ

t2 − t1
.(5.5a)

(Thus, v depends on γ and t2 − t1.)
Then, it follows from (5.4) that with this control

h(·, t2)→ γh(·, t1) as t2 → t1 + in C(Ω̄),(5.5b)

as implied by the estimate

‖h(·, t2)− γh(·, t1)‖C(Ω̄) ≤ C‖h(·, t2)− γh(·, t1)‖H1+[n/2](Ω)

≤ C

( ∞∑
k=1

λ
1+[n/2]
k

(
eλk(t2−t1) − 1

)2
(∫

Ω

h(r, t1)ωk(r)dr

)2
)1/2

,
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where C > 0 is a (generic) constant associated with the continuous embedding
H1+[n/2](Ω) ⊂ C(Ω̄) (see, e.g., [21]).

Select now the value of γ > 1 in such a way that

γh(x, t1) ≥ hd(x) + 1 ∀x ∈ supphd,
which is possible due to (5.3) and (5.1), where supp hd stands for the set of all x
where hd(x) �= 0 (i.e., where hd(x) > 0).

For this γ and any given σ ∈ (0, 1) (to be selected more precisely later) select any
positive number t2 > t1, t2 = t2(γ, σ) and v as in (5.5a) such that

γh(x, t1) + σ/2 ≥ h(x, t2) ≥ γh(x, t1)− σ/2 ≥ −σ/2 ∀x ∈ Ω,(5.6a)

h(x, t2) ≥ hd(x) ∀x ∈ supp hd.(5.6b)

This is possible due to (5.1), (5.3), and (5.5b).
Step 3. We will now apply Theorem 2.2 to the system (3.2) on some interval

(t2, t3) with the initial state h(x, t2) and the static control

v(x) =
1

t3 − t2
vσ(x),

where

vσ = ln

(
hd + σ2/2

h(·, t2) + σ

)
∈ C2(Ω̄).

(Note that the additional “regularizing” terms σ2/2 and σ ensure that the argument
of the logarithmic function in the above is positive everywhere in Ω̄.)

Since, in view of (5.6a)–(5.6b),

σ2/2

maxx∈Ω̄ h(x, t2) + σ
≤ hd(x) + σ2/2

h(x, t2) + σ

≤
{

h(x,t2)+σ−σ+σ2/2
h(x,t2)+σ

≤ 1− σ−σ2/2
maxx∈Ω̄ h(x,t2)+σ

for ∈ supp hd,
σ2/2

−σ/2+σ = σ for x ∈ Ω\ supp hd,

we have

ln

(
σ2/2

maxx∈Ω̄ h(x, t2) + σ

)
< vσ(x)

≤ ln
(
max

{
s, 1− σ − σ2/2

maxx∈Ω̄ h(x, t2) + σ

})
< 0 in Ω.

According to Theorem 2.2, this v will steer (3.2) in L2(Ω) at some time t3 from
h(·, t2) ∈ H1

0 (Ω) as close as we wish to a state

evσ(x)h(x, t2) = h(x, t2)

(
hd(x) + σ2/2

h(x, t2) + σ

)
,(5.7)

provided that t3 is sufficiently close to t2 from the right. For example, there is a
t3 > t2 (t3 = t3(σ)) such that∥∥∥∥h(·, t3)− h(·, t2)

(
hd + σ2/2

h(·, t2) + σ

)∥∥∥∥
L2(Ω)

≤ σ.(5.8)
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To finish the proof of Theorem 2.3 for the case f = 0, it remains to notice that,
in view of (5.6a)–(5.6b), the expression in (5.7) converges in L2(Ω) to the desirable
target state hd as σ → 0+.

Indeed, we have∣∣∣∣h(x, t2)
(
hd(x) + σ2/2

h(x, t2) + σ

)
− hd(x)

∣∣∣∣ =
∣∣∣∣h(x, t2)σ2/2− hd(x)σ

h(x, t2) + σ

∣∣∣∣
≤ σ2/2

h(x, t2)

h(x, t2) + σ
+ σ

hd(x)

h(x, t2) + σ
≤ σ2/2 + σ

(5.9)

for all x ∈ supp hd, where, in view of (5.6b), h(x, t2) ≥ hd(x) > 0 and hence

0 ≤ h(x, t2)

h(x, t2) + σ
≤ 1,(5.10)

and

0 ≤ hd(x)

h(x, t2) + σ
≤ h(x, t2) + σ

h(x, t2) + σ
= 1.(5.11)

In turn, since hd vanishes elsewhere, for x ∈ Ω\ supp hd we have

h(x, t2)

(
hd(x) + σ2/2

h(x, t2) + σ

)
− hd(x) = h(x, t2)

(
σ2/2

h(x, t2) + σ

)
,(5.12)

where, due to (5.6a),∣∣∣∣h(x, t2)
(

σ2/2

h(x, t2) + σ

)∣∣∣∣ ≤
∣∣∣∣h(x, t2)

(
σ2/2

−σ/2 + σ

)∣∣∣∣ ≤ (γ‖h(·, t1)‖C(Ω̄)+σ/2)σ.

(5.13)
Thus, combining (5.9)–(5.13), we obtain that∥∥∥∥h(·, t2)

(
hd + σ2/2

h(·, t2) + σ

)
− hd

∥∥∥∥
C(Ω̄)

≤ σ2 + σ + σγ‖h(·, t1)‖C(Ω̄) → 0

as σ → 0+, which, in view of (4.8), completes the proof of Theorem 2.3 in the case
when f = 0.

5.2. Proof of Theorem 2.3: The general case. As in the case of Theorem
2.1, it follows from estimate (3.3) evaluating the difference between the solutions u to
(S) and h to (3.2) (uniformly with respect to possible multiple solutions to (S)).

It follows from (3.3) that whenever the product of the L∞(Ω)-norm of the static
bilinear control v(x), applied, say, on the time-interval (a, b), and its duration (b−a),
namely, ‖v‖L∞(Ω)(b− a) remains bounded, we have

‖u(·, b)− h(·, b)‖L2(Ω) → 0,

provided that b→ a+ and ‖u(·, a)− h(·, a)‖L2(Ω) → 0.
Indeed, in the above,
• on the interval (0, t1) we used v = 0 and can select t1 as small as we wish;
• on the interval (t1, t2) we applied a constant v as in (5.5a) such that for any
(fixed) γ > 1 we have v(t2 − t1) = ln γ;
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• on the interval (t2, t3) we used the condition like in (4.7), exactly as it is
described in the proof of Theorem 2.1 in the general case. Again, (t3 − t2)
can be arbitrarily small.

Thus applying (3.3) subsequently three times on the aforementioned intervals,
while selecting sufficiently small ti, i = 1, 2, 3, and the bilinear controls as described
in the above, we can ensure (2.4). This completes the proof of Theorem 2.3 in the
general case.

Appendix A. Proof of Lemmas 3.1 and 3.2.

A.1. Proof of Lemma 3.1. Recall (see, e.g., [19]) that f(·, ·, u,∇u) ∈
L1+n/(n+4)(QT ) and that the following energy equality holds for (S) treated as a
linear equation with the source term f(x, t, u,∇u), e.g., [19, p. 142]:

1

2
‖u‖2L2(Ω)|t0+

∫ t

0

∫
Ω

(
‖∇u‖2Rn − vu2 + f(x, s, u,∇u)u

)
dxds = 0 ∀t ∈ [0, T ].

(A.1)
Here and everywhere below, if there exist several solutions to (S), we always deal
separately with a selected one, while noticing that all the estimates hold uniformly.

Combining (A.1) and (1.1c) yields for t ∈ [0, T ]

‖u(·, t)‖2L2(Ω) + 2ν

∫ t

0

∫
Ω

‖∇u‖2Rn dxds

≤ ‖u0‖2L2(Ω) + 2(α+ ρ)

∫ t

0

∫
Ω

u2dxds+ 2ρT

≤
(
‖u0‖2L2(Ω) + 2ρT

)
+ 2(α+ ρ)

∫ t

0

(
‖u(·, τ)‖2L2(Ω) + 2ν

∫ τ

0

∫ 1

0

‖∇u‖2Rn dxds

)
dτ.

(A.2)

Applying the Gronwall–Bellman inequality to (A.2) yields the first estimate in
(3.1) with respect to the B(0, T )-norm with C =

√
2. The second estimate follows by

the continuity of the embedding of B(0, T ) into L2+4/n(QT ) (e.g., [19, pp. 467, 475]),
due to which

‖ξ‖L2+4/n(QT ) ≤ c‖ξ‖B(0,T )(A.3)

for some constant c > 0 independent of T . In this case C = c
√
2 in (3.1). This ends

the proof of Lemma 3.1.

A.2. Proof of Lemma 3.2. We now intend to evaluate the difference between
any possible (multiple) solution u to (S) and its truncated version (3.2).

Denote ξ = u− h; then

ξt = ∆ξ + vξ − f(x, t, u,∇u) in QT ,(A.4)

ξ|ΣT
= 0, ξ |t=0 = u0 − h0.

Multiplying (A.4) by ξ and integrating it by parts in Qt = Ω × (0, t), we obtain
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the following chain of estimates for all t ∈ [0, T ]:

‖ξ(·, t)‖2L2(Ω) + 2ν

∫ t

0

∫
Ω

‖∇ξ‖2Rn(x, s) dxds

= ‖ξ(·, 0)‖2L2(Ω) + 2

∫ t

0

∫
Ω

vξ2dxds− 2
∫ t

0

∫
Ω

ξf(x, s, u,∇u)dxds

≤ ‖ξ(·, 0)‖2L2(Ω) + 2α

∫ t

0

∫ 1

0

ξ2dxds+ 2‖ξ‖L2+4/n(Qt)
‖f(x, t, u,∇u)‖L1+n/(n+4)(Qt)

≤ ‖ξ(·, 0)‖2L2(Ω) + 2α

∫ t

0

∫
Ω

ξ2dxds+ 2c‖ξ‖B(0,t)‖f(x, t, u,∇u)‖L1+n/(n+4)(QT )

≤ ‖ξ(·, 0)‖2L2(Ω) + 2α

∫ t

0

‖ξ‖2B(0,s)ds+ δ‖ξ‖2B(0,t) +
c2

δ
‖f(·, ·, u,∇u)‖2L1+n/(n+4)(QT ),

(A.5)
where we made use of (A.3) and Hölder’s and Young’s inequalities.

It follows from (A.5) that we have

‖ξ‖2B(0,t) ≤ 2‖ξ(·, 0)‖2L2(Ω) + 4α

∫ t

0

‖ξ‖2B(0,s)ds+ 2δ‖ξ‖2B(0,t)

+
2c2

δ
‖f(·, ·, u,∇u)‖2L1+n/(n+4)(QT ) ∀t ∈ [0, T ].

Thus,

‖ξ‖2B(0,t) ≤ 4‖ξ(·, 0)‖2L2(Ω) + 8α

∫ t

0

‖ξ‖2B(0,s)ds

+
4c2

δ
‖f(·, ·, u,∇u)‖2L1+n/(n+4)(QT ),

(A.6)

provided that 0 < δ < 1
4 .

Making use of the Gronwall–Bellman inequality, we derive from (A.6) that

‖ξ‖B(0,T ) ≤ e2
√

2αT

(
2‖ξ(·, 0)‖L2(Ω) +

2c√
δ
‖f(·, ·, u,∇u)‖L1+n/(n+4)(QT )

)
.(A.7)

Now, using (1.1b) and Hölder’s inequality (as in [19, p. 469], [13, p. 863]), we
obtain

‖f(·, ·, u,∇u)‖L1+n/(n+4)(QT ) ≤ βT
n+4

2(n+2)
(1− r1n

n+4 )‖u‖r1L2+4/n(QT )

+ βT
n+4

2(n+2)
(1− (n+2)r2

(n+4)
)‖∇u‖r2[L2(QT )]n + ‖ψ‖L1+n/(n+4)(QT ).

(A.8)

Combining (A.8), (A.7) yields the result of Lemma 3.2.

Appendix B. Proof of Lemma 3.3. We need to evaluate ∆h in L2(QT ), where
h satisfies (3.2) with h0 ∈ H1

0 (Ω).
Consider any

v ∈ L∞(Ω)
⋂

H2(Ω), ∇v ∈ [L∞(Ω)]n, ∆v ∈ L∞(Ω), v(x) ≤ 0 in Ω.(B.1)
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Multiplying (3.2) by ∆h and further integrating it over QT yields∫ ∫
QT

(−ht∆h+ (∆h)2
)
dxdt = −

∫ ∫
QT

vh∆hdxdt.(B.2)

In turn,

−
∫ ∫

QT

ht∆hdxdt =
1

2

∫
Ω

n∑
k=1

h2
xk
(x, T )dx− 1

2

∫
Ω

n∑
k=1

h2
xk
(x, 0)dx,

while, having (B.1) in mind,

−
∫ ∫

QT

vh∆hdxdt = −
∫ ∫

QT

n∑
k=1

vhhxkxk
dxdt

=

∫ ∫
QT

n∑
k=1

vh2
xk

dxdt+
1

2

∫ ∫
QT

n∑
k=1

vxk
(h2)xk

dxdt ≤ 1
2
‖∆v‖L∞(Ω)

∫ ∫
QT

h2dxdt.

Combining all the above yields∫ ∫
QT

(∆h)2dxdt+
1

2

∫
Ω

‖∇h(x, T )‖2Rndx

≤ 1
2

∫
Ω

‖∇h0‖2Rndx+
1

2
‖∆v‖L∞(Ω)

∫ ∫
QT

h2dxdt

≤ 1
2

∫
Ω

‖∇h0‖2Rndx+
1

2
‖∆v‖L∞(Ω)T max

t∈[0,T ]

∫
Ω

h2(x, t)dx.

(B.3)

From (B.3) and estimate (3.1) (applied to system (3.2)) we obtain the estimate
(3.4). This ends the proof of Lemma 3.3.
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JORGE CORTÉS† AND SONIA MARTÍNEZ‡
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Abstract. We investigate local configuration controllability for mechanical control systems
within the affine connection formalism. We rely on previous results on controllability and series
expansions for the evolution of mechanical systems starting from rest. Extending the work by Lewis
for the single-input case, we are able to characterize local configuration controllability for systems
with n degrees of freedom and n− 1 input forces.
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1. Introduction. Mechanical control systems belong to a class of nonlinear sys-
tems whose controllability properties have not been fully characterized yet. Much
work has been devoted to the study of their rich geometrical structure, both in the
Hamiltonian framework (see [30] and references therein) and in the Lagrangian one,
which has been receiving increasing attention in the last few years [5, 8, 17, 21, 23,
24, 25, 31]. This research is providing new insights and a bigger understanding of
the accessibility and controllability aspects associated with them. In particular, the
affine connection formalism was revealed to be very useful for modeling different types
of mechanical systems, such as natural ones (Lagrangian equal to kinetic energy mi-
nus potential energy) [24, 25], with symmetries [5, 9], with nonholonomic constraints
[6, 23], etc. and, on the other hand, it has led to the development of some new
techniques and control algorithms for approximate trajectory generation in controller
design [4, 37]. Certainly, we shall see further progress in these directions in future
years.

Underactuated mechanical control systems are interesting to study both from a
theoretical and a practical point of view. From a theoretical perspective, they offer
a control challenge as they have nonzero drift, their linearization at zero velocity
is not controllable, they are not static feedback linearizable, and it is not known if
they are dynamic feedback linearizable. That is, they are not amenable to standard
techniques in control theory [13, 30]. From the practical point of view, they appear
in numerous applications as a result of design choices motivated by the search for less
costly devices, or as a result of a failure regime in fully actuated mechanical systems.

The work by Lewis and Murray [24, 25] on simple mechanical control systems
has rendered strong conditions for configuration accessibility and sufficient conditions
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for configuration controllability. The conditions for the latter are based on the suffi-
cient conditions that Sussmann obtained for general affine control systems [35]. It is
worth noting that these conditions are not invariant under input transformations. As
controllability is the more interesting property in practice, more research is needed
in order to sharpen the configuration controllability conditions. Whatever these con-
ditions might be, they will be harder to check than the ones for accessibility, since
controllability is inherently a more difficult property to establish [14, 33]. Lewis [21]
investigated the single-input case, building on previous results by Sussmann for gen-
eral scalar-input systems [34]. The recent work by Bullo [3] on series expansions
for the evolution of a mechanical control system starting from rest gave the necessary
tools to tackle this problem in the much more involved multi-input case. In this paper,
we characterize local configuration controllability for systems whose number of inputs
and degrees of freedom differ by one. Examples include autonomous vehicles (like
aircraft takeoff and landing models [11, 28], underwater vehicles [32]), robotic manip-
ulators with a passive joint [26], and locomotion devices (such as the robotic leg [23] or
the quadrotor [29]). In addition, fully actuated mechanical systems may temporarily
suffer from an actuator failure turning them into underactuated systems by one con-
trol, in which case the knowledge of their controllability properties becomes relevant
within a robust design perspective. Interestingly, the differential flatness properties of
this type of underactuated mechanical control systems have also been characterized
in intrinsic geometric terms [32].

Both results, Lewis’s and ours, can be seen as particular cases of the following
conjecture, which remains open: The system is locally configuration controllable at a
point if and only if there exists a basis of inputs satisfying the sufficient conditions
for local configuration controllability at that point. The conjecture relies on the fact
we have mentioned before: the lack of invariance of the sufficient conditions under
input transformations. It is remarkable to note that local controllability has not been
characterized yet for general control systems, even for the single-input case (in this
regard see [12, 34, 35]).

The paper is organized as follows. In section 2, we describe the affine connec-
tion framework for mechanical control systems and recall the controllability notions
we shall consider on them. In section 3 we review the existing results concerning
configuration controllability [24, 25] and the series expansion for the evolution of a
mechanical control system starting from rest developed by Bullo in [3]. In section 4 we
briefly recall the single-input case solved by Lewis and properly state his conjecture.
Section 5 contains the main contributions of this paper. In section 6 we treat two
examples to illustrate the results. Finally, we present our conclusions in section 7.

2. Simple mechanical control systems. Let Q be a n-dimensional manifold.
We will denote by TQ the tangent bundle of Q, by X(Q) the set of vector fields
on Q, and by C∞(Q) the set of smooth functions on Q. Throughout the paper, the
manifold Q and the mathematical objects defined on it will be assumed analytic.

A simple mechanical control system is defined by a triple (Q, g,F), where Q is
the manifold of configurations of the system, g is a Riemannian metric on Q, and
F = {F 1, . . . , Fm} is a set of m linearly independent 1-forms on Q, which physically
correspond to forces or torques.

Associated with the metric g is a natural affine connection, called the Levi–Civita
connection. An affine connection [1, 18] is defined as an assignment

∇ : X(Q)× X(Q) −→ X(Q) ,
(X,Y ) �−→ ∇XY ,
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which is R-bilinear and satisfies ∇fXY = f∇XY and ∇X(fY ) = f∇XY + X(f)Y ,
for any X, Y ∈ X(Q), f ∈ C∞(Q). A curve c : [a, b] −→ Q is a geodesic for ∇
if ∇ċ(t)ċ(t) = 0. Locally, the condition for a curve t �−→ (q1(t), . . . , qn(t)) to be a
geodesic can be expressed as

q̈a + Γabcq̇
bq̇c = 0 , 1 ≤ a ≤ n ,(2.1)

where the Γabc(q) are the Christoffel symbols of the affine connection, that is, they are
given by ∇ ∂

∂qb

∂
∂qc = Γabc

∂
∂qa . The geodesic equation (2.1) is a first-order differential

equation on TQ. The vector field corresponding to this first-order equation is given
in coordinates by

S = va
∂

∂qa
− Γabcv

bvc
∂

∂va

and is called the geodesic spray of the affine connection ∇. Hence, the integral curves
of the geodesic spray S, (qa, q̇a) are the solutions of the geodesic equation.

The Levi–Civita connection ∇g is determined by the formula

2 g(∇gXY,Z) = (X(g(Y,Z)) + Y (g(Z,X))− Z(g(X,Y ))
+ g(Y, [Z,X])− g(X, [Y,Z]) + g(Z, [X,Y ])) , X, Y, Z ∈ X(Q) .

One can compute the Christoffel symbols of ∇g to be

Γabc =
1

2
gad
(
∂gdb
∂qc

+
∂gdc
∂qb

− ∂gbc
∂qd

)
,

where (gad) denotes the inverse of the inertia matrix (gda) = (g( ∂
∂qd
, ∂
∂qa )).

The metric tensor g induces a bundle isomorphism �g : TQ −→ T ∗Q given by
�g(X)(Y ) = g(X,Y ). Instead of the input forces F 1, . . . , Fm, we shall make use
of the vector fields Y1, . . . , Ym, defined as Yi = �−1

g (F i). Roughly speaking, this

corresponds to considering “accelerations” rather than forces. If Yi = Y ai (q)
∂
∂qa , the

control equations for the simple mechanical control system read in coordinates as

q̇a = va ,

v̇a = −Γabcq̇bq̇c +
m∑
i=1

ui(t)Y
a
i (q) , 1 ≤ a ≤ n .

These equations can be written in a coordinate-free way as

∇gċ(t)ċ(t) =
m∑
i=1

ui(t)Yi(c(t)) .(2.2)

The inputs we will consider come from the set U = {u : [0, T ] → R
m | T > 0, u is

measurable and ‖u‖ ≤ 1}, where
‖u‖ = sup

t∈[0,T ]

‖u(t)‖∞ = sup
t∈[0,T ]

max
l=1,...,m

|ul(t)| .

We can use a general affine connection in (2.2) instead of the Levi–Civita con-
nection without changing the structure of the equation. This is particularly inter-
esting, since nonholonomic mechanical control systems also give rise to equations of
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the form (2.2) by means of the so-called nonholonomic affine connection (see [23]).
Therefore, the discussion throughout the paper is carried out for a general affine
connection ∇.

We can turn (2.2) into a general affine control system with drift

ẋ(t) = f(x(t)) +
∑

ui(t)gi(x(t)) .(2.3)

To do this we need another bit of notation. The vertical lift of a vector field X on Q
is the vector field Xv on TQ defined as

Xv(vq) =
d

dt

∣∣∣
t=0

(vq + tX(q)) .

In coordinates, if X = Xa ∂
∂qa , one can check that Xv = Xa ∂

∂va . Then, the second-

order equation (2.2) on Q can be written as the first-order system on TQ:

v̇ = S(v) +
m∑
i=1

ui(t)Y vi (v) ,(2.4)

where S is the geodesic spray associated with the affine connection ∇.
2.1. Controllability notions. The control equations for the mechanical sys-

tem (2.4) are nonlinear. The standard techniques in control theory [30], like, for
example, the linearization around an equilibrium point or linearization by feedback,
do not yield satisfactory results in the analysis of its controllability properties, in
the sense that they do not provide necessary and sufficient conditions characterizing
them.

The point in the approach of Lewis and Murray to simple mechanical control
systems is precisely to focus on what is happening to configurations, rather than to
states, since in many of these systems, configurations may be controlled, but not
configurations and velocities at the same time. The basic question they pose is,
What is the set of configurations which are attainable from a given configuration
starting from rest? Moreover, since we deal with objects defined on the configuration
manifold Q, we expect to find answers on Q, although the control system (2.4) lives
in TQ.

Definition 2.1. A solution of (2.2) is a pair (c, u), where c : [0, T ] −→ Q is
a piecewise smooth curve and u ∈ U such that (ċ, u) satisfies the first-order control
system (2.4).

Consider q0 ∈ Q, (q0, 0q0) ∈ Tq0Q and let U ⊂ Q, U ⊂ TQ be neighborhoods of
q0 and (q0, 0q0), respectively. Define

RUQ(q0, T ) =
{
q ∈ Q there exists a solution (c, u) of (2.2) such that

ċ(0) = 0q0 , c(t) ∈ U for t ∈ [0, T ], and ċ(T ) ∈ TqQ
}
,

RUTQ(q0, T ) =
{
(q, v) ∈ TQ there exists a solution (c, u) of (2.2) such that ċ(0) =

0q0 , (c(t), ċ(t)) ∈ U for t ∈ [0, T ], and ċ(T ) = v ∈ TqQ
}

and denote

RUQ(q0,≤ T ) = ∪0≤t≤TRUQ(q0, t) , RUTQ(q0,≤ T ) = ∪0≤t≤TRUTQ(q0, t) .

Now, we recall the notions of accessibility considered in [24].
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Definition 2.2. The system (2.2) is locally configuration accessible (LCA) at
q0 ∈ Q if there exists T > 0 such that RUQ(q0,≤ t) contains a nonempty open set of Q,
for all neighborhoods U of q0 and all 0 ≤ t ≤ T . If this holds for any q0 ∈ Q, then
the system is called LCA.

Definition 2.3. The system (2.2) is locally accessible (LA) at q0 ∈ Q and zero

velocity if there exists T > 0 such that RUTQ(q0,≤ t) contains a nonempty open set

of TQ, for all neighborhoods U of (q0, 0q0) and all 0 ≤ t ≤ T . If this holds for any
q0 ∈ Q, then the system is called LA at zero velocity.

We shall focus our attention on the following concepts of controllability [24].
Definition 2.4. The system (2.2) is small-time locally configuration controllable

(STLCC) at q0 ∈ Q if there exists T > 0 such that RUQ(q0,≤ t) contains a nonempty
open set of Q to which q0 belongs, for all neighborhoods U of q0 and all 0 ≤ t ≤ T . If
this holds for any q0 ∈ Q, then the system is called STLCC.

Definition 2.5. The system (2.2) is small-time locally controllable (STLC)

at q0 ∈ Q and zero velocity if there exists T > 0 such that RUTQ(q0,≤ t) con-

tains a nonempty open set of TQ to which (q0, 0q0) belongs, for all neighborhoods U
of (q0, 0q0) and all 0 ≤ t ≤ T . If this holds for any q0 ∈ Q, then the system is called
STLC at zero velocity.

3. Existing results. Here we review some accessibility and controllability re-
sults obtained in [24, 25] and summarize the work by Bullo [3] in describing the
evolution of mechanical control systems via a series expansion.

3.1. On controllability. Given an affine connection ∇ on Q, the symmetric
product of two vector fields X,Y ∈ X(Q) is defined by

〈X : Y 〉 = ∇XY +∇YX .

The geometric meaning of the symmetric product is the following [22]: a geodesically
invariant distribution D is a distribution such that for every geodesic c(t) of∇ starting
from a point in D, ċ(0) ∈ Dc(0), we have that ċ(t) ∈ Dc(t). Then, one can prove that
D is geodesically invariant if and only if 〈X : Y 〉 ∈ D, for all X, Y ∈ D.

Given the input vector fields Y = {Y1, . . . , Ym}, let us denote by Sym(Y) the
distribution obtained by closing the set Y under the symmetric product and by Lie(Y)
the involutive closure of Y. With these ingredients, one can prove the following
theorem.

Theorem 3.1 (see [24]). The control system (2.2) is LCA at q (respectively, LA
at q and zero velocity) if Lie(Sym(Y))q = TqQ (respectively, Sym(Y)q = TqQ).

If P is a symmetric product of vector fields in Y, we let γi(P ) denote the number
of occurrences of Yi in P . The degree of P will be γ1(P ) + · · ·+ γm(P ). We shall say
that P is bad if γi(P ) is even for each 1 ≤ i ≤ m. We say that P is good if it is not
bad. The following theorem gives sufficient conditions for STLCC.

Theorem 3.2. Suppose that the system (2.2) is LCA at q (respectively, LA at q
and zero velocity) and that Y is such that every bad symmetric product P at q in Y
can be written as a linear combination of good symmetric products at q of lower degree
than P . Then (2.2) is STLCC at q (respectively, STLC at q and zero velocity).

This theorem was proved in [24], adapting previous work by Sussmann [35] on
general control systems of the form (2.3). Throughout the paper, we will refer to the
conditions of every bad symmetric product at q being a linear combination of good
symmetric products at q of lower degree as the sufficient conditions for STLCC.
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3.2. Series expansion. Within the realm of geometric control theory, series
expansions play a key role in the study of nonlinear controllability [2, 15, 34, 35],
trajectory generation and motion planning problems [4, 19, 20, 29], etc. In [27],
Magnus describes the evolution of systems on a Lie group. In [7, 10, 16, 36] a general
framework is developed to describe the evolution of a nonlinear system via the so-
called Chen–Fliess series and its factorization.

In the context of mechanical control systems, the work by Bullo in [3] describes
the evolution of the trajectories with zero initial velocity via a series expansion on the
configuration manifold Q. In this section we describe the series expansion, which will
be key in the subsequent discussion. Before doing so, however, we need to introduce
some notation on analyticity over complex neighborhoods.

Let q0 ∈ Q. By selecting a coordinate chart around q0, we locally identify Q ≡ R
n.

In this way, we write q0 ∈ R
n. Let σ be a positive scalar, and define the complex

σ-neighborhood of q0 in C
n as Bσ(q0) = {z ∈ C

n | ‖z − q0‖ < σ}. Let f be a real
analytic function on R

n that admits a bounded analytic continuation over Bσ(q0).
The norm of f is defined as

‖f‖σ � max
z∈Bσ(q0)

|f(z)| ,

where f denotes both the function over R
n and its analytic continuation. Given a

time-varying vector field (q, t) �→ Z(q, t) = Zt(q), let Z
i
t be its ith component with

respect to the usual basis on R
n. Assuming t ∈ [0, T ], and assuming that every

component function Zit is analytic over Bσ(q0), we define the norm of Z as

‖Z‖σ,T � max
t∈[0,T ]

max
i∈{1,...,n}

‖Zit‖σ .

In what follows, we will often simplify notation by neglecting the subscript T in
the norm of a time-varying vector field. Finally, given an affine connection ∇ with
Christoffel symbols {Γijk | i, j, k ∈ {1, . . . , n}}, we introduce the following notation:

‖Γ‖σ � max
i,j,k
‖Γijk‖σ .

In what follows, we let

Z(q, t) =

m∑
i=1

ui(t)Yi(q) .

Theorem 3.3 (see [3]). Let c(t) be the solution of (2.2) with input given by Z(q, t)
and with initial conditions c(0) = q0, ċ(0) = 0. Let the Christoffel symbols Γijk(q) and
the vector field Z(q, t) be uniformly integrable and bounded analytic in Q. Define
recursively the time-varying vector fields

V1(q, t) =

∫ t

0

Z(q, s)ds ,

Vk(q, t) = −1

2

k−1∑
j=1

∫ t

0

〈Vj(q, s) : Vk−j(q, s)〉ds , k ≥ 2 ,

where q is maintained fixed at each integral. Select a coordinate chart around the point
q0 ∈ Q, let σ > σ′ be two positive constants, and assume that

‖Z‖σT 2 < L � min

{
σ − σ′

24n2(n+ 1)
,

1

24n(n+ 1)‖Γ‖σ ,
η2(σ′n2‖Γ‖σ′)

n2‖Γ‖σ′

}
.(3.1)



MECHANICAL SYSTEMS UNDERACTUATED BY ONE CONTROL 1907

Then the series (q, t) �−→∑∞
k=1 Vk(q, t) converges absolutely and uniformly in t and q,

for all t ∈ [0, T ] and for all q ∈ Bσ′(q0), with the Vk satisfying the bound

‖Vk‖σ′ ≤ L1−k ‖Z‖kσ t2k−1 ,(3.2)

Over the same interval, the solution c(t) satisfies

ċ(t) =
∞∑
k=1

Vk(c(t), t) .(3.3)

This theorem generalizes previous results obtained in [4] under the assumption of
small amplitude forcing. The first few terms of the series (3.3) can be computed to
obtain

(3.4)

ċ(t) = Z(c(t), t)− 1

2
〈Z : Z〉(c(t), t) + 1

2

〈
〈Z : Z〉 : Z

〉
(c(t), t)

− 1

2

〈〈
〈Z : Z〉 : Z

〉
: Z

〉
(c(t), t)− 1

8

〈
〈Z : Z〉 : 〈Z : Z〉

〉
(c(t), t) +O(‖Z‖5σt9) ,

where Z(q, t) ≡ ∫ t
0
Z(q, s)ds and so on.

4. The single-input case. Theorem 3.2 gives us sufficient conditions for
STLCC. A natural concern both from the theoretical and the practical points of
view is to try to sharpen this controllability test. Lewis [21] investigated the single-
input case and proved the next result.

Theorem 4.1. Let (Q, g) be an analytic manifold with an affine connection ∇.
Let Y be an analytic vector field on Q and q0 ∈ Q. Then the system

∇ċ(t)ċ(t) = u(t)Y (c(t))
is locally configuration controllable at q0 ∈ Q if and only if dimQ = 1.

The fact of being able to completely characterize STLCC in the single-input
case (something which has not been accomplished yet for general control systems
of the form (2.3)) suggests that understanding local configuration controllability for
mechanical systems may be possible. More precisely, examining the single-input
case, one can deduce that if (2.2) is STLCC at q0, then dimQ = 1, which implies
〈Y : Y 〉(q0) ∈ span{Y (q0)}, i.e., sufficient conditions for STLCC are also necessary.
Can this be extrapolated to the multi-input case? The following conjecture was posed
by Lewis:

Let a mechanical control system (2.2) be LCA at q0 ∈ Q. Then it is
STLCC at q0 if and only if there exists a basis of input vector fields which
satisfies the sufficient conditions for STLCC at q0.

Theorem 4.1 implies that the conjecture is true form = 1. In the following section
we prove that this conjecture is also valid for m = n− 1.

5. Mechanical systems underactuated by one control. Here we focus our
attention on mechanical control systems of the form (2.2) which have n degrees of
freedom and m = n − 1 control input vector fields. The following lemma, taken
from [34], will be helpful in the proof of the theorem of this section.

Lemma 5.1. Let Q be a n-dimensional analytic manifold. Given q0 ∈ Q and
X1, . . . , Xp ∈ X(Q), p ≤ n, linearly independent vector fields, there exists a function
φ : Q −→ R satisfying the properties
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1. φ is analytic,
2. φ(q0) = 0,
3. X1(φ) = · · · = Xp−1(φ) = 0 on a neighborhood V of q0,
4. Xp(φ)(q0) = −1,
5. within any neighborhood of q0 there exist points q, where φ(q) < 0 and
φ(q) > 0.

Proof. Let Z1, . . . , Zn be vector fields defined in a neighborhood of q0 such that
{Z1(q0), . . . , Zn(q0)} forms a basis for Tq0Q and Zi = Xi, 1 ≤ i ≤ p − 1, Zp = −Xp.
Let ti �−→ Ψi(t) be the flow of Zi, 1 ≤ i ≤ n. In a sufficiently small neighborhood V
of q0, any point q may be expressed as q = Ψ1(t1) ◦ · · · ◦Ψn(tn)(q0) for some unique
n-tuple (t1, . . . , tn) ∈ R

n. Define φ(q) = tp. It is a simple exercise to verify that φ
satisfies the required properties.

Next, we state and prove the main result of the paper.

Theorem 5.2. Let Q be a n-dimensional analytic manifold and let Y1, . . . , Yn−1

be analytic vector fields on Q. Consider the control system

∇ċ(t)ċ(t) =
n−1∑
i=1

ui(t)Yi(c(t)) ,(5.1)

and assume that it is LCA at q0 ∈ Q. Then the system is locally configuration con-
trollable at q0 if and only if there exists a basis of input vector fields satisfying the
sufficient conditions for STLCC at q0.

A rough sketch of the proof is the following: because of the hypotheses of the
theorem, we need only to check that the symmetric products of degree two of a given
basis of the input distribution, when evaluated at q0, are linear combinations of good
products of degree one. To verify this, we associate with the given basis a symmetric
matrix A, in such a way that this basis satisfies the sufficient conditions for STLCC if
and only if the diagonal elements of A are all zero. If this is not the case, we search for
a change of basis B such that the new basis has an associated matrix A with zeros in
its diagonal. This is equivalent to solving a quadratic equation in B. In order to ensure
that a solution to this equation exists, we have to explore the different possibilities
that may occur regarding the various radicands involved. Finally, we discard the
situations in which the equation is not solvable by a contradiction argument with the
controllability assumption (see Figure 5.1).

Proof. We need only to prove one implication (the other one is Theorem 3.2). Let
us suppose that the system is locally configuration controllable at q0. Let D denote
the input distribution. One of the following is true:

1. For all Y1, Y2 ∈ D, 〈Y1 : Y2〉(q0) ∈ Dq0 .
2. There exist Y1, Y2 ∈ D such that 〈Y1 : Y2〉(q0) /∈ Dq0 .

In case 1, there is nothing to prove since any basis of input vector fields satisfies
the sufficient conditions for STLCC at q0. In case 2, it is clear that one can choose
Y1, Y2 ∈ D, linearly independent at q0 and such that 〈Y1 : Y2〉(q0) /∈ Dq0 . (If Y1,
Y2 in case 2 are linearly dependent, then 〈Y1 : Y1〉(q0) /∈ Dq0 . Take any Y2 linearly
independent with Y1. If 〈Y1 : Y2〉(q0) ∈ Dq0 , define a new Y ′

2 by Y1 + Y2.) Therefore,
we can complete the set {Y1(q0), Y2(q0)} to a basis of Dq0 ,

{Y1(q0), Y2(q0), . . . , Ym(q0)}

such that span{Y1(q0), Y2(q0), . . . , Ym(q0), 〈Y1 : Y2〉(q0)} = Tq0Q. In this basis, the
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∃i; a
(i)
kk

= 0, ∀k.

Case B:

∀i, ∃si; a
(i)
sisi

�= 0.

Case A:

∃k, l; a
(i)
kl

�= 0

Matrix A = (aij).

Let a
(i)
kl

be as in (5.5).

of basis

Desired change

with STLCC

Contradicition

of basis

Desired change

a
(i)
kl

= 0, ∀k, l.

Intermediate step:

new {Y ′
1 , . . . , Y ′

m}.
Focus on last i − 1:

Focus on last p − 1.

new {Y ′
1 , . . . , Y ′

m}.
Intermediate step:

p = i − 1.

p = p − 1.

{Y1, . . . , Ym},
p = m.

Start:
R(p−1) > 0

Case A2 :

R(p−1) < 0

Case A3 :

R(p−1) = 0

Case A1 :

Fig. 5.1. Illustration of the proof of Theorem 5.2. R(p−1) denotes (a
(p−1)
sp−1sp )2−a(p−1)

sp−1sp−1
a

(p−1)
spsp .

The dashed lines mean that one cannot fall repeatedly in Cases A3 or B without contradicting
STLCC.

symmetric products of degree two of the vector fields {Y1, . . . , Ym} at q0 are expressed,

〈Y1 : Y1〉(q0) = lc(Y1(q0), . . . , Ym(q0)) + a11〈Y1 : Y2〉(q0) ,
...

〈Ym : Ym〉(q0) = lc(Y1(q0), . . . , Ym(q0)) + amm〈Y1 : Y2〉(q0) ,
〈Y1 : Y2〉(q0) = a12〈Y1 : Y2〉(q0) ,
〈Y1 : Y3〉(q0) = lc(Y1(q0), . . . , Ym(q0)) + a13〈Y1 : Y2〉(q0) ,

...

〈Ym−1 : Ym〉(q0) = lc(Y1(q0), . . . , Ym(q0)) + am−1m〈Y1 : Y2〉(q0) ,

where lc(Y1(q0), . . . , Ym(q0)) means a linear combination of Y1(q0), . . . , Ym(q0). The
coefficients aij define a symmetric matrix A = (aij) ∈ R

m×m. Observe that if a11 =
· · · = amm = 0, then the bad symmetric products 〈Yi : Yi〉(q0) are in Dq0 and we have
finished. Suppose then that the opposite situation is true, that is, there exists s = s1
such that as1s1 �= 0.

What we are going to prove now is that, under the hypothesis of STLCC at q0,
there exists a change of basis B = (bjk), detB �= 0, providing new vector fields in D,

Y ′
j =

m∑
k=1

bjkYk , 1 ≤ j ≤ m,
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which satisfy the sufficient conditions for STLCC at q0. Since

〈Y ′
j : Y ′

j 〉(q0) =
m∑

k,l=1

bjkbjl〈Yk : Yl〉(q0)

=

m∑
k=1

b2jk〈Yk : Yk〉(q0) + 2
∑

1≤k<l≤m
bjkbjl〈Yk : Yl〉(q0)

(5.2)

= lc(Y ′
1(q0), . . . , Y

′
m(q0)) +


 m∑
k=1

b2jkakk + 2
∑

1≤k<l≤m
bjkbjlakl


 〈Y1 : Y2〉(q0) ,

the matrix B we are looking for must fulfill

m∑
k=1

b2jkakk + 2
∑

1≤k<l≤m
bjkbjlakl = 0 , 1 ≤ j ≤ m,(5.3)

or, equivalently,

(BABT )jj = 0 , 1 ≤ j ≤ m.
Note that, since as1s1 �= 0, this is equivalent to

bjs1 =
−∑k �=s1 bjkaks1

as1s1

±
√
(
∑
k �=s1 bjkaks1)

2 − as1s1(
∑
k �=s1 b

2
jkakk + 2

∑
k<l, k,l �=s1 bjkbjlakl)

as1s1
,

for each 1 ≤ j ≤ m. After some computations, the radicand of this expression becomes∑
k �=s1

b2jk(a
2
ks1 − as1s1akk) + 2

∑
k<l, k,l �=s1

bjkbjl(aks1als1 − as1s1akl) .

If this radicand is zero, it would imply that the matrix B should be singular in order
to satisfy (5.3). We must ensure then that it is possible to select B such that the
radicand is different from zero. We do this in the following, studying several cases
that can occur. Letting

a
(2)
kl = aks1als1 − as1s1akl , k, l ∈ {1, . . . ,m} \ {s1} ,

we have that the radicand would vanish if∑
k �=s1

b2jka
(2)
kk + 2

∑
k<l, k,l �=s1

bjkbjla
(2)
kl = 0 .(5.4)

Note the similarity between (5.3) and (5.4). Define recursively

(5.5)

a
(1)
kl = akl ,

a
(i)
kl = a

(i−1)
ksi−1

a
(i−1)
lsi−1

− a(i−1)
si−1si−1

a
(i−1)
kl , i ≥ 2 , k, l ∈ {1, . . . ,m} \ {s1, . . . , si−1} .
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Case A. Here we treat the case when for each i there exists si such that a
(i)
sisi �= 0.

Several subcases are discussed.
Reasoning as before, (5.4) would imply that for 1 ≤ j ≤ m
bjs2 = lc(bj1, . . . , b̂js1 , . . . , b̂js2 , . . . , bjm)

± 1

a
(2)
s2s2

√ ∑
k �=s1,s2

b2jka
(3)
kk + 2

∑
k<l, k,l �=s1,s2

bjkbjla
(3)
kl ,

where the symbol b̂ means that the term b has been removed. Iterating this procedure,
we finally obtain the following equations for the bjsm−1

:

bjsm−1 = bjsm
−a(m−1)

sm−1sm ±
√
(a

(m−1)
sm−1sm)2 − a(m−1)

sm−1sm−1a
(m−1)
smsm

a
(m−1)
sm−1sm−1

, 1 ≤ j ≤ m.

Let (bjsm)1≤j≤m be a nonzero vector in R
m. Now, we distinguish three possibilities.

Case A1. We show that if the radicand (a
(m−1)
sm−1sm)2−a(m−1)

sm−1sm−1a
(m−1)
smsm is positive,

then it is possible to obtain the desired change of basis.

If (a
(m−1)
sm−1sm)2 − a(m−1)

sm−1sm−1a
(m−1)
smsm > 0, then the quadratic polynomial in bjsm−1

,

a(m−1)
sm−1sm−1

b2jsm−1
+ 2a(m−1)

sm−1smbjsm−1bjsm + a(m−1)
smsm b

2
jsm ,(5.6)

has two real roots and we can choose (bjsm−1)1≤j≤m ∈ R
m, linearly independent with

(bjsm)1≤j≤m such that (5.6) is positive for all 1 ≤ j ≤ m. As this polynomial is the
radicand of the preceding one,∑

k �=s1,...,sm−3

b2jka
(m−2)
kk + 2

∑
k<l, k,l �=s1,...,sm−3

bjkbjla
(m−2)
kl ,(5.7)

our choice of (bjsm−1)1≤j≤m ensures that we can again take (bjsm−2)1≤j≤m ∈ R
m,

linearly independent with (bjsm−1
)1≤j≤m and (bjsm)1≤j≤m such that (5.7) is positive

for all 1 ≤ j ≤ m. This is propagated step by step through the iteration process and
we are able to choose a nonsingular matrix (bjk) satisfying (5.3).

Case A2. We show that when the radicand (a
(m−1)
sm−1sm)2 − a(m−1)

sm−1sm−1a
(m−1)
smsm is

negative, then either it is possible to find the change of basis or the system is not
STLCC at q0.

If (a
(m−1)
sm−1sm)2 − a(m−1)

sm−1sm−1a
(m−1)
smsm < 0, then for all bjsm−1 , bjsm (5.6) does not

change its sign. If this sign is positive, the same argument as in Case A1 ensures us
the choice of the desired matrix. If negative, it implies that for all bjsm−2 , bjsm−1 ,
bjsm (5.7) does not change its sign. Then, the unique problem we must face is when,
through the iteration process, all the radicands are negative. In the following, we
discard this latter case by contradiction with the hypothesis of controllability. Apply
Lemma 5.1 to the vector fields {Y1, . . . , Ym, 〈Y1 : Y2〉} to find a function φ satisfying
properties 1–5. By (3.4), we have that

ċ(t) =
m∑
i=1

ūiYi − 1

2

〈
m∑
j=1

ūjYj :

m∑
k=1

ūkYk

〉
+O(‖Z‖3σt5)

=

m∑
i=1

ūiYi − 1

2

(
m∑
j=1

ū2
j 〈Yj : Yj〉 −

∑
j<k

ūj ūk〈Yj : Yk〉
)

+O(‖Z‖3σt5) ,
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where Z =
∑m
i=1 uiYi. Now, observe that d

dt (φ(c(t))) = ċ(t)(φ). Then, using proper-
ties 3 and 4 of φ, we get

d

dt
(φ(c(t))) =

1

2

(
m∑
j=1

ajj ū2
j + 2

∑
j<k

ajkūj ūk

)
+O(‖Z‖3σt5) .

The expression
∑m
j=1 ajj ū

2
j + 2

∑
j<k ajkūj ūk does not change its sign, whatever the

functions u1(t), . . . , um(t) might be, because as a quadratic polynomial in ūs1 its
radicand is always negative. Therefore, d

dt (φ(c(t))) has constant sign for sufficiently

small t, since
∑m
j=1 ajj ū

2
j + 2

∑
j<k ajkūj ūk is O(‖u‖2t3) and dominates O(‖Z‖3σt5) =

O(‖u‖3t5) when t→ 0. Finally,

φ(c(t)) = φ(q0) +

∫ t

0

d

ds
(φ(c(s))) =

∫ t

0

d

ds
(φ(c(s)))

will have constant sign for t small enough. As a consequence, all the points in a
neighborhood of q0 where φ has the opposite sign (property 5) are unreachable in
small time, which contradicts the hypothesis of controllability.

Case A3. We show that if the radicand (a
(m−1)
sm−1sm)2 − a(m−1)

sm−1sm−1a
(m−1)
smsm vanishes,

then an intermediate change of basis reduces the problem to considering m− 1 input
vector fields. The preceding discussion can be then reproduced.

The situation now is similar to that of Case A2. However, the argument employed
above to discard the possibility of all the radicands being negative does not apply,
since in this case there do exist controls such that

∑m
j=1 ajj ū

2
j + 2

∑
j<k ajkūj ūk

is zero, and hence we should really investigate the sign of O(‖Z‖3σt5) to reach a
contradiction. Instead, what we are going to do is to get a new basis {Y ′

j } such that
〈Y ′

1 : Y ′
j 〉(q0) ∈ Dq0 , 1 ≤ j ≤ m, and thus remove one vector field (Y ′

1) from the
discussion. By repeating this procedure, we finally come to consider a limit case,
which we will discard by contradiction with the controllability hypothesis.

For j = 1, we choose b1sm �= 0 and

b1sm−1
= −b1sm

a
(m−1)
sm−1sm

a
(m−1)
sm−1sm−1

= Csm−1
b1sm ,

b1sm−2 = −a
(m−2)
sm−2sm−1b1sm−1 + a

(m−2)
sm−2smb1sm

a
(m−2)
sm−2sm−2

= Csm−2b1sm ,

...(5.8)

b1s1 = −
∑
k �=s1 b1kaks1
as1s1

= Cs1b1sm .

We denote Csm = 1. For j > 1, we select the (bjk)1≤k≤m such that the matrix B is
nonsingular. Consequently, we change our original basis {Y1, . . . , Ym} to a new one
{Y ′

1 , . . . , Y
′
m}. In this basis, following (5.2), one has

〈Y ′
1 : Y ′

1〉(q0) = lc(Y ′
1(q0), . . . , Y

′
m(q0)) ,

〈Y ′
j : Y ′

j 〉(q0) = lc(Y ′
1(q0), . . . , Y

′
m(q0)) + a

′
jj〈Y1 : Y2〉(q0) , 2 ≤ j ≤ m.
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In addition, one can check that for each 2 ≤ j ≤ m,

〈Y ′
1 : Y ′

j 〉(q0) = lc(Y ′
1(q0), . . . , Y

′
m(q0)) +


∑

k,l

aklb1kbjl


 〈Y1 : Y2〉(q0)

= lc(Y ′
1(q0), . . . , Y

′
m(q0)) + b1sm

(∑
l

bjl

(∑
k

aklCk

))
〈Y1 : Y2〉(q0) .

Now, when the Ck are given by (5.8), we have∑
k

aklCk = 0 , 1 ≤ l ≤ m

(see Lemma A.1 in the appendix), and this guarantees that

〈Y ′
1 : Y ′

j 〉(q0) = lc(Y ′
1(q0), . . . , Y

′
m(q0)) , 2 ≤ j ≤ m.

If the a′jj = 0, 2 ≤ j ≤ m, we are done. Assume then that a′33 �= 0, reordering
the input vector fields if necessary. Assume further that 〈Y ′

2 : Y ′
3〉(q0) is not a linear

combination of {Y ′
1 , . . . , Y

′
m} (otherwise, redefine a new Y ′′

2 as Y ′
2 + Y ′

3). Then,

〈Y ′
2 : Y ′

2〉(q0) = lc(Y ′
1(q0), . . . , Y

′
m(q0)) + a

′
22〈Y ′

2 : Y ′
3〉(q0) ,

...

〈Y ′
m : Y ′

m〉(q0) = lc(Y ′
1(q0), . . . , Y

′
m(q0)) + a

′
mm〈Y ′

2 : Y ′
3〉(q0) ,

〈Y ′
2 : Y ′

3〉(q0) = a′23〈Y ′
2 : Y ′

3〉(q0) ,
〈Y ′

2 : Y ′
4〉(q0) = lc(Y ′

1(q0), . . . , Y
′
m(q0)) + a

′
24〈Y ′

2 : Y ′
3〉(q0) ,

...

〈Y ′
m−1 : Y ′

m〉(q0) = lc(Y ′
1(q0), . . . , Y

′
m(q0)) + a

′
m−1m〈Y ′

2 : Y ′
3〉(q0) ,

where we have denoted with a slight abuse of notation by a′jk the new coefficients
corresponding to 〈Y ′

2 : Y ′
3〉. Consequently, we can now reproduce the preceding dis-

cussion, but with the m−1 vector fields {Y ′
2 , . . . , Y

′
m}. That is, we look for one change

of basis B′ in the vector fields {Y ′
2 , . . . , Y

′
m} such that the new ones {Y ′′

2 , . . . , Y
′′
m} to-

gether with Y ′
1 verify the sufficient conditions for STLCC at q0. Accordingly, we must

consider the vanishing of the new polynomials

m∑
k=2

b2jk
′
a′kk + 2

∑
2≤k<l≤m

b′jkb
′
jla

′
kl = 0 , 2 ≤ j ≤ m.

The cases in which the last radicand (a
(m−1)
sm−1sm

′
)2−a(m−1)

sm−1sm−1

′
a
(m−1)
smsm

′
does not vanish

are treated as before (Cases A1 and A2). When it vanishes, we obtain a new basis
{Y ′′

1 = Y ′
1 , Y

′′
2 , . . . , Y

′′
m} such that

〈Y ′′
1 : Y ′′

1 〉(q0) , 〈Y ′′
2 : Y ′′

2 〉(q0) ∈ Dq0 ,
〈Y ′′
j : Y ′′

j 〉(q0) = lc(Y ′′
1 (q0), . . . , Y

′′
m(q0)) + c

′
jj〈Y ′

2 : Y ′
3〉(q0) , 3 ≤ j ≤ m,

〈Y ′′
1 : Y ′′

j 〉 , 〈Y ′′
2 : Y ′′

j+1〉 ∈ Dq0 , 2 ≤ j ≤ m,
where there could exist some 3 ≤ j ≤ m such that c′jj �= 0. By an induction procedure,
we finally come to consider discarding the case of a certain basis {Z1 = Y ′

1 , Z2 = Y ′′
2 ,
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. . . , Zm} of D satisfying 〈Zi : Zj〉(q0) ∈ span{Z1(q0), . . . , Zm(q0)}, 1 ≤ i < j ≤
m, and the sufficient conditions for STLCC at q0 for Z1, . . . , Zm−1, but such that
〈Zm : Zm〉(q0) /∈ span{Z1(q0), . . . , Zm(q0)}. Similarly as we have done above, the
application of Lemma 5.1 with the vector fields {Z1, . . . , Zm, 〈Zm : Zm〉} implies that
the system is not controllable at q0, yielding a contradiction.

Case B. Finally, we prove that if there exists an i ≥ 2 such that a
(i)
kk = 0

for all k ∈ {1, . . . ,m} \ {s1, . . . , si−1}, then either the desired change of basis is
straightforward or an intermediate step can be done that reduces the problem to
considering i− 1 input vector fields.

In this case, the polynomial∑
k �=s1,...,si−1

b2jka
(i)
kk + 2

∑
k<l, k,l �=s1,...,si−1

bjkbjla
(i)
kl

takes the form

2
∑

k<l, k,l �=s1,...,si−1

bjkbjla
(i)
kl .(5.9)

If any of the a
(i)
kl are different from zero, then it is clear that we can choose the

bjk, k /∈ {s1, . . . , si−1}, such that (5.9) is positive. Then, reasoning as before, we
find a regular matrix B yielding the desired change of basis. If this is not the case,

i.e., a
(i)
kl = 0, for all k < l, k, l /∈ {s1, . . . , si−1}, we can do the following. Choose

{(bjk)1≤j≤m}, with k /∈ {s1, . . . , si−1}, m− i+ 1 linearly independent vectors in R
m,

such that the minor {bjk}k �=s1,...,si−1

1≤j≤m−i+1 is regular. Now, let j in (5.8) vary between
1 and m− i+ 1; that is, take

bjsi−1 = −
∑m
k �=s1,...,si−1

bjka
(i−1)
si−1k

a
(i−1)
si−1si−1

,

bjsi−2
= −

∑m
k �=s1,...,si−2

bjka
(i−2)
si−2k

a
(i−2)
si−2si−2

, . . . , bjs1 = −
∑
k �=s1 bjkaks1
as1s1

,(5.10)

for 1 ≤ j ≤ m − i + 1. Finally, for j > m − i + 1, we select the bjk such that the
matrix B is nonsingular. In this manner, in a unique step, we would change to a new
basis {Y ′

1 , . . . , Y
′
m} verifying

〈Y ′
1 : Y ′

1〉(q0), . . . , 〈Y ′
m−i+1 : Y ′

m−i+1〉(q0) ∈ Dq0 ,
〈Y ′
j : Y ′

j 〉(q0) = lc(Y ′
1(q0), . . . , Y

′
m(q0)) + a

′
jj〈Y1 : Y2〉(q0) , m− i+ 2 ≤ j ≤ m,

〈Y ′
k : Y ′

l 〉(q0) ∈ Dq0 , k < l, 1 ≤ k ≤ m− i+ 1 ,

with possibly some of the (a′jj)m−i+1≤j≤m being different from zero. Now, the above
discussion can be redone in this context to assert the validity of the theorem. That is,
we have to look for a change of basis B′ in the vector fields {Y ′

m−i+2, . . . , Y
′
m} such that

the new ones, {Y ′′
m−i+2, . . . , Y

′′
m}, together with {Y ′

1 , . . . , Y
′
m−i+1}, verify the sufficient

conditions for STLCC at q0. To find the change of basis for {Y ′
m−i+2, . . . , Y

′
m}, we

have to consider the corresponding versions of Cases A and B. If we repeatedly fall
into Case B, then we come to discard the same possibility that we encountered in the
treatment of Case A3, which can be done again by means of Lemma 5.1.
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To recap, the steps of the proof can be summarized as follows (see Figure 5.1).

First, we have considered the case when there exists for all i an si such that a
(i)
sisi �= 0.

We have seen that this case can be subdivided into three: one (Case A1) ensuring the
desired change of basis, another one (Case A2) in which either one obtains the basis
or one contradicts the hypothesis of STLCC, and a third one (Case A3), where an
intermediate change of basis is performed that allows us to focus on the search for a
change of basis for m− 1 of the new vector fields. Then, under the same assumption

on the new coefficients, a′jk (i.e., for all i, there exists an si such that a
(i)
sisi

′ �= 0), we
can reproduce the former discussion. We cannot repeatedly fall into Case A3, since
we would contradict the controllability assumption. Finally, we have treated the case
when this type of “circular” process is broken (Case B); that is, when there exists

an i such that a
(i)
kk = 0 for all k �= s1, . . . , si−1. What we have shown then is that this

leads to either a new basis of input vector fields satisfying the sufficient conditions
for STLCC or a reduced situation where we can at the same time “get rid” of the
problems associated with m− i+ 1 vector fields.

Remark 5.3. Notice that the proof of this result can be reproduced for the
corresponding notions of accessibility and controllability at zero velocity. Indeed, a
mechanical control system of the form (2.2) with m = n − 1, which is STLC at q0
and zero velocity is, in particular, STLCC at q0. Then, Theorem 5.2 implies that
there exists a basis of input vector fields Y satisfying the sufficient conditions of
Theorem 3.2, so the same result is also valid for local controllability at zero velocity.

Corollary 5.4. Let Q be a three-dimensional analytic manifold and let Y1, Y2

be analytic vector fields on Q. Consider the control system (5.1) and assume that it
is LCA at q0 ∈ Q. Let A be the 2× 2 symmetric matrix whose elements are given by

〈Y1 : Y1〉(q0) = lc(Y1(q0), Y2(q0)) + a11〈Y1 : Y2〉(q0) ,
〈Y2 : Y2〉(q0) = lc(Y1(q0), Y2(q0)) + a22〈Y1 : Y2〉(q0) ,
〈Y1 : Y2〉(q0) = a12〈Y1 : Y2〉(q0) .

Then the system is locally configuration controllable at q0 if and only if detA < 0.
Proof. The result follows from the proof of Theorem 5.2 by noting that detA < 0

corresponds to Case A1, detA > 0 to Case A2, and detA = 0 to Case A3.
Remark 5.5. Note that Corollary 5.4 together with Theorem 5.2 completely

characterize the configuration controllability properties of mechanical control systems
with three degrees of freedom, since fully actuated systems are obviously STLCC.

6. Examples.

6.1. The planar rigid body. Consider a planar rigid body [24]. Fix a point
P ∈ R

2 and let {e1, e2} be the standard orthonormal frame at that point. Let {d1, d2}
be an orthonormal frame attached to the body at its center of mass. The configuration
manifold is then SE (2), with coordinates (x, y, θ), where (x, y) describe the position of
the center of mass and θ the orientation of the frame {d1, d2} with respect to {e1, e2}.

The inputs of the system consist of a force F 1 applied at a distance h from the
center of mass CM and a torque, F 2, about CM (see Figure 6.1). In coordinates, the
input forces are given by

F 1 = −sin θdx+ cos θdy − hdθ , F 2 = dθ .

The Riemannian metric is

g = mdx⊗ dx+mdy ⊗ dy + Jdθ ⊗ dθ ,
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e2

e1P

(x; y; �)

CMF
1

F
10

F
2

h

Fig. 6.1. The planar rigid body.

where m is the mass of the body and J its moment of inertia.
The input vector fields can be computed via �−1

g as

Y1 = − sin θ

m

∂

∂x
+

cos θ

m

∂

∂y
− h
J

∂

∂θ
dθ , Y2 =

1

J

∂

∂θ
.

One can easily show that the planar body is LCA [24]. However, the inputs Y1, Y2

fail to satisfy the sufficient conditions for STLCC. In fact,

〈Y1 : Y1〉 = 2h cos θ

mJ

∂

∂x
+

2h sin θ

mJ

∂

∂y
,

〈Y1 : Y2〉 = −cos θ

mJ

∂

∂x
− sin θ

mJ

∂

∂y
,

〈Y2 : Y2〉 = 0 .

Therefore, {Y1, Y2, 〈Y1 : Y2〉} are linearly independent and 〈Y1 : Y1〉 = −2h〈Y1 : Y2〉.
Theorem 5.2 ensures STLCC if and only if there exists a basis of input vector fields
satisfying the sufficient conditions. We have that

detA = det

(−2h 1
1 0

)
= −1 < 0 ,

and consequently, by Corollary 5.4, the system is locally configuration controllable.
Indeed, this example falls into Case A1 of the proof of Theorem 5.2. Accordingly, we
obtain the change of basis Y ′

1 = Y1 + hY2, Y
′
2 = Y2. This yields

〈Y ′
1 : Y ′

1〉 = 〈Y ′
2 : Y ′

2〉 = 0 , 〈Y ′
1 : Y ′

2〉 = 〈Y1 : Y2〉 ,

which satisfies the sufficient conditions for STLCC. The new input vector field pre-
cisely corresponds to the force F 1′ in Figure 6.1.

6.2. A simple example. The following example does not necessarily corre-
spond to a physical example, but it illustrates the proof of Theorem 5.2. Consider a
mechanical control system on R

3, with coordinates (x, y, z). The Riemannian metric
is given by

g = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz
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and the input vector fields are

Y1 = z
∂

∂x
+
∂

∂y
+

1

4

∂

∂z
, Y2 = y

∂

∂x
+

1

4

∂

∂y
− 1

2

∂

∂z
.

In coordinates, we have the following control equations:

ẍ = u1z + u2y , ÿ = u1 +
u2

4
, z̈ =

u1

4
− u2

2
.(6.1)

Since

〈Y1 : Y1〉 = 〈Y1 : Y2〉 = 〈Y2 : Y2〉 = 1

2

∂

∂x
,

we deduce that span{Y1(q), Y2(q), 〈Y1 : Y2〉(q)} = TqQ for all q ∈ Q and the sys-
tem (6.1) is LCA. However, Corollary 5.4 implies that it is not STLCC, since
detA = 0. Going through the proof of Theorem 5.2, we see that this example falls
into Case A3. Choosing the change of basis

B =

(−1 1
1 1

)
,

we get the new input vector fields Y ′
1 = −Y1 + Y2 and Y ′

2 = Y1 + Y2. Now, we have

〈Y ′
1 : Y ′

1〉 = 0 , 〈Y ′
1 : Y ′

2〉 = 0 , 〈Y ′
2 : Y ′

2〉 = 2
∂

∂x
.

-2

-1

0

1

2

y

-2

-1

0

1

2

z

-4

-2

0

2

x

-2

-1

0

1
y

Fig. 6.2. The level surface φ(x, y, z) = 0.

We can compute explicitly the function φ of Lemma 5.1 for this example. The
flows of Z1 = Y ′

1 , Z2 = Y ′
2 , Z3 = −〈Y ′

2 : Y ′
2〉 are given by

Ψ1(t)(x, y, z) = (x+ (y − z)t, y − 3t/4, z − 3t/4) ,

Ψ2(t)(x, y, z) = (x+ (y + z)t+ t2/2, y + 5t/4, z − t/4) ,
Ψ3(t)(x, y, z) = (x− 2t, y, z) .
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Letting (x0, y0, z0) be an arbitrary point, one verifies

Ψ1(t1) ◦Ψ2(t2) ◦Ψ3(t3)(x0, y0, z0)

=

(
x0 − 2t3 +

(
y0 + z0 +

1

2
t2

)
t2 + t1

(
y0 − z0 − 3

2
t2

)
,

y0 − 3

4
t1 +

5

4
t2, z0 − 3

4
t1 − 1

4
t2

)
.

We may solve for φ(x, y, z) = t3 as

φ(x, y, z)

=
1

18

(−9(x− x0) + 4(y2 − yy0 + yz − 5y0z − 2z2 + yz0 + 3y0z0 + 5zz0 − 3z20)
)
.

In Figure 6.2, we show the level set φ(x, y, z) = 0 for (x0, y0, z0) = (0, 0, 0). The
locally accessible configurations from (0, 0, 0) are contained below the surface, where
φ(x, y, z) ≥ 0.

7. Conclusions. In this paper, we have built on previous results on controlla-
bility and series expansions for the evolution of mechanical control systems within the
affine connection formalism to demonstrate that the sufficient conditions encountered
in [24] for STLCC are also necessary when the configuration manifold is n-dimensional
and the system is actuated by n− 1 inputs, in the sense that there exists some basis
of input vector fields that verifies them.

However n − 1 controls is a special case and is the simplest case next to fully
actuated systems, which are always STLCC. For an arbitrary number of inputs,
higher-order controllability will necessarily play a key role. Future research will be
devoted to investigating the validity of the controllability conjecture in the full general
case.

Appendix A. A simple lemma.

Lemma A.1. With the notation of Theorem 5.2, assume that (a
(m−1)
sm−1sm)2 −

a
(m−1)
sm−1sm−1a

(m−1)
smsm = 0. Then the coefficients Ck given by (5.8) verify

m∑
k=1

aklCk = 0 , 1 ≤ l ≤ m.

Proof. From (5.8), one can obtain the following recurrence formula for the coeffi-
cients Ck:

Csm = 1 , Csj = − 1

a
(j)
sjsj


 m∑
i=j+1

a(j)
sisjCsi


 , 1 ≤ j ≤ m− 1 .(A.1)

Let us denote

Σ(l) =
m∑
k=1

aklCk .

It is easy to see that Σ(s1) = 0. Indeed, using (A.1), we have that

Σ(s1) = as1s1Cs1 +

m∑
i=2

asis1Csi = −
m∑
i=2

asis1Csi +

m∑
i=2

asis1Csi = 0 .
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To prove the result for the remaining indices we can do the following. First, note that

as1sjCs1 = −as1sj
as1s1

(
m∑
i=2

asisjCsi

)
= −

m∑
i=2

(
as1sjasisj
as1s1

)
Csi .

Then, substituting in Σ(sj), we get

Σ(sj) = −
m∑
i=2

(
as1sjasisj
as1s1

)
Csi +

m∑
i=2

asisjCsi

=

m∑
i=2

(
asisjas1s1 − as1sjasisj

as1s1

)
Csi = −

1

as1s1

(
m∑
i=2

a(2)
sisjCsi

)
,

where we have used the definition (5.5) for the coefficients a
(j)
kl . This procedure can

be iterated to obtain the general expression

Σ(sj) =
(−1)k

as1s1a
(2)
s2s2 . . . a

(k)
sksk

(
m∑

i=k+1

a(k+1)
sisj Csi

)
,(A.2)

which is valid for any 1 ≤ k ≤ m− 2.
Now, consider the cases 2 ≤ j ≤ m− 1. Take k = j − 1. Then, using (A.2),

Σ(sj) =
(−1)j−1

as1s1a
(2)
s2s2 . . . a

(j−1)
sj−1sj−1


 m∑
i=j

a(j)
sisjCsi




=
(−1)j−1

as1s1a
(2)
s2s2 . . . a

(j−1)
sj−1sj−1


a(j)

sjsjCsj +

m∑
i=j+1

a(j)
sisjCsi


 = 0 ,

where in the last equality we have used (A.1). Finally, if j = m, we have that

Σ(sm) =
(−1)m−2

as1s1a
(2)
s2s2 . . . a

(m−2)
sm−2sm−2

(
a(m−1)
sm−1smCsm−1

+ a(m−1)
smsm Csm

)

=
(−1)m−2

as1s1a
(2)
s2s2 . . . a

(m−2)
sm−2sm−2

(
− (a

(m−1)
sm−1sm)2

a
(m−1)
sm−1sm−1

+ a(m−1)
smsm

)
.

From the hypothesis (a
(m−1)
sm−1sm)2−a(m−1)

sm−1sm−1a
(m−1)
smsm = 0, we conclude that Σ(sm) = 0,

and this completes the proof.
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Abstract. The present paper introduces a new definition of local approximation for ordinary
differential equations locally around an equilibrium point. This definition generalizes the well-known
linear and homogeneous approximations. The approach is based on approximating trajectories near
the origin. This concept of local approximation is applied to the study of local uniform asymptotic
stability, leading to alternative proofs for and extensions of several existing stability results.
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1. Introduction. It is of course well-known that in general the solutions of a
nonlinear differential equation cannot be obtained in closed form. Accordingly, various
methods have been developed to approximate these solutions. Apart from numerical
integration techniques, several asymptotic methods are available. These asymptotic
methods typically reflect the structural properties possessed by the differential equa-
tion under consideration. Averaging techniques [24], for example, are applicable when
the time variation in the constitutive relation is much faster then the rate of change
of the state with time. Singular perturbation techniques [10] may be applied when
some components of the state evolve on a much faster time scale than other state
components.

In a standard setting, asymptotic methods are concerned with differential equa-
tions depending on a small parameter. Asymptotic methods enable us to approximate
the solutions of this equation by the solutions of a simpler equation (or several simpler
equations). Standard results in this context are concerned with closeness properties
of solutions. Typically, it is proven that solutions of the original equation converge
uniformly on compact time-intervals to solutions of the simpler, limiting equation as
the parameter tends to zero.

A different class of results that has been obtained in the literature on asymptotic
methods is concerned with stability properties. The subject of these studies is the
extent to which stability properties of the original differential equation (for small
enough values of the parameter) may be inferred from stability properties of the
simpler, limiting system. These results are typically obtained by means of Lyapunov
techniques, as in [9, 13, 20], or by means of generalized Lyapunov techniques, as in
[4] and [1, 23, 22].

In previous papers [17, 18] we have initiated a new approach to obtain such sta-
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bility results. This approach is centered around the observation that many of these
stability results may be obtained directly as a consequence of the closeness property
for solutions, even if the convergence is only proven to be uniform on compact time-
intervals. In other words, stated as a general principle, it is possible to deduce stability
properties for a dynamical system based upon an approximate analysis of its trajec-
tories, even if this approximation is only proven to be valid on finite time-intervals.
Important features of the present approach are that it only makes use of elemen-
tary mathematical techniques and that, in contrast with other approaches based on
(generalized) Lyapunov techniques, the present approach does not rely on converse
Lyapunov theorems. Consequently, the present approach lends itself naturally to
generalizations to differential equations with delay and to the study of input-to-state
stability. (Such extensions are being studied in [19] and [29].)

The present work is a continuation of this line of research initiated in [17, 18].
In those papers, the original system, whose stability properties are to be analyzed,
depends on a small parameter—recall that this is the natural setting for asymptotic
methods. In the present paper we show that the presence of a small parameter is not
always needed; the general principle mentioned above may also be applicable when the
original system does not depend on a small parameter. In this case, instead of assum-
ing the presence of a small parameter, we typically impose appropriate homogeneity
assumptions on the right-hand side (RHS) of the differential equation. The stability
property that will be studied in this case is local uniform asymptotic stability.

The paper is organized as follows. After the preliminaries in section 2, we present
in section 3 the main theorem of the paper. This theorem relates closeness properties
for trajectories with stability properties. It states that, if the solutions of an ordinary
differential equation starting near the origin (which is assumed to be an equilibrium
point) are sufficiently close (in some well-defined sense) to the solutions of another
differential equation, which has a locally uniformly asymptotically stable equilibrium
point at the origin, then the origin of the original system is also locally uniformly
asymptotically stable. This result leads to the introduction of a new notion of local
approximation for ordinary differential equations, whose definition is based on approx-
imating trajectories near the origin. This new notion generalizes the well-known linear
and homogeneous approximations. As an immediate consequence of our main result,
we obtain that the null-solution of a given system is locally uniformly asymptotically
stable if the origin of its local approximation is locally uniformly asymptotically sta-
ble. In section 4 we show how this concept of local approximation relates to more
standard closeness results for differential equations depending on a small parameter.
This relation is made explicit by means of a rescaling mechanism. Applications are
given in section 5, where it is shown how the general theory of the paper enables
us to recover and extend several known stability results. We conclude the paper in
section 6.

We end this introduction with some references to related work. A rescaling mech-
anism similar to the present one has been used, for example, in [3] and [30, p. 227]
in the context of, respectively, bifurcation analysis and renormalization techniques.
The rescaling mechanism featuring in the present paper is more general, since we will
associate different scaling factors with different coordinate axes. The fact that the
presence of a small parameter is not needed in order to obtain stability results was
already observed in [28] and [23] in the context of averaging theory. These references
make use of, respectively, center manifold theory and generalized Lyapunov theorems.
Related but independent work may be found in [13] and [25]. The first reference makes
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use of Lyapunov theory; the second studies periodic differential equations (with pe-
riod, say, 1) by means of nonlinear Floquet theory, the time-1-map being calculated
by means of Lie and chronologico-algebraic tools.

2. Preliminary definitions. The state space of all dynamical systems in the
present paper is R

n with n ∈ N.

2.1. Homogeneity. Homogeneity refers to symmetry properties with respect to
a family of dilation mappings. Homogeneity plays a prominent role in various aspects
of nonlinear control theory. See, for example, [6, 8, 14, 20] for some applications in
feedback control. In the present paper, homogeneity will play an important role in
section 5, where the general theory of the paper is applied to particular examples.

Consider an n-tuple r = (r1, . . . , rn) ∈ ((0, ∞))n. We define the family of dilation
mappings δrλ (λ ∈ (0, ∞)) as

δrλ : R
n → R

n : x �→ δrλx = (λr1x1, . . . , λ
rnxn).(1)

A continuous function h : R
n → R is r-homogeneous of degree m ∈ [0, ∞) if h(δrλx) =

λmh(x) for all λ ∈ (0, ∞) and x ∈ R
n. A continuous function f : R

n → R
n is r-

homogeneous of order τ ∈ [0, ∞) if f(δrλx) = λτδrλf(x) for all λ ∈ (0, ∞) and x ∈ R
n.

An r-homogeneous norm ρ is a continuous function ρ : R
n → R which is zero at the

origin, strictly positive elsewhere, and r-homogeneous of degree 1.
Remark 1. A continuous function f : R

n → R
n which is r-homogeneous of order

τ ≥ 0 will typically not be locally Lipschitz at the origin if τ < max{r1, . . . , rn} −
min{r1, . . . , rn}. When f is continuously differentiable on R

n \ {0}, this follows from
the homogeneity properties of the partial derivatives:

∂fi
∂xj

(δrλx) = λτ+ri−rj
∂fi
∂xj

(x)(2)

for all x ∈ R
n \ {0}, λ ∈ (0, ∞), and i, j ∈ {1, . . . , n}. Indeed, if τ + ri − rj < 0

for some pair of indices (i, j), then ∂fi
∂xj

(δrλx) may blow up as λ ↓ 0 with x fixed. In

the statements of the various results in the paper, we will therefore always take into
account the possibility of the vectorfield being non-Lipschitz at the origin.

Remark 2. An r-homogeneous norm is not necessarily a norm in the topologi-
cal sense since it might not satisfy the triangle inequality. For some considerations,
however, an r-homogeneous norm ρ and the Euclidean norm ‖ · ‖ may be used inter-
changeably. For example, it is easy to see that

ρ(x)→ 0⇔ ‖x‖ → 0,(3)

ρ(x)→∞⇔ ‖x‖ → ∞.(4)

In these cases it may be convenient to pass from an r-homogeneous norm to the
Euclidean norm, since the Euclidean norm does satisfy the triangle inequality.

2.2. Dynamical systems and flows. All dynamical systems in the present
paper are described by ordinary differential equations

ẋ = f(t, x),

where, by assumption, f is a continuous map from R×R
n to R

n and ẋ = f(t, x) has the
uniqueness property of solutions.1 Recall that existence of solutions is guaranteed by

1That is, for every (t0, x0) ∈ R × R
n, there is a solution ξ : Dom (ξ) → R

n of ẋ = f(t, x) with
ξ(t0) = x0 such that (i) Dom (ξ) is an open interval containing t0 and (ii) for any other solution
ξ : Dom (ξ) → R

n of ẋ = f(t, x) with ξ(t0) = x0, (a) Dom (ξ) ⊂ Dom(ξ) and (b) ξ and ξ coincide on
Dom (ξ). We call ξ the trajectory of this system passing through state x0 at time t0.
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continuity of f . These dynamical systems will be referred to as admissible dynamical
systems on R

n. We do not assume completeness of solutions; that is, we do not exclude
finite escape times. Before we explicitly state sufficient conditions for uniqueness of
solutions, we first introduce an interesting class of functions from R× R

n to R
n.

Definition 2.1 (class-CLB function). A function f : R × R
n → R

n : (t, x) �→
f(t, x) is a class-CLB function if the following three conditions are all satisfied:

1. f is continuous in (t, x);
2. f is locally Lipschitz in x ∈ R

n \ {0} uniformly with respect to t ∈ R; that is,
for each compact set K ⊂ R

n \ {0}, there exists k ∈ [0, ∞) such that

‖f(t, x1)− f(t, x2)‖ ≤ k‖x1 − x2‖ ∀t ∈ R ∀x1, x2 ∈ K;

3. f is bounded in t ∈ R uniformly with respect to x in compact subsets of R
n;

that is, for each compact set K ⊂ R
n, there exists M ∈ [0, ∞) such that

‖f(t, x)‖ ≤M ∀t ∈ R ∀x ∈ K.

The following lemma provides sufficient conditions for uniqueness of solutions. It
will be used in various proofs and may be of independent interest.

Lemma 2.2. Let r ∈ ((0, ∞))n and f : R× R
n → R

n : (t, x) �→ f(t, x). Assume
that

(a) f ∈ CLB;
(b) δr1/λf(t, δ

r
λx) remains bounded as λ ↓ 0, uniformly with respect to t ∈ R and

x in compact subsets of R
n.

Then the ordinary differential equation

ẋ = f(t, x)(5)

has the uniqueness property of solutions.
Assumption (a) of the lemma implies uniqueness of solutions in the region R

n\{0}
of the state space, but does not exclude nonunique behavior at the origin. The
possibility of nonuniqueness at the origin is ruled out by assumption (b). This may
be seen as follows. First of all, notice that the origin is an equilibrium point by
continuity of f and assumption (b). Suppose that the null solution is not unique, say,
in forward time. That is, assume the existence of a solution t �→ ζ(t) that starts in
the origin and leaves the origin in forward time. It is not difficult to see that this
implies that sup{||(d/dt)δr1/λζ(t)|| : δr1/λζ(t) ∈ K} → ∞ as λ ↓ 0, where K is a small

neighborhood around the origin. This yields a contradiction, since t �→ δr1/λζ(t) is a

solution of ẋ = δr1/λf(t, δ
r
λx), and the RHS of this equation is assumed to be bounded

as λ ↓ 0 as stated in assumption (b). A rigorous proof along these lines is given in
Appendix A.

Remark 3. Lemma 2.2 is a modest extension of [14, Lemma 2]. In that reference,
assumption (b) is replaced by the stronger assumption that f is r-homogeneous of
order 0 in x. The present result includes this as a particular case but extends it, for
example, to functions f which are r-homogeneous of order τ ≥ 0 in x, or to sums of
functions which are r-homogeneous of various nonnegative orders.

Consider an admissible dynamical system on R
n and let φ(t, t0, x0) be the tra-

jectory of this system passing through state x0 at time t0 evaluated at time t. The
function φ : (t, t0, x0) �→ φ(t, t0, x0) is the flow of this system. The domain of φ is
open and φ is continuous on its domain [5, Chapter 5, Theorem 2.1].
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Let r ∈ ((0, ∞))n and τ ∈ [0, ∞). An admissible dynamical system ẋ = f(t, x)
on R

n is r-homogeneous of order τ if f is r-homogeneous of order τ in x for all t. An
admissible dynamical system ẋ = f(t, x) on R

n and its corresponding flow φ are said
to have the (r, τ)-scaling property of trajectories if

φ(t, t0, δ
r
λx0) = δrλφ(λ

τ t, λτ t0, x0).(6)

This means that, modulo a scaling of time, δrλ maps trajectories to trajectories. As
may be expected, there is a relationship between homogeneity properties of a vector-
field and scaling properties of the corresponding trajectories. An admissible dynamical
system ẋ = f(t, x) on R

n that is r-homogeneous of order 0 has the (r, 0)-scaling prop-
erty of trajectories, and an admissible dynamical system on R

n that is r-homogeneous
of order τ > 0 has the (r, τ)-scaling property of trajectories if the differential equation
does not depend explicitly on time. These statements may be proven by verifying
that the RHS of (6) viewed as a function of t is the solution of ẋ = f(t, x) that passes
through state δrλx0 at time t0. It is important to notice that admissible dynamical
systems on R

n that are r-homogeneous of order τ > 0 in general do not have the
(r, τ)-scaling property of trajectories if the differential equation depends explicitly on
time.

3. Approximation of dynamical systems. We start this section with the
main theorem of the paper: consider two admissible dynamical systems on R

n having
an equilibrium point at the origin,

ẋ = f(t, x)(7)

and

ẋ = g(t, x).(8)

Assume that (8) has the (r, τ)-scaling property of trajectories for some r ∈ ((0, ∞))n

and τ ≥ 0, and assume that the origin of (8) is locally uniformly asymptotically
stable (LUAS). Theorem 3.1 states that, if trajectories of (7) that start near the
origin are sufficiently close to trajectories of (8), then the origin of (7) is also LUAS.
This theorem is the basis for all further result of the paper.

Theorem 3.1. Consider an admissible dynamical system ẋ = g(t, x) on R
n with

flow ψ having an equilibrium point at the origin. Consider also r ∈ ((0, ∞))n, τ ≥ 0,
and an r-homogeneous norm ρ. Assume that

(a) ẋ = g(t, x) has the (r, τ)-scaling property of trajectories, and
(b) the origin of ẋ = g(t, x) is LUAS.

Then there exist T ∈ [0, ∞) and d ∈ (0, ∞) such that for every admissible dynamical
system ẋ = f(t, x) on R

n with flow φ having an equilibrium point at the origin, the
following holds: if there exists σ ∈ (0, ∞) such that for all t0 ∈ R and x0 ∈ R

n with
0 < ρ(x0) ≤ σ{

φ(t, t0, x0) exists ∀t ∈ [t0, t0 + T
ρ(x0)τ

],

ρ(φ(t, t0, x0)− ψ(t, t0, x0)) < ρ(x0)d ∀t ∈ [t0, t0 + T
ρ(x0)τ

],
(9)

then the origin of ẋ = f(t, x) is LUAS, and {x0 ∈ R
n : ρ(x0) ≤ σ} is contained in its

region of attraction.
Proof. We begin with studying the implications of assumptions (a) and (b) for

the flow ψ of ẋ = g(t, x). Since the origin of ẋ = g(t, x) is assumed to be a LUAS
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equilibrium point, there exist c ∈ (0, ∞), m ∈ [1, ∞), and T ∈ (0, ∞) such that

∀t0 ∈ R, ∀x0 ∈ R
n with ρ(x0) = c, ρ(ψ(t, t0, x0)) ≤

{
cm ∀t ≥ t0,
c 1

2 ∀t ≥ t0 +
T
cτ .

(10)

(The particular choice for the constants cm, c/2, and T/cτ in (10) is inspired by
expression (11), which we are about to prove.) We show that, by the scaling property
of trajectories of ψ, (10) implies

∀t0 ∈ R, ∀x0 ∈ R
n with x0 �= 0, ρ(ψ(t, t0, x0)) ≤

{
ρ(x0)m ∀t ≥ t0,
ρ(x0)

1
2 ∀t ≥ t0 +

T
ρ(x0)τ

.

(11)

Indeed, for x0 �= 0,

ρ(ψ(t, t0, x0))

may be rewritten as

ρ
(
ψ(t, t0, δ

r
ρ(x0)/c

δrc/ρ(x0)
x0)
)

or, by the scaling property of trajectories of ψ, as

ρ
(
δrρ(x0)/c

ψ
(
(ρ(x0)/c)

τ t, (ρ(x0)/c)
τ t0, δ

r
c/ρ(x0)

x0

))

and, since ρ is r-homogeneous of degree 1, as

ρ(x0)

c
ρ
(
ψ
(
(ρ(x0)/c)

τ t, (ρ(x0)/c)
τ t0, δ

r
c/ρ(x0)

x0

))
.

Since ρ(δrc/ρ(x0)
x0) = c, we apply (10) and obtain

∀t0 ∈ R, ∀x0 ∈ R
n with x0 �= 0,

ρ(ψ(t, t0, x0)) =
ρ(x0)

c
ρ
(
ψ
(
(ρ(x0)/c)

τ t, (ρ(x0)/c)
τ t0, δ

r
c/ρ(x0)

x0

))

≤
{

ρ(x0)
c cm ∀ (ρ(x0)/c)

τ t ≥ (ρ(x0)/c)
τ t0,

ρ(x0)
c c 1

2 ∀ (ρ(x0)/c)
τ t ≥ (ρ(x0)/c)

τ t0 +
T
cτ ,

yielding (11).
Next we derive some “triangle-like” inequalities for the r-homogeneous norm ρ.

Let d ∈ (0, ∞) be such that

∀x1, x2 ∈ R
n,

ρ(x1) ≤ 1
2

ρ(x2 − x1) < d

}
⇒ ρ(x2) ≤ 3

4
.(12)
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Equation (12) implies that for any λ ∈ (0, ∞)

∀x1, x2 ∈ R
n,

ρ(x1) ≤ λ 1
2

ρ(x2 − x1) < λd

}
⇒ ρ(x2) ≤ λ

3

4
.(13)

Indeed, ρ(x1) ≤ λ 1
2 iff ρ

(
δr1/λx1

) ≤ 1
2 since ρ is r-homogeneous of degree 1. Similarly,

ρ(x2 − x1) < λd iff ρ
(
δr1/λ(x2 − x1)

)
< d, which, by linearity of δrλ, is equivalent to

ρ
(
δr1/λx2 − δr1/λx1

)
< d. Therefore, it follows from (12) that ρ

(
δr1/λx2

) ≤ 3
4 . This, in

turn, is equivalent to ρ(x2) ≤ λ 3
4 , from which (13) follows. Let M ∈ (1, ∞) be such

that

∀x1, x2 ∈ R
n,

ρ(x1) ≤ m
ρ(x1 − x2) < d

}
⇒ ρ(x2) ≤M.(14)

As above, this implies that for any λ ∈ (0, ∞)

∀x1, x2 ∈ R
n,

ρ(x1) ≤ λm
ρ(x1 − x2) < λd

}
⇒ ρ(x2) ≤ λM.(15)

Notice that the numbers T ∈ [0, ∞) and d ∈ (0, ∞) we have introduced so far
are independent of ẋ = f(t, x), as required in the statement of the theorem. We now
turn our attention to ẋ = f(t, x) and assume that there exists σ ∈ (0, ∞) such that

(16) ∀t0 ∈ R, ∀x0 ∈ R
n with 0 < ρ(x0) ≤ σ,{

φ(t, t0, x0) exists ∀t ∈ [t0, t0 + T
ρ(x0)τ

],

ρ(φ(t, t0, x0)− ψ(t, t0, x0)) < ρ(x0)d ∀t ∈ [t0, t0 + T
ρ(x0)τ

].

We prove that this implies LUAS for the origin of ẋ = f(t, x). Indeed, estimates (11),
(13), (15), and (16) yield

(17) ∀t0 ∈ R, ∀x0 ∈ R
n with 0 < ρ(x0) ≤ σ,

ρ(φ(t, t0, x0)) ≤
{

ρ(x0)M ∀t ∈ [t0, t0 + T
ρ(x0)τ

],

ρ(x0)
3
4 for t = t0 +

T
ρ(x0)τ

.

The first inequality in (17) gives an upper bound for ρ(φ(t, t0, x0)) on the inter-
val [t0, t0 + T

ρ(x0)τ
]. The second inequality says that, after a time T

ρ(x0)τ
, the r-

homogeneous norm ρ has at least decreased with a factor 3
4 along trajectories of the

system with initial state 0 < ρ(x0) ≤ σ. We may then apply estimate (17) again
with φ(t0 +

T
ρ(x0)τ

, t0, x0) as the new initial state, and so forth. This process of iter-

ated applications of (17) may be formalized as follows: associated with a particular
t0 ∈ R and x0 ∈ R

n satisfying 0 < ρ(x0) ≤ σ we introduce a sequence of times
tt0,x0

0 < tt0,x0

1 < tt0,x0

2 < · · · → ∞ according to

tt0,x0

0 = t0,

tt0,x0

i − tt0,x0

i−1 = T
ρ(x0)τ

(( 4
3 )
τ )i−1 ∀i ∈ N.

Then, applying (17) iteratively yields

(18) ∀t0 ∈ R, ∀x0 ∈ R
n with 0 < ρ(x0) ≤ σ,

ρ(φ(t, t0, x0)) ≤ ρ(x0)(
3
4 )
i−1M ∀t ∈ [tt0,x0

i−1 , tt0,x0

i ] ∀i ∈ N.
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This proves that the equilibrium point x = 0 of ẋ = f(t, x) is LUAS and that {x0 ∈
R
n : ρ(x0) ≤ σ} is contained in its region of attraction.

Remark 4. If τ = 0, then all the tt0,x0

i introduced in the proof above are equidistant
with distance T . Estimate (18) then implies that the equilibrium point x = 0 of
ẋ = f(t, x) is locally uniformly exponentially stable with respect to the r-homogeneous
norm ρ; that is, there exist µ ∈ [1, ∞), ν ∈ (0, ∞) such that

∀t0 ∈ R, ∀x0 ∈ R
n with ρ(x0) ≤ σ, ρ(φ(t, t0, x0)) ≤ ρ(x0)µe

−ν(t−t0) ∀t ≥ t0.

(19)

Notice that the number T in the statement of Theorem 3.1 depends on the dy-
namics of ẋ = g(t, x) and thus may be hard to determine. Cases where the existence
of σ is guaranteed for each T ∈ [0, ∞) and d ∈ (0, ∞) are therefore of particular
interest. This leads to the following definition.

Definition 3.2 ((r, τ)-approximation). Consider admissible dynamical systems
ẋ = f(t, x) and ẋ = g(t, x) on R

n with respective flows φ and ψ having an equilibrium
point at the origin. Consider also r ∈ ((0, ∞))n, τ ≥ 0, and an r-homogeneous norm
ρ. System ẋ = g(t, x) is an (r, τ)-approximation of ẋ = f(t, x) if the following two
conditions are both satisfied:
Condition 1. ẋ = g(t, x) has the (r, τ)-scaling property of trajectories.
Condition 2. For each T ∈ [0, ∞) satisfying {(t, t0, x0) ∈ R × R × R

n : t ∈ [t0, t0 +
T ], ρ(x0) = 1} ⊂ Domψ and for each d ∈ (0, ∞), there exists σ ∈ (0, ∞)
such that for all t0 ∈ R and x0 ∈ R

n with 0 < ρ(x0) ≤ σ{
φ(t, t0, x0) exists ∀t ∈ [t0, t0 + T

ρ(x0)τ
],

ρ(φ(t, t0, x0)− ψ(t, t0, x0)) < ρ(x0)d ∀t ∈ [t0, t0 + T
ρ(x0)τ

].
(20)

Remark 5. An extra assumption on T is introduced in Condition 2 since solutions
of ẋ = g(t, x) need not be forward complete in general. This is in contrast with
Theorem 3.1 where solutions of ẋ = g(t, x) are guaranteed to be forward complete by
assumption (b). Notice that, if {(t, t0, x0) ∈ R × R × R

n : t ∈ [t0, t0 + T ], ρ(x0) =
1} ⊂ Domψ, then {(t, t0, x0) ∈ R × R × R

n : t ∈ [t0, t0 +
T

ρ(x0)τ
], x0 �= 0} ⊂ Domψ

by the (r, τ)-scaling property of trajectories, and the second expression in (20) indeed
makes sense.

Remark 6. The definition of an (r, τ)-approximation is independent of the par-
ticular r-homogeneous norm ρ used. This may be proven based on the fact that
for each two r-homogeneous norms ρ1 and ρ2, there exist a, b ∈ (0, ∞) such that
aρ1(x) ≤ ρ2(x) ≤ bρ1(x) for all x ∈ R

n.
The definition of (r, τ)-approximation includes linear and homogeneous approx-

imations as a particular case but is more general, as will be shown in section 5. It
follows immediately from Theorem 3.1 that (r, τ)-approximations are useful for the
purpose of stability analysis.

Corollary 3.3. Consider an admissible dynamical system ẋ = f(t, x) on R
n

with an equilibrium point at the origin. This equilibrium point is LUAS if there exists,
for some r ∈ ((0, ∞))n and τ ∈ [0, ∞), an (r, τ)-approximation of ẋ = f(t, x) whose
origin is a LUAS equilibrium point.

Corollary 3.3 states that stability properties of a dynamical system—LUAS of the
equilibrium point—may be inferred from stability properties of an (r, τ)-approximation.
This may constitute an important simplification, since an (r, τ)-approximation is as-
sumed to have the (r, τ)-scaling property of trajectories. In section 5 we will show
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that Corollary 3.3 leads to alternative proofs for and generalizations of several existing
stability results.

Remark 7. If τ = 0, then the conclusion of Corollary 3.3 may be strengthened
according to Remark 4. Consider an admissible dynamical system ẋ = f(t, x) on
R
n with an equilibrium point at the origin. This equilibrium point is locally uni-

formly exponentially stable with respect to an r-homogeneous norm if there exists, for
some r ∈ ((0, ∞))n, an (r, 0)-approximation of ẋ = f(t, x) whose origin is a LUAS
equilibrium point.

Remark 8. It is instructive to notice that, by the (r, τ)-scaling property of tra-
jectories, LUAS for the equilibrium point x = 0 of the (r, τ)-approximation actually
implies global uniform asymptotic stability. Furthermore, if τ = 0, then we actually
have global uniform exponential stability with respect to an r-homogeneous norm.
Both observations follow readily from estimate (11) in the proof of Theorem 3.1.

4. On the convergence analysis of trajectories. In the previous section, we
have introduced (r, τ)-approximations and clarified their role in stability analysis. In
order to apply this theory, we need to be able to verify Conditions 1 and 2 featuring
in the definition of (r, τ)-approximation (Definition 3.2). In the present section, we
discuss the second of these two conditions.

A possible approach to verify Condition 2 is based on the Gronwall lemma—this
is the approach that will be taken in the present paper. It turns out, however, that a
direct verification of Condition 2 based on the Gronwall lemma is complicated by the
possible non-Lipschitz character of the vectorfields near the origin (see Remark 1).
In order to avoid these complications, we introduce a rescaling mechanism that is
adapted to the underlying family of dilation mappings. This rescaling mechanism
“desingularizes” the non-Lipschitz behavior around the origin. Furthermore, this
rescaling mechanism will reveal a close relationship between stability results and (r, τ)-
approximations on the one hand and convergence results for trajectories of systems
depending on a small parameter on the other hand.

Recall Condition 2 of Definition 3.2. As a first step, we reformulate this condition,
introducing x0 and ε according to x0 = δr1/ρ(x0)

x0 and ε = ρ(x0): for each T ∈ [0, ∞)

satisfying {(t, t0, x0) ∈ R × R × R
n : t ∈ [t0, t0 + T ], ρ(x0) = 1} ⊂ Domψ and for

each d ∈ (0, ∞), there exists σ ∈ (0, ∞) such that for all t0 ∈ R and x0 ∈ R
n with

ρ(x0) = 1 and for all ε ∈ (0, σ]
{

φ(t, t0, δ
r
εx0) exists ∀t ∈ [t0, t0 + T

ετ ],

ρ(φ(t, t0, δ
r
εx0)− ψ(t, t0, δ

r
εx0)) < εd ∀t ∈ [t0, t0 + T

ετ ].
(21)

By homogeneity of ρ and linearity of δr1/ε, expression (21) is equivalent to

{
δr1/εφ(t, t0, δ

r
εx0) exists ∀t ∈ [t0, t0 + T

ετ ],

ρ(δr1/εφ(t, t0, δ
r
εx0)− δr1/εψ(t, t0, δ

r
εx0)) < d ∀t ∈ [t0, t0 + T

ετ ].
(22)

Replacing the dummy variables t and t0 by t
ετ and t0

ετ , respectively, this may be
rewritten as{

δr1/εφ(
t
ετ ,

t0
ετ , δ

r
εx0) exists ∀t ∈ [t0, t0 + T ],

ρ(δr1/εφ(
t
ετ ,

t0
ετ , δ

r
εx0)− δr1/εψ(

t
ετ ,

t0
ετ , δ

r
εx0)) < d ∀t ∈ [t0, t0 + T ].

(23)
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Estimate (23) suggests the introduction of time-functions ζε(·, t0, x0) and ξε(·, t0, x0)
according to

ζε(t, t0, x0) = δr1/εφ

(
t

ετ
,
t0
ετ

, δrεx0

)
,(24)

ξε(t, t0, x0) = δr1/εψ

(
t

ετ
,
t0
ετ

, δrεx0

)
.(25)

The function ζε satisfies the differential relation

∂

∂t
ζε(t, t0, x0) =

∂

∂t
δr1/εφ

(
t

ετ
,
t0
ετ

, δrεx0

)
(26)

= δr1/ε
∂

∂t
φ

(
t

ετ
,
t0
ετ

, δrεx0

)
(27)

= δr1/εf

(
t

ετ
, φ

(
t

ετ
,
t0
ετ

, δrεx0

))
1

ετ
(28)

=
1

ετ
δr1/εf

(
t

ετ
, δrεζ

ε(t, t0, x0)

)
(29)

and the initial condition

ζε(t0, t0, x0) = δr1/εφ

(
t0
ετ

,
t0
ετ

, δrεx0

)
(30)

= δr1/εδ
r
εx0(31)

= x0.(32)

The function ξε satisfies

ξε(t, t0, x0) = ψ(t, t0, x0)(33)

since ψ is assumed to have the (r, τ)-scaling property of trajectories.
Finally, measuring the distance between trajectories in terms of the Euclidean

norm ‖ · ‖ instead of the r-homogeneous norm ρ (see Remark 2) and omitting the bar
in the notation of the initial state, we conclude that Condition 2 of Definition 3.2 is
equivalent to the following condition:
Condition 2bis. For each T ∈ [0, ∞) satisfying {(t, t0, x0) ∈ R×R×R

n : t ∈ [t0, t0 +
T ], ρ(x0) = 1} ⊂ Domψ, for each d ∈ (0, ∞), there exists σ ∈ (0, ∞) such
that for all t0 ∈ R and x0 ∈ R

n with ρ(x0) = 1 and for all ε ∈ (0, σ]{
ζε(t, t0, x0) exists ∀t ∈ [t0, t0 + T ],
‖ζε(t, t0, x0)− ψ(t, t0, x0)‖ < d ∀t ∈ [t0, t0 + T ],

(34)

where ζε is the flow of

ẋ =
1

ετ
δr1/εf

(
t

ετ
, δrεx

)
(35)

and ψ the flow of

ẋ = g(t, x).(36)

This shows that (r, τ)-approximations are related to convergence results for trajec-
tories of systems depending on a small parameter ε: trajectories of (35) converge
uniformly on compact time-intervals to trajectories of (36) as ε ↓ 0.
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5. Applications. In this section we give three particular examples of (r, τ)-
approximations, leading to three corresponding stability results. As we have seen
in the previous section, (r, τ)-approximations are related to convergence results for
trajectories of systems depending on a small parameter. The three examples given
here are, respectively, related to perturbation theory, averaging theory, and the theory
of highly oscillatory systems [11, 27, 12]. This will lead to alternative proofs for several
existing results, as well as to extensions of these results.

5.1. Zero-order approximations. Consider a dynamical system on R
n of the

form

ẋ = X(t, x) + Y (t, x),(37)

where X and Y are class-CLB functions. Assume that
(a) X is r-homogeneous of order zero in x for all t, and
(b) δr1/λY (t, δ

r
λx)→ 0 as λ ↓ 0, uniformly with respect to t ∈ R and x in compact

subsets of R
n.

Assumption (b) is satisfied, for example, if Y is r-homogeneous of positive order in x,
or if Y is a sum of functions which are r-homogeneous in x, possibly with different,
positive orders. In other words, X is a zero-order approximation of X+Y with respect
to x near the origin. Consider the associated dynamical system on R

n,

ẋ = X(t, x).(38)

The assumptions imply that both (37) and (38) have the uniqueness property of
solutions (see Lemma 2.2) and an equilibrium point at the origin.

Theorem 5.1. Let r ∈ ((0, ∞))n. Consider systems (37) and (38) satisfying the
assumptions introduced above. If the origin of (38) is LUAS, then the origin of (37)
is locally uniformly exponentially stable with respect to an r-homogeneous norm.

Theorem 5.1 generalizes several known stability results. For the particular case
that X and Y are assumed to be time-invariant, we recover [7, Theorem 1] with k = 1.
For the particular case that X and Y are assumed to be periodic in t, we recover a
result that has been reported by Morin and Samson [21, Proposition 2, Part 2]. Also,
the linearization principle corresponds to the special case where r = (1, . . . , 1) and X
is assumed to be linear in x.

Remark 9. It is instructive to recall that LUAS for the origin of (38) actually im-
plies that this equilibrium point is globally uniformly exponentially stable with respect
to an r-homogeneous norm since (38) has the (r, 0)-scaling property of trajectories by
assumption (a) of the theorem. Theorem 5.1 would not be true, in general, if the null-
solution were only assumed to be (nonuniformly) exponentially stable with respect to
an r-homogeneous norm. When X is linear in x, this issue is related to the notion of
Lyapunov regularity, which plays a central role in the Lyapunov stability theory. It is
known that the linearization principle requires a somewhat sophisticated assumption
(Lyapunov regularity) to hold, if the null-solution of the linearized equation is only
assumed to be (nonuniformly) exponentially stable [2, Theorem 1.1.2]. Lyapunov
regularity, however, need not be assumed when the null-solution of the linearized
equation is uniformly exponentially stable [2, Theorem 1.4.2]. Accordingly, Lyapunov
regularity (or its appropriate generalization) need not be assumed in Theorem 5.1.

Theorem 5.1 is proven by showing that (38) is an (r, 0)-approximation of (37).
Following the approach outlined in section 4, this turns out to be related to pertur-
bation theory.
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Proof. We prove that (38) is an (r, 0)-approximation of (37). As Condition 1 of
Definition 3.2 is readily verified (see section 2.2), we focus upon Condition 2. Following
the approach outlined in section 4 we prove the equivalent Condition 2bis instead. For
the present particular case system (35) becomes

ẋ = δr1/εX(t, δrεx) + δr1/εY (t, δ
r
εx)

= X(t, x) + δr1/εY (t, δ
r
εx),

(39)

since X is r-homogeneous of order 0. The second term in the RHS tends to zero as
ε ↓ 0 by assumption (b). In other words, system (39) is a perturbed version of system
(38). We prove in Appendix B.1 that trajectories of (39) converge to trajectories
of (38) as ε ↓ 0 in the sense of Condition 2bis.2 Theorem 5.1 now follows from
Corollary 3.3 and Remark 7.

5.2. Approximation and averaging. Consider a dynamical system on R
n of

the form

ẋ = X(t, x) + Y (t, x),(40)

where X and Y are class-CLB functions. Assume that
(a) X is r-homogeneous of order τ > 0 in x for all t, and
(b) 1

λτ δ
r
1/λY (t, δ

r
λx) → 0 as λ ↓ 0, uniformly with respect to t ∈ R and x in

compact subsets of R
n.

Assumption (b) is satisfied, for example, if Y is r-homogeneous of order τ ′ > τ in x,
or if Y is a sum of functions which are r-homogeneous in x with (possibly different)
orders strictly larger than τ .

We introduce the average of X as the map

Xav : R
n → R

n : x �→ Xav(x) = lim
T→∞

1

T

∫ T

0

X(t, x) dt,(41)

where it is assumed that this limit exists for all x. The assumptions on X imply that
Xav is continuous, locally Lipschitz in x ∈ R

n \ {0}, and r-homogeneous of order τ .
Assume in addition that

(c) for each T ∈ [0, ∞) and for each compact subset K ∈ R
n,

∫ t0+ς2

t0+ς1

{
X
( s

ετ
, x
)
−Xav(x)

}
ds→ 0(42)

as ε ↓ 0 uniformly with respect to t0 ∈ R, ς1, ς2 ∈ [0, T ], and x ∈ K.
Consider the associated averaged system on R

n,

ẋ = Xav(x).(43)

The assumptions imply that both (40) and (43) have the uniqueness property of
solutions (see Lemma 2.2) and an equilibrium point at the origin.

Theorem 5.2. Let r ∈ ((0, ∞))n and τ ∈ (0, ∞). Consider systems (40) and
(43) satisfying the assumptions introduced above. If the origin of (43) is LUAS, then
the origin of (40) is also LUAS.

2Convergence results are available in the literature on perturbation theory, but, to the best of
our knowledge, none of these results yields exactly the required convergence property Condition 2bis.
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Remark 10. It is instructive to recall that LUAS for the origin of (43) actually
implies that this equilibrium point is globally uniformly asymptotically stable since
the assumptions of the theorem imply that (43) has the (r, τ)-scaling property of
trajectories.

This theorem generalizes some known results from the literature. For the special
case that X and Y are independent of t (and hence Xav coincides with X), we recover
a well-known result by Hermes; see, for example, [7, Theorem 1] with k > 1. For the
special case that Y vanishes identically and X is locally Lipschitz in x on the complete
state space R

n (and hence also at the origin), we recover [23, Theorem 1]. Whereas
the proof technique of [23] is based on generalized Lyapunov theorems, the present
proof is based on closeness results for trajectories of fast time-varying systems via a
rescaling mechanism. As already mentioned before, this rescaling mechanism enables
us to relax the Lipschitz assumption at the origin.

Proof. We prove that (43) is an (r, τ)-approximation of (40). As Condition 1 of
Definition 3.2 is readily verified (see section 2.2), we focus upon Condition 2. Following
the approach outlined in section 4 we prove the equivalent Condition 2bis instead. For
the present particular case system (35) becomes

ẋ =
1

ετ
δr1/εX

(
t

ετ
, δrεx

)
+

1

ετ
δr1/εY

(
t

ετ
, δrεx

)

= X

(
t

ετ
, x

)
+

1

ετ
δr1/εY

(
t

ετ
, δrεx

)
,

(44)

where we have used the homogeneity property of X. This is a fast time-varying
differential equation since the RHS depends on time through t

ετ , where ε is a
small parameter. In addition the second term tends to zero as ε ↓ 0 by assump-
tion (b). We prove in Appendix B.2 that trajectories of (44) converge to trajectories
of (43) as ε ↓ 0 in the sense of Condition 2bis.3 Theorem 5.2 now follows from
Corollary 3.3.

5.3. Approximation and Lie brackets. Consider a dynamical system on R
n

of the form

ẋ =
√
γ cos(γt)X1(x) +

√
γ sin(γt)X2(x) +X3(x),(45)

where X1, X2, and X3 are continuous on R
n and X1 and X2 (respectively, X3) are

of class C2 (respectively, of class C1) on R
n \ {0} and where γ is a strictly positive

parameter. It is important to emphasize that γ is not assumed to be very large or
very small. Let τ > 0 and assume that

(a) X1 and X2 are r-homogeneous of order τ
2 ,

(b) X3 is r-homogeneous of order τ .
We introduce the Lie bracket of X1 and X2 as the map

(46) [X1, X2] : R
n → R

n :

x �→ [X1, X2](x) =

{
DX2(x) ·X1(x)−DX1(x) ·X2(x) ∀x ∈ R

n \ {0},
0 for x = 0,

3Convergence results are available in the literature on averaging theory, but, to the best of our
knowledge, none of these results yields exactly the required convergence property Condition 2bis.



TRAJECTORY-BASED LOCAL APPROXIMATIONS 1935

where DXi(x) is the Jacobian of Xi evaluated at x and · indicates the matrix product.
The assumptions on X1 and X2 imply that [X1, X2] is continuous on R

n, of class C1

on R
n \ {0}, and r-homogeneous of order τ . Consider the following system on R

n:

ẋ =
1

2
[X1, X2](x) +X3(x).(47)

The assumptions imply that both (45) and (47) have the uniqueness property of
solutions (see Lemma 2.2) and an equilibrium point at the origin.

Theorem 5.3. Let r ∈ ((0, ∞))n and τ ∈ (0, ∞). Consider systems (45) and
(47) satisfying the assumptions introduced above. If the origin of (47) is LUAS, then
the origin of (45) is also LUAS.

Remark 11. It is instructive to recall that LUAS for the origin of (47) actually
implies that this equilibrium point is globally uniformly asymptotically stable since,
by the assumptions of the theorem, (47) has the (r, τ)-scaling property of trajectories.

Independently of the present research, closely related results have been reported
by M’Closkey and Morin [13] and by Sarychev [25]. The approach in [13] is based
on Lyapunov considerations; the approach in [25] is based on nonlinear Floquet the-
ory. We also mention that this stability result may be applied to the constructive
stabilization of driftless control affine systems; see [16].

Theorem 5.3 is proven by showing that (47) is an (r, τ)-approximation of (45).
Following the approach outlined in section 4, this turns out to be related to the theory
of highly oscillatory differential equations [11, 27, 12].

Proof. We prove that (47) is an (r, τ)-approximation of (45). As Condition 1 of
Definition 3.2 is readily verified (see section 2.2), we focus upon Condition 2. Following
the approach outlined in section 4 we prove the equivalent Condition 2bis instead. For
the present particular case system (35) becomes

ẋ =

√
γ

ετ
δr1/ε cos

(
γ

t

ετ

)
X1(δ

r
εx) +

√
γ

ετ
δr1/ε sin

(
γ

t

ετ

)
X2(δ

r
εx) +

1

ετ
δr1/εX3(δ

r
εx)

=

√
γ

ετ
cos

(
γ

t

ετ

)
X1(x) +

√
γ

ετ
sin

(
γ

t

ετ

)
X2(x) +X3(x),

(48)

where we have used the homogeneity properties of the Xi. Systems of the form (48)
with ε a small parameter are studied in the literature on highly oscillatory systems.
We prove in Appendix B.3 that trajectories of (48) converge to trajectories of (47)
as ε ↓ 0 in the sense of Condition 2bis.4 Theorem 5.3 now follows from Corol-
lary 3.3.

In addition, we also prove the following semiglobal result, which is original.
Theorem 5.4. Consider the same data and assumptions of Theorem 5.3. If the

origin of (47) is LUAS, then the origin of (45) is semiglobally uniformly asymptotically
stable as γ →∞.

Remark 12. A similar semiglobal result has been obtained in the context of
averaging if, using the notation of section 5.2, Y (t, x) vanishes identically and t is
replaced by γt in (40); see [23].

Proof. The proof of Theorem 5.3, in particular, the proof of Condition 2bis given
in Appendix B.3, reveals that for each T ∈ [0, ∞) satisfying {(t, t0, x0) ∈ R×R×R

n :

4Convergence results are available in the literature on highly oscillatory systems but, to the best
of our knowledge, none of these results yields exactly the required convergence property Condition
2bis.
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t ∈ [t0, t0 + T ], ρ(x0) = 1} ⊂ Domψ, for each d ∈ (0, ∞), there exists β ∈ (0, ∞)
such that for all t0 ∈ R and x0 ∈ R

n with ρ(x0) = 1 and for all ε ∈ (0, τ
√
γβ]{

ζε(t, t0, x0) exists ∀t ∈ [t0, t0 + T ],
ρ(ζε(t, t0, x0)− ψ(t, t0.x0)) < d ∀t ∈ [t0, t0 + T ],

(49)

with ζε and ψ, respectively, the flow of (48) and (47), and where we have replaced the
Euclidean norm by the r-homogeneous norm ρ in the second expression of (49)—see
Remark 2. Following the manipulations of section 4, this may be restated as follows:
for each T ∈ [0, ∞) satisfying {(t, t0, x0) ∈ R × R × R

n : t ∈ [t0, t0 + T ], ρ(x0) =
1} ⊂ Domψ, for each d ∈ (0, ∞), there exists β ∈ (0, ∞) such that for all t0 ∈ R and
x0 ∈ R

n with 0 < ρ(x0) ≤ τ
√
γβ{

φ(t, t0, x0) exists ∀t ∈ [t0, t0 + T
ρ(x0)τ

],

ρ(φ(t, t0, x0)− ψ(t, t0, x0)) < ρ(x0)d ∀t ∈ [t0, t0 + T
ρ(x0)τ

],
(50)

where φ is the flow of (45). In particular, there corresponds a β∗ to the particular
values of T and d associated with ẋ = 1

2 [X1, X2](x)+X3(x) according to Theorem 3.1.
It then follows from Theorem 3.1 that the origin of (45) is LUAS with {x0 ∈ R

n :
ρ(x0) ≤ τ

√
γβ∗} contained in the region of attraction. The observation that τ

√
γβ∗ →

∞ as γ →∞ completes the proof.
As mentioned above, Theorems 5.3 and 5.4 are related to convergence results for

trajectories of highly oscillatory systems. Here we have considered the particular case
of one generated Lie bracket, but the theory of [27, 12] covers the general case of how
to generate any number of (iterated) Lie brackets. We are therefore inclined to believe
that, incorporating ideas from [27, 12], the present theory may be generalized to the
case where several (iterated) Lie brackets are featuring in the local approximation.

6. Concluding remarks. The present paper has introduced a new method for
proving local stability results for ordinary differential equations. The present approach
is based on closeness results for trajectories on finite time intervals. This approach may
serve as an alternative for other, Lyapunov-based techniques. A distinctive feature of
the present approach is that it does not rely on converse Lyapunov theorems.

Instrumental for our approach is a rescaling mechanism. With this rescaling
mechanism we avoid complications that would otherwise arise from the possible non-
Lipschitz behavior of homogeneous vectorfields near the origin. This rescaling mecha-
nism also reveals the close relationship between stability results and closeness results
for trajectories of systems depending on a small parameter.

By means of several applications, we have shown that this approach enables us
to recover and extend several existing stability results. Future research may focus on
possible generalizations of this approach to the study of differential equations with
delay.

Appendix A. Proof of Lemma 2.2. We start with the observation that the
dynamical system obtained from (5) by restricting the state space to R

n \{0} has the
uniqueness property of solutions by assumption (a) of the lemma—see, for example,
[26]. Furthermore, assumption (b) of the lemma implies that the origin is an equilib-
rium point of (5); that is, f(t, 0) = 0. It therefore suffices to prove that no solution
of (5) can leave the origin or reach the origin in finite time.

First we prove by contradiction that no solution of (5) starting at the origin can
leave the origin in forward time. Indeed, if this is not true, then there exist a solution
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ζ of (5) and time-instants t0 < t1 in the domain of ζ such that ζ(t0) = 0 and ζ(t) �= 0
for all t ∈ (t0, t1]. Let c be defined by

c = ||ζ(t1)||.

We introduce the family of time-functions ζλ defined by

ζλ(t) = δr1/λζ(t),

with λ > 0. Associated with these time-functions is the family of real numbers Tλ
defined by

Tλ = min{t > t0 : ||ζλ(t)|| = c}.

Based on the continuity of ζ and expression (1) for the dilation map, it is easy to
see that Tλ is a well-defined number between t0 and t1, that Tλ ↓ t0 as λ ↓ 0, and
thus that max{||ζ̇λ(t)|| : t ∈ [t0, Tλ]} → ∞ as λ ↓ 0. Since ζλ satisfies the differential
equation

ζ̇λ(t) = δr1/λζ̇(t)

= δr1/λf(t, ζ(t))

= δr1/λf(t, δ
r
λζλ(t)),

we therefore conclude that necessarily

max{||δr1/λf(t, δrλx)|| : t ∈ R, ||x|| ≤ c} → ∞

as λ ↓ 0. This yields a contradiction with assumption (b) of the lemma.
We have thus proven that no solution starting in the origin can leave the origin

in forward time. By means of similar arguments, it may be shown that no solution
starting away from the origin can reach the origin in finite time. This concludes the
proof of Lemma 2.2.

Appendix B. Convergence analysis of trajectories. Throughout Appendix
B, ρ is an r-homogeneous norm that is assumed to be continuously differentiable on
R
n \ {0}—the particular choice is irrelevant by Remark 6. Also, we regard ζε and ψ

as functions of t and write ζε(t) and ψ(t) instead of ζε(t, t0, x0) and ψ(t, t0, x0) for
notational convenience.

B.1. Proof of Condition 2bis: Perturbed systems. Let T ∈ [0, ∞) be such
that {(t, t0, x0) ∈ R × R × R

n : t ∈ [t0, t0 + T ], ρ(x0) = 1} ⊂ Domψ. Consider
arbitrary d ∈ (0, ∞), t0 ∈ R, and x0 ∈ R

n with ρ(x0) = 1. Condition 2bis is proven
by showing the existence of σ ∈ (0, ∞) independent of t0 and x0 such that for all
ε ∈ (0, σ]

{
ζε(t) exists ∀t ∈ [t0, t0 + T ],
‖ζε(t)− ψ(t)‖ < d ∀t ∈ [t0, t0 + T ].

(51)

For that purpose, we analyze ζε and ψ on the time-interval [t0, t0 + T ].
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ζε satisfies

ζε(t) = x0 +

∫ t

t0

X(s, ζε(s)) ds+

∫ t

t0

δr1/εY (s, δ
r
εζ
ε(s)) ds(52)

for all t ∈ Dom ζε ∩ [t0, t0 + T ]. ψ satisfies

ψ(t) = x0 +

∫ t

t0

X(s, ψ(s)) ds(53)

for all t ∈ [t0, t0 + T ]. Subtracting (53) from (52) gives

ζε(t)− ψ(t) =

∫ t

t0

{X(s, ζε(s))−X(s, ψ(s))}ds+
∫ t

t0

δr1/εY (s, δ
r
εζ
ε(s)) ds(54)

for all t ∈ Dom ζε ∩ [t0, t0 + T ].
A bound on ζε(t)−ψ(t) will be obtained from the Gronwall lemma. First introduce

two real numbers 0 < c1 < c2 independent of t0 and x0 such that

0 < c1 ≤ ‖ψ(t)‖ ≤ c2 ∀t ∈ [t0, t0 + T ].(55)

Assume for the time being the existence of these numbers. Next take 0 < d′ < c1.
Let [t0, te] be the largest time-interval contained in Dom ζε∩ [t0, t0+T ] satisfying

0 < c1 − d′ ≤ ‖ζε(t)‖ ≤ c2 + d′ ∀t ∈ [t0, te].(56)

Notice that in general the time te depends on t0, x0, and ε. Since X ∈ CLB, there
exists a Lipschitz constant k ∈ [0, ∞) for X with respect to x on the set {(t, x) ∈
R× R

n : c1 − d′ ≤ ‖x‖ ≤ c2 + d′}. Notice that k is independent of t0 and x0.
Then by (54)

‖ζε(t)− ψ(t)‖ ≤
∫ t

t0

k‖ζε(s)− ψ(s)‖ds+
∥∥∥∥
∫ t

t0

δr1/εY (s, δ
r
εζ
ε(s)) ds

∥∥∥∥(57)

for all t ∈ [t0, te]. Notice that the second term in the RHS of (57) is a function of
(ε, t, t0, x0) since it depends explicitly on ε, t, and t0 and implicitly on t0 and x0 via
ζε. By (56) and assumption (b) of subsection 5.1, this term tends to zero as ε ↓ 0
uniformly with respect to t ∈ [t0, te], t0 ∈ R, and x0 ∈ R

n with ρ(x0) = 1.
Hence, by the Gronwall lemma, there exists σ ∈ (0, ∞) independent of t0 and x0

such that for all ε ∈ (0, σ]
‖ζε(t)− ψ(t)‖ < min{d, d′} ∀t ∈ [t0, te].(58)

We show by contradiction that te = t0+T if ε ∈ (0, σ]: indeed, from the definition of
te it follows that if te < t0+T , then necessarily ‖ζε(te)‖ = c1−d′ or ‖ζε(te)‖ = c2+d′

and thus ‖ζε(te)− ψ(te)‖ ≥ d′ by (55), which contradicts (58). We conclude that for
all ε ∈ (0, σ] {

ζε(t) exists ∀t ∈ [t0, t0 + T ],
‖ζε(t)− ψ(t)‖ < d ∀t ∈ [t0, t0 + T ].

(59)

The proof is completed by proving the existence of the real numbers c1 and c2
introduced above. For this purpose we study the evolution of the r-homogeneous
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norm ρ along ψ. By uniqueness of solutions, ψ(t) ∈ R
n \ {0} for all t ∈ [t0, t0 + T ]

and thus ρ(ψ(·)) satisfies
d

dt
ρ(ψ(t)) = α(t)ρ(ψ(t))(60)

for all t ∈ [t0, t0 + T ], where α : [t0, t0 + T ]→ R is a continuous function given by

α(t) =

n∑
i=1

∂ρ

∂xi
(δr1/ρ(ψ(t))ψ(t))

1

ρ(ψ(t))ri
Xi(t, δ

r
ρ(ψ(t))δ

r
1/ρ(ψ(t))ψ(t)).(61)

By homogeneity of X, (61) may be simplified:

α(t) =

n∑
i=1

∂ρ

∂xi
(δr1/ρ(ψ(t))ψ(t))Xi(t, δ

r
1/ρ(ψ(t))ψ(t)).(62)

Observe that δr1/ρ(ψ(t))ψ(t) belongs to the compact set {x ∈ R
n : ρ(x) = 1}. Since ∂ρ

∂xi

is assumed to be continuous on R
n \ {0} and since X is assumed to be a class-CLB

function, we conclude the existence of M ∈ [0, ∞) independent of t0 and x0 such
that |α(t)| ≤ M for all t ∈ [t0, t0 + T ]. Together with (60) this implies that for all
t ∈ [t0, t0 + T ]

0 < e−MT ≤ e−M(t−t0) ≤ ρ(ψ(t)) ≤ eM(t−t0) ≤ eMT .(63)

Passing to the Euclidean norm ‖ · ‖—see Remark 2—we conclude the existence of c1
and c2 as required.

B.2. Proof of Condition 2bis: Fast time-varying systems. The proof is
along the lines of the previous proof in Appendix B.1. Let T ∈ [0, ∞) be such that
{(t, t0, x0) ∈ R × R × R

n : t ∈ [t0, t0 + T ], ρ(x0) = 1} ⊂ Domψ. Consider arbitrary
d ∈ (0, ∞), t0 ∈ R, and x0 ∈ R

n with ρ(x0) = 1.
ζε satisfies

ζε(t) = x0 +

∫ t

t0

X
( s

ετ
, ζε(s)

)
ds+

∫ t

t0

1

ετ
δr1/εY

( s

ετ
, δrεζ

ε(s)
)
ds(64)

for all t ∈ Dom ζε ∩ [t0, t0 + T ]. ψ satisfies

ψ(t) = x0 +

∫ t

t0

Xav(ψ(s)) ds(65)

for all t ∈ [t0, t0 + T ]. Subtracting (65) from (64) and adding terms that cancel out
gives

ζε(t)− ψ(t) =

∫ t

t0

X
( s

ετ
, ζε(s)

)
ds−

∫ t

t0

Xav(ψ(s)) ds+

∫ t

t0

1

ετ
δr1/εY

( s

ετ
, δrεζ

ε(s)
)
ds

=

∫ t

t0

{
X
( s

ετ
, ζε(s)

)
−X

( s

ετ
, ψ(s)

)}
ds

+

∫ t

t0

{
X
( s

ετ
, ψ(s)

)
−Xav(ψ(s))

}
ds+

∫ t

t0

1

ετ
δr1/εY

( s

ετ
, δrεζ

ε(s)
)
ds

(66)

for all t ∈ Dom ζε ∩ [t0, t0 + T ].
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A bound on ζε(t)−ψ(t) will be obtained from the Gronwall lemma. First introduce
two real numbers 0 < c1 < c2 independent of t0 and x0 such that

0 < c1 ≤ ‖ψ(t)‖ ≤ c2 ∀t ∈ [t0, t0 + T ].(67)

These numbers indeed exist since, by time-invariance of ẋ = Xav(x) and continuity
of its flow, all states that are reached from initial states x0 with ρ(x0) = 1 in times
t ∈ [t0, t0+T ] form a compact set which, by uniqueness of solutions, does not contain
the origin. Next take 0 < d′ < c1.

Let [t0, te] be the largest time-interval contained in Dom ζε∩ [t0, t0+T ] satisfying

0 < c1 − d′ ≤ ‖ζε(t)‖ ≤ c2 + d′ ∀t ∈ [t0, te].(68)

Since X ∈ CLB, there exists a Lipschitz constant k ∈ [0, ∞) for X with respect to x
on the set {(t, x) ∈ R×R

n : c1−d′ ≤ ‖x‖ ≤ c2+d′} and an upper bound M ∈ [0, ∞)
for ‖X‖ on the set {(t, x) ∈ R × R

n : c1 − d′ ≤ ‖x‖ ≤ c2 + d′}. Notice that both
k and M are independent of t0 and x0. It follows from the definition of Xav that k
(respectively, M) is also a Lipschitz constant for Xav (respectively, an upper bound
for ‖Xav‖) on the set {x ∈ R

n : c1 − d′ ≤ ‖x‖ ≤ c2 + d′}.
Then by (66)

(69) ‖ζε(t)− ψ(t)‖ ≤
∫ t

t0

k‖ζε(s)− ψ(s)‖ds

+

∥∥∥∥
∫ t

t0

{
X
( s

ετ
, ψ(s)

)
−Xav(ψ(s))

}
ds

∥∥∥∥+
∥∥∥∥
∫ t

t0

1

ετ
δr1/εY

( s

ετ
, δrεζ

ε(s)
)
ds

∥∥∥∥
for all t ∈ [t0, te]. We now show that the second and the third terms in the RHS of
this expression tend to zero as ε ↓ 0. By (68) and assumption (b) of subsection 5.2∥∥∥∥

∫ t

t0

1

ετ
δr1/εY

( s

ετ
, δrεζ

ε(s)
)
ds

∥∥∥∥→ 0(70)

as ε ↓ 0 uniformly with respect to t ∈ [t0, te], t0 ∈ R, and x0 ∈ R
n with ρ(x0) = 1.

Bounding the second term using assumption (c) of subsection 5.2 is more complicated,
since ψ(s) featuring in the integrand of the second term varies with time s, whereas x
featuring in the integrand of (42) is fixed. This problem may be overcome by sampling
the trajectory ψ with sample period θ ∈ (0, ∞): define ψsa by

ψsa(t) = ψ(t0 + iθ) ∀t ∈ [t0 + iθ, t0 + (i+ 1)θ) ∩ [t0, t0 + T ] ∀i ∈ {0} ∪ N.(71)

Notice that ψsa(t) is related to ψ(t) by the inequality

‖ψsa(t)− ψ(t)‖ ≤Mθ(72)

for all t ∈ [t0, t0 + T ]. Then

(73)∥∥∥∥
∫ t

t0

{
X
( s

ετ
, ψ(s)

)
−Xav(ψ(s))

}
ds

∥∥∥∥ ≤
∥∥∥∥
∫ t

t0

{
X
( s

ετ
, ψ(s)

)
−X

( s

ετ
, ψsa(s)

)}
ds

∥∥∥∥
+

∥∥∥∥
∫ t

t0

{
X
( s

ετ
, ψsa(s)

)
−Xav(ψsa(s))

}
ds

∥∥∥∥+
∥∥∥∥
∫ t

t0

{Xav(ψsa(s))−Xav(ψ(s))}ds
∥∥∥∥ .
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By (72) the first and the third terms in the RHS of (73) are both bounded by TkMθ
and thus can be made as small as required by choosing the sample period θ sufficiently
small. The second term in the RHS of (73) may be bounded as follows:

(74)

∥∥∥∥
∫ t

t0

{
X
( s

ετ
, ψsa(s)

)
−Xav(ψsa(s))

}
ds

∥∥∥∥
≤
∥∥∥∥∥
∫ t0+θ

t0

{
X
( s

ετ
, ψsa(s)

)
−Xav(ψsa(s))

}
ds

∥∥∥∥∥
+

∥∥∥∥∥
∫ t0+2θ

t0+θ

{
X
( s

ετ
, ψsa(s)

)
−Xav(ψsa(s))

}
ds

∥∥∥∥∥
+ · · ·+

∥∥∥∥
∫ t

t0+pθ

{
X
( s

ετ
, ψsa(s)

)
−Xav(ψsa(s))

}
ds

∥∥∥∥
with p ∈ {0} ∪ N defined by t0 + pθ ≤ t < t0 + (p + 1)θ. For a given choice of θ the
number of terms in the RHS of (74) is bounded for t ∈ [t0, t0 + T ], and thus by (67),
(71), and assumption (c) of subsection 5.2 the RHS of (74) tends to zero as ε ↓ 0
uniformly with respect to t ∈ [t0, t0 + T ], t0 ∈ R, and x0 ∈ R

n with ρ(x0) = 1. We
finally conclude that

∥∥∥∥
∫ t

t0

{
X
( s

ετ
, ψ(s)

)
−Xav(ψ(s))

}
ds

∥∥∥∥→ 0(75)

as ε ↓ 0 uniformly with respect to t ∈ [t0, t0+T ], t0 ∈ R, and x0 ∈ R
n with ρ(x0) = 1.

Recall (69), (70), and (75). Hence, by the Gronwall lemma, there exists σ ∈
(0, ∞) independent of t0 and x0 such that for all ε ∈ (0, σ]

‖ζε(t)− ψ(t)‖ < min{d, d′} ∀t ∈ [t0, te].(76)

As in Appendix B.1, we conclude that for all ε ∈ (0, σ]
{

ζε(t) exists ∀t ∈ [t0, t0 + T ],
‖ζε(t)− ψ(t)‖ < d ∀t ∈ [t0, t0 + T ].

(77)

B.3. Proof of Condition 2bis: Highly oscillatory systems. The proof is
along the lines of the proofs in Appendices B.1 and B.2. Let T ∈ [0, ∞) be such that
{(t, t0, x0) ∈ R × R × R

n : t ∈ [t0, t0 + T ], ρ(x0) = 1} ⊂ Domψ. Consider arbitrary
d ∈ (0, ∞), t0 ∈ R, and x0 ∈ R

n with ρ(x0) = 1.
ζε satisfies

(78) ζε(t) = x0 +

∫ t

t0

1√
µ
cos

(
s

µ

)
X1(ζ

ε(s)) ds

+

∫ t

t0

1√
µ
sin

(
s

µ

)
X2(ζ

ε(s)) ds+

∫ t

t0

X3(ζ
ε(s)) ds

for all t ∈ Dom ζε ∩ [t0, t0 + T ], where we have introduced the notation µ = ετ

γ .
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Integrating the second and the third terms in the RHS of (78) by parts yields

ζε(t) = x0 +
√
µ sin

(
s

µ

)
X1(ζ

ε(s))|ts=t0

−
∫ t

t0

√
µ sin

(
s

µ

)
DX1 ·

{
1√
µ
cos

(
s

µ

)
X1 +

1√
µ
sin

(
s

µ

)
X2 +X3

}
(ζε(s)) ds

−√µ cos
(
s

µ

)
X2(ζ

ε(s))|ts=t0

+

∫ t

t0

√
µ cos

(
s

µ

)
DX2 ·

{
1√
µ
cos

(
s

µ

)
X1 +

1√
µ
sin

(
s

µ

)
X2 +X3

}
(ζε(s)) ds

+

∫ t

t0

X3(ζ
ε(s)) ds.

(79)

Applying the geometric identities cos2(φ) = 1
2 + 1

2 cos(2φ), sin
2(φ) = 1

2 − 1
2 cos(2φ),

and sin(φ) cos(φ) = 1
2 sin(2φ) and rearranging terms gives

ζε(t) = x0 +

∫ t

t0

(
1

2
DX2 ·X1 − 1

2
DX1 ·X2 +X3

)
(ζε(s)) ds+ J1 + J2 + J3(80)

with

J1 =

∫ t

t0

1

2
sin

(
2
s

µ

)
{DX2 ·X2 −DX1 ·X1}(ζε(s)) ds,

J2 =

∫ t

t0

1

2
cos

(
2
s

µ

)
{DX1 ·X2 +DX2 ·X1}(ζε(s)) ds,

J3 =
√
µ

(∫ t

t0

{
cos

(
s

µ

)
DX2 ·X3(ζ

ε(s))− sin

(
s

µ

)
DX1 ·X3(ζ

ε(s))

}
ds

+ sin

(
s

µ

)
X1(ζ

ε(s))|ts=t0 − cos

(
s

µ

)
X2(ζ

ε(s))|ts=t0
)
.

ψ satisfies

ψ(t) = x0 +

∫ t

t0

(
1

2
[X1, X2] +X3

)
(ψ(s)) ds

= x0 +

∫ t

t0

(
1

2
DX2 ·X1 − 1

2
DX1 ·X2 +X3

)
(ψ(s)) ds

(81)

for all t ∈ [t0, t0 + T ], where we used the definition of [X1, X2] taking into account
that ψ(s) ∈ R

n \ {0} by the uniqueness property of solutions. Subtracting (81) from
(80) gives

(82) ζε(t)− ψ(t) =

∫ t

t0

{(
1

2
DX2 ·X1 − 1

2
DX1 ·X2 +X3

)
(ζε(s))

−
(
1

2
DX2 ·X1 − 1

2
DX1 ·X2 +X3

)
(ψ(s))

}
ds+ J1 + J2 + J3

for all t ∈ Dom ζε ∩ [t0, t0 + T ].
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A bound on ζε(t)−ψ(t) will be obtained from the Gronwall lemma. First introduce
two real numbers 0 < c1 < c2 independent of t0 and x0 such that

0 < c1 ≤ ‖ψ(t)‖ ≤ c2 ∀t ∈ [t0, t0 + T ].(83)

These numbers indeed exist since, by time-invariance of ẋ = 1
2 [X1, X2](x)+X3(x) and

continuity of its flow, all states that are reached from initial states x0 with ρ(x0) = 1
in times t ∈ [t0, t0 + T ] form a compact set which, by uniqueness of solutions, does
not contain the origin. Next take 0 < d′ < c1.

Let [t0, te] be the largest time-interval contained in Dom ζε∩ [t0, t0+T ] satisfying

0 < c1 − d′ ≤ ‖ζε(t)‖ ≤ c2 + d′ ∀t ∈ [t0, te].(84)

By the smoothness assumptions on theXi, there exists a Lipschitz constant k ∈ [0, ∞)
for 1

2DX2 ·X1− 1
2DX1 ·X2+X3 on the set {x ∈ R

n : c1−d′ ≤ ‖x‖ ≤ c2+d′}. Notice
that k is independent of t0 and x0.

Then by (82)

‖ζε(t)− ψ(t)‖ ≤
∫ t

t0

k‖ζε(s)− ψ(s)‖ds+ ‖J1‖+ ‖J2‖+ ‖J3‖(85)

for all t ∈ [t0, te]. Notice that the Ji are functions of (µ, t, t0, x0) since Ji depends
explicitly on µ, t, and t0 and implicitly on t0 and x0 via ζε(s). We now show that
the ‖Ji‖ converge to zero as µ ↓ 0, uniformly with respect to t ∈ [t0, te], t0 ∈ R, and
x0 ∈ R

n with ρ(x0) = 1. This is easily verified for ‖J3‖: J3 is the product of
√
µ with

a factor that is bounded on {(µ, t, t0, x0) : t ∈ [t0, te], ρ(x0) = 1} by the smoothness
assumptions on the Xi. Next we focus on J1: integration by parts yields

J1 = −µ

4
cos

(
2
s

µ

)
{DX2 ·X2 −DX1 ·X1}(ζε(s))|ts=t0

+

∫ t

t0

µ

4
cos

(
2
s

µ

)
D{DX2 ·X2 −DX1 ·X1} ·{

1√
µ
cos

(
s

µ

)
X1 +

1√
µ
sin

(
s

µ

)
X2 +X3

}
(ζε(s)) ds

= µ

(
− 1

4
cos

(
2
s

µ

)
{DX2 ·X2 −DX1 ·X1}(ζε(s))|ts=t0

+

∫ t

t0

1

4
cos

(
2
s

µ

)
D{DX2 ·X2 −DX1 ·X1} ·X3(ζ

ε(s)) ds

)

+
√
µ

(∫ t

t0

1

4
cos

(
2
s

µ

)
D{DX2 ·X2 −DX1 ·X1}

·
{
cos

(
s

µ

)
X1 + sin

(
s

µ

)
X2

}
(ζε(s)) ds

)
.

(86)

Both factors between brackets in the second RHS of (86) are bounded on the set
{(µ, t, t0, x0) : t ∈ [t0, te], ρ(x0) = 1} by the smoothness assumptions on the Xi. We
thus see that ‖J1‖ also converges to zero as µ ↓ 0, uniformly with respect to t ∈ [t0, te],
t0 ∈ R, and x0 ∈ R

n with ρ(x0) = 1. Finally, a similar argument shows that ‖J2‖ also
converges to zero as µ ↓ 0, uniformly with respect to t ∈ [t0, te], t0 ∈ R, and x0 ∈ R

n

with ρ(x0) = 1.
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Hence, by the Gronwall lemma, there exists β ∈ (0, ∞) independent of t0 and x0

such that for all µ ∈ (0, β]
‖ζε(t)− ψ(t)‖ < min{d, d′} ∀t ∈ [t0, te].(87)

As in Appendix B.1, we conclude that for all µ ∈ (0, β] or, equivalently since µ = ετ

γ

for all ε ∈ (0, τ
√
γβ], {

ζε(t) exists ∀t ∈ [t0, t0 + T ],
‖ζε(t)− ψ(t)‖ < d ∀t ∈ [t0, t0 + T ].

(88)
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A DIFFUSION MODEL FOR OPTIMAL DIVIDEND DISTRIBUTION
FOR A COMPANY WITH CONSTRAINTS ON RISK CONTROL∗
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Abstract. This paper investigates a model of a corporation which faces constant liability
payments and which can choose a production/business policy from an available set of control policies
with different expected profits and risks. The objective is to find a business policy and a dividend
distribution scheme so as to maximize the expected present value of the total dividend distributions.
The main feature of this paper is that there are constraints on business activities such as inability to
completely eliminate risk (even at the expense of reducing the potential profit to zero) or when such
a risk cannot exceed a certain level. The case in which there is no restriction on the dividend pay-out
rates is dealt with. This gives rise to a mixed regular-singular stochastic control problem. First the
value function is analyzed in great detail and in particular is shown to be a viscosity solution of the
corresponding Hamilton–Jacobi–Bellman (HJB) equation. Based on this it is further proved that
the value function must be twice continuously differentiable. Then a delicate analysis is carried out
on the HJB equation, leading to an explicit expression of the value function as well as the optimal
policies.

Key words. diffusion model, dividend distribution, risk control, optimal stochastic control,
HJB equation, viscosity solution, Skorohod problem
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PII. S0363012900382667

1. Introduction. Recently there has been an upsurge of interest in diffusion
models for optimal dividend optimization and/or risk control techniques (see
Jeanblanc–Piqué and Shiryaev [11], Asmussen and Taksar [2], Radner and Shepp [16],
Boyle, Elliott, and Yang [3], Højgaard and Taksar [8], [9], [10], Paulsen and Gjessing
[13], and Taksar and Zhou [18]). In those models the liquid assets of the company
are modeled by a Brownian motion with constant drift and diffusion coefficients. The
drift term corresponds to the expected (potential) profit per unit time, while the dif-
fusion term is interpreted as risk. The larger the diffusion coefficient the greater the
business risk the company takes on. If the company wants to decrease the risk from
its business activities, it also faces a decrease in its potential profit. In other words,
different business activities in this model correspond to changing simultaneously the
drift and the diffusion coefficients of the underlying process. This sets a scene for an
optimal stochastic control model where the controls affect not only the drift but also
the diffusion part of the dynamic of the system.

Another important feature of our paper is dividend distribution. Dividends are
paid from the liquid reserve of the company and distributed to the shareholders.
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In the control model the dividend distribution plan is represented by an increasing
functional, Ct, whose meaning is the cumulative amount of dividends paid out up
to time t. In this paper the dividend pay-out rate is unbounded which, together
with the risk control part, leads to a mixed regular-singular stochastic control model.
The risk control/dividend distribution policy determines uniquely the dynamics of the
liquid reserve. The company is bankrupt when its liquid assets vanish. The objective
is to find the policy which maximizes the expected cumulative discounted dividend
pay-outs up to the time of the bankruptcy.

Insurance is one of the natural areas where those models become widely applied.
The risk control in insurance takes on the form of reinsurance. Specifically, if at any
fixed time both the drift and diffusion coefficients of the controlled stochastic process
are multiples of one and the same control parameter a, 0 ≤ a ≤ 1, then this would
be the case of the so-called proportional reinsurance, which is employed by a cedent
in order to reduce the insurance risks. Other types of reinsurance schemes result in
different types of drift/diffusion control models (see, e.g., [1], [17], [4]).

In this paper we consider a company whose business activities are modeled by a
control process at, t ≥ 0, which takes on values in the interval [α, β], 0 < α < β < +∞,
with risk and potential profit at any time t proportional to at. The restriction α > 0
reflects the fact that there are institutional or statutory reasons (e.g., the company is
public) that its business activities cannot be reduced to zero, unless the company faces
bankruptcy. In addition, in our model the company has a constant rate of liability
payments, such as mortgage payments on its property or amortization of bonds. In
the case of an insurance company, when the control parameter at lies within [0, 1] this
problem was considered by Taksar and Zhou [18]. In this regard, the model treated
in [18] can be viewed as a limiting case of α → 0+ and β = 1. However, the strictly
positive lower bound treated in this paper renders the argument in [18] invalid and
imposes a great difficulty for the problem. It is interesting to observe that the analytic
expression for the optimal return function (value function) obtained in this paper, in
the limiting case of α → 0+, β = 1, looks completely different from that in [18].
However, we will show via a detailed analysis that these are two analytic expressions
for one and the same function.

We start our analysis with the value function v of the underlying stochastic control
model. We first show that v is a viscosity solution of the corresponding Hamilton–
Jacobi–Bellman (HJB) equation, which is interesting in its own right as the underlying
stochastic control model is of a mixed regular-singular type. Based on this fact, along
with the concavity of the value function, we prove a priori that v must be twice
continuously differentiable (and hence, as a by-product, must be a classical solution
to the HJB equation). The proof is very general and should be applicable to a large set
of problems whenever concavity can be proved in advance. Afterwards we perform a
delicate analysis on the HJB equation, which leads to explicit expressions of the value
function for all the possible parameter values. Once this is done, optimal risk control
and dividend policies are constructed via the verification theorem and the solution to
a Skorohod problem.

The paper is structured as follows. In the next section we give a rigorous math-
ematical formulation of the problem and analyze the structure of the value function.
We show that it is concave and is twice continuously differentiable. In section 3 we
analyze the case without liability, which is interesting in its own right and inspiring
in treating more general cases. In section 4 we extend the results to the case of a con-
stant liability payments. Section 5 is devoted to the construction of optimal policies
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based on the results of the preceding sections. The last section is devoted to economic
interpretation of the obtained results, along with some concluding remarks.

2. Properties of the optimal return function. We start with a filtered prob-
ability space (Ω,F ,Ft, P ) and a one-dimensional standard Brownian motionWt (with
W0 = 0) on it, adapted to the filtration Ft. We denote by Rπ

t the reserve of the com-
pany at time t under a control policy π = (aπt , C

π
t ; t ≥ 0) (to be specified below). The

dynamics of the reserve process Rπ
t is described by

dRπ
t = (aπt µ− δ)dt+ aπt σdWt − dCπ

t ,(2.1)

with initial condition

Rπ
0− = x,(2.2)

where µ is the expected profit per unit time (profit rate) and σ is the volatility rate
of the reserve process in the absence of any risk control, δ represents the amount of
money the company has to pay per unit time (the debt rate) irrespective of what
business activities it chooses, and x is the initial reserve. It should be noted that a
dividend distribution (see below) may take place at the initial time, hence the notation
Rπ

0− represents the initial reserve level before such a distribution has ever occurred.
The control in this model is described by a pair of Ft-adapted measurable pro-

cesses π = (aπt , C
π
t ; t ≥ 0). A control π = (aπt , C

π
t ; t ≥ 0) is admissible if α ≤ aπt ≤ β

for all t ≥ 0, and Cπ
t is nondecreasing, right continuous having left limits process,

where 0 < α < β < +∞ are given scalars. In addition it is required that the state
process Rπ

t is nonnegative for all t ≤ τ , where τ is the time of bankruptcy given
by (2.3) below. The last condition describes the requirement that one cannot have
a negative reserve even at the time of bankruptcy. Thus if at time t a lump sum
payment of dividends is made, then it cannot be in excess of the reserve at hand. We
denote the set of all admissible controls by A. The control component aπt represents
one of the possible business activities available for the company at time t, and the
component Cπ

t corresponds to the total amount of dividends paid out by the company
up to time t. For any admissible Cπ and any t < 0 we set Cπ

t = 0. Thus Cπ
0− = 0

and if Cπ
0 > 0, then R0 = x−Cπ

0 . The latter corresponds to the policy π, which pays
a lump sum dividend of Cπ

0 at time 0.
Given a control policy π, the time of bankruptcy is defined as

τπ = inf{t ≥ 0 : Rπ
t = 0}.(2.3)

We make the convention that

Rπ
t = 0 ∀t ≥ τπ.(2.4)

The performance functional associated with each control π is

Jx(π) = E

(∫ τπ

0

e−γtdCπ
t

)
,(2.5)

where γ > 0 is an a priori given discount factor (used in calculating the present value
of the future dividends), and the subscript x denotes the initial state in the right-
hand side of (2.2). To simplify notation, in what follows we will omit the superscript
π in τπ, aπ, etc. when it is clear from the context which policy we are dealing with.
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The integral in (2.5) is understood as an integral on [0, τ ] with respect to the measure
whose distribution function is Ct. In particular, if C0 > 0, this measure has an atomic
mass of C0 at 0 and this quantity is included in the integral. Likewise if Cτ− < Cτ ,
then e−cτ (Cτ − Cτ−) is included in the integral in the right-hand side of (2.5). The
objective is to find the value function (also known as optimal return function)

v(x) = sup
π∈A

Jx(π)(2.6)

and the optimal policy π∗ such that

Jx(π
∗) = v(x).(2.7)

It is worthwhile to mention that from the requirement of nonnegativity of the reserve
one can deduce that Ct does not exceed the running maximum of a Brownian motion
with drift coefficient βµ − δ and diffusion coefficient βσ. From this it is easy to see
that for each policy π

Jx(π) ≤
∫ ∞

0

e−γt max
0≤u≤t

[x+ (βµ− δ)u+ βσWu]dt.

From the above inequality one can deduce that v(x) is finite. However, more elaborate
arguments are not needed since the finiteness of v will be also implied from the results
of sections 3 and 4. The exogenous parameters of the problem are µ, σ, δ, α, β, and
γ. The aim of this paper is to obtain the value function v and the optimal policy
explicitly in terms of these parameters.

A few remarks on the control component at are in order. The way this quantity
enters into the dynamics (2.1) clearly shows that it reduces or increases the risk
simultaneously reducing or increasing the expected profit rate at the same scale.
In other words, the diffusion coefficient of the system (2.1) depends on the control
component at. In [18], the problem is formulated in the context of an insurance
company where 1− at signifies the reinsurance fraction and the constraint 0 ≤ at ≤ 1
is imposed, which is a limiting case of α → 0+ and β = 1. (Note that while in
our analysis below we require α > 0, the solution we obtain does have a limit when
α→ 0+ and this limit coincides with the solution in [18]. In this sense the model in
[18] is indeed a special case of the model presented here.) It is certainly meaningful to
relax this constraint to one with any arbitrary upper and lower bounds. For example,
for the insurance company case, β > 1 would mean that the company can take an
extra insurance business from other companies (that is, act as a reinsurer for other
cedents). Moreover, our formulation can model risk control problems for companies
other than insurance ones. On the other hand, the two general bounds α and β add
a new, nontrivial feature to this model, as will be evident in what follows.

The main tools for solving the problem are the dynamic programming and the
HJB equation (see Fleming and Rishel [6], Fleming and Soner [7], and Yong and Zhou
[19], as well as relevant discussions in [2], [9], and [18]). To analyze the value function,
we need the following lemma.

Lemma 1. Let Xt be Ito’s process on a positive half line,

Xt = x+

∫ t

0

m(u)du+

∫ t

0

s(u)dWu,(2.8)

where

0 < d ≤ s(u) ≤ g, b ≤ m(u) ≤ c,(2.9)
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for some constants b, c, d, and g. Let h > 0 and ζh = inf{t ≥ 0 : Xt = h}. Then for
any fixed t > 0,

P (ζ0 < ζh ∧ t)→ 1,(2.10)

E

(
max

0≤s≤ζ0∧t
Xs

)
→ 0(2.11)

as x ↓ 0 uniformly over all the processes Xt with the drift and diffusion terms subject
to (2.9).

Proof. Let t̃(r) =
∫ r
0
s(u)2du and t̂(v) = t̃−1(v), Y (v) = X(t̂(v)). Then, in view

of [14, Theorem 3.6, Corollary 3.7],

dY (v) = m̂(v)dv + dŴv,

where Ŵ is a standard Brownian motion. On the other hand, (2.9) shows 1
d2 ≥ dt̂(v)

dv ≥
1
g2 . Thus |m̂(v)| ≤ 1

d2 (|b| ∨ |c|) ≡ K,

X(s) = Y (t̃(s)), Y (s) ≤ x+Ks+ Ŵs,

and

(2.12)

max
0≤s≤t

X(s) = max
0≤v≤t̃(t)

Y (v) ≤ max
0≤v≤t̃(t)

(x+Kv + Ŵv) ≤ max
0≤v≤g2t

(x+Kv + Ŵv).

Therefore, if 0 < x < h, then

t̃(ζ0) ≤ ζ̂0, t̃(ζh) ≥ ζ̂h,(2.13)

where ζ̂h is the first hitting time of h by the process x+Kv + Ŵv. As a result,

P (ζ0 < ζh ∧ t) ≥ P (ζ̂0 < ζ̂h ∧ d2t)

and

max
0≤s≤ζ0∧t

Xs ≤ max
0≤v≤ζ̂0∧g2t

(x+Kv + Ŵv).

Thus the statement of the proposition follows from a similar statement for a standard
Brownian motion with a constant drift. The latter is trivial since x + Kv + Ŵv

decreases as x ↓ 0 and the law of iterated logarithm (see [14, section II, Theorem 1.9])

implies that ζ̂0 → 0, wherefrom (2.10) follows. On the other hand, since x+Kv+ Ŵv

is a continuous process, max0≤v≤ζ̂0∧g2t(x + Kv + Ŵv) ↓ 0 as x ↓ 0. Moreover, this

maximum is majorized by max0≤v≤g2t(h+Kv + Ŵv); hence (2.11) follows.
Now we show that the value function v has the following basic properties.
Proposition 1. The value function v is a continuous, nondecreasing function

subject to

v(0+) = 0.(2.14)

Proof. If y > x, then for any π = (at, Ct), we can put π̂ = (at, Ct + y − x).
The policy π̂ corresponds to instantaneously paying dividends in the amount of y−x,
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thus instantaneously changing the initial reserve from y into x and then following the
policy π. If Rt is the process satisfying (2.1), (2.2) and R̂t is the process satisfying
(2.1) and (2.2) with π replaced by π̂ and x replaced by y in (2.2), then Rt = R̂t for
all t > 0. Obviously Jy(π̂) = (y − x) + Jx(π). This shows that

v(y) ≥ (y − x) + v(x)(2.15)

and, in particular, v is nondecreasing.
To prove (2.14), let π = (at, Ct) be an arbitrary policy and Rt be given by (2.1),

(2.2) whileXt = Rt+Ct. ThusX is the process governed by (2.8) withm(u) = µau−δ
and s(u) = σau. From the condition α ≤ au ≤ β follows (2.9). Fix t > 0. In view of
Lemma 1, for any 0 < ε < 1 choose x such that the expression in the left-hand side
of (2.10) is greater than 1− ε and the expression in the left-hand side of (2.11) is less
than ε.

Fix h > 0 and let η = τ ∧ ζh ∧ t. Since Rt ≤ Xt, we see that τ ≤ ζ0 and
P (τ < ζh∧t) > P (ζ0 < ζh∧t) > 1−ε. Due to the requirement that Rs = Xs−Cs ≥ 0
for all s ≤ τ , we have Cη ≤ Xη ≤ max0≤u≤ηXu. Therefore ECη < ε. As a result

Jx(π) = E

∫ τ

0

e−γsdCs = E

∫ η

0

e−γsdCs + E

(
1τ>η

∫ τ

η

e−γsdCs

)
(2.16)

≤ ECη + E

(
1τ>ηE

(∫ τ

η

e−γsdCs|Fη
))
≤ ε+ E

(
1τ>ηe

−γηv(Rη)
)
.

The last inequality in (2.16) is due to the definition of the value function v. Since
Rη ≤ Xη ≤ h, and the function v is increasing, v(Rη) ≤ v(h). Consequently,

Jx(π) ≤ ε+ E(1τ>ηe
−γηv(h)) ≤ ε+ v(h)P (τ > η) ≤ ε(1 + v(h)).(2.17)

In view of arbitrariness of ε, we conclude the validity of (2.14).
Finally, we prove that v is continuous at any y > 0. Let π = (at, Ct) be a control

admissible from y and Rt is the corresponding process with the initial position y (that
is, R0− = y). Let 0 < x < y be such that the expression in the left-hand side of (2.10)
is greater than 1− ε and the expression in the left-hand side of (2.11) is less than ε.
Suppose ξ ≥ 0 is any stopping time such that Rξ ≤ x. Then, following exactly the
same line of proof as for (2.17), we can show that

E

(∫ τ

ξ

e−γtdCt

)
≤ ε(1 + v(h)),(2.18)

where h > 0 is fixed. Let ŷ = y − x and π̂ = (ât, Ĉt) be the control which makes
the resulting state process R̂ “trail” the process R at the constant distance of x until
the bankruptcy of the tracing process. That is, (ât, Ĉt) = (at, Ct), t < ζ, where
ζ = inf{t ≥ 0 : R̂t ≤ 0} and

R̂t = y − x+

∫ t

0

(asµ− δ)ds+

∫ t

0

asσdWs − Ct.

We set Ĉζ = Cζ− + R̂ζ−. Obviously R̂t = Rt − x for t < ζ and R̂ζ = 0. Since

R̂ζ− = Rζ− − x and R̂ζ− − (Cζ − Cζ−) ≤ 0, we conclude that

Rζ = Rζ− − (Cζ − Cζ−) ≤ x.(2.19)
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On the other hand, since Rζ = Rζ− − (Cζ − Cζ−) = R̂ζ− + x − (Cζ − Cζ−) ≥ 0, we
also have

(Cζ − Cζ−)− R̂ζ− ≤ x.(2.20)

Then

Jy(π) = E

(∫ τ

0

e−γtdCt

)
= E

(∫ ζ

0

e−γtdCt +
∫ τ

ζ

e−γtdCt

)

= E

[∫ ζ−

0

e−γtdCt + e−γζ(Cζ − Cζ−) +
∫ τ

ζ

e−γtdCt

]

= E

{∫ ζ−

0

e−γtdCt + e−γζR̂ζ− + e−γζ [(Cζ − Cζ−)− R̂ζ−] +
∫ τ

ζ

e−γtdCt

}

= Jy−x(π̂) + E

{
e−γζ [(Cζ − Cζ−)− R̂ζ−] +

∫ τ

ζ

e−γtdCt

}
.

In view of (2.19) we see that (2.18) is true with ξ = ζ. This, together with (2.20),
yields

Jy(π) ≤ Jy−x(π̂) + x+ ε(1 + v(h)).

Thus

0 ≤ v(y)− v(y − x) ≤ x+ ε(1 + v(h)),

which shows continuity of v.
Since the value function has been proved to be continuous, the following dynamic

programming principle holds:

v(x) = sup
π∈A

[
E

∫ τ∧θ

0

e−γtdCt + Ee −γ(τ∧θ)v(Rτ∧θ)
]

(2.21)

for every x ≥ 0 and Ft-stopping time θ (which may depend on the policy π); see [7,
p. 333] for details.

Proposition 2. The value function v is a concave function.
Proof. First note that the dynamic programming principle (2.21) implies that if

0 < y < x, then

v(x) = sup
π∈A

Ex

(∫ χy

0

e−γtdCt + e−γχyv(Rχy )

)
,(2.22)

where χy = inf{t ≥ 0 : Rt ≤ y} with Rt the reserve process corresponding to π. Since
x > y and the process Rt can have only the downward jumps, we have

Rχy ≤ y(2.23)

and Rχy ≡ Rχy−−∆Cχy < y only if ∆Cχy = Cχy−Cχy− > 0. Put ∆′Cχy = Rχy−−y
and ∆′′Cχy = ∆Cχy −∆′Cχy . In view of (2.23) we have ∆′Cχy ≤ ∆Cχy , ∆

′′Cχy ≥ 0
and

Rχy− −∆′Cχy
= y, y −∆′′Cχy

= Rχy
.(2.24)
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Taking into account (2.24), we have for any π ∈ A

Ex
(∫ χy

0
e−γtdCt + e−γχyv(Rχy )

)
= Ex

(∫ χy−
0

e−γtdCt + e−γχy∆Cχy + e−γχy [v(y) + v(Rχy )− v(y)]
)

= Ex

( ∫ χy−
0

e−γtdCt + e−γχy (∆′Cχy
+∆′′Cχy

)

+ e−γχy [v(y) + v(y −∆′′Cχy )− v(y)]
)

= Ex

( ∫ χy−
0

e−γtdCt + e−γχy∆′Cχy + e−γχyv(y)

+ e−γχy [v(y −∆′′Cχy
)− v(y) + ∆′′Cχy ]

)
.

(2.25)

In view of (2.15),

v(y −∆′′Cχy
)− v(y) ≤ −∆′′Cχy ;

therefore (2.25) implies

Ex

(∫ χy

0

e−γtdCt + e−γχyv(Rχy
)

)
(2.26)

≤ Ex

(∫ χy−

0

e−γtdCt + e−γχy∆′Cχy
+ e−γχyv(y)

)

= Ex

(∫ χy

0

e−γtdC ′
t + e−γχyv(y)

)
,

where

C ′
s = Cs ∀s < χy,

C ′
χy

= Cχy− +∆′Cχy .

Thus if (at, Ct) ∈ A, then by changing Ct into C ′
t (that is, not changing control Ct

until χy and only changing the jump at the time χy from ∆Cχy
to ∆′Cχy ) we can

only increase the left-hand side of (2.25). Therefore the supremum in the right-hand
side of (2.22) can be taken over only those controls in A for which ∆Cχy

is replaced
by ∆′Cχy . Note that an easy calculation shows that under the control (at, C

′
t) the

corresponding reserve process always satisfies

Rχy = y.(2.27)

Consequently, for the right-hand side of the dynamic programming equation (2.22)
we need only consider those controls π for which (2.27) holds.

For h > 0, let Ah be the set of controls (at, Ct) such that

∫ ζ

0

µa(s)ds+

∫ ζ

0

σa(s)dWs − δζ − Cζ = −h

on the set {ζ <∞}, where

ζ = inf

{
t ≥ 0 :

∫ t

0

µa(s)ds+

∫ t

0

σa(s)dWs − δt− Ct ≤ −h
}
.
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From (2.22) and the argument above, we can write (putting h = x− y)

v(x) = sup
(at,Ct)∈Ah

Ex

(∫ ζ

0

e−γtdCt + e−γζv(y)

)
.(2.28)

Thus, by putting y = x− h in (2.28), we have

v(x)− v(x− h) = sup
(at,Ct)∈Ah

Ex

(∫ ζ

0

e−γtdCt + (e−γζ − 1)v(x− h)

)
.(2.29)

Since e−γζ−1 ≤ 0 and v(x) is a nondecreasing function as shown earlier, the right-hand
side of (2.29) is a nonincreasing function of x. Thus v(x)−v(x−h) is a nonincreasing
function of x, which shows the concavity of v.

Remark 1. Normally a proof for the concavity of the value function is straight-
forward if the dynamics of the underlying stochastic control model is linear and is on,
say, an infinite time horizon. In such a case there is no need to employ the dynamic
programming approach. In the present case, however, the random time horizon ter-
minated by a stopping time, the constraint that at must be strictly positive as well as
the presence of δ > 0 render the normal approach invalid. Here, we use the dynamic
programming principle to overcome the difficulty in proving the concavity of the value
function, which is new according to our best knowledge.

Theorem 1. The value function v is a viscosity solution of the HJB equation

max
(
maxα≤a≤β

(
1
2σ

2a2V ′′(x) + (aµ− δ)V ′(x)− γV (x)
)
, 1− V ′(x)

)
= 0, x > 0,

V (0) = 0.
(2.30)
That is,
(i) for any x0 > 0 and any C2 function f such that f(x0) = v(x0) and f(x) ≥ v(x)
for all x in the neighborhood of x0,

(2.31)

max

(
max
α≤a≤β

(
1

2
σ2a2f ′′(x0) + (aµ− δ)f ′(x0)− γf(x0)

)
, 1− f ′(x0)

)
≥ 0;

(ii) for any x0 > 0 and any C2 function f such that f(x0) = v(x0) and f(x) ≤ v(x)
for all x in the neighborhood of x0,

(2.32)

max

(
max
α≤a≤β

(
1

2
σ2a2f ′′(x0) + (aµ− δ)f ′(x0)− γf(x0)

)
, 1− f ′(x0)

)
≤ 0.

Moreover, if v is twice differentiable at the point x0, then v satisfies (2.30) at x0.
Proof. For any a ∈ [α, β] denote the operator

La =
1

2
σ2a2 d2

dx2
+ (aµ− δ)

d

dx
− γ.(2.33)

Fix x0 > 0. Dynamic programming principle yields

v(x0) = sup
π∈A

[
E

∫ τ∧τ ′

0

e−γtdCt + Ee−γ(τ∧τ ′)v(Rτ∧τ ′)

]
(2.34)

for any Ft-stopping time τ ′ (which may depend on the policy π).
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For any C2 function f such that f(x0) = v(x0) and f(x) ≤ v(x) for all x in the
neighborhood of x0, let Oε(x0) = [x0−ε, x0+ε] be the small interval, where ε > 0, such
that f(x) ≤ v(x) and x > 0 for all x ∈ Oε(x0). Fix a policy π = (at, Ct; t ≥ 0) ∈ A,
where Ct =

{ 0 if t = 0−,
η if t ≥ 0, with 0 ≤ η < ε. Let θ be the exit time of the corresponding

reserve process Rt from Oε(x0), namely, θ = inf{t ≥ 0 : Rt �∈ Oε(x0)}. By the choice
of Oε(x0) above, θ ≤ τ . It is also easily seen that the corresponding reserve process Rt

has at most one jump at t = 0 while remaining continuous on (0, θ] (hence staying in
Oε(x0) at or before θ). Now, taking τ

′ = θ∧h in (2.34), where h > 0 is a deterministic
quantity, and noting that Rθ∧h ∈ Oε(x0), we have

f(x0) = v(x0) ≥ E[
∫ θ∧h
0

e−γsdCs + e−γ(θ∧h)v(Rθ∧h)]
≥ E[

∫ θ∧h
0

e−γsdCs + e−γ(θ∧h)f(Rθ∧h)] ∀h > 0.
(2.35)

Applying a generalized Ito formula (see Dellacherie and Meyer [5, Theorem VIII.27])
to the process e−γtf(Rt), we get (below Cc

t stands for the continuous part of the
increasing process Ct)

e−γ(θ∧h)f(Rθ∧h) = f(x0) +

∫ θ∧h

0

e−γsσasf ′(Rs)dWs

+

∫ θ∧h

0

e−γsLasf(Rs)ds−
∫ θ∧h

0

e−γsf ′(Rs)dCs(2.36)

+
∑
s≤θ∧h

e−γs[f(Rs)− f(Rs−)− f ′(Rs−)(Rs −Rs−)]

= f(x0) +

∫ θ∧h

0

e−γsσasf ′(Rs)dWs +

∫ θ∧h

0

e−γsLasf(Rs)ds

−
∫ θ∧h

0

e−γsf ′(Rs)dC
c
s +

∑
s≤θ∧h

e−γs[f(Rs)− f(Rs−)],

where we used the equality Rs −Rs− = −(Cs − Cs−). Since f is C2 and Rs stays in
the bounded region Oε(x0) for s ≤ θ, we conclude that f ′(Rs) is bounded on [0, θ∧h]
and hence the stochastic integral in (2.36) is a square integrable martingale whose
expectation vanishes. Taking the expectation of (2.36) and substituting it into (2.35),
we obtain

E
∫ θ∧h
0

e−γsdCs + E
∫ θ∧h
0

e−γsLasf(Rs)ds

−E ∫ θ∧h
0

e−γsf ′(Rs)dC
c
s + E

∑
s≤θ∧h e

−γs[f(Rs)− f(Rs−)] ≤ 0 ∀h > 0.
(2.37)

In the above, taking at ≡ a and Ct ≡ 0 (i.e., η = 0), where a ∈ [α, β], we have

E
∫ θ∧h
0

e−γsLaf(Rs)ds = E
∫ h
0
e−γsLaf(Rs)1s≤θds ≤ 0 for all h > 0. Note that in

this case Rs is continuous at s = 0 and the integrand, e−γsLaf(Rs)1s≤θ, converges
to Laf(x0) almost surely as s → 0. Dividing the above inequality by h and sending
h to zero, we conclude by the uniform boundedness of the above integrand that

Laf(x0) ≤ 0 ∀a ∈ [α, β].(2.38)

On the other hand, in (2.37) taking at ≡ a and η > 0, we obtain

E

∫ θ∧h

0

e−γsLaf(Rs)ds+ η + f(x0 − η)− f(x0) ≤ 0 ∀h > 0 ∀0 < η < ε.
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First letting h→ 0, then dividing by η and finally sending η to 0, we obtain

1− f ′(x0) ≤ 0.(2.39)

Combining (2.38) and (2.39) we arrive at (2.32).
To prove (2.31), let a C2 function f be such that f(x0) = v(x0) and f(x) ≥ v(x)

for all x in the neighborhood of x0 > 0. If (2.31) is not true, then there is A > 0 such
that

(2.40)

max

(
max
α≤a≤β

(
1

2
σ2a2f ′′(x) + (aµ− δ)f ′(x)− γf(x)

)
, 1− f ′(x)

)
≤ −A < 0

for all x ∈ Oε(x0) = [x0−ε, x0+ε], where ε > 0. As before we can make ε sufficiently
small so that f(x) ≥ v(x) and x > 0 for all x ∈ Oε(x0). Given a policy π ∈ A, let
θ = inf{t ≥ 0 : Rt �∈ Oε(x0)}. Note that it is possible that θ = 0+, meaning that
there is a jump at t = 0 getting the reserve process out of Oε(x0) instantly. However,
by definition Rs stays in Oε(x0) so long as s < θ. Once again, θ ≤ τ . (If there is a
jump at t = 0 making the reserve process zero instantly, then θ = τ = 0+.) Now, the
generalized Ito formula yields

Ee−γθf(Rθ−)− f(x0) + E
∫ θ−
0

e−γsdCs
= E

∫ θ−
0

e−γsLasf(Rs)ds− E
∫ θ−
0

e−γsf ′(Rs)dC
c
s

+ E
∑

s<θ e
−γs[f(Rs)− f(Rs−)] + E

∫ θ−
0

e−γsdCs.
(2.41)

First we have

f(Rs)− f(Rs−) = (Rs −Rs−)
∫ 1

0
f ′(Rs− + z(Rs −Rs−))dz

= −(Cs − Cs−)
∫ 1

0
f ′(Rs− + z(Rs −Rs−))dz

≤ −(1 +A)(Cs − Cs−),
(2.42)

where the last inequality is due to (2.40). Going back to (2.41), noting (2.40) and
(2.42), we have

(2.43)

Ee−γθf(Rθ−)− f(x0) + E
∫ θ−
0

e−γsdCs

≤ −AE ∫ θ
0
e−γsds− (1 +A)E

∫ θ−
0

e−γsdCc
s − (1 +A)E

∑
s<θ e

−γs(Cs − Cs−)

+E
∫ θ−
0

e−γsdCs

= −AE ∫ θ
0
e−γsds− (1 +A)E

∫ θ−
0

e−γsdCs + E
∫ θ−
0

e−γsdCs

= −AE ∫ θ
0
e−γsds−AE

∫ θ−
0

e−γsdCs.

To proceed, note that Rθ ≤ Rθ− ∈ Oε(x0) while Rθ may be out of Oε(x0). However,
one can always find a point xλ on the boundary of Oε(x0) such that

xλ = Rθ− + λ(Rθ −Rθ−) ≡ Rθ− − λ(Cθ − Cθ−) ∈ {x0 − ε, x0 + ε},(2.44)

where λ ∈ [0, 1] is a random variable. Clearly we have Rθ ≤ xλ ≤ Rθ−, and xλ = x0−ε
if Rθ �∈ Oε(x0). Now, similar to (2.42), we have

f(Rθ−)− f(xλ) ≥ (1 +A)(Rθ− − xλ) = λ(1 +A)(Cθ − Cθ−).(2.45)
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Moreover, since Rθ ≤ xλ we have by (2.15) that

v(xλ) ≥ xλ −Rθ + v(Rθ) = (1− λ)(Cθ − Cθ−) + v(Rθ).(2.46)

Combining (2.43), (2.45), and (2.46), we derive

(2.47)

v(x0) = f(x0) ≥ E
∫ θ−
0

e−γsdCs + Ee−γθf(Rθ−)
+ A

[
E
∫ θ
0
e−γsds+ E

∫ θ−
0

e−γsdCs
]

≥ E
∫ θ−
0

e−γsdCs + Ee−γθf(xλ) + λ(1 +A)Ee−γθ(Cθ − Cθ−)
+ A

[
E
∫ θ
0
e−γsds+ E

∫ θ−
0

e−γsdCs
]

≥ E
∫ θ−
0

e−γsdCs + Ee−γθv(xλ) + λ(1 +A)Ee−γθ(Cθ − Cθ−)
+ A

[
E
∫ θ
0
e−γsds+ E

∫ θ−
0

e−γsdCs
]

≥ E
∫ θ−
0

e−γsdCs + Ee−γθv(Rθ) + (1− λ)Ee−γθ(Cθ − Cθ−)
+ λ(1 +A)Ee−γθ(Cθ − Cθ−)
+ A

[
E
∫ θ
0
e−γsds+ E

∫ θ−
0

e−γsdCs
]

= E
∫ θ
0
e−γsdCs + Ee−γθv(Rθ)

+ A
[
E
∫ θ
0
e−γsds+ E

∫ θ−
0

e−γsdCs + λEe−γθ(Cθ − Cθ−)
]
.

Next we are going to show that there is a constant k0 > 0 such that

E

∫ θ

0

e−γsds+ E

∫ θ−

0

e−γsdCs + λEe−γθ(Cθ − Cθ−) ≥ k0 ∀π ∈ A.(2.48)

To this end, define a C2 function

w(x) = K0(|x− x0|2 − ε2),(2.49)

where

(2.50)

K0 = min

{
1

sup|x−x0|≤δ,α≤a≤β
[
σ2a2 + γε2 + 2|(aµ− δ)(x− x0)|

] , 1
2ε

}
> 0.

From the definition of w(·) it is easy to verify that

Law(x) ≤ 1 and |w′(x)| ≤ 1 ∀x ∈ Oε(x0) ∀a ∈ [α, β].(2.51)

Now applying the generalized Ito formula, we have

E[e−γθw(Rθ−)− w(x0)]

= E
∫ θ−
0

e−γsLasw(Rs)ds− E
∫ θ−
0

e−γsw′(Rs)dC
c
s

+E
∑

s<θ e
−γs[w(Rs)− w(Rs−)]

≤ E
∫ θ
0
e−γsds+ E

∫ θ−
0

e−γsdCs,

(2.52)

where the last inequality is due to (2.51). However, since w′(x) ≥ −1, we have

w(Rθ−)− w(xλ) ≥ −(Rθ− − xλ) = −λ(Cθ − Cθ−).(2.53)
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Substituting (2.53) into (2.52) we obtain

(2.54)

E

∫ θ

0

e−γsds+ E

∫ θ−

0

e−γsdCs ≥ E[e−γθw(xλ)− w(x0)]− λEe−γθ(Cθ − Cθ−).

Noting that w(xλ) = 0 and w(x0) = −K0ε
2, we prove (2.48) with k0 := K0ε

2 > 0.
Thus, (2.47) gives

v(x0) ≥ E

∫ θ

0

e−γsdCs + Ee−γθv(Rθ) +Ak0,(2.55)

which holds true for any π ∈ A. Taking supremum over π ∈ A on both sides and
appealing to (2.34), we have

v(x0) ≥ v(x0) +Ak0,

which is a contradiction. This proves that (2.40) is invalid.
Finally, if v is twice differentiable at x0, then by definition we have (v

′(x0), v
′′(x0))

∈ D2,+v(x0), the latter being the second-order superdifferential of v at x0. Hence,
by [19, p. 193, Lemma 5.4], there is a C2 function f such that v − f attains a strict
maximum at x0 and (v(x0), v

′(x0), v
′′(x0)) = (f(x0), f

′(x0), f
′′(x0)). By (i) proved

above, f satisfies (2.31) at x0, hence so does v at x0. On the other hand, we also have
(v′(x0), v

′′(x0)) ∈ D2,−v(x0), the latter being the second-order subdifferential of v at
x0. Thus a symmetric reasoning leads to that v satisfies (2.32) at x0. This proves the
last claim of the theorem.

Remark 2. It is proved in Fleming and Soner [7, chapter VIII] that the value
function of a pure singular control problem is a viscosity solution of the corresponding
HJB equation. The proof there is very involved as it is for a multidimensional problem.
Our proof here is for a mixed regular-singular problem and is relatively simple by
greatly exploiting the special structure of the single dimensionality.

Remark 3. Technically speaking the boundary condition in (2.30) should be
V (0+) = 0 as (2.14) shows, rather than V (0) = 0. However, here and in what follows
we will always adopt a convention that the solution of the HJB equation is extended
to 0 by continuity and the value of V at 0 is its limit from the right.

Based on the fact that the value function is a concave viscosity solution of the
HJB equation, we are able to show that it is in fact C2. To this end we need the
following lemma.

Lemma 2. Suppose g is a concave function such that g(x) = g(x0) + a(x − x0)
for x ≤ x0 and g(x) = g(x0) + b(x − x0) for x ≥ x0, where a > b. Then for
each sufficiently small ε > 0 there exists a concave C2 function f ≥ g such that
f(x0) = g(x0), f

′(x) = a, x < x0 − ε, f ′(x) = b, x ≥ x0 + ε, f ′(x0) = (b+ a)/2, and
f ′′(x0) ≤ −ε−1.

Proof. Choose F (x) to be a nonincreasing continuously differentiable function,
such that F (x) = a for x ≤ x0− ε, F (x) = b for x ≥ x0+ ε, and F (x) = − 2

ε (x−x0)+

(b+ a)/2 for −ε2/2 < x− x0 < ε2/2. Then f(x) := g(x0) +
∫ x
x0
F (y)dy is the desired

function.
Theorem 2. The value function v(x) is twice continuously differentiable for all

x > 0.
Proof. We divide the proof into several steps.
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Step 1◦. In view of concavity, the function v is a continuous function on (0,∞).
First we show that v is a C1 function. Let D+v(x) and D−v(x) be the right and
the left derivatives of v at x. In view of concavity of v, the derivatives D+v(x) and
D−v(x) exist for any x > 0 and D−v(x) ≥ D+v(x). By virtue of (2.15) D+v(x) ≥ 1
for all x > 0. Suppose x0 is such that D−v(x0) > D+v(x0) ≥ 1. Then v(x) ≤ g(x),
where g(x) = v(x0)+D+v(x0)(x−x0) for x ≥ x0 and g(x) = v(x0)+D−v(x0)(x−x0)
for x ≤ x0. Lemma 2 guarantees an existence of a concave C2 function f such that
f(x) ≥ g(x) ≥ v(x), f(x0) = g(x0) = v(x0), f

′(x0) = (D+v(x0) + D−v(x0))/2 > 1,
and f ′′(x0) ≤ −ε−1. Theorem 1 shows that f must satisfy (2.31). Since f ′(x0) > 1
we must have

1

2
σ2a2f ′′(x0) + (aµ− δ)f ′(x0)− γf(x0) ≥ 0(2.56)

for some α ≤ a ≤ β. However, |(aµ−δ)f ′(x0)−γf(x0)| ≤ |(aµ−δ)f ′(x0)|+γv(x0) ≤
(βµ−δ)D−v(x0)+γv(x0) while

1
2σ

2a2f ′′(x0) < − 1
2α

2σ2 1
ε . Thus choosing ε sufficiently

small, we can see that (2.56) is violated. This shows that D−v(x0) = D+v(x0).
Step 2◦. Inequality (2.15) shows that v′(x) ≥ 1 for all x > 0. Let x1 = min{x :

v′(x) = 1}. Since v′ is a nonincreasing function, we have v′(x) > 1 for all x < x1.
If f is subject to condition (i) of Theorem 1, then f ′(x0) = v′(x0) > 1 for x0 < x1.
Therefore (2.31) implies

max
α≤a≤β

(
1

2
σ2a2f ′′(x0) + (aµ− δ)f ′(x0)− γf(x0)

)
≥ 0.(2.57)

Since v is concave, existence of the derivative of v everywhere implies that v′ is a
continuous nonincreasing function. Let B be the set of points x where v′′(x) exists.
In view of [15, chapter 5, Theorem 3] the Lebesgue measure of the complement of B
is zero. Thus B is an everywhere dense set.

Suppose yn ∈ B, yn < x1 and yn → x0. Then by Theorem 1,

max
α≤a≤β

(
1

2
σ2a2v′′(yn) + (aµ− δ)v′(yn)− γv(yn)

)
= 0.(2.58)

Let a∗(yn) be the maximizer of the left-hand side of (2.58). Since v(yn) → v(x0),
v′(xn)→ v′(x0), and β ≥ a∗(yn) ≥ α > 0 we see that v′′(yn) is a bounded sequence.
Choosing a subsequence if necessary, we can assume that v′′(yn)→ q. The expression
which is maximized in the left-hand side of (2.58) is a quadratic polynomial of a on
the interval [α, β] with convergent coefficients. Therefore we can pass to a limit and
conclude

max
α≤a≤β

(
1

2
σ2a2q + (aµ− δ)v′(x0)− γv(x0)

)
= 0.(2.59)

If there exists another sequence zn ∈ B, zn < x1, such that zn → x0 and v′′(zn) →
q1 �= q, then the same arguments show that

max
α≤a≤β

(
1

2
σ2a2q1 + (aµ− δ)v′(x0)− γv(x0)

)
= 0.(2.60)

However,∣∣∣∣12σ2a2q + (aµ− δ)v′(x0)− γv(x0)− 1

2
σ2a2q1 − (aµ− δ)v′(x0)− γv(x0)

∣∣∣∣
=

1

2
σ2a2|q − q1| ≥ 1

2
σ2α2|q − q1| > 0
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for all a ∈ [α, β]. This inequality shows that (2.59) and (2.60) cannot hold simulta-
neously. Therefore q = q1. As a result v′′(x) is a continuous function on B which
can be extended to a continuous function on (0, x1). Consequently, v

′ is continuously
differentiable on (0, x1).

Step 3◦. The function v′ is nonincreasing and v′(x) ≥ 1 for all x > 0, while
v′(x) ≤ 1 for all x ≥ x1. Thus, v′(x) = 1 for all x ≥ x1. Therefore v′′(x) = 0 for
x > x1. It is left only to show that v′′(x1) exists.

Using the same arguments as in Step 2◦, we can prove that q = limy↑x1
v′′(y)

exists and (2.59) is true if we replace x0 by x1 in the left-hand side. Since v is
concave, q ≤ 0. Suppose q < 0. Then from (2.59) follows (recall that v′(x1) = 1)

maxα≤a≤β [(aµ− δ)− γv(x1)]

= maxα≤a≤β [(aµ− δ)v′(x1)− γv(x1)]

≥ maxα≤a≤β [ 12σ
2a2q + (aµ− δ)v′(x1)− γv(x1)]−maxα≤a≤β [ 12σ

2a2q]

= − 1
2σ

2α2q ≡ K > 0.

Continuity of v implies that there exists y > x1 such that γ(v(y) − v(x1)) < K/2.
Consequently,

max
α≤a≤β

[
1

2
σ2a2v′′(y) + (µa− δ)v′(y)− γv(y)

]
= max

α≤a≤β
[(µa− δ)− γv(y)] > K/2 > 0.

The above inequality contradicts the last statement of Theorem 1. This contradiction
proves that q = v′′(x1−) = 0. Therefore v′′ can be continuously extended to the point
x1 and as a result v has a second derivative at x1.

In view of the last statement of Theorem 1, the following corollary is straightfor-
ward.

Corollary 1. The value function v is the classical (i.e., C2) solution to the
HJB equation (2.30).

Note that we do not know a priori whether the HJB equation has any C2 solution
other than the value function. However, the following verification theorem, which says
that any concave solution V to the HJB equation (2.30) whose derivative is finite at
0 majorizes the performance functional for any policy π, is sufficient for us to identify
optimal policies.

Theorem 3. Let V be a concave, twice continuously differentiable solution of
(2.30), such that V ′(0+) < +∞. Then for any policy π = (at, Ct; t ≥ 0),

V (x) ≥ Jx(π).(2.61)

Proof. Let Rt be the reserve process given by (2.1) and (2.2) corresponding to a
given policy π. Then applying the generalized Ito formula to the process e−γtV (Rt),
we get

(2.62)

e−γ(t∧τ)V (Rt∧τ ) = V (x) +

∫ t∧τ

0

e−γsσasV ′(Rs)dWs +

∫ t∧τ

0

e−γsLasV (Rs)ds

−
∫ t∧τ

0

e−γsV ′(Rs)dC
c
s +

∑
s≤t∧τ

e−γs[V (Rs)− V (Rs−)].
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In view of the HJB equation (2.30), the quantity LasV (Rs) is always nonpositive.
Taking expectations of both sides of (2.62), we get

E(e−γ(t∧τ)V (Rt∧τ )) ≤ V (x)− E

∫ t∧τ

0

e−γsV ′(Rs)dC
c
s(2.63)

+ E
∑
s≤t∧τ

e−γs[V (Rs)− V (Rs−)].

Since V ′(x) ≥ 1, the mean-value theorem implies V (Rs) − V (Rs−) ≤ Rs − Rs− =
−(Cs − Cs−). Thus in (2.63), we can replace

∑
s≤t∧τ e

−γs[V (Rs) − V (Rs−)] by
−∑s≤t∧τ e

−γs(Cs−Cs−) with inequality preserved. Also the right-hand side of (2.63)
will not decrease if we replace V ′(Rs) in the first integral by 1 because V ′(x) ≥ 1. As
a result we get

E(e−γ(t∧τ)V (Rt∧τ )) ≤ V (x)− E

∫ t∧τ

0

e−γsdCc
s − E

∑
s≤t∧τ

e−γs(Cs − Cs−)

= V (x)− E

∫ t∧τ

0

e−γsdCs,

or

E(e−γ(t∧τ)V (Rt∧τ )) + E

∫ t∧τ

0

e−γsV ′(Rs)dCs ≤ V (x).(2.64)

Note that in view of boundedness of V ′,

e−γ(t∧τ)V (Rt∧τ ) ≤ e−γtK(1 +Rt∧τ ) ≤ e−γtK(1 + |Rt|)

for some constant K. Since Rt is a diffusion process with uniformly bounded drift
and diffusion coefficient, standard arguments yield E|Rt| ≤ x+K1t for some constant
K1. Therefore

Ee−γ(t∧τ)V (Rt∧τ )→ 0(2.65)

as t→∞. Thus taking limit in (2.64) as t→∞ we arrive at

V (x) ≥ E

∫ τ

0

e−γsV ′(Rs)dCs ≥ Jπ(x).

The idea of solving the original optimization problem is to first find a concave,
smooth solution to the HJB equation (2.30) and then construct a control policy (via
solving a Skorohod problem; for details see section 5) whose performance functional
can be shown to coincide with the bounded solution to (2.30). Then, the above
verification theorem establishes the optimality of the constructed control policy. As
a by-product, we have a proof that there is no concave solution to (2.30) other than
the value function.

3. Case of no liability. In this section we study the case where there is no debt
liability, namely, δ = 0. While being part of a more general case, it is interesting in
its own right and will provide some valuable insights into the resolution of the general
problem.
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In this case, the HJB equation reads

(3.1)

max
(
maxα≤a≤β

(
1
2σ

2a2V ′′(x) + aµV ′(x)− γV (x)
)
, 1− V ′(x)

)
= 0, x > 0,

V (0) = 0.

As mentioned above, the key is to find a concave, smooth function V satisfying
(3.1). While we could have presented such a solution immediately without any expla-
nation (one would need only to check if it does satisfy (3.1), which is a relatively easy
task), we believe that it is better to unfold the entire process of finding the solution
for the benefit of the readers. Therefore, what we are going to present below is indeed
the original process of tracking down the solution. Suppose such a solution, V , to the
HJB equation (3.1) is found. Then due to concavity, V ′ is a nonincreasing function.
Let x1 = inf{x ≥ 0 : V ′(x) ≤ 1}. Suppose x1 > 0. Since V is concave we have
V ′(x) > 1 for all x < x1. In view of (3.1), V satisfies

max
α≤a≤β

(
1

2
σ2a2V ′′(x) + aµV ′(x)− γV (x)

)
= 0 ∀x < x1.(3.2)

Note that if V satisfies (3.2) and V ′′(x) = 0 on an open interval, then the maximum in
the right-hand side of (3.2) is attained at a = β. Therefore on this interval the function
V satisfies the first-order linear differential equation whose solution is C exp( γ

βµx),
which contradicts concavity. Let

a(x) ≡ − µV ′(x)
σ2V ′′(x)

> 0, x < x1,(3.3)

be the maximizer of 1
2σ

2a2V ′′(x)+aµV ′(x)−γV (x) over all a ≥ 0, which is defined for
those x for which V ′′(x) �= 0. If α < a(x) < β, then we can substitute the expression
for a(x) given by (3.3) back into (3.2) to get

−µ
2(V ′(x))2

2σ2V ′′(x)
− γV (x) = 0.

Replacing − µV ′(x)
σ2V ′′(x) in the above equation by a(x) again, we get µa(x)V ′(x)/2 −

γV (x) = 0 or

a(x) =
2γV (x)

µV ′(x)
.

For a concave nondecreasing function V the numerator of the above expression
is a nondecreasing function, while the denominator is nonincreasing. Therefore a(x)
should be a nondecreasing function of x on the set where α < a(x) < β. On the other
hand continuity of V, V ′, and V ′′ implies that a(x) is a continuous function of x for
all x > 0. Therefore, if a(x̄) = α for some x̄, then a(x) ≤ α for all x < x̄. Indeed,
suppose a(ȳ) > α for some ȳ < x̄. Define ŷ = inf{y > ȳ : a(y) ≤ α} ≤ x̄. Since
a(x) is continuous, α < a(z) < β whereas a(z) is not nondecreasing for z in a left
neighborhood of ŷ, leading to a contradiction. Likewise if a(x̄) = β for some x̄, then
a(x) ≥ β for all x > x̄.

Since V ′′(x) ≤ 0, the expression 1
2σ

2a2V ′′(x) + aµV ′(x)− γV (x) as a function of
a increases on [0, a(x)] and decreases on [a(x), ∞). As was just shown there exist
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xα and xβ , 0 ≤ xα < xβ ≤ +∞, such that a(x) ≤ α for all x ≤ xα and a(x) ≥ β for
all x ≥ xβ ; and a(x) is nondecreasing from α to β on [xα, xβ ]. Our next step is to
show that xα > 0. To this end it is sufficient to analyze a(0).

Proposition 3. The following holds:

a(0) =
1

2
α.(3.4)

Proof. Put

φ(x, a) =
1

2
σ2a2V ′′(x) + aµV ′(x)− γV (x), x ≥ 0, a ≥ 0.(3.5)

It follows from (3.2) that maxα≤a≤β φ(0, a) = 0. Let ã ∈ [α, β] be such that
φ(0, ã) = maxα≤a≤β φ(0, a) = 0. Since V (0) = 0 we conclude

ã =
−2µV ′(0)
σ2V ′′(0)

≡ 2a(0).

On the other hand, φ(0, a) = a[ 12σ
2aV ′′(0)+µV ′(0)], where 1

2σ
2V ′′(0) ≤ 0. Hence the

maximum of φ(0, ·) is attained at the lower end of the interval [α, β], namely, ã = α.
This proves (3.4).

Continuity of a(x) and the inequality a(0) < α show that for all x in a right
neighborhood of 0, the maximum over a ∈ [α, β] in (3.2) is attained at α. Substituting
a = α into (3.2) and solving the resulting second-order linear ordinary differential
equation (ODE), we get

V (x) = k1(α, β)
(
er+(α)x − er−(α)x

)
,(3.6)

where k1(α, β) is a free constant to be determined, and

(3.7)

r+(z) ≡ −µ+ [µ2 + 2σ2γ]1/2

zσ2
> 0, r−(z) ≡ −µ− [µ2 + 2σ2γ]1/2

zσ2
< 0 ∀z > 0.

From (3.6) and (3.3) it follows that

a′(x) =
−µr−(α)r+(α)k2

1(α, β)e
(r+(α)+r−(α))x (r+(α)− r−(α))

2

(σV ′′(x))2
> 0

for all x in the right neighborhood of 0. Therefore in the right neighborhood of 0 the
function a(x) increases. Let xα be such that a(xα) = α. From (3.3) and (3.6), we
obtain

xα =
1

r+(α)− r−(α)
ln

(
−r−(α)
r+(α)

)
> 0.(3.8)

Proposition 4. For each x ≥ xα,

a(x) ≥ α.(3.9)

Proof. Suppose that there exists x0 > xα such that a(x0) < α. Then there exists
ε > 0 such that a(x) < α for each x with |x−x0| < ε. Let x′ = sup{x < x0 : a(x) = α}.
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Then xα ≤ x′ < x0 < x0 + ε and a(x′) = α. Since a(x) ≤ α for all x ∈ [x′, x0 + ε),
the function V satisfies (3.2) with the maximum there attained at a = α. Therefore

V (x) = K1e
r+(α)(x−x′) +K2e

r−(α)(x−x′) ∀x ∈ [x′, x0 + ε).(3.10)

From (3.10) and (3.3), the equation a(x′) = α can be rewritten as

K1r+(α) = −K2r−(α)
µ+ ασ2r−(α)
µ+ ασ2r+(α)

,

which establishes a relation between the constants K1 and K2. Using this relation,
we calculate

(3.11)

a(x) =
−µV ′(x)
σ2V ′′(x)

=
−µ
(
e(r+(α)−r−(α))(x−x′) − µ+ασ2r+(α)

µ+ασ2r−(α)

)
σ2
(
r+(α)e(r+(α)−r−(α))(x−x′) − r−(α)

µ+ασ2r+(α)
µ+ασ2r−(α)

) ∀x ∈ [x′, x0 + ε).

However, we have a(x) < α for x > x′, which after a simple algebraic transformation
of (3.11) is equivalent to e(r+(α)−r−(α))(x−x′) < 1. This leads to a contradiction.
Therefore (3.9) holds.

In view of a(xα) = α < β and (3.9), we have

α ≤ a(x) < β

in the right neighborhood of xα. Therefore

φ(x, a(x)) = max
α≤a≤β

φ(x, a) = 0.(3.12)

From (3.3), we have V ′′(x) = −µV ′(x)
σ2a(x) . Substituting this expression for V

′′ into (3.12),
we get

µa(x)V ′(x)/2 = γV (x).(3.13)

Differentiating this equation and again using V ′′(x) = −µV ′(x)
σ2a(x) , we arrive at

a′(x) =
µ2 + 2σ2γ

µσ2
.

Integrating this equation results in (recall that a(xα) = α)

a(x) =
µ2 + 2σ2γ

µσ2
(x− xα) + α.(3.14)

Let

xβ =
µσ2

µ2 + 2σ2γ
(β − α) + xα,(3.15)
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which is obtained by setting a(xβ) = β. Then α ≤ a(x) < β for all x ∈ [xα, xβ). It
follows from (3.13) that (noting a(xα) = α)

V (xα)

V ′(xα)
=

µα

2γ
≡ yα

(1− Γ)
,(3.16)

where

0 < Γ ≡ µ2

µ2 + 2σ2γ
< 1, yα ≡ µσ2α

µ2 + 2σ2γ
.(3.17)

Substituting the expression (3.14) for a(x) into (3.3) and then solving the resulting
equation for V (x) on [xα, xβ), while taking into account (3.16), we get

V (x) =
µα

2γ
V ′(xα)

(
x− xα + yα

yα

)1−Γ

, xα ≤ x < xβ ,(3.18)

where the free constant V ′(xα) can be determined by

V ′(xα) = k1(α, β)(r+(α)e
r+(α)xα − r−(α)er−(α)xα),(3.19)

in view of (3.6) and a smooth fit at x = xα. Straightforward computations show that
the function V defined by (3.6) and (3.18) is continuous with continuous first and
second derivatives at xα.

So far, we have obtained the forms of V on two intervals, [0, xα) and [xα, xβ), by
(3.6) and (3.18), respectively. Now we proceed to the interval beyond xβ . To this
end, we first have the following.

Proposition 5. For all x ≥ xβ

a(x) ≥ β.

Proof. By virtue of Proposition 4, a(x) ≥ α for all x ≥ xβ . Suppose there exists
x′ > xβ such that a(x′) < β. Then there exists ε > 0 such that a(x) < β for all
x < x′ + ε. Let x̄ = sup{x < x′ : a(x) = β}. Then xβ ≤ x̄ < x′ and a(x̄) = β.
In addition, α ≤ a(x) < β for all x̄ < x ≤ x′. Repeating the same arguments as in

the proof of (3.9) we get a(x) = µ2+2σ2γ
µσ2 (x− x̄) + β > β for each x > x̄, which is a

contradiction.
The above proposition implies that the maximum in (3.2) is obtained at a = β

for x ≥ xβ . The resulting equation of (3.2) then becomes a second-order linear ODE,
whose solution is of the form

V (x) = k1(β)e
r+(β)(x−x1) + k2(β)e

r−(β)(x−x1), xβ ≤ x < x1,(3.20)

where x1 > xβ , as defined earlier, is also the first point such that V ′′(x1) = 0 (see
Proposition 6 below).

Proposition 6. Let x1 > xβ be the first point where V ′′ vanishes. Then V ′(x1)
= 1.

Proof. Suppose V ′(x1) > 1. Then there exists ε > 0 such that V ′(x) > 1 for
all x1 ≤ x ≤ x1 + ε. Therefore on the interval [x1, x1 + ε] the function V satisfies
(3.2). In view of Proposition 5, a(x) ≥ β, and hence on the interval [x1, x1 + ε],
V is of the form given by (3.20). Since V ′′(x1) = 0, we conclude k1(β)r

2
+(β) =

−k2(β)r
2
−(β) > 0. (The positivity of k1(β) follows from V ′ > 0.) Thus V ′′(x) =
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k1(β)r
2
+(β)

(
e(r+(β)−r−(β))(x−x1) − 1

)
. This expression is positive for each x > x1.

This contradicts the concavity of V .
The following corollary is straightforward in view of the above proposition and

the inequality V ′(x) ≥ 1.
Corollary 2. Under the assumption of Proposition 6,

V ′(x) = 1 ∀x ≥ x1.

The analysis so far shows that the function V is of the following form:

V (x) =




k1(α, β)(e
r+(α)x − er−(α)x), 0 ≤ x < xα,

µα
2γ V

′(xα)
(
x−xα+yα

yα

)1−Γ

, xα ≤ x < xβ ,

k1(β)e
r+(β)(x−x1) + k2(β)e

r−(β)(x−x1), xβ ≤ x < x1,

k1(β) + k2(β) + x− x1, x1 ≤ x,

(3.21)

where r+(α), r−(α), r+(β), r−(β), xα and xβ , and Γ and yα are given by (3.7), (3.8),
(3.15), and (3.17), respectively.

The next step is to determine the remaining constants in (3.21). To do so we use
the principle of smooth fit at the points xβ and x1. Namely, we have to choose the
unknown constants k1(β), k2(β), k1(α, β), and x1 in such a way that the function V
and its first and second derivatives are continuous at these points. To this end, first
for V of the form (3.20) the condition

V ′(x1) = 1, V ′′(x1) = 0

can be written as

k1(β)r+(β) + k2(β)r−(β) = 1, k1(β)r
2
+(β) + k2(β)r

2
−(β) = 0.

As a result,

k1(β) =
−r−(β)

r+(β)(r+(β)− r−(β))
, k2(β) =

r+(β)

r−(β)(r+(β)− r−(β))
.(3.22)

Next, let ∆ = xβ − x1; then we can calculate V ′ and V ′′ at xβ as

V ′(xβ) = k1(β)r+(β)e
r+(β)∆ + k2(β)r−(β)er−(β)∆,

V ′′(xβ) = k1(β)r
2
+(β)e

r+(β)∆ + k2(β)r
2
−(β)e

r−(β)∆.
(3.23)

Recall that V ′′(xβ) =
−µV ′(xβ)
σ2a(xβ) =

−µV ′(xβ)
σ2β , which results in

xβ − x1 ≡ ∆ =
βσ2

[µ2 + 2σ2γ]1/2
log

(−µ+ [µ2 + 2σ2γ]1/2

µ+ [µ2 + 2σ2γ]1/2

)
< 0.(3.24)

On the other hand, a smooth fit, in terms of V ′(xβ), for (3.18) and (3.23) with (3.19)
taken into consideration yields

αµ

2γyα
k1(α, β)

(
r+(α)e

r+(α)xα − r−(α)er−(α)xα

)(β
α

)−Γ

= k1(β)r+(β)e
r+(β)∆ + k2(β)r−(β)er−(β)∆.

(3.25)
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Formulas (3.24) and (3.25) determine x1 and k1(α, β). Note that from (3.22) and
(3.24) it follows that

V (xβ)

V ′(xβ)
=

k1(β)e
r+(β)∆ + k2(β)e

r−(β)∆

k1(β)r+(β)er+(β)∆ + k2(β)r−(β)er−(β)∆

=
e(r+(β)−r−(β))∆ − r−(β)

r+(β)

r+(β)e(r+(β)−r−(β))∆ − r−(β)
=

µβ

2γ
.

Therefore limx→xβ , x<xβ
V (x) = µα

2γ V
′(xα)(βα )

1−Γ = µβ
2γ V

′(xβ) = V (xβ), which proves
the continuity of V at xβ .

These calculations enable us to formulate the main result of this section.
Theorem 4. Let r+(α), r−(α), r+(β) and r−(β), Γ and yα, xα, xβ , x1, k1(β)

and k2(β), and k1(α, β) be given by (3.7), (3.17), (3.8), (3.15), (3.24), (3.22), and
(3.25), respectively. Then V (x) given by (3.21) is a concave, twice continuously dif-
ferentiable solution of the HJB equation (3.1).

Proof. From the way we constructed V , it must be a twice continuously differ-
entiable solution to the HJB equation (3.1). What remains to show is the concavity.
From (3.21), we deduce that

V ′′′(x) = k1(α, β)
(
r3+(α)e

r+(α)x − r3−(α)e
r−(α)x

)
> 0 ∀0 ≤ x < xα,

due to r−(α) < 0 < k1(α, β). Hence on this interval V ′′ is increasing and

V ′′(x) < V ′′(xα) = k1(α, β)
(
r2+(α)e

r+(α)xα − r2−(α)e
r−(α)xα

)
< 0,

due to r−(α)
r+(α) = e(r+(α)−r−(α))xα and |r−(α)| > r+(α).

For xα ≤ x < xβ , V
′′(x) = −µV ′(x)

σ2a(x) < 0. For xβ ≤ x < x1,

V ′′′(x) = k1(β)r
3
+(β)e

r+(β)(x−x1) + k2(β)r
3
−(β)e

r−(β)(x−x1) > 0,

since k2(β) and r−(β) are of the same signs. Thus V ′′(x) < V ′′(x1) = 0 for all xβ ≤
x < x1. Finally, V

′′(x) = 0 for all x ≥ x1. This establishes the concavity of V .

4. Case with nonzero liability. This section deals with the general model
(2.1) where δ > 0. In this case the HJB equation is given by (2.30). Again we are
looking for a smooth concave function that solves this equation. As before, suppose
that such a solution V exists and consider x1 = inf{x ≥ 0 : V ′(x) ≤ 1}. Then it
is obvious that x1 = 0 if and only if V (x) = x for all x ≥ 0. Our first step is to
characterize the existence of such a trivial solution to (2.30).

Theorem 5. V (x) = x for all x ≥ 0 if and only if

βµ ≤ δ.(4.1)

Proof. Suppose V (x) = x for each x ≥ 0. Then in view of (2.30)

max
α≤a≤β

(
1

2
σ2a2V ′′(0) + (aµ− δ)V ′(0)− γV (0)

)
≡ βµ− δ ≤ 0.

Conversely, if βµ ≤ δ, then due to concavity

max
α≤a≤β

(
1

2
σ2a2V ′′(x) + (aµ− δ)V ′(x)− γV (x)

)
≤ −γV (x) < 0 ∀x > 0.
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Thus, (2.30) is satisfied only if V ′(x) = 1 for all x > 0.
In the rest of this section we assume βµ > δ. In view of (2.30)

0 = max
α≤a≤β

(
1

2
σ2a2V ′′(x) + (aµ− δ)V ′(x)− γV (x)

)
∀x < x1.(4.2)

For each x ≥ 0 and a ≥ 0 define

φ(x, a) =
1

2
σ2a2V ′′(x) + (aµ− δ)V ′(x)− γV (x).(4.3)

The maximizer of the function φ(x, a) over a ≥ 0 is given by

a(x) = − µV ′(x)
σ2V ′′(x)

> 0, x ≥ 0.(4.4)

Following the same scheme as in the no-liability case, we will prove that there exist
xα ≤ xβ < x1 such that a(x) ≤ α for all x ≤ xα, and a(x) ≥ β for all x ≥ xβ , and
the function a(x) increases from α to β on the interval [xα, xβ ].

As before we start with analyzing a(0).
Proposition 7. Let βµ > δ. Then

(i) 2δ
µ < α if and only if a(0) < α. In this case a(0) = µα2

2(µα−δ) .
(ii) α ≤ 2δ

µ < β if and only if α ≤ a(0) < β. In this case a(0) = 2 δµ .

(iii) β ≤ 2δ
µ if and only if a(0) ≥ β. In this case a(0) = µβ2

2(µβ−δ) .
Proof. Let ã ∈ [α, β] be such that

0 = max
α≤a≤β

(
1

2
σ2a2V ′′(0) + (aµ− δ)V ′(0)

)
=

1

2
σ2ã2V ′′(0) + (ãµ− δ)V ′(0).(4.5)

Comparing (4.5) with (4.4) we obtain

ã2 − 2a(0)ã+
2δ

µ
a(0) = 0.(4.6)

From (4.6), it follows that a(0) ≥ 2δ
µ . Moreover, by definition, a(0) ∈ [α, β] is

equivalent to ã = a(0), which is further equivalent to a(0) = 2δ
µ ∈ [α, β]. Thus we

conclude:
(i) If a(0) < α, then 2δ

µ ≤ a(0) < α. Conversely, suppose 2δ
µ < α. If a(0) ∈ [α, β],

then by the above a(0) = 2δ
µ < α, which is a contradiction. Thus either a(0) < α or

a(0) > β. Suppose a(0) > β; then ã = β and by (4.6), a(0) = µβ2

2(µβ−δ) < β (due to
2δ
µ < α < β). This is again a contradiction. Hence we have a(0) < α. Then ã = α

and in view of (4.6), we get a(0) = µα2

2(αµ−δ) .
(ii) Suppose α ≤ 2δ

µ < β. Then due to (i) we have a(0) ≥ α. Now we proceed

to prove that a(0) ≤ 2δ
µ < β. Suppose a(0) > 2δ

µ . Then a(0) > β ≡ ã. On the other

hand, in view of (4.6) we have a(0) = µβ2

2(βµ−δ) ; thus
µβ2

2(βµ−δ) ≥ β, which is equivalent

to 2 δµ ≥ β. This, however, is a contradiction and therefore a(0) = 2δ
µ ∈ [α, β).

Conversely, if a(0) ∈ [α, β), then a(0) = 2δ
µ ∈ [α, β).

(iii) Suppose β ≤ 2δ
µ . Then a(0) ≥ 2δ

µ ≥ β, leading to ã = β and a(0) = µβ2

2(βµ−δ) ≥
β. Conversely, if a(0) ≥ β, then ã = β and a(0) = µβ2

2(µβ−δ) ≥ β, which is equivalent

to 2δ
µ ≥ β.
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As it will be seen in what follows, the structure of the solution to our original
optimization problem depends on three cases specified by (i), (ii), and (iii) above.
Accordingly in the rest of the section we will analyze these three cases.

4.1. Case of 2δ
µ
< α. We begin our analysis with an observation that in this

case, in view of Proposition 7(i), a(x) < α for all x in the right neighborhood of 0.
Substituting a = α in (4.2) and solving the resulting second-order linear ODE, we
obtain

V (x) = k1(α, β)(e
r+(α)x − er−(α)x),(4.7)

where k1(α, β) is a free constant to be determined, and

r+(z) =
−(zµ− δ) + [(zµ− δ)2 + 2σ2z2γ]1/2

σ2z2
,

r−(z) =
−(zµ− δ)− [(zµ− δ)2 + 2σ2z2γ]1/2

σ2z2
, z > 0.

(4.8)

Due to (4.4) and (4.7),

a′(x) =
−µ
σ2

(V ′′(x))2 − V ′(x)V (3)(x)

(V ′′(x))2

=
−µr+(α)r−(α)e(r+(α)+r−(α))x (r+(α)− r−(α))

2

σ2(V ′′(x))2
> 0

for each x in the right neighborhood of 0. Therefore a(x) increases and reaches α at
the point xα given by

xα =
1

r+(α)− r−(α)
log

(
r−(α)

(
µ+ ασ2r−(α)

)
r+(α) (µ+ ασ2r+(α))

)
> 0.(4.9)

Proposition 8. For each x ∈ [xα, x1],

a(x) ≥ α.

Proof. Suppose there exists x′ > xα such that a(x) < α and let x̄ = sup{x <
x′ : a(x) = α}. Then xα ≤ x̄ < x′, a(x̄) = α, and a(x) < α for x̄ < x ≤ x′.
Substituting a = α into (4.2) and solving the resulting second-order linear ODE, we
get V (x) = k1e

r+(α)(x−x̄) + k2e
r−(α)(x−x̄). Therefore

a(x) =
−µV ′(x)
σ2V ′′(x)

= − µ

σ2

k1r+(α)e
(r+(α)−r−(α))(x−x̄) + k2r−(α)

k1r2+(α)e
(r+(α)−r−(α))(x−x̄) + k2r2−(α)

, x̄ < x ≤ x′.

Since a(x̄) = α, we have

k1r+(α)

(
1 +

ασ2r+(α)

µ

)
= −k2r+(α)

(
1 +

ασ2r−(α)
µ

)
.

Thus, for x̄ < x ≤ x′ the inequality a(x) < α is equivalent to e(r+(α)−r−(α))(x−x̄) < 1,
which is a contradiction.

By virtue of Proposition 8, α ≤ a(x) < β in the right neighborhood of xα. In this
case we have

φ(x, a(x)) = max
α≤a≤β

φ(x, a) = 0.(4.10)
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Substituting

V ′′(x) =
−µV ′(x)
σ2a(x)

(4.11)

into (4.10), differentiating the resulting equation, and substituting V ′′(x) = −µV ′(x)
σ2a(x)

once more, we arrive at µa′(x)
2 + µδ

σ2a(x) =
µ2+2γσ2

2σ2 . As a result

a′(x) =
µ2 + 2γσ2

µσ2

(
1− c

a(x)

)
(4.12)

with

c ≡ 2δµ/(µ2 + 2γσ2).(4.13)

Integrating (4.12), we get G(a(x)) ≡ µ2+2γσ2

µσ2 (x− xα) +G(α), where

G(u) = u+ c log(u− c).(4.14)

Therefore

a(x) = G−1

(
µ2 + 2γσ2

µσ2
(x− xα) +G(α)

)
.(4.15)

Thus a(x) is increasing and a(xβ) = β for

(4.16)

xβ ≡ µσ2

µ2 + 2γσ2
[G(β)−G(α)] + xα =

µσ2

µ2 + 2γσ2
(β − α) +

µσ2c

µ2 + 2γσ2
log

(
β − c

α− c

)
.

Solving (4.11), we obtain

V (x) = V (xα) + V ′(xα)
∫ x

xα

exp

(
− µ

σ2

∫ y

xα

du

a(u)

)
dy, xα ≤ x < xβ ,(4.17)

where V (xα) and V
′(xα) are free constants. Choosing V (xα) and V ′(xα) as the value

and the derivative, respectively, of the right-hand side of (4.7) at xα, we can ensure
that the function V given by (4.7) and (4.17) is continuous with its first and second
derivatives at the point xα no matter what the choice of k(α, β) is. (Note that due to
the HJB equation, continuity of V and its first derivative at xα automatically implies
continuity of the second derivative as well.)

Next we are to simplify (4.17). First, changing variables a(u) = θ we get∫ x

xα

exp

(
− µ

σ2

∫ y

xα

du

a(u)
dy

)

=
µσ2

µ2 + 2γσ2

∫ a(x)

α

(
1 +

c

θ − c

)(
θ − c

α− c

)−Γ

dθ, xα ≤ x < xβ .

On the other hand, relations (4.9) and (4.7) imply

V (xα) =
αµ− 2δ

2γ
V ′(xα).
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Simple algebraic transformations yield(
µσ2

µ2 + 2γσ2

)(
c

Γ
− z − c

1− Γ

)
=

zµ− 2δ

2γ
∀z > 0,(4.18)

where c is given by (4.13) and

Γ =
µ2

µ2 + 2γσ2
.(4.19)

Therefore

V (x) = V ′(xα)
µa(x)− 2δ

2γ

(
a(x)− c

α− c

)−Γ

, xα ≤ x < xβ .(4.20)

Now, we proceed to the next piece of V on the interval beyond xβ .
Proposition 9. For each x ∈ [xβ , x1],

a(x) ≥ β.

Proof. Suppose that there exists x′ > xβ such that a(x) < β. Since x′ ≥ xα,
we have β > a(x) ≥ α. Denote x̄ = sup{x < x′ : a(x) = β}. Then xβ ≤ x̄ < x′,
a(x̄) = β, and α ≤ a(x) < β for x̄ < x ≤ x′. Thus a(x) satisfies (4.12) for x̄ < x ≤ x′

and

a(x) = G−1

(
µ2 + 2γσ2

µσ2
(x− x̄) +G(β)

)
> β.

This is a contradiction.
In view of the above proposition,

φ(x, β) = max
α≤a≤β

φ(x, a) = 0, xβ ≤ x < x1,(4.21)

where x1, which is defined earlier, is also the first point such that V ′′(x1) = 0. This
results in

V (x) = k1(β)e
r+(β)(x−x1) + k2(β)e

r−(β)(x−x1), xβ ≤ x < x1,(4.22)

where k1(β) and k2(β) are two free constants also to be determined.
Proposition 10. For x ≥ x1,

V ′(x) = 1.

Proof. Suppose that there exists x′ ≥ x1 such that V ′′(x′) < 0. Since x′ ≥
xβ , inequality a(x) ≥ β holds. Let x̄ = sup{x < x′ : V ′′(x) = 0}. For any
x ∈ (x̄, x′], we have V (x) = K ′

1e
r+(β)(x−x̄) + K ′

2e
r−(β)(x−x̄). Equality V ′′(x̄) = 0

results in 0 < K ′
1r

2
+(β) = −K ′

2r
2
−(β). Consequently V ′′(x) = K ′

1r
2
+(β)e

r+(β)(x−x̄) +
K ′

2r
2
−(β)e

r−(β)(x−x̄) = K ′
1r

2
+(β)

(
er+(β)(x−x̄) − er−(β)(x−x̄)) > 0. This contradicts the

concavity of the function V .
From Proposition 10 it follows that

V (x) = x− x1 + k1(β) + k2(β), x ≥ x1.
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To compute the free constants k1(β) and k2(β), we use the relationship

V ′(x1) = 1, V ′′(x1) = 0.

From (4.22) it follows that

k1(β)r+(β) + k2(β)r−(β) = 1, k1(β)r
2
+(β) + k2(β)r

2
−(β) = 0.

As a result

k1(β) =
−r−(β)

r+(β)(r+(β)− r−(β))
> 0,(4.23)

k2(β) =
r+(β)

r−(β)(r+(β)− r−(β))
< 0.

To determine the remaining unknown constants we apply the principle of smooth fit
at the point xβ . Let ∆ = xβ − x1. By (4.22) we have

V ′(xβ) = k1(β)r+(β)e
r+(β)∆ + k2(β)r−(β)er−(β)∆,

V ′′(xβ) = k1(β)r
2
+(β)e

r+(β)∆ + k2(β)r
2
−(β)e

r−(β)∆.
(4.24)

However, the relation (4.11) (recall that a(xβ) = β) yields V ′′(xβ) =
−µV ′(xβ)

σ2β . This
leads to

xβ − x1 = ∆ =
1

r+(β)− r−(β)
log


 1

r−(β) +
σ2β
µ

1
r+(β) +

σ2β
µ


 < 0,(4.25)

which determines x1 and, in turn, determines V ′(xβ) via (4.24). To proceed, simple
but tedious algebraic transformations show that from (4.20) and (4.17) it follows that

V ′(xα) = V ′(xβ)
(
β − c

α− c

)Γ

.(4.26)

As in the previous section this implies the continuity of V at xβ . Finally, the continuity
of V at xα gives rise to

k1(α, β) =
V ′(xβ)

(
β−c
α−c
)Γ

r+(α)er+(α)xα − r−(α)er−(α)xα
.(4.27)

This enables us to establish the main result of this section.
Theorem 6. Suppose 2δ

µ < α. Let k1(α, β), r+(α), r−(α), r+(β), r−(β), xα,
xβ, x1 k1(β), k2(β), a(x), c, Γ, and V ′(xα) be given by (4.27), (4.8), (4.9), (4.16),
(4.25), (4.23), (4.15), (4.13), (4.19), and (4.26), respectively. Then

V (x) =




k1(α, β)
(
er+(α)x − er−(α)x

)
, 0 ≤ x < xα,

V ′(xα)
µa(x)−2δ

2γ

(
a(x)−c
α−c

)−Γ

, xα ≤ x < xβ ,

k1(β)e
r+(β)(x−x1) + k2(β)e

r−(β)(x−x1), xβ ≤ x < x1,

k1(β) + k2(β) + x− x1, x ≥ x1,

(4.28)

is a concave, twice continuously differentiable solution of the HJB equation (2.30).
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Proof. As before we need only show the concavity. To do this consider V ′′′. From
(4.28), we get

V ′′′(x) = k1(α, β)
(
r3+(α)e

r+(α)x − r3−(α)e
r−(α)x

)
> 0, 0 ≤ x < xα,

V ′′′(x) = −µV ′′(x)
σ2a(x) + µa′(x)V ′(x)

σ2(a(x))2 > 0, xα ≤ x < xβ ,

V ′′′(x) = k1r
3
+(β)e

r+(β)(x−x1) + k2(β)r
3
−(β)e

r−(β)(x−x1) > 0, xβ ≤ x < x1.

Thus V ′′(x) < V ′′(x1) = 0 for each x < x1. On the other hand, V ′′(x) = 0 for each
x ≥ x1. These lead to the concavity of V .

4.2. Case of α ≤ 2δ
µ
< β. Applying Propositions 7 and 8, we see that in this

case a(0) = 2δ
µ ≥ α and a(x) ≥ α for all x ≥ 0. Then in the right neighborhood of 0,

α ≤ a(x) < β. It follows that for φ given by (4.3), equation (4.10) holds. Proceeding
as in section 4.1, we see that a(x) satisfies (4.12). Therefore

a(x) = G−1

(
µ2 + 2γσ2

µσ2
x+G(2δ/µ)

)
∈ [2δ/µ, ∞),(4.29)

where G is given by (4.14). As a result a(x) increases and a(xβ) = β, where

xβ =
µσ2

µ2 + 2γσ2
[G(β)−G(2δ/µ)]

=
µσ2

µ2 + 2γσ2
(β − 2δ/µ) +

2δµc

µ2 + 2γσ2
log

(
β − c

2δ/µ− c

)
.

(4.30)

Integrating (4.4), we get

V (x) = V ′(0)
µa(x)− 2δ

2γ

(
a(x)− c

2δ/µ− c

)−Γ

, 0 ≤ x < xβ .(4.31)

By virtue of Proposition 9 we have a(x) ≥ β for x ∈ [xβ , x1]. Let x1 be such that
V ′′(x1) = 0. Then for xβ ≤ x < x1,

V (x) = k1(β)e
r+(β)(x−x1) + k2(β)e

r−(β)(x−x1).(4.32)

Using the principle of smooth fit for V in (4.32) at x1, we see that k1(β) and k2(β)
are given by (4.23). Put ∆ = xβ − x1. Applying the principle of smooth fit at xβ for
V ′ and V ′′, we deduce that ∆ is given by (4.25). Therefore

x1 = xβ +∆ = xβ +
1

r+(β)− r−(β)
log


 1

r−(β) +
σ2β
µ

1
r+(β) +

σ2β
µ


 .(4.33)

Theorem 7. Suppose α ≤ 2δ
µ < β. Let a(x), c, Γ, xβ, x1, r+(β), r−(β),

k1(β), and k2(β) be given by (4.29), (4.13), (4.19), (4.30), (4.33), (4.8), and (4.23),
respectively. Let V ′(0) be determined from (4.26), in which xα and α are replaced by
0 and 2δ/µ, respectively. Then

V (x) =




V ′(0)µa(x)−2δ
2γ

(
a(x)−c
2δ/µ−c

)−Γ

, 0 ≤ x < xβ ,

k1(β)e
r+(β)(x−x1) + k2(β)e

r−(β)(x−x1), xβ ≤ x < x1,

k1(β) + k2(β) + x− x1, x ≥ x1,

(4.34)

is a concave, twice continuously differentiable solution of the HJB equation (2.30).
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Proof. The proof of this theorem is similar to that of Theorem 6. (One needs
only to repeat the proof of Theorem 6, substituting xα, xβ , and x1 by 0, xβ , and x1,
respectively.)

Remarks 1. Denote by Vα, β(x) the concave solution to the HJB equation (2.30)
corresponding to the parameters (α, β). Then the results of this section show that

Vα, β(x) = V 2δ
µ , β(x), x ≥ 0,

for each α ≤ 2δ
µ . One can verify that as α → 0+ and β = 1, the expression (4.34)

becomes the value function for the problem with α = 0, β = 1, even though our
methodology cannot be applied in the case of α = 0.

It is interesting to notice that in the case of α = 0, β = 1, and 2δ
µ < 1 a different

approach used in [18] yields

VTZ(x) =



∫ x
0
X−1(y)dy, 0 ≤ x < xβ ,

k1(β)e
r+(β)(x−x1) + k2(β)e

r−(β)(x−x1), xβ ≤ x < x1,

k1(β) + k2(β) + x− x1, x ≥ x1,

(4.35)

where X(z) = Cz
−1− 2γσ2

µ2 + C1 − δ
µ2/(2σ2)+γ ln z for some constants C and C1. The

expression for the case 0 ≤ x < xβ in (4.35) is very different from that in (4.34).
However, the following result shows that they are in fact the same.

Proposition 11.

V (x) = VTZ(x) when α = 0, β = 1, and
2δ

µ
< 1.(4.36)

Proof. First note that V (x) and VTZ(x) coincide for x ≥ xβ . Due to the continuity
of both V ′ and V ′

TZ at xβ , we deduce that

V ′(xβ) = V ′
TZ(xβ) ≡ X−1(xβ).(4.37)

Now we prove that (4.36) holds if and only if

a(x) =
µ

σ2

(
C

Γ

(
X−1(x)

)−1/Γ
+

2δσ2

µ2 + 2γσ2

)
, 0 ≤ x ≤ xβ .(4.38)

To this end, first suppose that (4.38) holds. Since V (x) is derived from (4.4) after
calculating a(x), we insert in (4.4) the right-hand side of (4.38) and derive

log

(
V ′(xβ)
V ′(x)

)
= −

∫ xβ

x

dx
C
Γ (X−1(x))

−1/Γ
+ 2δσ2

µ2+2γσ2

= log

(
X−1(xβ)

X−1(x)

)
∀0 ≤ x ≤ xβ ,

where the second equality follows by considering the change of variable y = X−1(x).
By (4.37), we conclude that V ′(x) = X−1(x) ≡ V ′

TZ(x) for all 0 ≤ x ≤ xβ . This
together with the fact that V (0) = VTZ(0) = 0 leads to (4.36). Conversely, suppose
V (x) = VTZ(x) for all 0 ≤ x ≤ xβ . By differentiating V twice, we get

V ′(x) = X−1(x), V ′′(x) = − X−1(x)
C
Γ (X−1(x))

−1/Γ
+ 2δσ2

µ2+2γσ2

.
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These two equations combined with (4.4) imply that (4.38) holds.

So now we need only to prove the validity of (4.38). Let

Z(x) =
µ

σ2

(
C

Γ

(
X−1(x)

)−1/Γ
+

2δσ2

µ2 + 2γσ2

)
, 0 ≤ x ≤ xβ .(4.39)

Since V (x) = VTZ(x) for x ≥ xβ and V ′ and V ′′ are continuous at xβ , we obtain via a
similar calculation as above that Z(xβ) = a(xβ). On the other hand, by differentiating
Z(x), we derive

Z ′(x) =
µ

σ2Γ

C
Γ

(
X−1(x)

)−1/Γ

C
Γ (X−1(x))

−1/Γ
+ 2δσ2

µ2+2γσ2

=
µ

σ2Γ
− 2δσ2

µ2 + 2γσ2

1

Z(x)Γ
∀0 ≤ x ≤ xβ .

Therefore, Z(x) satisfies (4.12) with the boundary condition Z(xβ) = a(xβ). This
leads to (4.38) and the proof is completed.

4.3. Case of β ≤ 2δ
µ
. Since in this case a(0) ≥ β, we can apply Proposition 9

to conclude a(x) ≥ β for all x ≥ 0. Substituting a = β in (4.2), we get

V (x) = k1(β)e
r+(β)(x−x1) + k2(β)e

r−(β)(x−x1), 0 ≤ x < x1.(4.40)

Using the principle of smooth fit at x1, we get that k1(β) and k2(β) are given by
(4.23). Using the initial condition V (0) = 0, we obtain

∆ = −x1 =
1

r+(β)− r−(β)
log

(
r2+(β)

r2−(β)

)
.(4.41)

Note that the expression on the right-hand side of (4.41) is negative if and only if
|r+(β)| < |r−(β)|. The latter is true if and only if

δ

µ
< β;(4.42)

see (4.8).

Theorem 8. Suppose δ
µ < β ≤ 2δ

µ . Let k1(β), k2(β), r+(β), r−(β), and x1 be

given by (4.23), (4.8), and (4.41), respectively. Then

V (x) =

{
k1(β)e

r+(β)(x−x1) + k2(β)e
r−(β)(x−x1), 0 ≤ x < x1,

k1(β) + k2(β) + x− x1, x ≥ x1,
(4.43)

is a concave, twice continuously differentiable solution of the HJB equation (2.30).

Proof. The proof of this theorem follows the lines of the proof of Theorem 7, in
which one replaces xβ by 0.

Remark 4. The case when (4.42) fails is a trivial case; see Theorem 5.

Remark 5. From the expressions for Vα, β obtained in this subsection and the
previous subsection, one can see that

lim
β→∞

Vα, β(x) =∞, lim
α→0, β→0

Vα, β(x) = 0 ∀x > 0.
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5. Optimal policies. In this section we construct the optimal control policies
based on the solutions to the HJB equations obtained in the previous sections. Recall
that x1 is the smallest number such that V ′′ vanishes. For each x ≤ x1 define

a∗(x) ≡ arg max
α≤a≤β

(
1

2
σ2a2V ′′(x) + (aµ− δ)V ′(x)− γV (x)

)
.(5.1)

As evident from below the function a∗(x) represents the optimal feedback control
function for the control component aπt , t ≥ 0. More precisely, the value a∗(x) is the
optimal risk that one should take when the value of the current reserve is x. From
the analysis in section 4, it follows that a∗(x) can be represented as

a∗(x) =




α, 0 ≤ x ≤ xα,
a(x), xα ≤ x ≤ xβ ,
β, x ≥ xβ .

(5.2)

Note that the values of the critical points xα, xβ as well as the function a(x) depend
on the three different cases studied in section 4. Specifically, in the case of 2δ

µ < α the

values of xα and xβ are specified by Theorem 6 while a(x) is given by (4.15); in the
case of α ≤ 2δ

µ < β, xα = 0 and xβ is given by Theorem 7 while a(x) is determined

by (4.29); in the case of β ≤ 2δ
µ , xα = xβ = 0.

To determine the other component of the optimal control, Cπ
t , t ≥ 0, which is

the singular control in the terminology of control theory, we need to involve the re-
flection processes which solve the so-called Skorohod problem for the one-dimensional
diffusion. Let (R∗

t , C
∗
t ) be a solution to the following Skorohod problem on t ≥ 0:

R∗
t = x+

∫ t
0
(a∗(R∗

s)µ− δ)ds+
∫ t
0
a∗(R∗

s)σdWs − C∗
t ,

R∗
t ≤ x1,∫∞

0
1{R∗

s<x1}dC
∗
s = 0.

(5.3)

This solution yields two processes R∗
t and C∗

t . The first is a diffusion process on
(−∞, x1] reflected at the upper boundary, and the second is an increasing process.
Subtracting C∗

t from R∗
t results in the reflection of R∗

t from x1. The last condition
is the requirement that this functional increases only when the controlled process is
at the boundary x1, thus not affecting the dynamics of R∗

t whenever R
∗
t is below x1.

Existence of a solution to such a Skorohod problem follows from Theorem 3.1 in [12].
For a process Rt with a constant drift and diffusion term (Rt = x + µt + σWt), a
solution to the Skorohod problem can be written in a closed form via the so-called
running maximum

R∗
t = x+ µt+ σWt − C∗

t , C∗
t = max

0≤s≤t
[(x+ µs+ σWt − x1)

+].

In the case when drift and diffusion coefficients are not constants, by and large the
solution to the equations (5.3) cannot be found in a closed form. An ε-approximation
to the solution to the Skorohod problem by a jump diffusion Rε

t can be the following.
The process Rε

t is a diffusion on (−∞, x1], and whenever this process reaches x1,
it jumps down to x1 − ε. The corresponding process Cε

t in this case is a purely
discontinuous functional which increases by ε when Rε

t reaches x1. The solution
(R∗

t , C
∗
t ) to (5.3) can be viewed as a limiting case of ε→ 0.
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Theorem 9. Let V be a concave, twice continuously differentiable solution of the
HJB equation (2.30) and (R∗

t , C
∗
t ; t ≥ 0) be a solution to the Skorohod problem (5.3).

Then for π∗ = (a∗(R∗
t ), C

∗
t ; t ≥ 0), we have

Jx(π
∗) = V (x) ∀x ≥ 0.(5.4)

Proof. For simplicity assume that the initial position x ≤ x1. In this case both
processes R∗

t and C∗
t as a solution to the Skorohod problem are continuous. In view

of (5.1),

La
∗(R∗

s)V (R∗
s) = 0,(5.5)

where the operator La is defined in (2.33). Repeating the argument in proving (2.62)
and applying (5.5), we see that

E(e−γ(t∧τ)V (R∗
t∧τ )) = V (x)− E

∫ t∧τ

0

e−γsV ′(R∗
s)dC

∗
s .(5.6)

Since V ′(x1) = 1 and in view of (5.3),

1{R∗
s=x1}dC

∗
s = dC∗

s ,(5.7)

we can replace V ′(R∗
s) in the integrand on the right-hand side of (5.6) by V

′(R∗
s)1{R∗

s=x1}
= V ′(x1)1{R∗

s=x1} to obtain

E(e−γ(t∧τ)V (R∗
t∧τ )) = V (x)− E

∫ t∧τ

0

e−γsV ′(x1)1{R∗
s=x1}dC

∗
s(5.8)

= V (x)− E

∫ t∧τ

0

e−γsV ′(x1)dC
∗
s = V (x)− E

∫ t∧τ

0

e−γsdC∗
s ,

where in the last two equalities we used once more (5.7) and the condition V ′(x1) = 1.
Taking limit as t→∞, and applying (2.65), we obtain the desired result.

Combining Theorems 3 and 9, we get the following result immediately.
Corollary 3. The function V presented in the previous sections is the value

function and π∗ is the optimal policy.
Remark 6. Theorem 9 and Corollary 3 also imply that the HJB equation (2.30)

has a unique solution in the class of concave, twice continuously differentiable func-
tions.

Next we summarize all the results we obtained in Table 1 for easy reference.

6. Economic interpretation and conclusions. The optimal policies obtained
in the previous sections have clear economic meaning and are very easy to implement.
Let us now elaborate.

Theorem 5 is a mathematical formulation of the intuition that if a company has
a liability rate not smaller than the maximal expected profit rate, then it is optimal
to declare bankruptcy immediately, distributing the whole reserve as the dividend. In
this case the risk control policy is irrelevant.

When an immediate bankruptcy is not optimal, the optimal risk control policy
is characterized by two critical reserve levels: xα and xβ . The values of these two
levels are further determined by three parameters: the minimum risk allowed (α), the
maximum risk allowed (β), and the ratio between the debt rate and profit rate ( δµ ).

If the company has very little debt compared to the potential profit (so that 2δ
µ ≤ α),
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Table 1
Summary of results.

Range for
δ
µ

xα xβ a∗(x)
Risk α
ever
attained

x1

2δ
µ
< α

positive
and
finite;
see
(4.9)

positive
and
finite;
see
(4.16)

(i) α, for x ∈ [0, xα];
(ii) increases from
α to β on [xα, xβ ];
see (4.15);
(iii) β, for x ≥ xβ

yes
positive;
see
(4.25)

2δ
µ

= α

α < 2δ
µ
< β

0

positive
and
finite;
see
(4.30)

(i) increases from
2δ/µ to β
on [0, xβ ];
(ii) β, for x ≥ xβ

yes
no

positive;
see
(4.33)

δ
µ
< β ≤ 2δ

µ
0 0 β no

positive;
see
(4.41)

δ
µ

≥ β

(trivial case)

0 0 any N/A 0

then both the critical reserve levels, xα and xβ , are positive and finite. In this case,
the company will minimize the business activity (i.e., take the minimum risk α) when
the reserve is below the level xα, then gradually increase the business activity when
the reserve is between xα and xβ , and then maximize the business activity (i.e., take
the maximum risk β) when the reserve ever reaches or goes beyond the level xβ .

Next, if the company has a higher debt-profit ratio (so that α < 2δ
µ < β), then the

company has to be a bit more aggressive in the sense that xα = 0 and xβ is positive
and finite. In this case, no matter how small the reserve is the company will never take
the minimum risk; rather it will start with the risk level 2δ

µ and gradually increase to
the maximum risk level β when the reserve hits the level xβ and goes above this level.
This can be explained by the fact that when the debt rate is high one needs to gamble
on the higher potential profits in order to get out of the “bankruptcy zone” as fast as
possible, even at the expense of assuming higher risk. The company becomes more
aggressive when the debt-profit ratio is even higher (precisely when δ

µ < β ≤ 2δ
µ ), in

which case the maximum allowable risk β is taken throughout while the two critical
levels xα and xβ are both zero. Finally, when the debt-profit ratio is so high that the
debt-profit ratio is greater than the maximum risk possible, then the company should
declare bankruptcy and go out of business immediately. This is due to the fact that
the expected net cash flow is negative in this case, no matter what the company’s
policy might be.

On the other hand, the optimal dividend policy is always of a threshold type with
the threshold being equal to x1. Namely, the reserve should be kept below the critical
level x1 while distributing any excess as dividends. A simple realistic approximation
of this policy is distributing a small amount of dividends whenever the process reaches
x1. If the initial reserve x exceeds x1, then the optimal policy requires to distribute
instantaneously all the excess above x1. From the structure of our solution we also see
that the maximum business activity is always taken on before dividend distributions
take place.
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In conclusion, we would like to point out an intricate interplay between the liabil-
ity and restrictions on the risk control of a financial company. The sheer number of
qualitatively different optimal policies, which appears due to different possible rela-
tionships between exogenous parameters, shows the multiplicity of different economic
environments which a financial company faces depending on the size of the debt and
on the size of available business activity.
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